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Denotational Semantics for Abadi and Leino’s
Logic of Objects

B R and J S

A. Abadi-Leino Logic is a Hoare-calculus style logic for a simple imperative and object-
based language where every object comes with its own method suite. Consequently, methods need
to reside in the store (“higher-order store”). We present a new soundness proof for this logic using a
denotational semantics where object specifications are recursive predicates on the domain of objects.
Our semantics reveals which of the limitations of Abadi and Leino’s logic are deliberate design
decisions and which follow from the use of higher-order store. We discuss the implications for the
development of other, more expressive, program logics.
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1 Introduction

When Hoare presented his seminal work about anaxiomatic basis of computer
programming[7], high-level languages had just started to gain broader accep-
tance. While programming languages are evolving ever more rapidly, verifica-
tion techniques seem to be struggling to keep up. For object-oriented languages
several formal systems have been proposed, e.g. [2, 6, 13, 12, 5, 20, 17]. A “stan-
dard” comparable to the Hoare-calculus for imperative While-languages [4] has
not yet emerged. Nearly all the approaches listed above are designed for class-
based languages (usually a sub-language of sequential Java), where method code
is known statically.

One notable exception is Abadi and Leino’s work [2] where a logic for an
object-based language is introduced that is derived from the imperative object
calculus with first-order types,impς, [1]. In object-based languages, every ob-
ject contains its own suite of methods. Operationally speaking, the store for such
a language contains code (and is thus calledhigher-order store) and modularity
is for free simply by the fact that all programs can depend on the objects’ code in
the store. We therefore consider object-based languages ideal for studying mod-
ularity issues that occur also in class-based languages. Class-based programs
can be compiled into object-based ones (see [1]), and object-based languages
can naturally deal with classes defined on-the-fly, like inner classes and classes
loaded at run-time (cf. [14, 15]).

Abadi and Leino’s logic is a Hoare-style system, dealing with partial cor-
rectness of object expressions. Their idea was to enrich object types by method
specifications, also calledtransition relations, relating pre- and post-execution
states of program statements, andresult specificationsdescribing the result in
case of program termination. Informally, an object satisfies such a specification

A ≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]

if it has fieldsfi satisfyingAi and methodsm j that satisfy the transition relation
T j and, in case of termination of the method invocation, their result satisfiesBj .
However, just as a method can use theself-parameter, we can assume that an
objecta itself satisfiesA in bothBj andT j when establishing thatA holds fora.
This yields a powerful and convenient proof principle for objects.1

We are going to present a new proof using a (untyped) denotational seman-
tics (of the language and the logic) to define validity. Every program and every
specification have a meaning, adenotation. Those of specifications are simply
predicates on (the domain of) objects. The properties of these predicates provide

1This also works for class-based languages. But an easier solution for those is to interpret class
specifications as mutually defined predicates over classes (and their class names).
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a description of inherent limitations of the logic. Such an approach is not new, it
has been used e.g. in LCF, a logic for functional programs [10].

The difficulty in this case is to establish predicates that provide the powerful
reasoning principle for objects. Reus and Streicher have outlined in [16] how
to use some classic domain theory [11] to guarantee existence and uniqueness
of appropriate predicates on (isolated) objects. In an object-calculus program,
however, an object may depend on other objects (and its methods) in the store.
So object specifications must depend on specifications of other objects in the
store which gives rise to “store specifications” (already present in the work of
Abadi and Leino).

For the reasons given above, this paper is not “just” an application of the ideas
in [16]. Much care is needed to establish the important invariance property of
Abadi-Leino logic, namely that proved programs preserve store specifications.
Our main achievement, in a nutshell, is that we have successfully applied the
ideas of [16] to the logic of [2] to obtain a soundness proof that can be used to
analyse this logicand todevelop similar but more powerful program logicsas
well.

Our soundness proof is not just “yet another proof” either. We consider it
complementary (if not superior) to the one in [2] which relies on the operational
semantics of the object calculus and does not assign proper “meaning” to speci-
fications. Our claim is backed up by the following reasons:

• By using denotational semantics we can introduce a clear notion of validity
with no reference to derivability. This helps clarifyingwhat the proof is
actually statingin the first place.

• We can extend the logic easily e.g. for recursive specifications. This has been
done for the Abadi-Leino logic in [8] but for a slightly different language with
nominal subtyping.

• Some essential and unavoidable restrictions of the logic are revealed and
justified.

• Analogously, it is revealed where restrictions have been made for the sake of
simplicity that could be lifted to obtain a more powerful logic. For example,
in [2] transition specifications cannot talk about methods at all.

• Our proof widens the audience for Abadi and Leino’s work to semanticists
and domain theorists.

The outline of this report is as follows. In the next section, syntax and seman-
tics of the object-calculus are presented. Section 3 introduces the Abadi-Leino
logic and the denotational semantics of its object specifications. It follows a
discussion about store specifications and their semantics (Section 4). The main
result is in Section 5 where the logic is proved sound. Finally we sketch how
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a,b ::= x variable
| true | false booleans
| if x then a else b conditional
| let x = a in b let
| [fi = xi

i=1...n,m j = ς(yj)bj
j=1...m] object construction

| x.f field selection
| x.f := y field update
| x.m method invocation

T 1. Syntax

recursive specifications can be introduced (Section 6) and discuss the benefits of
the denotational approach (Section 7).

When presenting the language and logic, we deliberately keep close to the
original presentation [2].

2 The Object Calculus

Below, we review the language of [2], which is based on the imperative object
calculus of Abadi and Cardelli [1]. Following [16] we give a denotational se-
mantics in Section 2.2.

2.1 Syntax

Let Var, M andF be pairwise disjoint, countably infinite sets ofvariables,
method namesandfield names, respectively. Letx, y range overVar, let m ∈ M
andf ∈ F . The language is defined by the grammar in Tab. 1.

Variables are (immutable) identifiers, the semantics of booleans and condi-
tional is as usual. The object expressionlet x = a in b first evaluatesa and
then evaluatesb with x bound to the result ofb.

Object construction [fi = xi
i=1...n,m j = ς(y j)b j

j=1...m] allocates new storage
and returns (a reference to) an object containing fieldsfi (with initial value the
value of xi) and methodsm j . In a methodm j , ς is a binder, binding the ex-
plicit self parametery j in the method bodyb j . During method invocation, the
method body is evaluated with the self parameter bound to the host object. We
identify objects that differ only in the names of bound variables and the order of
components.

The result of field selectionx.f is the value of the field, andx.f := y is field
update. A formal semantics is given in the next subsection below.

Note that in contrast to [1] we distinguish between fields and methods, and
that method update is disallowed. Also note that we restrict the cases for field
selection, field update, method invocation and if statement to contain only vari-
ables (instead of arbitrary object terms). This is no real limitation because of the
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let construct2, but it simplifies the statement of the rules of the logic [2].

2.2 Semantics of Objects
Preliminaries
We work in the categoryPreDom of predomains and partial continuous func-
tions. LetA ⇀ B denote the partial continuous function space between predo-
mainsA andB. For f ∈ A ⇀ B anda ∈ A we write f (a) ↓ if f applied toa is
defined, andf (a)↑ otherwise.

If L is a set, thenP(L) is its powerset,Pfin(L) denotes the set of its finite
subsets, andAL is the set of all total functions fromL to A. For a countable setL
and a predomainA we write

RecL(A) =
∑

L∈Pfin(L)
AL

for the predomain ofrecordswith entriesfrom A and labelsfrom L. Note that
RecL extends to a locally continuous endofunctor onPreDom.

A record (L, f ∈ AL), with labelsL = {l1, . . . , ln} and corresponding entries
f (l i) = ai , is written as{|l1 = a1, . . . , ln = an|}. Update (and extension) of records
is defined as the corresponding operation on functions, i.e.,

{|l i = ai |}
i=1...n[l := a] =

{
{|l1 = a1, . . . , lk = a, . . . , ln = an|} if l = lk for somek
{|l i = ai , l = a|}i=1...n otherwise

Selection of a labell ∈ L of a recordr ∈ RecL(A) is writtenr.l. It is defined and
yields f (l) if r is (D, f ∈ AD) andl ∈ D.

Interpretation
The language of the previous section finds its interpretation within the following
system of recursively defined predomains inPreDom

Val = BVal + Loc

St = RecLoc(Ob)

Ob = RecF (Val) × RecM(Cl)

Cl = St⇀ (Val + {error}) × St

(1)

Here,Loc is some countably infinite set oflocationsranged over byl, andBVal is
the set of truth valuestrue andfalse, considered as flat predomains. The functor
FStore : PreDomop × PreDom→ PreDom associated with (1),

FS tore(S,T) = RecLoc(RecF (Val) × RecM(S⇀ (Val + {error}) × T))

is locally continuous bifunctor, and there exists indeed a minimal invariant solu-
tion St s.t.FS tore(St,St) = St (see, e.g., [11, 18]).

2we use a more generous syntax in the examples
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[[ x]]ρσ =

{
(ρ(x), σ) if x ∈ dom(ρ)
(error, σ) otherwise

[[true]]ρσ = (true, σ)

[[false]]ρσ = (false, σ)

[[if x then b1 else b2]]ρσ =


[[b1]]ρσ′ if [[ x]]ρσ = (true, σ′)
[[b2]]ρσ′ if [[ x]]ρσ = (false, σ′)
(error, σ′) if [[ x]]ρσ = (v, σ′) for v < BVal

[[let x = a in b]]ρσ = let (v, σ′) = [[a]]ρσ in [[b]]ρ[x := v]σ′

[[[ fi = xi
i=1...n,m j = ς(yj)bj

j=1...m]]] ρσ

=

{
(l, σ[l := (o1,o2)]) if xi ∈ dom(ρ),1 ≤ i ≤ n
(error, σ) otherwise

wherel < dom(σ)
o1 = {|fi = ρ(xi)|}i=1...n

o2 = {|m j = λσ.[[bj ]]ρ[yj := l]σ|} j=1...m

[[ x.f]]ρσ = let (l, σ′) = [[ x]]ρσ

in
{

(σ′.l.f, σ′) if l ∈ dom(σ′) andf ∈ dom(σ′.l)
(error, σ′) otherwise

[[ x.f := y]]ρσ = let (l, σ′) = [[ x]]ρσ, (v, σ′′) = [[y]]ρσ′

in


(l, σ′′[l := σ′′.l[f := v]]) if l ∈ dom(σ′′)

andf ∈ dom(σ′′.l)
(error, σ′′) otherwise

[[ x.m]]ρσ = let (l, σ′) = [[ x]]ρσ

in
{
σ′.l.m(σ′) if l∈dom(σ′) andm∈dom(σ′.l)
(error, σ′) otherwise

T 2. Denotational semantics

Let Env = Var →fin Val be the set ofenvironments, i.e. maps betweenVar
andVal with finite domain. Given an environmentρ ∈ Env, the interpretation
[[a]]ρ of an object expressiona in St ⇀ (Val + {error}) × St is given in Table 2.
Here we use a (semantic) strictlet that is also “strict” wrt.error:

let (v, σ) = s in s′ ≡


undefined ifs is undefined
(error, σ′) if s= (error, σ′)
(λ(v, σ).s′) s otherwise

Note that foro ∈ Ob we just writeo.f ando.m instead ofπ1(o).f andπ2(o).m, re-
spectively. Similarly, we omit the injections for elements ofVal +{error}, writing
simply l instead ofinLoc(l) etc. Observe that, in contrast to [16], we distinguish
between non-termination (undefinedness) and exceptional termination,error. Fi-
nally, becauseLoc is assumed to be infinite, the conditionl < dom(σ) in the case
for object creation can always be satisfied. Therefore object creation will never
raiseerror.
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We will also use a projection to the part of the store that contains data in
Val only (i.e., forget about the closures that live in the store),πVal : St → StVal

defined by (πVal σ).l.f = σ.l.f, whereStVal = RecLoc(RecF (Val)). We refer to
πVal(σ) as theflat partof σ.

Example 2.1. We extend the syntax with integer constants and operations, and
consider an object-based modelling of a bank account as an example:

acc(x) ≡ [balance = 0,
deposit10 = ς(y)let z= y.balance+10 in y.balance:=z,
interest = ς(y)let r = x.manager.rate in

let z= y.balance∗r/100 in y.balance:=z]

Note how the self parameter y is used in both methods to access thebalance

field. Object acc depends on a “managing” object x in the context that provides
the interest rate, through a fieldmanager, for theinterestmethod.

3 Abadi-Leino Logic

We recall the logic of Abadi and Leino [2] (see also [19]).

3.1 Transition Relations and Specifications
Transition relations Tcorrespond to the pre- and post-conditions of Hoare logic
and allow to express state changes caused by computations. The syntax of tran-
sition relations is defined by the following grammar:

T ::= e0 = e1 | allocpre(e) | allocpost(e) | ¬T | T0 ∧ T1 | ∀x.T

e ::= x | f | result | true | false | selpre(e0,e1) | selpost(e0,e1)

There is a constant for each field namef ∈ F (which we just writef, too), and
constantsresult, true and false. Intuitively, the functionselpre(x, y) yields the
value of fieldy of the object at locationx before execution, provided this exists
in the store, and is undefined otherwise. Correspondingly,selpost(x, y) gives the
value of fieldy after execution. The predicatesallocpre(x) andallocpost(x) are
true if the locationx is allocated before and after the execution, respectively, and
false otherwise. The notions of free and bound variables of a transition relation
T carry over directly from first-order logic. As usual, further logical connectives
such asFalseand implication can be defined as abbreviations.

Specificationscombine transition relations for each method as well as the
result types into a single specification for the whole object. They generalise the
first-order types of [1], and are

A, B ∈ Spec::= Bool | [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]

In the case of an object specification,ς(y j) binds the variabley j in Bj andT j , and
specifications are identified up to renaming of bound variables and reordering of
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components, which will be justified by our semantics.
Intuitively, true andfalse satisfyBool, and an object satisfies the specifi-

cationA ≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m] if it has fields fi satisfyingAi and
methodsm j that satisfy the transition relationT j and, in case of termination of
the method invocation, their result satisfiesBj . Corresponding to the fact that a
methodm j can use theself-parametery j , in bothT j andBj it is possible to refer
to the ambient objecty j .

LetΓ range overspecification contexts x1:A1, . . . , xn:An. A specification con-
text iswell-formedif no variablexi occurs more than once, and the free variables
of Ak are contained in the set{x1, . . . , xk−1}. In writing Γ, x:A we will always
assume thatx does not appear inΓ. Sometimes we write∅ for the empty context.
GivenΓ, we write [Γ] for the list of variables occurring inΓ:

[x1:A1, . . . , xn:An] = x1, . . . , xn

If clear from context, we use the notationx for a sequencex1, . . . , xn, and simi-
larly x : A for x1:A1, . . . , xn:An. To make the notions of well-formed specifica-
tions and well-formed specification contexts formal, there are judgements for

• well-formed transition relations:

x1, . . . , xn ` T, if all the free variables ofT appear inx1, . . . , xn

• for well-formed specifications:

x ` Bool and

A ≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]
x ` Ai

i=1...n x, y j ` Bj
j=1...m x, y j ` T j

j=1...m

x ` [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]

• for well-formed specification contextsΓ ` ok:

∅ ` ok and
Γ ` ok [Γ] ` A x < dom(Γ)

Γ, x:A ` ok

In caseA is closed we may simply writeA instead of̀ A, and similarly for closed
T.

3.2 Abadi-Leino Logic
Abadi and Leino generalised the notion of subtypes to a form ofsubspecifica-
tions, x ` A <: A′, that is defined inductively byx ` Bool<: Booland

x ` Ai
i=1...n+p x, yj ` Bj

j=m+1...m+q x, yj ` T j
j=1...m+q x, yj ` T′j

j=1...m

x, yj ` Bj <: B′j
j=1...m

`fo T j ⇒ T′j
j=1...m

x ` [fi : Ai
i=1...n+p, m j : ς(yj)Bj ::T j

j=1...m+q] <: [fi : Ai
i=1...n, m j : ς(yj)B′j ::T

′
j
j=1...m]

where`fo ϕ denotes provability in first-order logic (in the theory with axioms
for equality, and axioms stating thattrue, false and allf ∈ F are distinct). Just
as subtyping in the corresponding type system [1], the subspecification relation
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is covariant along method specifications and transition relations, and invariant in
field specifications. Observe thatx ` A1 <: A2 in particular impliesx ` Ai for
i = 1,2.

In the logic, judgements of the formΓ ` a:A::T can be derived, whereΓ is a
well-formed specification context,a is an object expression,A is a specification,
andT is a transition relation. The rules guarantee that all the free variables ofa,
A andT appear in [Γ]. We use the following transition relations in the rules:

Tres(e) ≡ result = e

∧ ∀x, f .allocpre(x)↔ allocpost(x) ∧ selpre(x, f ) = selpost(x, f )

Tobj(fi = xi)
i=1...n ≡ ¬allocpre(result) ∧ allocpost(result)

∧ ∀x, f .x , result→

(allocpre(x)↔ allocpost(x) ∧ selpre(x, f ) = selpost(x, f ))

∧ selpost(result, f1) = x1 ∧ · · · ∧ selpost(result, fn) = xn

Tupd(x, f ,e) ≡ ∀x′.allocpre(x
′)↔ allocpost(x

′) ∧ selpost(x, f ) = e

∧ ∀x′, f ′.(x′ , x∧ f ′ , f )→ selpre(x
′, f ′) = selpost(x

′, f ′)

∧ result = x

(2)

Tres(e) states that the result of a computation ise and the flat part of the store
remains unchanged.Tobj(fi = xi) describes the allocation of a new object in
memory, which is initialised with fieldfi set toxi , and whose location is returned
as result.Tupd(x, f ,e) describes the effect on the store when updating fieldx. f .3

Example 3.1. Fig. 1 shows a specification for bank accounts as in the previous
example.4 Observe how the specification Tinterest depends not only on the self
parameter y of the host object but also on the statically enclosing object x.

There is one rule for each syntactic form of the language, plus a subsumption
rule, which generalises the consequence rule of classical Hoare logic. The rules
are given in Tab. 3.

As indicated before, one of the most interesting and powerful rules of the
logic is the object introduction rule,

A ≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]
Γ ` xi :Ai ::Res(xi)i=1...n Γ, y j :A ` b j :Bj ::T

j=1...m
j

Γ ` [fi = xi
i=1...n,m j = ς(y j)b j

j=1...m]:A:: . . .

In order to establish that the object satisfies specificationA, when verifying the
methodsb j we canassumethat the self parametery j also satisfiesA. Essentially,

3In [2] Tres is calledResandTupd is calledUpdate. There is no abbreviation corresponding toTobj.
4Note that although we are using UML-like notation, these diagrams actually stand for individual

objects, not classes – in fact there are no classes in the language.
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subsumption

[Γ] ` A <: A′ Γ ` a:A::T [Γ] ` A′ [Γ] ` T′ `fo T → T′

Γ ` a:A′::T′

variable
Γ ` ok x:A in Γ
Γ ` x:A::Tres(x)

booleans
Γ ` ok

Γ ` false:Bool::Tres(false)
Γ ` ok

Γ ` true:Bool::Tres(true)

conditional
A[true/x] ≡ At[true/x] andA[false/x] ≡ Af [false/x]
T[true/x] ≡ Tt[true/x] andT[false/x] ≡ T f [false/x]
Γ ` x:Bool::Tres(x) Γ ` a:At::Tt Γ ` b:Af ::T f

Γ ` if x then a else b:A::T

let
Γ ` a:A′::T′ Γ, x:A′ ` b:B::T′′ [Γ] ` B [Γ] ` T

`fo T′[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]
∧ T′′[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T

Γ ` let x = a in b:B::T

object construction

A ≡ [fi : Ai
i=1...n, m j : ς(yj)Bj ::T j

j=1...m]
Γ ` xi :Ai ::Tres(xi)

i=1...n Γ, yj :A ` bj :Bj ::T
j=1...m
j

Γ ` [fi = xi
i=1...n,m j = ς(yj)bj

j=1...m]:A::Tobj(fi = xi
i=1...n)

field selection
Γ ` x:[f:A]::Tres(x)

Γ ` x.f:A::Tres(selpre(x, f))

field update

A ≡ [fi : Ai
i=1...n, m j : ς(yj)Bj ::T j

j=1...m]
Γ ` x:A::Tres(x) Γ ` y:Ak::Tres(y)
Γ ` x.fk := y:A::Tupd(x, fk, y)

1 ≤ k ≤ n

method invocation
Γ ` x:[m:ς(y)A::T]::Tres(x)
Γ ` x.m:A[x/y]::T[x/y]

T 3. Inference rules of Abadi-Leino logic
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Tdeposit(y) ≡ ∃z.z= selpre(y, balance)
∧Tupd(y, balance, z+ 10)

Tinterest(x, y) ≡ ∃z.z= selpre(y, balance)
∧∃m.m= selpre(x, manager)
∧∃r.r = selpre(m, rate)
∧Tupd(y, balance, z∗ r/100)

Tcreate(x) ≡ Tobj(balance = 0)

AAccount(x) ≡ [balance : Int,
deposit10 : ς(y)[] :: Tdeposit(y),
interest : ς(y)[] :: Tinterest(x, y)]

AAccFactory ≡ [manager : [rate : Int],
create : ς(x)AAccount(x) :: Tcreate(x)]

AManager ≡ [rate : Int,
accFactory : AAccFactory]

F 1. An example of transition and result specifications

this causes the semantics of store specifications, introduced in the next section,
to be defined by a mixed-variant recursion.

The rule for the (let) case is somewhat unusual in that it introduces additional
relation symbols,selint(·, ·) andallocint(·), to capture the intermediate state of the
store. It uses textual substitution ofpredicatesymbols to compose the first and
second transition relation. The side condition [Γ] ` T ensures that the transition
relation in the conclusion does not export this intermediate state.

3.3 Semantics of Specifications

Having recalled Abadi and Leino’s logic, we next give a denotational semantics
of specifications. In transition relations it is possible to quantify over field names
(for an example of this see the transition relations in (2)), and we writeEnv+ =
Var→fin (Val + F ) when interpreting transition relations:

[[ x ` T]] : Env+ → P(StVal × Val × StVal)

This can be defined in a straightforward way, a few typical cases are given in
Tab. 4. Note that even though expressions may be undefined (e.g., because of
referring to non-existent fields), the interpretation of transition relations is two-
valued. Also observe that the meaning of a transition relationx ` T without
free variables does not depend on the environment. Therefore we may omit the
environment and simply write [[T]] for closedT.

Intuitively, an object specificationx ` A gives rise to a predicates that de-
pends on values for the free variables. However, since the underlying logic in
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[[ x ` e]] : Env+ → StVal → Val→ StVal ⇀ (Val + F )

[[ x ` x]]ρσvσ′ =

{
ρ(x) if x ∈ dom(ρ)
undefined otherwise

[[ x ` f]]ρσvσ′ = f
[[ x ` result]]ρσvσ′ = v
[[ x ` true]]ρσvσ′ = true
[[ x ` false]]ρσvσ′ = false

[[ x ` selpre(e0,e1)]]ρσvσ′ =


σ.l.f if [[ x ` e0]]ρσvσ′ = l ∈ Loc and

[[ x ` e1]]ρσvσ′ = f ∈ F are defined
undefined otherwise

[[ x ` selpost(e0,e1)]]ρσvσ′=


σ′.l.f if [[ x ` e0]]ρσvσ′ = l ∈ Loc and

[[ x ` e1]]ρσvσ′ = f ∈ F are defined
undefined otherwise

[[ x ` T]] : Env+ → P(StVal × Val × StVal)

(σ, v, σ′) ∈ [[ x ` e0 = e1]]ρ iff both [[x ` e0]]ρσvσ′ and [[x ` e1]]ρσvσ′ are defined
and equal, or both undefined

(σ, v, σ′) ∈ [[ x ` allocpre(e)]]ρ iff [[ x ` e]]ρσvσ′ ∈ dom(σ)
(σ, v, σ′) ∈ [[ x ` allocpost(e)]]ρ iff [[ x ` e]]ρσvσ′ ∈ dom(σ′)
(σ, v, σ′) ∈ [[ x ` ∀x.T]]ρ iff for all u ∈ Val + F . (σ, v, σ′) ∈ [[ x, x ` T]]ρ[x := u]

T 4. Meaning of expressions and transition relations

the transition relations is untyped, the types of the free variables are not rele-
vant.The interpretation of object specificationsx ` A,

[[ x ` A]] : Env→ P(Val × St)

is given in Tab. 5.
We begin with a number of observations about the interpretation.

Lemma 3.2. For all specificationsx ` A, allσ ∈ St and environmentsρ we have
(error, σ) < [[ x ` A]]ρ.

Proof. Immediate from the definition of [[x ` A]]ρ. �

Lemma 3.3 (Soundness of Subspecification).Supposex ` A <: B. Then, for
all environmentsρ, [[ x ` A]]ρ ⊆ [[ x ` B]]ρ for valuesv.

Proof. This follows by induction on the derivation ofx ` A <: B. The cases for
reflexivity and transitivity are immediate. For the case where bothA andB are
object specifications we need a similar lemma for transition relations:

If x ` T andx ` T′ then`fo T → T′ implies

[[ x ` T]]ρ ⊆ [[ x ` T′]]ρ (3)

12



[[ x ` A]] : Env→ P(Val × St)

[[ x ` Bool]]ρ = BVal × St

[[ x ` [fi : Ai
i=1...n, m j : ς(yj)Bj ::T j

j=1...m]]] ρ

=


(l, σ) ∈

Loc × St

∣∣∣∣∣∣∣∣∣∣∣
(i) for all 1 ≤ i ≤ n. σ.l.fi ∈ [[ x ` Ai ]]ρ
(ii ) for all 1 ≤ j ≤ m, if σ.l.m j(σ) = (v, σ′)↓

then (v, σ′) ∈ [[ x, yj ` Bj ]]ρ[yj := l]
and (πVal(σ), v, πVal(σ′)) ∈ [[ x, yj ` T j ]]ρ[yj := l]


T 5. Semantics of specifications

for all ρ ∈ Env+. However, (3) follows immediately sincèfo holds inall models.
�

R We think it would be clearer to use a multi-sorted logic, with differ-
ent quantifiers ranging over locations, basic values and field names, resp., but
decided to keep to the original presentation of Abadi and Leino’s logic.

4 Store Specifications

Object specifications are not sufficient. This is a phenomenon of languages with
higher-order store well known from subject reduction and type soundness proofs
(see [1, Ch. 11], [9]). Since statements may call subprograms residing in the
store, the store has to be checked as well. However, it may contain loops and
therefore induction on the reachable part of the store is unavailable.

The standard remedy – also used in [2] – is to relativise the typing judgement
such that it only needs to hold for “verified” stores. In other words, judgements
are interpreted w.r.t.store specifications. A store specification assigns a speci-
fication to each location in a store. When an object is created, the specification
assigned to it at the time of creation is included in the store specification.

In this section we will interpret such store specifications using the techniques
from [16]. Since their denotations will rely on mixed-variant recursion, it is
impossible to define a semantic notion of subspecification for stores. Alas, the
Abadi-Leino logic makes essential use of subspecifications.

We get around this problem by only using a subset relationship on (deno-
tations of) object specifications (where there is no contravariant occurrence of
store as the semantics of objects is w.r.t. one fixed store, cf. Tab. 5).

Unfortunately, we are restricted by the logic’s requirement that verified state-
ments never break the validity of store specifications. In the case of field update
this implies that subspecifications5 need to be invariant in their fields. As the se-
mantic interpretation of the subspecification relation cannot reflect this, we were
forced to sometimes use syntactic subspecifications.

5this also holds for subtypes
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4.1 Result Specifications, Store Specifications and a Tentative Semantics
A store specificationΣ assignsclosedspecifications̀ A to (a finite set of) loca-
tions:

Definition 4.1 (Store Specification).A recordΣ ∈ RecLoc(Spec) is astore spec-
ification if for all l ∈ dom(Σ), Σ.l = A is a closed object specification.

Because we focus on closed specifications in the following, we need a way
to turn the componentsBj of a specification [fi : Ai

i=1...n, m j : ς(y j)Bj ::T j
j=1...m]

(which in general will depend on the self parametery j) into closed specifications.
We do this by extending the syntax of expressions with locations: There is one
symboll for eachl ∈ Loc, and define [[x ` l]]ρ = l (cf. Tab. 4). Similarly, we set
true = true andfalse= false. When clear from context we will simply write
v in place ofv.

Further we writeA[ρ/x] (andA[ρ/Γ], resp.) for the simultaneous substitution
of all x ∈ x (x ∈ [Γ], resp.) inA by ρ(x). Then we can prove the following
substitution lemma.

Lemma 4.2 (Substitution Lemma). Supposeρ is an environment,x ` T is a
transition relation andy ` A andy ` A′ are specifications. Then

1. ` T[ρ/x] and[[` T[ρ/x]]] = [[ x ` T]]ρ

2. ` A[ρ/y] and[[` A[ρ/y]]] = [[y ` A]]ρ

3. if y ` A <: A′ then` A[ρ/y] <: A′[ρ/y]

Proof. The first part is by induction onT, the second by induction onA and the
last by induction on the derivation ofy ` A <: A′. �

Definition 4.3 (Store Specification Extension).Let Σ,Σ′ ∈ RecLoc(Spec) be
store specifications.Σ′ extendsΣ, writtenΣ′ < Σ, if Σ.l = Σ′.l for all l ∈ dom(Σ).

Note that< is reflexive and transitive. We can then abstract away from par-
ticular storesσ ∈ St, and interpret closed result specifications` A with respect
to such store specifications:

Definition 4.4 (Object Specifications).SupposeΣ is a store specification. For
closed̀ A let ||A||Σ ⊆ Val be defined by

||Bool||Σ = BVal

||A||Σ = {l ∈ Loc | ` Σ.l <: A}

where A≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m] and` A. We extend this to contexts
in the natural way:

ρ ∈ ||∅||Σ for all ρ ∈ Env,

ρ ∈ ||Γ, x:A||Σ iff ρ ∈ ||Γ||Σ andρ(x) ∈ ||A[ρ/Γ]||Σ
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Observe that for allA, if Σ′ < Σ then||A||Σ ⊆ ||A||Σ′ . We obtain the following
lemma aboutcontext extensions.

Lemma 4.5 (Context Extension).If ρ ∈ ||Γ||Σ andΓ, x:A ` ok and v∈ ||A[ρ/Γ||Σ
thenρ[x := v] ∈ ||Γ, x:A||Σ.

Proof. The result follows immediately from the definition once we showρ[x :=
v] ∈ ||Γ||Σ. This can be seen to hold sincex < dom(Γ), hence for ally:B in Γ we
know thatx is not free inB and we must haveB[ρ[x := v]/Γ] ≡ B[ρ/Γ]. �

We want to interpret store specifications as predicates over stores, as follows.

Definition 4.6 (Store Predicate, Tentative).Let P = P(St)RecLoc(Spec) denote
the collection of predicates onSt, indexed by store specifications. We define a
functionalΦ : Pop × P → P as follows.

σ ∈ Φ(Y,X)Σ :⇔
∀l ∈ dom(Σ) whereΣ.l = [fi : Ai

i=1...n, m j : ς(y j)Bj ::T j
j=1...m] :

(F) σ.l.fi ∈ ||Ai ||Σ, for all 1 ≤ i ≤ n, and
∀Σ′ < Σ ∀σ′ ∈ YΣ′ ∀v ∈ Val ∀σ′′ ∈ St, if σ.l.m j(σ′) = (v, σ′′)↓ then
(M1) (πVal(σ′), v, πVal(σ′′)) ∈ [[T j [l/y j ]]]
(M2) there existsΣ′′ < Σ′ s.t.σ′′ ∈ XΣ′′
(M3) v ∈

∣∣∣∣∣∣Bj [l/y j ]
∣∣∣∣∣∣
Σ′′

for all 1 ≤ j ≤ m

Then we write[[Σ]] for fix(Φ)Σ.

4.2 On the Existence of Store Specifications
The contravariant occurrence in this definition,Y, is forced by the premise of the
object construction rule in the Abadi-Leino logic. It states that, in order to prove
that specificationA holds for a new object one can assume that the self object
in methods already fulfils the specificationA. It is this contravariance, in turn,
that calls for some advanced domain theory to show that the fixpoint ofΦ does
actually exist.

Indeed, we cannot show existence offix(Φ) with the techniques of [11] as
it stands. The problem is the existential quantification in(M2) which has the
effect thatΦ does not necessarily mapadmissiblepredicates onSt to admissible
predicates. To see this, consider the following example.

Let

Σ = l0 : [m0 : ς(x)[m1 : ς(y)[]::True]::True]

which, informally, describes a store with a single object at locationl0 containing
a methodm0. In case a call of this method converges it returns an object sat-
isfying [m1 : ς(y)[]::True] (which is not much of a restriction). However, this
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resulting object has to be allocated in the store, and so a proper extension of the
original store specificationΣ has to be found.

So letA0 ≡ [m1 : ς(y)[]::False] and Ai+1 ≡ [m1 : ς(y)Ai ::True]. In partic-
ular, this means that the methodm1 of objects satisfyingA0 mustdiverge. The
methodm1 of an object satisfyingAi returns an object satisfyingAi−1. Hence,
for such objectsx, it is possible to have method callsx.m1.m1 . . .m1 at mosti
times, of which thei-th call must necessarily diverge (the others may or may not
terminate). The example below uses the fact that we can construct an ascending
chain of objects for which the firsti − 1 calls indeed terminate, and therefore do
notsatisfyAi−1. Then, the limit of this chain is an objectx for which an arbitrary
number of callsx.m1.m1 . . .m1 terminates, and which therefore does not satisfy
anyof theAi :

SetΣ′′i ≡ Σ, l : Ai and letσ ∈ [[Σ]] denote some store satisfyingΣ. Moreover,
define

σi = {|l0 = {|m0 = λ .(l, σ + σ
′′
i )|}|}

whereσ′′0 = {|l = {|m1 = λ .⊥|}|} andσ′′i+1 = {|l = {|m1 = λ .(l, σ + σ′′i )|}|}, and let
σ = tiσi . Finally, defineX,Y ∈ P by

XΣ′′i = {σ + σ
′′
i }, for i ∈ N

XΣ̂ = ∅, for all otherΣ̂

YΣ = {σ}

YΣ̂ = ∅, for all otherΣ̂

By construction, bothX andY are admissible in every componentΣ̂. By induc-
tion one obtainsσ′′0 v σ

′′
1 v . . . , thereforeσ0 v σ1 v . . . in Φ(Y,X)Σ. Hence we

must showσ ∈ Φ(Y,X)Σ. But this is not the case, since it would entail, by(M2)
and

σ.l.m0(σ) = tiσi .l.m0(σ) = (l, σ + tiσ
′′
i )

that there existsΣ′′ < Σ such thatσ + tiσ
′′
i ∈ XΣ′′ . Clearly this is not the case,

sinceσ + tiσ
′′
i is strictly greater than everyσ + σ′′i and therefore not in any of

theXΣ′′i .

4.3 A Refined Semantics of Store Specifications
We refine the definition of store predicates by replacing the existential quantifier
in (M2) of Definition 4.6 by aSkolem function, as follows: We call the elements
of the (recursively defined) domain

φ ∈ RSF = RecLoc(RecM(St × RSF × Spec⇀ Spec× RSF)) (4)

choice functions, or Skolem Functions. The intuition is that, given a storeσ ∈
[[Σ]], if σ′ ∈ [[Σ′]] with choice functionφ′, for some extensionΣ′ < Σ and the
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method invocationσ.l.m(σ′) terminates, thenφ.l.m(σ′, φ′,Σ′) = (Σ′′, φ′′) yields
a store specificationΣ′′ < Σ′ such thatσ′′ ∈ [[Σ′′]] (and φ′′ is a choice function
for the extensionΣ′′ of Σ). This is again an abstraction of the actual storeσ,
this time abstracting thedynamic effectsof methods wrt. allocation, on the level
of store specifications. Note that the argument storeσ′ is needed in general to
determine the resulting extension of the specification, since allocation behaviour
may depend on the actual values of fields, for example.

We use the domainRSF of choice functions explicitly in the interpretation
of store specifications below. This has the effect of constraining the existential
quantifier to workuniformly on the elements of increasing chains, hence pre-
cluding the counter-example to admissibility of the previous subsection.

Definition 4.7 (Store Predicate). Let P = P(St × RSF)RecLoc(Spec) denote the
collection of families of subsets ofSt ×RSF, indexed by store specifications. We
define a functionalΦ : Pop × P → P as follows.

(σ, φ) ∈ Φ(Y,X)Σ :⇔
(1) dom(Σ) = dom(φ) and∀l ∈ dom(Σ). dom(π2(Σ.l)) = dom(φ.l), and
(2) ∀l ∈ dom(Σ) whereΣ.l = [fi : Ai

i=1...n, m j : ς(y j)Bj ::T j
j=1...m] :

(F) σ.l.fi ∈ ||Ai ||Σ, for all 1 ≤ i ≤ n, and
∀Σ′ < Σ ∀(σ′, φ′) ∈ YΣ′ . if σ.l.m j(σ′) = (v, σ′′)↓

thenφ.l.m j(σ′, φ′,Σ′) = (Σ′′, φ′′) s.t.Σ′′ < Σ′ and
(M1) (πVal(σ′), v, πVal(σ′′)) ∈ [[T j [l/y j ]]]
(M2) (σ′′, φ′′) ∈ XΣ′′
(M3) v ∈

∣∣∣∣∣∣Bj [l/y j

∣∣∣∣∣∣
Σ′′

for all 1 ≤ j ≤ m

We writeσ ∈ [[Σ]] if there is someφ ∈ RSF s.t.(σ, φ) ∈ fix(Φ)Σ.

Lemma 4.8. FunctionalΦ, defined in Def. 4.7, does have a unique fixed point.

Proof. Firstly, one shows thatΦ is monotonic and maps admissible predicates to
admissible predicates, in the sense that for allX andY,

∀Σ ∈ RecLoc(Spec). XΣ ⊆ St × RSF admissible⇒

∀Σ ∈ RecLoc(Spec). Φ(Y,X)Σ ⊆ St × RSF admissible

Indeed, if (σ0, φ0) v (σ1, φ1) v . . . is a chain inΦ(Y,X)Σ, thenσ0 v σ1 v . . . in
St andφ0 v φ1 v . . . in RSF. Letσ = tiσi andφ = tiφi (so (σ, φ) = ti(σi , φi)),
we show (σ, φ) ∈ Φ(Y,X)Σ under the assumption thatXΣ′ is admissible for all
Σ′ ∈ RecLoc(Spec).

Clearly condition (1) of Definition 4.7 is satisfied. As for (2), supposel ∈
dom(Σ) with Σ.l = [fi : Ai

i=1...n, m j : ς(y j)Bj ::T j
j=1...m]. Since, for all 1≤ i ≤ n,

σ0.l.fi = σ1.l.fi = · · · = σ.l.fi
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we obtainσ.l.fi ∈ ||Ai ||Σ by assumption (σ j , φ j) ∈ Φ(Y,X)Σ. Next, supposeΣ′ <
Σ, (σ′, φ′) ∈ YΣ′ andσ.l.m j(σ′) = (v, σ′′) ↓. By definition ofσ as

⊔
kσk and

continuity, we must haveσk.l.m j(σ′) = (v, σ′′k )↓ for sufficiently largek, and

(v, σ′′) =
⊔

kσk.l.m j(σ′) =
⊔

k(v, σ
′′
k )

By assumption, for all sufficiently largek, φk.l.m j(σ′, φ′,Σ′) = (Σ′′k , φ
′′
k ) with

Σ′′k < Σ
′ and

• (πVal(σ′), v, πVal(σ′′k )) ∈ [[T j [l/y j ]]],
• (σ′′k , φ

′′
k ) ∈ XΣ′′k , and

• v ∈
∣∣∣∣∣∣Bj [l/y j ]

∣∣∣∣∣∣
Σ′′k

SinceπVal(σ′′k ) = πVal(σ′′), (M1) follows. The discrete order onSpecentails
Σ′′k ≡ Σ

′′
k+1 ≡ . . . , hence,φ(σ′, φ′,Σ′) = t(Σ′′k , φ

′′
k ) = (Σ′′,tkφ

′′
k ) with Σ′′ ≡

Σ′′k ≡ Σ
′′
k+1 ≡ . . . , and clearly(M3) is satisfied. By assumptionXΣ′′ is admissible

therefore also condition(M2) holds as required, i.e., (σ′′, φ′′) = t(σ′′k , φ
′′
k ) ∈

XΣ′′ .
Next, define for all admissibleX,X′ ∈ P ande = (e1,e2) ∈ [St ⇀ St] ×

[RSF⇀ RSF]:

e : X ⊂ X′ iff ∀Σ ∈ RecLoc(Spec) ∀σ ∈ St ∀φ ∈ RSF.

(σ, φ) ∈ XΣ ⇒ (e1(σ),e2(φ)) ∈ X′Σ

such thate : X ⊆ X′ states thatemaps pairs of stores and choice functions that are
in XΣ to pairs of stores and choice functions that are in corresponding component
X′
Σ

of X′. Let FStore be the locally continuous, mixed-variant functor associated
with the domain equations (1), for whichFStore(St,St) = St, and consider the
locally continuous functorFSt,RSF(R,S) : (PreDom × PreDom)op × PreDom ×
PreDom→ PreDom × PreDom

FSt,RSF(R,S) = 〈FStore(π1(R), π1(S)),

RecLoc(RecM(π1(R) × π2(R) × Spec⇀ Spec× π2(S)))〉

for which (St,RSF) is the minimal invariant. In the following, we writeFSt for
the functorπ1 ◦ FSt,RSF and FRSF for π2 ◦ FSt,RSF. According to [11] it only
remains to be shown that

e : X ⊂ X′ ∧ e : Y′ ⊂ Y ⇒ FSt,RSF(e,e) : Φ(Y,X) ⊂ Φ(Y′,X′) (†)

for all X,Y,X′,Y′ ∈ P ande v idSt×RSF which follows from a similar line of
reasoning as in [16]: Supposee= (e1,e2) v idSt×RSF such that

e : X ⊂ X′ ande : Y′ ⊂ Y (5)

for someX,Y,X′,Y′ ∈ P, and assume (σ, φ) ∈ Φ(Y,X)Σ. We must show that
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FSt,RSF(e,e)(σ, φ) ∈ Φ(Y′,X′)Σ which proves (†). Recall that

FSt(e,e)(σ, φ).l.f = σ.l.f

FSt(e,e)(σ, φ).l.m(σ′) = (idVal × e1)(σ.l.m(e1(σ′)))

FRSF(e,e)(σ, φ).l.m(σ′, φ′,Σ′) = (idSpec× e2)(φ.l.m(e1(σ′),e2(φ′),Σ′))

(6)

for all f ∈ F andm ∈ M. In particular, condition (1) of Definition 4.7 is satisfied
for FSt,RSF(e,e)(σ, φ).

To show (2) letl ∈ dom(Σ), andΣ.l = [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m].
From (σ, φ) ∈ Φ(Y,X)Σ and (6) we immediately obtain

(F) FSt(e,e)(σ, φ).l.fi ∈ ||Ai ||Σ

Now supposeΣ′ < Σ, φ′ ∈ RSF andσ′ ∈ St with (σ′, φ′) ∈ Y′
Σ′

and such that
FSt(e,e)(σ, φ).l.m j(σ′)↓. By (6) we thus know that, for all 1≤ j ≤ m,

FSt(e,e)(σ, φ).l.m j(σ
′) = (v,e1(σ′′)) where

(v, σ′′) = σ.l.m j(e1(σ′))

for somev ∈ Val andσ′′ ∈ St. By (5), assumption (σ′, φ′) ∈ Y′
Σ′

shows
e(σ′, φ′) = (e1(σ′),e2(φ′)) ∈ YΣ′ . Together with the assumption (σ, φ) ∈ Φ(Y,X)
this entails

FRSF(e,e)(φ).l.m j(σ
′, φ′,Σ′) = (Σ′′,e2(φ′′)) where

(Σ′′, φ′′) = φ.l.m j(e1(σ′),e2(φ′),Σ′)

for φ′′ ∈ RSF andΣ′′ < Σ′ s.t.

(M1’) (πVal(e1(σ′), v, πVal(σ′′)) ∈ [[T[l/y j ]]]
(M2’) (σ′′, φ′′) ∈ XΣ′′
(M3) v ∈

∣∣∣∣∣∣Bj [l/y j ]
∣∣∣∣∣∣
Σ′′

Sincee v idSt×RSF we know e1(σ′′) v σ′′, and in particularπVal(e1(σ′′)) =
πVal(σ′′). Similarly for σ′. Hence,(M1’) entails (πVal(σ′), v, πVal(e1(σ′′))) ∈
[[T[l/y j ]]], i.e., (M1) holds. Finally, assumption (5) and condition(M2’) above
give (e1(σ′′),e2(φ′′)) ∈ X′

Σ′′
which shows(M2), and we have proved (†).

Note that it is necessary that the predicates denoting transition specifications
are upward-closed in the pre-execution store and downward-closed in the post-
execution store. This holds in Abadi-Leino logic as transition specifications are
only defined on the flat part of the store; if they referred to the method part, (†)
could not necessarily be shown.6 �

6Unless one finds an appropriate way to restrict the reference to methods in transitions specifications
(see [16]).
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5 Soundness

5.1 Preliminaries

Recall from the previous section that the semantics of store specifications is de-
fined in terms of the semantics||A||Σ for result specificationsA that does not
mentionSt at all. The following key lemma establishes the relation between
store specifications and object specifications [[` A]] as defined in Section 3.3:

Lemma 5.1. For all object specifications A, store specificationsΣ, storesσ, and
locations l, ifσ ∈ [[Σ]] and l ∈ dom(Σ) such that̀ Σ.l <: A then(l, σ) ∈ [[A]] .

Proof. By induction on the structure ofA. BecauseA is an object specification
it is necessarily of the form

A ≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]

We have to show that (l, σ) ∈ [[` A]], i.e., that

• (σ.l.fi , σ) ∈ [[` Ai ]] for all 1 ≤ i ≤ n and

• if σ.l.m j(σ) = (v, σ′) then (v, σ′) ∈ [[y j ` Bj ]](y j 7→ l) and (πVal σ, v, πVal σ
′) ∈

[[y j ` T j ]](y j 7→ l) for all 1 ≤ j ≤ m.

From the subtyping relation andΣ.l <: A we find

Σ.l ≡ [fi :Ai
i=1...n+p,m j :ς(y j)B

′
j ::T

′
j
j=1...m+p]

wherey j ` B′j <: Bj andy j `fo T′j → T j .
For the first part, by Definition 4.7(F) andσ ∈ [[Σ]] we haveσ.l.fi ∈ ||Ai ||Σ.

If Ai is Bool then from||Bool||Σ = BVal, hence, (σ.l.fi , σ) ∈ [[` Bool]]. Otherwise
Ai is an object specification and the definition of||Ai ||Σ implies

` Σ.(σ.l.fi) <: Ai

again by Definition 4.7(F). Hence by induction hypothesis we obtain (σ.l.fi , σ) ∈
[[` Ai ]] as required.

For the second part, suppose thatσ.l.m j(σ) = (v, σ′′). From Definition 4.7

part(M2) and(M3), and the assumptionσ ∈ [[Σ]], we find v ∈
∣∣∣∣∣∣∣∣B′j [l/y j ]

∣∣∣∣∣∣∣∣
Σ′′

and

σ′′ ∈ [[Σ′′]] for someΣ′′ < Σ. Therefore in the case whereBj is Bool, v ∈ BVal
and

(v, σ′′) ∈ [[` Bool]] = [[y j ` Bool]](y j 7→ l)

Next, if Bj is an object specification then by definition of
∣∣∣∣∣∣∣∣B′j [l/y j ]

∣∣∣∣∣∣∣∣
Σ′′

` Σ′′.v <: B′j [l/y j ]

By induction hypothesis (applied toB′j [l/y j ], Σ′′, σ′′ andv) this yields (v, σ′′) ∈
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[[` B′j [l/y j ]]]. Thus,

(v, σ′′) ∈ [[` B′j [l/y j ]]] = [[y j ` B′j ]](y j 7→ l) Lemma 4.2

⊆ [[y j ` Bj ]](y j 7→ l) Lemma 3.3

as required.
Finally, by Definition 4.7(M1) we obtain

(πVal σ, v, πVal σ
′′) ∈ [[` T′j [l/y j ]]] = [[y j ` T′j ]](y j 7→ l) Lemma 4.2

⊆ [[y j ` T j ]](y j 7→ l) soundness of̀fo

This concludes the proof. �

We can now define the semantics of judgements of Abadi-Leino logic and
prove the key lemma.

Definition 5.2 (Validity). Γ � a : A :: T if and only if for all store specifications
Σ ∈ RecLoc(Spec), for all ρ ∈ ||Γ||Σ and all σ ∈ [[Σ]] , if [[a]]ρσ = (v, σ′) then
(v, σ′) ∈ [[[Γ] ` A]]ρ and(πVal(σ), v, πVal(σ′)) ∈ [[[Γ] ` T]]ρ.

Before proving the main technical result in Lemma 5.4 we state the following
fact about the transition relation that appears in the let rule:

Lemma 5.3. Suppose(πVal(σ), v, πVal(σ′)) ∈ [[ x ` T′]]ρ and(πVal(σ′), v′, πVal(σ′′)) ∈
[[ x, x ` T′′]]ρ[x := v]. Then, ifx ` T and

T′[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]

∧T′′[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] ⇒ T

then(πVal(σ), v′, πVal(σ′′)) ∈ [[ x ` T]]ρ.

Proof. Consider an extended signature of transition relations with predicates
selint(·, ·) andallocint(·). We extend the interpretation of transition relations in
the natural way,

[[ x1, . . . , xk ` T]]ρ : P(StVal × Val × StVal × StVal)

where the second store argument is used to interpretselint(·, ·) andallocint(·).
By assumption and using the fact that neitherT′ nor T′′ contains the new

predicates, we also have

(πVal σ, v, πVal σ
′, πVal σ

′) ∈ [[ x, x ` T′]]ρ[x := v]

and

(πVal σ
′, v′, πVal σ

′, πVal σ
′′) ∈ [[ x, x ` T′′]]ρ[x := v]
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Thus,

(πVal σ, v
′, πVal σ

′, πVal σ
′′) ∈

[[ x, x ` T′[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]]] ρ[x := v]

since there are no occurrences ofselpost(·, ·), allocpost(·) andresult, and

(πVal σ, v
′, πVal σ

′, πVal σ
′′) ∈

[[ x, x ` T′′[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)]]] ρ[x := v]

since there are no occurrences ofselpre(·, ·) andallocpre(·). From first-order prov-
ability, we obtain

(πVal σ, v
′, πVal σ

′, πVal σ
′′) ∈ [[ x, x ` T]]ρ[x := v]

and the result follows sinceT does not depend onx and the new predicates, by
x ` T. �

5.2 The Invariance Lemma
In this subsection we state and prove the main lemma of the soundness proof.
Intuitively, it shows that store specificationsΣ are “invariant” under proved pro-
grams,

σ ∈ [[Σ]] and [[a]]ρσ = (v, σ′) ⇒ ∃Σ′ < Σ s.t.σ′ ∈ [[Σ′]] (7)

Note that the programa will in general allocate further objects, so the resulting
store only satisfies an extension of the original store specification. The precise
conditions of when (7) holds are given in the statement of the following lemma,
and take the choice functionsφ ∈ RSF introduced in Sect. 4 into account. We
write SF for the domain of “individual” choice functions,

SF = [St × RSF × Spec⇀ Spec× RSF]

for which RSF = RecLoc(RecM(SF)).

Lemma 5.4. Suppose

(H1) Γ ` a : A :: T

(H2) Σ ∈ RecLoc(Spec) is a store specification

(H3) ρ ∈ ||Γ||Σ

Then there existsφ ∈ [St × RSF × Spec⇀ Spec× RSF] s.t. for allΣ′ < Σ and
for all (σ′, φ′) ∈ fix(Φ)Σ′ , if [[a]]ρσ′ = (v, σ′′)↓ then the following holds:

(S1) there existsΣ′′ < Σ′ andφ′′ ∈ RSF s.t.φ(σ′, φ′,Σ′) = (Σ′′, φ′′)

(S2) (σ′′, φ′′) ∈ fix(Φ)Σ′′

(S3) v∈ ||A[ρ/Γ]||Σ′′
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(S4) (πVal(σ′), v, πVal(σ′′)) ∈ [[[Γ] ` T]]ρ

Proof. The proof is by induction on the derivation ofΓ ` a : A :: T.

• Lemma 4.5 is applied in the cases (let) and (object construction), where an
extended specification context is used in the induction hypothesis.

• Invariance of subspecifications in field specifications is needed in the case
for (field update).

• In the cases where the store changes, i.e., (object construction) and (field
update), we must show explicitly that the resulting store satisfies the store
specification, according to Definition 4.7.

We consider cases, depending on the last rule of applied in the derivation of the
judgementΓ ` a : A :: T.

• Subsumption
Suppose thatΓ ` a : A :: T has been obtained by an application of the
subsumption rule, and that

(H2) Σ is a store specification

(H3) ρ ∈ ||Γ||Σ

We have to show that there isφ ∈ SF s.t. wheneverΣ′ < Σ, (σ′, φ′) ∈ fix(Φ)Σ′
and [[a]]ρσ′ = (v, σ′) then(S1)-(S4)hold.

Recall the subsumption rule,

[Γ] ` A′ <: A Γ ` a:A′::T′ [Γ] ` A [Γ] ` T `fo T′ → T
Γ ` a:A::T

so we must haveΓ ` a : A′ :: T′ for some specificationA′ and transition
relationT′ with `fo T′ → T and [Γ] ` A′ <: A.

By (IH) there existsφ ∈ SF s.t. for allΣ′ < Σ, (σ′, φ′) ∈ fix(Φ)Σ′ with
[[a]]ρσ′ = (v, σ′),

(S1) there existsΣ′′ < Σ′, φ′′ ∈ RSF s.t.φ(σ′, φ′,Σ′) = (Σ′′, φ′′)

(S2) (σ′′, φ′′) ∈ fix(Φ)Σ′′

(S3’) v∈ ||A′[ρ/Γ]||Σ′

(S4’) (πVal(σ), v, πVal(σ′)) ∈ [[[Γ] ` T′]]ρ

Becausè fo T′ → T we know [[Γ ` T′]]ρ ⊆ [[Γ ` T]]ρ, and therefore(S4’)
implies

(πVal(σ), v, πVal(σ
′)) ∈ [[Γ ` T]]ρ (S4)

It remains to show

v ∈ ||A[ρ/Γ]||Σ′ (S3)

23



Note that by the subtyping rules,A ≡ Bool if and only if A′ ≡ Bool. In this
case(S3)follows directly from(S3’). In the case whereA′ is an object speci-
fication, assumption [Γ] ` A′ <: Aand Lemma 4.2 entail̀ A′[ρ/Γ] <: A[ρ/Γ].
Transitivity of <: and(S3’) then prove(S3), by the definition of||A′[ρ/Γ]||Σ′ .

• Var
SupposeΓ ` a : A :: T has been derived by an application of the (Var) rule.
Further, assume

(H2) Σ is a store specification

(H3) ρ ∈ ||Γ||Σ

Define the (partial continuous) mapφ ∈ SF by

φ(σ′, φ′,Σ′) = (Σ′, φ′)

Now supposeΣ′ < Σ, (σ′, φ′) ∈ fix(Φ)Σ′ and [[a]]ρσ′ = (v, σ′′) Then, by
the variable rule, we find thata is necessarily a variablex. Further we obtain
x:A in Γ, T ≡ Tres(x), and the semantics gives (v, σ′′) = [[a]]ρσ′ = (ρ(x), σ′),
i.e.,

v = ρ(x) andσ′′ = σ′

By definition ofφ above,

(S1) φ(σ′, φ′,Σ′) = (Σ′, φ′)

(S2) (σ′′, φ′) ∈ fix(Φ)Σ′ , byσ′′ = σ′ and assumption (σ′, φ′) ∈ fix(Φ)Σ′

(S3) v∈ ||A[ρ/Γ]||Σ′ , by v = ρ(x) and(H3)

(S4) (πVal(σ′), v, πVal(σ′′)) ∈ [[[Γ] ` Tres(x)]]ρ, by the definition of [[[Γ] ` T]]
in Tab. 4, andσ′′ = σ′ andv = ρ(x).

as required.

• Const
Similar to the previous case: Suppose(H1): Γ ` a : A :: T has been derived
by an application of the rule fortrue, i.e., a is true, A is Bool andT is
Tres(true). Now assume

(H2) Σ is a store specification

(H3) ρ ∈ ||Γ||Σ

and defineφ ∈ SF by

φ(σ′, φ′,Σ′) = (Σ′, φ′)

We must show(S1)-(S4). So letΣ′ < Σ, (σ′, φ′) ∈ fix(Φ)Σ′ and suppose
[[a]]ρσ′ = (v, σ′′). By definition of the denotational semantics, (v, σ′′) =
[[a]]ρσ′ = (true, σ′). Hence, by definition ofφ,
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(S1) φ(σ′, φ′,Σ′) = (Σ′, φ′)

(S2) (σ′′, φ′) = (σ′, φ′) ∈ fix(Φ)Σ′

(S3) v= true ∈ BVal = ||A||Σ′

(S4) (πVal(σ′), true, πVal(σ′′)) ∈ [[[Γ] ` Tres(true)]]ρ by definition

as required. The case wherea is false is analoguous.

• Conditional
By a case distinction, depending on whether the value of the guardx is true
or false.

• Let
Suppose(H1) Γ ` a : A :: T has been derived by an application of the (Let)
rule. Hence,a is let x = a1 in a2. Assume that

(H2) Σ is a store specification, and

(H3) ρ ∈ ||Γ||Σ

Now recall the rule for this case,

Γ ` a1:A1::T1 Γ, x:A1 ` a2:A::T2 [Γ] ` A [Γ] ` T
`fo T1[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]
∧ T2[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T

Γ ` let x = a1 in a2:A::T

By the premiss of this rule we must have

(H1’) Γ ` a1 : A1 :: T1

(H1”) Γ, x:A1 ` a2 : A :: T2

By induction hypothesis applied to(H1’) there isφ1 ∈ SF s.t. for allΣ′ < Σ,
(σ′, φ′) ∈ fix(Φ)Σ′ with [[a1]]ρσ′ = (v̂, σ̂), the conclusions of the lemma hold:

(S1’) there existŝΣ < Σ′ andφ̂ ∈ RSF s.t.φ(σ′, φ′,Σ′) = (Σ̂, φ̂)

(S2’) (σ̂, φ̂) ∈ fix(Φ)Σ̂

(S3’) v̂ ∈ ||A1[ρ/Γ]||Σ̂

(S4’) (πVal(σ′), v̂, πVal(σ̂)) ∈ [[[Γ] ` T1]]ρ

In particular, by(S3’)and Lemma 4.5,

ρ[x := v̂] ∈ ||Γ, x:A1||Σ̂

Therefore, by induction hypothesis applied to(H1”) there isφv̂ ∈ SF s.t.
for all Σ′ < Σ̂ and all (σ̂, φ̂) ∈ fix(Φ)Σ̂ with [[a2]]ρ[x := v̂]σ̂ = (v, σ′′), the
following holds.
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(S1”) there existsΣ′′ < Σ̂ andφ′′ ∈ RSF s.t.φv̂(σ̂, φ̂, Σ̂) = (Σ′′, φ′′)

(S2”) (σ′′, φ′′) ∈ fix(Φ)Σ′′

(S3”) v ∈ ||A[ρ[x := v]/Γ, x:A1]||Σ′′

(S4”) (πVal(σ̂), v, πVal(σ′′)) ∈ [[[Γ, x:A1] ` T2]]ρ

Now defineφ ∈ SF for all σ′, φ′ andΣ′ by

φ(σ′, φ′,Σ′) =


φv̂(σ̂, φ̂, Σ̂) if [[ a1]]ρσ′ = (v̂, σ̂) and

φ1(σ′, φ′,Σ′) = (Σ̂, φ̂)
undefined otherwise

which is continuous due to the flatness ofVal.
We show that the conclusion of the lemma holds: LetΣ′ < Σ, let (σ′, φ′) ∈

fix(Φ)Σ′ and suppose [[a]]ρσ′ = (v, σ′′). From the definition of the semantics,

(v, σ′′) = let (v̂, σ̂) = [[a1]]ρσ′ in [[a2]]ρ[x := v̂]σ̂

which shows

– [[a1]]ρσ′ = (v̂, σ̂)

– [[a2]]ρ[x := v̂]σ̂ = (v, σ′′)

From the definition ofφ, and the considerations above, it follows that

(S1) there isΣ′′ < Σ̂ < Σ′ s.t. φ(σ′, φ′,Σ′) = φv̂(σ̂, φ̂, Σ̂) = (Σ′′, φ′′), where
φ1(σ′, φ′,Σ′) = (Σ̂, φ̂), by (S1’)and(S1”)

(S2) (σ′′, φ′′) ∈ fix(Φ)Σ′′ , by (S2’)and(S2”)

(C3) v∈ ||A[ρ[x := v]/Γ, x:A1]||Σ′′ , by (S3’)and(S3”)

(C4’) (πVal(σ′), v̂, πVal(σ̂)) ∈ [[[Γ] ` T1]]ρ, by (S4’)

(C4”) (πVal(σ̂), v, πVal(σ′′)) ∈ [[[Γ, x:A1] ` T2]]ρ[x := v̂], by (S4”)

Since [Γ] ` A, i.e.,x is not free inA, we have

A[ρ[x := v]/(Γ, x:A1)] ≡ A[ρ/Γ] (8)

Moreover,(C4’), (C4”) , Lemma 5.3 and

`foT1[selint(·, ·)/selpost(·, ·), allocint(·)/allocpost(·), x/result]

∧ T2[selint(·, ·)/selpre(·, ·), allocint(·)/allocpre(·)] → T

proves

(πVal(σ
′), v, πVal(σ

′′)) ∈ [[Γ ` T]]ρ (9)

We therefore obtain

(S3) v∈ ||A[ρ/Γ]||Σ′ , by (C3)and (8)
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(S4) (πVal(σ′), v, πVal(σ′′)) ∈ [[Γ ` T]]ρ, by (9)

as required.

• Object
Suppose(H1): Γ ` a : A :: T has been derived by an application of rule the
(object construction) rule. Necessarilya ≡ [fi = xi

i=1..n, m j = ς(y j)b j
j=1..m].

Suppose that

(H2) Σ is a store specification

(H3) ρ ∈ ||Γ||Σ

We recall the object introduction rule,

A ≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]
Γ ` xi :Ai :: Tres(xi)i=1...n Γ, y j :A ` b j :Bj ::T j

j=1...m

Γ ` [fi = xi
i=1...n,m j = ς(y j)b j

j=1...m]:A::Tobj(f1 = x1 . . . fn = xn)

from which we see thatA is [fi :Ai ,m j :Bj ::T j ], that T is Tobj(f1 = x1 . . . fn =
xn) and that

(H1’) Γ ` xi : Ai :: Tres(xi) for 1 ≤ i ≤ n

(H1”) Γ, y j :A ` b j : Bj :: T j for 1 ≤ j ≤ m

We have to show that there isφ ∈ SF s.t. for allΣ′ < Σ, (σ′, φ′) ∈ fix(Φ)Σ′
with [[a]]ρσ′ = (v, σ′′), (S1)-(S4)hold.

From(H3) and Lemma 4.5 we know that for allΣ̂ < Σ andl0 < dom(Σ̂),

ρ[y j := l0] ∈
∣∣∣∣∣∣Γ, y j :A

∣∣∣∣∣∣
Σ̂,l0:A

Hence by induction hypothesis on(H1”) , there isφ j
l0
∈ SF for all 1 ≤

j ≤ m s.t. for allΣ1 < (Σ̂, l0:A[ρ/Γ]), for all (σ1, φ1) ∈ fix(Φ)Σ̂,l0:A[ρ/Γ] with
[[b j ]]ρ[y j := l0]σ1 = (v2, σ2) ↓, we obtain the conclusions(S1)-(S4)of the
lemma, i.e.,

(S1’) there existsΣ2 < Σ1 andφ2 ∈ RSF s.t.φ j
l0
(σ1, φ1,Σ1) = (Σ2, φ2)

(S2’) (σ2, φ2) ∈ fix(Φ)Σ2

(S3’) v2 ∈
∣∣∣∣∣∣Bj [ρ[y j := l0]/Γ, y j :A]

∣∣∣∣∣∣
Σ2

(S4’) (πVal(σ1), v2, πVal(σ2)) ∈ [[[Γ, y j :A] ` T j ]]ρ[y j := l0]

We have{|l0 = {|m j = φ
j
l0
|} j=1...m|} ∈ RSF, therefore we can defineφ ∈ SF by

φ(σ′, φ′,Σ′) =


((Σ′, l0:A[ρ/Γ]), φ′ + {|l0 = {|m j = φ

j
l0
|}|})

if Σ′ < Σ and [[a]]ρσ′ = (l0, σ′′)
undefined otherwise

(10)
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We show that(S1)–(S4)hold. LetΣ′ < Σ, (σ′, φ′) ∈ fix(Φ)Σ̂ and suppose
[[a]]ρσ′ = (v, σ′′). By definition of the semantics, and the fact that(H1’)
entailsρ(xi)↓ for 1 ≤ i ≤ n, for

[[a]]ρσ′ = (v, σ′′) ∈ Loc × St

we obtainv = l0 wherel0 < dom(σ) (and sol0 < dom(Σ)) and

σ′′ = σ′ + {|l0 = {|fi = ρ(xi),m j = λσ.[[b j ]]ρ[y j := l0]σ|}|} (11)

We obtain that there existsφ′′ ∈ RSF s.t.

(S1) φ(σ′, φ′,Σ′) = ((Σ′, l0:A[ρ/Γ]), φ′′), by construction ofφ in equation (10)

(S3) v= l0 ∈ ||A[ρ/Γ]||Σ′,l0:A[ρ/Γ] , by definition of||·||

(S4) (πVal(σ′), v, πVal(σ′′)) ∈ [[Γ ` Tobj(f1 = x1 . . . fn = xn)]]ρ, which is eas-
ily checked from the definition ofTobj(. . . ), the semantics in Tab. 4 and
equation (11).

All that remains to be shown is(S2): (σ′′, φ′′) ∈ fix(Φ)Σ′′ , whereΣ′′ is
Σ′, l0:A[ρ/Γ]. By the construction ofφ in (10),

φ′′ = φ′+{|l0={|m j=φ
j
l0
|}|}

and we show(S2)according to Definition 4.7:
As for (1), by assumption the domains ofφ′ andΣ′ agree, and by con-

struction ofφ, alsodom(φ′′.l0) = {m1, . . . ,mm} = dom(π2(Σ′′.l0)). For (2),
supposel ∈ dom(Σ′′). We distinguish two cases:

– l , l0: Then

Σ′′.l = Σ′.l = [gi :A
′
i
i=1...p, n j :ς(y j)B

′
j :: T′j

1...q]

(F) For all 1≤ i ≤ p, σ′′.l.gi = σ
′.l.gi , and so from (σ′, φ′) ∈ fix(Φ)Σ′

σ′′.l.gi ∈
∣∣∣∣∣∣A′i ∣∣∣∣∣∣Σ′ ⊆ ∣∣∣∣∣∣A′i ∣∣∣∣∣∣Σ′′

(M) Let 1 ≤ j ≤ q, let Σ1 < Σ
′′, let (σ1, φ1) ∈ fix(Φ)Σ1 and suppose

σ′′.l.n j(σ1) = (v2, σ2). Sinceσ′′.l.n j = σ
′.l.n j andΣ1 < Σ

′, the
assumption (σ′, φ′) ∈ fix(Φ)Σ′ and the construction ofφ′′ yield

∗ φ′′.l.n j(σ1, φ1,Σ1) = φ′.l.n j(σ1, φ1,Σ1) = (Σ2, φ2)

∗ (σ2, φ2) ∈ fix(Φ)Σ2

∗ v2 ∈

∣∣∣∣∣∣∣∣B′j [l/y j ]
∣∣∣∣∣∣∣∣
Σ2

∗ (πVal(σ1), v2, πVal(σ2)) ∈ [[T′j [l/y j ]]]

– l = l0:
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(F) By assumption(H1’) andρ ∈ ||Γ||Σ we know that there is̀ Ai
′ <: Ai

for all 1 ≤ i ≤ n s.t. xi :Ai
′ in Γ. Hence,

σ′′.l0.fi = ρ(xi) ∈
∣∣∣∣∣∣Ai
′
∣∣∣∣∣∣
Σ
⊆ ||Ai ||Σ ⊆ ||Ai ||Σ′′

(M) Let 1≤ j ≤ m. SupposeΣ1 < Σ
′′, let (σ1, φ1) ∈ fix(Φ)Σ1 and suppose

σ′′.l0.m j(σ1) = (v2, σ2). Sinceσ′′.l0.m j = [[b j ]]ρ[y j := l0]σ1 and
Σ1 < Σ

′, the assumption (σ1, φ1) ∈ fix(Φ)Σ′ and the construction of
φ′′ giveΣ2 andφ2 s.t.

∗ φ′′.l0.m j(σ1, φ1,Σ1) = φ j
l0
(σ1, φ1,Σ1) = (Σ2, φ2), by (S1’)

∗ (σ2, φ2) ∈ fix(Φ)Σ2, by (S2’)

∗ v2 ∈
∣∣∣∣∣∣Bj [ρ[y j := l0]/Γ, y j :A]

∣∣∣∣∣∣
Σ2
=
∣∣∣∣∣∣Bj [ρ/Γ][ l0/y j ]

∣∣∣∣∣∣
Σ2

, by (S3’)
and the substitution lemma, Lemma 4.2

∗ (πVal(σ1), v2, πVal(σ2)) ∈ [[[Γ, y j :A] ` T j ]]ρ[y j := l0] which equals
[[T j [ρ/Γ][ l0/y j ]]], by (S4’)and the substitution lemma

Thus we have shown (σ′′, φ′′) ∈ fix(Φ)Σ′′ , i.e.,(S2)holds.

• Method Invocation
SupposeΓ ` a : A :: T is derived by an application of the method invocation
rule:

Γ ` x:[m:ς(y)A′::T′]::Tres(x)
Γ ` x.m:A′[x/y]::T′[x/y]

Necessarilya is of the formx.m and there areA′ andT′ s.t.A ≡ A′[x/y] and
T ≡ T′[x/y]. So suppose

(H1) Γ ` a : A′[x/y] :: T′[x/y]

(H2) Σ is a store specification

(H3) ρ ∈ ||Γ||Σ

Defineφ ∈ SF using “self-application” of the argument,

φ(σ′, φ′,Σ′) = φ′.ρ(x).m(σ′, φ′,Σ′) (12)

Now let Σ′ < Σ, (σ′, φ′) ∈ fix(Φ)Σ′ and suppose [[a]]ρσ′ = σ′.ρ(x).m(σ′) =
(v, σ′′) terminates. We show that(S1)-(S4)hold.

By the hypothesis of the method invocation rule,

Γ ` x:[m:ς(y)A′::T′]::Tres(x) (H1’)

Since this impliesx:B ∈ Γ for some [Γ] ` B <: [m : ς(y)A′ :: T′], by
assumption(H3) this entails

` Σ.(ρ(x)) <: [m : ς(y)A′ :: T′] [ρ/Γ]

29



i.e., there areAi , A′′, Bj andT j , T′′ such that

` Σ.ρ(x) ≡ [fi :Ai ,m j :ς(y j)Bj :: T j ,m:ς(y)A′′::T′′]

where

y ` A′′ <: A′[ρ/Γ] and `fo T′′ → T′[ρ/Γ] (13)

Now assumption (σ′, φ′) ∈ fix(Φ)Σ′ with equation (12) implies that there
areΣ′′, φ′′ s.t.

(S1) φ(σ′, φ′,Σ′) = φ′.(ρ(x)).m(σ′, φ′,Σ′) = (Σ′′, φ′′)

(S2) (σ′′, φ′′) ∈ fix(Φ)Σ′′

(S3’) v∈ ||A′′[ρ(x)/y]||Σ′′

(S4’) (πVal(σ′), v, πVal(σ′′)) ∈ [[` T′′[ρ(x)/y]]]

By transitivity of <: , equation (13), Lemma 4.2 and(S3’)

v ∈
∣∣∣∣∣∣A′[ρ/Γ][ρ(x)/y]

∣∣∣∣∣∣
Σ′′

SinceA′[ρ/Γ, ρ(x)/y] ≡ A′[x/y][ρ/Γ] we also have

(S3) v∈ ||A′[x/y][ρ/Γ]||Σ′′ = ||A[ρ/Γ]||Σ′′

Similarly, by (13) and(S4’),

(πVal(σ
′), v, πVal(σ

′′)) ∈ [[T′′[ρ(x)/y]]] ⊆ [[T′[ρ/Γ][ρ(x)/y]]]

= [[[Γ] ` T[x/y]]] ρ (S4)

which was to show.

• Field Selection
Similar. φ can be chosen asφ(σ′, φ′,Σ′) = (φ′,Σ′).

• Field Update
Suppose

(H1) Γ ` a:A::T has been derived by an application of the (field update) rule,

(H2) Σ is a store specification

(H3) ρ ∈ ||Γ||Σ

Defineφ ∈ SF by φ(σ′, φ′,Σ′) = (Σ′, φ′). Let Σ′ < Σ, (σ′, φ′) ∈ fix(Φ)Σ′ and
suppose [[a]]ρσ′ = (v, σ′′) terminates. Recall the rule for field update,

A ≡ [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]
Γ ` x:A::Tres(x) Γ ` y:Ak::Tres(y)
Γ ` x.fk := y:A::Tupd(x, fk, y)

(1 ≤ k ≤ n)
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In particular,a is of the formx.fk := y andT is Tupd(x, fk, y). From the seman-
tics of [[a]]ρσ′, this meansv = ρ(x) ∈ Loc and

σ′′ = σ′[v := σ′.v[fk := ρ(y)]] (14)

We show that(S1)-(S4)hold.
By (H3), ρ(x) ∈ ||A[ρ/Γ]||Σ ⊆ ||A[ρ/Γ]||Σ′ . Then by construction ofφ,

and (14),

(S1) φ(σ′, φ′,Σ′) = (Σ′, φ′)

(S3) v= ρ(x) ∈ ||A[ρ/Γ]||Σ′

(S4) (πVal(σ′), v, πVal(σ′′)) ∈ [[[Γ] ` T]]ρ, from the semantics given in Tab. 4

It remains to show(S2), (σ′′, φ′) ∈ fix(Φ)Σ′ .
By assumption (σ′, φ′) ∈ fix(Φ)Σ′ , condition (1) of Definition 4.7 is satis-

fied. As for condition (2), supposel ∈ dom(Σ′) s.t.

Σ′.l ≡ [gi :A
′
i
i=1...p, n j :ς(y j)B

′
j :: T′j

1...q]

(F) We distinguish two cases:

– Casel = ρ(x) andgi = fk. Then, by (14),σ′′.l.gi = ρ(y). By (H3),
ρ(x) ∈ ||A[ρ/Γ]||Σ ⊆ ||A[ρ/Γ]||Σ′ , which entails

` Σ′.l <: A[ρ/Γ]

and in particular, by the definition of the subspecification relation,
A′k ≡ Ak[ρ/Γ]. Note thatinvariance of subspecificationin the field
components is needed to conclude this. Now again by(H3),

ρ(y) ∈ ||Ak[ρ/Γ]||Σ ⊆ ||Ak[ρ/Γ]||Σ′ =
∣∣∣∣∣∣A′k∣∣∣∣∣∣Σ′

Hence,σ′′.l.gi ∈
∣∣∣∣∣∣A′i ∣∣∣∣∣∣Σ′ as required.

– Casel , ρ(x) or gi , fk. Thenσ′′.l.gi = σ
′.l.gi , by (14). Hence, by

assumption (σ′, φ′) ∈ fix(Φ)Σ′ , we haveσ′′.l.gi ∈
∣∣∣∣∣∣A′i ∣∣∣∣∣∣Σ′ .

(M) Let Σ′′ < Σ′, let (σ1, φ1) ∈ fix(Φ)Σ′′ and supposeσ′′.l.n j(σ1) = (v2, σ2).
Then, by assumption (σ′, φ′) ∈ fix(Φ)Σ′ and the fact thatσ′′.l.n j = σ

′.l.n j

by (14), we obtain thatφ′.l.n j(σ1, φ1,Σ
′′) = (Σ2, φ2) s.t.Σ2 < Σ

′′ and

(M1) (πVal(σ1), v2, πVal(σ2)) ∈ [[T′j [l/y j ]]]

(M2) (σ2, φ2) ∈ fix(Φ)Σ2

(M3) v2 ∈

∣∣∣∣∣∣∣∣B′j [l/y j ]
∣∣∣∣∣∣∣∣
Σ2

as required.

which concludes the proof. �
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5.3 Soundness Theorem

With Lemma 5.1 and Lemma 5.4, proved in Subsections 5.1 and 5.2, it is now
easy to establish our main result:

Theorem 5.5 (Soundness).If Γ ` a : A :: T thenΓ � a : A :: T.

Proof. SupposeΓ ` a : A :: T, and letΣ ∈ RecLoc(Spec) be a store specification
and supposeρ ∈ Env s.t.ρ ∈ ||Γ||Σ. Let σ ∈ [[Σ]], so by definition there exists
φ ∈ RSF s.t. (σ, φ) ∈ fix(Φ)Σ. Next suppose

[[a]]ρσ = (v, σ′)

By Lemma 5.4 there existsφa ∈ RSF s.t.φ(σ, φ,Σ) = (Σ′, φ′) whereΣ′ < Σ and
(σ′, φ′) ∈ fix(Φ)Σ′ , i.e.,σ′ ∈ [[Σ′]] follows. Moreover,

• v ∈ ||A[ρ/Γ]||Σ′ , and

• (πVal(σ), v, πVal(σ′)) ∈ [[[Γ] ` T]]ρ

Now in the case whereA is Boolwe obtain (v, σ′) ∈ [[[Γ] ` A]]ρ from ||Bool||Σ′ =
BVal. OtherwiseA is an object specification, and we must have` Σ′.v <: A[ρ/Γ]
by definition of||A[ρ/Γ]||Σ′ . Hence, by Lemma 5.1,

(v, σ′) ∈ [[A[ρ/Γ]]] = [[[Γ] ` A]]ρ

where the last equality is by the the substitution lemma, Lemma 4.2. �

In particular, if` a : A :: T and [[a]]σ = (v, σ′) then (v, σ′) ∈ [[A]] and so
v , error by Lemma 3.2.

6 Recursive Specifications

In this section we investigate an extension of the logic with recursive specifica-
tions which are important when reasoning about implementations of datatypes
such as lists and trees in object-oriented languages. For instance, referring back
to the example of the account manager in Fig. 1, ifAManager should include a list
of accounts, we would need a recursive specificationµX. [head : AAccount, tail :
X].

Below we discuss in more detail how recursive specifications can be dealt
with in the logic.

S  P R To accommodate reasoning about elements of recur-
sive types such as lists of accounts above, we introduce recursive specifications
µ(X)A. To prevent meaningless specifications such asµ(X)X we only allow
recursion through object specifications, thereby enforcing “formal contractive-
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ness”.

A, B ::= > | Bool | [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m] | µ(X)A

A, B ::= A | X

whereX ranges over an infinite setTyVarof specification variables.X is bound
in µ(X)A, and as usual we identify specifications up to the names of bound vari-
ables.

In addition to specification contextsΓ we introduce contexts∆ that contain
specification variables with an upper bound,X <: A, whereA is either another
variable or>. In the rules of the logic we replaceΓ ` . . . by Γ;∆ ` . . . , and the
definitions of well-formed specifications and well-formed specification contexts
are extended, similar to the case of recursive types [1].

Γ;∆ ` Y X< Γ
Γ;∆,X <: Y ` ok

Γ;∆ ` ok X < Γ
Γ;∆,X <: > ` ok

and
Γ;∆,X <: A,∆′ ` ok
Γ;∆,X <: A,∆′ ` X

Γ;∆,X <: > ` A
Γ;∆ ` µ(X)A

Γ;∆ ` ok
Γ;∆ ` >

and we often write∆,X for ∆,X <: >.
Subspecifications for recursive specifications are obtained by the “usual” re-

cursive subtyping rule [3], and> is the greatest specification,

Γ;∆,Y <: >,X <: Y ` A <: B
Γ;∆ ` µX.A <: µY.B

Γ;∆ ` A
Γ;∆ ` A <: >

As will be seen from the semantics below, in our model a recursive specification
and its unfolding are not just isomorphic but equal, i.e., [[µX.A]] = [[A[(µX.A)/X]]].
Because of this, we do not need to introducefold andunfoldterms: We can deal
with (un)folding of recursive specifications through the subsumption rule once
we add the following subspecifications,

fold
Γ;∆ ` µX.A

Γ;∆ ` A[(µX.A)/X] <: µX.A
unfold

Γ;∆ ` µX.A
Γ;∆ ` µX.A <: A[(µX.A)/X]

We will prove their soundness below.

6.1 Existence of Store Specifications
Next, we adapt our notion of store specification to recursive specifications. The
existence proof is very similar to the one given in Section 4, however, for com-
pleteness we spell it out in detail below.

Definition 6.1. A store specification is a recordΣ ∈ RecLoc(Spec) such that for
each l∈ dom(Σ),

Σ.l = µ(X)[fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]
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is a closed (recursive) object specification.

Note that because of the (Fold) And (Unfold) rules of recursive types, the
requirement that only object specifications with aµ-binder in head position occur
in Σ is no real restriction. The definition of the functionalΦ of Definition 4.7
remains virtually the same apart from an unfolding of the recursive specification
in the cases for field and method result specifications:

Definition 6.2. LetP = P(St × RSF)RecLoc(Spec) denote the collection of families
of subsets ofSt × RSF, indexed by store specifications (in the sense of Defini-
tion 6.1). We define a functionalΦ : Pop × P → P as follows.

(σ, φ) ∈ Φ(R,S)Σ :⇔
(1) dom(Σ) = dom(φ) and∀l ∈ dom(Σ). dom(π2(Σ.l)) = dom(φ.l), and
(2) ∀l ∈ dom(Σ) whereΣ.l = µ(X)[fi : Ai

i=1...n, m j : ς(y j)Bj ::T j
j=1...m] :

(F) σ.l.fi ∈ ||Ai [Σ.l/X]||Σ, for all 1 ≤ i ≤ n, and
∀Σ′ < Σ ∀(σ′, φ′) ∈ RΣ′ . if σ.l.m j(σ′) = (v, σ′′)↓

thenφ.l.m j(σ′, φ′,Σ′) = (Σ′′, φ′′) s.t.Σ′′ < Σ′ and
(M1) (πVal(σ′), v, πVal(σ′′)) ∈ [[T j [l/y j ]]]
(M2) (σ′′, φ′′) ∈ SΣ′′
(M3) v ∈

∣∣∣∣∣∣Bj [Σ.l/X][ l/y j ]
∣∣∣∣∣∣
Σ′′

for all 1 ≤ j ≤ m

The proof of Lemma 4.8 can be easily adapted to show that this functional
also has a unique fixed point, and as before we writeσ ∈ [[Σ]] if there is some
φ ∈ RSF s.t. (σ, φ) ∈ fix(Φ)Σ.

Lemma 6.3. FunctionalΦ, defined in Def. 6.2 has a unique fixpoint fix(Φ).

6.2 Semantics of Recursive Specifications

Definition 6.4. We extend the interpretation of specifications to the new cases,
whereη maps type variables to admissible subsets ofVal × St:

[[Γ;∆ ` >]]ρη = Val × St

[[Γ;∆ ` X]]ρη = η(X)

[[Γ;∆ ` µ(X)A]]ρη = gfp(λχ.[[Γ;∆,X<:> ` A]]ρη[X = χ])

We writeη � ∆ if, for all X <: Y in ∆, η(X) ⊆ η(Y).
We briefly observe the following facts, most of which are standard.

• By Tarski’s Fixed Point Theorem, every monotonic mapf : L → L on a
complete lattice (L,≤) has a greatest fixed-pointgfp( f ) which is in fact the
greatestpost-fixed point, i.e. wheneverx ≤ f (x) thenx ≤ gfp( f ).

• If f : L→ L additionally preserves meets of decreasing chainsx0 ≥ x1 ≥ . . . ,
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i.e., f (
∧

i xi) =
∧

i f (xi), the greatest fixed point can be obtained as

gfp( f ) =
∧
{ f n(>) | n ∈ N} (15)

where> is the greatest element ofL: Writing α =
∧
{ f n(>) | n ∈ N} it is

immediate thatf (α) =
∧
{ f n+1(>) | n ∈ N} = α is a fixed point off , and

by induction onn, if x is any (post-) fixed point off thenx ≤ f n(>) for all
n ∈ N, henceα ≥ x which showsα = gfp( f ).

• For a complete lattice (L,≤) and any setA, the set of mapsA → L forms a
complete lattice when ordered pointwise,

f1 ≤ f2 :⇔ for all a ∈ A. f1(a) ≤ f2(a)

with the meet of{ fi | i ∈ I } given byλa.
∧

i fi(a).

• The greatest fixed point operator is monotonic: Supposef ,g are monotonic
maps in the latticeL→ L with f ≤ g. Then, by the pointwise ordering,

gfp( f ) = f (gfp( f )) ≤ g(gfp( f ))

which showsgfp( f ) is a post-fixed point ofg. This entailsgfp( f ) ≤ gfp(g) as
the latter is the greatest post-fixed point ofg.

• If f0 ≥ f1 ≥ . . . andg0 ≥ g1 ≥ . . . are decreasing chains of maps inL → L
s.t. everyfi andg j is monotonic and preserves meets of descending chains
then ∧

i fi ◦
∧

j g j =
∧

n( fn ◦ gn) (16)

This can be seen by observing
∧

i fi ◦
∧

j g j =
∧

i, j fi ◦g j and the fact that for
everyi, j ∈ N there isn ∈ N such thatfi ≥ fn andg j ≥ gn.

Equation (16) implies (
∧

i fi)n =
∧

i f n
i for all n ∈ N, and we obtain

gfp(
∧

i fi) =
∧

n(
∧

i fi)n(>) =
∧

n
∧

i f n
i (>) =

∧
i gfp( fi) (17)

i.e., in this case the greatest fixed point operator also preserves meets of
descending chains.

The set of admissible subsets ofVal×St,Adm(Val×St), is closed under arbi-
trary intersections, hence forms a complete lattice when ordered by set inclusion.
Specification environmentsη : TyVar→ Adm(Val × St) with the pointwise or-
dering form a complete lattice.

In the following, we show that the interpretation of specifications given above
is well-defined. More specifically,

Lemma 6.5 (Well-definedness).

M. [[Γ;∆ ` A]] is monotonic:

η1 ≤ η2 ⇒ [[Γ;∆ ` A]]ρη1 ⊆ [[Γ;∆ ` A]]ρη2
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P M. [[Γ;∆ ` A]] preserves meets of descending chains:

η0 ≥ η1 ≥ . . . ⇒ [[Γ;∆ ` A]]ρ(
∧

i ηi) =
⋂

i [[Γ;∆ ` A]]ρηi

In particular, this lemma shows that the greatest fixed point used in Defini-
tion 6.4 exists, by the observations made above.

Proof. We can show both properties simultaneously by induction on the structure
of A. The only interesting case is whereA is µ(X)B.

To show the first part,Monotonicity , note that the assumptionη1 ≤ η2 entails

η1[X = χ1] ≤ η2[X = χ2] for all χ1 ⊆ χ2 ∈ Adm(Val × St)

So for fi : Adm(Val × St)→ Adm(Val × St) defined by

fi(χ) = [[Γ;∆,X ` B]]ρηi [X = χ], i = 1,2

we obtain from the induction hypothesis onB that fi is monotonic, preserves
meets, andf1 ≤ f2. By the observations made above,gfp is monotonic which
yieldsgfp( f1) ⊆ gfp( f2). Thus

[[Γ;∆ ` µ(X)B]]ρη1 = gfp( f1) ⊆ gfp( f2) = [[Γ;∆ ` µ(X)B]]ρη2

which shows monotonicity of [[Γ;∆ ` µ(X)B]].
For the second part,Preservation of Meets, supposeη0 ≥ η1 ≥ . . . . If we

let fi : Adm(Val × St)→ Adm(Val × St),

fi(χ) = [[Γ;∆,X ` B]]ρηi [X = χ], i ∈ N

then the monotonicity part of the induction hypothesis entails that eachfi is
monotonic, andf0 ≥ f1 ≥ . . . is a descending chain of environments. Moreover,
since for eachi ∈ N and descending chainχ0 ⊇ χ1 ⊇ . . . inAdm(Val × St)∧

j ηi [X = χ j ] = ηi [X =
⋂

j χ j ]

the induction hypothesis (Preservation of Meets) shows that eachfi preserves
meets:

fi(
⋂

j χ j) = [[Γ;∆,X ` B]]ρ(
∧

j ηi [X = χ j ])

=
⋂

j [[Γ;∆,X ` B]]ρ(ηi [X = χ j ]) =
⋂

j fi(χ j)

We obtain

[[Γ;∆ ` A]]ρ(
∧

i ηi) = gfp(λχ.[[Γ;∆,X ` B]]ρ(
∧

i ηi)[X = χ]) by definition

= gfp(λχ.[[Γ;∆,X ` B]]ρ(
∧

i ηi [X = χ])) pointwise meet

= gfp(λχ.
⋂

i [[Γ;∆,X ` B]]ρηi [X = χ]) by induction

= gfp(
∧

i fi) pointwise meet

=
⋂

i gfp( fi) by (17)

=
⋂

i [[Γ;∆ ` A]]ρηi by definition
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which concludes the proof �

Lemma 6.6 (Substitution). For all Γ;∆,X ` A,Γ;∆ ` B, ρ andη,

[[Γ;∆,X ` A]]ρ(η[X=[[Γ;∆ ` B]]ρη]) = [[Γ;∆ ` A[B/X]]] ρη

Proof. By induction onA. �

6.3 Syntactic Approximations

Recall the statement of Lemma 5.1, one of the key lemmas in the proof of the
soundness theorem:

for all σ,Σ, l and ` A, if σ ∈ [[Σ]] and ` Σ.l <: A then (l, σ) ∈ [[` A]] (18)

In Section 5 this was proved by induction on the structure ofA. This inductive
proof cannot be extended directly to prove a corresponding result for recursive
specifications: The recursive unfolding in cases(F) and(M3) of Definition 6.2
would force a similar unfolding ofA in the inductive step, thus not necessarily
decreasing the size ofA.

Instead, we consider finite approximations as in [3], where we get rid of
recursion by unfolding a finite number of times and then replacing all remaining
occurrences of recursion by>. We call a specificationnon-recursiveif it does
not contain any occurrences of specifications of the formµ(X)B.

Definition 6.7 (Approximations). For each A and k∈ N, we define A|k as

• A|0 = > • >|k+1 = >

• µ(X)A|k+1 = A[µ(X)A/X]|k+1 • X|k+1 = X

• [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]|k+1 = • Bool|k+1 = Bool

[(fi : Ai |
k)

i=1...n
,m j : ς(y j)Bj |

k :: T j
j=1...m

]

Note that, as in [3], well-definedness of approximation can be shown by a
well-founded induction on the lexicographic order onk and the number ofµ in
head position. In particular observe that our definition of recursive specifications
already ruled out troublesome cases likeµ(X)X.

Properties of Approximations

Unfortunately, approximationsA|k as defined above are not in fact approximat-
ing A with respect to the subspecification relation<: , the reason being the
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Γ, yj ` T j
j=1...m+q

Γ ;∆ ` Ai
i=1...n+p Γ ;∆ ` Ai <: A′i

i=1...n Γ, yj ` T′j
j=1...m

Γ, yj ;∆ ` Bj
j=m+1...m+q Γ, yj ;∆ ` Bj <: B′j

j=1...m
`fo T j → T′j

j=1...m

Γ;∆ ` [fi : Ai
i=1...n+p, m j : ς(yj)Bj ::T j

j=1...m+q] <: [fi : A′i
i=1...n, m j : ς(yj)B′j ::T

′
j
j=1...m]

T 6. The generalised object subspecification rule

invariance in field specifications. For example, ifA ≡ [f1 : X, f2 : Bool] then

µ(X)µ(Y)A|2 = [f1 : µ(X)µ(Y)A, f2 : Bool]|2

= [f1 : µ(X)µ(Y)A|1, f2 : Bool|1]

= [f1 : [f1 : µ(X)µ(Y)A, f2 : Bool]|1, f2 : Bool]

= [f1 : [f1 : µ(X)µ(Y)A|0, f2 : Bool|0], f2 : Bool]

= [f1 : [f1 : >, f2 : >], f2 : Bool]

By inspection of the rules,̀ µ(X)µ(Y)A <: µ(X)µ(Y)A|2 requires to show

Γ;∆ ` [f1 : [f1 : µ(X)µ(Y)A, f2 : Bool], f2 : Bool] <: [f1 : [f1 : >, f2 : >], f2 : Bool]

for appropriateΓ and∆. But subspecifications of object specifications can only
be derived for equal componentsf1 with the rules of Sect. 3.

Therefore we consider the more generous subspecification relation that also
allows subspecifications in field components, by replacing the rule for object
specifications with the one given in Table 6.

We write <:∗ for this relation, and observe that` A <: B implies` A <:∗ B.
It is still sufficient to guarantee soundness in our case as will be shown below.
First, we obtain the following approximation lemma for the<:∗ relation.

Lemma 6.8 (Approximation). For all specificationsΓ;∆ ` A, the following
hold.

1. For all k ∈ N, Γ;∆ ` A <:∗ A|k.

2. For all k, l ∈ N, Γ;∆ ` A|k+l <:∗ A|k.

3. If A is non-recursive then there exists n∈ N such that for all k≥ n, A≡ A|k.

Proof. The proofs are by induction on the lexicographic order onk and the num-
ber ofµ in head position, then considering cases for the specificationA. We only
show the first claim, the others are similar.

Supposek = 0, then the results follow immediately fromA|0 = >. Fork > 0,
the proof is by a case distinction on the shape ofA:

• A is>. ThenA|k = > and the required subtyping follows from transitivity.

• A is X or Bool. Similarly, fromA|k = X andA|k = Bool, resp.
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• A is µ(X)B. Then, by induction hypothesis,

Γ;∆ ` B[A/X] <:∗ B[A/X]|k

By definition of approximations, the latter equalsA|k. Moreover,

Γ;∆ ` A <:∗ B[A/X]

by the (unfold) rule, and transitivity then yieldsΓ;∆ ` A <:∗ A|k.

• A is [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]. By definition,

A|k = [fi : Ai |
k−1,m j : Bj |

k−1]

By induction hypothesis we obtain thatΓ;∆ ` Ai <:∗ Ai |
k−1 and thatΓ, y j ;∆ `

Bj <:∗ Bj |
k−1 which entails

Γ;∆ ` [fi : Ai ,m j : Bj :: T j ] <:∗ [fi : Ai ,m j : Bj :: T j ]|
k

by the (modified) subspecification rule, as required.

�

Soundness of Subspecification
Soundness of subspecification is easily established:

Lemma 6.9 (Soundness of<:∗ ). If Γ;∆ ` A <:∗ B, ρ ∈ Env andη � ∆ then
[[Γ;∆ ` A]]ρη ⊆ [[Γ;∆ ` B]]ρη.

Proof. By induction on the derivation ofΓ;∆ ` A <:∗ B.

• (Reflexivity) and (Transitivity) are immediate, as is (Top).

• (Fold) and (Unfold) follow from the fact that the denotation ofµ(X)A is in-
deed a fixed point,

[[Γ;∆ ` µ(X)A]]ρη = gfp(λχ.[[Γ;∆,X ` A]]ρη[X = χ]) by definition

= [[Γ;∆,X ` A]]ρ(η[X = [[Γ;∆ ` µ(X)A]]ρη]) fixed point

= [[Γ;∆ ` A[µ(X)A/X]]] ρη Lemma 6.6

• For the case of (Object), we must have

A = [fi : Ai
i=1...n+p,m j : ς(y j)Bj :: T j

j=1...m+q]

and

B = [fi : A′i
i=1...n,m j : ς(y j)B

′
j :: T j

j=1...m]

such thatΓ;∆ ` Ai <:∗ A′i andΓ, y j ;∆ ` Bj <:∗ B′j and`fo T j → T′j . By
induction hypothesis,

[[Γ;∆ ` Ai ]]ρη ⊆ [[Γ;∆ ` A′i ]]ρη
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and

[[Γ, y j ;∆ ` Bj ]](ρ[y j := l])η ⊆ [[Γ, y j ;∆ ` B′j ]](ρ[y j := l])η

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m andl ∈ Loc. Moreover, by soundness of`fo we
know

[[[Γ], y j ` T j ]](ρ[y j := l]) ⊆ [[[Γ], y j ` T′j ]](ρ[y j := l])

So by definition of [[Γ;∆ ` A]] , [[Γ;∆ ` B]],

(l, σ) ∈ [[Γ;∆ ` A]]ρη implies (l, σ) ∈ [[Γ;∆ ` B]]ρη

• Finally, for the (Rec) rule, suppose thatΓ;∆ ` µ(X)A <:∗ µ(Y)B has been
derived from

Γ;∆,Y <: >,X <: Y ` A <:∗ B

We use the fact that [[Γ;∆ ` µ(Y)B]]ρη is the greatest post-fixed point of the
map

f (χ) = [[Γ;∆,Y ` B]]ρη[X = χ]

which is monotonic as shown in Lemma 6.5. Sinceα = [[Γ;∆ ` µ(X)A]]ρη is
a fixed point ofλχ.[[Γ;∆ ` A]]ρη[X = χ] we calculate

α = [[Γ;∆,X,Y ` A]]ρη[X = α,Y = α] Γ;∆,X ` A independent ofη(Y)

⊆ [[Γ;∆,X,Y ` B]]ρη[X = α,Y = α] by induction

= f (α) Γ;∆,Y ` B independent ofη(X)

which showsα is a post-fixed point off . Hence, [[Γ;∆ ` µ(X)A]]ρη = α ⊆
gfp( f ) = [[Γ;∆ ` µ(Y)B]]ρη as required.

�

Relating Semantics and Syntactic Approximations
Lemma 6.9, in combination with Lemma 6.8(1), shows [[Γ;∆ ` A]]ρη ⊆ [[Γ;∆ `
A|k]]ρη for all η � ∆ andk ∈ N, i.e.,

[[` A]]η ⊆
⋂

k∈N[[` A|k]]η (19)

For the reverse inclusion, we use the characterisation of greatest fixed points as
meet of a descending chain, which is in close correspondence with the syntactic
approximations.

Lemma 6.10 (Combining Substitution and Approximation). For all specifi-
cations A, B, all X such thatΓ;∆ ` B andΓ;∆,X ` A, and for all k, l ∈ N

Γ;∆ ` A[B/X]|l <:∗ A[B|k/X]|l

In particular, by Lemma 6.9,[[Γ;∆ ` A[B/X]|l ]]ρη ⊆ [[Γ;∆ ` A[B|k/X]|l ]]ρη, for
all η � ∆.
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Proof. By induction on the lexicographic order onl and the number ofµ in head
position.

• l = 0. ClearlyΓ;∆ ` A[B/X]|0 <:∗ > = A[B|k/X]|0.

• l > 0. We consider possible cases forA.

– A is X. ThenΓ;∆ ` A[B/X]|l = B|l <:∗ B|k|l = A[B|k/X]|l .

– A is>,Boolor Y , X. ThenΓ;∆ ` A[B/X]|l = A|l <:∗ A|l = A[B|k/X]|l .

– A is [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]. Then, by induction hypothesis,

Γ;∆ ` Ai [B/X]|l−1 <:∗ Ai [B|
k/X]|l−1

and

Γ, y j :A;∆ ` Bj [B/X]|l−1 <:∗ Bj [B|
k/X]|l−1

for all 1 ≤ i ≤ n and 1≤ j ≤ m. Hence,

Γ;∆ ` A[B/X]|l <:∗ [fi : Ai [B|
k/X],m j : Bj [B|

k/X]] |l = A[B|k/X]|l

– A is µ(Y)C, without loss of generalityY not free inB. Then by induction
hypothesis we findΓ;∆ ` C[A/Y][ B/X]|l <:∗ C[A/Y][ B|k/X]|l . Using
properties of syntactic substitutions, we calculate

A[B/X]|l = µ(Y)(C[B/X])|l

= C[B/X][(µ(Y)(C[B/X]))/Y]|l

= C[B/X][(A[B/X])/Y]|l

= C[A/Y][ B/X]|l

and analogouslyC[A/Y][ B|k/X]|l = A[B|k/X]|l , which entails the result.

�

Lemma 6.11 (Approximation of Specifications).For all Γ;∆ ` A,ρ ∈ Env and
environmentsη � ∆,

[[Γ;∆ ` A]]ρη =
⋂

k∈N[[Γ;∆ ` A|k]]ρη

Proof. By (19), all that remains to show is [[Γ;∆ ` A]]ρη ⊇
⋂

k∈N[[Γ;∆ ` A|k]]ρη.
We proceed by induction on the lexicographic order on pairs (M,A) whereM is
an upper bound on the number ofµ-binders inA. For the base case,M = 0, by
Lemma 6.8(3) there existsn ∈ N such that for allk ≥ n, A|k = A, and so in fact

[[Γ;∆ ` A]]ρη = [[Γ;∆ ` A|n]]ρη ⊇
⋂

k∈N[[Γ;∆ ` A|k]]ρη

Now suppose thatA contains at mostM + 1 µ binders. We consider cases for
A.
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• A is >,X or Bool. Then as above, there existsn ∈ N such that for allk ≥ n,
A|k = A and we are done.

• A is [fi : Ai
i=1...n, m j : ς(y j)Bj ::T j

j=1...m]. Then, by induction hypothesis,

[[Γ;∆ ` Ai ]]ρη ⊇
⋂

k∈N[[Γ;∆ ` Ai |
k]]ρη

and

[[Γ, y j ;∆ ` Bj ]](ρ[y j := l])η ⊇
⋂

k∈N[[Γ, y j ;∆ ` Bj |
k]](ρ[y j := l])η

for 1 ≤ i ≤ n and 1≤ j ≤ m. Hence, if (l, σ) ∈ [[Γ;∆ ` A|k]]ρη for all k ∈ N
then

(σ.l.fi , σ) ∈
⋂

k∈N[[Γ;∆ ` Ai |
k]]ρη ⊆ [[Γ;∆ ` Ai ]]ρη

andσ.l.m j(σ) = (v, σ′) implies

(v, σ′) ∈
⋂

k∈N[[Γ, y j ;∆ ` Bj |
k]](ρ[y j := l])η ⊆ [[Γ, y j ;∆ ` Bj ]](ρ[y j := l])η

by the definition ofA|k. This shows (l, σ) ∈ [[Γ;∆ ` A]]ρη as required.

• A is µ(X)B. Recall that

[[Γ;∆ ` A]]ρη = gfp( fA)

is the greatestpost-fixed point of fA(χ) = [[Γ;∆,X ` B]]ρη[X = χ]. We show
thatα :=

⋂
k∈N[[Γ;∆ ` A|k]]ρη is a post-fixed point offA, from which

[[Γ;∆ ` A]]ρη ⊇
⋂

k∈N[[Γ;∆ ` A|k]]ρη

then follows: First note that by Lemma 6.8(2) and Lemma 6.9

η[X = [[Γ;∆ ` A|0]]ρη] ≥ η[X = [[Γ;∆ ` A|1]]ρη] ≥ . . .

forms a descending chain of environments. Hence we can calculate

fA(α) = [[Γ;∆,X ` B]]ρη[X = α] def. of fA
= [[Γ;∆,X ` B]]ρ(

∧
kη[X = [[Γ;∆ ` A|k]]ρη]) def. ofα and meets

=
⋂

k∈N[[Γ;∆,X ` B]]ρη[X = [[Γ;∆ ` A|k]]ρη] Lemma 6.5, meets

=
⋂

k∈N[[Γ;∆ ` B[A|k/X]]] ρη Lemma 6.6

⊇
⋂

k∈N
⋂

l∈N[[Γ;∆ ` B[A|k/X]|l ]]ρη Induction Hyp.

⊇
⋂

m∈N[[Γ;∆ ` B[A/X]|m]]ρη Lemma 6.10

=
⋂

k∈N[[Γ;∆ ` A|k]]ρη Def. of µ(X)A|k

i.e.α ⊆ fA(α). Note that we can apply induction in the fourth line sinceA|k

does not contain anyµ and thereforeB[A|k/X] contains at mostM µ-binders.

This concludes the proof. �
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6.4 Soundness
After the technical development in the preceding subsection we can now prove
(18). From this result the soundness proof of the logic extended with recursive
specifications then follows, along the lines of the proof presented in Section 5
for finite specifications.

Lemma 6.12. For all σ,Σ, l and ` A, if σ ∈ [[Σ]] and` Σ.l <:∗ A then(l, σ) ∈
[[A]] .

Proof. The proof proceeds by considering finite specifications first. This can
be proved by induction onA, as in Lemma 5.1. When applying the induction
hypothesis we use the fact that` A <: B implies` A <:∗ B.

To extend the proof to all (possibly recursive) specifications, note that by
Lemma 6.8,` A <:∗ A|k for all k ∈ N, which entails` Σ.l <:∗ A|k for all
k by transitivity. EveryA|k is non-recursive, so by the above considerations,
(l, σ) ∈ [[A|k]] for all k. Thus

(l, σ) ∈
⋂

k∈N [[A|k]] = [[A]]

by Lemma 6.11. �

7 Conclusion

Based on a denotational semantics, we have given a soundness proof for Abadi
and Leino’s program logic of an object-based language. Compared to the orig-
inal proof, which was carried out wrt. an operational semantics, our techniques
allowed us to distinguish the notions of derivability and validity. Further, we used
the denotational framework to extend the logic to recursive object specifications.
In comparison to a similar logic presented in [8] our notion of subspecification
is structural rather than nominal.

Although our proof is very much different from the original one, the nature
of the logic forces us to work with store specifications too. Information for lo-
cations referenced from the environmentΓ will be needed for derivations. Since
theΓ cannot reflect the dynamic aspect of the store (which is growing) one uses
store specificationsΣ. They do not show up in the Abadi-Leino logic as they
are automatically preserved by programs. This is shown as part of the soundness
proof rather than being a proof obligation on the level of derivations. By contrast
to [2], we can view store specifications as predicates on stores which need to
be defined by mixed-variant recursion due to the form of the object introduction
rule. Unfortunately, such recursively defined predicates do not directly admit an
interpretation of subsumption (nor weakening). This led us to distinguish store
specifications from the specifications of individual objects.

Conditions(M1) – (M3) in the semantics of store specifications ensure that
methods in the store preserve not only the current store specification but also
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arbitrary extensionsΣ′ < Σ. This will account for the (specifications of) objects
allocated between definition time and call time.

Clearly, not every predicate on stores is preserved. As we lack a seman-
tic characterisation of those specifications that are syntactically definable (asΣ),
specification syntax appears in the definition ofσ ∈ [[Σ]] (Def. 4.7). More an-
noyingly, field update requires subspecifications to be invariant in the field com-
ponents, otherwise even type soundness is invalidated. We do not know how to
express this property of object specifications semantically (on the level of predi-
cates) and need to use the inductively defined subspecification relation instead.

The proof of Theorem 4.8, establishing the existence of store predicates, pro-
vides an explanation why transition relations of the Abadi-Leino logic express
properties of the flat part of stores only: Semantically, a (sufficient) condition
is that transition relations are upwards and downwards closed in their first and
second store argument, respectively.

Abadi and Leino’s logic is peculiar in that verified programs need to preserve
store specifications. Put differently, only properties which are in fact preserved
can be expressed in the logic. In particular, specifications of field values are
limited such that properties like e.g.self.hd ≤ self.tail.hd, stating that a list is
sorted, cannot be expressed. In future work we thus plan to investigate how a
logic can be set up where

• methods are specified by pre-/post-conditions that explicitly state invariance
properties during execution of the method code.

• methods can be specified by pre-/post-conditions that can refer to other meth-
ods. This is important for simulating methods that act like higher-order func-
tions (e.g. the map function for lists).

• methods can have additional parameters.

• method update is allowed. In the setting of Abadi and Leino this would re-
quire that the new method body satisfies the old specification (in order to
establish invariance). More useful would be a “behavioural” update where
result and transition specifications of the overriding method are subspecifi-
cations of the original method.

The results established in this paper pave the way for the above line of research.

Acknowledgement We wish to thank Thomas Streicher for discussions and
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