
A Fully Abstract May Testing Semantics for Concurrent

Objects

Alan Jeffrey

CTI, DePaul University

Chicago, IL, USA

ajeffrey@cs.depaul.edu

Julian Rathke∗

COGS, University of Sussex

Brighton, UK

julianr@cogs.susx.ac.uk

October 2002

Abstract

This paper provides a fully abstract semantics for a variant of the concurrent object calculus.

We define may testing for concurrent object components and then characterise it using a trace

semantics inspired by UML interaction diagrams. The main result of this paper is to show that

the trace semantics is fully abstract for may testing. This is the first such result for a concurrent

object language.

1 Introduction

Abadi and Cardelli’s [1] object calculus is a minimal language for investigating features of object

languages such as encapsulated state, subtyping, and self variables. Gordon and Hankin [7] added

concurrent features to the object calculus, to produce the concurrent object calculus.

Prior work on the object calculus has concentrated on the operational behaviour of object sys-

tems, and type systems which provide type safety guarantees. The closest paper to ours is Gordon

and Rees’s [8] fully abstract semantics for the immutable single-threaded object calculus. There

has been no work on providing fully abstract semantics for concurrent mutable objects.

In this paper, we present the first fully abstract testing semantics for a variant of Gordon and

Hankin’s concurrent object calculus without subtyping. The lack of subtyping here affords a simpler

presentation of the labelled transitions and traces but we anticipate that the proof techniques used

here are robust enough to cater for subtyping also. This semantics was inspired by UML interaction

diagrams [4], which are a common tool for visualising interactions with object systems.

1.1 Interaction diagrams

Interaction diagrams (in particular sequence diagrams) were developed by Jacobson, and are now

part of the Unified Modeling Language standard [4]. Interaction diagrams record the messages

sent between objects of a component in an object system. These messages include method calls

∗Research partially supported by the Nuffield Foundation. University of Sussex technical report 2002:03

1

and returns (interaction diagrams include other forms of message, but we will not use these in this

paper).

A simple interaction with an integer reference object r of type IntRef has it receive two in-

coming method calls set(5) and get(), for which it produces appropriate return values:

r : IntRef

set (5)

get ()

5

A more complex interaction allows a method call on one object to call methods on other objects:

foo : Foo bar : Bar

fred ()

barney ()

betty

wilma

Here, the object foo has one incoming call to fred(), makes one outgoing call to barney(),

receives the result betty back, then returns wilma itself. This illustrates the four messages which

may be sent during an interaction: incoming and outgoing method calls, and matching outgoing

and incoming returns.

In this paper, we use a textual representation of an interaction, as a trace, which is just a sequence

of messages. In the above example, foo has the trace:

〈call foo.fred()〉?
〈callbar.barney()〉!
〈returnbetty〉?
〈returnwilma〉!

where we mark incoming messages with ? and outgoing messages with !. The object bar has the

matching trace:

〈callbar.barney()〉?
〈returnbetty〉!

and so composing these two traces together, we get that the whole system has the trace:

〈call foo.fred()〉?
〈returnwilma〉!

There are two additions we will make to the UML message notation: adding thread identifiers, and

making name scope more explicit.

2

Sequence diagrams can be used for multithreaded applications, for example:

r : IntRef

set (5)

get ()

5

Here, two threads independently call methods of the object r, creating a race condition. In our

textual representation, we give the threads names, and we decorate each message with the thread

responsible for the message:

thread1〈call r.set(5)〉?
thread2〈call r.get()〉?
thread2〈return5〉!
thread1〈return〉!

The other addition we make to the notation is to make the scope of names more explicit. For ex-

ample, consider the following interaction with a factory object, which builds new integer reference

objects:

factory : IntRefFactory

build ()

result : IntRef
«create»

result

set (5)

In the textual representation of this trace, we need to make clear that the result object has not

been seen before by the environment (it is a genuinely new object, not a recycled object). We do

this by decorating the label with ν to indicate that the result object is new:

thread1〈call factory.build()〉?
ν(result : IntRef) . thread1〈return result〉!
thread1〈call result.set(5)〉?
thread1〈return〉!

As well as allowing the system to generate new names on outgoing messages, we allow the en-

vironment to generate new names on incoming messages. This style of dealing with fresh names

comes originally from the π-calculus [19, 18], and has since been used in other languages, notably

the ν-calculus [23].

We have now presented informally all of the machinery required by our semantics for objects:

• The semantics of a system is given by a set of traces, where a trace is a sequence of messages

corresponding to one interaction.

3

• Messages are incoming or outgoing message calls, or matching outgoing or incoming returns.

• Messages are decorated with thread identifiers.

• Messages may include fresh names.

We have only used a very small subset of sequence diagrams, which in turn is a very small subset

of UML, but in this paper we will show that this small subset is very expressive, and in particular

provides a fully abstract semantics.

1.2 The object calculus

The object calculus is a minimal language for modelling object-based programming. Abadi and

Cardelli [1] provided a type system and operational semantics for a variety of object calculi, and

proved type safety for them. Gordon and Hankin [7] have since extended this language to include

concurrent features.

In this paper, we shall investigate a variant of Gordon and Hankin’s concurrent object calculus,

which includes:

• A heap of named objects and threads.

• Threads can call or update object methods, can compare object or thread names for equality,

can create new objects and threads and can discover their own thread name.

• An operational semantics based on the π-calculus [19, 18], and a simple type system.

• A trace semantics as discussed in Section 1.1.

We are not considering many of the more advanced features of the object calculus or the concurrent

object calculus, such as recursive types, object cloning and object locking. This is just for simplicity,

and we do not see any technical problems with incorporating these features into our language.

In another strand of research Di Blasio and Fisher [3] also designed a calculus for modelling

imperative, concurrent object-based systems. As with Abadi and Cardelli’s object calculus and its

various extensions, the emphasis in Di Blasio and Fisher’s work is again on type systems and safety

properties for them.

1.3 Full abstraction

The problem of full abstraction was first introduced by Milner [17], and investigated in depth by

Plotkin [24]. Full abstraction was first proposed for variants of the λ-calculus, but has since been

investigated for process algebras [9], the π-calculus [6, 10], the ν-calculus [23, 14], Concurrent

ML [5, 15], and the immutable object calculus [8].

One way to define a semantics for a programming language is to define:

• A language of typed components C which can be composed C1 ‖C2. (In this paper, compo-

nents are programs in the concurrent object calculus.)

• A notion of when a component is successful. (In this paper, we use a special succ method

call to indicate a successful component although the theory is robust enough that any other

suitable observable would suffice).

4

We can then define the may testing preorder [21, 9] as C1 ❁∼may C2 whenever:

for any appropriately typed C

if C1 ‖C is successful then C2 ‖C is successful

Unfortunately, although it is very simple to define, and is quite intuitive, may testing is often very

difficult to reason about directly, because of the quantification over ‘any appropriately typed C’. In

practice, we require a proof technique which we can use to show results about may testing.

One approach is to use a trace semantics, given by defining possible executions of components

C ==
s
⇒ C′ where s is a sequence of messages. We then write Traces(C) for the set of all traces of

C. We say that:

• Traces are sound for may testing when

Traces(C1) ⊆ Traces (C2) implies C1 ❁∼may C2.

• Traces are complete for may testing when

C1 ❁∼may C2 implies Traces (C1) ⊆ Traces (C2).

• Traces are fully abstract for may testing when

they are both sound and complete.

A fully abstract trace model can be a useful tool in understanding a behavioural equivalence in the

sense that, in order to be sound, the traces used to build the model must, at minimum, account for

all of the possible interactions a system of objects may have with its environment and, in order to be

complete, the interactions described by the traces must be genuine. This is taken to mean that for

each interaction described by a trace there is an actual system of objects which can play the role of

the environment in that interaction. Therefore, to obtain a fully abstract trace model it is necessary

to describe all possible interactions accurately.

Establishing full abstraction for a language which includes features such as higher-order pro-

gramming, new name generation, and heap-based objects is often non-trivial. For example, Pitts

and Stark introduced the ν-calculus [23], as a minimal higher-order language with name genera-

tion, by extending the simply typed λ-calculus with an abstract type of names, together with a name

generator and an equality test. Even this minimal language is remarkably difficult to reason about,

and there is no known fully abstract semantics for it [15].

1.4 Contribution of this paper

In this paper, we present a variant of Gordon and Hankin’s concurrent object calculus, which is

in turn an extension of Abadi and Cardelli’s object calculus. The only significant departures from

Gordon and Hankin’s concurrent object calculus is that we use named threads, where they use

anonymous threads and we restrict the calculus to disallow subtyping and recursive types. Whilst

this latter restriction does move us away from the essence of object-oriented programming it is im-

posed so as to keep the technical presentation as simple as possible at this stage. The re-introduction

of these features into the type system would affect the behavioural theory in what we expect to be

a predictable way and anticipate that techniques employed in [11] and those presented here can be

combined to give a similar treatment for a concurrent object language with subtyping.

5

Components: C ::= 0 |C ‖C | ν(n : T) .C | n[O] | n〈t〉
Objects: O ::= l = M, . . . , l = M

Methods: M ::= ς(n : T) .λ(x : T, . . . ,x : T) . 〈t〉
Threads: t ::= v | stop | let x : T = e in t

Expressions: e ::= t | if v = v then e else e | v.l(v, . . . ,v) | n.l ⇐M |
new[O] | new〈t〉 | currentthread

Values: v ::= x | n

Types: T ::= thread | none | [l : L, . . . , l : L]
Method types: L ::= (T, . . . ,T)→T

We assume grammars for variables x,y, names n, p and method identifiers l.

In objects and object types, we require method identifiers l to be unique, and viewed up to

reordering.

Figure 1: Syntax of the concurrent object calculus

We provide the calculus with an operational semantics, and a trace semantics, and then show

that the trace semantics is fully abstract for may testing. This is the first full abstraction result for a

concurrent object-based language.

2 Concurrent objects

In this section, we will present the syntax, static semantics and dynamic semantics of our concurrent

object calculus. This is a variant of Gordon and Hankin’s concurrent object calculus with named

rather than anonymous threads.

2.1 Syntax

The syntax for the concurrent object calculus we will use in this paper is given in Figure 1. We make

use of a number of distinct syntactic categories of identifiers, namely, object and thread Names,

ranged over by n and p (the latter is typically used to indicate an object), Variables, ranged over by

x,y,z, and Method Identifiers, ranged over by l. The operators let and λ act as binders for Variables

and ς and ν act as binders for Names. Method Identifiers can not be bound. Note that, at the level of

components, there is no facility for binding variables. We will work with terms up to α-conversion

of both Names and Variables in the conventional way. We also make use of capture-free substitution

of values for variables or names for names, again defined in the conventional way, and written t[v/x]
or t[p/n] as appropriate.

In examples, we will often make use of base types such as integers and booleans: these are not

part of our formal system, but will make examples easier to present. They could be comfortably

included in the language without changing the theory significantly. We will also make use of some

syntax sugar:

We will elide types from variable and name binders, where they can be reconstructed. We

write e; t as syntax sugar for let x = e in t when x is a fresh variable. We use Abadi and Cardelli’s

6

definition of fields f as zero-argument methods:

• A field declaration f = v in an object is syntax sugar for a method declaration f = ς(n :

T) .λ() . 〈v〉.

• A field type f : T in an object type is syntax sugar for a method type f : ()→T .

• A field access expression v. f is syntax sugar for a method call v. f ().

• A field update expression n. f := v′ is syntax sugar for a method update n. f ⇐ (ς(p : T) .λ() .
〈v〉).

In addition, we have restricted many subexpressions of an expression to be values rather than full

expressions, for example in a method call v.l(~v) we require the object and the arguments to be

values rather than expressions e.l(~e). This makes the operational semantics much easier to define,

and does not restrict the expressivity of the language, for example we can define (e.l(~e)) ≡ (let x =
e in let ~x = ~e in x.l(~x)). Similarly, the distinction between threads and expressions makes the

operational semantics much simpler, but we can treat any expression as a thread by η-converting it:

〈e〉 ≡ 〈let x = e in x〉.
For the remainder of this section, we will provide an informal description of the syntax:

A component C is a collection of named objects n[O] and threads n〈t〉. For example, one possi-

ble component consisting of an integer reference p and a thread n which increments the reference

is:
p[contents = 5] ‖
n〈let x = p.contents in p.contents := x+1〉

We also use the ν-notation of the π-calculus [18] to indicate which names are private, and not

known to the outside world. By default, names are public, and have to be marked by ν in order to

be considered private. For example, n is private, and p is public in:

ν(n : thread) . (
p[contents = 5] ‖
n〈let x = p.contents in p.contents := x+1〉

)

An object [O] consists of a set of named methods, for example an integer reference with set and get

methods might be written:

[
contents = 5,
set = ς(this : IntRef) .λ(x : Int) . 〈this.contents := x;x〉,
get = ς(this : IntRef) .λ() . 〈this.contents〉

]

Each method M consists of a self name as well as a list of parameters and a body. For example, the

set method above has self name (this : IntRef), parameters (x : Int), and body (this.contents := x).
Readers familiar with Abadi and Cardelli’s work will note that we are taking parameterized methods

as primitive, rather than defining them as syntax sugar. This is necessary for our semantics, which

is based on method calls with arguments and return values.

7

A thread 〈t〉 consists of a stack of let-expressions, terminated either by a return value:

〈let x1 : T1 = e1 in · · · let xn : Tn = en in v〉

or by a deadlocked stop thread:

〈let x1 : T1 = e1 in · · · let xn : Tn = en in stop〉

Each expression is either itself a thread, or:

• an if expression if v1 = v2 then e1 else e2,

• a method call v.l(~v),

• a method update n.l ⇐M, on a named object

• a new object new[O],

• a new thread new〈t〉, or

• the current thread name currentthread.

Each value is simply a name or a variable and we defer the discussion of types until Section 2.2.

2.2 Static semantics

The static semantics for our concurrent object calculus is given in Figures 2–6. Most of the rules

are straightforward adaptations of those given by Abadi and Cardelli [1]. The main judgement is

∆ ⊢C : Θ which is read as ‘the component C uses names ∆ and defines names Θ’. For example, if

we define C1(v), C2 and IntRef as:

C1(v) ≡ p[
contents = v,
set = ς(this : IntRef) .λ(x : Int) . 〈this.contents := x;x〉,
get = ς(this : IntRef) .λ() . 〈this.contents〉

]

C2 ≡ n〈
let x = p.get() in p.set(x+1);stop

〉

IntRef ≡ [
contents : Int,set : (Int)→ Int,get : ()→ Int

]

then we can deduce (if v : Int):

n : thread ⊢ C1(v) : (p : IntRef)

p : IntRef ⊢ C2 : (n : thread)

⊢ (C1(v) ‖C2) : (p : IntRef,n : thread)

⊢ ν(n : thread) . (C1(v) ‖C2) : (p : IntRef)

We will now introduce an important requirement of our components, that they be write closed:

8

∆ ⊢ 0 : ()

;∆,n : T ⊢ [O] : T

∆ ⊢ n[O] : (n : T)

;∆,n : thread ⊢ t : none

∆ ⊢ n〈t〉 : (n : thread)

∆,Θ2 ⊢C1 : Θ1 ∆,Θ1 ⊢C2 : Θ2

∆ ⊢ (C1 ‖C2) : (Θ1,Θ2)

∆ ⊢C : Θ,n : T

∆ ⊢ ν(n : T) .C : Θ

Figure 2: Rules for judgement ∆ ⊢C : Θ

Γ;∆ ⊢ M1 : T.l1 · · · Γ;∆ ⊢ Mk : T.lk
Γ;∆ ⊢ [l1 = M1, . . . , lk = Mk] : T

Figure 3: Rule for judgement Γ;∆ ⊢ [O] : T (when T = [l1 : L1, . . . , lk : Lk])

Γ,x1 : T1, . . . ,xk : Tk;∆,n : T ⊢ t : U

Γ;∆ ⊢ ς(n : T) .λ(x1 : T1, . . . ,xk : Tk) . 〈t〉 : T.l

Figure 4: Rule for judgement Γ;∆ ⊢ M : T.l (when T = [. . . , l : (T1, . . . ,Tk)→U, . . .] and T.l is the

record l selected from T)

Γ;∆ ⊢ v1 : T1 Γ;∆ ⊢ v2 : T1

Γ;∆ ⊢ e1 : T2 Γ;∆ ⊢ e2 : T2

Γ;∆ ⊢ if v1 = v2 then e1 else e2 : T2

Γ;∆ ⊢ v : [. . . , l : (T1, . . . ,Tk)→T, . . .]
Γ;∆ ⊢ v1 : T1 · · · Γ;∆ ⊢ vk : Tk

Γ;∆ ⊢ v.l(v1, . . . ,vk) : T

Γ;∆ ⊢ n : T Γ;∆ ⊢ M : T.l

Γ;∆ ⊢ n.l ⇐M : T

Γ;∆ ⊢ [O] : T

Γ;∆ ⊢ new[O] : T

Γ;∆ ⊢ t : T

Γ;∆ ⊢ new〈t〉 : thread Γ;∆ ⊢ currentthread : thread

Γ;∆ ⊢ e : T1 Γ,x : T1;∆ ⊢ t : T2

Γ;∆ ⊢ let x : T1 = e in t : T2 Γ;∆ ⊢ stop : T Γ,x : T,Γ′;∆ ⊢ x : T Γ;∆,n : T,∆′ ⊢ n : T

Figure 5: Rules for judgement Γ;∆ ⊢ e : T

Variable contexts: Γ ::= x : T, . . . ,x : T Name contexts: ∆,Θ,Σ,Φ ::= n : T, . . . ,n : T

In variable contexts, variables must be unique, and are viewed up to reordering.

In name contexts, names must be unique, types must not be none, and are viewed up to reordering.

Figure 6: Syntax of name and variable contexts

9

Whenever ∆ ⊢C : Θ contains a subexpression of the form n.l ⇐M with n free, then n

appears in Θ.

This is intended to capture the common software engineering requirement that components should

not export mutable fields, instead they should export suitable get and set methods. For example, the

configurations C1 and C2 above are write closed, since the only updates are to this, but the following

component which writes directly to p.contents is not write closed:

C′
2 ≡ n〈let x = p.contents in p.contents := x+1;stop〉

For the remainder of the paper we will require components to be write closed. This makes de-

veloping a fully abstract semantics much simpler, since we do not need to model method update

directly.

2.3 Dynamic semantics

The dynamic semantics for our concurrent object calculus is given in Figures 7–10.

We define three relations between components:

• ≡, structural congruence, represents the least congruence on components which includes the

axioms in Figure 7.

• C
τ
→ C′ when C can reduce to C′ by the interaction of a thread and an object (either a method

call or a method update).

• C
β
→ C′ when C can reduce to C′ by a thread acting independently of any other threads or

objects.

We write C →C′ when either C
τ
→ C′ or C

β
→ C′; we write C ⇒C′ when C →∗ C′.

The important property of β-reductions is that they do not introduce race conditions (and hence

nondeterminism), where τ-reductions may introduce race conditions. This is discussed further in

Appendix B.1.

For example, recalling the definition of C1(v) from Section 2.2 we have:

C1(5) ‖ n〈let x = p.get() in p.set(x+1);stop〉
τ
→ C1(5) ‖ n〈let x = p.contents in p.set(x+1);stop〉
τ
→ C1(5) ‖ n〈let x = 5 in p.set(x+1);stop〉
β
→∗ C1(5) ‖ n〈p.set(6);stop〉

τ
→ C1(5) ‖ n〈p.contents := 6;6;stop〉
τ
→ C1(6) ‖ n〈p; 6;stop〉
β
→∗ C1(6) ‖ n〈stop〉

as expected.

Proposition 2.1 (Subject Reduction) If ∆ ⊢C : Θ and C ⇒C′ then ∆ ⊢C′ : Θ

Proof: Straightforward. ✷

10

0 ‖C ≡C (C1 ‖C2) ‖C3 ≡C1 ‖ (C2 ‖C3) C1 ‖C2 ≡C2 ‖C1

C1 ‖ ν(n : T) .C2 ≡ ν(n : T) . (C1 ‖C2) ν(n1 : T1) .ν(n2 : T2) .C ≡ ν(n2 : T2) .ν(n1 : T1) .C

Figure 7: Axioms for structural congruence (where n is not free in C1)

n〈let x : T = v in t〉
β
→ n〈t[v/x]〉

n〈let x : T = (let x1 : T1 = e1 in e2) in t〉
β
→ n〈let x1 : T1 = e1 in (let x : T = e2 in t)〉

n〈let x : T = (if v = v then e1 else e2) in t〉
β
→ n〈let x : T = e1 in t〉

n〈let x : T = (if v1 = v2 then e1 else e2) in t〉
β
→ n〈let x : T = e2 in t〉 (v1 6= v2)

n〈let x : T = new[O] in t〉
β
→ ν(p : T) . (p[O] ‖ n〈let x : T = p in t〉) (p 6∈ O or t)

n〈let x : T = new〈 f 〉 in t〉
β
→ ν(p : T) . (p〈 f 〉 ‖ n〈let x : T = p in t〉) (p 6∈ t or f)

n〈let x : T = currentthread in t〉
β
→ n〈let x : T = n in t〉

n〈let x : T = stop in t〉
β
→ n〈stop〉

p[O] ‖ n〈let x : T = p.l(~v) in t〉
τ
→ p[O] ‖ n〈let x : T = O.l(p)(~v) in t〉

p[O] ‖ n〈let x : T = p.l ⇐M in t〉
τ
→ p[O.l ⇐M] ‖ n〈let x : T = p in t〉

Figure 8: Axioms for reduction precongruence

C ≡
β
→ ≡C′

C
β
→ C′

C
β
→ C′

C ‖C′′ β
→ C′ ‖C′′

C
β
→ C′

ν(n : T) .C
β
→ ν(n : T) .C′

C ≡
τ
→ ≡C′

C
τ
→ C′

C
τ
→ C′

C ‖C′′ τ
→ C′ ‖C′′

C
τ
→ C′

ν(n : T) .C
τ
→ ν(n : T) .C′

Figure 9: Rules for reduction precongruence

(~l = ~M, l = M).l(p)(~v) = t[p/n,~v/~x] (~l = ~M, l = M′).l ⇐M = (~l = ~M, l = M)

Figure 10: Definition of O.l(p)(~v) and O.l ⇐M where M = ς(n : T) .λ(~x :~T) . 〈t〉

11

2.4 Testing preorder

We will now define the testing semantics for our concurrent object calculus. We will do this by

defining a notion of barb for a component, and let a successful component be one which communi-

cates on that barb. This is similar to the use of barbs in process algebra [20].

Let the type barb be defined:

barb = [succ : ()→none]

for some fresh method name succ. We say that a component strongly barbs on b : barb written C↓b
if and only if:

C ≡ ν(~n : ~T) . (C′ ‖ n〈let x : none = b.succ() in t〉)

for b 6∈~n and barbs on b : barb written C⇓b if and only if:

C ⇒C′↓b

For components C1 and C2 such that ∆ ⊢C1 : Θ and ∆ ⊢C2 : Θ, we define the may testing preorder

∆ |= C1 ❁∼may C2 : Θ if and only if:

for any ∆′,Θ,b : barb ⊢C : ∆ if (C1 ‖C)⇓b then (C2 ‖C)⇓b

This is a straightforward adaptation of the standard [9] definition of may testing for concurrent

systems.

3 Trace semantics

The trace semantics for the concurrent object calculus is given by a labelled transition system (lts)

with judgements:

(∆ ⊢C : Θ)
α
→ (∆′ ⊢C′ : Θ′)

The lts is given for components extended by introducing two new expressions:

e ::= · · · | block | return(v : T)

These new threads are included purely to assist in the description of the lts and are intended to

represent a command for a thread to wait for some unknown interaction with the environment and

a command for a thread to report a value to the environment and then to go back to a blocked state.

There are no reductions associated with these commands and they may be typed as:

Γ;∆ ⊢ block : T

Γ;∆ ⊢ v : U

Γ;∆ ⊢ return (v : U) : T

where T and U are any types. The lts for our concurrent object language are given in Figures 11–14.

For example if we define:

Θ ≡ (p : IntRef)
Θ′ ≡ (p : IntRef,n : thread)

12

(∆,n : thread ⊢C : Θ)
n〈call p.l(~v)〉?

→ (∆ ⊢C ‖ n〈let x : T = p.l(~v) in return (x : T)〉 : (n : thread,Θ))
(when ;∆,n : thread,Θ ⊢ p.l(~v) : T and p ∈ Θ)

(∆ ⊢C ‖ n〈let x : T = block in t〉 : Θ)
n〈call p.l(~v)〉?

→ (∆ ⊢C ‖ n〈let y : U = p.l(~v) in let x : T = return(y : U) in t〉 : Θ)
(when ;∆,Θ ⊢ p.l(~v) : U and p ∈ Θ)

(∆ ⊢C ‖ n〈let x : T = block in t〉 : Θ)
n〈return v〉?

→ (∆ ⊢C ‖ n〈t[v/x]〉 : Θ)
(when ;∆,Θ ⊢ v : T)

(∆ ⊢C ‖ n〈let x : T = p.l(~v) in t〉 : Θ)
n〈call p.l(~v)〉!

→ (∆ ⊢C ‖ n〈let x : T = block in t〉 : Θ)
(when p ∈ ∆)

(∆ ⊢C ‖ n〈let x : T = return(v : U) in t〉 : Θ)
n〈return v〉!

→ (∆ ⊢C ‖ n〈let x : T = block in t〉 : Θ)

Figure 11: Axioms for labelled transition system (∆ ⊢C : Θ)
α
→ (∆′ ⊢C′ : Θ′)

(∆ ⊢C : (Θ,n : T))
a
→ (∆′ ⊢C′ : (Θ′,n : T))

(∆ ⊢ ν(n : T) .C : Θ)
a
→ (∆′ ⊢ ν(n : T) .C′ : Θ′)

(n is not free in a)

(∆ ⊢C : (Θ,n : T))
γ!
→ (∆′ ⊢C′ : Θ′)

(∆ ⊢ ν(n : T) .C : Θ)
ν(n:T).γ!

→ (∆′ ⊢C′ : Θ′)
(n is free in γ)

(∆,n : T ⊢C : Θ)
γ?
→ (∆′ ⊢C′ : Θ′)

(∆ ⊢C : Θ)
ν(n:T).γ?

→ (∆′ ⊢C′ : Θ′)
(n is free in γ,T is not none)

Figure 12: Rules for labelled transition system (∆ ⊢C : Θ)
α
→ (∆′ ⊢C′ : Θ′)

C ⇒C′

(∆ ⊢C : Θ) ==
ε
⇒ (∆ ⊢C′ : Θ)

(∆ ⊢C : Θ)
a
→ (∆′ ⊢C′ : Θ′)

(∆ ⊢C : Θ) ==
a
⇒ (∆′ ⊢C′ : Θ′)

(∆ ⊢C : Θ) ==
s
⇒ (∆′ ⊢C′ : Θ′) ==

s′

⇒ (∆′′ ⊢C′′ : Θ′′)

(∆ ⊢C : Θ) ==
ss′

⇒ (∆′′ ⊢C′′ : Θ′′)

Figure 13: Rules for trace semantics (∆ ⊢C : Θ) ==
s
⇒ (∆′ ⊢C′ : Θ′)

Basic labels: γ ::= n〈call p.l(~v)〉 | n〈returnv〉 | ν(n : T) . γ
Visible labels: a ::= γ? | γ!

Traces: q,r,s ::= a · · · a

Figure 14: Syntax of labels and traces

13

then (where C1(v) is defined in Section 2.2) we have:

(⊢C1(5) : Θ)
ν(n:thread).n〈call p.get()〉?

→

(⊢ (C1(5) ‖ n〈let x = p.get() in returnx〉) : Θ′)

⇒

(⊢ (C1(5) ‖ n〈return5〉) : Θ′)
n〈return5〉!

→

(⊢ (C1(5) ‖ n〈block〉) : Θ′)
n〈call p.set(6)〉?

→

(⊢ (C1(5) ‖ n〈let x = p.set(6) in returnx〉) : Θ′)

⇒

(⊢ (C1(6) ‖ n〈return6〉) : Θ′)
n〈return6〉!

→

(⊢ (C1(5) ‖ n〈block〉) : Θ′)

which corresponds to the interaction diagram:

p : IntRef

get ()

5

set (6)

6

For any component (∆ ⊢C : Θ) we define its traces to be:

Traces(∆ ⊢C : Θ) = {s | (∆ ⊢C : Θ) ==
s
⇒ (∆′ ⊢C′ : Θ′)}

We will now show that this trace semantics is fully abstract for may testing.

4 Soundness of traces for may testing

Having defined our trace semantics we must demonstrate that it provides a sound characterisation of

our notion of equivalence, that is, may testing. Specifically we must show that whenever the traces

of a well-typed component are contained in another’s then the components must be related in the

may testing preorder. We immediately see some difficulty in proving this directly as the traces are

defined using terms over an extended syntax whereas testing is defined purely in the base language.

However, the extensions made to the syntax represent interaction points, between a component and

a putative testing component. Therefore, given an actual testing component we may merge the

original component and the test together at these interaction points, thereby recovering the term in

14

the base language which would have been reached had the component and test actually interacted.

This operation of merging is defined below:

4.1 The merge operator

Define the partial merge operator C1!C2 on components as the symmetric operator defined up to

≡ where:
0!C = C

(ν(p : T) .C1)!C2 = ν(p : T) . (C1!C2)

(p[O] ‖C1)!C2 = p[O] ‖ (C1!C2)

(p〈t〉 ‖C1)!C2 = p〈t〉 ‖ (C1!C2)

(n〈t1〉 ‖C1)! (n〈t2〉 ‖C2) = n〈t1! t2〉 ‖ (C1!C2)

when n 6∈ dom (C1,C2) and p 6∈ fn (C2).
We overload notation and define the partial merge operator t1! t2 on threads as the symmetric

operator where:

(let x : T = block in t)! stop = stop

(let x : T = block in t1)! (let y : U = return (v : T) in t2) = (let y : U = block in t2)! (t1[v/x])

(let x : T = block in t1)! (let y : U = e in t2) = let y : U = e in ((let x : T = block in t1)! t2)

when e is block/return free and y 6∈ fv (t1).

Lemma 4.1 If ∆ ⊢ (C1 ‖C2) : Θ then (C1!C2) ≡ (C1 ‖C2).

Proof: An induction on the definition of C1!C2. ✷

Lemma 4.2 If C1!C2 ≡C and C1↓b then C↓b.

Proof: An induction on the definition of C1!C2. ✷

4.2 Trace composition and decomposition

Given a trace s we write s̄ for the complementary trace:

ε̄ = ε s1s2 = s̄1s̄2 γ̄? = γ! γ̄! = γ?

Proposition 4.3 (Trace composition/decomposition) For any components (∆,Φ ⊢C1 : Θ,Σ) and

(Θ,Φ ⊢C2 : ∆,Σ) such that C1!C2 ≡C, we have:

1. If (∆,Φ ⊢C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢C′

1 : Θ′,Σ′)

and (Θ,Φ ⊢C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢C′

2 : ∆′,Σ′)
then C ⇒C′ where ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′

1!C′
2) ≡C′.

2. If C ⇒C′ then there exists some trace s such that (∆,Φ ⊢C1 : Θ,Σ) =
s
⇒ (∆′,Φ ⊢C′

1 : Θ′,Σ′)

and (Θ,Φ ⊢C2 : ∆,Σ) =
s̄
⇒ (Θ′,Φ ⊢C′

2 : ∆′,Σ′) where ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1!C′

2) ≡C′.

15

Proof: Given in Appendix A. ✷

Corollary 4.4 For any components (∆,Φ ⊢C1 : Θ,Σ) and (Θ,Φ ⊢C2 : ∆,Σ) such that C1!C2 ≡C

and C⇓b then there exists some trace s such that (∆,Φ ⊢ C1 : Θ,Σ) ===
s
⇒ (∆′,Φ ⊢ C′

1 : Θ′,Σ′)

and (Θ,Φ ⊢C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢C′

2 : ∆′,Σ′) where either C′
1↓b or C′

2↓b.

Proof: We know that C⇓b which tells us that C ⇒C′′ for some C′′ such that C′′↓b. We use Proposi-

tion 4.3 Part 2, to obtain a trace s1 such that

(∆,Φ ⊢C1 : Θ,Σ) ==
s1

⇒ (∆′′,Φ ⊢C′′
1 : Θ′′,Σ′′)

(Θ,Φ ⊢C2 : ∆,Σ) ==
s̄1

⇒ (Θ′′,Φ ⊢C′′
2 : ∆′′,Σ′′)

where ν(∆′′,Θ′′,Σ′′ \∆,Θ,Σ) . (C′′
1!C′′

2) ≡C′′. Given that C′′↓b we know that (C′′
1!C′′

2)↓b also. By

the definition of! we see that one of the following (or their symmetric counterparts) must hold:

• C′′
1↓b and we are done, or

• C′′
1 ≡ ν(∆1) . (n〈t1〉 ‖C′′′

1) and C′′
2 ≡ ν(∆2) . (n〈t2〉 ‖C′′′

2) where n〈t1! t2〉↓b. We now proceed

by induction on the definition of t1! t2 to show that for all such C′′
1 and C′′

2 , we can find s2

where:

(∆′′,Φ ⊢C′′
1 : Θ′′,Σ′′) ==

s2

⇒ (∆′,Φ ⊢C′
1 : Θ′,Σ′)

(Θ′′,Φ ⊢C′′
2 : ∆′′,Σ′′) ==

s̄2

⇒ (Θ′,Φ ⊢C′
2 : ∆′,Σ′)

and either C′
1↓b or C′

2↓b. There are two cases (up to symmetry of!):

– If t1 = let x : T = block in t ′1 and t2 = let y : U = b.succ() in t′2 then C′′
2↓b.

– If t1 = let x : T = block in t ′1 and t2 = let y : U = return(v : T) in t′2 then we have:

(∆′′,Φ ⊢C′′
1 : Θ′′,Σ′′)

ν(∆′
2).n〈return v〉?

→ (∆′′,∆′
2,Φ ⊢ ν(∆1) . (n〈t′1[v/x]〉 ‖C′′′

1) : Θ′,Σ′)

(Θ′′,Φ ⊢C′′
2 : ∆′′,Σ′′)

ν(∆′
2).n〈return v〉!

→ (Θ′′,Φ ⊢ ν(∆′′
2) . (n〈let y : U = block in t′2〉 ‖C′′′

2) : ∆′′,∆′
2,Σ′′)

where ∆2 = (∆′
2,∆′′

2) and moreover:

n〈t1! t2〉 ≡ n〈(let y : U = block in t′2)! t1[v/x]〉↓b

so by inductive hypothesis:

(∆′′,Φ ⊢C′′
1 : Θ′′,Σ′′)

ν(∆′
2).n〈return v〉?

→ ==
s2

⇒ (∆′,Φ ⊢C′
1 : Θ′,Σ′)

(Θ′′,Φ ⊢C′′
2 : ∆′′,Σ′′)

ν(∆′
2).n〈return v〉!

→ ==
s̄2

⇒ (Θ′,Φ ⊢C′
2 : ∆′,Σ′)

and either C′
1↓b or C′

2↓b, as required. ✷

16

4.3 Proof of soundness

Theorem 4.5 (Soundness of traces for may testing) If Traces(∆ ⊢C1 : Θ) ⊆ Traces(∆ ⊢C2 : Θ)
then ∆ |= C1 ❁∼may C2 : Θ

Proof: Suppose that Traces(∆⊢C1 : Θ)⊆Traces(∆ ⊢C2 : Θ) and that we have (Θ,b : barb ⊢C0 : ∆)
such that (C1 ‖C0)⇓b; we must show that (C1 ‖C0)⇓b also.

Now, since (C1 ‖C0)⇓b, we can use Corollary 4.4 to get:

(∆,b : barb ⊢C1 : Θ) ==
s
⇒ (∆′,b : barb ⊢C′

1 : Θ′,Σ′)

(Θ,b : barb ⊢C0 : ∆) ==
s̄
⇒ (Θ′,b : barb ⊢C′

0 : ∆′,Σ′)

and one of the following cases holds:

• Case (C′
1↓b). Since C′

1↓b we can find a label ω! of the form:

ω! = ν(~n : ~T) .n〈callb.succ()〉!

such that:

(∆′,b : barb ⊢C′
1 : Θ′,Σ′)

ω!
→

Since Traces(∆ ⊢C1 : Θ) ⊆ Traces(∆ ⊢C2 : Θ) we have:

(∆,b : barb ⊢C2 : Θ) ==
s
⇒ (∆′,b : barb ⊢C′

2 : Θ′,Σ′)
ω!
→

and hence C′
2↓b. By Lemma 4.1 we know that C2 ‖C0 ≡C2!C0 and so by Proposition 4.3

we have: (C2 ‖C0) ⇒C′′ where:

ν(∆′,Θ′,Σ′ \∆,Θ) . (C′
2!C′

0) ≡C′′

By Lemma 4.2, since C′
2↓b we have that C′′↓b, and so (C2 ‖C0)⇓b as required.

• Case (C′
0↓b). Similar to the above. ✷

5 Completeness of traces for may testing

We now turn to the question of whether trace inclusion captures the may testing preorder exactly.

We have already shown that trace inclusion implies may testing inclusion, and so we must consider

the converse—completeness.

A key step in demonstrating completeness of traces for may testing is to find, for each trace, a

component which exhibits that trace; we call this problem definability. However, we only actually

require definability for traces which originated from well-typed components. To identify these we

present a type system for traces ∆ ⊢ s : trace Θ which captures exactly those we require.

Due to an amount of latency and asynchrony in the labelled transition system, to demonstrate

definability, we found it necessary to define an information order ∆ ⊢ r ⊑ s : trace Θ for typed traces

which incorporates prefixing, input receptivity [12], and commutativity of certain actions.

In the next section we introduce the type system for traces and demonstrate that every trace

from a well-typed component is in fact well-typed. In the section which follows this we introduce

the information order on traces and prove the properties required of it.

17

∆ ⊢ ε : trace Θ

n is input-enabled in ∆ ⊢ s : trace Θ
dom (∆′) ⊆ fn (n〈call p.l(~v)〉)

;Θ,Θ(s) ⊢ p : [. . . , l : (~T)→T, . . .]

;∆,Θ,∆(s),Θ(s),∆′ ⊢~v : ~T
;∆,Θ,∆(s),Θ(s),∆′ ⊢ n : thread

∆ ⊢ sν(∆′) .n〈call p.l(~v)〉? : trace Θ

n is output-enabled in ∆ ⊢ s : trace Θ
dom (Θ′) ⊆ fn (n〈call p.l(~v)〉)

;∆,∆(s) ⊢ p : [. . . , l : (~T)→T, . . .]

;∆,Θ,∆(s),Θ(s),Θ′ ⊢~v : ~T
;∆,Θ,∆(s),Θ(s),Θ′ ⊢ n : thread

∆ ⊢ sν(Θ′) .n〈call p.l(~v)〉! : trace Θ

∆ ⊢ s : trace Θ
popn(s) = ν(∆′) .n〈call p.l(~v)〉?

dom (Θ′) ⊆ fn (v)

;Θ,Θ(s) ⊢ p : [. . . , l : (~T)→T, . . .]
;∆,Θ,∆(s),Θ(s),Θ′ ⊢ v : T

∆ ⊢ sν(Θ′) .n〈returnv〉! : trace Θ

∆ ⊢ s : trace Θ
popn(s) = ν(Θ′) .n〈call p.l(~v)〉!

dom (∆′) ⊆ fn (v)

;∆,∆(s) ⊢ p : [. . . , l : (~T)→T, . . .]
;∆,Θ,∆(s),Θ(s),∆′ ⊢ v : T

∆ ⊢ sν(∆′) .n〈returnv〉? : trace Θ

Figure 15: Rules for judgement ∆ ⊢ s : trace Θ

∆ ⊢ s : trace Θ popn(s) = γ!

n is input-enabled in ∆ ⊢ s : trace Θ
∆ ⊢ s : trace Θ popn(s) = ∗ n 6∈ ∆,∆(s)

n is input-enabled in ∆ ⊢ s : trace Θ

∆ ⊢ s : trace Θ popn(s) = γ?

n is output-enabled in ∆ ⊢ s : trace Θ
∆ ⊢ s : trace Θ popn(s) = ∗ n 6∈ Θ,Θ(s)

n is output-enabled in ∆ ⊢ s : trace Θ

Figure 16: Rules for judgement n is input/output-enabled in ∆ ⊢ s : trace Θ

5.1 Types for traces

The type rules for traces make use of some auxilliary notions which we define below:

We write C ≡C[D] to mean

C ≡ ν(∆) . (D ‖C′)

for some ∆, C′.

Define the thread of an action as:

thread (ν(∆) .n〈· · ·〉?) = thread (ν(Θ) .n〈· · ·〉!) = n

Define the threads of a trace as:

threads (a1 · · · an) = {thread (a1), . . . , thread (an)}

For a given thread n and trace s, define n is balanced in s as:

18

• If n 6∈ threads (s) then n is balanced in s.

• If n is balanced in s1 and s2 then n is balanced in s1 s2.

• If n is balanced in s then n is balanced in ν(∆) .n〈call p.l(~n)〉?s ν(Θ) .n〈returnv〉!.

• If n is balanced in s then n is balanced in ν(Θ) .n〈call p.l(~n)〉!sν(∆) .n〈returnv〉?.

Define popn(s) as:

• If n is balanced in s then popn(s) = ∗.

• If n is balanced in s and a = ν(∆) .n〈call p.l(~v)〉? then popn(r as) = a.

• If n is balanced in s and a = ν(Θ) .n〈call p.l(~v)〉! then popn(r a s) = a.

Define ∆(s) to be the bound input names of s:

∆(ε) = ε
∆(ν(~n : ~T) .a!s) = ∆(s)

∆(ν(~n : ~T) .a?s) = ~n : ~T ,∆(s)

and Θ(s) to be the bound output names of s:

Θ(ε) = ε
Θ(ν(~n : ~T) .a?s) = Θ(s)

Θ(ν(~n : ~T) .a!s) = ~n : ~T ,Θ(s)

The type system for traces is given in Figures 15 and 16.

Lemma 5.1 (Trace Duality) If ∆ ⊢ s : trace Θ then Θ ⊢ s̄ : trace ∆

Proof: Follows by a straightforward induction on the derivation of ∆ ⊢ s : trace Θ. ✷

It will be useful to prove two technical lemmas before we can prove that Trace Subject Reduc-

tion (Proposition 5.4) holds.

Lemma 5.2

1. If n is balanced in s and:

(∆ ⊢C : Θ) ==
s
⇒ (∆′ ⊢C′[n〈let x : T = block in t〉] : Θ′)

then C ≡C[n〈let x : T = block in t〉].

2. If n is balanced in s and~e′ are block/return-free, and:

(∆ ⊢C : Θ) ==
s
⇒ (∆′ ⊢C′[n〈let~x′ : ~T ′ =~e′ in let y : U = return(v : T) in t〉] : Θ′)

then C ≡C[n〈let~x : ~T =~e in let y : U = return(v : T) in t〉] where~e is block/return free.

19

Proof: Easy induction on s. ✷

Lemma 5.3

1. If C is block/return free and (∆⊢C : Θ) =
s
⇒ =========

ν(Θ′).n〈return v〉!
⇒ then s = s1 ν(∆′) .n〈call p.l(~v)〉? s2

where n is balanced in s2 .

2. If C is block/return free and (∆⊢C : Θ) =
s
⇒ =========

ν(∆′).n〈return v〉?
⇒ then s = s1 ν(Θ′) .n〈call p.l(~v)〉! s2

where n is balanced in s2 .

Proof: We prove these properties simultaneously by an induction on the length of s. We only show

the argument for Part 1 as Part 2 can be shown in a similar manner. By analysis of the rules of the

lts, we have:

(∆ ⊢C : Θ) ==
s
⇒ (∆′′ ⊢C′′[n〈let x : T = return (v : U) in t〉] : Θ′′)

ν(Θ′).n〈return v〉!
→

Now, partition s into s3 s2 picking s2 to be the longest suffix of s in which n is balanced. We then

use Lemma 5.2 to get that:

(∆⊢C : Θ) =
s3

⇒ (∆′′ ⊢C′′[n〈let~x :~T =~e in let x : T = return (v′ :U) in t〉] : Θ′′) =
s2

⇒
ν(Θ′).n〈return v〉!

→

We now proceed by analysis of s3:

• s3 is not of the form ε since C is block/return free.

• s3 is not of the form s1 a with thread (a) 6= n, since s2 is required to be the longest suffix of s

in which n is balanced.

• s3 is not of the form s1 γ! since n〈let ~x : ~T =~e in let x : T = return(v′ : U) in t〉 is not of the

form n〈let y : U = block in t′〉.

• s3 is not of the form s1 ν(∆′′) .n〈returnv′〉? since otherwise, by applying Part 2 of the inductive

hypothesis we can partition s1 into s′1 ν(Θ′′) . n〈call p′.l′(~v′)〉! s′2 where n is balanced in s′2,

hence n is balanced in ν(Θ′′) . n〈call p′.l′(~v′)〉! s′2s1 ν(∆′′) . n〈returnv′〉? s2, contradicting the

requirement that s2 is the longest such suffix of s.

• So, by a process of elimination, s3 is of the form s1 ν(∆′) .n〈call p.l(~v)〉? as required. ✷

Proposition 5.4 (Trace Subject Reduction) If ∆ ⊢C : Θ is block/return free

and (∆ ⊢C : Θ) ==
s
⇒ (∆′ ⊢C′ : Θ′) then ∆ ⊢ s : trace Θ and ∆′ ⊢C′ : Θ′.

Proof: We proceed by induction on the derivation of (∆ ⊢C : Θ) ==
s
⇒ (∆′ ⊢C′ : Θ′).

It is relatively easy to check that ∆′ ⊢C′ : Θ′ where ==
s
⇒ is given by a single axiom instance.

We use the inductive hypothesis and Proposition 2.1 to deal with the more general case. We now

show ∆ ⊢ s : trace Θ. The base case in which s is empty is trivial. Suppose instead that s is non-

empty: we perform a case-analsis on the last action of s.

20

Case s = s′ ν(∆′) .n〈call p.l(~v)〉?. We know that

(∆ ⊢C : Θ) ==
s′

⇒ (∆,∆(s′) ⊢C′ : Θ,Θ(s′))
ν(∆′).n〈call p.l(~v)〉?

→

so we have that either

C′ ≡ ν(∆′) .ν(∆′′) .n〈let x : T = block in t〉 ‖C′′

or n ∈ ∆,∆(s′) and n is a fresh thread to s′. We can apply the inductive hypothesis to s′ to

see that ∆ ⊢ s′ : trace Θ and we consider popn(s′): if n ∈ ∆,∆(s′) and n is fresh thread to

s′ then popn(s′) is necessarily ∗. Otherwise we know that C′ ≡ ν(∆′) . ν(∆′′) . n〈let x : T =
block in t〉 ‖C′′ and therefore the last action which could have occurred at n must have been

an output, that is, popn(s′) = γ!. In both cases we see that

n is input enabled in ∆ ⊢ s′ : trace Θ (1)

We know that (∆,∆(s′) ⊢C′ : Θ,Θ(s′))
ν(∆′).n〈call p.l(~v)〉?

→ and we know that the side-conditions

on the transition rule for ν(∆′) . γ? actions guarantees that

dom (∆′) ⊆ fn (~v) (2)

We also know that the side-conditions on rule for call-input actions guarantees that

;∆,∆(s′),Θ,Θ(s′),∆′ ⊢ p.l(~v) : T and p ∈ Θ,Θ(s′)

We use this to see that

;Θ,Θ(s′),∆′ ⊢ p : [. . . l : (~T)→T] (3)

and

;∆,∆(s′),Θ,Θ(s′),∆′ ⊢~v : ~T (4)

Lastly, it is easy to see that

;∆,∆(s′),Θ,Θ(s′),∆′ ⊢ n : thread (5)

We collect the statements (1)–(5) together to see that they form the hypotheses of the type

rule which allows us to conclude

∆ ⊢ s′ ν(∆′) .n〈call p.l(~v)〉? : trace Θ

as required.

Case s = s′ ν(Θ′) .n〈call p.l(~v)〉!. Similar to previous case.

Case s = s′ ν(Θ′) .n〈returnv〉!. We know that

(∆ ⊢C : Θ) ==
s′

⇒ (∆,∆(s′) ⊢C′ : Θ,Θ(s′))
ν(Θ′).n〈return v〉!

→

so we have that

C′ ≡C′[n〈let x : T = return (v : U) in t〉]

We can apply the inductive hypothesis to obtain

21

∆ ⊢ s′ : trace Θ (1)

and we notice that because C is block/return free we can apply Lemma 5.3 to get:

s′ = s1 ν(∆′) .n〈call p.l(~v)〉? s2

where n is balanced in s2. Given this, we see that

popn(s1 ν(∆′) .n〈call p.l(~v)〉? s2) = ν(∆′) .n〈call p.l(~v)〉?

hence

popn(s′) = ν(∆′) .n〈call p.l(~v)〉? (2)

Again, the side-conditions on the transition rule for ν(Θ′) . γ! guarantee that

dom (Θ′) ⊆ fn (v) (3)

We also know, by (1) and the fact that prefixes of well-typed traces are also well-typed, that

∆ ⊢ s1 ν(∆′) .n〈call p.l(~v)〉? : trace Θ

and we see that this must have been inferred using a hypothesis

;Θ,Θ(s1) ⊢ p : [. . . l : (~U)→U ′ . . .]

which, by weakening, gives us

;Θ,Θ(s′) ⊢ p : [. . . l : (~U)→U ′ . . .] (4)

Lastly, because

(∆,∆(s′) ⊢C′ : Θ,Θ(s′))

and

C′ ≡C′[n〈let x : T = return (v : U) in t〉]

we see that

;∆,∆(s′),Θ,Θ(s′),Θ′ ⊢ v : U

So, by Lemma 5.2 together with the typing side-conditions for call-input transitions, we have

that U = U ′, and so

;∆,∆(s),Θ,Θ(s),Θ′ ⊢ v : U (5)

We collect the statements (1)–(5) together to see that they form the hypotheses of the type

rule which allows us to conclude

∆ ⊢ s′ ν(Θ′) .n〈returnv〉! : trace Θ

as required.

Case s = s′ ν(∆′) .n〈returnv〉?. Similar to previous case. ✷

22

5.2 Information order on traces

The information preorder on traces ∆ ⊢ r ⊑ s : trace Θ is generated by axioms (where in each case

we require both sides of the inequation to be well-typed traces):

∆ ⊢ s ⊑ sr : trace Θ
∆ ⊢ sγ? ⊑ s : trace Θ

∆ ⊢ sγ1?γ2!r ⊑ sγ2!γ1?r : trace Θ
∆ ⊢ sν(∆) . γ1?γ2?r ⊑ sν(∆) . γ2?γ1?r : trace Θ
∆ ⊢ sν(Θ) . γ1!γ2!r ⊑ sν(Θ) . γ2!γ1!r : trace Θ

Lemma 5.5 (Information Order Duality) If ∆ ⊢ r γ! ⊑ sγ! : trace Θ and fn (γ)∩Θ(r) = /0
and γ! 6∈ s,r then Θ ⊢ s̄ ⊑ r̄ : trace ∆.

Proof: We write ∆ ⊢ r ⊑n s : trace Θ if ∆ ⊢ r ⊑ s : trace Θ can be derived using n instances of

transitivity and no reflexivity. It is sufficient to show, by induction on n, that

∆ ⊢ r1γ!r2 ⊑
n sγ! : trace Θ implies Θ ⊢ s̄ ⊑ r̄1 : trace ∆

whenever fn (γ)∩Θ(r1) = /0 and γ! 6∈ s,r1. The base case, n = 0, asks that ∆ ⊢ r1γ!r2 ⊑ s1γ! : trace Θ
be derived from axioms alone. The argument is similar to that used in the inductive case so we omit

it here. Suppose then that ∆ ⊢ r1γ!r2 ⊑
n+1 sγ! : trace Θ, that is

∆ ⊢ r1γ!r2 ⊑
0 q ⊑n sγ! : trace Θ

for some q. We examine each of the five axioms in turn (for brevity we will elide the type environ-

ments in the judgements ∆ ⊢ r ⊑ s : trace Θ):

(i) Suppose q is r1γ!r2r so that

r1γ!r2 ⊑
0 r1γ!r2r ⊑n sγ!.

We apply the inductive hypothesis to q = r1γ!r2r to obtain s̄ ⊑ r̄1 as required.

(ii) Suppose r2 is r′2γ′? and q is r1γ!r′2 so that

r1γ!r′2γ′? ⊑0 r1γ!r′2 ⊑
n sγ!.

We apply the inductive hypothesis to finish.

(iii) (a) Suppose r1 is r′1γ1?γ2!r′′1 and q is r′1γ2!γ1?r′′1γ!r2 so that

r′1γ1?γ2!r′′1 γ!r2 ⊑
0 r′1γ2!γ1?r′′1γ!r2 ⊑

n sγ!.

We apply the inductive hypothesis to see that

s̄ ⊑ r̄′1γ2?γ1!r̄′′1 ⊑ r̄′1γ1!γ2?r̄′′1 = r̄1

as required.

23

(b) Suppose r2 is r′2γ1?γ2!r′′2 and q is r1γ!r′2γ2!γ1?r′′2 so that

r1γ!r′2γ1?γ2!r′′2 ⊑0 r1γ!r′2γ2!γ1?r′′2 ⊑n sγ!.

We apply the inductive hypothesis to see s̄ ⊑ r̄1 as required.

(c) Suppose r1 is r′1γ′? and q is r′1γ!γ′?r2 so that

r′1γ′?γ!r2 ⊑
0 r′1γ!γ′?r2 ⊑

n sγ!.

We apply the inductive hypothesis to obtain s̄⊑ r̄′1 and use the first axiom and transitivity

to see s̄ ⊑ r̄′1 ⊑ r̄′1γ′! = r̄1.

(iv) (a) Suppose r1 is r′1ν(∆) . γ1?γ2?r′′1 and q is r′1ν(∆) . γ2?γ1?r′′1γ!r2 so that

r′1ν(∆) . γ1?γ2?r′′1 γ!r2 ⊑
0 r′1ν(∆) . γ2?γ1?r′′1γ!r2 ⊑

n sγ!.

We apply the inductive hypothesis to obtain s̄ ⊑ r̄′1ν(∆) . γ2!γ1!r̄′′1 and we note that

r̄′1ν(∆) . γ2!γ1!r̄′′1 ⊑ r̄′1ν(∆) . γ1!γ2!r̄′′1 = r̄1

as required.

(b) Suppose r2 is r′2ν(∆) . γ1?γ2?r′′2 and q is r1γ!r′2ν(∆) . γ2?γ1?r′′2 so that

r1γ!r′2ν(∆) . γ1?γ2?r′′2 ⊑0 r1γ!r′2ν(∆) . γ2?γ1?r′′2 ⊑n sγ!.

We apply the inductive hypothesis to obtain s̄ ⊑ r̄1 as required.

(v) (a) Suppose r1 is r′1ν(Θ) .γ1!γ2!r′′1 and q is r′1ν(Θ) .γ2!γ1!r′′1γ!r2, for which the proof follows

as for Case (iv)(a).

(b) Suppose r2 is r′2ν(Θ) .γ1!γ2!r′′2 and q is r1γ!r′2ν(Θ) .γ2!γ1!r′′2 , for which the proof follows

as for Case (iv)(b).

(c) Suppose r1 is r′1ν(Θ) . γ′! and q is r′1ν(Θ) . γ!γ′!r2 so that

r′1ν(Θ) . γ′!γ!r2 ⊑
0 r′1ν(Θ) . γ!γ′!r2 ⊑

n sγ!.

We know that fn (γ)∩Θ(r1) = /0. This implies that Θ must be empty. Therefore we can

apply the inductive hypothesis to obtain s̄ ⊑ r̄′1 and then note r′1 ⊑ r′1ν(Θ) . γ′? = r̄1 by

the first axiom.

(d) Suppose r2 is γ′′!r′2, γ is ν(Θ) . γ′ and q is r1ν(Θ) . γ′′!γ′!r′2 so that

r1ν(Θ) . γ′γ′′!r′2 ⊑
0 r1ν(Θ) . γ′′!γ′!r′2 ⊑

n sν(Θ) . γ′!.

We first show a subsidiary result (as an induction on the derivation of ⊑), that:

if r3 ν(n : T) . γ3! r4 γ4! r5 ⊑ s3 ν(n : T) . γ5! s4 then s4 6= ε (1)

from which it follows that Θ is empty. The inductive hypothesis tells us that s̄ ⊑ r̄ν(Θ) .
γ′′? and we note that s̄ ⊑ r̄1ν(Θ) . γ′′? ⊑ r̄1 follows from the second axiom. ✷

24

Proposition 5.6 (Information Order Closure) If (∆ ⊢C : Θ) ==
s
⇒ and ∆ ⊢ r ⊑ s : trace Θ

then (∆ ⊢C : Θ) ==
r
⇒ .

Proof: Show that the following diagrams can be completed when thread (γ1) 6= thread (γ2):

·
γ2!

→ ·

·
↓

as

·
γ2!

→ ·

·
↓ γ2!

→ ·
↓

· → ·

·

γ1?
↓

as

· → ·

·

γ1?
↓

→ ·

γ1?
↓

·
γ2!

→ ·

·

γ1?
↓

as

·
γ2!

→ ·

·

γ1?
↓ γ2!

→ ·

γ1?
↓

·
ν(∆) . γ2?

→ ·

·

γ1?
↓

as

·
ν(∆) . γ2?

→ ·

·

ν(∆) . γ1?
↓ γ2?

→ ·

γ1?
↓

·
ν(Θ) . γ2!

→ ·

·

γ1!
↓

as

·
ν(Θ) . γ2!

→ ·

·

ν(Θ) . γ1!
↓ γ2!

→ ·

γ1!
↓

The result follows by an induction on the derivation of ∆ ⊢ r ⊑ s : trace Θ. ✷

5.3 Definability of traces

For a well-typed trace ∆ ⊢ s : trace Θ we give the definition of a component Comp (∆ ⊢ s : trace Θ)
in Figure 17. It is this component that we will show to exhibit the trace s and only traces r such that

r ⊑ s.

The definition of Comp (∆ ⊢ s : trace Θ) is rather lengthy so we offer an indication of how it

is constructed. Firstly, we construct two objects called Ref and State. The former contains a field

holding a pointer to the latter. The State object provides type-indexed families of methods called

out, inReturn, and inCall. We also provide object and thread definitions for all those references

for which the type demands it, i.e. those in Θ. The object definitions provide methods according

to the object types, where the method bodies simply indirectly re-route all calls to the appropriate

State.inCall. The thread definitions make indirect calls to State.out. It it through these that traces

are begun.

The bodies for the out, inReturn, and inCall methods depend on the next action in the trace

we are providing a definition for. For instance, if the next action to be performed is an output

25

Comp (∆ ⊢ s : trace Θ) = ν(Θ(s), ref : Ref,stateε : State) . (
ref[val = stateε] ‖
stateε[State(∆ ⊢ ε ≤ s : trace Θ)] ‖

∏{p[li = ref.val.inCallp.li:Li
| i = 1 . . .n] | p : [li : Li | i = 1 . . .n] ∈ Θ,Θ(s)} ‖

∏{n〈ref.val.outnone()〉 | n : thread ∈ Θ,Θ(s)}
)

Ref = [val : State]

State = [outT : ()→T, inReturnT : (T)→T, inCallp.l:L : L]

State(∆ ⊢ r ≤ s : trace Θ) = (
outT = OutT (∆ ⊢ r ≤ s : trace Θ),
inReturnT = InReturnT (∆ ⊢ r ≤ s : trace Θ),
inCallp.l:L = InCallp.l:L(∆ ⊢ r ≤ s : trace Θ)

)

OutT (∆ ⊢ r ≤ s : trace Θ) = λ() . (
when r a ≤ s and a = ν(Θ′) .n〈call p.l(~v)〉! and ;∆,Θ,∆(r),Θ(r),Θ′ ⊢ p.l(~v) : U :

if currentthread = n then

ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
ref.val.inReturnU(p.l(~v));
ref.val.outT ()

when r a ≤ s and a = ν(Θ′) .n〈returnv〉! and ;∆,Θ,∆(r),Θ(r),Θ′ ⊢ v : T :

if currentthread = n then

ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
v

otherwise :

stop

)

InReturnT (∆ ⊢ r ≤ s : trace Θ) = λ(x : T) . (
when r a ≤ s and a = ν(∆′) .n〈returnv〉? and ;∆,Θ,∆(r),Θ(r),∆′ ⊢ v : T :

if ∆,Θ,∆(r),Θ(r) ⊢ (currentthread,x) = ν(∆′) . (n,v) then

ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
v

otherwise :

stop

)

InCallp.l:(~T)→T (∆ ⊢ r ≤ s : trace Θ) = λ(~x : ~T) . (

when r a ≤ s and a = ν(∆′) .n〈call p.l(~v)〉? and ;∆,Θ,∆(r),Θ(r),∆′ ⊢~v : ~T :

if ∆,Θ,∆(r),Θ(r) ⊢ (currentthread,~x) = ν(∆′) . (n,~v) then

ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
ref.val.outT ()

otherwise :

stop

)

Figure 17: Definition of Comp (∆ ⊢ s : trace Θ)

26

if ∆ ⊢ () = ν() . () then t = t

if ∆ ⊢ (v,~v) = ν(p : U,~n : ~T) . (p,~p) then t = if v 6∈ ∆−1(U) then

(if ∆, p : U ⊢ (~v) = ν(~n : ~T) . (~p) then t)[v/p] else stop

if ∆ ⊢ (v,~v) = ν(~n : ~T) . (p,~p) then t = if v = p then (if ∆ ⊢ (~v) = ν(~n :~T) . (~p) then t) else stop

Figure 18: Definition of if ∆ ⊢ (~v) = ν(~n :~T) . (~p) then t (when p 6∈~n).

if v 6∈ ()−1(U) then t else stop = t

if v 6∈ (n : U,∆)−1(U) then t else stop = if v = n then stop else (if v 6∈ ∆−1(U) then t else stop)
if v 6∈ (n : T,∆)−1(U) then t else stop = if v 6∈ ∆−1(U) then t else stop

Figure 19: Definition of if v 6∈ ∆−1(U) then t else stop (when T 6= U).

n〈call p.l(~v)〉! then all of the bodies will be a stopped thread save for out which will have a method

body which will check that the calling thread is n and, if so, update Ref to point to a new State object

which will perform the next action in the trace. It will then indirectly call State.inReturn with the

result of calling p.l(~v) (on dangling p) to listen for an input interaction (cf. the labelled transition

rule for output, any subsequent action at this thread must be an input). Having successfully observed

an input interaction, the line of interrogation in this thread is complete so it must reset itself by

returning to a state in which it makes an indirect call to State.out. Similar definitions are given for

each type of action.

We provide no synchronisation in the Comp (∆ ⊢ s : trace Θ) component so that there is no

guarantee that the reductions will follow the precise sequence of calls needed to exhibit the trace.

However, with respect to may testing, this is irrelevant as we are only looking for one possible

successful sequence of execution. We do guarantee the existence of this in Proposition 5.9.

To be of use in the completeness proof though we need to know that the component defined is

actually well-typed. This is the subject of the next two lemmas.

Lemma 5.7 If ~x : ~T ;∆ ⊢~v : ~U , ~x : ~T ;∆,∆′ ⊢ ~p : ~U and ~x : ~T ;∆,∆′ ⊢ t : T then ~x : ~T ;∆ ⊢ if ∆ ⊢
(~v) = ν(∆′) . (~p) then t : T .

Proof: Straightforward induction on the definition of if ∆ ⊢ (~v) = ν(∆′) . (~p) then t. ✷

Lemma 5.8 If ∆ ⊢ s : trace Θ then ∆ ⊢ Comp (∆ ⊢ s : trace Θ) : Θ.

Proof: By examining the definition of Comp (∆ ⊢ s : trace Θ) we see that we are required to show

that

(i) ∆,Θ,Θ(s), stateε : State ⊢ ref[val = stateε] : (ref : Ref)

(ii) ∆,Θ,Θ(s), ref : Ref ⊢ stateε[State(∆ ⊢ ε ≤ s : trace Θ)] : (stateε : State)

(iii) ∆,Θ,Θ(s)\ p, ref : Ref,stateε : State ⊢ p[li = ref.val.inCallp.li:Li
| i = 1 . . .n] : (p : [li : Li | i =

1 . . .n]) for each p ∈ Θ,Θ(s)

27

(iv) ∆,Θ,Θ(s)\n, ref : Ref,stateε : State⊢ n〈ref.val.outnone()〉 : (n : thread) for each n∈Θ,Θ(s).

It is easy to check that all but (ii) follow from the definitions of the types State and Ref. We show

(ii) by establishing

;∆,Θ,Θ(s), ref : Ref ⊢ [State(∆ ⊢ r ≤ s : trace Θ)] : State

by induction on the length of s less the length of r. The base case (when s = r) follows as each

method body of State(∆ ⊢ r ≤ s : trace Θ) is stop and hence can be given any type. The inductive

case relies on the following properties:

(a) ;∆,Θ,Θ(s), ref : Ref ⊢ OutT (∆ ⊢ r ≤ s : trace Θ) : ()→T

(b) ;∆,Θ,Θ(s), ref : Ref ⊢ InReturnT (∆ ⊢ r ≤ s : trace Θ) : (T)→T

(c) ;∆,Θ,Θ(s), ref : Ref ⊢ InCallp.l:L(∆ ⊢ r ≤ s : trace Θ) : L

We only show how to establish (a) here as the remaining two cases can be dealt with similarly.

Suppose then that r a ≤ s with a = ν(Θ′) .n〈returnv〉! and ;∆,Θ,∆(r),Θ(r),Θ′ ⊢ v : T It is easy to

see by the inductive hypothesis that

;∆,Θ,Θ(s), ref : Ref ⊢ ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];v : T

holds, and also that ;∆,Θ,Θ(s), ref : Ref ⊢ currentthread : thread and

;∆,Θ,Θ(s), ref : Ref ⊢ n : thread.

This latter fact follows from ∆ ⊢ r a : trace Θ guaranteeing

;∆,Θ,∆(r),Θ(r), ref : Ref ⊢ n : thread.

We can now apply the previous Lemma to see that

;∆,Θ,Θ(s), ref : Ref ⊢ if ∆ ⊢ (currentthread) = ν() . (n) then

ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];v : T

which gives us that ;∆,Θ,Θ(s), ref : Ref ⊢ OutT (∆ ⊢ r ≤ s : trace Θ) : ()→T as required.

Alternatively, suppose that r a ≤ s with a = ν(Θ′) . n〈call p.l(~v)〉! and ;∆,∆(r),Θ,Θ(r),Θ′ ⊢
p.l(~v) : U . Given that State.inReturnU : (U)→U , and that State.outT : ()→T we can apply the

inductive hypothesis and previous Lemma as above to see that

;∆,Θ,Θ(s), ref : Ref ⊢ if currentthread = n then

ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
ref.val.inReturnU(p.l(~v));
ref.val.outT () : T

as required.

Otherwise the body of OutT (∆ ⊢ r ≤ s : trace Θ) is stop and this can be given any type. ✷

Proposition 5.9 (Definability) For any ∆ ⊢ s : trace Θ
we have (∆ ⊢ Comp (∆ ⊢ s : trace Θ) : Θ) ==

r
⇒ if and only if ∆ ⊢ r ⊑ s : trace Θ.

Proof: Given in Appendix B. ✷

28

5.4 Proof of completeness

Theorem 5.10 (Completeness of traces for may testing) If ∆ |= C1 ❁∼may C2 : Θ
then Traces(∆ ⊢C1 : Θ) ⊆ Traces(∆ ⊢C2 : Θ).

Proof: Choose any trace s1 such that:

(∆ ⊢C1 : Θ) ==
s1

⇒ (∆′ ⊢C′
1 : Θ′)

By Proposition 5.4 we have that ∆ ⊢ s1 : trace Θ, and so by Lemma 5.1 we have that Θ ⊢ s̄1 : trace ∆.

Pick a fresh b : barb and let ω! be:

ω! = ν(n : thread) .n〈callb.succ()〉!

and let C0 be:

C0 = Comp (Θ,b : barb ⊢ s̄1ω! : trace ∆)

Then by Proposition 5.9 we have:

(Θ,b : barb ⊢C0 : ∆) ==
s̄1

⇒ (Θ′,b : barb ⊢C′
0 : ∆′)

ω!
→

and so C′
0↓b. Thus, by Lemma 4.1, Proposition 4.3, and Lemma 4.2 we have (C1 ‖C0)⇓b. We know

that ∆ |=C1 ❁∼may C2 : Θ, that Θ,b : barb ⊢C0 : ∆, and (C1 ‖C0)⇓b so this implies (C2 ‖C0)⇓b. Thus,

by Lemma 4.1 and Corollary 4.4 we can find s2 such that:

(∆,b : barb ⊢C2 : Θ) ==
s2

⇒ (∆′′,Φ′′ ⊢C′′
2 : Θ′′,Σ′′)

(Θ,b : barb ⊢C0 : ∆) ==
s̄2

⇒ (Θ′′,Φ′′ ⊢C′′
0 : ∆′′,Σ′′)

and either C′′
0↓b or C′′

2↓b. Since b was chosen to be fresh, we must have that C′′
0↓b and hence

(Θ,b : barb ⊢ C0 : ∆) ===
s̄2ω!

⇒ so by Proposition 5.9: Θ,b : barb ⊢ s̄2ω! ⊑ s̄1ω! : trace ∆ and so by

Lemma 5.5 and narrowing: ∆ ⊢ s1 ⊑ s2 : trace Θ. Thus, by Proposition 5.6 we have: (∆ ⊢ C2 :

Θ) ==
s1

⇒ (∆′ ⊢C′
2 : Θ′) as required. ✷

6 Restricted sub-languages

The proof techniques use to obtain full abstraction here are quite robust and can also be carried out

for two restricted sub-languages:

1. The single-threaded sub-language is given by only allowing one name of type thread, and re-

moving new thread creation from the expression language. The definability result for Propo-

sition 5.9 does not use thread creation, so the proof of full abstraction goes through with only

minor changes to the proof of Theorem 5.10.

2. The sub-language with only field update (and no method update) can be given the same trace

semantics. The definability result for Proposition 5.9 only uses field update, and so the proof

of full abstraction goes through unchanged.

29

Thus, not only do we have a full abstraction result for the concurrent object calculus, we can also

specialise the results to become full abstraction result for other related languages.

One change which cannot easily be made is to remove the restriction that components be write

closed, since method, and even field, updates are not generally externally observable. It is unlikely

that traces which represent write interactions will be definable in the current sense. However, we

do believe that the restriction to write closed components is a reasonable one, since it corresponds

to existing ‘best practice’ for component design.

7 Conclusions and future work

In this paper we have presented the first fully abstract semantics for concurrent objects. The se-

mantics is fairly simple, and corresponds loosely to some of the messages used in UML interaction

diagrams. We do need to road test the trace semantics with some reasonably sized examples to

demonstrate that the calculation of traces is tractable.

There are a number of issues left open:

• Our semantics has much of the flavour of game semantics [2, 13], and this connection should

be investigated.

• The trace semantics characterise may testing, rather than the more common must testing or

bisimulation equivalence.

• The object calculus presented here does not include subtyping. We believe that the techniques

of [11] should be applicable to the provision of a fully abstract semantics even in the presence

of subtyping.

A Proof of trace composition and decomposition

We have to prove that for any components (∆,Φ ⊢C1 : Θ,Σ) and (Θ,Φ ⊢C2 : ∆,Σ) such that C1!

C2 ≡C, we have:

1. Composition: If (∆,Φ ⊢C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢C′

1 : Θ′,Σ′)

and (Θ,Φ ⊢C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢C′

2 : ∆′,Σ′) then C ⇒C′

where ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1!C′

2) ≡C′.

2. Decomposition: If C ⇒C′ then there exists some trace s

such that (∆,Φ ⊢C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢C′

1 : Θ′,Σ′)

and (Θ,Φ ⊢C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢C′

2 : ∆′,Σ′) where ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1!C′

2) ≡C′.

A.1 Composition

We show four lemmas, from which Composition follows by a simple induction.

Lemma A.1

30

1. If C1!C2 ≡ D ‖ E then there exist components such that C1 ≡D1 ‖ E1 and C2 ≡D2 ‖ E2 with

D ≡ D1!D2 and E ≡ E1!E2.

2. If C1!C2 ≡ ν(~n : ~T) .C then there exist components such that C1 ≡ ν(~n1 : ~T1) .C′
1 and C2 ≡

ν(~n2 : ~T2) .C′
2 with (~n : ~T) = (~n1 : ~T1,~n2 : ~T2) and C′ ≡C′

1!C′
2.

Proof: Proved by induction on the derivation of C1!C2. ✷

Lemma A.2 If C1!C2 ≡C and C1
β
→ C′

1 then C
β
→ C′ where C′

1!C2 ≡C′.

Proof: An induction on the proof of C1
β
→ C′

1, making use of Lemma A.1. ✷

Lemma A.3 If C1!C2 ≡C and C1
τ
→ C′

1 then C
τ
→ C′ where C′

1!C2 ≡C′.

Proof: An induction on the proof of C1
τ
→ C′

1, making use of Lemma A.1. ✷

Lemma A.4 If C1!C2 ≡C and (∆,Φ ⊢C1 : Θ,Σ)
γ?
→ (∆′,Φ ⊢C′

1 : Θ′,Σ′)

and (Θ,Φ ⊢C2 : ∆,Σ)
γ!
→ (Θ′,Φ ⊢C′

2 : ∆′,Σ′) then ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1!C′

2) ≡C.

Proof: A case analysis on γ.

• Case (γ = ν(~n : ~T) .n〈call p.l(~v)〉 and n 6∈ Σ).

Since (∆,Φ ⊢C1 : Θ,Σ)
γ?
→ (∆′,Φ ⊢C′

1 : Θ′,Σ′) and n 6∈ Σ, we must have that:

C′
1 ≡C1 ‖ n〈let y : T = p.l(~x) in return (y : T)〉

∆′ = (∆,~n : ~T)\ (n : thread)
Θ′ = Θ
Σ′ = Σ,n : thread

Since (Θ,Φ ⊢C2 : ∆,Σ)
γ!
→ (Θ′,Φ ⊢C′

2 : ∆′,Σ′) we must have that:

C2 ≡ ν(~n : ~T) .ν(~p : ~U) . (C′′
2 ‖ n〈let x : T = p.l(~x) in t〉)

C′
2 ≡ ν(~p : ~U) . (C′′

2 ‖ n〈let x : T = block in t〉)

We can then show that:

C1!C2 ≡ ν(~n : ~T) .ν(~p : ~U) . ((C1!C′′
2) ‖ n〈let x : T = p.l(~x) in t〉)

and that:

C′
1!C′

2 ≡ ν(~p : ~U) . ((C1!C′′
2) ‖ n〈let x : U = p.l(~x) in t〉)

and so:

ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1!C′

2) ≡C

as required.

31

• Case (γ = ν(~n : ~T) .n〈call p.l(~v)〉 and n ∈ Σ).

Similar to the previous case.

• Case (γ = ν(~n : ~T) .n〈returnv〉).

Since (∆,Φ ⊢C1 : Θ,Σ)
γ?
→ (∆′,Φ ⊢C′

1 : Θ′,Σ′) we must have that:

C1 ≡ ν(~p1 : ~U1) . (C′′
1 ‖ n〈let x : T = block in t1〉)

C′
1 ≡ ν(~p1 : ~U1) . (C′′

1 ‖ n〈t1[v/x]〉)

∆′ = ∆,~n : ~T

Θ′ = Θ
Σ′ = Σ

Since (Θ,Φ ⊢C2 : ∆,Σ)
γ!
→ (Θ′,Φ ⊢C′

2 : ∆′,Σ′) we must have that:

C2 ≡ ν(~n : ~T) .ν(~p2 : ~U2) . (C′′
2 ‖ n〈let y : U = return(v : T) in t2〉)

C′
2 ≡ ν(~p2 : ~U2) . (C′′

2 ‖ n〈let y : U = block in t2〉)

We then show that:

C1!C2 ≡ ν(~n : ~T) .ν(~p1 : ~U1) .ν(~p2 : ~U2) . ((C′′
1 !C′′

2) ‖ n〈(let y : U = block in t2)! (t1[v/x])〉)

and that:

C′
1!C′

2 ≡ ν(~p1 : ~U1) .ν(~p2 : ~U2) . ((C′′
1!C′′

2) ‖ n〈(let y : U = block in t2)! (t1[v/x])〉)

and so:

ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1!C′

2) ≡C

as required. ✷

Composition follows, by induction on the derivation of (∆,Φ ⊢C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢C′

1 : Θ′,Σ′)

and (Θ,Φ ⊢C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢C′

2 : ∆′,Σ′), making use of Lemmas A.2, A.3 and A.4.

A.2 Decomposition

We show three lemmas, from which Decomposition follows.

Lemma A.5 For any ∆,Φ ⊢ C1 : Θ,Σ and Θ,Φ ⊢ C2 : ∆,Σ if (C1!C2) ≡ ν(~n : ~T) . (C ‖ n〈let x :

T = e in t〉) then either we have:

(∆,Φ ⊢C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢ ν(~n1 : ~T1) . (C′

1 ‖ n〈let x : T = e in t1〉) : Θ′,Σ′)

(Θ,Φ ⊢C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢C′

2 : ∆′,Σ′)

where:

ν(∆′,Θ′,Σ′ \∆,Θ,Σ) .ν(~n1 : ~T1) . (C′
1 ‖ n〈t1〉)!C′

2 ≡ ν(~n : ~T) . (C ‖ n〈t〉)

or symmetrically, swapping the roles of C1 and C2.

32

Proof: An induction on the derivation of:

(C1!C2) ≡ ν(~n : ~T) . (C ‖ n〈let x : T = e in t〉)

The interesting case is when:

C1 ≡ n〈let x1 : T1 = block in t1〉

C2 ≡ n〈let x2 : T2 = return (v : T1) in t2〉

and:

n〈t1[v/x]〉!n〈let x2 : T2 = block in t2〉 ≡ ν(~n : ~T) . (C ‖ n〈let x : T = e in t〉)

so by definition of the lts, and by induction we have:

(∆,Φ ⊢C1 : Θ,Σ)
n〈return v〉?

→ (∆,Φ ⊢ n〈t1[v/x]〉 : Θ,Σ)

(∆,Φ ⊢ n〈t1[v/x]〉 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢ ν(~n1 : ~T1) . (C′

1 ‖ n〈let x : T = e in t1〉) : Θ′,Σ′)

and

(∆,Φ ⊢C2 : Θ,Σ)
n〈return v〉!

→ (Θ,Φ ⊢ n〈let x2 : T2 = block in t2〉 : ∆,Σ)

(Θ,Φ ⊢ n〈let x2 : T2 = block in t2〉 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢C′

2 : ∆′,Σ′)

where

ν(∆′,Θ′,Σ′ \∆,Θ,Σ) .ν(~n1 : ~T1) . (C′
1 ‖ n〈t1〉)!C′

2 ≡ ν(~n : ~T) . (C ‖ n〈t〉)

or symmetrically, as required. ✷

Lemma A.6 If C1!C2 ≡ C and C
β
→ C′ then there exists some trace s such that (∆,Φ ⊢ C1 :

Θ,Σ) =
s
⇒ (∆′,Φ ⊢C′

1 : Θ′,Σ′) and (Θ,Φ ⊢C2 : ∆,Σ) =
s̄
⇒ (Θ′,Φ ⊢C′

2 : ∆′,Σ′) where ν(∆′,Θ′,Σ′ \
∆,Θ,Σ) . (C′

1!C′
2) ≡C′.

Proof: We must have that C
β
→ C′ from:

C ≡ ν(~n : ~T) . (D ‖ n〈let x : T = e in t〉)

C′ ≡ ν(~n : ~T ,~n′ : ~T ′) . (D ‖ E ‖ n〈let~x : ~T =~e in t〉)

where we have an axiom:

n〈let x : T = e in t〉
β
→ ν(~n′ : ~T ′) . (E ‖ n〈let~x : ~T =~e in t〉

We then use Lemma A.5 to get (wlog):

(∆,Φ ⊢C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢ ν(~n1 : ~T1) . (C′′

1 ‖ n〈let x : T = e in t1〉) : Θ′,Σ′)

(Θ,Φ ⊢C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢C′

2 : ∆′,Σ′)

where

ν(∆′,Θ′,Σ′ \∆,Θ,Σ) .ν(~n1 : ~T1) . (C′′
1 ‖ n〈t1〉)!C′

2 ≡ ν(~n : ~T) . (D ‖ n〈t〉)

33

and so we use the axiom to get:

(∆,Φ ⊢C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢C′

1 : Θ′,Σ′)

where we define:

C′
1 ≡ ν(~n1 : ~T1,~n

′ : ~T ′) . (C′′
1 ‖ E ‖ n〈let~x : ~T =~e in t1〉)

and then verify that:

ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1!C′

2) ≡C′

as required. ✷

Lemma A.7 If C1!C2 ≡ C and C
τ
→ C′ then there exists some trace s such that (∆,Φ ⊢ C1 :

Θ,Σ) =
s
⇒ (∆′,Φ ⊢C′

1 : Θ′,Σ′) and (Θ,Φ ⊢C2 : ∆,Σ) =
s̄
⇒ (Θ′,Φ ⊢C′

2 : ∆′,Σ′) where ν(∆′,Θ′,Σ′ \
∆,Θ,Σ) . (C′

1!C′
2) ≡C′.

Proof: We must have that:

C ≡ ν(~n : ~T) . (D ‖ p[O] ‖ n〈let x : T = e in t〉)

C′ ≡ ν(~n : ~T) . (D ‖ p[O′] ‖ n〈let x : T = e′ in t〉)

where we have an axiom:

p[O] ‖ n〈let x : T = e in t〉
τ
→ p[O′] ‖ n〈let x : T = e′ in t〉

We then use Lemma A.5 to get (wlog):

(∆,Φ ⊢C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢ ν(~n1 : ~T1) . (C′′

1 ‖ n〈let x : T = e in t1〉) : Θ′,Σ′)

(Θ,Φ ⊢C2 : ∆,Σ) ==
s̄
⇒ (Θ′,Φ ⊢C′′

2 : ∆′,Σ′)

where:

ν(∆′,Θ′,Σ′ \∆,Θ,Σ) .ν(~n1 : ~T1) . (C′′
1 ‖ n〈t1〉)!C′′

2 ≡ ν(~n : ~T) . (D ‖ p[O] ‖ n〈t〉)

We now have three cases:

• Case (p ∈ dom (C′′
1)).

We must have that:

C′′
1 ≡ ν(~p : ~U) . (C′′′

1 ‖ p[O])

and so we use the axiom to get:

(∆,Φ ⊢C1 : Θ,Σ) ==
s
⇒ (∆′,Φ ⊢C′

1 : Θ′,Σ′)

where we define:

C′
1 ≡ ν(~n1 : ~T1,~p : ~U) . (C′′′

1 ‖ p[O′] ‖ n〈let x : T = e′ in t1〉)

and then verify that:

ν(∆′,Θ′,Σ′ \∆,Θ,Σ) . (C′
1!C′′

2) ≡C′

as required.

34

• Case (p 6∈ dom (C′′
1),n ∈ dom (C′′

2)).

We must have that:

C′′
2 ≡ ν(~p : ~U) . (C′′′

2 ‖ p[O] ‖ n〈let y : U = block in t2〉)

Moreover, since C1 is write-closed we must have that the axiom is:

p[O] ‖ n〈let x : T = p.l(~v) in t〉
τ
→ p[O] ‖ n〈let x : T = O.l(p)(~v) in t〉

in which case:

(∆,Φ ⊢C1 : Θ,Σ) =============
s ν(~n′1:~T ′

1).n〈call p.l(~v)〉!
⇒ (∆,Φ ⊢C′

1 : Θ′,~n′1 : ~T ′
1,Σ′)

where we define:

C′
1 ≡ ν(~n′′1 : ~T ′′

1) . (C′′
1 ‖ n〈let x : T = block in t1〉)

and we partition {~n1 : ~T1} into {~n′1 : ~T ′
1,~n

′′
1 : ~T ′′

1 } such that {~n′1} ⊆ fn (p.l(~v)) and {~n′′1} ∩
fn (p.l(~v)) = /0.

We also have:

(∆,Φ ⊢C2 : Θ,Σ) ==============
s ν(~n′1:~T ′

1).n〈call p.l(~v)〉?
⇒ (∆,~n′1 : ~T ′

1 ,Φ ⊢C′
2 : Θ′,Σ′)

where we define:

C′
2 ≡ ν(~p : ~U) . (C′′′

2 ‖ p[O] ‖ n〈let x : T = O.l(p)(~v) in let y : U = return (x : T) in t2〉)

and then verify that:

ν(∆′,~n′1 : ~T ′
1,Θ

′,Σ′ \∆,Θ,Σ) . (C′
1!C′

2) ≡C′

as required.

• Case (p 6∈ dom (C′′
1),n 6∈ dom (C′′

2)).

Similar to the above. ✷

Decomposition now follows by induction on the number of reductions in C1!C2 ⇒C′ and makes

use of Lemmas A.6 and A.7.

B Proof of definability

We have to show that for any ∆ ⊢ s : trace Θ we have (∆ ⊢ Comp (∆ ⊢ s : trace Θ) : Θ) ==
r
⇒

if and only if ∆ ⊢ r ⊑ s : trace Θ.

There are two parts to this proof: ‘if’ and ‘only if’, which we will detail in the following

sections. First though, for technical reasons, we extend the notion of β-reduction.

35

B.1 Technical preliminaries

In a component ν(∆) . (p[O] ‖C), the object name p is immutable if:

• There are no occurrences of p.l ⇐M in O or C.

• In each method ς(n : T) .λ(~x :~T) . 〈t〉 in O, there are no occurrences of n.l ⇐M in t.

We can now extend the notion of β-reduction to include method calls on immutable objects:

p[O] ‖ n〈let x : T = p.l(~v) in t〉
β
→ p[O] ‖ n〈let x : T = O.l(p)(~v) in t〉 (when p is immutable)(†)

The important property of β-reductions is that they are confluent with all other transitions:

Proposition B.1 If

(∆ ⊢C : Θ)
β
→ (∆ ⊢C′ : Θ)

(∆′ ⊢C′′ : Θ′)

α
↓

then either α = β and C′ ≡C′′ or

(∆ ⊢C : Θ)
β
→ (∆ ⊢C′ : Θ)

(∆′ ⊢C′′ : Θ′)

α
↓

β
→ (∆′ ⊢C′′′ : Θ′)

α
↓

Proof: A case analysis of the possible reductions of C. ✷

Corollary B.2 If

(∆ ⊢C : Θ)
β
→∗ (∆ ⊢C′ : Θ)

(∆′ ⊢C′′ : Θ′)

s
�

w

w

w then

(∆ ⊢C : Θ)
β
→∗ (∆ ⊢C′ : Θ)

(∆′ ⊢C′′ : Θ′)

s
�

w

w

w

β
→∗ (∆′ ⊢C′′′ : Θ′)

s
�

w

w

w

B.2 The ‘if’ direction

We suppose that ∆ ⊢ r ⊑ s : trace Θ. We note that, due to Proposition 5.6, it suffices to show that:

(∆ ⊢ Comp (∆ ⊢ s : trace Θ) : Θ) ==
s
⇒ . We proceed by describing the different components which

may be reached from Comp (∆ ⊢ s : trace Θ) after performing each visible action in s. We do this

by giving in Figure 20 a definition for a component for ∆ ⊢ r ≤ s : trace Θ. The intended meaning

is that a component for ∆ ⊢ r ≤ s : trace Θ has already performed the prefix r of s and is still able

to perform the remaining actions in s. Note that in any component for ∆ ⊢ r ≤ s : trace Θ, the only

mutable object is ref: all other objects are immutable. This allows us to use the extended notion of

β-reduction given by (†) above.

Lemma B.3 For any ∆ ⊢ s : trace Θ we have Comp (∆ ⊢ s : trace Θ) is a component for ∆ ⊢ ε ≤ s :

trace Θ.

36

A component for ∆ ⊢ r ≤ s : trace Θ (resp. for ∆ ⊢ q ⊑ r ≤ s : trace Θ) is one of the

form:

ν(Θ(s)\Θ(q)) .ν(ref : Ref) .ν(stater′ : State | ∆ ⊢ r′ ≤ r : trace Θ) . (
ref[val = stater] ‖

∏{stater′ [State(∆ ⊢ r′ ≤ s : trace Θ)] | ∆ ⊢ r′ ≤ r : trace Θ} ‖

∏{p[li = ref.val.inCallp.li:Li
| i = 1 . . .n] | p : [li : Li | i = 1 . . .n] ∈ Θ,Θ(s)} ‖

∏{n〈tn〉 | n : thread ∈ Θ,Θ(s)} ‖

∏{n〈tn〉 | n : thread ∈ ∆,∆(s) and n ∈ threads (q)}
)

where tn is a thread at n for ∆ ⊢ r ≤ s : trace Θ (resp. for ∆ ⊢ q ⊑ r ≤ s : trace Θ).

A thread at n for ∆ ⊢ r ≤ s : trace Θ is one of the following:

1. let x : T = ref.val.outT () in t

where n is output-enabled in ∆ ⊢ r : trace Θ and t is a return (x : T) thread at n

for ∆ ⊢ r ≤ s : trace Θ.

2. let x : T = block in t

where n is input-enabled in ∆ ⊢ r : trace Θ and t is a return (x : T) thread at n

for ∆ ⊢ r ≤ s : trace Θ.

A return(v : T) thread at n for ∆ ⊢ r ≤ s : trace Θ is one of the following:

1. v

where n is balanced in r.

2. ref.val.inReturnT (v); t
where r = r1 ar2, a = ν(Θ′) .n〈call p.l(~v)〉!, n is balanced in r2,

and t is a thread at n for ∆ ⊢ r1 ≤ s : trace Θ.

3. let y : U = return(v : T) in t

where r = r1 ar2, a = ν(Θ′) .n〈call p.l(~v)〉?, n is balanced in r2,

and t is a return(y : U) thread at n for ∆ ⊢ r1 ≤ s : trace Θ.

Figure 20: Definition of a component for ∆ ⊢ r ≤ s : trace Θ and for ∆ ⊢ q ⊑ r ≤ s : trace Θ

37

A thread at n for ∆ ⊢ q ⊑ r ≤ s : trace Θ is one of the following:

1. stop

2. a thread at n for ∆ ⊢ r ≤ s : trace Θ
where projn (q) = projn (r).

3. let x : T = p.l(~v) in t

where projn (qa) = projn (r), a = ν(Θ′) .n〈call p.l(~v)〉!, and t is a return(x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

4. let x : T = return(v : U) in t

where projn (qa) = projn (r), a = ν(Θ′) .n〈returnv〉!, and t is a return (x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

5. let y : U = ref.val.inCallp.l:L(~v) in let x : T = return (y : U) in t

where projn (q) = projn (r a), a = ν(∆′) .n〈call p.l(~v)〉?, and t is a return(x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

6. t

where projn (q) = projn (r a), a = ν(∆′) .n〈returnv〉?, and t is a return (v : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ for some T .

7. ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)]; t
where projn (q) = projn (r a), and t is a thread at n for ∆ ⊢ r a ≤ s : trace Θ.

8. t

where n〈t〉
β
→ n〈t′〉 and t′ is a thread at n for ∆ ⊢ q ⊑ r ≤ s : trace Θ

Figure 21: Definition of a thread for ∆ ⊢ q ⊑ r ≤ s : trace Θ

38

Proof: An inspection of the definition of Comp (∆ ⊢ s : trace Θ). ✷

Lemma B.4 If ∆ ⊢ r a ≤ s : trace Θ and ∆′ ⊢C : Θ′ is a component for ∆ ⊢ r ≤ s : trace Θ
then (∆′ ⊢C : Θ′) ==

a
⇒ (∆′′ ⊢C′ : Θ′′) where C′ is a component for ∆ ⊢ r a ≤ s : trace Θ.

Proof: By considering the definition of ∆ ⊢ r : trace Θ we see that the following cases are exhaus-

tive:

1. Case a = ν(Θ′′′) .n〈returnv〉! and C ≡ ν(Θ′′′) .C[ref[val= stater] ‖ n〈let y :U = ref.val.outU() in let x :

T = return(y : U) in t〉]

We have:

(∆′ ⊢C : Θ′)
τ
→ (∆′ ⊢ ν(Θ′′′) .C[ref[val = stater] ‖

n〈let y : U = stater.outU() in let x : T = return(y : U) in t〉] : Θ′)
β
→∗ (∆′ ⊢ ν(Θ′′′) .C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)]; let y : U = v in let x : T = return(y : U) in t〉] : Θ′)
τ
→ (∆′ ⊢ ν(Θ′′′,stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈let y : U = v in let x : T = return (y : U) in t〉] : Θ′)
β
→∗ (∆′ ⊢ ν(Θ′′′,stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈let x : T = return(v : U) in t〉] : Θ′)
a
→ (∆′ ⊢ ν(stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈let x : T = block in t〉] : Θ′,Θ′′′)

which is a component for ∆ ⊢ r a ≤ s : trace Θ as required.

2. Case a = ν(Θ′′′) .n〈call p.l(~v)〉! and C≡ ν(Θ′′′) .C[ref[val= stater] ‖ n〈let y :U = ref.val.outU() in t〉]

We have:

(∆′ ⊢C : Θ′)
τ
→ (∆′ ⊢ ν(Θ′′′) .C[ref[val = stater] ‖

n〈let y : U = stater.outU() in t〉] : Θ′)
β
→∗ (∆′ ⊢ ν(Θ′′′) .C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
let x : T = p.l(~v) in ref.val.inReturnT (x); let y : U = ref.val.outU() in t〉] : Θ′)

τ
→ (∆′ ⊢ ν(Θ′′′,stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈let x : T = p.l(~v) in ref.val.inReturnT (x); let y : U = ref.val.outU() in t〉] : Θ′)
a
→ (∆′ ⊢ ν(stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈let x : T = block in ref.val.inReturnT (x); let y : U = ref.val.outU() in t〉] : Θ′,Θ′′′)

which is a component for ∆ ⊢ r a ≤ s : trace Θ as required.

3. Case a = ν(∆′′′) .n〈returnv〉? and C≡C[ref[val= stater] ‖ n〈let x : T = block in ref.val.inReturnT (x); t〉]

39

We have:

(∆′ ⊢C : Θ′)
a
→ (∆′,∆′′′ ⊢C[ref[val = stater] ‖

n〈let x : T = v in ref.val.inReturnT (x); t〉] : Θ′)
β
→∗ (∆′,∆′′′ ⊢C[ref[val = stater] ‖

n〈ref.val.inReturnT (v); t〉] : Θ′)
τ
→ (∆′,∆′′′ ⊢C[ref[val = stater] ‖

n〈stater.inReturnT (v); t〉] : Θ′)
β
→∗ (∆′,∆′′′ ⊢C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)]; t〉] : Θ′)
τ
→ (∆′,∆′′′ ⊢C[ν(stater a : State) . ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈t〉] : Θ′)

which is a component for ∆ ⊢ r a ≤ s : trace Θ as required.

4. Case a = ν(∆′′′) .n〈call p.l(~v)〉? and C ≡C[ref[val = stater] ‖ n〈let x : T = block in t〉]

We have:

(∆′ ⊢C : Θ′)
a
→ (∆′,∆′′′ ⊢C[ref[val = stater] ‖

n〈let y : U = p.l(~v) in let x : T = return (y : U) in t〉] : Θ′)
β
→∗ (∆′,∆′′′ ⊢C[ref[val = stater] ‖

n〈let y : U = ref.val.inCallp.l:L(~v) in let x : T = return (y : U) in t〉] : Θ′)
τ
→ (∆′,∆′′′ ⊢C[ref[val = stater] ‖

n〈let y : U = stater.inCallp.l:L(~v) in let x : T = return (y : U) in t〉] : Θ′)
β
→∗ (∆′,∆′′′ ⊢C[ref[val = stater] ‖

n〈ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];
let y : U = ref.val.outU() in let x : T = return (y : U) in t〉] : Θ′)

τ
→ (∆′,∆′′′ ⊢C[ν() . ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖

n〈let y : U = ref.val.outU() in let x : T = return (y : U) in t〉] : Θ′)

which is a component for ∆ ⊢ r a ≤ s : trace Θ as required.

5. Case a = ν(∆′′′) .n〈call p.l(~v)〉? and C ≡C[ref[val = stater]] where n 6∈ Θ′.

Similar to the previous case. ✷

The ‘if’ half of definability now follows, by induction on Lemma B.4, with Lemma B.3 as the base

case.

B.3 The ‘only if’ direction

We suppose that ∆ ⊢ s : trace Θ and that (∆ ⊢ Comp (∆ ⊢ s : trace Θ) : Θ) ===
r
⇒ so we must

demonstrate that ∆ ⊢ r ⊑ s : trace Θ. As above we make an auxilliary definition of a component

40

for ∆ ⊢ q ⊑ r ≤ s : trace Θ in Figures 20 and 21 with the intended meaning that a component for

∆ ⊢ q ⊑ r ≤ s : trace Θ has performed the trace q and this is ⊑ related to some prefix of s. Note

that, as prefix ordering ≤ on traces is contained in ⊑ and ⊑ is transitive, then we also have q ⊑ s

for such components. Again, in any component for ∆ ⊢ r ≤ s : trace Θ, the only mutable object is

ref: all other objects are immutable. This allows us to use the extended notion of β-reduction given

by (†) above.

Lemma B.5 For any ∆ ⊢ s : trace Θ we have Comp (∆ ⊢ s : trace Θ) is a component for ∆ ⊢ ε ⊑
ε ≤ s : trace Θ.

Proof: An inspection of the definition of Comp (∆ ⊢ s : trace Θ). ✷

Lemma B.6 If C is a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ and C
β
→ C′ then C′ is a component

for ∆ ⊢ q ⊑ r ≤ s : trace Θ.

Proof: An inspection of the definition of a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ. ✷

Lemma B.7 If C is a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ and C
τ
→ C′ then C′ β

→∗ C′′ where C′′

is a component for ∆ ⊢ q ⊑ r′ ≤ s : trace Θ.

Proof: The following cases are exhaustive:

1. Case C≡C[n〈let x : T = ref.val.inCallp.l:L(~v) in t〉]
τ
→ C[n〈let x : T = stater.inCallp.l:L(~v) in t〉]≡

C′

where projn (q) = projn (r a), a = ν(∆′) . n〈call p.l(~v)〉?, and t is a return(x : T) thread at n

for ∆ ⊢ r ≤ s : trace Θ.

If (up to α-converting Θ′) ∆ ⊢ r a ≤ s : trace Θ then we have:

C′ β
→∗ C[n〈ref .val := new[State(∆ ⊢ r a ≤ s : trace Θ)]; let x : T = ref.val.outU() in t〉]

which is a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ as required.

If ∆ ⊢ r a 6≤ s : trace Θ then we have:

C′ β
→∗ C[n〈stop〉]

which is a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ as required.

2. Case C ≡C[n〈ref .val.inReturnT (v); t〉]
τ
→ C[n〈stater.inReturnT (v); t〉] ≡C′

where projn (q) = projn (r a), a = ν(∆′) .n〈returnv〉?, and t is a thread at n for ∆ ⊢ r a ≤ s :

trace Θ.

If (up to α-converting Θ′) ∆ ⊢ r a ≤ s : trace Θ then we have:

C′ β
→∗ C[n〈ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)]; t〉]

which is a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ as required.

If ∆ ⊢ r a 6≤ s : trace Θ then we have:

C′ β
→∗ C[n〈stop〉]

which is a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ as required.

41

3. Case C ≡C[ref[val = stater] ‖ n〈ref .val := new[State(∆ ⊢ r a ≤ s : trace Θ)]; t〉]
τ
→ ν(stater a : State) .C[ref[val = stater a] ‖ stater a[State(∆ ⊢ r a ≤ s : trace Θ)] ‖ n〈t〉] ≡C′

where t is a thread at n for ∆ ⊢ r a ≤ s : trace Θ.

By definition, C′ is a component for ∆ ⊢ q ⊑ r a ≤ s : trace Θ.

4. Case C ≡C[n〈let x : T = ref.val.outT () in t〉]
τ
→ C[n〈let x : T = stater.outT () in t〉] ≡C′

where projn (q) = projn (r), n is output-enabled in ∆ ⊢ r : trace Θ and t is a return(x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

If ∆ ⊢ r a ≤ s : trace Θ and a = ν(Θ′) .n〈call p.l(~v)〉! then:

C′ β
→∗ C[n〈ref.val := new[State(∆ ⊢ r a ≤ s : trace Θ)];

ref.val.inReturnU(p.l(~v)); let x : T = ref.val.outT () in t〉]

which is a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ as required.

If ∆ ⊢ r a ≤ s : trace Θ and a = ν(Θ′) . n〈returnv〉! then we must have that r = r1 ν(Θ′) .
n〈call p.l(~v)〉?r2 where n is balanced in r2. Thus, since t is a return(x : T) thread at n for

∆ ⊢ r ≤ s : trace Θ we must have that:

t = let y : U = return(x : T) in t′

where t′ is a return(y :U) thread at n for ∆⊢ r1 ≤ s : trace Θ, so t′ is also a return (y :U) thread

at n for ∆ ⊢ r a ≤ s : trace Θ, so let x : T = v in t is a thread at n for ∆ ⊢ q ⊑ r a ≤ s : trace Θ.

Then:

C′ β
→∗ C[n〈ref .val := new[State(∆ ⊢ r a ≤ s : trace Θ)]; let x : T = v in t〉]

which is a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ as required.

Otherwise:

C′ β
→∗ C[n〈stop〉]

which is a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ as required. ✷

Lemma B.8 If ∆′ ⊢C : Θ′ is a component for ∆ ⊢ q ⊑ r ≤ s : trace Θ and (∆′ ⊢C : Θ′)
a
→ (∆′′ ⊢

C′ : Θ′′) then C′ β
→∗ C′′ where C′′ is a component for ∆ ⊢ qa ⊑ r ≤ s : trace Θ.

Proof: The following cases are exhaustive:

1. Case (∆′ ⊢C : Θ′)
ν(∆′′′).n〈call p.l(~v)〉?

→ (∆′,∆′′′ ⊢C ‖ n〈let x : T = p.l(~v) in return(x : T)〉 : Θ′)
where n 6∈ Θ′.

We have:

C′ β
→∗ C ‖ n〈let x : T = ref.val.inCallp.l:L(~v) in return (x : T)〉

which is a component for ∆ ⊢ qa ⊑ r ≤ s : trace Θ as required.

42

2. Case (∆′ ⊢ C[n〈let x : T = block in t〉] : Θ′)
ν(∆′′′).n〈call p.l(~v)〉?

→ (∆′,∆′′′ ⊢ C[n〈let y : U =
p.l(~v) in let x : T = return (y : U) in t〉] : Θ′)
where projn (q) = projn (r), n is input-enabled in ∆ ⊢ r : trace Θ and t is a return(x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

We have:

C′ β
→∗ C[n〈let y : U = ref.val.inCallp.l:L(~v) in let x : T = return(y : U) in t〉]

which is a component for ∆ ⊢ qa ⊑ r ≤ s : trace Θ as required.

3. Case (∆′ ⊢C[n〈let x : T = block in t〉] : Θ′)
ν(∆′′′).n〈return v〉?

→ (∆′,∆′′′ ⊢C[n〈let x : T = v in t〉] :

Θ′)
where projn (q) = projn (r), n is input-enabled in ∆ ⊢ r : trace Θ and t is a return(x : T)
thread at n for ∆ ⊢ r ≤ s : trace Θ.

We have:

C′ β
→∗ C[n〈t[v/x]〉]

which is a component for ∆ ⊢ qa ⊑ r ≤ s : trace Θ as required.

4. Case (∆′ ⊢ ν(Θ′′′) .C[n〈let x : T = p.l(~v) in t〉] : Θ′)
ν(Θ′′′).n〈call p.l(~v)〉!

→ (∆′ ⊢C[n〈let x : T =
block in t〉] : Θ′,Θ′′′)
where projn (qa) = projn (r), and t is a return(x : T) thread at n for ∆ ⊢ r ≤ s : trace Θ.

We have C′ is a component for ∆ ⊢ qa ⊑ r ≤ s : trace Θ as required.

5. Case (∆′ ⊢ ν(Θ′′′) .C[n〈let x : T = return(v : U) in t〉] : Θ′)
ν(Θ′′′).n〈return v〉!

→ (∆′ ⊢C[n〈let x :

T = block in t〉] : Θ′,Θ′′′)
where projn (qa) = projn (r), and t is a return(x : T) thread at n for ∆ ⊢ r ≤ s : trace Θ.

We have C′ is a component for ∆ ⊢ qa ⊑ r ≤ s : trace Θ as required. ✷

The ‘only if’ half of definability now follows, by induction on Lemmas B.6, B.7, and B.8, with

Lemma B.5 as the base case, making appropriate use of Corollary B.2.

43

References

[1] M. Abadi and L. Cardelli. A Theory Of Objcets. Springer-Verlag, 1996.

[2] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Information and

Computation, 163:409–470, 2000.

[3] P. Di Blasio and K. Fisher. A calculus for concurrent objects. In Proc. CONCUR, volume

1119 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[4] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language: User Guide.

Addison Wesley, 1999.

[5] W. Ferreira, M. Hennessy, and A. S. A. Jeffrey. A theory of weak bisimulation for core CML.

J. Functional Programming, 8(5):447–491, 1998.

[6] M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the π-calculus. In Proc.

IEEE Conf. Logic in Computer Science. IEEE Press, 1996.

[7] A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and typing. In Proc.

High Level Concurrent Languages, Electronic Notes in Computer Science. Elsevier, 1998.

[8] A. D. Gordon and G. D. Rees. Bisimilarity for a first-order calculus of objects with subtyping.

In Proc. ACM Symp. Principles of Programming Languages, pages 386–395. ACM Press,

1996.

[9] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[10] M. Hennessy. A fully abstract denotational semantics for the π-calculus. Technical report

96:04, Univ. Sussex, 1996.

[11] M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in the presence

of subtyping. In Proc. Computing: Australasian Theory Symposium, Electronic Notes in

Theoretical Computer Science. Elsevier, 2002.

[12] K. Honda and M. Tokoro. On asynchronous communication semantics. In M. Tokoro, O. Nier-

strasz, and P. Wegner, editors, Proc. ECOOP Workshop on Object-Based Concurrent Comput-

ing, volume 612 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[13] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III. Information and

Computation, 163:285–408, 2000.

[14] A. S. A. Jeffrey and J. Rathke. Towards a theory of weak bisimulation for local names. In

Proc. Logic In Computer Science, pages 56–66. IEEE Computer Society Press, 1999.

[15] A. S. A. Jeffrey and J. Rathke. A theory of bisimulation for a fragment of Concurrent ML

with local names. In Proc. Logic in Computer Science, pages 311–321. IEEE Press, 2000.

[16] A. Meyer and K. Sieber. Towards a fully abstract semantics for local variables. In Proc.

Symposium on Principles of Programming Languages, San Diego, pages 191–203. ACM,

1988.

44

[17] R. Milner. Fully abstract semantics of typed λ-calculi. Theoret. Comput. Sci., 4:1–22, 1977.

[18] R. Milner. Communicating and Mobile Systems. Cambridge University Press, 1999.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses. Inform. and Comput.,

100(1):1–77, 1992.

[20] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. Int. Colloq. Automata, Languages

and Programming, volume 623 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[21] J.-H. Morris. Lambda calculus models of programming languages. Dissertation, M.I.T., 1968.

[22] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical Struc-

tures in Computer Science, 6(5):409–454, 1996.

[23] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that dynamically

create local names, or: What’s new? In Proc. MFCS 93, pages 122–141. Springer-Verlag,

1993. LNCS 711.

[24] G. Plotkin. LCF considered as a programming language. Theoret. Comput. Sci., 5:223–256,

1977.

45

