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Abstrat

Obliq is a lexially-soped, distributed, objet-based programming language. In Obliq, the mi-

gration of an objet is proposed as reating a lone of the objet at the target site, whereafter

the original objet is turned into an alias for the lone. Obliq has only an informal semantis,

so there is no proof that this style of migration is safe, i.e., transparent to objet lients. In

previous work, we introdued �jeblik, an abstration of Obliq, where, by lexial soping, sites

have been abstrated away. We used �jeblik in order to exhibit how the semantis behind Obliq's

implementation renders migration unsafe. We also suggested a modi�ed semantis that we on-

jetured instead to be safe. In this paper, we rewrite our modi�ed semantis of �jeblik in terms

of �-alulus, and we use it to formally prove the orretness of objet surrogation, the abstration

of objet migration in �jeblik.



1 Introdution

The work presented in this paper is in line with the researh ativity to use the �-alulus as a

toolbox for reasoning about objet-based programming languages. Former works on the semantis

of objets as proesses showed the value of this approah: while [Wal95, HK96, San98, KS98℄

foused on just providing formal semantis to objet-oriented languages and language features,

the work of others [PW98, San99b℄ has been driven by a spei� programming problem. Our work

takles a problem in Cardelli's lexially-soped distributed programming language Obliq [Car95℄.

Cardelli proposed to derive objet migration from two other primitives, loning and aliasing, by

performing one after the other. In Obliq, immutable values an be freely opied from site to site,

whereas mutable values are stationary. Only referenes to mutable values may be transmitted

between di�erent sites. Aordingly, sine objets are mutable, the migration of an objet does

not physially move the objet, but instead reates a lone of the objet at the target site and then

turns the original (loal) objet into an alias|sometimes alled a proxy|for the new (remote)

objet.

1.1 Previous work

When is objet migration orret? In onurrent and distributed programs, it is important

that ertain state hanges, in parts of the running system, may happen transparently from the

point of view of the rest of the system. Ensuring that the implementation of suh state hanges

is in fat transparent an be a diÆult task sine the programmer must in priniple antiipate

all possible exeution senarios. In Obliq, a natural question is, whether migration of an objet

is transparent to the objet's lients, and how that an be stated formally. Intuitively, migration

of an objet a to some other site works transparently, or safely, if (i) during migration it is not

possible to interat with a in a way that prevents the migration operation from proper ompletion,

and if (ii) after the migration a lient of a annot tell that a is now an alias. In Obliq, mobile

objets are therefore required to be serialised and proteted : serialization guarantees atomiity of

the two-phase migration operation; protetion guarantees that aliases are persistent.

From Migration to Surrogation Lexial soping in distributed settings makes program anal-

ysis easier sine the binding of variables is ompletely determined by their loation in the program

text, and not by the exeution site. Sine Obliq is lexially-soped, we an ignore the aspets of

distribution, at least when regarding the results of Obliq omputations, unless sites fail. Follow-

ing this idea, we fous on �jeblik [NHKM00℄, an objet-based language that represents Obliq's

onurrent ore, but an also be seen as a onurrent extension of the Imperative Objet Calu-

lus [AC96℄. �jeblik supports a distribution-free abstration of migration alled surrogation. Like

migration, the surrogation of an objet a is desribed as the reation of a lone b of a and then

turning a itself into a proxy for b, whih forwards future request for methods of a to b. The main

di�erene with respet to migration is that neither a nor b are attahed to any site.

Corretness as an equation In [NHKM00℄, we gave a formal de�nition of orretness for objet

surrogation in �jeblik whih an be straightforwardly adapted to objet migration in Obliq. The

intuition is that, in order to be orret, the surrogation of an objet must be transparent to the

lients of that objet, i.e., the objet must behave the same before and after surrogation. We

formalized this onept by means of a simple equation:

a.ping

.

= a.surrogate

where the left side represents the objet a before surrogation (a.ping returns the objet resulting

from the evaluation of a), the right side represents the objet a after surrogation (a.surrogate

returns the surrogated objet), and

.

= is an appropriate ontextual equivalene, based on the

possibility of onvergene.
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Aliasing Semantis In [NHKM00℄, we gave several proposals of on�guration-style semantis

for �jeblik. One of them �ts the Obliq implementation [Car94, Car95℄, but does not guarantee the

orretness of objet surrogation as de�ned above. This was formally shown by exhibiting �jeblik

ontexts that are able to distinguish the terms a.ping and a.surrogate. Similar ounterexamples

apply to objet migration in Obliq, as we tested using the Obliq interpreter [Car94℄. Roughly,

the reason is beause, in Obliq, alias nodes support a too strong form of both protetion and

serialization. As a onsequene, in [NHKM00℄ we proposed a di�erent semantis in whih alias

nodes have a milder form of both protetion and serialization. In that paper, we onjetured that

objet migration is safe when onsidering this new semantis, but no proof was given.

1.2 Contribution

In this paper, we present a �-alulus semantis for �jeblik orresponding to the aforementioned

variant proposed in [NHKM00℄. We also give a notion of ontextual equivalene for objets de�ned

in terms of may onvergene on �-proesses orresponding to the equivalene

.

=. More preisely, our

semantis uses Loal � [MS98, Mer00℄, in short L�, a variant of the asynhronous �-alulus [HT91,

Bou92℄, where, like in Join-alulus [FG96℄, the reipients of a hannel are loal to the proess

that has reated the hannel. We prove the orretness of surrogation for a wide lass of �je-

blik-programs. The proof is in two parts: an algebrai part and an iterative part. The algebrai

part (Theorem 8.1) relates the ore omponent of the translation of a single objet after having

ommitted to a ping and a surrogate request, respetively. We use powerful adaptations of proof

tehniques, from standard �-alulus and L�. The iterative part (Theorem 8.7) relates the may-

onvergene behavior of the terms a.ping and a.surrogate within arbitrary �jeblik-ontexts; note

that in these terms the operations have not yet been performed, and will only do so at some point

if the ontext permits. In Theorem 8.7, we onstrutively simulate arbitrarily long onverging

sequenes \up to" Theorem 8.1. The main diÆulty of Theorem 8.7 is that inherently onurrent

�jeblik-ontexts may non-deterministially prevent either term from eventually ommitting to the

requested operation.

The proof is non-trivial, and we give (to our knowledge) the �rst formal proof that objet mi-

gration an be orretly implemented in terms of loning and aliasing (apart from a very restritive

and informal sketh of our own [HKMN99℄, on whih we improve substantially, here). Finally, we

want to remark that most ounterexamples presented in [NHKM00, Mer00℄ (exhibiting the prob-

lems of Obliq's original semantis) were atually disovered while using some �-alulus semantis

to understand Obliq programs and trying to prove the orretness of surrogation.

1.3 Related work

The work losest to ours is [KS98℄ where an interpretation of Abadi and Cardelli's objet al-

ulus [AC96℄ into typed �-alulus is presented. Unlike [KS98℄, we fous on a onurrent objet

alulus. Gordon and Hankin [GH98℄, and Di Blasio and Fisher [DF96℄ desribe two onurrent

objet aluli, but no aount of objet migration is given for them. An early version of Emer-

ald [JLHB88℄ inludes a form of objet migration similar to that one in Obliq, but little formal

work is known about it. Finally, in Distributed Oz [VHB

+

97℄, objet migration is a primitive no-

tion, so objets are physially mobile and travel aording to a provably safe mobile state protool

from site to site, wherever they are needed or intend to go.

2 Loal �: An \Objet-Oriented" �-Calulus

Loal � [MS98, Mer00℄, in short L�, is a variant of the asynhronous �-alulus [HT91, Bou92℄

where, similar to the Join-alulus [FG96℄, the reipients of a hannel are loal to the proess

that has reated the hannel. This is ahieved by imposing the syntati onstraint that only the

output apability of hannels may be transmitted, i.e., the reipient of a hannel may only use it

in output ations. This property makes L� partiularly suitable for giving the semantis to, and
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Channels:  2 C Values

Keys: k 2 K v ::= x variable

Names: 2 N j ` v variant

n ::=  j k j h v

1

. . v

n

i tuple

Auxiliary: u 2 U Types

Variables: 2 X T ::= C(T ) hannel type

x ::= n j u j K key type

j [ `

1

:T

1

; : : : ; `

m

:T

m

℄ variant type

Labels 2 L j hT

1

. .T

m

i tuple type

`; `

1

; `

2

; : : : j X type variable

j �X .T reursive type

Proesses

P ::= 0 nil proess

j (x).P single input

j v output

j P

1

j P

2

parallel

j (�n:T)P restrition

j ! (x).P repliated input

j if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

key testing

j ase v of `

1

(x

1

):P

1

; : : : ; `

m

(x

m

):P

m

variant destrutor

j let (x

1

. .x

m

) = v in P tuple destrutor

j wrong run time error

The loality onstraint requires that in (single and repliated) inputs and in

(variant and tuple) destrutors the bound names x; x

1

; : : : ; x

m

must not be

used in free input position within the respetive sope P; P

1

; : : : ; P

m

.

Table 1: The Calulus L�

+

reasoning about, onurrent objet-oriented languages. In partiular, we an easily guarantee the

uniqueness of objet identities|a fundamental feature of objets: in objet-oriented languages,

the name of an objet may be transmitted; the reipient may use that name to aess the methods

of the objet, but it annot reate a new objet with the same name. When representing objets

in the �-alulus, this translates diretly into the onstraint that the proess reeiving an objet

name may only use it in output ations|a guarantee in our setting.

2.1 Terms and Types

In Table 1, we introdue the alulus L�

+

, a typed version of polyadi L� with: (i) labelled

values ` v, alled variants [San98℄, with ase analysis; (ii) tuple values h v

1

. . v

n

i, with pattern

mathing, (iii) onstants k, alled keys, with equality; (iv) a wrong onstrut to model run-time

typing errors.

We introdue a few syntati ategories: the set X of variables inludes the set N of names

(onstants and variables) onsisting of the two disjoint sets C of hannels and K of keys. The

auxiliary variables in the set U are variables for omplex values. L is the set of labels. In addition

to the metavariables mentioned in the grammar, we let s; p; q; r;m; t range over hannels, y over

variables, w over values, Q over proesses, and i; j; d; h;m over tuple, variant, or other indies. We

abbreviate ` hi and ` () as `, as well as qhi and q().P as q and q.P , respetively, while ev denotes
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a sequene v

1

. . v

m

.

Restrition, both inputs, and both destrutors are binders for the names x; x

1

; : : : ; x

m

in the

respetive sopes P; P

1

; : : : ; P

m

. We assume the usual de�nitions of free and bound ourrenes of

names, based on these binders; the indutively de�ned funtions fn(P ) and bn(P ) denote those of

proess P . Similarly, f(P ) and b(P ) denote the free and bound hannels of proess P . Moreover,

n(P )= fn(P )[bn(P ) and (P )=f(P )[b(P ). Substitutions, ranged over by �, are type-preserving

funtions from variables to values (types are introdued below). For an expression e, e� is the

result of applying � to e, with the usual renaming to avoid aptures. Relabellings, ranged over

by �, permit replaing a label ` with another label `

0

. We denote suh a relabelling with [

`

0

=

`

℄.

The appliation of a relabelling to a term is de�ned thus:

� (` v)[

`

0

=

`

℄ := `

0

v[

`

0

=

`

℄

� (`

00

v)[

`

0

=

`

℄ := `

00

v[

`

0

=

`

℄ if `

00

6=`

� x� := x

� wrong� := wrong

� ((�n:T)P )� := (�n:T�)P�

� (ase v of `

1

(x

1

):P

1

; : : : ; `

n

(x

n

):P

n

)� := ase v� of `

1

(x

1

):(P

1

�) ; : : : ; `

n

(x

n

):(P

n

�).

For the remaining (value and proess) onstrutors, relabellings at as simple homomorphisms.

Substitution and relabelling have the highest operator preedene, parallel omposition the lowest.

To rearrange proesses we use the following notion of strutural equivalene that is extended

to deal with if-, ase-, and let-onstruts.

De�nition 2.1 Strutural equivalene, written �, is the smallest relation preserved by parallel

omposition and restrition, whih satis�es the axioms below:

� P � Q, if P is �-onvertible to Q

� P j 0 � P , P j Q � Q j P , P j (Q j R) � (P j Q) j R

� (�n:T )0 � 0, (�n

1

:T

1

) (�n

2

:T

2

)P � (�n

2

:T

2

) (�n

1

:T

1

)P , if n

1

6= n

2

� (�n:T ) (P j Q) � P j (�n:T )Q, if n 62 fn(P )

� if [k

1

=k

1

℄ then P

1

elif [k

1

=k

2

℄ then P

2

else P

3

� P

1

� if [k

2

=k

1

℄ then P

1

elif [k

2

=k

2

℄ then P

2

else P

3

� P

2

, if k

1

6=k

2

� if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

� P

3

, if k

1

6=k 6=k

2

� ase `

j

v

j

of `

1

(x

1

):P

1

; : : : ; `

j

(x

j

):P

j

; : : : ; `

m

(x

m

):P

m

� P

j

f

v

j

=x

j

g

� ase v of `

1

(x

1

):P

1

; : : : ; `

m

(x

m

):P

m

� wrong, if v 6=`

j

v

j

for any j2 1 . .m and value v

j

� let (x

1

. .x

m

) = h v

1

. . v

m

i in P � Pf

ev

=exg;

� let (x

1

. .x

m

) = v in P � wrong, if v 6=h v

1

. . v

m

i for any values v

1

. . v

m

.

In Table 2 we give typing rules for values and proesses. Types are introdued for essentially

three reasons: (i) they allow us to leanly de�ne some abbreviations, (ii) we use them to give a

typed semantis of �jeblik, and (iii) they allow us to formally prove the main result of the paper

using typed behavioural equivalenes. Abusing the notation for sets of names and the orrespond-

ing types, we use K and C also as type onstrutors, where hannel types are parameterised over

the type of value they arry. For variants and tuples we use standard notations (.f. [San98℄). In

a reursive type �X .T , ourrenes of variable X in type T must be guarded, i.e., underneath

variant, tuple, or hannel onstrutors. We often omit the type annotation of restrition, when it

is lear from the ontext or not important for the disussion.

A type environment � is a �nite mapping from variables to types. A typing judgement � ` P

asserts that proess P is well-typed in �, and � ` v:T that value v has type T in �. We say that

a type environment � is losed if all names mentioned in � are of type hannel C(T ) or of type

key K. We only onsider losed terms, i.e. terms whih are well-typed in some losed typing �.

As expeted, the typing in Table 2 satis�es all basi fundamental properties of type environ-

ments suh as: weakening, ontration, substitution, and narrowing.
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(T-bas)

�(x) = T

� ` x : T

(T-re1)

� ` v:Tf

�X.T

=

X

g

� ` v:�X .T

(T-re2)

� ` v:�X .T

� ` v:Tf

�X.T

=

X

g

(T-var)

� ` v:T

� ` ` v : [ : : : ; `:T ; : : : ℄

(T-tup)

� ` v

i

:T

i

8i 2 1 . .m

� ` h v

1

. . v

m

i : hT

1

. .T

m

i

(T-Res1)

�; :C(T ) ` P

� ` (�:C(T )) P

(T-Res2)

�; k:K ` P

� ` (�k:K) P

(T-Par)

� ` P

1

� ` P

2

� ` P

1

j P

2

(T-Rep)

� ` P

� ` !P

(T-Nil)

�

� ` 0

(T-Inp)

� ` :C(T ) �; x:T ` P

� ` (x).P

(T-Out)

� ` :C(T ) � ` v:T

� ` v

(T-If)

� ` k; k

1

; k

2

: K � ` P

1

; P

2

; P

3

� ` if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

(T-Let)

� ` v : hT

1

. .T

m

i �; x

1

:T

1

; : : : ; x

m

:T

m

` P

� ` let (x

1

. .x

m

)= v inP

(T-Case)

� ` v : [ `

1

:T

1

; : : : ; `

m

:T

m

℄ �; x

i

:T

i

` P

i

8i 2 1 . .m

� ` ase v of `

1

(x

1

):P

1

; : : : ; `

m

(x

m

):P

m

Table 2: Typing for Values and Proesses

5



(Inp)

�

(x).P

v

���! Pf

v

=

x

g

(Rep)

�

! (x).P

v

���! Pf

v

=

x

g j ! (x).P

(Out)

�

v

v

���! 0

(Open)

P

(�eq:

e

T ) v

��������! P

0

n2 n(v)nfeq; g

(�n:T )P

(�n:T ;eq:

e

T ) v

�����������! P

0

(Com)

P

1

(�eq:

e

T ) v

��������! P

0

1

P

2

v

���! P

0

2

eq \ fn(P

2

) = ;

P

1

j P

2

�

��! (�eq:

e

T ) (P

0

1

j P

0

2

)

(Par)

P

1

�

��! P

0

1

bn(�) \ fn(P

2

) = ;

P

1

j P

2

�

��! P

0

1

j P

2

(Res)

P

�

��! P

0

n 62 n(�)

(�n:T )P

�

��! (�n:T )P

0

(Test-1)

P

1

�

��! P

0

1

k

1

= k

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

1

(Test-2)

P

2

�

��! P

0

2

k

1

6= k = k

2

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

2

(Test-3)

P

3

�

��! P

0

3

k

1

6= k 6= k

2

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

3

(Case)

P

j

f

v

=

x

j

g

�

��! Q j 2 1 . .m

ase `

j

v of `

1

(x

1

):P

1

; : : : ; `

m

(x

m

):P

m

�

��! Q

(Let)

Pf

v

1

. . v

m

=

x

1

. .x

m

g

�

��! Q

let (x

1

. .x

m

)= h v

1

. . v

m

i inP

�

��! Q

Table 3: Labelled Transition System for L�

+

.

2.2 Operational and Behavioural semantis

Table 3 shows the transition rules for L�

+

in an early style; the symmetri rules of (Com) and

(Par) are omitted. Labelled transitions are of the form P

�

��! P

0

, where ation � is: � (inter-

ation), v (free input), (�en:

e

T ) v (output at  of value v ontaining private names en of type

e

T ,

whih we often omit), where  is the subjet and v the objet. The funtions fn(�), bn(�), n(�), f(�),

b(�), and (�) are extended to ations as usual. Relation =) is the reexive-transitive losure of

�

��!;

�

==) denotes =)

�

��! =);

�̂

==) denotes

�

==) if � 6= � , and =) if � = � . For any relation R on

proesses,

�

��!

R

denotes R

�

��!R, and =)

R

the reexive-transitive losure of

�

��!

R

.

The typing in Table 2 is preserved under � -ations, whih are also alled redutions.

Theorem 2.2 (Type Soundness) Let � be a losed type environment.

1. If � ` P then P 6� Q where Q ontains wrong.

2. If � ` P and P =) Q, then � ` Q.
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The proof of the above result is standard (see for instane [San98℄).

A ruial notion in a proess alulus is that of behavioural equality between proesses. We fous

on bisimulation-based behavioural equivalenes, preisely on (weak) barbed bisimulation [MS92℄.

Barbed bisimulation an be de�ned in any alulus possessing: (i) an interation relation (the � -

steps in the �-alulus), modelling the evolution of the system; and (ii) an observability prediate

#



for eah hannel , to detet the possibility of a proess to aept a ommuniation with the

environment at . We reall that in asynhronous aluli only output ations are observed [ACS98℄

beause the environment has no diret way of knowing if the message it has sent has been reeived.

De�nition 2.3 (Asynhronous observability) We write P #



if there is a derivative P

0

, and

an output ation � with subjet , suh that P

�

�!P

0

. We write P +



if there is P

0

suh that

P =) P

0

and P

0

#



.

De�nition 2.4 (Barbed bisimilarity) A symmetri relation S on proesses is an barbed bisim-

ulation if P S Q implies:

� If P

�

�!P

0

then there exists Q

0

suh that Q =) Q

0

and P

0

S Q

0

.

� If P #



then Q +



.

Two proesses P and Q are barbed bisimilar, written P

_

�

=

Q, if P S Q for some barbed bisimulation

S.

Barbed bisimilarity equips a global observer with a minimal ability to observe ations and/or

proess states but it is not a ongruene. By losing barbed bisimilarity under ontexts we ob-

tain a muh �ner relation. Sine L�

+

is a typed alulus, only well-typed ontexts should be

onsidered [PS96, SW01℄.

De�nition 2.5 (Context) A (monadi) ontext C[�℄ is a proess expression with a single hole

in it, written [�℄. Given a proess P , C[P ℄ is the proess obtained by plugging the proess P into

the hole. A ontext C[�℄ is stati if it is struturally equivalent to (�en) (P j [�℄), for some P and en.

De�nition 2.6 Let � and � be two type environments. We say that � extends � if dom(�) �

dom(�) and � ` n:�(n) for all names n on whih � is de�ned. We say that � is a losed extension

of � if � is losed and extends �.

De�nition 2.7 Let � and � be two type environments. We say that C[�℄ is a (�=�)-ontext if

� ` C[�℄ is a valid type judgement when the hole [�℄ is onsidered as a proess and the following

typing rule for [�℄ is added:

(t-hole)

� extends �

� ` [�℄

(in the rule, � is one of the given type environments and � is a metavariable over type environ-

ments).

De�nition 2.8 (Typed barbed relations) Let � be a typing, and P and Q two proesses suh

that � ` P;Q. We say that P and Q are barbed �-equivalent, written P '

�

Q, if for eah

losed type environment � and stati (�=�)-ontext C[�℄, we have C[P ℄

_

�

=

C[Q℄. We say that

P and Q are barbed �-ongruent, written P

�

=

�

Q, if for eah losed type environment � and

(�=�)-ontext C[�℄, we have C[P ℄

_

�

=

C[Q℄.

Context-based behavioural equalities like barbed ongruene su�er from the universal quanti�-

ation on ontexts. Simpler proof tehniques are based on labelled bisimulations whose de�nitions

do not use ontext quanti�ation. These bisimulations should imply, or (better) oinide with,

barbed ongruene. Labelled bisimilarities for typed barbed relations must take into aount types.

A typed relation is a set of triples (�;P ;Q) where � is a losed typing and � ` P;Q. Below, we

give a typed variant of Amadio, Castellani, and Sangiorgi's asynhronous bisimilarity [ACS98℄.

7



De�nition 2.9 (Typed bisimilarity) Typed bisimilarity, is the largest typed relation S suh

that (�;P ;Q) 2 S implies:

1. If P

�

��! P

0

, then there exists Q

0

s.t. Q =) Q

0

and (�;P

0

;Q

0

) 2 S.

2. If P

(�en:

e

T ) v

��������! P

0

, with en \ fn(Q) = ;, then there exists Q

0

suh that Q

(�en:

e

T ) v

========) Q

0

and

((�; en:

e

T );P

0

;Q

0

) 2 S.

3. If

(i) � is a losed extension of �,

(ii) � ` :C(T ) and � ` v:T ,

(iii) P

v

���! P

0

, with f(v) \ f(P j Q) = ;,

then there exists Q

0

suh that:

(i) either Q

v

===) Q

0

and (�;P

0

;Q

0

) 2 S,

(ii) or Q =) Q

0

and (�;P

0

; (Q

0

j v )) 2 S.

Let � be a losed typing with � ` P;Q. We say that P and Q are typed bisimilar at �, written

P �

�

Q, if (�;P ;Q) is ontained in typed bisimilarity.

The bisimilarity above is early on keys and ground on hannels. Indeed, in the input lause, there

is an impliit universal quanti�ation on the reeived keys, whereas we always assume to reeive

fresh hannels by requiring f(v) \ f(P j Q) = ;. In asynhronous aluli without name testing,

ground and early bisimilarity oinide [San00, Hon92℄. Sine we only have testing on keys (i) it

makes sense to have the simpler ground lause on hannels, (ii) our bisimilarity oinides with

its (hannel) early variant in whih the requirement f(v) \ f(P j Q) = ;, in the input lause, is

omitted. The proof that this early variant is a ongruene (on well-typed ontexts) is essentially

the same as that for untyped asynhronous early bisimilarity [ACS98℄. As a onsequene, �

�

implies '

�

and therefore

�

=

�

.

Later on, we will work with proesses ontaining hannels whih an be used by the environment

only in output. We model this onstraint as follows:

De�nition 2.10 (Barbed �; C-relations) Let C � C. Barbed C-bisimilarity, written

_

�

=

C

, is the

largest symmetri relation on proesses, suh that P

_

�

=

C

Q implies:

1. If P

�

��! P

0

, then there exists Q

0

suh that Q =) Q

0

and P

0

_

�

=

C

Q

0

2. If P#



, with  62 C, then Q+



.

Let � be a typing, and P and Q two proesses suh that � ` P;Q. We say that P and Q are

barbed �;C-equivalent, written P '

�;C

Q, if for eah losed type environment � and stati (�=�)-

ontext C[�℄ not ontaining names in C in input position, we have C[P ℄

_

�

=

C

C[Q℄. We say that P

and Q are barbed �;C-ongruent, written P

�

=

�;C

Q, if for eah losed type environment � and

(�=�)-ontext C[�℄ not ontaining names in C in input position, we have C[P ℄

_

�

=

C

C[Q℄.

Roughly, C denotes the set of hannels whih annot be used in input by the environment. In

De�nition 2.10, when C=;, we get the standard de�nitions of typed barbed bisimilarity. If C=fsg,

as abbreviations, we write

�

=

�;s

for

�

=

�;C

and '

�;s

for '

�;C

. Due to the restrition on the ontexts,

it holds that sv

�

=

�;s

0 and, by asynhrony, s(x).0

�

=

�;s

0. Below, we give the labelled ounterpart

of barbed �;C-equivalene.

De�nition 2.11 (Typed C-bisimilarity) Typed C-bisimilarity is the largest typed relation S

suh that (�;P ;Q) 2 S implies:

1. If P

�

��! P

0

, then there exists Q

0

s.t. Q =) Q

0

and (�;P

0

;Q

0

) 2 S.

2. If P

(�en:

e

T ) v

��������! P

0

, with  62 C and en\fn(Q) = ;, then there exists Q

0

suh that Q

(�en:

e

T ) v

========)

Q

0

and ((�; en:

e

T );P

0

;Q

0

) 2 S.

3. If

8



(i) � is a losed extension of �,

(ii) � ` :C(T ) and � ` v:T ,

(iii) P

v

���! P

0

, with f(v) \ f(P j Q) = ;,

then there exists Q

0

suh that:

(i) either Q

v

===) Q

0

and (�;P

0

;Q

0

) 2 S,

(ii) or Q =) Q

0

and (�;P

0

; (Q

0

j v )) 2 S.

Let � be a losed typing with � ` P;Q. We say that P and Q are typed C-bisimilar at �, written

P �

�;C

Q, if (�;P ;Q) is ontained in typed C-bisimilarity.

When C=fsg, for some hannel s, we abbreviate �

�;C

with �

�;s

.

Theorem 2.12 Let � be a type environment, C a set of hannels, and P and Q two proesses

suh that � ` P;Q. Then, P �

�;C

Q implies P '

�;C

Q.

Proof. [Sketh℄ We have to prove that �

�;C

is preserved by well-typed stati ontexts. Sine

L�

+

is an asynhronous alulus without testing on hannels, �

�;C

oinides with its early variant

where the requirement f(v) \ f(P j Q) = ;, in the input lause, is omitted. The proof that this

(early) variant is preserved by parallel omposition and restrition is standard (parallel omposition

require some are beause the proesses in parallel must not ontain input along hannels in C).

So, also �

�;C

is preserved by parallel omposition and restrition. Sine �

�;C

implies

_

�

=

, it follows

that �

�;C

�'

�;C

.

2

It is easy to prove that �

�

implies �

�;C

and '

�

implies '

�;C

.

Finally, in Lemma 2.15 we give an algebrai law whih will be used to prove one of the ruial

results of the paper (Theorem 8.1). This law is based on speial proesses alled link that behave

as name bu�ers reeiving values at one end and retransmitting them at the other end (in the

�-alulus literature, links are sometimes alled forwarders [HY95℄ or wires [SW01℄). A similar

law has already been used in a typed �-alulus with the name disipline of uniform reeptive-

ness [San99a℄.

De�nition 2.13 (Link) Given two hannels p and q with � ` p; q : C(T ), we all link the proess

! p(u).qu, abbreviated p . q.

In order to prove Lemma 2.15, we need the following tehnial lemma.

Lemma 2.14 Let p and q be two hannels, Q a proess in whih q may only appear in output

position, and � a type environment suh that � ` Q and � ` p; q:C(T ). Then

Qf

p

=qg

_

�

=

(�q:C(T )) (Q j q . p).

Proof. See the proof in Appendix A.1.

2

Lemma 2.15 Let � ` pv, for some type environment �. Let q 2 f(v) with � ` q:C(T ). Let

r 62 (v) and w = vf

r

=

q

g. Then

pv

�

=

�

(�r:C(T )) (pw j r . q).

Proof. We prove that for any well-typed ontext C[�℄, it holds that:

C[pv℄

_

�

=

C[(�r:C(T )) (pw j r . q)℄.

The prove is by strutural indution on the ontext C[�℄. The most interesting ase is when

C[�℄ � [�℄ j R for some proess R. So, in order to prove that

pv j R

_

�

=

(�r:C(T )) (pw j r . q) j R

9



a; b ::= O objet

j a.lh a

1

. . a

n

i method invoation

j a.l(m method update

j a.lone shallow opy

j a.aliashbi objet aliasing

j a.surrogate objet surrogation

j a.ping objet ping

j s; x; y; z variables

j letx:A=a in b loal de�nition

j forkhai thread reation

j joinhai thread destrution

O ::= [l

j

=m

j

℄

j2J

objet reord

m

j

::= &(s

j

:A; ~x

j

:

e

B

j

)b

j

method

A;B ::= [l

j

:

e

B

j

!

b

B

j

℄

j2J

objet reord type

j Thr(A) thread type

Table 4: �jeblik Syntax and Types

we show that the relation

S = f

�

pv j R ; (�r:C(T )) (pw j r . q) j R

�

g [

_

�

=

is a barbed bisimulation up to �. The requirements on the barbs are easily satis�ed. As for the

bisimulation game on silent moves, the only interesting ase is when there is a ommuniation

along p, that is, when R

p(x)

����!R

0

. In this ase we get, up to strutural equivalene, the pair of

proesses

�

Qf

q

=rg ; (�r:C(T )) (Q j r . q)

�

where Q = R

0

f

w

=xg. By Lemma 2.14 we an onlude.

2

3 �jeblik: A Conurrent Objet Calulus

In this setion, we present �jeblik [NHKM00℄, a typed abstration of Obliq designed to study

objet migration. �jeblik-expressions and �jeblik-types are generated by the grammar in Table 4,

where a ranges over �jeblik-terms, l over method labels, m over method bodies, s; x; y; z over

variables, O over objet reords, and A;B over types. The type language extends the one of

the imperative objet alulus [AC96℄ by thread types Thr(A). Pairs ~x

j

:

e

B

j

denote sequenes

x

1

j

:B

1

j

. .x

n

j

:B

n

j

. Funtion types A!B do only our in objet types [l

j

:

e

B

j

!

b

B

j

℄

j2J

, so they are

not �rst-lass types. Yet, we sometimes abbreviate suh objet types by [l

j

:A

j

℄

j2J

to larify that

a type is not a thread type. Typed terms are de�ned by adding type annotations to all binding

ourrenes of variables: in let-expressions and in method delarations.

For the sake of simpliity, ompared to Obliq, in �jeblik we omit ground values (like numbers,

booleans, strings, et.), data operations, and proedures, we restrit �eld seletion to method

invoation, we restrit multiple loning to single loning, we omit exibility of objet attributes,

we replae �eld aliasing with objet aliasing, we omit expliit distribution, and we omit exeptions

and advaned synhronisation, so we get a feasible, but still non-trivial language. As in Obliq,

omputation follows the all-by-value evaluation order. In partiular, in the following, whenever

we use a term a, we impliitly assume that we have �rst evaluated a to some atual value, i.e. in

most ases to an objet referene.
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Objets

An objet reord [l

j

=m

j

℄

j2J

is a �nite olletion of updatable named methods l

j

=m

j

, for pairwise

distint labels l

j

. In a method &(s; ~x)b, the letter & denotes a binder for the self variable s and

argument variables ~x within the body b. Moreover, every objet in �jeblik omes equipped with

speial methods for loning, aliasing, surrogation, and ping, whih annot be overwritten by the

update operation.

Method invoation a.lh ~ i with �eld l of the objet a ontaining the method &(s; ~x)b results in

the body b with the self variable s replaed by (a referene to) the enlosing objet a, and the

formal parameters ~x replaed by (referenes to) the atual parameters ~ of the invoation.

Method update a.l(m overwrites the urrent ontent of the named �eld l in objet a with

method m and returns a referene to the modi�ed objet.

The lone operation a.lone reates a lone a

0

of a and returns a referene to a

0

.

The operation a.aliashbi replaes objet a with an alias to b, written a�b, regardless of

whether a is already an alias or still an objet reord; if b itself is an alias, e.g. b�, then we

onsequently and naturally reate an alias hain a�b�. From the omputational point of view,

requests arriving at a after the operation a.aliashbi should be forwarded to b. The operation

a.aliashbi returns a referene to b.

The operation a.surrogate represents our abstration of migration: by alling it, objet a is

turned into a proxy for a opy of itself. Surrogation is implemented by providing a uniform

method surrogate=&(s)s.aliashs.lonei. It returns a referene to the just reated lone. Behaving

like standard methods, surrogation is forwarded by aliased objets. This is neessary to or-

retly mimi migration: an objet should be surrogatable more than one, so double-surrogation

a.surrogate; a.surrogate (where ; denotes sequential omposition, as de�ned below) should be equiv-

alent to a.surrogate.surrogate. Without forwarding, the surrogation of an already surrogated objet

would mistakenly surrogate the proxy.

The operation a.ping is implemented by providing a uniform method: ping=&(s)s. Thus, a.ping

returns the \identity" of the objet o resulting from the evaluation of a; note that, due to aliasing

and forwarding, this ould be the \identity" of the urrent endpoint of an alias hain potentially

starting at objet o. We add the a.ping method uniformly to �jeblik objets beause it allows us to

onveniently express the safety of surrogation/migration as an algebrai equation. Furthermore,

suh a method ould be used by lients for garbage olletion of referenes to surrogated servers

by interrogating the urrent identity and using it diretly instead of the former indiret referene.

Soping

Apart from the binding of variables in method bodies, �jeblik also o�ers expliit sope delarations.

An expression letx= a in b �rst evaluates a, binding the result to x, and then evaluates b within

the sope of the new binding. We use the standard indutive de�nition fv(a) to denote the free

variables of term a with respet to our two forms of binding. �jeblik only admits non-reursive

expressions letx= a in b, i.e., with x 62 fv(a). Then, a; b denotes letx= a in b, where x 62 fv(b).

Conurreny

While objets represent persistent stateful strutural entities, omputational ativity takes plae

within threads. In addition to the main thread that is initially started up with the exeution of

a term, new separate threads an be reated by the fork ommand. The term forkhai returns a

new thread identi�er to denote the thread evaluating a. The result of a fork'ed omputation is

grabbed by the join ommand. If a evaluates to a thread identi�er, then joinhai potentially bloks

until that thread �nishes and returns the thread's result, or bloks forever, if a join on thread a

was already performed earlier.
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Self-Inition

The urrent method of a thread is the last method invoked in it that has not yet ompleted. The

urrent self of a thread is the self of its urrent method. An �jeblik operation is self-inited, also

alled internal, if it addresses the urrent self; an operation is external if it is not self-inited.

However, self-inited operations an be invoked from within methods not only literally on the self

variable s, but also indiretly by an expression that evaluates to the objet itself. For instane, in

letx=[ l=&(s; z)z.lone ℄ inx.lhxi

the all z.lone will be self-inited when it is �nally exeuted.

Based on the onept of self-inition, Obliq, and therefore also our abstration �jeblik, sup-

ports the notions of serialisation and protetion of objets.

Serialisation In onurrent objet-based settings, the invariant that at most one thread at a

time may be ative within an objet is often alled serialisation. The simplest way to ensure

serialisation is to assoiate with an objet a mutex that is loked when a thread enters the objet

and released when the thread exits the objet. However, this approah is too restritive, for

instane, it prevents reursion. Based on the notion of thread, so-alled reentrant mutexes, as

in Java, an be used to allow an operation to re-enter an objet under the assumption that this

operation belongs to the same thread as the operation that is urrently ative in the objet. In

Obliq, however, the more autious idea of self-serialisation requires, based on the above notion of

self-inition, that the mutex is always aquired for external operations, but never for self-inited

ones. Note that this onept allows a method to reursively all its siblings through self, but it

exludes the kind of inter-objet mutual reursion, where a method in an objet a alls a method

in another objet b, whih then tries to `all bak' another method in a.

Protetion Based on self-inition, objets are proteted against external modi�ations in a

natural way: updates, loning, and aliasing are only allowed if these operations are self-inited.

In Obliq, objet migration is supposed to be orret only for both proteted and serialised

objets. So, sine we are interested in proving the safety of objet migration, all objets in (our

abstration) �jeblik are both proteted and serialised.

Finally, in Table 5, we present the rules for stati typing. The typing rules themselves are not

surprising. The operations lone, alias, surrogate, ping, and update, all yield a result of the same

type as the objet that they address. While fork paks a type into a thread type, join unpaks

it aordingly. The rules for variables, let, and objets, and invoations are standard. The usual

properties hold, e.g., the free variables of a term are all aptured by the type environment.

As for our type system for the �-alulus, all the standard properties of weakening, ontration,

substitution, and narrowing hold for the typings in Table 5.

4 Towards a formal semantis for �jeblik

Although, at �rst sight, the informal semantis of �jeblik is reasonably lear, its formalisation

requires one to onsider even the slightest detail. In partiular, the behavior of alias hains (that

is hains of alias nodes), needs to be learly spelled out. In our previous work [NHKM00, Mer00℄,

we already showed that the semantis of alias nodes, as implemented in Cardelli's Obliq, gives rise

to an inorret behavior of objet migration. Roughly, the reason is beause, in Obliq, alias nodes

support a too strong form of both protetion and serialization. As a onsequene, in [NHKM00,

Mer00℄ we proposed a variant of Cardelli's semantis in whih alias nodes have a milder form of

both protetion and serialization. In this setion, we explain our proposed semantis and prepare

the ground for its formal de�nition in terms of �-alulus. In Setions 4.1 and 4.2 we �rst explain

a few general onepts about alias hains, then in Setion 4.3 we show the design hoies for our
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(T-Var)

�(x) = A

� ` x:A

(T-Let)

� ` a:A �; x:A ` b:B

� ` letx:A=a in b : B

(T-Fork)

� ` a:A

� ` forkhai : Thr(A)

(T-Join)

� ` a : Thr(A)

� ` joinhai : A

(T-Obj)

8j2J �; s

j

:A; ~x

j

:

e

B

j

` b

j

:

b

B

j

A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

� ` [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

: A

(T-Inv)

� ` a : [l

j

:

e

B

j

!

b

B

j

℄

j2J

� `

e

b

k

:

e

B

k

k2J

� ` a.l

k

h

e

b

k

i :

b

B

k

(T-Upd)

� ` a:A A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

�; s:A; ~x:

e

B

k

` b:

b

B

k

k2J

� ` a.l

k

(&(s:A; ~x:

e

B

k

)b : A

(T-Ping)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.ping : A

(T-Clo)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.lone : A

(T-Ali)

� ` a; b:A A = [l

j

:A

j

℄

j2J

� ` a.aliashbi : A

(T-Sur)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.surrogate : A

Table 5: Typing Rules for �jeblik

semantis of alias nodes. We address the reader to [NHKM00, Mer00℄ for a full explanation about

the di�erenes between our aliasing semantis and Cardelli's original one.

4.1 On the stability of alias hains

As a matter of fat, aording to the operations' harater with respet to self-inition and the

intended node of ation, a node x in an alias hain an be unstable, whih means that if it urrently

points to node y, it may later on point to a di�erent node z. In order to larify this phenomenon,

we distinguish two ases based on the notion of a task, whih is the run-time entity that is reated

by method invoation within a single objet. A thread may then atually be seen as a stak of

tasks onneted via invoations. Now, a node an be ative, in whih ase it ontains running

tasks, or not. The punhline of this subsetion is then that an alias node an not beome stable

before it has terminated its urrent tasks.

Below, we introdue pitures where we use single/double boxes to denote inative/ative nodes,

respetively, and single/double arrows to denote unstable/stable aliases, respetively. Furthermore,

dashed boxes and dotted arrows denote unspei�ed respetive entities.

Inative Nodes: No Tasks By de�nition, the only way to reeive a self-inited request is to

have already at least one loal task running. In other words, if there is no loal task, then eah

inoming request is doomed to be external. Now, let us fous on the example term:

13



let z=[ l=\bar" ℄ in

let y= [ l=\foo" ℄ in

letx= [ l=&(s; w)s.aliashwi ℄ inx.lh y i;x.lh z i

after it arried out the invoation x.lh y i, that is, when the objet referred to by x has turned

itself into an alias for y and then terminated its ativity. We depit the situation as follows

//
�

+3
__�

�

�

�
__
?

__�

�

�

�
__
?

x

y

z

where, in general, the node x may itself be referred to by other aliases, while y and z may be

either an alias or an objet reord. In fat, the alias x�y is stable in the very sense: no re-aliasing

operation on x to another node will ever possibly take plae sine it ould only be arried out

in a self-inited way by one of its own methods, but any request to suh a method potentially

starting suh a self-inited operation, e.g., by alling x.lh z i, is itself forwarded to y suh that it

an never take plae in x.

Ative nodes: at least one task As an example, let us �rst onsider the term

let z=[ l=\bar" ℄ in

let y=[ l=\foo" ℄ in

letx= [ l=&(s; w)s.aliashwi; \bla" ℄ inx.lh y i

just after objet x has aepted the request for method l and turned itself into an alias for y. Sine

x ontinues to operate on itself, aording to \bla" in method l, x is an ative alias node:

//
�

//
__�

�

�

�
__
?

__�

�

�

�
__
?

x

y

z

The alias x�y is marked as unstable sine \bla" may ontain further self-inited requests, e.g.,

to perform a re-aliasing or a loning. Thus, if \bla" alls s.aliashzi or s.lone, we get

//
�

  __�

�

�

�
__
?

__�

�

�

�
__
?

x

y

z

or

�

"*MM
MM

M

MM
MM

M

//
�

//
__�

�

�

�
__
?

__�

�

�

�
__
?

x

y

z

and suh hanges may ontinue as long some urrent task in x is ative. Here, the re-aliased x

remains ative, thus unstable, until all urrent tasks in x, in our example aording to \bla", have

terminated. Note that the loning of an ative unstable alias x�y provides a new inative stable

alias x

0

�y, beause only the state of x is opied, not its tasks.

Generalising the above example, we may onsider the ase where several tasks of the urrent

thread are running in an alias or an objet. However, by the de�nition of synhronous method

invoation, only one of them may be ative|namely the one on top of the thread's all-stak,

while the others must be bloked. Now, note that it is the ative task or any of its anestors in

the all-stak who turned the urrent node into an alias (in the example it is method l); otherwise,

the node would be stable and the urrent tasks would not exist, but have been reated in one of

the suessors of the stable alias node.

4.2 Cyli alias hains

Obliq does not prevent the programmer from (either onsiously or aidentally) introduing, via

substitution, self-aliases or alias hains with yles. Consider the following example:

letx= [ k=id ; l=&(s; z)s.aliashzi ℄ inx.lhxi;x.k.

14



By alling x.lhxi, the aliasing operation x.aliashxi is arried out giving rise to the yli alias

hain x�x. As a onsequene, the following external method all x.k will give rise to a diverging

omputation.

4.3 On forwarding requests within alias nodes

In this setion, we desribe the behaviour of single alias nodes in �jeblik by addressing four ruial

questions.

1. What is the urrent self of forwarded requests?

2. Who is in harge of sending the result of a forwarded external request?

3. When does the forwarding take plae?

4. Whih requests are forwarded and whih requests fail in an alias node?

Our semantis behaves as follows:

What? Let a be an alias node forwarding requests to b, that is, a�b. Let  be a third objet

invoking a method of a. Then, when serving the (external) request, the alias a simply forwards

the request to b, and  is still the urrent self. Roughly speaking, it is as if  invokes diretly a

method of b. The self-inited ase is trivial beause then a = .

Who? As above, let a�b and  be a third objet invoking a method of a. Sine alias nodes simply

forward requests unhanged, also the transmission of the result of the request is delegated to b. As

a onsequene: should the request in a have required a mutex, then the mutex an already be

released one the request has been forwarded to b.

When? When addressed to stable alias nodes, inoming external requests do not have to wait

until previously forwarded requests (there an only be external ones in this ase) have suessfully

signalled termination from their point of ation. However, when addressed to unstable alias nodes,

inoming external requests must wait for the termination of previous (external and self-inited)

requests.

Whih? Proteted external requests are supposed to fail only when addressed to non-aliased

nodes, thus only in endpoints of alias hains.

� Method invoations (as well as pings and surrogations) are always forwarded (by transitivity

to the endpoint of the hain, if it exists).

� Self-inited loning and self-inited aliasing are performed at the alias node; external

loning and external aliasing are forwarded beause they an possibly reah another node in

the alias hain where they are self-inited and therefore exeutable.

� Self-inited update requests are forwarded. External update requests are forwarded beause

they may reah a (non-aliased) objet that serves them.

5 A translational semantis for �jeblik

In this setion we give a translational semantis of �jeblik into L�

+

aording to the informal

semantis given in Setions 3 and 4. In addition to the syntax of L�

+

we use standard abbreviations

for:

� polyadi input a(x

1

. .x

n

).P

def

= a(y).let (x

1

. .x

n

)= y inP where y 62 fn(P ). We will also

write C(T

1

. .T

n

) instead of C(hT

1

. .T

n

i) denoting the type of a hannel arrying a tuple.

� polyadi ase destrutor ` (x

1

. .x

n

):P

def

= ` (y):let (x

1

. .x

n

)= y inP , where y 62 fn(P );
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[[ a.lone ℄℄

k

p

def

= (�q)

�

[[ a ℄℄

k

q

�

�

q(y; k

0

) . yhln p; k

0

i

�

[[ a.aliashbi ℄℄

k

p

def

= (�q

x

q

y

)

�

[[ a ℄℄

k

q

y

�

�

q

y

(y; k

y

).([[ b ℄℄

k

y

q

x

j q

x

(x; k

x

) . yhali hx; pi; k

x

i)

�

[[ a.l

j

(&(s; ~x)b ℄℄

k

p

def

= (�q)

�

[[ a ℄℄

k

q

�

�

q(y; k

0

).(�t)

�

! t(s; ex; r; k).[[ b ℄℄

k

r

j yhupd

j

ht; pi; k

0

i

�

�

[[ a.l

j

ha

1

. . a

n

i ℄℄

k

p

def

= (�qq

1

� � �q

n

)

�

[[ a ℄℄

k

q

�

�

q(y; k

0

).([[ a

1

℄℄

k

0

q

1

j q

1

(x

1

; k

1

).([[ a

2

℄℄

k

1

q

2

j � � �

q

n

(x

n

; k

n

).yhinv

j

hx

1

. .x

n

; pi; k

n

i � � � ))

�

[[ a.surrogate ℄℄

k

p

def

= (�q)

�

[[ a ℄℄

k

q

j q(y; k

0

) . yhsur p; k

0

i

�

[[ a.ping ℄℄

k

p

def

= (�q)

�

[[ a ℄℄

k

q

j q(y; k

0

) . yhpng p; k

0

i

�

[[ letx=a in b ℄℄

k

p

def

= (�q)

�

[[ a ℄℄

k

q

j q(x; k

0

) . [[ b ℄℄

k

0

p

�

[[ x ℄℄

k

p

def

= phx; ki

[[ fork(a) ℄℄

k

p

def

= (�qt)

�

[[ a ℄℄

�

q

j pht; ki j q(x; k

0

).t(r; k

00

).rhx; k

00

i

�

[[ join(b) ℄℄

k

p

def

= (�q)

�

[[ b ℄℄

k

q

j q(t; k

0

) . thp; k

0

i

�

Table 6: Translational semantis of �jeblik | Clients, Soping, Conurreny

� parameterised reursive de�nitions A(x

1

. .x

n

)

def

= P and instantiation Ahx

1

. .x

n

i, whih

an be faithfully represented in terms of repliation [Mil93℄. The typing rule assoiated with

a reursive de�nition is the standard rule, requering the body to be well-typed under the

assumption that the proess name is well-typed.

The semantis, as presented in Tables 6 and 7 is a mapping parameterised on two names: in a

term [[ a ℄℄

k

p

, the hannel p is used to return the term's result, while the key k represents the term's

urrent self, whih is required to deal with self-inition. In all phases of the translation, whenever

we reate �- or input-bindings, we assume that there are no name-lashes. The essene of the

semantis is to set up proesses representing objets that serve lients' requests. Di�erent requests

for operating on objets are distinguished by orresponding labels ln, ali, upd

j

, inv

j

, png, and

sur. We explain the semantis by showing how requests are generated by lients, and then how

they are served by objets. Soping and onurreny are explained along the way.

We present the translation without type annotations in restritions for sake of readability.

However, to make the translation formal suh type annotations should be added. In Setion 6.1

we present a translation of �jeblik types to �-alulus types, that an be used to add the neessary

type annotations to the translation of an objet, based on the type of the objet (see [KS98℄).

Clients In Table 6, the urrent self k of enoded terms is `used' as the urrent self of the

evaluation of the �rst subterm in left-to-right evaluation order. All the translations in Table 6

follow a ommon sheme. For example, in the translation of a method invoation [[ a.l

j

h a

1

. . a

n

i ℄℄

k

p

,

the subterms a; a

1

. . a

n

have to be evaluated one after the other: the individual evaluations use

private return hannels q; q

1

. . q

n

, whih are subsequently asked for the respetive results y; x

1

. .x

n

,

but also for the respetive new urrent self k; k

1

. . k

n

to be used by the next evaluation. After the

last subterm a

n

has returned its result, the aumulated information is used to send a suitable

request with label inv

j

on self-hannel y of objet a, also arrying the overall result hannel p

and the latest urrent self k

n

. Thus, the responsibility to signal a result on p is passed on to the

respetive objet waiting at y.

Soping The semantis of let is analogous to [KS98℄ and represents the ore of the all-by-value

evaluation order in that �rst a is evaluated, and then b possibly using the value of a. Here, in

addition, the evaluation of a passes on the urrent self k

0

to be used afterwards.

Conurreny To fork a thread means to reate a new ativity running in parallel with the ur-

rent one(s), whih is done using the parallel operator. Upon thread reation, a fresh key is reated
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to beome the forked thread's urrent self. Sometimes, we use [[ a ℄℄

�

q

to abbreviate (�k) ([[ a ℄℄

k

q

).

The term [[ forkhai ℄℄

k

p

immediately returns on p a private name t, whih an be used to retrieve the

value of a from the forked thread. Therefore, [[ joinhbi ℄℄

k

p

sends its own result hannel p, together

with its latest urrent self k

0

, along the value of b.

Objets The semantis [[O ℄℄

k

p

of an objet O := [l

j

=&(s

j

; ~x

j

)b

j

℄

j2J

, as shown in Table 7 (again

along the style of [KS98℄), onsists of a message that returns the objet's referene s together

with the urrent self k on hannel p, a omposition of repliated proesses that give aess to the

method bodies [[ b

j

℄℄

k

0

r

, and a new objet proess newO

O

h s;

e

t i that onnets invoations on s from

the outside to the method bodies, whih are invoked by the trigger names

e

t. Correspondingly, new

alias proesses of the form newA

O

h s; s

a

i onnet invoations from the outside to a target proess

listening at s

a

. Inside newO

O

h s;

e

t i and newA

O

h s; s

a

i, several private names are needed: mutexes

em := m

e

;m

i

are used for serialisation; the (internal) key k

i

is used to detet self-inition; the

(external) key k

e

is used to implement serialisation in a onurrent environment (see later on).

Our semantis assoiates an objet manager OM to eah objet, and an alias manager AM to

eah alias. Before entering into the details of the translation in Table 7, we provide, in Figure 1,

a more abstrat overview of the lifetime of an objet manager, possibly turning it into an alias

manager, by emphasising the relevant states passed. Both objet and alias managers listen on their

referene hannel s for requests. Sine objets (resp. aliases) in �jeblik are serialised, only one

request shall be ative in an objet (resp. alias), at any moment. Serialisation is implemented by

two mutexes m

e

and m

i

: the external one must be grabbed in order to get aess to the manager;

the internal one preisely alternates with the external one and is used to intermediately save some

ontext information. External requests must grab the external-mutex m

e

before being served,

whih in turn brings the objet manager from state OM

f

to state OM

a

. Then, if the request is

protetion-ritial it is disarded (state OM

n

), otherwise the manager ommits to it and serves it

(in state OM

s

) until expliit termination (state OM

i

). In both ases, the objet manager beomes

free again by releasing the external-mutex m

e

(state OM

f

). Notie that self-inited requests an

only be served in state OM

s

. Furthermore, when serving self-inited aliasing requests, the objet

beomes an alias and the objet manager is replaed by an appropriate alias manager (in state

AM



). AM



is a transient state where the alias manager aomplishes all pending self-inited

requests; note that all of the latter were generated by the external request that is also responsible

for reating the alias. When this external request is ompleted, the manager terminates and

goes to state AM

i

. Afterwards, the mutex m

e

is released and the alias manager beomes free

(state AM

f

). Only now, external requests addressed to the alias manager are treated again. They

must grab the external-mutex m

e

before being forwarded, bringing the alias manager from state

AM

f

to state AM

a

. After grabbing m

e

, external requests will be aepted and forwarded to the

alias target (state AM

s

). The alias manager beomes free again by releasing the external-mutex

m

e

(state AM

f

). Finally, sine alias managers always forward external requests, no self-inited

requests may be generated anymore. This explains why no self-inited requests are taken into

aount in state AM

s

.

The following three paragraphs explain in detail how objet and alias managers serve requests,

referring now diretly to the translation semantis Table 7.

Pre-proessing [k

i

6=k 6=k

e

℄

Here, we explain how the serialisation of external requests is implemented. Upon reation of a

new objet newO (or new alias newA), the fresh mutex hannel m

e

is initialised. Aording to seri-

alisation, the intended ontinuation behaviour of an inoming external requests is bloked on m

e

,

one it enters a manager. The manager itself is immediately restarted and remains reeptive.

Arbitrarily many requests an be bloked this way and ompete for the mutex m

e

one it beomes

available. A suessfully unbloked request is resent to the same manager, but now arrying the

key k

e

, whih allows the manager to detet that the request has grabbed the mutex. We all

pre-proessing the proedure of intermediate bloking of requests. Alongside with the suessful
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[[O ℄℄

k

p

def

= (�s

e

t)

�

phs; ki

�

�

newO

O

h s;

e

t i

�

�

Q

j2J

! t

j

(s

j

; ex

j

; r; k

0

).[[ b

j

℄℄

k

0

r

�

newO

O

h s;

e

t i

def

= (�m

e

m

i

k

e

k

i

)

�

m

e

�

�

OM

O

h s;m

e

;m

i

; k

e

; k

i

;

e

t i

�

newA

O

h s; s

a

i

def

= (�m

e

m

i

k

e

k

i

)

�

m

e

�

�

AM

O

h s;m

e

;m

i

; k

e

; k

i

; s

a

i

�

OM

O

h s; em; k

e

; k

i

;

e

t i

def

= s(l; k).(�k

�

)

�

if [k=k

i

℄ then

ase l of ln (r) :OM

O

h s; em; k

e

; k

�

;

e

t i j (�s

�

)

�

rhs

�

; k

�

i j newO

O

h s

�

;

e

t i

�

;

ali (s

a

; r) :AM

O

h s; em; k

e

; k

�

; s

a

i j rhs

a

; k

�

i ;

upd

j

(t

0

; r) :OM

O

h s; em; k

e

; k

�

; t

1

. . t

j�1

; t

0

; t

j+1

. . t

n

i j rhs; k

�

i ;

inv

j

(ex; r) :OM

O

h s; em; k

e

; k

�

;

e

t i j t

j

hs; ex; r; k

�

i ;

sur (r) :OM

O

h s; em; k

e

; k

�

;

e

t i j [[ s.aliashs.lonei ℄℄

k

�

r

;

png (r) :OM

O

h s; em; k

e

; k

�

;

e

t i j [[ s ℄℄

k

�

r

elif [k=k

e

℄ then

OM

O

h s; em; k

e

; k

�

;

e

t i

�

�

ase l of ln (r) :m

i

(k).m

e

;

ali (s

a

; r) :m

i

(k).m

e

;

upd

j

(t

0

; r) :m

i

(k).m

e

;

inv

j

(ex; r) : CM[ t

j

hs; ex; r

�

; k

�

i ℄ ;

sur (r) : CM[ [[ s.aliashs.lonei ℄℄

k

�

r

�

℄ ;

png (r) : CM[ [[ s ℄℄

k

�

r

�

℄

else OM

O

h s; em; k

e

; k

i

;

e

t i

�

�

m

e

.

�

shl; k

e

i j m

i

k

�

�

CM[�℄

def

= (�r

�

)

�

[�℄ j r

�

(y; k

0

).m

i

(k

00

).( rhy; k

00

i j m

e

)

�

AM

O

h s; em; k

e

; k

i

; s

a

i

def

= s(l; k).(�k

�

)

�

if [k=k

i

℄ then

ase l of ln (r) :AM

O

h s; em; k

e

; k

�

; s

a

i j (�s

�

)

�

rhs

�

; k

�

i j newA

O

h s

�

; s

a

i

�

;

ali (s

0

a

; r) :AM

O

h s; em; k

e

; k

�

; s

0

a

i j rhs

0

a

; k

�

i ;

upd

j

(t

0

; r) :AM

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;

inv

j

(ex; r) :AM

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;

sur (r) :AM

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;

png (r) :AM

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki

elif [k=k

e

℄ then AM

O

h s; em; k

e

; k

�

; s

a

i j m

i

(k).

�

s

a

hl; ki j m

e

�

else AM

O

h s; em; k

e

; k

i

; s

a

i j m

e

.

�

shl; k

e

i j m

i

k

�

�

Table 7: Translational Semantis of �jeblik | Objets
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OM

f

: free

grab (m

e

!m

i

)

//
OM

a

: ative

disard

(external ali/ln/upd)

tt
tt

tt
tt

yyttttttt

ommit

(external inv/sur/png)

��

OM

n

: not serving

release

(m

i

!m

e

)GGGGGGG

ccGGGGGGG

OM

i

: idle

release

(m

i

!m

e

)

OO

OM

s

: serving

terminate (r

�

)

oo

serve

(internal ali)

��

EDC
serveBC

(any internal)

hhPPPPPPPPPP

AM

i

: idle

release

(m

i

!m

e

)

��

AM



: ompleting

terminate (r

�

)

oo
BCD
serve

ED
(any internal)

vvnnnnnnnnnn

AM

f

: free

grab (m

e

!m

i

)

//
AM

a

: ative

aept

(any external)

tt
tt

tt
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Figure 1: Objet and Alias Manager Serving Requests

request, its former urrent self k is stored on the (internal) mutex m

i

for reovery after termina-

tion. This reovery is atually neessary sine the original urrent self k is possibly required for

use later on by the sender of the request. Note that pre-proessing also properly takes are of the

fat that ompeting requests may hange the state of an objet, and even turn it into an alias

by passing from OM

s

to AM



, so pre-proessed requests should not be bound too early to some

objet manager behaviour. By only resending a request one it has grabbed the mutex, it will be

handled by the urrent manager, not by the manager in the state of the moment when the request

originally entered the objet. Notie that pre-proessing in alias managers is not superuous,

beause there may be pending requests that have been pre-proessed when s was onneted to

an OM. Finally, pre-proessing does not prelude the evolution of the system, that is, external

requests an be pre-proessed at any moment (in any state) by both alias and objet managers
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without a�eting the state of the manager, so these transitions are ompletely ignored in Figure 1.

Serving external requests [k=k

e

℄

Serialization and protetion are required. Here, we explain how external requests, whih have

already been pre-proessed and have already grabbed the external mutex m

e

, are served by both

objet and alias managers.

Objet Managers (OM). When serving an external request, the manager OM is immediately

restarted with the same state exept for the fresh internal key k

�

. The key k

�

must subsequently

be used as the urrent self when performing the urrent request. Later on, we will better explain

the use of k

�

.

Cloning, aliasing, and update, are ritial operations. One a respetive pre-proessed request

is onsumed, the manager evolves from state OM

a

into state OM

n

: the request and its former

urrent self k, stored on hannel m

i

, are simply disarded by onsuming m

i

k and releasing m

e

.

Invoation, surrogation, and ping are non-ritial operations. One a respetive pre-proessed

request is onsumed, the manager evolves from state OM

a

into state OM

s

implying that no other

external request shall be served (apart from pre-proessing) until the urrent one has terminated.

In order to be noti�ed of that event, we employ a all manager protool, represented by the

ontext CM[�℄: instead of delegating to some other proess the responsibility of returning a result

on r, a fresh return hannel r

�

is reated to be used within [�℄ in plae of r, suh that the result

will �rst appear on r

�

. Until this event, other external requests remain bloked, while internal

request may well be served. After this event, the manager evolves from state OM

s

into state OM

i

,

where the former urrent self an be grabbed from m

i

, the result y be forwarded to the intended

result hannel r (along with the former urrent self), and the mutex m

e

be released. In the

ase of invoation (ase inv

j

), the manager ativates the method body bound to l

j

along trigger

name t

j

. Note that (externally) triggered method bodies [[ b

j

℄℄, and also surrogation and ping

bodies [[ s.aliashs.lonei ℄℄ and [[ s ℄℄, are all run in the ontext of the none k

�

(see below), whih

is now the new internal key of the OM, so their further alls to s will be self-inited. This is

essential for surrogation, sine loning and aliasing are only allowed internally.

Alias Managers (AM). When serving external requests, alias managers, like objet managers,

are immediately restarted with the same state exept for the fresh internal key k

�

. External

requests that arrive at an ative alias manager (in state AM

a

) will be simply forwarded (in state

AM

s

) without modi�ation of the urrent-self k (obtained by onsuming m

i

k) to the aliasing

target s

a

. Finally, when releasing m

e

, the manager will evolve to state AM

f

.

Serving self-inited requests [k=k

i

℄

No serialization or protetion is required. Here, we explain how self-inited requests are served

by both objet and alias managers.

Objet Managers (OM). For eah �eld, the manager may ativate appropriate instanes of

method bodies (ase inv

j

: the method body bound to l

j

along trigger name t

j

) and administer

updates (ase upd

j

: install a new trigger name t

0

). Cloning (ase ln) restarts the urrent objet

manager in parallel with a new objet, whih uses the same method bodies

e

t, but is aessible

through a fresh referene s

�

. In all ases exept aliasing, an objet manager OM is restarted with

a fresh internal key k

�

. Aliasing (ase ali) starts an appropriate alias manager AM instead of re-

starting the previous objet manager OM. Surrogation and ping (ases sur and png) are modelled

aording to their uniform method de�nitions.

Alias Managers (AM). To perform self-inited requests the alias manager may only be in the

transient state AM



. Cloning and alias requests are allowed and treated as in the respetive lauses

of objet managers, but restarting AM instead of OM. Invoation, surrogation, update, and ping

requests are forwarded to the aliasing target s

a

without modi�ation of the urrent-self k.
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R(X)

def

=C(X;K)

M(B

1

. .B

n

!

b

B)

def

=[[B

1

℄℄ . . [[B

n

℄℄;R([[

b

B ℄℄)

[[ [l

j

:

e

B

j

!

b

B

j

℄

j2J

℄℄

def

=

�X .C(

2

6

6

6

6

6

6

4

ln : R(X)

ali : hX;R(X) i

upd

j

:hC(X;M(

e

B

j

!

b

B

j

);K);R(X) i

inv

j

: hM(

e

B

j

!

b

B

j

) i

sur : R(X)

png : R(X)

3

7

7

7

7

7

7

5

j2J

;K)

[[ Thr(A) ℄℄

def

=C(R([[A ℄℄);K)

[[ �; x:A ℄℄

def

=[[ � ℄℄; x:[[A ℄℄

Table 8: Translation of �jeblik-types

Nones (�k

�

)

We use nones k

�

to implement self-serialisation between self-inited requests. When serving

self-inited and external requests, managers OM and AM are always restarted by replaing the

urrent self with a fresh key k

�

. Aording to our semantis, program ontexts will never give

rise to several ompeting (external or self-inited) requests, but, when reasoning within arbitrary

L�

+

ontexts, as we do in Setion 8.1, their existene must be taken into aount. Therefore,

we add another layer of protetion to inrease the robustness of serialisation: eah time a (self-

inited or external) request enters a manager, a fresh key k

�

is reated to be used in the restarted

manager; this key must subsequently be used as the urrent self for all ativities enabled by the

urrent request. Thus, the onsumption of one of the ompeting pending requests renders the other

ompetitors external. Notie that pre-proessing must not reinitialise the key k

i

of the restarted

manager: a urrently self-inited operation interleaved by pre-proessing might be hindered to

proeed, beause it ould unintendedly beome external.

6 Properties of the translational semantis

This setion is devoted to show two fundamental properties of our translational semantis: (i) the

translation preserves well-typedness; (ii) objets (and alias) managers are unique.

6.1 The L�

+

-translation preserves well-typedness

A translation of the type system of �jeblik into the type system of the �-alulus has several merits:

(i) it strengthens the soundness of our semantis of terms, as in Theorem 6.1; (ii) �jeblik's type

system itself is provided with some more formal underpinning, as demonstrated in Proposition 6.2;

(iii) we may employ typeful reasoning about terms, of whih we give examples in Proposition 6.3.

The translation of types, shown in Table 8, is similar to the ones for the Funtional and Imperative

Objet Calulus found in [San98, KS98℄. We use some handy abbreviations to denote (i) the type

R(X) of result hannels, whih an be used to retrieve results of type X , together with the urrent

key; (ii) the type M(B

1

. .B

n

!

b

B) of methods, whih is self-explanatory. The most ritial part

of the translation is the proper representation in the ase of update, but even there, the hosen

abbreviations allow us to diretly relate the types with the orresponding terms in Tables 6 and 7.

The translation of Thr(A) denotes the type of name t in the semantis of fork and join in Table 6.

Note that, beause we intended to stay within the onstraints of L�, we ould not use t diretly
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to retrieve the value of a fork'ed term a, but we used it to send the result hannel of the join'ing

term, together with its urrent key|this is preisely represented in the translation of Thr(A).

Aording to the translation of types, we an add type delarations in a straightforward way

to all bindings in the translation of terms, as mentioned, although omitted, in Setion 5.

Types witness the lean representation of �jeblik terms as �-alulus terms.

Theorem 6.1 (Type Soundness) Let a 2 L, let � be a type-environment, and let A be a type.

Then � ` a:A if and only if [[ � ℄℄ ; p:R([[A ℄℄) ; k:K ` [[ a ℄℄

k

p

for names p and k.

Proof. The impliation from left to right is proved using indution in the depth of the derivation

of � ` a:A with a ase analysis of the last rule used. The impliation from right to left is proved

by indution in the struture of a. Details an be found in Appendix A.2.

2

In addition to the initial orrespondene of types in �jeblik and their �-alulus ounterparts,

the preservation of types under redution in the �-alulus provides us for free with preservation of

�jeblik types, thus witnessing the subjet redution theorem based on the operational semantis

in [NHKM00℄.

Proposition 6.2 (Subjet Redution) Let � ` a:A.

If [[ a ℄℄

k

p

=) Q, then [[ � ℄℄ ; p:R([[A ℄℄) ; k:K ` Q .

The type system provides some properties of the translation almost for free. Let us �x some

terminology. A term P ours weakly unguarded in Q, if there is Q =) Q

0

�E

0

[P ℄, where E

0

[�℄ is

a stati L�

+

-ontext. By means of the type translation, we an show that whenever, at top-level,

a request may be direted to some potential objet or alias manager, there will always be some

manger ourring weakly unguarded and thus being eventually able to serve the request.

Proposition 6.3 Let � ` a:A and E[�℄ be a stati L�

+

-ontext.

1. If [[ a ℄℄

k

p

=)Q�E[sh. . i℄,

then either AM

O

h s; : : : i or OM

O

h s; : : : i ours weakly unguarded in Q.

2. If [[ a ℄℄

k

p

=)Q�E[AM

O

h s; : : : ; s

a

i℄,

then either AM

O

h s

a

; : : : i or OM

O

h s

a

; : : : i ours weakly unguarded in Q.

Proof. [Sketh℄ Sine � ` a:A, also [[ a ℄℄

k

p

is well-typed. By inspetion of the enoding, whenever

a self-hannel is reated, also the respetive manager is reated. The well-typedness of [[ a ℄℄

k

p

means that managers annot disappear: when they reeive a message, they an only be guarded

by mathing, followed by ase; by well-typedness, the ase an be resolved, resulting in a new

manager at the same name. Finally, the reation of requests is always guarded by an input of a

self-hannel and a key, so the reation of requests always follows the reation of a manager, but

never proeeds it. When an objet manager hanges into an alias manager, it installs as target

the self-hannel of another manager, whih by onstrution and well-typedness of the translation

annot disappear.

2

As a onsequene, by transitivity and the �niteness of terms, this proposition tells us that alias

hains are either yli or end up with an objet manager. In other words, when a request is sent

to an objet it either eventually arrives at an objet manager, or it yles in a loop between alias

managers.

6.2 Properties of objet managers

A ruial property in objet-oriented languages is the uniqueness of objets. The L� onstraint

on the output apability guarantees this property.

Lemma 6.4 (Uniqueness of objets) Let a be an �jeblik term. If [[ a ℄℄

k

p

=) Z with

either Z � (�ez) (M j OM

O

h s; : : : i ) or Z � (�ez) (M j AM

O

h s; : : : i )

then s 2 ez and s does not appear free in input position within M .
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Proof. By inspetion of the enoding. If a manager is present, it must have been reated at some

point as desribed in the enoding, beause initially, there is none. Upon reation, its name s is

bound. Sine we only onsider redutions, the name remains bound. Finally, the enoding shows

that managers are only restarted if the former inarnation disappears. Sine there are never two

opies restarted, and only the output apability of hannels may be transmitted, the uniqueness

of the reeptor s is preserved.

2

We now analyse, referring diretly to Figure 1, how the shape of the ontext around a partiular

objet manager evolves during omputation (.f. Lemma 6.5). Later on, we will need a speial

ase of this result (Lemma 6.6) in the proof of Theorem 8.7.

Observation 1: Pre-proessing does not hange the state of objet managers. At any time, an

objet/alias manager is ready to reeive a request shl; ki with k

e

6=k 6=k

i

. The manager is restarted

afterwards, but there will be a proess m

e

.( shl; k

e

i j m

i

k ) that replaes the onsumed request.

Let us assume requests sv

j

, with v

j

:= h l

j

; k

j

i for j 2 1. .h, (and ev:=v

1

. .v

h

) are pre-proessed by

the objet manager OM

O

h s;m

e

;m

i

; k

e

; k

i

;

e

t i, so k

e

6=k

j

6=k

i

for all j 2 1. .h. Then:

PP

O

h s;m

e

;m

i

; k

e

; ev i

def

=

Q

j21..h

m

e

.( shl

j

; k

e

i j m

i

k

j

)

Observation 2: While an objet manager evolves, its internal key k

i

may be extruded to its

objet lients, whereas names m

e

;m

i

; k

e

may not. Assume that an inv

j

-request (along s) appears

at OM

O

h s;m

e

;m

i

; k

e

; k

i

;

e

t i, is pre-proessed, gets the mutex m

e

and re-enters along s with key k

e

.

At that point, aording to the semantis, a fresh internal key k

�

is reated and extruded to the

orresponding method body. The names en := m

e

;m

i

; k

e

are never extruded; they onstitute the

proper boundary of a manager during omputation. Observation 2 provides the formal basis to

understand the evolution of objet and alias managers as desribed in Figure 1. For simpliity,

we restrit our analysis to objet managers, but a similar argument applies to alias managers.

Lemma 6.5 (Objet manager evolution) Let a be an �jeblik term. If [[[ a ℄℄℄

k

p

=) Z and Z =

E[OM

O

h s; : : : i℄, with E[�℄ stati, then|without �-onverting the name s|

Z �

b

E[ (�en) ( M

Z

j OM

O

h s; en; k

i

;

e

t i j PP

O

h s; en; ev i ) ℄

where

b

E[�℄ is a stati L�

+

-ontext, en := m

e

;m

i

; k

e

, and M

Z

is either of

Z M

Z

OM

f

m

e

OM

a

m

i

k j shl; k

e

i

OM

n

m

i

k j m

i

(k).m

e

OM

s

m

i

k j r

�

(y; k

0

).m

i

(k

00

).( rhy; k

00

i j m

e

)

OM

i

m

i

k j m

i

(k

00

).( rhy; k

00

i j m

e

).

with Z denoting the state of OM as in Figure 1.

Proof. By indution on the length of [[[ a ℄℄℄

k

p

=) Z for some �xed s, where we assume that

the predeessor state Z

0

of Z is in one of the �ve desribed \states". Details an be found in

Appendix A.3.

2

In the following two observations, we outline two speial ases of Lemma 6.5: free objet

managers in state OM

f

and ommitting objet managers ready to evolve from state OM

a

to state

OM

s

.

Observation 3: An objet manager is free, if its external-mutex m

e

is available. In our se-

mantis, a manager is willing to grant aess to external requests, if its external-mutex m

e

ours

unguarded in the term that desribes the urrent state, so the general shape of a free objet (and

analogously alias) manager is:

freeO

O

h s; k

i

;

e

t; ev i

def

= (�en)

�

m

e

�

�

OM

O

h s; en; k

i

;

e

t i

�

�

PP

O

h s; en; ev i

�

freeA

O

h s; k

i

; s

a

; ev i

def

= (�en)

�

m

e

�

�

AM

O

h s; en; k

i

; s

a

i

�

�

PP

O

h s; en; ev i

�
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where the keys mentioned in ev of PP

O

h : : : i neither math k

e

nor k

i

. Notie that

newO

O

h s;

e

t i � (�k

i

) freeO

O

h s; k

i

;

e

t; ; i, and analogously for newA

O

h : : : i.

Observation 4: An objet manager is ready to ommit, if it may onsume a pre-proessed

request whih has already grabbed m

e

. The following lemma derives from the ability to ommit to

a valid external request|visible as the availability of a valid pre-proessed request, i.e., a request

arrying k

e

|the shape of the objet manager before and after ommitment, inluding all of its

urrent pre-proessed requests.

Lemma 6.6 (Committing objet manager) Let a be an �jeblik term. If [[[ a ℄℄℄

k

p

=) Z and Z �

E[ shl; k

e

i j OM

O

h s; en; k

i

;

e

t i ℄ with E[�℄ stati, en = m

e

;m

i

; k

e

, and l 2 finv

j

hex; ri; png r; sur rg,

then Z

�

��! Z

0

where

Z �

b

E[ (�en)

�

m

i

k j PP

O

h s; en; ev i j OM

O

h s; en; k

i

;

e

t i j shl; k

e

i

�

℄

Z

0

�

b

E[ (�en)

�

m

i

k j PP

O

h s; en; ev i j (�k

�

)(OM

O

h s; en; k

�

;

e

t i j CM[X

l

h s i

k

�

r

�

℄ )

�

℄

for some stati ontext

b

E[�℄, some key k, some set ev of pre-proessed requests, and X

l

h s i denoting

the respetive ontinuation behaviour of Table 7.

Proof. Aording to Lemma 6.5, the property holds in state OM

a

whih is the only state that

mathes the premise.

2

As speial ases, for l 2 fpng r; sur rg, of ommitted objet managers, we de�ne

F [�℄

def

= (�enk

�

)

�

m

i

k

�

�

PP

O

h s; en; ev i

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

[�℄

�

pingO

O

h s; r; k;

e

t; ev i

def

= F [CM[ [[ s ℄℄

k

�

r

�

℄℄

surO

O

h s; r; k;

e

t; ev i

def

= F [CM[ [[ s.aliashs.lonei ℄℄

k

�

r

�

. ℄℄

As we will see in Setion 8.1, pingO

O

h s; r; k;

e

t; ev i and surO

O

h s; r; k;

e

t; ev i model the objet manager

before and after surrogation, respetively.

7 Towards a formalization of safe surrogation

In [NHKM00℄, we motivated an equation on �jeblik terms to model the safety of objet surro-

gation. In Subsetion 7.1, we replay the argument leading to that equation and adapt it to the

translational semantis of �jeblik. In [NHKM00℄, we also observed that the equation intrinsially

an only be true in a restrited sense. The tehniques of Subsetion 7.2 will allow us preisely

formalize this restrition.

7.1 Safety as an Equation

We reall that in order to be safe, objet surrogation should be transparent to objet lients. In

other words an objet should behave the same before and after surrogation, in all possible ontexts.

The following equation is a �rst attempt to model this property:

a

.

= a.surrogate (1)

The simplest ase of Equation 1 is when a is an objet O . In this ase the surrogation is surely

safe, beause (i) the proess of surrogation is arried out orretly sine, due to serialisation, only

the surrogation thread an interat with the objet O , i.e., there annot be any interferene with

another thread or ativity, and (ii) every interation with O is mimiked identially by O .surrogate,

whih suÆes sine after surrogation nobody has aess to the previous O .

In the general ase, however, neither of the two above arguments holds. The reason is beause

of possible opying of a referene to the former objet suh that, after surrogation, requests an

still be direted to that referene. Observing that a

.

= letx= a inx (in all ontexts, the let just
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C[�℄ ::= [�℄ j [ l

k

=&(s; ex)C[�℄ ; l

j 6=k

=m

j 6=k

℄

j2J

j C[�℄.lh ~a i j a.lh ~a; C[�℄; ~a i

j C[�℄.l(m j a.l(&(s; ex)C[�℄

j C[�℄.aliashbi j a.aliashC[�℄i

j C[�℄.lone

j C[�℄.surrogate j C[�℄.ping

j letx=C[�℄ in b j letx=a inC[�℄

j forkhC[�℄i j joinhC[�℄i

Table 9: �jeblik ontexts

adds one unonditional step after reduing a) and that the notion of equivalene takes all �jeblik

ontexts into aount, Equation 1 an be redued to the problem of surrogation on variables:

x

.

= x.surrogate (2)

However, there is an inherent problem with Equation 2, whih is exhibited by the following ontext

that reates a self-alias via method all:

C[�℄ := let x = [ l=&(s)s.aliashsi ℄ in x.l; [�℄

It holds that C[x℄+, whereas C[x.surrogate℄6+. Indeed, in C[x℄+ the evaluation of x returns imme-

diately, while in C[x.surrogate℄6+, the request x.surrogate is never served beause it travels into a

loop along the self alias hain x�x. The problem in Equation 2 is that we do not hek whether

the \objet before surrogation" is atually reahable. This an be easily done as follows

x.ping

.

= x.surrogate (3)

The equation 3 detets yli hains by means of the ping-request whih travels to the endpoint

of the alias hain possibly starting at x. For the above ontext, C[x.ping℄6+.

In the remainder of the paper, Equation 3 will be referred to as the safety equation. In

order to fully speify it, we lak the interpretation of the equivalene

.

=. A standard way to

de�ne program equivalenes is to ompare the onvergene behaviour of programs within arbitrary

program ontexts, as, for example, shown in previous work on the Imperative Objet Calulus

(IOC) [AC96, GHL97℄. This equivalene is usually referred to as observational ongruene [Mor68℄.

In our setting, aording to Table 9, an �jeblik ontext C[�℄ has a single hole [�℄ that may be �lled

with an �jeblik term. In the remainder of the paper, we assume that �jeblik-ontexts always

yield well-typed terms when plugging some �jeblik-term into the hole.

Sine we have given a translational semantis for �jeblik, our program equivalene is based

on the enoding [[ � ℄℄

k

p

. Roughly, the semantis [[ a ℄℄

k

p

, of an �jeblik term a is a L�

+

-proess whih

returns the result on hannel p as soon as it knows it. An �jeblik term onverges if its semantis

is a proess whih may report its result on the hannel p.

De�nition 7.1 (Convergene) Given an �jeblik term a, we write a+ if [[ a ℄℄

k

p

+

p

.

De�nition 7.2 (Behavioural equivalene) Two �jeblik terms a and b are behaviourally equiv-

alent, written a

.

= b, if

C[a℄ + i� C[b℄ +

for all �jeblik ontexts C[�℄.
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7.2 On the absene of self-inited surrogation

One of the main observations in [NHKM00℄ was that the safety equation an not hold in full

generality for �jeblik-ontexts, in whih the operation x.surrogate ould our internally. The

reason is that, after internal surrogation, an objet may misuse by intention the old and new

referenes to itself. Atually, the advie to avoid internal surrogation is somehow analogous to the

fat that programmers, knowing that x=0, should never use division by x. \Observable internal-

surrogations" should be interpreted as programming errors and not as a semantis fault. On the

other hand, \observable external-surrogations" represents a muh more serious problem. In this

ase, (external) objet lients an distinguish whether an objet has moved or not. Somehow,

it orresponds to the ase where a program reeives x from some other module, so it should be

guaranteed that x will never be 0. In [NHKM00℄, we onjetured that in our semantis external

surrogation is guaranteed to be safe. Although this is an undeidable riterion [Car95℄, we may still

formalise it in terms of our �-alulus semantis, whih is preisely what we do in this Subsetion:

we formalise the lass of �jeblik-ontexts C[�℄ that will never lead to self-inited ourrenes of

the term x.surrogate, when plugged into the hole.

In our semantis, the omputation [[ a ℄℄

k

p

=) Z of an �jeblik term a yields a self-inited sur-

request if Z � E[ shsur r; ki j OM

O

h s; em; k

e

; k

i

;

e

t i ℄; for some stati ontext E[�℄ in L�

+

, with k=k

i

.

Sine we must ensure that a sur-request never leads to internal surrogation, we must quantify over

all derivatives of [[ a ℄℄

k

p

and hek for self-inition in eah of them.

Note that, starting from the term [[C[x.surrogate℄ ℄℄

k

p

, we should not be onerned with arbitrary

sur-requests that appear at top-level during omputation, but only with those that \arise from

the request in the hole". However, this property is hard to determine for two di�erent reasons:

(1) All of the names mentioned in a sur-request may be hanged dynamially by instantiation:

s (due to forwarding), r (due to a all manager protool), and k (due to pre-proessing). (2) We

have to onsider arbitrarily many dupliations of the request in the ase that the hole appears, at

the level of �jeblik terms, within in a method body, whih leads to repliation in the �-alulus

semantis. For both reasons, we need a tool to uniquely identify the various inarnations of the

request.

Let operate 2 fping; surrogateg, and let op 2 fpng; surg denote the orresponding �-alulus

labels (.f. Table 6). We introdue the additional �jeblik labels operate

?

2 fping

?

; surrogate

?

g. The

intuition is that tagged labels are semantially treated exatly like their untagged ounterparts,

but an syntatially be distinguished from them. Consequently, we have to adapt the given

semantis to take this into aount. Table 10 presents the required straightforward additions,

where we use the tagged �-alulus labels op

?

2 fpng

?

; sur

?

g, respetively: the individual lauses

of the tagged semantis, written [[[ � ℄℄℄

k

p

, are just opies of the lauses for the untagged requests.

As a result, both tagged and untagged requests an be sent to objet and alias managers; objet

managers ignore the tagging information of requests and treat op

?

-and op-requests identially, but

alias managers preserve the tagging information sine they simply forward requests. We also add a

tag to all parameterised de�nitions and abbreviations when onsidering the tagged semantis, for

instane, OM

?

, AM

?

, pingO

?

and surO

?

are de�ned as expeted. Notie that the semantis is not

a�eted by inluding tagging information. As a onsequene, all results proved for the untagged

semantis are valid for the tagged semantis as well.

Lemma 7.3 Let x be an �jeblik variable and C[�℄ an untagged �jeblik ontext. Then:

C[x.operate℄+ i� [[[C[x.operate

?

℄ ℄℄℄

k

p

+

p

.

Proof. The proof is in two steps:

[[C[x.operate℄ ℄℄

k

p

+

p

i� [[[C[x.operate℄ ℄℄℄

k

p

+

p

i� [[[C[x.operate

?

℄ ℄℄℄

k

p

+

p

.

The �rst step ompares the onvergene behaviour of untagged requests|note that C[x.operate℄

is untagged by assumption|with respet to the tagged and the untagged semantis. On untagged

requests, the tagged and the untagged semantis behave exatly the same. The seond step
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[[[ a.surrogate

?

℄℄℄

k

p

def

= (�q)

�

[[[ a ℄℄℄

k

q

j q(y; i) . yhsur

?

p; ii

�

[[[ a.ping

?

℄℄℄

k

p

def

= (�q)

�

[[[ a ℄℄℄

k

q

j q(y; i) . yhpng

?

p; ii

�

OM

?

O

h s; em; k

e

; k

i

;

e

t i

def

= s(l; k).(�k

�

)

�

if [k=k

i

℄ then

ase l of : : : : : : :

sur (r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[ s.aliashs.lonei ℄℄℄

k

�

r

;

png (r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[ s ℄℄℄

k

�

r

;

sur

?

(r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[ s.aliashs.lonei ℄℄℄

k

�

r

;

png

?

(r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[ s ℄℄℄

k

�

r

elif [k=k

e

℄ then

OM

?

O

h s; em; k

e

; k

�

;

e

t i

�

�

ase l of : : : : : : :

sur (r) : CM[ [[[ s.aliashs.lonei ℄℄℄

k

�

r

� ℄ ;

png (r) : CM[ [[[ s ℄℄℄

k

�

r

� ℄ ;

sur

?

(r) : CM[ [[[ s.aliashs.lonei ℄℄℄

k

�

r

� ℄ ;

png

?

(r) : CM[ [[[ s ℄℄℄

k

�

r

� ℄

else OM

?

O

h s; em; k

e

; k

i

;

e

t i

�

�

m

e

.

�

shl; k

e

i j m

i

k

�

�

AM

?

O

h s; em; k

e

; k

i

; s

a

i

def

= s(l; k).(�k

�

)

�

if [k=k

i

℄ then

ase l of : : : : : : :

sur (r) : AM

?

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;

png (r) : AM

?

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;

sur

?

(r) : AM

?

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;

png

?

(r) : AM

?

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki

elif [k=k

e

℄ then AM

?

O

h s; em; k

e

; k

�

; s

a

i j m

i

(k).

�

s

a

hl; ki j m

e

�

else AM

?

O

h s; em; k

e

; k

i

; s

a

i j m

e

.

�

shl; k

e

i j m

i

k

�

�

Table 10: Translational semantis | Additional tagged lauses
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ompares the onvergene behaviour of a tagged term and its untagged ounterpart with respet

to the tagged semantis. By de�nition, the tagged semantis treats tagged and untagged requests

in exatly the same manner.

2

Tagging helps us to detet all \requests arising from the hole".

De�nition 7.4 (External Contexts) Let x be a variable and C[�℄ an untagged �jeblik ontext.

Then, C[�℄ is alled external for x.surrogate, if whenever

[[[C[x.surrogate

?

℄ ℄℄℄

k

p

=)

�

E[ shsur

?

r; ki j OM

?

O

h s; em; k

e

; k

i

;

e

t i ℄

it holds that k 6= k

i

.

We replay the de�nition using ping instead of surrogate. By de�nition of the semantis, an �jeblik

ontext C[�℄ is then external for x.surrogate if and only if it is external for x.ping. For onveniene,

by abuse, we simply all C[�℄ to be external for x.

8 On the safety of surrogation

In this setion, we prove that that

C[x.ping℄+ i� C[x.surrogate℄+

under the assumption that C[�℄ will never lead to self-inited ourrenes of x.surrogate. In

Subsetion 8.1, we study the behavior of the ommitted objet managers pingO

O

h s; : : : i and

surO

O

h s; : : : i, as de�ned at the end of Subsetion 6.2, and prove them algebraially to be barbed

�-equivalent. In Subsetion 8.2, we then give the formal proof for the safety of external surrogations

by iteratively simulating onvergene sequenes for the proof goal above. Finally in Subsetion 8.3,

we give a stati type system that guarantees that surrogations will always be external.

8.1 On ommitting external surrogations

By Lemma 6.6, when an objet manager ommits to either a png or a sur request, we get the

proesses pingO

O

h s; r; k;

e

t; ev i or surO

O

h s; r; k;

e

t; ev i; respetively. These proesses also represent

(the state of) the objet manager before and after external surrogation, respetively; reall that

pingO

O

h s; : : : i just tells us that the objet manager at the end of the hain was reahable. Notie

that due to the use of nones (.f. page 21) in the implementation of the objet and alias managers,

in both proesses pingO

O

h s; : : : i and surO

O

h s; : : : i the key k

�

is fresh and therefore di�erent from

any key appearing in the proess PP

O

h s; en; ev i ontained in both pingO

O

h s; : : : i and surO

O

h s; : : : i.

In the following we show that proesses pingO

O

h s; : : : i and surO

O

h s; : : : i are related by typed

barbed equivalene '

�;s

(De�nition 2.10).

Theorem 8.1 Let � be a type environment with � ` surO

O

h s; r; k;

e

t; ev i; pingO

O

h s; r; k;

e

t; ev i. Then:

surO

O

h s; r; k;

e

t; ev i '

�;s

pingO

O

h s; r; k;

e

t; ev i.

The proof of Theorem 8.1 requires several strong lemmas. The proofs of the latter an be found

in Appendix A. In all the lemmas below the well-typedness requirement is neessary to ensure

that (i) the environment sends along the objet referene s only values of the right type, (ii) the

environment never uses hannel s in input.

Lemma 8.2 proves that surrogation results in an alias pointing to a lone of the old objet. The

proof relies on the nones used in the implementation of both objet and alias managers, whih

ontrol the interferene with the environment.

Lemma 8.2 If � is a suitable type environment for the proesses below, then:

surO

O

h s; r; k;

e

t; ev i �

�;s

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ev i

�

�

newO

O

h s

�

;

e

t i

�

�

rhs

�

; ki

�

.
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Lemma 8.3 proves that the alias manager appearing in Lemma 8.2 behaves as a forwarder.

This will allow us to apply the theory of L�.

Lemma 8.3 Let ev := v

1

. . v

n

, and v

j

:=h l

j

; k

j

i for 1�j�n. If � is a suitable type environment

for the proesses below, then:

(�k

i

) freeA

O

h s; k

i

; s

�

; ev i �

�;s

s . s

�

�

�

Q

1�j�n

s

�

v

j

.

Notie that without the well-typedness hypothesis, after having reeived a wrong value along

s, the two proesses above would have a di�erent behaviour.

Lemma 8.4 uses the algebrai law of L�

+

of Lemma 2.15. Note that the proof of Lemma 8.4

is not a trivial appliation of Lemma 2.15.

Lemma 8.4 Let P be a proess and s a hannel suh that s 62 f(P ). If � is a suitable type

environment for the proesses below, then:

(�s

�

)

�

s . s

�

j P

�

'

�;s

Pf

s

=

s

�

g.

Lemma 8.5 proves that pre-proessing external requests does not prelude other requests.

Lemma 8.5 Let ev := v

1

. . v

n

with v

j

:=h l

j

; k

j

i and k

j

6=k

i

for 1�j�n. If � is a suitable type

environment for the proesses below, then:

Q

1�j�n

sv

j

�

�

newO

O

h s;

e

t i �

�;s

(�k

i

) freeO

O

h s; k

i

;

e

t; ev i.

Lemma 8.6 is a tehnial lemma involving two onuent redutions.

Lemma 8.6 Let ev := v

1

. . v

n

with v

j

:=h l

j

; k

j

i and k

j

6=k

i

for 1�j�n. If � is a suitable type

environment for the proesses below, then:

rhs; ki

�

�

(�k

i

) freeO

O

h s; k

i

;

e

t; ev i �

�

pingO

O

h s; r; k;

e

t; ev i.

Proof of Theorem 8.1 Proof. We reall that relations �

�

and �

�;s

imply '

�;s

. By subse-

quently applying Lemmas 8.2, 8.3, 8.4, 8.5, and 8.6 we have:

surO

O

h s; r; k;

~

t; ev i

'

�;s

(�s

�

)

�

(�k

i

) (freeA

O

h s; k

i

; s

�

; ev i) j newO

O

h s

�

;

~

t i j rhs

�

; ki

�

'

�;s

(�s

�

)

�

s . s

�

j

Q

1�j�n

s

�

v

j

j newO

O

h s

�

;

~

t i j rhs

�

; ki

�

'

�;s

Q

1�j�n

sv

j

j newO

O

h s;

~

t i j rhs; ki

'

�;s

(� em

e

k)

�

m

e

j OM

O

h s; em;

e

k;

~

t i j PP

O

h s; en; ev i

�

j rhs; ki

'

�;s

pingO

O

h s; r; k;

~

t; ~v i.

2

8.2 External Surrogation is Safe

Based on the knowledge of Theorem 8.1 that the ommitted objet managers pingO

O

h s; : : : i and

surO

O

h s; : : : i are equivalent, we proeed to onstrut simulation sequenes up to this equivalene.

More preisely, whenever needed we may replae one of the managers by the other, beause typed

barbed equivalene provides us with the same onvergene behaviour in all stati ontexts.

Theorem 8.7 (Safety) Let x be an objet variable and C[�℄ an (untagged) well-typed ontext in

�jeblik. If C[�℄ is external for x, then

C[x.ping℄+ i� C[x.surrogate℄+.
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Proof. By Lemma 7.3 our proof obligation is equivalent to:

[[[C[x.ping

?

℄ ℄℄℄

k

p

+

p

i� [[[C[x.surrogate

?

℄ ℄℄℄

k

p

+

p

.

This allows us to make use of the assumption on ontext C[�℄.

Sine the semantis [[[ � ℄℄℄

k

p

is ompositional, there is an L�

+

ontext D[�℄ and names y; j; q, suh

that [[[C[x.operate

?

℄ ℄℄℄

k

p

= D[yhop

?

q; ji℄, where D[�℄ itself does not ontain any message arrying

a tagged request. Sine the translation preserves well-typedness (.f. Proposition 6.2) there is an

L�

+

typing � suh that � ` D[yhop

?

q; ji℄. We prove that

D[yhpng

?

q; ji℄+

p

i� D[yhsur

?

q; ji℄+

p

and onentrate on the impliation from right to left. The onverse is analogous.

Assume that D[yhsur

?

q; ji℄ +

p

. If D[N ℄+

p

for every proess N , then this is also the ase for

N = yhpng

?

q; ji; otherwise, the sur

?

-request must ontribute to the barb. Therefore, we assume

D[yhsur

?

q; ji℄ =) P #

p

and show that there is a orresponding sequene D[yhpng

?

q; ji℄ =)

'

�

Q #

p

where Q = P [

png

?

=

sur

?

℄. Sine typed barbed equivalene '

�

and relabelling preserve onver-

gene, this suÆes.

Aording to the disussion in Setion 6.2, a redution step due to an external request is

ommitting, if it represents the onsumption of a pre-proessed request by an objet manager.

Now, we ombine this knowledge with the fat that we have to onentrate on surrogation requests

arising from the hole within the redution sequene D[yhsur

?

q; ji℄ =) P #

p

and all signi�ant

( �!

s

) preisely those steps that exhibit the ommitment to a sur

?

-request. All the other steps

an be onsidered insigni�ant beause|as we show during the proof|they an be mimiked in

a straightforward way by the png

?

-ed ounterpart.

Whenever P

�

��! P

0

, we know that either

1. P � (�ez) ( wv j w(x).R jM ) and P

0

� (�ez) ( Rf

v

=

x

g jM ), or

2. P � (�ez) ( wv j !w(x).R jM ) and

P

0

� (�ez) ( Rf

v

=

x

g j !w(x).R jM ).

A silent move P

�

��! P

0

(deomposed as above) is alled

signi�ant if ase 1 applies where wv = shsur

?

q; k

e

i and

w(x).R = OMh s; em; k

e

; k

i

;

e

t i. We denote these P �!

s

P

0

.

insigni�ant if either

� ase 2 applies, or

� ase 1 applies where v does not arry a sur

?

-request, or

� ase 1 applies where wv = shsur

?

q; ji and

w(x).R = AMh s; em; k

e

; k

i

;

e

t i, or

� ase 1 applies where wv = shsur

?

q; ji and

w(x).R = OMh s; em; k

e

; k

i

;

e

t i with k

i

6= j 6= k

e

.

We denote this as P �!

i

P

0

.

The missing ase of wv = shsur

?

q; ki and w(x).R = OMh s; em; k

e

; k

i

;

e

t i with k = k

i

is exluded

by the assumption that C[�℄ is external for x (.f. De�nition 7.4). Note that starting with a

sur

?

-request in the hole, we will never enounter png

?

-requests during the omputation, and vie

versa.

Now, we apply the lassi�ation of redution steps to the given redution sequeneD[yhsur

?

q; ji℄ =)

P #

p

, assuming that it ontains d > 0 signi�ant steps (if d = 0, then D[N ℄+

p

for all proesses N):

D[yhsur

?

q; ji℄ =

P

1;1

�!

i

P

1;2

�!

i

� � � �!

i

P

1;n

1

�!

s

P

1

= P

2;1

P

2;1

�!

i

P

2;2

�!

i

� � � �!

i

P

2;n

2

�!

s

P

2

= P

3;1

.

.

.

.

.

.

.

.

.

.

.

.

P

d;1

�!

i

P

d;2

�!

i

� � � �!

i

P

d;n

d

�!

s

P

d

= P

d+1;1

P

d+1;1

�!

i

P

d+1;2

�!

i

� � � �!

i

P

d+1;n

d+1

= P#

p
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By (the tagged ounterpart of) Lemma 6.6 it holds that:

P

h

� (�ez

h

)

�

M

h

j surO

?

O

h s

h

; q

h

; k

h

;

e

t

h

; ev

h

i

�

for some ez

h

and M

h

. Now, we simulate the previous redution sequene, whih uses sur

?

-requests,

but now using png

?

-requests and proeeding up to strutural equivalene and barbed equivalene.

D[yhpng

?

q; ji℄ =

Q

1;1

�!

i

Q

1;2

�!

i

� � � �!

i

Q

1;n

1

�!

s

Q

1

'

�

b

Q

1

� Q

2;1

Q

2;1

�!

i

Q

2;2

�!

i

� � � �!

i

Q

2;n

2

�!

s

Q

2

'

�

b

Q

2

� Q

3;1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Q

d;1

�!

i

Q

d;2

�!

i

� � � �!

i

Q

d;n

d

�!

s

Q

d

'

�

b

Q

d

� Q

d+1;1

Q

d+1;1

�!

i

Q

d+1;2

�!

i

� � � �!

i

Q

d+1;n

d+1

def

= Q#

p

where:

Q

h;g

def

= P

h;g

[

png

?

=

sur

?

℄

The insigni�ant redution steps �!

i

exist beause of Lemma 8.8. The signi�ant redution

steps Q

h;n

h

�!

s

Q

h

are analogous to their ounterparts P

h;n

h

�!

s

P

h

. Preisely, by (the tagged

ounterpart of) Lemma 6.6, they give rise (up to strutural equivalene) to a pingO

?

instead of a

surO

?

, that is:

Q

h

� (�ez

h

)

�

M

h

j pingO

?

O

h s

h

; q

h

; j

h

;

e

t

h

; ev

h

i

�

[

png

?

=

sur

?

℄.

The proesses

b

Q

h

are de�ned as follows:

b

Q

h

def

= (�ez

h

)

�

M

h

j surO

?

O

h s

h

; q

h

; j

h

;

e

t

h

; ev

h

i

�

[

png

?

=

sur

?

℄

The relations Q

h

'

�

b

Q

h

hold by appliation of (the tagged ounterparts of) Theorem 8.1 and

Lemma 6.4, and sine '

�

is preserved by relabelling [

png

?

=

sur

?

℄. The relations

b

Q

h

� Q

h+1;1

hold

sine

b

Q

h

� P

h

[

png

?

=

sur

?

℄ = P

h+1;1

[

png

?

=

sur

?

℄

def

= Q

h+1;1

.

Lemma 8.8 Let a be an �jeblik term possibly ontaining a tagged request. If [[[ a ℄℄℄

k

p

=) R �!

i

R

0

,

then R[

png

?

=

sur

?

℄ �!

i

R

0

[

png

?

=

sur

?

℄ and R[

sur

?

=

png

?

℄ �!

i

R

0

[

sur

?

=

png

?

℄.

Proof. By ase analysis on the four di�erent shapes of insigni�ant steps. In eah of them,

the relabelling distributes over the omponents of R, whih allows us afterwards to derive the

orresponding redution step.

2

This onludes the proof of Theorem 8.7.

2

8.3 Typing for External Surrogation

Sine only external surrogations are safe, we look for some way to statially ensure that this is

the ase. To avoid suh unwanted situations, the most obvious ase is s.operate, where s is the

self-variable of the immediately enlosing method. A less obvious ase is a.operate, where a may

evaluate to the urrent self or to the self of a node in an alias hain leading to the urrent self. In

the least obvious ase, onurrent threads may render the evaluation of a nondeterministi, suh

that it may or may not evaluate to the urrent self.

At �rst, it might seem hopeless to ome up with a good way of ensuring that an operation is

external. However, if a evaluates to the urrent self, or a node in an alias hain leading to the

urrent self, then a must have the same type as the type of the urrent self. This implies, that if

we ensure that the type of a is not the same as for the urrent self, then a.operate annot result

in operate being an internal operation. Suh a hek an be inorporated into the type system of

Table 5. In the new system, judgements are now on the form � `

D

a:A where D denotes the type

of the self variable for the method enlosing a. In Table 11 we present the modi�ations of the

type system; the rules missing are as the ones in Table 5 with ` replaed by `

D

.
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(T-Obj)

8j2J �; s

j

:A; ~x

j

:

e

B

j

`

A

b

j

:

b

B

j

A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

� `

D

[l

j

: &(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

: A

(T-Upd)

� `

D

a:A A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

�; s

k

:A; ~x

k

:

e

B

k

`

A

b

k

:

b

B

k

k2J

� `

D

a.l

k

(&(s

k

:A; ~x

k

:

e

B

k

)b

k

: A

(T-Sur)

� `

D

a:A A = [l

j

:A

j

℄

j2J

D 6= A

� `

D

a.surrogate : A

(T-Fork)

� `

Thr(A)

a:A

� `

D

forkhai : Thr(A)

Table 11: Typing Rules Ensuring External Surrogate Operations

Theorem 8.9 If � `

Thr(A)

C[x.surrogate℄ : A, then C[�℄ is external for x.

Proof. [Sketh℄ We proeed in four steps. (1) Re�ne the typing of keys aording to the �jeblik

objet (or thread) type that they are used with. When a manager hands out a key k

i

, the latter

is always annotated with the same type as the one arried by the self-hannel of the manager.

(2) Observe that a request shl; ki must be external if the type of k does not math the type of s.

(3) Observe, that in a request the types of k and s never hange. (4) Prove that if � `

D

x.surrogate,

then [[ � ℄℄ ` [[x.surrogate ℄℄

k

p

for [[ � ℄℄(x)=[[A ℄℄, [[ � ℄℄(k)=K

B

with A 6= B.

2

Let us adapt the notion of behavioral equivalene of De�nition 7.2 to take into aount the

proposed type system. This is done in a standard fashion by only onsidering for a term P only

ontexts C[�℄ suh that C[P ℄ is typable.

De�nition 8.10 (Typed Equivalene) Two �jeblik terms a; b with � ` a; b : A for some �

and A are typed equivalent, written a

.

=

`

ext

b, if C[a℄+ i� C[b℄+ for all ontexts C[�℄ with

� `

Thr(B)

C[a℄; C[b℄ : B for some � and B.

Corollary 8.11 If x is an objet variable, then x.ping

.

=

`

ext

x.surrogate.

9 Conlusion

In this paper, we have outlined a formal proof of the safety of objet surrogation, a distribution-

free abstration of objet migration, for a dynamially de�ned lass of program ontexts that

render surrogations always external. Moreover, for improved feasibility of the use of surrogation

in programming, we have provided a simple stati type system that guarantees that all well-typed

ourrenes of surrogation are indeed external.

Sine we have arried out this work on an abstration of migration, it is required to ask for

the meaningfulness of our result for migration itself. Sine Obliq is a lexially-soped distributed

language, our results tell that any well-typed program|assuming that our type system is lifted

to Obliq, and that Obliq is equipped with a forwarder model, as in [NHKM00℄|will never ob-

serve a di�erene in the view of may-onvergene between an objet before and after surrogation,

unless one of the involved distribution sites fails, and unless ontexts ould retrieve (by language

primitives) the atual loation of an objet.

A natural potential ritiism on results based on a semantis by translation into another

formalism is that it is sometimes hard to evaluate what the results atually say about the original

subjet. On the one hand, as in our ase, where we have also developed several diret operational
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semantis for �jeblik, the question for some formal orrespondene result among the semantis by

translation and the diret semantis arises. On the other hand, one may ask to arry out the proofs

on the diret semantis instead of employing some other lower-level formalism. However, we found

it very natural and useful to develop two semantis at di�erent abstration levels hand-in-hand.

In fat, most of the examples of unsafe surrogation were disovered by means of the �-alulus

semantis, and only then \veri�ed" in the diret semantis. Moreover, sine we have developed

both levels of semantis in lok-step, we have a good basis for formalizing their interrelation.

Finally, in ontrast to our abstrat on�guration-style semantis for losed terms only, the �-al-

ulus provides indeed a very rih set of approved reasoning tools that make the life of a theorem

prover muh easier, as exempli�ed by Kleist and Sangiorgi [KS98℄, and also in this paper.

Other strands of future work are twofold. One is to ontinue to develop and exploit semantis

for the Obliq-style of objet migration, and to use our semantis also to prove other equations

on Obliq-programs. For example, also equations like joinhforkhaii=a do only hold under ertain

onditions inited by self-inition. Another strand is to try to arry over our results to settings

that are not based on the notion of serialization via self-inition, but rather reentrant mutexes,

as in Java.
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A Proofs

A.1 Proof of Lemma 2.14

Proof. We show that the relation

S = f

�

Qf

p

=qg ; (�q:C(T )) (Q j q . p)

�

: q in Q only in output positiong

is a barbed bisimulation up to strutural equivalene.

� Let Qf

p

=qg

�

��!Q

0

f

p

=qg. There are two ases.

1. Q

�

��!Q

0

. This ase an be easily treated.

2. Otherwise, sine p and q are hannels and they never appear in testing, this means

that the � -ation is due to a ommuniation along p. More preisely, Q must ontain

an ourrene of q in output subjet position and an ourrene of p in input position

whih give rise to the ommuniation. Up to strutural equivalene, this implies that

(�q:C(T )) (Q j q . p)

�

��!

�

��! � (�q:C(T )) (Q

0

j q . p).

As desired.

� Let (�q:C(T )) (Q j q . p)

�

��!R for some R. There are two ases.

1. R = (�q:C(T )) (Q

0

j q . p) sine Q

�

��!Q

0

. This ase an be easily treated.

2. The � -ation is due to some ommuniation along q between Q and the link q . p. More

preisely,

(�q:C(T )) (Q j q . p) � (�q:C(T )) ((�~z) (Q

0

j qv) j q . p)

and

(�q:C(T )) (Q j q . p)

�

��! � (�q:C(T )) ((�~z) (Q

0

j pv) j q . p).

The left side an easily mimi the move as follows:

Q

0

f

p

=qg =)� (�~z) (Q

0

j qv)f

p

=qg = (�~z) (Q

0

j pv)f

p

=qg.

As desired.

2

A.2 Proof of Theorem 6.1

To prove Theorem 6.1 we need the following lemma, allowing us to type objet/alias managers

using the translation of an objet type.

Lemma A.1 If A = [l

j

:

e

B

j

!

b

B

j

℄

j21..n

and � ` O :A.

� = s:[[A ℄℄; t

1

:C([[A ℄℄;M(

e

B

1

!

b

B

1

);K) : : :

t

n

:C([[A ℄℄;M(

e

B

n

!

b

B

n

);K);m

e

:C();m

i

:C(K); k

e

:K; k

i

:K

and

�

0

= s:[[A ℄℄; s

a

:[[A ℄℄;m

e

:C();m

i

:C(K); k

e

:K; k

i

:K

then � ` OM

O

h s;m

e

;m

i

; k

e

; k

i

; t

1

: : : t

n

i and �

0

` AM

O

h s;m

e

;m

i

; k

e

; k

i

; s

a

i.

Proof. The proof is in both ases a lengthy type derivation. Here, we only show a part of the

derivation of � ` OM

O

h s;m

e

;m

i

; k

e

; k

i

; t

1

: : : t

n

i.
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Before we start, let

A

�

(X) denote

2

6

6

6

6

6

6

4

ln : R(X)

ali : hX;R(X) i

upd

j

: hC(X;M(

e

B

j

!

b

B

j

);K);R(X) i

inv

j

: hM(

e

B

j

!

b

B

j

) i

sur : R(X)

png : R(X)

3

7

7

7

7

7

7

5

j21..n;

with this abbreviation [[A ℄℄ = �X .C(A

�

(X);K).

The de�nition of OM

O

h s;m

e

;m

i

; k

e

; k

i

; t

1

: : : t

n

i is

s(l; k).(�k

�

:K)

�

if [k=k

i

℄ then P

1

elif [k=k

e

℄ then P

2

else P

3

�

and we are to hek that this proess is well-typed under � with the extra assumption that

OM

O

h s;m

e

;m

i

; k

e

; k

i

; t

1

: : : t

n

i is well-typed under �.

By rule (T-Inp) we must establish that s has a hannel type. In � we have the assumption

s:[[A ℄℄, and using (T-re2) we an unfold [[A ℄℄, obtaining C(A

�

([[A ℄℄);K). This yields as new

subgoal (using (T-Res) to handle the restrition), that we must prove:

�

0

` if [k=k

i

℄ then P

1

elif [k=k

e

℄ then P

2

else P

3

with �

0

= �; l:A

�

([[A ℄℄); k:K; k

�

:K. Cheking that all of k; k

i

and k

e

has type K as required by

(T-If) is easily done by a lookup in �

0

. And we must now prove that proesses P

1

, P

2

and P

3

are

well-typed under �

0

. We restrit ourselves to onsider only P

1

. P

1

is a large ase onstrut

ase l of ln (r) : OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i j (�s

�

)

�

rhs

�

; k

�

i j newO

O

h s

�

;

e

t i

�

;

ali (s

a

; r) : AM

O

h s;m

e

;m

i

; k

e

; k

�

; s

a

i j rhs

a

; k

�

i ;

upd

j

(t

0

; r) : OM

O

h s;m

e

;m

i

; k

e

; k

�

; t

1

. . t

j�1

; t

0

; t

j+1

. . t

n

i j rhs; k

�

i ;

inv

j

(ex; r) : OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i j t

j

hs; ex; r; k

�

i ;

sur (r) : OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i j [[ s.aliashs.lonei ℄℄

k

�

r

;

png (r) : OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i j [[ s ℄℄

k

�

r

with j 2 1. .n. By inspetion we see that the ase onstrut has the labels required by A

�

(X).

And we must now type the ontinuations. We only show how the ontinuation for label inv

j

(ex; r)

is handled. Let �

00

= �

0

; ex:[[

e

B

j

℄℄; r:R(

b

B

j

). We shall now establish

�

00

` OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i j t

j

hs; ex; r; k

�

i

By narrowing �

00

and our initial assumption, we get that

�

00

` OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i

and by lookup in �

00

we get that

�

00

` t

j

:C([[A ℄℄; [[

e

B

j

℄℄;R(

b

B

j

);K); s:[[A ℄℄; ex:[[

e

B

j

℄℄; r:R(

b

B

j

); k

�

:K

2

Proof of Theorem 6.1. The impliation from left to right is proved using indution in the

depth of the derivation of � ` a:A with a ase analysis of the last rule used. We show a few of the

ases below.

(T-Var) Assume � ` x:A, by rule (T-Var) we have �(x) = A. The translation of x is phx; ki

and [[ � ℄℄(x) = [[A ℄℄. Let �

0

= [[ � ℄℄; p:R([[A ℄℄) ; k:K We an now omplete the derivation:

�

0

` p:C([[A ℄℄;K); x:[[A ℄℄; k:K

�

0

` phx; ki
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(T-Obj) Assume � ` [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

:A with A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

. By indution

[[ �; s

j

:A; ~x

j

:

e

B

j

℄℄; r:R([[

b

B

j

℄℄); k

0

:K ` [[ b

j

℄℄

k

0

r

for all j 2 J .

The translation of [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

is

(�s:[[A ℄℄; t

j

:T

j

)

j2J

�

phs; ki

�

�

newO

O

h s;

e

t i

�

�

Y

j2J

! t

j

(s

j

; ex

j

; r; k

0

).[[ b

j

℄℄

k

0

r

�

where T

j

= C([[A ℄℄; [[

e

B

j

℄℄;R(

b

B

j

);K) and

e

t = t

j

j 2 J . Let

�

0

= [[ � ℄℄; p:R([[A ℄℄); k:K; s:[[A ℄℄; T

j j2J

.

We now got three subgoals. Proving that �

0

` phs; ki follows easily from a lookup in �

0

.

That �

0

` newO

O

h s;

e

t i, follows from appliations of (T-Res), (T-Par), narrowing and

Lemma A.1. Finally, to establish �

0

` ! t

j

(s

j

; ex

j

; r; k

0

).[[ b

j

℄℄

k

0

r

we apply (T-Rep), (T-Inp)

and the indution hypothesis.

(T-Fork) Assume � ` forkhai: Thr(A). The translation of forkhai is

(�q:R([[A ℄℄); t:[[ Thr(A) ℄℄; k

�

:K)

�

[[ a ℄℄

k

�

q

j pht; ki j q(x; k

0

).t(r; k

00

).rhx; k

00

i

�

Let �

0

= [[ � ℄℄; p:R([[ Thr(A) ℄℄); k:K; q:R([[A ℄℄); t:[[ Thr(A) ℄℄. We now got three subgoals. �

0

`

[[ a ℄℄

k

0

q

follows using narrowing and the indution hypothesis. � ` pht; k

�

i follows using (T-

Out). Finally, the following derivation

�

0

` q:C([[A ℄℄;K)

�

0

; x:[[A ℄℄; k

0

:K ` t:C(R([[A ℄℄);K)

�

0

; x:[[A ℄℄; k

0

:K; r:R([[A ℄℄); k

00

:K ` r:C([[A ℄℄;K); x:[[A ℄℄; k

00

:K

�

0

; x:[[A ℄℄; k

0

:K ` t(r; k

00

).rhx; k

00

i

�

0

` q(x; k

0

).t(r; k

00

).rhx; k

00

i

proves the last subgoal.

(T-Clo) Assume � ` a.lone:A with A = [l

j

:A

j

℄

j2J

. The translation of a.lone is

(�q:R([[A ℄℄)) ([[ a ℄℄

k

q

�

�

q(y; k

0

) . yhln p; k

0

i).

Let �

0

= �; p:R([[ Thr(A) ℄℄); k:K; q:R([[ Thr(A) ℄℄). We have two subgoals. �

0

` [[ a ℄℄

k

q

follows

from narrowing and the indution hypothesis. For the seond subgoal, appliation of (T-Inp)

yields that we must establish �

0

; y:[[A ℄℄; k

0

:K ` yhln p; k

0

i, whih is handled using (T-Re2)

to unfold the translation of the objet type [l

j

:A

j

℄

j2J

, (T-Var) to hek that the unfolded

type has the required variant tag, and �nally (T-Bas) to hek that p has type [[A ℄℄.

The impliation from right to left is proved by indution in the struture of a. Again we again

only show a few of the ases.

x: Assume [[ � ℄℄; p:R([[A ℄℄); k:K ` phx; ki. This typing must have been derived using (T-Out)

with premise �

0

` p:C([[A ℄℄;K); x:[[A ℄℄; k:K. This an only be true if x 2 dom(�) with

�(x) = A. We an now apply (T-Var) to derive � ` x:A.

[l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

: Assume [[ � ℄℄; p:R([[A ℄℄); k:K ` [[ [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

℄℄. The type

A an either be an objet type [l

k

=&(s

k

:A; ~x

k

:

e

B

k

)b

k

℄

k2K

or a thread type Thr(B). The

translation of [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

is

(�s:[[A ℄℄; t

j

:T

j

)

j2J

�

phs; ki

�

�

newO

O

h s;

e

t i

�

�

Y

j2J

! t

j

(s

j

; ex

j

; r; k

0

).[[ b

j

℄℄

k

0

r

�

We an easily rule out the possibility that A = Thr(B) beause if A was a thread type, we

would not be able to type the objet manager. Therefore A = [l

k

=&(s

k

:A; ~x

k

:

e

B

k

)b

k

℄

k2K

,
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and in order to type the objet manager we must also have K = J in order to have the same

number of methods in the type and the objet manger. The typing of the objet manger

also yields that we must have the types T

j

= C([[A ℄℄; [[

e

B

j

℄℄;R(

b

B

j

);K). We are now able to

write a typing for ! t

j

(s

j

; ex

j

; r; k

0

).[[ b

j

℄℄

k

0

r

, whih as premise has

�

0

; s:[[A ℄℄; t

j

:T

j

; s

j

:[[A ℄℄; k

0

:K; r

j

:R([[

b

B

j

℄℄); ex

j

:[[

e

B

j

℄℄ ` [[ b

j

℄℄

k

0

r

.

Using narrowing and the indution hypothesis we derive that �; s

j

:A; ex

j

` b

j

:

b

B

j

. And we

an now apply (T-Obj) to onlude � ` [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

:A.

a.lone: Assume [[ � ℄℄; p:R([[A ℄℄); k:K ` a.lone. The type A an either be an objet type

[l

j

:

e

B

j

!

b

B

j

℄

j2J

or a thread type Thr(B). The translation of a.lone is

(�q:T ) ([[ a ℄℄

k

q

�

�

q(y; k

0

) . yhln p; k

0

i)

for some type annotation T . By the use of the name q we an onlude that T = R([[A ℄℄)

and that A annot be a thread type (beause of the ln p request). Knowing that q has type

R([[A ℄℄) allows us to use the indution hypothesis (together with narrowing) to onlude

that � ` a:A, and then we an apply (T-Cln) to get � ` a.lone:A.

2

A.3 Proof of Lemma 6.5

Proof. As the base ase, we onsider Z, where the objet manager at s has just been reated;

all previous steps in the sequene are obviously irrelevant, beause the ondition of ontaining

newO

O

h s;

e

t i is not ful�lled. Then

Z = C

0

[ newO

O

h s;

e

t
i ℄ = C

0

[ (�enk

i

) (
m

e

j OM

O

h s; en; k

i

;

e

t
i ) ℄

Using strutural equivalene, we immediately get

Z � E[ (�en) ( m

e

j OM

O

h s; en; k

i

;

e

t i j PP

O

h s; en; ; i ) ℄

for some stati ontext E[�℄, suh that Z orresponds to state OM

f

. It is important to notie that

names in en will only appear inside the objet manager and the pre-proessed requests.

State OM

f

an only evolve into some state OM

a

; it does so by grabbing the external mutex m

e

for one of its pre-proessed requests in ev. The only other possible redution involving state OM

f

is pre-proessing another request, but suh an ation does not hange the state|it only adds to

the set of pre-proessed requests ev. A similar reasoning applies to the other states, so we simply

skip pre-proessing.

Thus, by onsuming the pre-proessed request shl; ki and leaving untouhed the other pre-

proessed requests ev, we may arrive at some Z of the form:

E[ (�en) ( m

e

j OM

O

h s; en; k

i

;

e

t i j PP

O

h s; en; ev i ) ℄

�!

�

E[ (�en) ( m

i

k j shl; k

e

i j OM

O

h s; en; k

i

;

e

t i j PP

O

h s; en; ev�h l; k i i ) ℄

def

= Z

where Z orresponds to state OM

a

.

State OM

a

an only evolve into either state OM

n

or OM

s

, by onsuming the request shl; k

e

i:

� State OM

a

evolves into state OM

n

if l is one of ali hx; pi, ln p, or upd

j

ht; pi, whih are disal-

lowed as external request, the objet manager is restarted and, up to strutural equivalene,

we get state OM

n

.

� In the remaining ases, that is, when l is one of inv

j

hx; pi, sur p, or sur hpi, state OM

a

evolves into state OM

s

. Indeed, a all-manager is started onurrently with the restarted

objet manager. By using strutural equivalene, we an move omponents that are not in

the sope of en outside this sope, so as to reognize state OM

s

.
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In state OM

s

, a png request drives the system into state OM

i

. In the ase of method invoation

a redution along t

j

may our whih allows the evaluation of the method body. At this point a

number of self-inited requests may be served (external requests are bloked beause the external

mutex m

e

is no available). This part of the omputation will not hange the state. Notie that,

by hypothesis, sine we suppose that Z ontain an objet manager and non an alias manager,

we exlude self-inited aliasing operations. When the last self-inited request is served, a reply

r

�

h o; k i will appear unguarded. The onuent redution along r

�

will drive the omputation to

state OM

i

. sur requests are treated similarly.

State OM

i

an only evolve, by reduing along m

i

, to state OM

f

.

2

A.4 Proof of Lemma 8.2

We show that there is a sequene of � -ations suh that:

surO

O

h s; r; k;

~

t; ~v i)

�

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

We prove that �

�;s

is insensitive to these partiular � -ations. To this end, we supply the two

lemmas A.2 and A.3. We reall that CM[�℄ denote the all manager protool as de�ned in Table 7.

Lemma A.2 Let en := m

e

;m

i

; k

e

, and ev := v

1

. . v

n

with v

j

:= h l

j

; k

j

i for j 2 1.n, and

C

1

:= CM[ (�q) (shln q; k

�

i j q(x; k

0

).shali hx; r

�

i; k

0

i) ℄

C

2

:= CM[ (�q) (qhs

�

; k

�

i j q(x; k

0

).shali hx; r

�

i; k

0

i) ℄

P hevi := (�enk

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

1

�

with k

�

62 fn(ev)

Qhevi := (�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

2

�

with k

�

62 fn(ev)

� ` P hevi; Qhevi for some �.

Then, P hevi �

�;s

Qhevi.

Proof. For simpliity, we omit the obligations on types in the oindutive de�nition of �

�;s

.

So, we prove that the relation:

S = f(P h ewi; Qh ewi) : ew = w

1

. .w

m

with w

j

:= h l

j

; k

j

i; j 2 1. .ng [ I

where I is the identity relation, is a �

�;s

-bisimulation up to �.

The only hannel whih appear free in subjet position in P h ewi and Qh ewi is s. Sine both the

external key k

e

and the internal key k

�

are restrited in P h ewi and Qh ewi, an by well-typedness,

the environment an send requests only of the form shl; ki with k

e

6= k 6= k

�

.

The proess P h ewi an perform only two kinds of ations. Either (i) an input ation shl; ki (with

k

e

6= k 6= k

�

), or (ii) a silent move along s involving the self-inited loning request ontained

in C

1

. In ase (i), the pre-proessing of the request reates the proess m

e

.(shl; k

e

i j m

i

k) whih

an be added in PP

O

h s; en; ew i obtaining some PP

O

h s; en;

f

w

0

i with

f

w

0

= ew [ hl; ki. The proess

Qh ewi an perform the same ation and the derivatives are again related by S. In ase (ii), the

proess Qh ewi an mimi the � -ation by not performing any redution at all. Up to strutural

equivalene, we get into the identity relation.

The proess Qh ewi an only perform two kinds of ations. Either (i) a input ation shl; ki (with

k

e

6= k 6= k

�

), and we reason as above, or (ii) a silent move along the restrited hannel q in C

2

. In

this ase P h ewi an perform two silent ations, along s and q, getting, up to strutural equivalene,

into the identity relation.

2

Lemma A.3 Let en := m

e

;m

i

; k

e

, and ev := v

1

. . v

n

with v

j

:= h l

j

; k

j

i for j 2 1. .n, and

38



C

3

:= CM[ shali hs

�

; r

�

i; k

�

i ℄

C

4

:= CM[ r

�

hs

�

; k

�

i ℄

P hevi := (�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

3

�

with k

�

62 fn(ev)

Qhevi := (�enk

�

s

�

)

�

m

i

k

�

�

AM

O

h s; en; k

�

; s

�

i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

4

�

with k

�

62 fn(ev).

� ` P hevi; Qhevi for some �.

Then, P hevi �

�;s

Qhevi.

Proof. Similar to that of Lemma A.2.

2

Proof of Lemma 8.2. As said above there is a sequene of � -ations, suh that:

surO

O

h s; r; k;

~

t; ~v i)

�

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

The above sequene onsists of 7 silent steps. These � -steps are of two kinds: (i) onuent

redutions along restrited hannels of the form

C[(�q) (qhevi j q(ex).P )℄

�

��!

�

C[Pf

ev

=

ex

g℄

where q 62 fn(P ), let us all these redutions of kind �; (ii) redutions involving self-inited

requests (indued by the surrogation) of the form

C[(�k

�

) (OM

O

h s; em; k

e

; k

�

;

~

t i j shop r

�

; k

�

i)℄

�

��! : : :

let us all these redutions of kind �. It is well-known that �

�

(as well as �

�;s

) is insensitive to

redutions of kind �. In Lemma A.2 and A.3 we show that �

�;s

is insensitive to the redutions of

kind � appearing in the sequene mentioned above. This is possible beause, in the implementation

of objet and alias managers, we use nones (.f. page 21) in order to guarantee that the self-

inited key of the objet manager is always restrited. In this manner, the environment annot

produe any \maliious" self-inited request whih might potentially interfere with the loning

and the aliasing requests.

The �rst and the seond redutions are of kind � and they are due to the proess CM[ [[ s.aliashs.lonei ℄℄

k

�

r

�

℄

(ontained in surO

O

h s; r; k;

~

t; ~v i) whih, after two � -steps, redues to the proess

CM[ (�q) (shln q; k

�

i j q(x; i).shali hx; r

�

i; ii) ℄.

We abbreviate this proess by C

1

. The situation is that:

surO

O

h s; r; k;

~

t; ~v i

�

��!

�

��!(�enk

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

1

�

where k

�

62 fn(ev).

The third redution is of kind � and involves the self-inited loning request in C

1

. Let C

2

be the proess CM[ (�q) (qhs

�

; k

�

i j q(x; i).shali hx; r

�

i; ii) ℄, then the proess

(�enk

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

1

�

redues, up to strutural equivalene, to

(�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

2

�

where k

�

62 fn(ev). By Lemma A.2 the relation �

�;s

is insensitive to this redution.

The fourth redution is of kind � and it is due to C

2

. So, if we denote with C

3

the proess

CM[ shali s

�

; r

�

; k

�

i ℄ the situation is that that surO

O

h s; r; k;

~

t; ~v i evolves in four silent steps, up

to strutural equivalene, to

(�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

3

�
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where k

�

62 fn(ev).

In the �fth � -step we redue the self-inited aliasing request ontained in C

3

. So, let us denote

with C

4

the proess CM[ r

�

hs

�

; k

�

i ℄. It holds that the proess

(�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

3

�

redues, up to strutural equivalene, to

(�enk

�

s

�

)

�

m

i

k

�

�

AM

O

h s; en; k

�

; s

�

i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

4

�

where k

�

62 fn(ev). By Lemma A.3 the relation �

�;s

is insensitive to this redution.

The sixth and the seventh redutions are of kind � and involve hannels r

�

andm

i

, respetively.

Up to strutural equivalene we get the desired proess

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

2

A.5 Proof of Lemma 8.3

Lemma 8.3 proves that the aliased objet manager appearing in Lemma 8.2 behaves as a forwarder.

As a �rst step we reall a well-known property of repliated input.

Lemma A.4 Let C[�℄ be a �-alulus ontext where hannel  does not appear either in input or

in output objet position. Then

(�)

�

! (x).P

�

�

C[v℄

�

�

�

(�)

�

! (x).P

�

�

C[Pf

v

=

x

g℄

�

Proof. By applying Milner's repliations theorems [Mil93℄.

2

Proof of Lemma 8.3. The obligations on types guarantee that values reeived along hannel

s are of the right type. This allows us to use polyadi input along s. By observing proess

(�k

i

)AM

O

h s; em; k

e

; k

i

; s

�

i we note that, sine k

i

is restrited and never extruded, the aliased objet

manager will never reeive self-inited requests. By exhibiting the appropriate bisimulation, we

an prove that suh a proess has the following funtional behaviour.

(�k

i

) (AM

O

h s; em; k

e

; k

i

; s

�

i) �

�

! s(l; k).if [k=k

e

℄ then m

i

(k).(s

�

hl; ki j m

e

)

else m

e

.(shl; k

e

i j m

i

k)

Sine �

�

is preserved by parallel omposition and restrition, we have that:

(�k

i

) (freeA

O

h s; k

i

; s

�

; ev i)

�

�

(� emk

e

)

�

m

e

j ! s(l; k).if [k=k

e

℄ then m

i

(k).(s

�

hl; ki j m

e

)

else m

e

.(shl; k

e

i j m

i

k)

j

Q

j21..n

m

e

.

�

shl

j

; k

e

i j m

i

k

j

� �

If we assume that the environment annot use s in input, then all requests on s are aptured by the

unique repliated input on s. Moreover, the external identity k

e

is restrited and never extruded to

the environment, and therefore only pre-proessed requests \knows" k

e

. Using these informations,

up to harmless onuent redutions along m

i

, we an safely internalise the management of pre-

proessed requests by introduing a restrited hannel s

e

with the same type as s and s

�

. In this

manner we an drop the mathing on the identity, and the repliated input on s will only take

are of serving external requests. Formally, we have the following.
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(� emk

e

)

�

m

e

j ! s(l; k).if [k=k

e

℄ then m

i

(k).(s

�

hl; ki j m

e

)

else m

e

.(shl; k

e

i j m

i

k)

j

Q

j21..n

m

e

.

�

shl

j

; k

e

i j m

i

k

j

� �

�

�;s

(by exhibiting the appropriate bisimulation)

(� ems

e

)

�

m

e

j ! s(l; k).m

e

.(s

e

hl; ki j m

i

k)

j ! s

e

(l; k).m

i

(k).(s

�

hl; ki j m

e

)

j

Q

j21..n
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(by Lemma A.4)

(�m

e

s

e

)

�

m

e

j ! s(l; k).m

e

.

�

s

�

hl; ki j m

e

�

j ! s

e
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m

e

.(s

�
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j
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j

i j m

e

)
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�

�

(by garbage olletion on s

e

)

(�m

e

)

�

m

e

j ! s(l; k).m
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�
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�
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(redutions on m
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hl

j
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= (by de�nition)

s . s

�

�

�

Y

j21..n

s

�

v

j

2

A.6 Proof of Lemma 8.4

This is a rather tehnial lemma. It is the only plae where the theory of L� is exploited.

Proof. We apply Lemma 2.15 to proess P to remove all the ourrenes of s

�

in output objet

position. Let's all

b

P the proess obtained by applying Lemma 2.15 in suh a way. Note that

we fous only on hannel s

�

. The other hannels are not a�eted by our transformation. Sine

Lemma 2.15 works with respet to (typed) barbed ongruene, it holds that P

�

=

�

b

P . This implies

(�s

�

)

�

s . s

�

j P

�

�

=

�

(�s

�

)

�

s . s

�

j

b

P

�

and Pf

s

=

s

�

g

�

=

�

b

Pf

s

=

s

�

g.

So, we are left with proving that (�s

�

)

�

s . s

�

j

b

P

�

'

�;s

b

Pf

s

=

s

�

g. The proof follows by showing

that the relation:

f( (�s

�

) (s . s

�

j

b

P ) ;

b

Pf

s

=

s

�

g ) : s 62 fn(

b

P ) and s

�

not free in obj. pos. in

b

Pg

is a �

�;s

bisimilarity. The obligations on types guarantee that values reeived along hannel s are

of the right type. A part this, we an safely omit the types in the oindutive de�nition of �

�;s

.
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We reall that �

�;s

is ground on hannels. This means that we alway suppose to reeive fresh

hannels, in partiular, we never reeive hannels s and s

�

.

As regards the left side, the only interesting transition is the input ation along s. This ation

an be emulated by the right side by exploiting the asynhronous lause for input.

As regards the right side, we reall that �

�;s

is not sensitive to output ations along s. Sine

s

�

does not appear free in output objet position in

b

P , the only interesting ation of

b

Pf

s

=

s

�

g is

the input ation along s whih an be mimiked by the left side up to a � -ation.

2

A.7 Proof of Lemma 8.5

We �rst prove a more general result asserting that pre-proessing of external requests is harmless.

Lemma A.5 Let ev := v

1

. . v

n

where v

j

:= h l

j

; k

j

i with k

e

6= k

j

6= k

i

for j 2 1. .n. It holds that:

OM

O

h s; em; k

e

; k

i

;

~

t i

�

�

Y

j21..n

sv

j

�

�;s

OM

O

h s; em; k

e

; k

i

;

~

t i

�

�

PP

O

h s; en; ev i.

Proof. We prove the result by indution on the number of elements of ev.

Case n = 0. Trivial.

Indutive ase. Let

Q

j21..n

sv

j

def

= sv

1

�

�

Q

j22..n

sv

j

and

PP

O

h s; en; ev i

def

= m

e

.

�

shl

1

; k

e

i j m

i

k

1

�

j PP

O

h s; en; v

2

. . v

n

i.

By indutive hypothesis it holds that:

OM

O

h s; em;

e

k;

~

t i

�

�

Y

j22..n

sv

j

�

�;s

OM

O

h s; em;

e

k;

~

t i

�

�

PP

O

h s; en; v

2

. . v

n

i.

Sine �

�;s

is preserved by parallel omposition, for proving our result it suÆes to show that:

OM

O

h s; em;

e

k;

~

t i

�

�

sv

1

�

�;s

OM

O

h s; em;

e

k;

~

t i

�

�

m

e

.

�

shl

1

; k

e

i j m

i

k

1

�

.

Let A

def

= OM

O

h s; em;

e

k;

~

t i j sv

1

and

B

def

= OM

O

h s; em;

e

k;

~

t i j m

e

.

�

shl

1

; k

e

i j m

i

k

1

�

we prove that the relation:

S = f

�

(�ez) (A j R); (�ez) (B j R)

�

: s 62 ez and s not in input in Rg [ I

where I is the identity relation, is a �

�;s

-bisimulation up to strutural equivalene. The obligation

on types in the oindutive de�nition of �

�;s

an be safely omitted. We �rst show how the right

side an emulate the ations performed by the left side and then the vie versa.

From left to right. Let us see the possible ations of (�ez) (A j R).

1. If (�ez) (A j R)

�

��!(�ey) (A j R

0

) then it is easy.

2. If (�ez) (A j R)

shl;ki

�����!(�ez) (A

0

j R), then there are three possibilities: (i) either k = k

i

, or

(ii) k = k

e

, or (iii) k

i

6= k 6= k

e

. In eah ase the right side an perform an input shl; ki

obtaining a proess (�ez) (B

0

j R). By inspetion of the enoding we have that (�ez) (A

0

j

R) � (�ey) (A

00

j R

0

) and (�ez) (B

0

j R) � (�ey) (B

00

j R

0

), for some ey and some proess R

0

,

where A

00

(resp. B

00

) is the same as A (resp. A

00

), up to renaming k

i

with a fresh key k

�

.

Therefore (�ey) (A

00

j R

0

) S (�ey) (B

00

j R

0

).
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3. If (�ez) (A j R)

�

��!(�ey) (A

0

j R

0

), where the � -ation is due to a ommuniation along s

between A and R (reall that s an only appear in output in R), then we reason similarly

to the previous ase.

4. If (�ez) (A j R)

�

��!(�ez) (A

0

j R), where the � ations is due to a ommuniation along

s between the objet manager and the external request sv

1

, then, by inspetion of the

enoding, it holds that A

0

� B. On the right side we an mimi the � ation by performing

(�ez) (B j R) =) (�ez) (B j R). It holds that (�ez) (A

0

j R) �S (�ez) (B j R).

From right to left. Let us see the possible ations of (�ez) (B j R).

1. If (�ez) (B j R)

�

��!(�ey) (B j R

0

) then it is easy.

2. If (�ez) (B j R)

shl;ki

�����!(�ez) (B

0

j R), then there are three possibilities: (i) either k = k

i

, or

(ii) k = k

e

, or (iii) k

i

6= k 6= k

e

. In eah ase the left side an perform an input shl; ki

obtaining a proess (�ez) (A

0

j R). By inspetion of the enoding we have that (�ez) (B

0

j

R) � (�ey) (B

00

j R

0

) and (�ez) (A

0

j R) � (�ey) (A

00

j R

0

), for some ey and some proess R

0

,

where B

00

(resp. A

00

) is the same as B (resp. A), up to renaming k

i

with a fresh key k

�

.

Therefore (�ey) (B

00

j R

0

) S (�ey) (A

00

j R

0

).

3. If (�ez) (B j R)

�

��!(�ey) (B

0

j R

0

), where the � -ation is due to a ommuniation along s

between B and R (reall that s an only appear in output in R), then we reason similarly

to the previous ase.

4. If (�ez) (B j R)

m

e

���!(�ez) (B

0

j R) and B

0

= OM

O

h s; em;

e

k;

~

t i

�

�

shl

1

; k

e

i j m

i

k

1

, then the left

side an mimi this ation by serving the request sv

1

and then grabbing the mutex. In

pratise,

(�ez) (A j R)

�

��!

m

e

���!(�ez) (A

0

j R) with A

0

� B

0

. So, (�ez) (B

0

j R) S (�ez) (A

0

j R).

2

Proof of Lemma 8.5. It follows diretly from Lemma A.5 and the fat that �

�;s

is preserved

by parallel omposition and restrition.

2

A.8 Proof of Lemma 8.6

Proof. It holds that:

pingO

O

h s; r; k;

e

t; ev i

�

��!

2

�

(� em

e

k)

�

m

e

�

�

OM

O

h s; em;

e

k;

e

t i

�

�

PP

O

h s; en; ev i

�

�

�

rhs; ki.

Sine �

�

is insensitive to these two silent moves, we an onlude.

2
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