US

University of Sussex

Denotational Semantics for Abadi and
Leino’s Logic of Objects

Bernhard Reus
Jan Schwinghammer

Report 2004:03 December 2004

Department of Informatics
University of Sussex
Brighton BN1 9QH

ISSN 1350-3170

Denotational Semantics for Abadi and Leino’s
Logic of Objects

BernHARD REUS and AN SCHWINGHAMMER

Asstract. Abadi-Leino Logic is a Hoare-calculus style logic for a simple imperative and object-
based language where every object comes with its own method suite. Consequently, methods need
to reside in the store (“higher-order store”). We present a new soundness proof for this logic using a
denotational semantics where object specifications are recursive predicates on the domain of objects.
Our semantics reveals which of the limitations of Abadi and Leino’s logic are deliberate design
decisions and which follow from the use of higher-order store. We discuss the implications for the
development of other, more expressive, program logics.

Contents

1 Introduction L e 2
2 TheObjectCalculus. e 4
3 Abadi-LeinoLogiC 7
4 Store Specifications 13
5 8S0uUndness 20
6 Recursive Specifications 32
7 ConClUSION 43

Supported by the EPSRC under grant/88519001, “Programming Logics for Denotations of
Recursive Objects”

1 Introduction

When Hoare presented his seminal work aboudxénmatic basis of computer
programming[7], high-level languages had just started to gain broader accep-
tance. While programming languages are evolving ever more rapidly, verifica-
tion techniques seem to be struggling to keep up. For object-oriented languages
several formal systems have been proposed, e.g. [2, 6, 13, 12, 5, 20, 17]. A “stan-
dard” comparable to the Hoare-calculus for imperative While-languages [4] has
not yet emerged. Nearly all the approaches listed above are designed for class-
based languages (usually a sub-language of sequential Java), where method code
is known statically.

One notable exception is Abadi and Leino’s work [2] where a logic for an
object-based language is introduced that is derived from the imperative object
calculus with first-order typesmpg, [1]. In object-based languages, every ob-
ject contains its own suite of methods. Operationally speaking, the store for such
a language contains code (and is thus catliggher-order storg and modularity
is for free simply by the fact that all programs can depend on the objects’ code in
the store. We therefore consider object-based languages ideal for studying mod-
ularity issues that occur also in class-based languages. Class-based programs
can be compiled into object-based ones (see [1]), and object-based languages
can naturally deal with classes defined on-the-fly, like inner classes and classes
loaded at run-time (cf. [14, 15]).

Abadi and Leino’s logic is a Hoare-style system, dealing with partial cor-
rectness of object expressions. Their idea was to enrich object types by method
specifications, also calleansition relations relating pre- and post-execution
states of program statements, ardult specificationslescribing the result in
case of program termination. Informally, an object satisfies such a specification

A= [fi . Aji:l"'n, mj: g‘(yj)Bj ::Tjj:]'"'m]

if it has fieldsf; satisfyingA; and methodsn; that satisfy the transition relation
T; and, in case of termination of the method invocation, their result satBfies
However, just as a method can use Hsdfparameter, we can assume that an
objecta itself satisfiesA in both B; andT; when establishing thak holds fora.
This yields a powerful and convenient proof principle for objécts.

We are going to present a new proof using a (untyped) denotational seman-
tics (of the language and the logic) to define validity. Every program and every
specification have a meaningdanotation Those of specifications are simply
predicates on (the domain of) objects. The properties of these predicates provide

1This also works for class-based languages. But an easier solution for those is to interpret class
specifications as mutually defined predicates over classes (and their class names).

2

a description of inherent limitations of the logic. Such an approach is not new, it
has been used e.g. in LCF, a logic for functional programs [10].

The dificulty in this case is to establish predicates that provide the powerful
reasoning principle for objects. Reus and Streicher have outlined in [16] how
to use some classic domain theory [11] to guarantee existence and uniqueness
of appropriate predicates on (isolated) objects. In an object-calculus program,
however, an object may depend on other objects (and its methods) in the store.
So object specifications must depend on specifications of other objects in the
store which gives rise to “store specifications” (already present in the work of
Abadi and Leino).

For the reasons given above, this paper is not “just” an application of the ideas
in [16]. Much care is needed to establish the important invariance property of
Abadi-Leino logic, namely that proved programs preserve store specifications.
Our main achievement, in a nutshell, is that we have successfully applied the
ideas of [16] to the logic of [2] to obtain a soundness proof that can be used to
analyse this logiand todevelop similar but more powerful program logias
well.

Our soundness proof is not just “yet another proof” either. We consider it
complementary (if not superior) to the one in [2] which relies on the operational
semantics of the object calculus and does not assign proper “meaning” to speci-
fications. Our claim is backed up by the following reasons:

e By using denotational semantics we can introduce a clear notion of validity
with no reference to derivability. This helps clarifyinghat the proof is
actually statingn the first place.

¢ We can extend the logic easily e.g. for recursive specifications. This has been
done for the Abadi-Leino logic in [8] but for a slightlyfiiérent language with
nominal subtyping.

e Some essential and unavoidable restrictions of the logic are revealed and
justified.

e Analogously, it is revealed where restrictions have been made for the sake of
simplicity that could be lifted to obtain a more powerful logic. For example,
in [2] transition specifications cannot talk about methods at all.

e Our proof widens the audience for Abadi and Leino’s work to semanticists
and domain theorists.

The outline of this report is as follows. In the next section, syntax and seman-
tics of the object-calculus are presented. Section 3 introduces the Abadi-Leino
logic and the denotational semantics of its object specifications. It follows a
discussion about store specifications and their semantics (Section 4). The main
result is in Section 5 where the logic is proved sound. Finally we sketch how

3

ab = X variable

| true | false booleans

| if xthenaelseb conditional

| letx=ainb let

| [fi=x"""m; = ¢(y;)b;’"™ object construction
| xf field selection

| xfi=y field update

| Xx.m method invocation

TasLE 1. Syntax

recursive specifications can be introduced (Section 6) and discuss the benefits of
the denotational approach (Section 7).

When presenting the language and logic, we deliberately keep close to the
original presentation [2].

2 The Object Calculus

Below, we review the language of [2], which is based on the imperative object
calculus of Abadi and Cardelli [1]. Following [16] we give a denotational se-
mantics in Section 2.2.

2.1 Syntax

Let Var, M and F be pairwise disjoint, countably infinite sets wériables
method nameandfield namesrespectively. Lek,y range oveiar, letm € M
andf € #. The language is defined by the grammar in Tab. 1.

Variables are (immutable) identifiers, the semantics of booleans and condi-
tional is as usual. The object expressiost x = a in b first evaluates and
then evaluateb with x bound to the result df.

Object constructionf[= x'=>", m; = ¢(y;)b;’=>™ allocates new storage
and returns (a reference to) an object containing figl@sith initial value the
value ofx;) and methodsn;. In a methodm;j, ¢ is a binder, binding the ex-
plicit self parametey; in the method body;. During method invocation, the
method body is evaluated with the self parameter bound to the host object. We
identify objects that dfer only in the names of bound variables and the order of
components.

The result of field selection.f is the value of the field, ang.f:=y is field
update. A formal semantics is given in the next subsection below.

Note that in contrast to [1] we distinguish between fields and methods, and
that method update is disallowed. Also note that we restrict the cases for field
selection, field update, method invocation and if statement to contain only vari-
ables (instead of arbitrary object terms). This is no real limitation because of the

4

let construct, but it simplifies the statement of the rules of the logic [2].

2.2 Semantics of Objects
Preliminaries

We work in the categoryPreDom of predomains and partial continuous func-
tions. LetA — B denote the partial continuous function space between predo-
mainsA andB. Forf € A — Banda € Awe write f(a) | if f applied toa is
defined, and (a) T otherwise.

If Lis a set, therP(L) is its powersetPsn(L) denotes the set of its finite
subsets, andt is the set of all total functions from to A. For a countable sét
and a predomaiA we write

L
Rec(A) = ZL%(L) A
for the predomain ofecordswith entriesfrom A andlabelsfrom L. Note that
Recy, extends to a locally continuous endofunctorRmDom.

Arecord (, f € Ab), with labelsL = {I4,...,1,} and corresponding entries
f(li) = &, is written agll; = ay,...,Iy = ay}. Update (and extension) of records
is defined as the corresponding operation on functions, i.e.,

sty . 1 Al =a1,...,lk =a,...,ln=an) if | =l for somek
lli=ap=" = a] = {{]Ii = a,| = a}’=t-" otherwise
Selection of a labdl € L of a recordr € Recy,(A) is writtenr.l. It is defined and
yields f(1) if r is (D, f € AP) andl € D.
Interpretation

The language of the previous section finds its interpretation within the following
system of recursively defined predomain®ieDom

Val = BVal + Loc
St = Reco.(Ob)

Ob = Recg(Val) x Recp(Cl)
Cl = St — (Val + {error}) x St

Here,Loc is some countably infinite set tifcationsranged over by, andBVal is
the set of truth valuesue andfalse considered as flat predomains. The functor
Fstore: PreDom°®? x PreDom — PreDom associated with (1),

FstordS, T) = Rec oc(Recs(Val) X Recp(S — (Val + {error}) x T))

is locally continuous bifunctor, and there exists indeed a minimal invariant solu-
tion St s.t. FsorSt, St) = St (see, e.g., [11, 18]).

1)

2we use a more generous syntax in the examples

5

_ [(e(¥),0) if xedom(p)
[l h {(error, o) otherwise
[true]po = (true, o)
[false]po = (false o)
[bidpo’ if[X]po = (true, o)
[if x then by else by]po =1 [blpo’ if [X]po = (false o)
(error,o”) if [XJpo = (v,o”) for v ¢ BVal
[let x=ain b]po = let (v,0”) = [a]po in [blp[X := V]o”
[[fi — Xii:l"n, mj — §(y]')bjj=1“'m]],00'
(I, o[l := (01,02)]) if X € dom(p),1<i<n
(error, o) otherwise
wherel ¢ dom(o)
01 = {fi = p(x)=*" _
0 = {m; = Aa.[bjlply; := l]op=+-m
[xflpo = let(l,0’) = [X]po
. {(o-’.l.f, o) if | € dom(¢”) andf € dom(c”.l)
in .
(error,o’) otherwise

[xf:=ylpo = let (") = [Xpo. (v.0) = [Ylpo’
(o[l := o [f :=V]]) if | € dom(c”)
in { andf € dom(a”.l)
(error,) otherwise
[xm]po = let(l,0") = [Xlpo
i {o-’.l.m(o-’) if ledom(c”) andmedom(c.1)
(error,o”) otherwise

TasLe 2. Denotational semantics

Let Env = Var —y, Val be the set oEnvironmentsi.e. maps betweexar
andVal with finite domain. Given an environmepte Env, the interpretation
[a]p of an object expressioain St — (Val + {error}) x St is given in Table 2.
Here we use a (semantic) striet that is also “strict” wrt.error:

undefined ifsis undefined
let (v,o) = sin s =1 (error,o”’) if s= (error,o”)
(A(v, 0).9) s otherwise

Note that foro € Ob we just writeo.f ando.m instead ofr;(0).f andx,(0).m, re-
spectively. Similarly, we omit the injections for elements/af +{error}, writing
simply | instead ofin_o.(l) etc. Observe that, in contrast to [16], we distinguish
between non-termination (undefinedness) and exceptional termination,Fi-

nally, becauséoc is assumed to be infinite, the conditib@ dom(o) in the case

for object creation can always be satisfied. Therefore object creation will never
raiseerror.

We will also use a projection to the part of the store that contains data in
Val only (i.e., forget about the closures that live in the stoag), : St — Sty
defined by fvq 0).l.f = ol.f, whereSty, = Recio.(Recs(Val)). We refer to
nval(or) as theflat partof o.

Example 2.1. We extend the syntax with integer constants and operations, and
consider an object-based modelling of a bank account as an example:

acqx) = [balance = 0,
depositl® = ¢(y)let z=y.balance+10 in y.balance:=z,
interest = ¢(y)let r = X.manager.rate in
let z=y.balancexr/100 in y.balance:=Z7]

Note how the self parameter y is used in both methods to accebalhace
field. Object acc depends on a “managing” object x in the context that provides
the interest rate, through a fielaanager, for theinterest method.

3 Abadi-Leino Logic
We recall the logic of Abadi and Leino [2] (see also [19]).

3.1 Transition Relations and Specifications

Transition relations Tcorrespond to the pre- and post-conditions of Hoare logic
and allow to express state changes caused by computations. The syntax of tran-
sition relations is defined by the following grammar:

Ti=e=¢ | allocpe(€) | allocpesd€) | =T | ToATy | VXT
ex=x| f | result | true | false | selpe(€n,€1) | Selpos{€o, €1)

There is a constant for each field nafme ¥ (which we just writef, too), and
constantgesult, true andfalse. Intuitively, the functionselye(x, y) yields the
value of fieldy of the object at locatiox before execution, provided this exists
in the store, and is undefined otherwise. Correspondisglyss{x, y) gives the
value of fieldy after execution. The predicateiocye(X) andallocpes{X) are
true if the locationx is allocated before and after the execution, respectively, and
false otherwise. The notions of free and bound variables of a transition relation
T carry over directly from first-order logic. As usual, further logical connectives
such ad-alseand implication can be defined as abbreviations.
Specificationgombine transition relations for each method as well as the
result types into a single specification for the whole object. They generalise the
first-order types of [1], and are

A, B e Spec:= Bool | [fi: A", mj: ¢(y;)Bj:T;=1m]
In the case of an object specificatigfy;) binds the variablg; in B; andT;, and
specifications are identified up to renaming of bound variables and reordering of

7

components, which will be justified by our semantics.

Intuitively, true andfalse satisfyBool, and an object satisfies the specifi-
cationA = [fi: A", mj:g(y;)B;=T;=2-M if it has fieldsf; satisfyingA and
methodsm; that satisfy the transition relatioR; and, in case of termination of
the method invocation, their result satisf®s Corresponding to the fact that a
methodm; can use theelfparametey;, in bothT; andB; it is possible to refer
to the ambient objeat;.

LetI range ovespecification contexts; ¥\, . . ., X,:An. A specification con-
text iswell-formedif no variablex; occurs more than once, and the free variables
of A are contained in the séx, ..., X1}. In writing T, xA we will always
assume that does not appear in. Sometimes we writ@ for the empty context.
GivenTI’, we write [['] for the list of variables occurring if:

[X1:AL .o XAl = X2, .0, X

If clear fr_om context, we use the notati@for a sequenceq, .. ., X,, and simi-
larly X : Afor x:Aq, ..., %:An. To make the notions of well-formed specifica-
tions and well-formed specification contexts formal, there are judgements for

¢ well-formed transition relations:
X1,...,% F T, if all the free variables of appear irnx,, ..., X,
o for well-formed specifications:
A = [fi . Aji:l...n, mj_: g‘(yj)BjZZTJ‘ j:1...n.1]
Xk Ailzl...n X, yj F Bj]:l...m X, yj F T]_J:l.“m
X+ [fiZ Aii=1...n’ mj: g(yj)BjZZTjjzl'"m]
o for well-formed specification contexisr ok:
F'rok [IT+A xg¢dom(l)
I, XA+ ok

In caseAis closed we may simply writd instead of A, and similarly for closed
T.

3.2 Abadi-Leino Logic
Abadi and Leino generalised the notion of subtypes to a forsubkpecifica-
tions X+ A <: A, that is defined inductively by + Bool <: Booland
%k Aii=1.“n+p 7(, Yj E Bjj=m+l.,m+q ij E Tjj:lu.rmq 7(, yj b T;j:lu.m
Xyj kB <t BT b Ty TR
X F[fir AP mg(y) By T ™) < [A m;: o(y;) BT =]
wheretr, ¢ denotes provability in first-order logic (in the theory with axioms

for equality, and axioms stating thatue, false and allf € # are distinct). Just
as subtyping in the corresponding type system [1], the subspecification relation

X+ Bool and

0+ok and

8

is covariant along method specifications and transition relations, and invariant in
field specifications. Observe that- A; <: A in particular impliesx + A; for
i=12.

In the logic, judgements of the forin+ a:A::T can be derived, wheris a
well-formed specification contexd,is an object expressio is a specification,
andT is a transition relation. The rules guarantee that all the free variabkes of
AandT appear inT]. We use the following transition relations in the rules:

Tres(€) =result = e
A VX, f.allocye(X) < allocpes{X) A Selpre(X,) = selyosd X, T)
Toni(fi = %)'=>" = —allocyre(result) A allocpos(result)
A VX, f.x # result —»
(allocpre(X) < allocpesdX) A selgre(X, T) = selpos(X,)) (2)
A selposresult, f1) = Xy A - - - A selpos(result, fp) = X,
Tupa(X, T, €) = VX .allocye(X) < allocyes(X) A selpos(X, f) = €
AVX (X % XA T % £) > selpe(X, /) = selpos(X,)
A result = x
Tes(€) states that the result of a computatioreiand the flat part of the store
remains unchangedTo,(fi = x) describes the allocation of a new object in
memory, which is initialised with fielf|] set tox;, and whose location is returned
as resultT q(X, f, €) describes theféect on the store when updating field .2

Example 3.1. Fig. 1 shows a specification for bank accounts as in the previous
examplet Observe how the specification Jeres: depends not only on the self
parameter y of the host object but also on the statically enclosing object x.

There is one rule for each syntactic form of the language, plus a subsumption
rule, which generalises the consequence rule of classical Hoare logic. The rules
are given in Tab. 3.

As indicated before, one of the most interesting and powerful rules of the
logic is the object introduction rule,

A= [fi: Aiiz_l‘“”, mj: s(y)) By T ="
I+ x:A:Regx) =" Ly Ak bj:BJ-::TJ.‘Zl'"m
L[=% m) = o(y;)b="A: .

In order to establish that the object satisfies specificatiomhen verifying the
methodsh; we canassumehat the self parametgy also satisfied\. Essentially,

31N [2] Tres is calledResandTyq is calledUpdate There is no abbreviation correspondindrig;.
“Note that although we are using UML-like notation, these diagrams actually stand for individual
objects, not classes — in fact there are no classes in the language.

9

subsumption
[MIrA<A TraAT [[I+A TIFT e T->T

I'raA:T
variable
I'-ok xAInT
Tk XA:Tes(X)
booleans
I'+ ok I'+ ok
I' + false:Bool:Ts(false) I' + true:Bool:Ts(true)
conditional
Altrue/X] = Atrue/x] and Alfalse/X] = A¢[false/X]
T[true/x] = T¢[true/x] andT[false/x] = T;[false/X]
[+ xBook:Tes(X) TraA: T, TrbAiTs
'+ if x then aelse b:A:T
let
rraA:T T,xArbB:T” [[1+B [T]+T
Fro T'[S€lint(", -)/Selpos(, -), alloCine(+) /allocposd), X/result]
A T"[selin(:, ')/Selpre('7), allocint(')/allocpre(')] ->T
I'+let x=ainb:B:T
object construction

A= [fi: Aiizl.'"n, mj: g‘(yj)Bj::TJ‘j:l"’m].
T F AT () ™" Ty Ak byBuT/ ™"
r [fl — Xéi:lu.n, m; = g(yj)bjj:l“m]:A::TObj(fi — Xii=lmn)

field selection
Tk X[f:A]: Tres(X)
Ik XFATes(Selpre(X,)

field update

A= [fi: A{_i:l..n, mj: g‘(yj)Bj::Tjjzl‘"m]
Ik XA:Tes(X) T FY:ACTes(Y)

1<k<n
Tk xfic= Y AT (X, T Y)

method invocation
I+ x[mig(Y)A:T]: Tres(X)
I+ xm:AX/Y]:TIX/Y]

Taste 3. Inference rules of Abadi-Leino logic

10

Tdeposit(y) =dzz= Selpre(y, balance)
ATupa(y, balance, z+ 10)

Tinterest(xy y) =dzz= Selpre(y’ balance) Manager
AJmm = selpe(X, manager) rate: Int
accFactory
ATrr = selye(m rate)
ATypa(y, balance, z+ r/100)
Tereate(X) = Topj(balance = 0) AccFactory
manager

Asccount (X) = [balance : Int, create() |-+
depositl0 : S‘(y)[] n Tdeposit(y)v i
interest : ¢(Y)[] :: Tinterest(X Y)]

Account
Asccractory = [manager : [rate : Int], balance: Int
create : ¢(X)Anccount (X) i Tereate(X)] deposit10()

interest()

Avanager = [rate : Int,
accFactory : Asccractory]

Ficure 1. An example of transition and result specifications

this causes the semantics of store specifications, introduced in the next section,
to be defined by a mixed-variant recursion.

The rule for the (let) case is somewhat unusual in that it introduces additional
relation symbolsseli(-, -) andallocin(+), to capture the intermediate state of the
store. It uses textual substitution pfedicatesymbols to compose the first and
second transition relation. The side conditidh f T ensures that the transition
relation in the conclusion does not export this intermediate state.

3.3 Semantics of Specifications

Having recalled Abadi and Leino’s logic, we next give a denotational semantics
of specifications. In transition relations it is possible to quantify over field names
(for an example of this see the transition relations in (2)), and we \Erit¢ =

Var —4, (Val +) when interpreting transition relations:

[XF T]: Env' — P(Stya X Val X Stya)

This can be defined in a straightforward way, a few typical cases are given in
Tab. 4. Note that even though expressions may be undefined (e.g., because of
referring to non-existent fields), the interpretation of transition relations is two-
valued. Also observe that the meaning of a transition relation T without
free variables does not depend on the environment. Therefore we may omit the
environment and simply writeT[] for closedT.

Intuitively, an object specificatioX + A gives rise to a predicates that de-
pends on values for the free variables. However, since the underlying logic in

11

[XF€]: Env' — Styy — Val — Styy — (Val + F)

- , p(X) if x € dom(p)

DXk >dporve - {undefined otherwise

[X+ flpove’ =f

[X F result] povo’ =V

[X+ true] povo’ = true

[X + false] povo’ = false
oL if [X+ &]pove’ =1 € Loc and

[X F selye(eo, €1)] povo’ = { [XF ellpovo’ =f e F are defined
undefined otherwise
o' |Lf if [X+ &]pove’ =1 € Loc and

[X F selyos{€n, €1)] povo’ = { [XF ellpovo’ =f e F are defined
undefined otherwise

[XFT]: Env' — P(Stya X Val X Stya)

(o,v,0’) e[Xrep=¢e]p iff both[XF e]povo’ and [X+ e]povo’ are defined
and equal, or both undefined

(o, v,07) € [X+ allocpe(®)]p iff [XF €lpovo’ € dom(o)

(o, v, 07) € [X+ allocyes{ @l p iff [X+ €lpovo’ € dom(o’)

(o,v,07) € [X+ YXT]p iff forallueVal+F. (o,v,0’) € [XxF T]p[x:=U]

TasLe 4. Meaning of expressions and transition relations
the transition relations is untyped, the types of the free variables are not rele-
vant.The interpretation of object specifications A,
[X+ A]: Env — P(Val x St)

is given in Tab. 5.
We begin with a number of observations about the interpretation.

Lemma 3.2. For all specification&X + A, all o € St and environments we have
(error, o) ¢ [X+ Alp.

Proof. Immediate from the definition off+ A] p. m|

Lemma 3.3 (Soundness of SubspecificationBuppos& + A <: B. Then, for
all environmentg, [X+ Alp C [X+ B]p for valuesv.

Proof. This follows by induction on the derivation &f+ A <: B. The cases for
reflexivity and transitivity are immediate. For the case where Bodmd B are
object specifications we need a similar lemma for transition relations:

If X+ T andX+ T’ thenr,, T — T implies

[X-Tlp <X T]p (3)

12

[X+ A]: Env — P(Val x St)
[X + Boollp = BVal x St
[XF [t A5, miss(y) BT ="l p
() foralll<i<n olfie[XxrAlp
(l,0) € (i) foralll< j<m, if o.l.mj(o) = (v,0”)]
Loc x St then ¢,0”) e [Xy; + Bilply; :=1]
and (va(0), V. tvai(0”)) € [X.y; + Tilply; = 1]

TasLe 5. Semantics of specifications

for all p € Env*. However, (3) follows immediately sineg, holds inall models.
m|

Remark We think it would be clearer to use a multi-sorted logic, witfel-
ent quantifiers ranging over locations, basic values and field names, resp., but
decided to keep to the original presentation of Abadi and Leino’s logic.

4 Store Specifications

Obiject specifications are notfigient. This is a phenomenon of languages with
higher-order store well known from subject reduction and type soundness proofs
(see [1, Ch. 11], [9]). Since statements may call subprograms residing in the
store, the store has to be checked as well. However, it may contain loops and
therefore induction on the reachable part of the store is unavailable.

The standard remedy — also used in [2] —is to relativise the typing judgement
such that it only needs to hold for “verified” stores. In other words, judgements
are interpreted w.r.istore specificationsA store specification assigns a speci-
fication to each location in a store. When an object is created, the specification
assigned to it at the time of creation is included in the store specification.

In this section we will interpret such store specifications using the techniques
from [16]. Since their denotations will rely on mixed-variant recursion, it is
impossible to define a semantic notion of subspecification for stores. Alas, the
Abadi-Leino logic makes essential use of subspecifications.

We get around this problem by only using a subset relationship on (deno-
tations of) object specifications (where there is no contravariant occurrence of
store as the semantics of objects is w.r.t. one fixed store, cf. Tab. 5).

Unfortunately, we are restricted by the logic’s requirement that verified state-
ments never break the validity of store specifications. In the case of field update
this implies that subspecificatiohseed to be invariant in their fields. As the se-
mantic interpretation of the subspecification relation cannot reflect this, we were
forced to sometimes use syntactic subspecifications.

Sthis also holds for subtypes

13

4.1 Result Specifications, Store Specifications and a Tentative Semantics

A store specificatiolX assignlosedspecifications A to (a finite set of) loca-
tions:

Definition 4.1 (Store Specification).A recordX € Rec .(Spegis astore spec-
ificationif for all | € dom(Z), 2.1 = A is a closed object specification.

Because we focus on closed specifications in the following, we need a way
to turn the componentB; of a specification f[: A'=1", mj:g(yj)Bj::Tjj:l"m]
(whichin general will depend on the self paramsjiginto closed specifications.

We do this by extending the syntax of expressions with locations: There is one
symboll for eachl € Loc, and define k+ [Jp = | (cf. Tab. 4). Similarly, we set
true = true andfalse= false. When clear from context we will simply write

vin place ofv.

Further we writeA[p/X] (andA[p/I], resp.) for the simultaneous substitution
of all x € X (x € [I'], resp.) inA by p(X). Then we can prove the following
substitution lemma. T

Lemma 4.2 (Substitution Lemma). Suppose is an environmentx + T is a
transition relation andy + A andy + A’ are specifications. Then

1. +Tlo/X] and[[r T[e/X]] = [X+F T]p
2. + Alp/y] and[+ Alp/Y]] = [y + Alp
3. ifyr A<: A thenr Alp/Y] <: Ap/Y]

Proof. The first part is by induction oiff, the second by induction ohand the
last by induction on the derivation §fr A <: A'. |

Definition 4.3 (Store Specification Extension).Let X, X" € Rec,.(Spe¢ be
store specifications’ extend<:, written’ > X, if Z.I = ¥’.I for all | € dom(Z).

Note that> is reflexive and transitive. We can then abstract away from par-
ticular storesr € St, and interpret closed result specificationé with respect
to such store specifications:

Definition 4.4 (Object Specifications). Suppose is a store specification. For
closedr A let||Alls € Val be defined by

|IBool|s = BVal
Al ={l € Loc | +Z.I <: A}

where A= [f: A=, m;: ¢(y;)B;::T;!=*™ andr A. We extend this to contexts
in the natural way:

p € 10|y forall p € Env,
p €lll,xAlly iff o € IITlly andp(X) € [|Alp/T]llx

14

Observe that for alp, if X’ > X then||Allx C ||Allx,. We obtain the following
lemma aboutontext extensions

Lemma 4.5 (Context Extension).If p € ||['lz andl’, x:A + ok and ve ||Alp/T|s
thenp[x := V] € |IT, xAlls.

Proof. The result follows immediately from the definition once we shgw:=
V] € |[I'llz. This can be seen to hold singez dom(I'), hence for ally:B in T" we
know thatx is not free inB and we must havB[p[x := v]/T'] = B[p/I. O

We want to interpret store specifications as predicates over stores, as follows.

Definition 4.6 (Store Predicate, Tentative).Let P = P(St)Rece(SPes denote
the collection of predicates o8t, indexed by store specifications. We define a
functional® : P°? x P — P as follows.

o ed(Y,X)s & A .
VI € dom(Z) wherex.l = [f: A'=>" mj: ¢(y;)B;: T =M :

(F) o l.fi € ||Allls, forall L < i < n, and

YI' > X VYo' € Yy Vve Val Vo € St, if ol.mj(c”’) = (v,0”’) | then

(M1) (mvai(0”), v, mvai(o)) € [T;[1/y;]1

(M2) there exist¥” > ¥’ s.t.o”’ € Xs»

(M3) v e ||Bi[l/yjl|
forall1<j<m

Then we writ 2] for fix(®D)s.

>

4.2 On the Existence of Store Specifications

The contravariant occurrence in this definitidfjs forced by the premise of the
object construction rule in the Abadi-Leino logic. It states that, in order to prove
that specificatiorA holds for a new object one can assume that the self object
in methods already fulfils the specificatidn It is this contravariance, in turn,
that calls for some advanced domain theory to show that the fixpoibtdifes
actually exist.

Indeed, we cannot show existencefie{®) with the techniques of [11] as
it stands. The problem is the existential quantificatiorfNt2) which has the
effect thatd does not necessarily magimissiblepredicates o1$t to admissible
predicates. To see this, consider the following example.

Let

Y =lp:[mo:¢()[m1 : ¢(Y)[::Trug:: Trud

which, informally, describes a store with a single object at locdtj@ontaining
a methodmg. In case a call of this method converges it returns an object sat-
isfying [m1 : ¢(Y)[]:: Trug] (which is not much of a restriction). However, this

15

resulting object has to be allocated in the store, and so a proper extension of the
original store specificatioh has to be found.

So letAg = [my : g(Y)[]::Falsd and Ai;1 = [m1 : ¢(Y)Ai::Trug. In partic-
ular, this means that the methad of objects satisfyingdy mustdiverge. The
methodm; of an object satisfying returns an object satisfying;_;. Hence,
for such objects, it is possible to have method cabsn;.m; ... m; at mosti
times, of which the-th call must necessarily diverge (the others may or may not
terminate). The example below uses the fact that we can construct an ascending
chain of objects for which the firé$t— 1 calls indeed terminate, and therefore do
notsatisfyAi_;. Then, the limit of this chain is an objexfor which an arbitrary
number of callscm;.m; ... m; terminates, and which therefore does not satisfy
anyof the A

Setx!” = X,1 : A and leto € [X] denote some store satisfying Moreover,
define

ai={lo={mo = A_.(I,c + o")}}

whereoy = {l = {my = A_.L}} ando]; = {l = {m1 = A_.(l,c + o')}}, and let
o = Ljoj. Finally, defineX,Y € £ by
Xzi" = {g’+ (Ti”}, forieN

Xs = 0, for all others

Yz = {c}

Y; = 0, for all otherE
By construction, bottX andY are admissible in every componéht By induc-
tion one obtaingry C o} C ..., thereforerg C o1 £ ... in ®(Y, X)z. Hence we
must showo € @(Y, X)y. But this is not the case, since it would entail, (%2)
and

O'.|.m0 o) = I_IiO'i.|.mo(g) = (|,g+ I_|i0'i")

that there exist&” > X such thatr + Lijo{" € Xg». Clearly this is not the case,
sinceo + Lo’ is strictly greater than every + 0" and therefore not in any of
the Xzi”.
4.3 A Refined Semantics of Store Specifications

We refine the definition of store predicates by replacing the existential quantifier
in (M2) of Definition 4.6 by aSkolem functionas follows: We call the elements
of the (recursively defined) domain

¢ € RSF = Rec oc(Recy (St x RSF x Spec— Specx RSF)) (4)

choice functionsor Skolem FunctionsThe intuition is that, given a store €
[Z], if o’ € [¥] with choice functiong’, for some extensio®’ > X and the

16

method invocatiomr.l.m(c”) terminates, thes.l.m(c’, ¢’,%X’) = (X", ¢”) yields

a store specificatioB” > X’ such thai” € [Z”] (and ¢” is a choice function

for the extensiorE” of X). This is again an abstraction of the actual stere

this time abstracting théynamic gectsof methods wrt. allocation, on the level

of store specifications. Note that the argument stdres needed in general to
determine the resulting extension of the specification, since allocation behaviour
may depend on the actual values of fields, for example.

We use the domaiRSF of choice functions explicitly in the interpretation
of store specifications below. This has tHEeet of constraining the existential
guantifier to workuniformly on the elements of increasing chains, hence pre-
cluding the counter-example to admissibility of the previous subsection.

Definition 4.7 (Store Predicate). Let ® = P(St x RSF)Recw=(SPe¢ denote the
collection of families of subsets 8f x RSF, indexed by store specifications. We
define a functiona®d : P°P x P — P as follows.

(0,¢) € O(Y, X)s 1&
(1) dom(X) = dom(¢) andVI € dom(X). dom(m,(X.1)) = dom(¢.l), and
(2) VI € dom(Z) whereZ.| = [f: A'=>", mj: ¢(y;) BT =M :
(F) ol.fi € ||Allls, forall L < i < n, and
VI > X V(0" ¢') € Yy if al.mj(o’) = (v,0")]
theng.l.mj(o’,¢",2") = (X7, ¢") s.t.X” > ¥’ and
(M) (mvai(), v, vai()) € [T;[1/y;]l
(M2) (0, ¢") € Xz
(M3) v e [Bi[1/yjlly,
forall1<j<m
We writeo € [X] if there is som&@ € RSF s.t.(o, ¢) € fix(D)s.
Lemma 4.8. Functional®, defined in Def. 4.7, does have a unique fixed point.

Proof. Firstly, one shows thab is monotonic and maps admissible predicates to
admissible predicates, in the sense that fokadihd,
VX € Rec oc(Speg. Xz € St x RSF admissible=
VX € Rec oc(Speg. @(Y, X)s C St x RSF admissible

Indeed, if o, #o) C (01, 1) C ... is a chain ind(Y, X)g, thenocgC oy C ... iIn
Standgg C ¢1 C ... in RSF. Leto = Ljo and¢ = Li; (SO (0, ¢) = Ui(oi, éi)),
we show @, ¢) € @(Y, X)z under the assumption thXt. is admissible for all
Y’ € Recoc.(Spes.

Clearly condition (1) of Definition 4.7 is satisfied. As for (2), suppbse
dom(Z) with X.I = [fi: A'=>", mj: ¢(y;)B;::T;!=*M]. Since, for all 1< i < n,

oolfizolfi=---=clf

17

we obtaino.Lf; € ||Ailly by assumptiond;, ¢;) € O(Y, X)z. Next, suppose’ >
Z, (07,¢") € Yy ando.l.mj(c’) = (v,0”) |l. By definition ofo as| | ok and
continuity, we must have.l.mj(o”) = (v, o) | for sufficiently largek, and

(v, ") = Lokl mj(o’) = LV, o
By assumption, for all siciently largek, ¢x.l.mj(c”,¢',Z") = (X, ¢y) with
) > ¥ and

o (mval(0”), Vs vai(oy)) € [T;[1/y;ll,
o (0, ¢y) € Xz, and

* Ve |Bi[|/yj]”z’k'

Sincenval(oy) = mva(c”’), (M1) follows. The discrete order o8pecentails
=X, = .., hence,¢(o-’,¢’_,2’) = |__|(Z'k’,¢'k’ = (Z”,_ukqbf(’_) with _2"_5
I =X/, =...,and clearl(M3) is satisfied. By assumptios- is admissible

therefore also conditiofM2) holds as required, i.e.g(",¢"”) = U(oy,¢y) €
XE”-

Next, define for all admissiblX, X’ € £ ande = (e, &) € [St — St] x
[RSF — RSF]:

e: X c X' iff YZ € Rec o(Speg Yo € St ¥¢ € RSF.
(0,9) € Xz = (e1(0), €2(¢)) € X5

suchthae: X C X'’ states tha¢ maps pairs of stores and choice functions that are
in Xy to pairs of stores and choice functions that are in corresponding component
X5 of X". Let Fsore be the locally continuous, mixed-variant functor associated
with the domain equations (1), for whidbsrSt, St) = St, and consider the
locally continuous functoFsigse(R, S) : (PreDom x PreDom)°P x PreDom x
PreDom — PreDom x PreDom

Fstrsr(R S) = (Fstordm1(R), 71(S)),

Recioc(Recy(mi(R) X m2(R) X Spec— Specx m2(S))))

for which (St, RSF) is the minimal invariant. In the following, we writés; for

the functormy o Fsirse @and Frsr for m; o Fsirse. According to [11] it only
remains to be shown that

e:XcX Ae:YcY = Fgrsr(ee): @Y, X) c oY, X) @)

for all X,Y,X’,Y’ € £ ande C idsirse Which follows from a similar line of
reasoning as in [16]: Suppose= (e, &) C idsirsk such that

e:XcX ande:Y' cY (5)
for someX, Y, X', Y’ € P, and assumeo(¢) € (Y, X)s. We must show that

18

Fsirsr(e €)(o, ¢) € (Y’, X")s which proves {). Recall that
Fsi(e €)(o,¢).l.f = olLf
Fsi(e €)(o, ¢).1.m(c”) = (idva x €1)(c-.m(ex(c”))) (6)
Frsr(e €)(0, ¢).l.m(c”, ¢",X) = (idspecX &)(¢.]. m(€1(0”), €2(¢"), X))
forall f € F andm € M. In particular, condition (1) of Definition 4.7 is satisfied

for Fsirsr(€ €)(c, ¢). . .
To show (2) letl € dom(Z), and=.| = [fi: A", mj:g(y;)Bj=T; =M.
From (o, ¢) € @(Y, X)z and (6) we immediately obtain

(F) Fsi(ee)o,¢).Lfi € 1Al

Now suppos&’ > Z, ¢" € RSF ando’ € St with (07, ¢") € Yy, and such that
Fsi(e €)(o, ¢).1.mj(c”) l. By (6) we thus know that, for all ¥ j <m,

Fsi(e €)(o, ¢).l.mj(c’) = (v, e1(c”)) where
(v, ") = o.l.mj(ex(c”))
for somev € Val ando” € St. By (5), assumptiond’,¢’) € Y;, shows

e, ¢) = (e1(0”), &2(¢")) € Yy . Together with the assumptionr,(@) € O(Y, X)
this entails

Frsr(e €)(¢).1.mj(c”", ¢'. L) = (£”, &x(¢")) where
(X", ¢") = pl.mj(es(c”), &x(¢'),X")
for ¢” € RSF andX” > ¥’ s.t.

ML) (rva(ea(o”). vomva(™) € [TI/YT]
(M2) (0”,¢") € X
M3) - ve Bl

Sincee C idsirse We knowei(o”’) C o”, and in particularryy(ei(c”’)) =
mval(o”’). Similarly for ¢’. Hence,(M1') entails fryq (o), V, rva(er(c”))) €
[TIl/y;ll, i.e., (M1) holds. Finally, assumption (5) and conditi(i2’) above
give (e1(c”"), e2(¢”)) € X, which showgM2), and we have proved).

Note that it is necessary that the predicates denoting transition specifications
are upward-closed in the pre-execution store and downward-closed in the post-
execution store. This holds in Abadi-Leino logic as transition specifications are
only defined on the flat part of the store; if they referred to the method gart, (
could not necessarily be showh. O

8Unless one finds an appropriate way to restrict the reference to methods in transitions specifications
(see [16]).

19

5 Soundness

5.1 Preliminaries

Recall from the previous section that the semantics of store specifications is de-
fined in terms of the semantig¢ig\||y for result specificationg\ that does not
mentionSt at all. The following key lemma establishes the relation between
store specifications and object specification®\] as defined in Section 3.3:

Lemma 5.1. For all object specifications A, store specificatiahstoreso, and
locations |, ifo- € [£] and | € dom(E) such that X.I <: Athen(l, o) € [A].

Proof. By induction on the structure d. BecauseA is an object specification
it is necessarily of the form

A= [fi: A myg(y;) By T =M
We have to show that,() € [+ A], i.e., that
e (olfi,c) e[+ A]foralll <i<nand

o if ol.mj(o) = (v, o) then §, o) € [ly; + Bil(y;j = 1) and @va o, V, tva 07) €
[yjr Til(yj—foralll<j<m

From the subtyping relation arill <: A we find
0 = [AP myg(y;) BT =™

wherey; + B} <: Bj andy; o T — Tj.

For the first part, by Definition 4.fF) ando € [X] we haveo.l.f; € ||Alls.
If A is Boolthen from||Bool|s; = BVal, hence, §.1.fi, o) € [+ Bool]. Otherwise
A is an object specification and the definition||éf||s implies

FX(olf) < A
again by Definition 4.7F). Hence by induction hypothesis we obtainl(f;, o) €
[+ A as required.
For the second part, suppose thdtm;(c) = (v,c”’). From Definition 4.7
part(M2) and(M3), and the assumptian € [X], we findv | B}[I/yj]”y’ and

o € [X"] for someX” > X. Therefore in the case wheBs is Bool, v € BVal
and

(v,0”) e [+ Bool] = [y; + Booll(y; — 1)
Next, if B; is an object specification then by definitionHB’j[I /yj]HZN
FX"v < Bi[l/yj]
By induction hypothesis (applied 13<j[|/yj], ¥, o’ andv) this yields ¢, o) €

20

[+ B;ll/yill- Thus,
(v.a”) € [+ Bill/yll = Ly; + Bil(y; = 1) Lemma 4.2
Clyi+Bil(yj—1) Lemma 3.3

as required.
Finally, by Definition 4.7(M1) we obtain

(vai o, Vo var o) € [F Ti[l/yll = Ly F Til(y; = 1) Lemma4.2
ClyjrTil(y; — 1) soundness afs
This concludes the proof. O
We can now define the semantics of judgements of Abadi-Leino logic and
prove the key lemma.

Definition 5.2 (Validity). T' e a: A:: T if and only if for all store specifications
Y € Recio(Speg, for all p € ||y and all o € [X], if [a]poc = (v,0”) then
(v,0”) € [[TT + Alp and (mva (o), V, vai(c”)) € [[T] + T]p.

Before proving the main technical result in Lemma 5.4 we state the following
fact about the transition relation that appears in the let rule:

Lemma 5.3. Supposérya (o), v, mval(07)) € [X+ T']p and(mva (o), V', wva(c”)) €
[X, x+ T"]p[x:=V]. Then, ifx+ T and

T'[selint(-, -)/selpos-, -), allocin(-) /allocpes(-), X/result]
AT"[selint(-, ')/Selpre(',) allocint(')/allocpre(')] =T

then(ava(o), V', tvai(c”)) € [X+ Tlp.
Proof. Consider an extended signature of transition relations with predicates

selint(, -) andallocin(-). We extend the interpretation of transition relations in
the natural way,

[Xe,.... % F T]p : P(Stya X Val X Stya X Stya)

where the second store argument is used to intespigt(-, -) andallocin(:).
By assumption and using the fact that neitiémor T” contains the new
predicates, we also have

(mval 0, V, tval 07, v 7)) € [X, X - T p[x := V]
and

(rva1 07,V v 07, ova 7)) € [X, X F T] p[X = V]

21

Thus,
(mval o,V tva) 07, v 077) €
[% x+ T'[selin(-, -)/Selpos(:, -), allocin(-)/allocpoes(-), X/result]] p[x := V]
since there are no occurrencesselys(, -), allocpoes(-) andresult, and
(mvai o,V val 07 v 077) €
[X, x+ T"[selint(-, -)/selpre(:, -), allocint(-) /allocpre()]1 o[X := V]

since there are no occurrencesekye(-, -) andallocye(-). From first-order prov-
ability, we obtain

(mva1 o,V vl 0 v 077) € [X, X F T]p[X := V]

and the result follows sinc& does not depend oxand the new predicates, by
XFT.]

5.2 The Invariance Lemma

In this subsection we state and prove the main lemma of the soundness proof.
Intuitively, it shows that store specificatioBsare “invariant” under proved pro-
grams,

ce[Zand[alpo = (v,o) = 3T >Tsto e[¥] @)

Note that the prograra will in general allocate further objects, so the resulting
store only satisfies an extension of the original store specification. The precise
conditions of when (7) holds are given in the statement of the following lemma,
and take the choice functiogse RSF introduced in Sect. 4 into account. We
write SF for the domain of “individual” choice functions,

SF =[St x RSF x Spec— Specx RSF]
for whichRSF = Recoc(Rec(SF)).
Lemma 5.4. Suppose
HL) Tra:A:T
(H2) X € Rec oc(Speg is a store specification
(H3) p €llllls

Then there exist$ € [St x RSF x Spec— Specx RSF] s.t. for all¥’ > X and
for all (o7, ¢') € fix(®)y, if [a] oo’ = (v,0”’) | then the following holds:

(S1) there exists” > X' and¢” € RSFs.t.¢(0”, ¢/.X') = (X", ¢")
(S2) (o, ¢") € fix(®)s
(S3) ve llAlp/Tlls

22

(S4) (mva(’), v, mvai(0”)) € [[T] + Tlp
Proof. The proof is by induction on the derivationbf a: A:: T.

e Lemma 4.5 is applied in the cases (let) and (object construction), where an
extended specification context is used in the induction hypothesis.

¢ Invariance of subspecifications in field specifications is needed in the case
for (field update).

¢ In the cases where the store changes, i.e., (object construction) and (field
update), we must show explicitly that the resulting store satisfies the store
specification, according to Definition 4.7.

We consider cases, depending on the last rule of applied in the derivation of the
judgement' +a:A:T.

e Subsumption
Suppose thal’ + a : A :: T has been obtained by an application of the
subsumption rule, and that

(H2) X is a store specification
(H3) p €lllllg

We have to show that theredgss SF s.t. wheneveE’ > %, (07, ¢’) € fix(®)y

and [a]po’ = (v, o) then(S1)}(S4)hold.

Recall the subsumption rule,
[TIFA <A TraA:=T [IMrFA [T T T
I'raA:T
so we must havé + a : A’ :: T’ for some specificatio® and transition

relationT’ with+,, T > Tand [+ A’ < A
By (IH) there existsp € SF s.t. for allY’ > %, (07, ¢") € fix(®)s with

[alpo” = (v.0”),
(S1) there exist&” > ¥/, ¢"” € RSF s.t.¢p(0”,¢',2) = (X7, ¢")
(S2) (o, ¢") € fix(P)g~
(83) ve Ao/l
(S4) (mva(0), Vs wvai(o)) € [[TT F T']p

Because, T’ — T we know [[' + T’]p € [T + T]p, and therefor¢S4’)
implies

(mvai(0), Vs mvai(o”)) € [T+ T]p (S9
It remains to show

Ve IA[p/T]lly (S3

23

Note that by the subtyping rules, = Boolif and only if A’ = Bool. In this
case(S3)follows directly from(S3’). In the case wherd'’ is an object speci-
fication, assumptiod] + A’ <: Aand Lemma 4.2 entail A'[p/T] <: Alp/T].
Transitivity of <: and(S3’)then provgS3) by the definition of| A'[o/T]|ls .

o Var
Supposd” + a: A :: T has been derived by an application of the (Var) rule.
Further, assume

(H2) X is a store specification
(H3) pllllx
Define the (partial continuous) mayps SF by
P, ¢".2) = (. ¢)
Now suppos&’ > X, (o7, ¢’) € fix(®)y and [a]po’ = (v, o) Then, by
the variable rule, we find thatis necessarily a variable Further we obtain

XAInT, T = Tes(X), and the semantics giveg ') = [a] po”’ = (0(X), o),
ie.,

v =p(X) ando” = o’
By definition of¢ above,
(S1) ¢(0”.¢". %) = (X', ¢")
(S2) (7, ¢) € fix(D)y, by o’ = o and assumptioro(, ¢’) € fix(D)s
(83) ve [|Alp/T]lly, by v = p(X) and(H3)

(S4) (rvai(o”), v, mvai(c”)) € [[T] F Tres(X)]p, by the definition of [[] + T]
in Tab. 4, andr” = ¢’ andv = p(X).

as required.

e Const
Similar to the previous case: Suppdstl): '+ a: A:: T has been derived
by an application of the rule fotrue, i.e.,ais true, Ais BoolandT is
Tres(true). Now assume

(H2) X is a store specification
(H3) p €llllly
and definep € SF by
P(o’.¢".X) = (. ¢)
We must show(S1}(S4) So letY > X, (07,¢') € fix(®)y and suppose

[alpo’ = (v,0”). By definition of the denotational semantics,) =
[alpo’ = (true, o). Hence, by definition o,

24

(S1) ¢(o”,¢", %) = (X', ¢)

(82) (67, ¢) = (07, ¢') € fix(D)x

(S3) v=truee BVal = ||Al|5

(S4) (rvai(o”), true, mvai (o)) € [['] F Tres(true)] o by definition
as required. The case whexés false is analoguous.

¢ Conditional
By a case distinction, depending on whether the value of the guartiue
or false

o Let
SupposdH1)T + a: A:: T has been derived by an application of the (Let)
rule. Henceais let x = a; in a,. Assume that
(H2) X is a store specification, and
(H3) p €llllly
Now recall the rule for this case,
I'rap;:AiTy xArraAzT, [ITFA [T]FT
o T1[selint(",-)/Selpos’, -) allocint(-)/allocpes(-), X/result]
A To[selint(-, ')/Selpre(',) aHOCint(')/a”OCpre(')] -T
I'tlet x=a inax:A::T

By the premiss of this rule we must have
HIY Tras: AL Ty
(H1) I''xAiray: AT,

By induction hypothesis applied (611’) there is¢; € SF s.t. for allY” > X,
(o7, ¢") € fix(®)s with [a1] oo’ = (V, &), the conclusions of the lemma hold:

(S1') there existE > ¥’ and$ € RSF s.t.¢(c”, ¢/, %) = (2, $)
(S2) (6, 9) € fix(@)z
(S3) ¥ e |Aufo/T]llz
(S4) (mvai(0”), ¥, mva(5)) € [[T] + Talp
In particular, by(S3’)and Lemma 4.5,
plx:=¥] € ||, x:Aqlls

Therefore, by inductign hypothesis appliedtl”) there isg; € SF s.t.
for all ¥’ > X and all ¢, ¢) € fix(®); with [az]p[x := V]o = (v,d”), the
following holds.

25

(S1") there existE” > £ and¢” € RSF s.t.¢¢(5, $,2) = (X, ¢”)
(S2") (0, ¢") € fix(D)s
(83") vellAlp[x := V]/T, x:Ad]lls
(84") (val(0), Vs mvai(o”)) € [[T, x:Ad] F T2] p
Now defineg € SF for all o, ¢’ andX’ by
¢o(6,,%) if [aa] po’ = (¥, 5) and
Plo’, 4", %) = ¢1(c”, ¢, Z) = (X, 9)

undefined otherwise

which is continuous due to the flathessval.
We show that the conclusion of the lemma holds: X’et X, let (o7, ¢') €
fix(®)y and supposed]po’ = (v, o). From the definition of the semantics,

(v,a”) =let (V,5) =[ai]pc’ in [ax]p[x:=V]o
which shows
- [adpo” = (V. 5)
= [a2lplx:= Vo = (v,0”)
From the definition ofs, and the considerations above, it follows that

(S1) there isY” > £ » ¥’ s.t.¢(c”.¢'. %) = ¢4(6.4.%) = (Z".¢"), where
¢1(0—,5 ¢/» Z,) = (Z» ¢)1 by (Sl,) and(Sl")

(S2) (o, ¢”) € fix(®)z~, by (S2’) and(S2")
(C3) ve |lAlp[x :=V]/T, x:Aq]lls, by (S3") and(S3”)
(C4) (vai(0”), V. mvai(0)) € [[T] + Ta]p, by (S4')
(C4") (mval(G), V. vai(0™)) € [[T, X:A] + T2] p[x := V], by (S47)
Since [] + A, i.e.,xis not free inA, we have
Alp[x = V]/(I', x:A1)] = Alp/T] (8)
Moreover,(C4), (C4"), Lemma 5.3 and
Fro T1[S€lint(-,) /S€lpos(-, -), @llocint () /allocpoesq-), X/result]
A To[selin(:, -)/s€lpre(:,), allocini(-) /allocpre()] — T
proves
(va(0”), v, va(c”)) € [T+ Tlp)
We therefore obtain
(S3) ve [IA[p/T]lly, by (C3)and (8)

26

(S4) (mvai(0’), V. mvai(0)) € [T + T]p, by (9)
as required.

e Object
SupposdgH1): ' + a: A:: T has been derived by an application of rule the
(object construction) rule. Necessardy= [fi = /=", m; = ¢(y;)b;’=>™].
Suppose that

(H2) X is a store specification
(H3) p €y
We recall the object introduction rule,
A=[fi: AT misg(y;) BTy =M
T F XA 5 Tes(X)™" Tyj:Ar bj:B;T;=t-m
Uk f = %" my = ¢(y)b M Al Toni(fy = Xa . .. fn = Xn)

from which we see thah is [fi:A;, mj:B;::Tj], that T is Tep(fr = X¢...fa =
Xn) and that

(H1) Tk x: A = Tes()forl<i<n
(H1") Ty;;Arbj:Bj:T;forl<j<m

We have to show that there dse SF s.t. for allY’ > %, (07, ¢’) € fix(®)y
with [a] oo’ = (v, o), (S1}(S4)hold. . .
From(H3) and Lemma 4.5 we know that for &all> £ andly ¢ dom(Z),

ply; =lo] € [T, y;:Alls a

Hence by induction hypothesis qi1”), there is¢|jo € SFforall 1 <
j < ms.t forallzy > (& lo:Alp/IY), for all (o1, ¢1) € fiX(®)s 5. p/m With
[bilely; := lo]lo1 = (v2,02) |, we obtain the conclusion§&1)(S4) of the
lemma, i.e.,

(S1') there exist&, > %, andg, € RSF S.tg]. (o1, 61, 31) = (Z2. ¢2)
(S2') (o2, ¢2) € fix(D)s,
(S3) v € |Bilely; := lol/Ty;:Allly,
(S4) (mvai(o1), V2, mvai(02)) € [[T, i Al + Tl plyj := lo]
We haveflp = {mj = ¢|jol}j:1~--m[} € RSF, therefore we can definke SF by
(&, 10:Alp/T]), ¢ + flo = Im; =] I1)

¢(o’, ¢, 2) = if ¥ > X and [a]po’ = (lp,0”) (10)
undefined otherwise

27

We show tha{S1){S4)hold. LetY’ > %, (o7, ¢") € fix(®); and suppose
[alpo’ = (v,o”). By definition of the semantics, and the fact tiiatl’)
entailsp(x) | for 1 <i < n, for

[alpo’ = (v,o”) € Loc x St
we obtainv = Iy wherelg ¢ dom(o) (and sdg ¢ dom(X)) and
o = +1lo = Ifi = p(x). m; = A [billply; :=lololh (12)
We obtain that there exists’ € RSF s.t.
(S1) ¢(o7, ¢, %) = (X', lo:Alp/T]), ¢”), by construction o in equation (10)
(S3) v=lo € lIAlp/T]lly: 1g:ap/ry» PY definition of]l-||

(S4) (mvai(c), Vs rvai(”)) € [T + Top(fs = X1...fa = Xn)]p, Which is eas-
ily checked from the definition of o(. . .), the semantics in Tab. 4 and
equation (11).

All that remains to be shown 652} (0, ¢"”) € fix(®)s,, whereX” is
¥, lo:Alp/T]. By the construction o$ in (10),
¢)// - ¢/+{||0:{]mj:¢ljol}ﬂ
and we showS2)according to Definition 4.7:
As for (1), by assumption the domains gfandX’ agree, and by con-

struction ofg, alsodom(¢”.lg) = {m1,...,mn} = dom(m2(X”.1p)). For (2),
supposé € dom(X”"). We distinguish two cases:

— | #1p: Then
270 =20 =[G AP ngs(y))B) T
(F) Forall1<i < p,o”.l.g; = ¢’ l.g;, and so fromd’, ¢’) € fix(®)y
Ally < lIAlly.
(M) Letl < j <q,letE > %, let (o1,¢1) € fix(®)s, and suppose

o”.lnjlcy) = (v2,02). Sinces”.l.nj = ¢’.l.nj andZ; > ¥, the
assumptiond”’, ¢’) € fix(®)sx and the construction of”’ yield

x ¢".1.nj(01, 01, 1) = ¢".1.nj(01, 61, Z1) = (X2, ¢2)
(072, ¢2) € fiX(D)s,
By,

* (vai(oa), Vo, mvai(072)) € [Ti[1/yjll

, C

o”.lg € l

*V2€|

—|=|0:

28

(F) By assumptior(H1") andp € |[I'|sx we know that there is A/’ <: A
forall1<i<ns.tx:A’inT. Hence,
o lofi = p(x) € ||A||; < IAlls € 1Al
(M) Let1l< j<m. Suppos&; > X", let (o1, ¢1) € fix(D)g, and suppose
0'".'0.”]](0’1) = (V2,0'2). SinCGO'".|o.mj = |[bj]|P[Yj = |o]0’1 and
X1 = Y/, the assumptiond;, ¢1) € fix(®@)s and the construction of
¢” giveX, andg, s.t.
¢ lo.mj(ors, ¢1, %) = ¢|jo(0'1, $1,21) = (Z2, ¢2), by (S1')
* (02, ¢2) € fix(D)s,, by (S52')

+ V2 € ||Bilely; := lol/T,yi:Allly, = [|Bilo/Tllo/yillly,. by (S3))
and the substitution lemma, Lemma 4.2

* (nval(o1), Vo, mvai(072)) € [T Yj:A] F Ti]ply; := lo] which equals
[Tilo/Tllo/yill, by (S4’) and the substitution lemma

Thus we have shownr{’, ¢”) € fix(®)y, i.e.,(S2)holds.

¢ Method Invocation
Supposd'+ a: A:: T is derived by an application of the method invocation
rule:

'k X[Mig(WA T] Tres(X)
T - xm:A[x/y]: T [x/y]
Necessarilya is of the formx.m and there aré&/ andT’ s.t. A = A’[x/y] and
T = T’[x/y]. So suppose

(H1) Tra: A[x/y] : T'[x/Y]
(H2) X is a store specification
(H3) p € llllly
Define¢ € SF using “self-application” of the argument,
¢(o’, ¢, %) = ¢ .p(x).m(c”, ¢, %) (12)

Now letY > X, (07, ¢’) € fix(®)y and supposed]po’ = o’ .p(X).m(c”) =
(v, o) terminates. We show th&1)(S4)hold.
By the hypothesis of the method invocation rule,

'k x[m:g(Y)A =T] Tres(X) (H1)

Since this impliesx:B € T forsome [] + B <: [m : ¢(Y)A" = T’], by
assumptior{H3) this entails

FE(e(X) <t [m: (YA T'][p/T]

29

i.e., there aréy, A”, Bj andTj, T such that
FZ.o(X) = [fi:A,mjis(y;)Bj 2 T, mig(Y)A”:T"]
where
y+ A" < Alp/TTand +, T — T'[p/I] (13)

Now assumptiond’, ¢’) € fix(®)y, with equation (12) implies that there
arey”, ¢’ s.t.

(S1) ¢(0”, ¢, %) = ¢".(p(X)).m(c”, ¢,) = (X, ¢")
(82) (07, ¢") € fix(®)s~
(S37) ve lIA"[p(X)/Y]llz
(S4) (wvai(0”), V. vai(0™)) € [+ T [p(X)/Y]]

By transitivity of <:, equation (13), Lemma 4.2 ari§3’)
Ao/l

SinceA'[p/T, p(X)/y] = A'[x/Y][p/T] we also have
(83) ve IATx/YIlp/TTllzr = IALe/T]lls

Similarly, by (13) andS4"),

(mva(@’), V. mva(e™)) € [T [p()/YI1 < [T [o/Tllp(x)/Y]]
= [T+ Tx/¥llp (S4

ve|

which was to show.

e Field Selection
Similar. ¢ can be chosen ago”, ¢',Y') = (¢',Y).

¢ Field Update
Suppose

(H1) T+ a:A::T has been derived by an application of the (field update) rule,
(H2) X is a store specification
(H3) p elllllx
Defineg € SF by ¢(c”,¢’, %) = (X', ¢'). LetY = I, (o7, ¢') € fix(®)y and
suppose §] oo’ = (v, o) terminates. Recall the rule for field update,

A= [fi . Aji:l"'n, mj: g‘(yj)Bj IZTjj:l'“m]
I XATes(X) TFYACTes(Y)
T+ Xfc= YA Typa (X fi, Y)

(A<k<n

30

In particular,ais of the formx.fi :=y andT is Typa(X, fk, y). From the seman-
tics of [a] oo, this meany = p(X) € Loc and

o = o'[vi= o' M= pY)] (14)

We show tha{S1}(S4)hold.
By (H3), o(X) € IIA[p/T]lls € lIAlp/T]lly,- Then by construction o,
and (14),

(S1) ¢(0”.¢". %) = (¥, ¢')
(S3) v=p(x) € IAlp/T]Il
(S4) (vai(c), vV, mvai(c”)) € [[T] + T]p, from the semantics given in Tab. 4

It remains to showWS2) (o, ¢’) € fix(D)s.
By assumptiond’, ¢") € fix(®)s:, condition (1) of Definition 4.7 is satis-
fied. As for condition (2), supposes dom(X’) s.t.
0 = [gi AP nge(y) B s T
(F) We distinguish two cases:

— Casel = p(x) andg; = fx. Then, by (14)¢”.1.g; = p(y). By (H3),
p(X) € [|Alp/Tlls € lALp/T]lls,, Which entails

FEL < Alp/TT]

and in particular, by the definition of the subspecification relation,
A, = Adp/T]. Note thatinvariance of subspecificatiom the field
components is needed to conclude this. Now agai(iH3),

py) € IALo/TTlls < 1AL/l = [|ALl,,

A
— Casel # p(x) org; # fx. Theno” l.g; = o’ .l.g;, by (14). Hence, by
assumptiond’, ¢') € fix(®)y:, we haver” 1.g; € || A, -

(M) LetX” > X, let (o1, ¢1) € fix(®)s» and suppose”.l.nj(o1) = (Vo, 02).
Then, by assumptiorr(, ¢’) € fix(®)y and the fact that”.l.nj = o”.l.n;
by (14), we obtain thap'.l.nj(o1, $1,X") = (X2, ¢2) .. > X" and

(M1) (mvai(ora), Vo, mvai(o2)) € [Ti[1/yill
(M2) (02, ¢2) € fix(®)s,
(M3) v e || B0yl

as required.

Henceo”.l.g; € |||, as required.

which concludes the proof. O

31

5.3 Soundness Theorem

With Lemma 5.1 and Lemma 5.4, proved in Subsections 5.1 and 5.2, it is now
easy to establish our main result:

Theorem 5.5 (Soundness)lf '+ a: A:: Tthen[ra: A:T.

Proof. Supposd' +a: A:: T, and letX € Rec .(Spe¢ be a store specification
and suppose € Env s.t.p € |Ils. Leto € [X], so by definition there exists
¢ € RSF s.t. (0, ¢) € fix(?)z. Next suppose

[alpo = (v.c”)

By Lemma 5.4 there exists, € RSF s.t.¢(0, ¢,X) = (X', ¢") whereX’ > X and
(07, ¢) € fix(®)y, i.e.,0” € [¥] follows. Moreover,

e ve ||Alp/T]ly, and

o (tval(0). V. 7rvai(0”)) € [[T] + Tlp

Now in the case wheraA is Boolwe obtain ¢, o) € [[T] + A]p from||Bool||y, =
BVal. OtherwiseA is an object specification, and we must hau.v <: A[p/I’]
by definition of||Alo/T]|ls,. Hence, by Lemma 5.1,

(v.o’) e [Alp/T]] = [[T]+ Alp

where the last equality is by the the substitution lemma, Lemma 4.2. O

In particular, ifr a: A T and [a]o = (v,o”) then {,0’) € [A] and so
v # error by Lemma 3.2.

6 Recursive Specifications

In this section we investigate an extension of the logic with recursive specifica-
tions which are important when reasoning about implementations of datatypes
such as lists and trees in object-oriented languages. For instance, referring back
to the example of the account manager in Fig. Buifager Should include a list
of accounts, we would need a recursive specificgti¥n[head : Axccount, tail :
X].

Below we discuss in more detail how recursive specifications can be dealt
with in the logic.

Svntax anD Proor RuLes To accommodate reasoning about elements of recur-
sive types such as lists of accounts above, we introduce recursive specifications
u(X)A. To prevent meaningless specifications suchu@§X we only allow
recursion through object specifications, thereby enforcing “formal contractive-

32

ness”.

AB:=T | Bool | [fii A" myio(yp)BinTi = | u(X)A
AB:=A]| X

whereX ranges over an infinite s&y/\Var of specification variablesX is bound
in u(X)A, and as usual we identify specifications up to the names of bound vari-
ables.

In addition to specification contexiswe introduce contexta that contain
specification variables with an upper bound<: A, whereA is either another
variable orT. In the rules of the logic we replader ... by ;A ..., and the
definitions of well-formed specifications and well-formed specification contexts
are extended, similar to the case of recursive types [1].

I’A+Y X¢T I'Arok X¢TIT
A, X< Yok A, X<: TrOK

and
A X< AJA +ok HAX<TEA A+ ok
AX<AANEX ;A F u(X)A ART
and we often write\, X for A, X <: T.
Subspecifications for recursive specifications are obtained by the “usual” re-
cursive subtyping rule [3], andt is the greatest specification,
AY< T,X<:YFA<'B IAFA
AR uXA<: uY.B AFA< T
As will be seen from the semantics below, in our model a recursive specification
and its unfolding are not just isomorphic but equal, i.eXJA] = [A[(uX-A)/X]].
Because of this, we do not need to introdfmlel andunfoldterms: We can deal
with (un)folding of recursive specifications through the subsumption rule once
we add the following subspecifications,
AR uXA unfold AR uXA
A A[(uXA)/X] < uX.A A F uX A< Al(uXA)/X]
We will prove their soundness below.

fold

6.1 Existence of Store Specifications

Next, we adapt our notion of store specification to recursive specifications. The
existence proof is very similar to the one given in Section 4, however, for com-
pleteness we spell it out in detail below.

Definition 6.1. A store specification is a recoi@l € Rec| ,.(Spe¢ such that for
each le dom(%),

== OO AT myse(y) By Tt

33

is a closed (recursive) object specification.

Note that because of the (Fold) And (Unfold) rules of recursive types, the
requirement that only object specifications witi-bBinder in head position occur
in ¥ is no real restriction. The definition of the functionlof Definition 4.7
remains virtually the same apart from an unfolding of the recursive specification
in the cases for field and method result specifications:

Definition 6.2. Let® = P(St x RSF)Rec:(SPe¢ denote the collection of families
of subsets 06t x RSF, indexed by store specifications (in the sense of Defini-
tion 6.1). We define a functiond : #°° x # — P as follows.

(O-’ ¢) € CD(R S)Z e
(1) dom(X) = dom(¢) andVI € dom(X). dom(ro(Z.1)) = dom(g.l), and
(2) VI € dom(Z) whereZ.| = u(X)[f:: A'=>", mj: ¢(y;)Bj:T; =M :
(F) o.l.f € |IA[Z.1/X]|lg, forall 1 <i <n, and
VX' > ZV(o’,¢') € Ry. if ol.mj(o”’) = (v,0")]
theng.l.mj(o’,¢’.2') = (£”,¢") s.t.2” » ¥’ and
(M1) (zvai(o), v, mvai(o”)) € [T;[1/y;11
(M2) (0, ¢") € Sz~
(M3) v e || B[/X0y,
forall1<j<m

The proof of Lemma 4.8 can be easily adapted to show that this functional
also has a unique fixed point, and as before we write [X] if there is some
¢ € RSF s.t. [0, ¢) € fix(D)s.

Lemma 6.3. Functional®, defined in Def. 6.2 has a unique fixpoin{d.

6.2 Semantics of Recursive Specifications

Definition 6.4. We extend the interpretation of specifications to the new cases,
wheren maps type variables to admissible subsetgabix St:

[T;A+r T]pn = Val x St
[T A+ X]pn = n(X)
[T A+ u(X)Alpn = gfo(Ax [T A, X< T = Alpn[X = x])

We writen £ A if, for all X <: Yin A, n(X) € n(Y).
We briefly observe the following facts, most of which are standard.

e By Tarski's Fixed Point Theorem, every monotonic mp L — L on a
complete latticel(, <) has a greatest fixed-poigfp(f) which is in fact the
greatespostfixed point, i.e. whenevex < f(x) thenx < gfp(f).

e If f: L — Ladditionally preserves meets of decreasing chgjnsx; > ...,

34

i.e., f(A;i x) = A;i T(X), the greatest fixed point can be obtained as

ofp(f) = /\(f"(T) IneN) (15)
whereT is the greatest element &f Writing o = A{f"(T) | n € N} itis
immediate thatf(a) = A{f™(T) | n € N} = « is a fixed point off, and
by induction onn, if x is any (post-) fixed point of thenx < f"(T) for all
n e N, hencer > x which showsy = gfp(f).

For a complete latticel(<) and any sef, the set of map# — L forms a
complete lattice when ordered pointwise,

fi< fy:e forallae A fi(a) < fo(a)
with the meet of f; | i € 1} given byaa. A; fi(a).

The greatest fixed point operator is monotonic: Supgogeare monotonic
maps in the latticé — L with f < g. Then, by the pointwise ordering,

gfp(f) = f(gfp(f)) < g(gfp(f))
which showsyfp(f) is a post-fixed point of.. This entailsyfp(f) < gfp(g) as
the latter is the greatest post-fixed poingof

If fo> fy >... andgy > g; > ... are decreasing chains of mapslin- L
s.t. everyf; andg; is monotonic and preserves meets of descending chains
then
Ai fio Ajgj = An(fno) (16)
This can be seen by observipg fio A;gj = Ai; fi o gj and the fact that for
everyi, j € N there isn € N such thatf, > f, andg; > g,.
Equation (16) implies{; fi)" = A; f" for all n € N, and we obtain

gfp(Ai fi) = An(Ai T)"(T) = An Ai £7(T) = Ai gfp(fi) 17)
i.e., in this case the greatest fixed point operator also preserves meets of
descending chains.

The set of admissible subsets\af x St, Adm(Val x St), is closed under arbi-

trary intersections, hence forms a complete lattice when ordered by set inclusion.
Specification environments : TyVar —» Adm(Val x St) with the pointwise or-
dering form a complete lattice.

In the following, we show that the interpretation of specifications given above

is well-defined. More specifically,

Lemma 6.5 (Well-definedness).

Monortonicrty. [T'; A + A] is monotonic:

m<n2 = [[ArAlpn € [T;A+ Alpn2

35

Preservation oF Meets. [T; A + A] preserves meets of descending chains:

no=nm=... = [[AFAlp(Aim) = NilT; A - Alpni

In particular, this lemma shows that the greatest fixed point used in Defini-
tion 6.4 exists, by the observations made above.

Proof. We can show both properties simultaneously by induction on the structure
of A. The only interesting case is whetds u(X)B.
To show the first partylonotonicity, note that the assumptign < n, entails

m[X =x1] < na[X=x2] forall y1 € x2 € Adm(Val x St)

So for fi : Adm(Val x St) —» Adm(Val x St) defined by
fik) =[0A X Blpni[X=x], =12

we obtain from the induction hypothesis @that f; is monotonic, preserves
meets, and; < f,. By the observations made aboggp is monotonic which
yieldsgfp(f1) € gfp(f2). Thus

[T; A+ u(X)Blpny = gfp(f1) € gfp(f2) = [T A + u(X)B] pmr2
which shows monotonicity ofI[; A + u(X)BJ.

For the second parBreservation of Meets supposeyg > 1 > If we
let f; : Adm(Val x St) — Adm(Val x St),
fily) = [T; A, X+ B]loni[X = x], ieN

then the monotonicity part of the induction hypothesis entails that dah
monotonic, andy > f; > ... is a descending chain of environments. Moreover,
since for each € N and descending chaip 2 y1 2 ... in Adm(Val x St)

AjmilX = xil = mlX = Njxil
the induction hypothesis (Preservation of Meets) shows that éguteserves
meets:

fi(Njxi) = [0 A X+ Blp(AjmilX = xi])
= I A X E Bl X = xjl) = N filx))
We obtain
[T A F Alp(Aimi) = gfp(Ax-[T5 A, X + Blp(Ai m)[X = x]) by definition
= gfp(Ax.[T; A, X+ Blp(A; 7i[X = x])) pointwise meet
=gfp(Ay. NilT; A, X+ Bloni[X=x]) by induction

= gfp(Ai fi) pointwise meet
= ofp(f) by (17)
= NilT; A+ Al pni by definition

36

which concludes the proof O

Lemma 6.6 (Substitution). Forall T'; A, X + A,T’; A + B, p andp,
[T A, X+ Alpm[X=[T; A+ Blon]) = [T; A+ A[B/X]] on

Proof. By induction onA. O

6.3 Syntactic Approximations

Recall the statement of Lemma 5.1, one of the key lemmas in the proof of the
soundness theorem:

forallo,X,land + A, if o e [E] and + Z.| <: Athen (o) e[+ A] (18)

In Section 5 this was proved by induction on the structurd.of his inductive
proof cannot be extended directly to prove a corresponding result for recursive
specifications: The recursive unfolding in cagesand(M3) of Definition 6.2
would force a similar unfolding oA in the inductive step, thus not necessarily
decreasing the size &

Instead, we consider finite approximations as in [3], where we get rid of
recursion by unfolding a finite number of times and then replacing all remaining
occurrences of recursion by. We call a specificatiomon-recursivef it does
not contain any occurrences of specifications of the fo¢X)B.

Definition 6.7 (Approximations). For each A and k N, we define X as

.A|0:T .T|k+l:T
o (XA = Alu(X)A/X] [+ o X[+l =X
° [fl Aii=1...n’ m;: S,(yj)Bj::-l-jjzl...m]|k+l — ° BOO||k+l = Bool

[+ AR my (Bl T

Note that, as in [3], well-definedness of approximation can be shown by a
well-founded induction on the lexicographic orderloand the number gf in
head position. In particular observe that our definition of recursive specifications
already ruled out troublesome cases JiX) X.

Properties of Approximations

Unfortunately, approximations|¥ as defined above are not in fact approximat-
ing A with respect to the subspecification relation: , the reason being the

37

. . F, yj F TJ j-=1,“m+q
r ,A E Aillzlanrp r ,A E A. < Ai/Iv=l4..n 1—~, yj '_ Tjr]:l..“m
R Yj; AF Bj]:m+1.,.m+q F, y]';A F Bj < B;jj:l..,m Fo Tj N TJ{J:l...m
LA R [AP myg(y)) By T m™a] < [fi AT, my g(y) BT =

TasLE 6. The generalised object subspecification rule

invariance in field specifications. For exampleAit [f; : X, f, : Bool then
p(YA? = [f1 : u(Xu(Y)A, T2 : Booll?
= [f1 - u(X)u(Y)AL T2 : Bool']
= [f1 : [f1 : u(X)u(Y)A, o : Booll},f, : Bool]
= [fy : [f1 : £(Xu(Y)AL,f, : Bool°],f, : Bool
=[fy:[fr: T,f2: T],f2 : Booll
By inspection of the rules, u(X)u(Y)A <: u(X)u(Y)A? requires to show
;A - [f: [f: u(X)u(Y)A, T, : Booll,f, : Bool] <: [fy: [fy: T,f,: T],f, : Booll

for appropriatd” andA. But subspecifications of object specifications can only
be derived for equal componeritawith the rules of Sect. 3.

Therefore we consider the more generous subspecification relation that also
allows subspecifications in field components, by replacing the rule for object
specifications with the one given in Table 6.

We write <:* for this relation, and observe thatA <: Bimplies+ A <:* B.

It is still sufficient to guarantee soundness in our case as will be shown below.
First, we obtain the following approximation lemma for tke* relation.

Lemma 6.8 (Approximation). For all specificationsl; A + A, the following
hold.

1. Forallke N, T;AF A <* AKX
2. Forallk | e N, ;A F Ak <* AKX

3. If Aiis non-recursive then there existg iN such that for all k= n, A= AK.

Proof. The proofs are by induction on the lexicographic ordekamd the num-
ber ofu in head position, then considering cases for the specificatidlie only
show the first claim, the others are similar.

Suppose = 0, then the results follow immediately froA° = T. Fork > 0,
the proof is by a case distinction on the shapé.of

e AisT. ThenAK = T and the required subtyping follows from transitivity.

e Ais X orBool. Similarly, fromAK = X andA = Bool, resp.

38

e Aisu(X)B. Then, by induction hypothesis,
;A + B[A/X] <* B[A/X]¥
By definition of approximations, the latter equal. Moreover,
;A F A< B[A/X]
by the (unfold) rule, and transitivity then yiel@iSA r A <:* AKX
o Ais [fi: A", mi:g(y;) BT =M. By definition,
A= [fi s A my By

By induction hypothesis we obtain thatA + A <:* Al*!and that’,y;; A +
Bj <:* Bj/*"* which entails

DA A,m By T < [fi: A,m;j : B = T
by the (modified) subspecification rule, as required.

Soundness of Subspecification
Soundness of subspecification is easily established:

Lemma 6.9 (Soundness of<:*). If I;A + A <* B,p € Envandn £ A then
[T;A+ Alpnp € [T; A+ B]pn.

Proof. By induction on the derivation df; A + A <:* B.
¢ (Reflexivity) and (Transitivity) are immediate, as is (Top).

¢ (Fold) and (Unfold) follow from the fact that the denotationygX)A is in-
deed a fixed point,

[T; A F u(X)Alpn = gfp(Ay.[T; A, X + Alpn[X = x]) by definition
=[T; A X FAlp(@[X = [T; A+ u(X)Alpn]) fixed point
=[T; A - Alu(X)A/X]] on Lemma 6.6

o For the case of (Object), we must have
A= [fi ZAii:l"'mP,mj :S'(Yj)Bj - Tjj:l..,m+q]
and
B=[fi: A" mj : g(y))B) = Tj=]

such thatl; A + Ay <* AV andI,y;;A + Bj <U* B’j andry, T) — TJf. By
induction hypothesis,

[CA+FAlen [T A Alen

39

and

[T.yi; A+ Bil(oly; :=Mn S [T.yj; A+ Bil(ely; := 1Dn
forall1<i<n,1<j<mandl € Loc. Moreover, by soundness af we
know

7Ty - Tilely; :=11) € [TLy; + Til(ely; :=1])
So by definition of [; A + A], [T; A + B],
(I,o) e [T; A+ Alpn implies (,o) € [T; A+ Blon
e Finally, for the (Rec) rule, suppose thHatA + u(X)A <:* u(Y)B has been
derived from
AY< T,X<:YFA<'B
We use the fact thatl[; A + u(Y)B]pn is the greatest post-fixed point of the
map
f(x) = [T5A, Y + Blpn[X = x]

which is monotonic as shown in Lemma 6.5. Siace [T; A + u(X)A]pn is
a fixed point of4y.[T; A v Alpn[X = x] we calculate

a=[T;AXYrAlon[X=a,Y =a] T;A, X+ Aindependent of(Y)
CIA XY - Blon[X=ea,Y =a] byinduction
= f(@) I A, Y + Bindependent ofi(X)

which shows is a post-fixed point of . Hence, [; A + u(X)A]lpn = a C
ofp(f) = [T; A + u(Y)B] pn as required.

Relating Semantics and Syntactic Approximations
Lemma 6.9, in combination with Lemma 6.8(1), shoWs 4 + Alpn C [T;A +
AKJpnforally e Aandk e N, i.e.,

[+ Al € Nkl - A¥I7 (19)

For the reverse inclusion, we use the characterisation of greatest fixed points as
meet of a descending chain, which is in close correspondence with the syntactic
approximations.

Lemma 6.10 (Combining Substitution and Approximation). For all specifi-
cations A, B, all X such thd; A+ BandI'; A, X+ A, and forallkl e N

;A= AB/X] < ALB/X]|
In particular, by Lemma 6.9 ;A + A[B/X]|'Ten € [T; A + AIBX/X]|']pn, for
all n e A

40

Proof. By induction on the lexicographic order dand the number qf in head
position.

e | =0. ClearlyI’; A + A[B/X][° <:* T = A[BK/X]|°.
e | > 0. We consider possible cases far
— Ais X. ThenI'; A - A[B/X]|' = Bl' <* B[= AIB*/X]]'.
— AisT,BoolorY # X. ThenI'; A + A[B/X]|' = Al' <* Al' = A[BIK/X]]'.
— Ais [fi: A", mj: ¢(y;)B;:T;”=1™. Then, by induction hypothesis,
;A ALB/X]ITE < A[BK/X]|2
and
L,yj:A A + Bj[B/X]I™* < B;[BI*/X][*
forall1<i<nand 1< j<m Hence,
LA+ AB/X < [fi - A[BIM/X]. m; : By[BI/X]NI' = ALBI/X][

— Ais u(Y)C, without loss of generality not free inB. Then by induction
hypothesis we find"; A + C[A/Y][B/X]|' <:* C[A/Y][B[/X]|'. Using
properties of syntactic substitutions, we calculate

AB/X]I" = u(Y)(CIB/X)!
= C[B/X][(u(Y)(C[B/X]))/ Y]I
= C[B/X][(A[B/X])/]I
= C[A/Y][B/X]|
and analogousIZ[A/Y][BX/X]' = A[B[*/X]|', which entails the result.

]

Lemma 6.11 (Approximation of Specifications).ForallT'; A + A, p € Env and
environmentg £ A,

[T; A+ Alpn = Nl T3 A - ANy

Proof. By (19), all that remains to show i A + Alpr 2 Nk T; A - AX] o1
We proceed by induction on the lexicographic order on paitsX) whereM is
an upper bound on the numberebinders inA. For the base cas#} = 0, by
Lemma 6.8(3) there existse N such that for alk > n, AX = A, and so in fact

[T;A+Alpn =[T;A + AMpn 2 NiewlT; A + Ao

Now suppose thah contains at mostl + 1 u binders. We consider cases for
A

41

e Ais T, X or Bool Then as above, there exists N such that for alk > n,
Al¥ = A and we are done.

o Ais[fii A", mj:¢(y;)B;::T;!=>™. Then, by induction hypothesis,
[T; A+ AJon 2 Nienl D5 A = ALy
and
[T.yi; A+ Bi(ely; := D1 2 Nl Y55 A = Bi¥I(oly; = D0

forl<i<nandi1< j<m Hence,if (o) € [I;Ar A¥]pnforalkeN
then

(015, o) € N[T3 A + Al S [T A F Alpn
ando.l.mj(o) = (v, o) implies
(v, ") € Nikewl T2 Y55 A F BiKI(ely; := M € [T,y A F Bl(ply; := D7
by the definition ofAlk. This showsl(o) € [T'; A + A]pn as required.
e Aisu(X)B. Recall that
[T A+ Alpn = gfp(fa)
is the greategpostfixed point of fa(y) = [T; A, X + Blpn[X = x]. We show
thata := N[T; A F A] 7 is a post-fixed point of, from which
[T A F Alpn 2 Nkl T3 A F Ao
then follows: First note that by Lemma 6.8(2) and Lemma 6.9
X =T AF Allpn] = p[X = [T A+ AMpn] = ...
forms a descending chain of environments. Hence we can calculate
fal@) = [T; A, X + Blpn[X = a] def. of fa
=[I;A X+ Blp(An[X = [T; A+ Alpn]) def. of « and meets
= Mk T; A, X - Blpn[X = [T; A+ AK]py] Lemma 6.5, meets

= N[T; A + BIAK/ X1 on Lemma 6.6

2 Mt Niewl T3 A F BIAK/X] T on Induction Hyp.
2 Nmenl 5 A F BIA/X]IM] o7 Lemma 6.10
= Mkew[T A - A¥l o Def. of u(X)AK

i.e.a C fa(). Note that we can apply induction in the fourth line siié
does not contain any and therefor&[AlX/X] contains at mosM p-binders.

This concludes the proof. |

42

6.4 Soundness

After the technical development in the preceding subsection we can now prove
(18). From this result the soundness proof of the logic extended with recursive
specifications then follows, along the lines of the proof presented in Section 5
for finite specifications.

Lemma 6.12. For all o, 2,1 and+ A, if o € [X] and+ Z.| <:* Athen(l,o) €
[Al.

Proof. The proof proceeds by considering finite specifications first. This can
be proved by induction oA, as in Lemma 5.1. When applying the induction
hypothesis we use the fact thaf\ <: Bimplies+ A <:* B.

To extend the proof to all (possibly recursive) specifications, note that by
Lemma 6.8, A <:* AK for all k € N, which entails+ Z.I <:* AX for all
k by transitivity. EveryAX is non-recursive, so by the above considerations,
(I,0) € [AK] for all k. Thus

(o) € N [AK] = [A]
by Lemma 6.11. O

7 Conclusion

Based on a denotational semantics, we have given a soundness proof for Abadi
and Leino’s program logic of an object-based language. Compared to the orig-
inal proof, which was carried out wrt. an operational semantics, our techniques
allowed us to distinguish the notions of derivability and validity. Further, we used
the denotational framework to extend the logic to recursive object specifications.
In comparison to a similar logic presented in [8] our notion of subspecification
is structural rather than nominal.

Although our proof is very much fferent from the original one, the nature
of the logic forces us to work with store specifications too. Information for lo-
cations referenced from the environm&nwill be needed for derivations. Since
theT cannot reflect the dynamic aspect of the store (which is growing) one uses
store specification®. They do not show up in the Abadi-Leino logic as they
are automatically preserved by programs. This is shown as part of the soundness
proof rather than being a proof obligation on the level of derivations. By contrast
to [2], we can view store specifications as predicates on stores which need to
be defined by mixed-variant recursion due to the form of the object introduction
rule. Unfortunately, such recursively defined predicates do not directly admit an
interpretation of subsumption (nor weakening). This led us to distinguish store
specifications from the specifications of individual objects.

Conditions(M1) — (M3) in the semantics of store specifications ensure that
methods in the store preserve not only the current store specification but also

43

arbitrary extensionE’ > X. This will account for the (specifications of) objects
allocated between definition time and call time.

Clearly, not every predicate on stores is preserved. As we lack a seman-
tic characterisation of those specifications that are syntactically definatdg, (as
specification syntax appears in the definitiorvok [X] (Def. 4.7). More an-
noyingly, field update requires subspecifications to be invariant in the field com-
ponents, otherwise even type soundness is invalidated. We do not know how to
express this property of object specifications semantically (on the level of predi-
cates) and need to use the inductively defined subspecification relation instead.

The proof of Theorem 4.8, establishing the existence of store predicates, pro-
vides an explanation why transition relations of the Abadi-Leino logic express
properties of the flat part of stores only: Semantically, dfi@ent) condition
is that transition relations are upwards and downwards closed in their first and
second store argument, respectively.

Abadi and Leino’s logic is peculiar in that verified programs need to preserve
store specifications. Putfterently, only properties which are in fact preserved
can be expressed in the logic. In particular, specifications of field values are
limited such that properties like e.gelf.hd < self.tail.hd, stating that a list is
sorted, cannot be expressed. In future work we thus plan to investigate how a
logic can be set up where

e methods are specified by pfgest-conditions that explicitly state invariance
properties during execution of the method code.

e methods can be specified by ppast-conditions that can refer to other meth-
ods. This is important for simulating methods that act like higher-order func-
tions (e.g. the map function for lists).

e methods can have additional parameters.

e method update is allowed. In the setting of Abadi and Leino this would re-
quire that the new method body satisfies the old specification (in order to
establish invariance). More useful would be a “behavioural” update where
result and transition specifications of the overriding method are subspecifi-
cations of the original method.

The results established in this paper pave the way for the above line of research.
AcknowledgementWe wish to thank Thomas Streicher for discussions and
comments.

References

[1] M. Abadi and L. Cardelli.A Theory of ObjectsSpringer, New York, 1996.

[2] M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In N. Dershowitz, editor,
Verification: Theory and Practicgpages 11-41. Springer, 2004.

44

(3]
(4
(5]

6l

(7]

(8]

[

(10]

(11]

(12]

(23]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

R. M. Amadio and L. Cardelli. Subtyping recursive typ&€M Transactions on Programming
Languages and Systeni$(4):575-631, 1993.

K. R. Apt. Ten years of Hoare’s logic: A survey — partACM Transactions on Programming
Languages and Systen®4):431-483, Oct. 1981.

F. S. de Boer. A WP-calculus for OO. In W. Thomas, edifmndations of Software Science
and Computation Structuresolume 1578 of.ecture Notes in Computer Scienpages 135—
149, 1999.

U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-oriented
languages: Logical models and tools. In C. Hankin, edi®yggramming Languages and
Systems—ESOP’98, 7th European Symposium on Progranwoinge 1381 of ecture Notes

in Computer Sciencgages 105-121, Mar. 1998.

C. A. R. Hoare. An Axiomatic Basis of Computer Programmi@@mmunications of the ACM
12:576-580, 1969.

K. R. M. Leino. Recursive object types in a logic of object-oriented programs. In C. Hankin,
editor, 7th European Symposium on Programminglume 1381 of ecture Notes in Computer
Sciencepages 170-184, Mar. 1998.

P. B. Levy. Possible world semantics for general storage in call-by-value. In J. Bradfield, editor,
CSL: 16th Workshop on Computer Science Logitume 2471 ol ecture Notes in Computer
ScienceSpringer, 2002.

L. C. Paulson.Logic and Computation : Interactive proof with Cambridge L@Blume 2 of
Cambridge Tracts in Theoretical Computer Scien€ambridge University Press, 1987.

A. M. Pitts. Relational properties of domairisformation and Computatiqri27:66—90, 1996.

A. Poetzsch-Hgter and P. Miller. A programming logic for sequential Java. In S. D. Swierstra,
editor, European Symposium on Programminglume 1576 ofLecture Notes in Computer
Sciencepages 162-176, 1999.

U. S. Reddy. Objects and classes in algol-like languagesormation and Computatign
172(1):63-97, January 2002.

B. Reus. Class-based versus object-based: A denotational comparison. In H. Kirchner and
C. Ringeissen, editor®roceedings of 9th International Conference on Algebraic Methodology
And Software Technologyolume 2422 of.ecture Notes in Computer Scienpages 473-488,
2002.

B. Reus. Modular semantics and logics of classes. In M. Baatz and J. A. Makowsky, editors,
Computer Science Logigolume 2803 of_ecture Notes in Computer Scienpages 456-469.
Springer Verlag, 2003.

B. Reus and T. Streicher. Semantics and logic of object calEh&oretical Computer Science
316:191-213, 2004.

B. Reus, M. Wirsing, and R. Hennicker. A Hoare-Calculus for Verifying Java Realizations
of OCL-Constrained Design Models. In H. Hussmann, edi&SE 2001 volume 2029 of
Lecture Notes in Computer Scienpages 300-317, Berlin, 2001. Springer.

M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain equations.
SIAM Journal on Computind 1(4):761-783, Nov. 1982.

F. Tang and M. Hofmann. Generation of verification conditions for Abadi and Leino’s logic
of objects. Presented at 9th International Workshop on Foundations of Object-Oriented Lan-
guages, Jan. 2002.

D. von Oheimb. Hoare logic for Java in Isab@H©L. Concurrency and Computation: Prac-

tice and Experiengel3(13):1173-1214, 2001.

45

