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Abstra
t

Obliq is a lexi
ally-s
oped, distributed, obje
t-based programming language. In Obliq, the mi-

gration of an obje
t is proposed as 
reating a 
lone of the obje
t at the target site, whereafter

the original obje
t is turned into an alias for the 
lone. Obliq has only an informal semanti
s,

so there is no proof that this style of migration is safe, i.e., transparent to obje
t 
lients. In

previous work, we introdu
ed �jeblik, an abstra
tion of Obliq, where, by lexi
al s
oping, sites

have been abstra
ted away. We used �jeblik in order to exhibit how the semanti
s behind Obliq's

implementation renders migration unsafe. We also suggested a modi�ed semanti
s that we 
on-

je
tured instead to be safe. In this paper, we rewrite our modi�ed semanti
s of �jeblik in terms

of �-
al
ulus, and we use it to formally prove the 
orre
tness of obje
t surrogation, the abstra
tion

of obje
t migration in �jeblik.



1 Introdu
tion

The work presented in this paper is in line with the resear
h a
tivity to use the �-
al
ulus as a

toolbox for reasoning about obje
t-based programming languages. Former works on the semanti
s

of obje
ts as pro
esses showed the value of this approa
h: while [Wal95, HK96, San98, KS98℄

fo
used on just providing formal semanti
s to obje
t-oriented languages and language features,

the work of others [PW98, San99b℄ has been driven by a spe
i�
 programming problem. Our work

ta
kles a problem in Cardelli's lexi
ally-s
oped distributed programming language Obliq [Car95℄.

Cardelli proposed to derive obje
t migration from two other primitives, 
loning and aliasing, by

performing one after the other. In Obliq, immutable values 
an be freely 
opied from site to site,

whereas mutable values are stationary. Only referen
es to mutable values may be transmitted

between di�erent sites. A

ordingly, sin
e obje
ts are mutable, the migration of an obje
t does

not physi
ally move the obje
t, but instead 
reates a 
lone of the obje
t at the target site and then

turns the original (lo
al) obje
t into an alias|sometimes 
alled a proxy|for the new (remote)

obje
t.

1.1 Previous work

When is obje
t migration 
orre
t? In 
on
urrent and distributed programs, it is important

that 
ertain state 
hanges, in parts of the running system, may happen transparently from the

point of view of the rest of the system. Ensuring that the implementation of su
h state 
hanges

is in fa
t transparent 
an be a diÆ
ult task sin
e the programmer must in prin
iple anti
ipate

all possible exe
ution s
enarios. In Obliq, a natural question is, whether migration of an obje
t

is transparent to the obje
t's 
lients, and how that 
an be stated formally. Intuitively, migration

of an obje
t a to some other site works transparently, or safely, if (i) during migration it is not

possible to intera
t with a in a way that prevents the migration operation from proper 
ompletion,

and if (ii) after the migration a 
lient of a 
annot tell that a is now an alias. In Obliq, mobile

obje
ts are therefore required to be serialised and prote
ted : serialization guarantees atomi
ity of

the two-phase migration operation; prote
tion guarantees that aliases are persistent.

From Migration to Surrogation Lexi
al s
oping in distributed settings makes program anal-

ysis easier sin
e the binding of variables is 
ompletely determined by their lo
ation in the program

text, and not by the exe
ution site. Sin
e Obliq is lexi
ally-s
oped, we 
an ignore the aspe
ts of

distribution, at least when regarding the results of Obliq 
omputations, unless sites fail. Follow-

ing this idea, we fo
us on �jeblik [NHKM00℄, an obje
t-based language that represents Obliq's


on
urrent 
ore, but 
an also be seen as a 
on
urrent extension of the Imperative Obje
t Cal
u-

lus [AC96℄. �jeblik supports a distribution-free abstra
tion of migration 
alled surrogation. Like

migration, the surrogation of an obje
t a is des
ribed as the 
reation of a 
lone b of a and then

turning a itself into a proxy for b, whi
h forwards future request for methods of a to b. The main

di�eren
e with respe
t to migration is that neither a nor b are atta
hed to any site.

Corre
tness as an equation In [NHKM00℄, we gave a formal de�nition of 
orre
tness for obje
t

surrogation in �jeblik whi
h 
an be straightforwardly adapted to obje
t migration in Obliq. The

intuition is that, in order to be 
orre
t, the surrogation of an obje
t must be transparent to the


lients of that obje
t, i.e., the obje
t must behave the same before and after surrogation. We

formalized this 
on
ept by means of a simple equation:

a.ping

.

= a.surrogate

where the left side represents the obje
t a before surrogation (a.ping returns the obje
t resulting

from the evaluation of a), the right side represents the obje
t a after surrogation (a.surrogate

returns the surrogated obje
t), and

.

= is an appropriate 
ontextual equivalen
e, based on the

possibility of 
onvergen
e.
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Aliasing Semanti
s In [NHKM00℄, we gave several proposals of 
on�guration-style semanti
s

for �jeblik. One of them �ts the Obliq implementation [Car94, Car95℄, but does not guarantee the


orre
tness of obje
t surrogation as de�ned above. This was formally shown by exhibiting �jeblik


ontexts that are able to distinguish the terms a.ping and a.surrogate. Similar 
ounterexamples

apply to obje
t migration in Obliq, as we tested using the Obliq interpreter [Car94℄. Roughly,

the reason is be
ause, in Obliq, alias nodes support a too strong form of both prote
tion and

serialization. As a 
onsequen
e, in [NHKM00℄ we proposed a di�erent semanti
s in whi
h alias

nodes have a milder form of both prote
tion and serialization. In that paper, we 
onje
tured that

obje
t migration is safe when 
onsidering this new semanti
s, but no proof was given.

1.2 Contribution

In this paper, we present a �-
al
ulus semanti
s for �jeblik 
orresponding to the aforementioned

variant proposed in [NHKM00℄. We also give a notion of 
ontextual equivalen
e for obje
ts de�ned

in terms of may 
onvergen
e on �-pro
esses 
orresponding to the equivalen
e

.

=. More pre
isely, our

semanti
s uses Lo
al � [MS98, Mer00℄, in short L�, a variant of the asyn
hronous �-
al
ulus [HT91,

Bou92℄, where, like in Join-
al
ulus [FG96℄, the re
ipients of a 
hannel are lo
al to the pro
ess

that has 
reated the 
hannel. We prove the 
orre
tness of surrogation for a wide 
lass of �je-

blik-programs. The proof is in two parts: an algebrai
 part and an iterative part. The algebrai


part (Theorem 8.1) relates the 
ore 
omponent of the translation of a single obje
t after having


ommitted to a ping and a surrogate request, respe
tively. We use powerful adaptations of proof

te
hniques, from standard �-
al
ulus and L�. The iterative part (Theorem 8.7) relates the may-


onvergen
e behavior of the terms a.ping and a.surrogate within arbitrary �jeblik-
ontexts; note

that in these terms the operations have not yet been performed, and will only do so at some point

if the 
ontext permits. In Theorem 8.7, we 
onstru
tively simulate arbitrarily long 
onverging

sequen
es \up to" Theorem 8.1. The main diÆ
ulty of Theorem 8.7 is that inherently 
on
urrent

�jeblik-
ontexts may non-deterministi
ally prevent either term from eventually 
ommitting to the

requested operation.

The proof is non-trivial, and we give (to our knowledge) the �rst formal proof that obje
t mi-

gration 
an be 
orre
tly implemented in terms of 
loning and aliasing (apart from a very restri
tive

and informal sket
h of our own [HKMN99℄, on whi
h we improve substantially, here). Finally, we

want to remark that most 
ounterexamples presented in [NHKM00, Mer00℄ (exhibiting the prob-

lems of Obliq's original semanti
s) were a
tually dis
overed while using some �-
al
ulus semanti
s

to understand Obliq programs and trying to prove the 
orre
tness of surrogation.

1.3 Related work

The work 
losest to ours is [KS98℄ where an interpretation of Abadi and Cardelli's obje
t 
al-


ulus [AC96℄ into typed �-
al
ulus is presented. Unlike [KS98℄, we fo
us on a 
on
urrent obje
t


al
ulus. Gordon and Hankin [GH98℄, and Di Blasio and Fisher [DF96℄ des
ribe two 
on
urrent

obje
t 
al
uli, but no a

ount of obje
t migration is given for them. An early version of Emer-

ald [JLHB88℄ in
ludes a form of obje
t migration similar to that one in Obliq, but little formal

work is known about it. Finally, in Distributed Oz [VHB

+

97℄, obje
t migration is a primitive no-

tion, so obje
ts are physi
ally mobile and travel a

ording to a provably safe mobile state proto
ol

from site to site, wherever they are needed or intend to go.

2 Lo
al �: An \Obje
t-Oriented" �-Cal
ulus

Lo
al � [MS98, Mer00℄, in short L�, is a variant of the asyn
hronous �-
al
ulus [HT91, Bou92℄

where, similar to the Join-
al
ulus [FG96℄, the re
ipients of a 
hannel are lo
al to the pro
ess

that has 
reated the 
hannel. This is a
hieved by imposing the synta
ti
 
onstraint that only the

output 
apability of 
hannels may be transmitted, i.e., the re
ipient of a 
hannel may only use it

in output a
tions. This property makes L� parti
ularly suitable for giving the semanti
s to, and

2



Channels: 
 2 C Values

Keys: k 2 K v ::= x variable

Names: 2 N j ` v variant

n ::= 
 j k j h v

1

. . v

n

i tuple

Auxiliary: u 2 U Types

Variables: 2 X T ::= C(T ) 
hannel type

x ::= n j u j K key type

j [ `

1

:T

1

; : : : ; `

m

:T

m

℄ variant type

Labels 2 L j hT

1

. .T

m

i tuple type

`; `

1

; `

2

; : : : j X type variable

j �X .T re
ursive type

Pro
esses

P ::= 0 nil pro
ess

j 
(x).P single input

j 
v output

j P

1

j P

2

parallel

j (�n:T)P restri
tion

j ! 
(x).P repli
ated input

j if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

key testing

j 
ase v of `

1

(x

1

):P

1

; : : : ; `

m

(x

m

):P

m

variant destru
tor

j let (x

1

. .x

m

) = v in P tuple destru
tor

j wrong run time error

The lo
ality 
onstraint requires that in (single and repli
ated) inputs and in

(variant and tuple) destru
tors the bound names x; x

1

; : : : ; x

m

must not be

used in free input position within the respe
tive s
ope P; P

1

; : : : ; P

m

.

Table 1: The Cal
ulus L�

+

reasoning about, 
on
urrent obje
t-oriented languages. In parti
ular, we 
an easily guarantee the

uniqueness of obje
t identities|a fundamental feature of obje
ts: in obje
t-oriented languages,

the name of an obje
t may be transmitted; the re
ipient may use that name to a

ess the methods

of the obje
t, but it 
annot 
reate a new obje
t with the same name. When representing obje
ts

in the �-
al
ulus, this translates dire
tly into the 
onstraint that the pro
ess re
eiving an obje
t

name may only use it in output a
tions|a guarantee in our setting.

2.1 Terms and Types

In Table 1, we introdu
e the 
al
ulus L�

+

, a typed version of polyadi
 L� with: (i) labelled

values ` v, 
alled variants [San98℄, with 
ase analysis; (ii) tuple values h v

1

. . v

n

i, with pattern

mat
hing, (iii) 
onstants k, 
alled keys, with equality; (iv) a wrong 
onstru
t to model run-time

typing errors.

We introdu
e a few synta
ti
 
ategories: the set X of variables in
ludes the set N of names

(
onstants and variables) 
onsisting of the two disjoint sets C of 
hannels and K of keys. The

auxiliary variables in the set U are variables for 
omplex values. L is the set of labels. In addition

to the metavariables mentioned in the grammar, we let s; p; q; r;m; t range over 
hannels, y over

variables, w over values, Q over pro
esses, and i; j; d; h;m over tuple, variant, or other indi
es. We

abbreviate ` hi and ` () as `, as well as qhi and q().P as q and q.P , respe
tively, while ev denotes

3



a sequen
e v

1

. . v

m

.

Restri
tion, both inputs, and both destru
tors are binders for the names x; x

1

; : : : ; x

m

in the

respe
tive s
opes P; P

1

; : : : ; P

m

. We assume the usual de�nitions of free and bound o

urren
es of

names, based on these binders; the indu
tively de�ned fun
tions fn(P ) and bn(P ) denote those of

pro
ess P . Similarly, f
(P ) and b
(P ) denote the free and bound 
hannels of pro
ess P . Moreover,

n(P )= fn(P )[bn(P ) and 
(P )=f
(P )[b
(P ). Substitutions, ranged over by �, are type-preserving

fun
tions from variables to values (types are introdu
ed below). For an expression e, e� is the

result of applying � to e, with the usual renaming to avoid 
aptures. Relabellings, ranged over

by �, permit repla
ing a label ` with another label `

0

. We denote su
h a relabelling with [

`

0

=

`

℄.

The appli
ation of a relabelling to a term is de�ned thus:

� (` v)[

`

0

=

`

℄ := `

0

v[

`

0

=

`

℄

� (`

00

v)[

`

0

=

`

℄ := `

00

v[

`

0

=

`

℄ if `

00

6=`

� x� := x

� wrong� := wrong

� ((�n:T)P )� := (�n:T�)P�

� (
ase v of `

1

(x

1

):P

1

; : : : ; `

n

(x

n

):P

n

)� := 
ase v� of `

1

(x

1

):(P

1

�) ; : : : ; `

n

(x

n

):(P

n

�).

For the remaining (value and pro
ess) 
onstru
tors, relabellings a
t as simple homomorphisms.

Substitution and relabelling have the highest operator pre
eden
e, parallel 
omposition the lowest.

To rearrange pro
esses we use the following notion of stru
tural equivalen
e that is extended

to deal with if-, 
ase-, and let-
onstru
ts.

De�nition 2.1 Stru
tural equivalen
e, written �, is the smallest relation preserved by parallel


omposition and restri
tion, whi
h satis�es the axioms below:

� P � Q, if P is �-
onvertible to Q

� P j 0 � P , P j Q � Q j P , P j (Q j R) � (P j Q) j R

� (�n:T )0 � 0, (�n

1

:T

1

) (�n

2

:T

2

)P � (�n

2

:T

2

) (�n

1

:T

1

)P , if n

1

6= n

2

� (�n:T ) (P j Q) � P j (�n:T )Q, if n 62 fn(P )

� if [k

1

=k

1

℄ then P

1

elif [k

1

=k

2

℄ then P

2

else P

3

� P

1

� if [k

2

=k

1

℄ then P

1

elif [k

2

=k

2

℄ then P

2

else P

3

� P

2

, if k

1

6=k

2

� if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

� P

3

, if k

1

6=k 6=k

2

� 
ase `

j

v

j

of `

1

(x

1

):P

1

; : : : ; `

j

(x

j

):P

j

; : : : ; `

m

(x

m

):P

m

� P

j

f

v

j

=x

j

g

� 
ase v of `

1

(x

1

):P

1

; : : : ; `

m

(x

m

):P

m

� wrong, if v 6=`

j

v

j

for any j2 1 . .m and value v

j

� let (x

1

. .x

m

) = h v

1

. . v

m

i in P � Pf

ev

=exg;

� let (x

1

. .x

m

) = v in P � wrong, if v 6=h v

1

. . v

m

i for any values v

1

. . v

m

.

In Table 2 we give typing rules for values and pro
esses. Types are introdu
ed for essentially

three reasons: (i) they allow us to 
leanly de�ne some abbreviations, (ii) we use them to give a

typed semanti
s of �jeblik, and (iii) they allow us to formally prove the main result of the paper

using typed behavioural equivalen
es. Abusing the notation for sets of names and the 
orrespond-

ing types, we use K and C also as type 
onstru
tors, where 
hannel types are parameterised over

the type of value they 
arry. For variants and tuples we use standard notations (
.f. [San98℄). In

a re
ursive type �X .T , o

urren
es of variable X in type T must be guarded, i.e., underneath

variant, tuple, or 
hannel 
onstru
tors. We often omit the type annotation of restri
tion, when it

is 
lear from the 
ontext or not important for the dis
ussion.

A type environment � is a �nite mapping from variables to types. A typing judgement � ` P

asserts that pro
ess P is well-typed in �, and � ` v:T that value v has type T in �. We say that

a type environment � is 
losed if all names mentioned in � are of type 
hannel C(T ) or of type

key K. We only 
onsider 
losed terms, i.e. terms whi
h are well-typed in some 
losed typing �.

As expe
ted, the typing in Table 2 satis�es all basi
 fundamental properties of type environ-

ments su
h as: weakening, 
ontra
tion, substitution, and narrowing.
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(T-bas)

�(x) = T

� ` x : T

(T-re
1)

� ` v:Tf

�X.T

=

X

g

� ` v:�X .T

(T-re
2)

� ` v:�X .T

� ` v:Tf

�X.T

=

X

g

(T-var)

� ` v:T

� ` ` v : [ : : : ; `:T ; : : : ℄

(T-tup)

� ` v

i

:T

i

8i 2 1 . .m

� ` h v

1

. . v

m

i : hT

1

. .T

m

i

(T-Res1)

�; 
:C(T ) ` P

� ` (�
:C(T )) P

(T-Res2)

�; k:K ` P

� ` (�k:K) P

(T-Par)

� ` P

1

� ` P

2

� ` P

1

j P

2

(T-Rep)

� ` P

� ` !P

(T-Nil)

�

� ` 0

(T-Inp)

� ` 
:C(T ) �; x:T ` P

� ` 
(x).P

(T-Out)

� ` 
:C(T ) � ` v:T

� ` 
v

(T-If)

� ` k; k

1

; k

2

: K � ` P

1

; P

2

; P

3

� ` if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

(T-Let)

� ` v : hT

1

. .T

m

i �; x

1

:T

1

; : : : ; x

m

:T

m

` P

� ` let (x

1

. .x

m

)= v inP

(T-Case)

� ` v : [ `

1

:T

1

; : : : ; `

m

:T

m

℄ �; x

i

:T

i

` P

i

8i 2 1 . .m

� ` 
ase v of `

1

(x

1

):P

1

; : : : ; `

m

(x

m

):P

m

Table 2: Typing for Values and Pro
esses
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(Inp)

�


(x).P


v

���! Pf

v

=

x

g

(Rep)

�

! 
(x).P


v

���! Pf

v

=

x

g j ! 
(x).P

(Out)

�


v


v

���! 0

(Open)

P

(�eq:

e

T ) 
v

��������! P

0

n2 n(v)nfeq; 
g

(�n:T )P

(�n:T ;eq:

e

T ) 
v

�����������! P

0

(Com)

P

1

(�eq:

e

T ) 
v

��������! P

0

1

P

2


v

���! P

0

2

eq \ fn(P

2

) = ;

P

1

j P

2

�

��! (�eq:

e

T ) (P

0

1

j P

0

2

)

(Par)

P

1

�

��! P

0

1

bn(�) \ fn(P

2

) = ;

P

1

j P

2

�

��! P

0

1

j P

2

(Res)

P

�

��! P

0

n 62 n(�)

(�n:T )P

�

��! (�n:T )P

0

(Test-1)

P

1

�

��! P

0

1

k

1

= k

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

1

(Test-2)

P

2

�

��! P

0

2

k

1

6= k = k

2

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

2

(Test-3)

P

3

�

��! P

0

3

k

1

6= k 6= k

2

if [k=k

1

℄ then P

1

elif [k=k

2

℄ then P

2

else P

3

�

��! P

0

3

(Case)

P

j

f

v

=

x

j

g

�

��! Q j 2 1 . .m


ase `

j

v of `

1

(x

1

):P

1

; : : : ; `

m

(x

m

):P

m

�

��! Q

(Let)

Pf

v

1

. . v

m

=

x

1

. .x

m

g

�

��! Q

let (x

1

. .x

m

)= h v

1

. . v

m

i inP

�

��! Q

Table 3: Labelled Transition System for L�

+

.

2.2 Operational and Behavioural semanti
s

Table 3 shows the transition rules for L�

+

in an early style; the symmetri
 rules of (Com) and

(Par) are omitted. Labelled transitions are of the form P

�

��! P

0

, where a
tion � is: � (inter-

a
tion), 
v (free input), (�en:

e

T ) 
v (output at 
 of value v 
ontaining private names en of type

e

T ,

whi
h we often omit), where 
 is the subje
t and v the obje
t. The fun
tions fn(�), bn(�), n(�), f
(�),

b
(�), and 
(�) are extended to a
tions as usual. Relation =) is the re
exive-transitive 
losure of

�

��!;

�

==) denotes =)

�

��! =);

�̂

==) denotes

�

==) if � 6= � , and =) if � = � . For any relation R on

pro
esses,

�

��!

R

denotes R

�

��!R, and =)

R

the re
exive-transitive 
losure of

�

��!

R

.

The typing in Table 2 is preserved under � -a
tions, whi
h are also 
alled redu
tions.

Theorem 2.2 (Type Soundness) Let � be a 
losed type environment.

1. If � ` P then P 6� Q where Q 
ontains wrong.

2. If � ` P and P =) Q, then � ` Q.
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The proof of the above result is standard (see for instan
e [San98℄).

A 
ru
ial notion in a pro
ess 
al
ulus is that of behavioural equality between pro
esses. We fo
us

on bisimulation-based behavioural equivalen
es, pre
isely on (weak) barbed bisimulation [MS92℄.

Barbed bisimulation 
an be de�ned in any 
al
ulus possessing: (i) an intera
tion relation (the � -

steps in the �-
al
ulus), modelling the evolution of the system; and (ii) an observability predi
ate

#




for ea
h 
hannel 
, to dete
t the possibility of a pro
ess to a

ept a 
ommuni
ation with the

environment at 
. We re
all that in asyn
hronous 
al
uli only output a
tions are observed [ACS98℄

be
ause the environment has no dire
t way of knowing if the message it has sent has been re
eived.

De�nition 2.3 (Asyn
hronous observability) We write P #




if there is a derivative P

0

, and

an output a
tion � with subje
t 
, su
h that P

�

�!P

0

. We write P +




if there is P

0

su
h that

P =) P

0

and P

0

#




.

De�nition 2.4 (Barbed bisimilarity) A symmetri
 relation S on pro
esses is an barbed bisim-

ulation if P S Q implies:

� If P

�

�!P

0

then there exists Q

0

su
h that Q =) Q

0

and P

0

S Q

0

.

� If P #




then Q +




.

Two pro
esses P and Q are barbed bisimilar, written P

_

�

=

Q, if P S Q for some barbed bisimulation

S.

Barbed bisimilarity equips a global observer with a minimal ability to observe a
tions and/or

pro
ess states but it is not a 
ongruen
e. By 
losing barbed bisimilarity under 
ontexts we ob-

tain a mu
h �ner relation. Sin
e L�

+

is a typed 
al
ulus, only well-typed 
ontexts should be


onsidered [PS96, SW01℄.

De�nition 2.5 (Context) A (monadi
) 
ontext C[�℄ is a pro
ess expression with a single hole

in it, written [�℄. Given a pro
ess P , C[P ℄ is the pro
ess obtained by plugging the pro
ess P into

the hole. A 
ontext C[�℄ is stati
 if it is stru
turally equivalent to (�en) (P j [�℄), for some P and en.

De�nition 2.6 Let � and � be two type environments. We say that � extends � if dom(�) �

dom(�) and � ` n:�(n) for all names n on whi
h � is de�ned. We say that � is a 
losed extension

of � if � is 
losed and extends �.

De�nition 2.7 Let � and � be two type environments. We say that C[�℄ is a (�=�)-
ontext if

� ` C[�℄ is a valid type judgement when the hole [�℄ is 
onsidered as a pro
ess and the following

typing rule for [�℄ is added:

(t-hole)

� extends �

� ` [�℄

(in the rule, � is one of the given type environments and � is a metavariable over type environ-

ments).

De�nition 2.8 (Typed barbed relations) Let � be a typing, and P and Q two pro
esses su
h

that � ` P;Q. We say that P and Q are barbed �-equivalent, written P '

�

Q, if for ea
h


losed type environment � and stati
 (�=�)-
ontext C[�℄, we have C[P ℄

_

�

=

C[Q℄. We say that

P and Q are barbed �-
ongruent, written P

�

=

�

Q, if for ea
h 
losed type environment � and

(�=�)-
ontext C[�℄, we have C[P ℄

_

�

=

C[Q℄.

Context-based behavioural equalities like barbed 
ongruen
e su�er from the universal quanti�-


ation on 
ontexts. Simpler proof te
hniques are based on labelled bisimulations whose de�nitions

do not use 
ontext quanti�
ation. These bisimulations should imply, or (better) 
oin
ide with,

barbed 
ongruen
e. Labelled bisimilarities for typed barbed relations must take into a

ount types.

A typed relation is a set of triples (�;P ;Q) where � is a 
losed typing and � ` P;Q. Below, we

give a typed variant of Amadio, Castellani, and Sangiorgi's asyn
hronous bisimilarity [ACS98℄.
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De�nition 2.9 (Typed bisimilarity) Typed bisimilarity, is the largest typed relation S su
h

that (�;P ;Q) 2 S implies:

1. If P

�

��! P

0

, then there exists Q

0

s.t. Q =) Q

0

and (�;P

0

;Q

0

) 2 S.

2. If P

(�en:

e

T ) 
v

��������! P

0

, with en \ fn(Q) = ;, then there exists Q

0

su
h that Q

(�en:

e

T ) 
v

========) Q

0

and

((�; en:

e

T );P

0

;Q

0

) 2 S.

3. If

(i) � is a 
losed extension of �,

(ii) � ` 
:C(T ) and � ` v:T ,

(iii) P


v

���! P

0

, with f
(v) \ f
(P j Q) = ;,

then there exists Q

0

su
h that:

(i) either Q


v

===) Q

0

and (�;P

0

;Q

0

) 2 S,

(ii) or Q =) Q

0

and (�;P

0

; (Q

0

j 
v )) 2 S.

Let � be a 
losed typing with � ` P;Q. We say that P and Q are typed bisimilar at �, written

P �

�

Q, if (�;P ;Q) is 
ontained in typed bisimilarity.

The bisimilarity above is early on keys and ground on 
hannels. Indeed, in the input 
lause, there

is an impli
it universal quanti�
ation on the re
eived keys, whereas we always assume to re
eive

fresh 
hannels by requiring f
(v) \ f
(P j Q) = ;. In asyn
hronous 
al
uli without name testing,

ground and early bisimilarity 
oin
ide [San00, Hon92℄. Sin
e we only have testing on keys (i) it

makes sense to have the simpler ground 
lause on 
hannels, (ii) our bisimilarity 
oin
ides with

its (
hannel) early variant in whi
h the requirement f
(v) \ f
(P j Q) = ;, in the input 
lause, is

omitted. The proof that this early variant is a 
ongruen
e (on well-typed 
ontexts) is essentially

the same as that for untyped asyn
hronous early bisimilarity [ACS98℄. As a 
onsequen
e, �

�

implies '

�

and therefore

�

=

�

.

Later on, we will work with pro
esses 
ontaining 
hannels whi
h 
an be used by the environment

only in output. We model this 
onstraint as follows:

De�nition 2.10 (Barbed �; C-relations) Let C � C. Barbed C-bisimilarity, written

_

�

=

C

, is the

largest symmetri
 relation on pro
esses, su
h that P

_

�

=

C

Q implies:

1. If P

�

��! P

0

, then there exists Q

0

su
h that Q =) Q

0

and P

0

_

�

=

C

Q

0

2. If P#




, with 
 62 C, then Q+




.

Let � be a typing, and P and Q two pro
esses su
h that � ` P;Q. We say that P and Q are

barbed �;C-equivalent, written P '

�;C

Q, if for ea
h 
losed type environment � and stati
 (�=�)-


ontext C[�℄ not 
ontaining names in C in input position, we have C[P ℄

_

�

=

C

C[Q℄. We say that P

and Q are barbed �;C-
ongruent, written P

�

=

�;C

Q, if for ea
h 
losed type environment � and

(�=�)-
ontext C[�℄ not 
ontaining names in C in input position, we have C[P ℄

_

�

=

C

C[Q℄.

Roughly, C denotes the set of 
hannels whi
h 
annot be used in input by the environment. In

De�nition 2.10, when C=;, we get the standard de�nitions of typed barbed bisimilarity. If C=fsg,

as abbreviations, we write

�

=

�;s

for

�

=

�;C

and '

�;s

for '

�;C

. Due to the restri
tion on the 
ontexts,

it holds that sv

�

=

�;s

0 and, by asyn
hrony, s(x).0

�

=

�;s

0. Below, we give the labelled 
ounterpart

of barbed �;C-equivalen
e.

De�nition 2.11 (Typed C-bisimilarity) Typed C-bisimilarity is the largest typed relation S

su
h that (�;P ;Q) 2 S implies:

1. If P

�

��! P

0

, then there exists Q

0

s.t. Q =) Q

0

and (�;P

0

;Q

0

) 2 S.

2. If P

(�en:

e

T ) 
v

��������! P

0

, with 
 62 C and en\fn(Q) = ;, then there exists Q

0

su
h that Q

(�en:

e

T ) 
v

========)

Q

0

and ((�; en:

e

T );P

0

;Q

0

) 2 S.

3. If
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(i) � is a 
losed extension of �,

(ii) � ` 
:C(T ) and � ` v:T ,

(iii) P


v

���! P

0

, with f
(v) \ f
(P j Q) = ;,

then there exists Q

0

su
h that:

(i) either Q


v

===) Q

0

and (�;P

0

;Q

0

) 2 S,

(ii) or Q =) Q

0

and (�;P

0

; (Q

0

j 
v )) 2 S.

Let � be a 
losed typing with � ` P;Q. We say that P and Q are typed C-bisimilar at �, written

P �

�;C

Q, if (�;P ;Q) is 
ontained in typed C-bisimilarity.

When C=fsg, for some 
hannel s, we abbreviate �

�;C

with �

�;s

.

Theorem 2.12 Let � be a type environment, C a set of 
hannels, and P and Q two pro
esses

su
h that � ` P;Q. Then, P �

�;C

Q implies P '

�;C

Q.

Proof. [Sket
h℄ We have to prove that �

�;C

is preserved by well-typed stati
 
ontexts. Sin
e

L�

+

is an asyn
hronous 
al
ulus without testing on 
hannels, �

�;C


oin
ides with its early variant

where the requirement f
(v) \ f
(P j Q) = ;, in the input 
lause, is omitted. The proof that this

(early) variant is preserved by parallel 
omposition and restri
tion is standard (parallel 
omposition

require some 
are be
ause the pro
esses in parallel must not 
ontain input along 
hannels in C).

So, also �

�;C

is preserved by parallel 
omposition and restri
tion. Sin
e �

�;C

implies

_

�

=

, it follows

that �

�;C

�'

�;C

.

2

It is easy to prove that �

�

implies �

�;C

and '

�

implies '

�;C

.

Finally, in Lemma 2.15 we give an algebrai
 law whi
h will be used to prove one of the 
ru
ial

results of the paper (Theorem 8.1). This law is based on spe
ial pro
esses 
alled link that behave

as name bu�ers re
eiving values at one end and retransmitting them at the other end (in the

�-
al
ulus literature, links are sometimes 
alled forwarders [HY95℄ or wires [SW01℄). A similar

law has already been used in a typed �-
al
ulus with the name dis
ipline of uniform re
eptive-

ness [San99a℄.

De�nition 2.13 (Link) Given two 
hannels p and q with � ` p; q : C(T ), we 
all link the pro
ess

! p(u).qu, abbreviated p . q.

In order to prove Lemma 2.15, we need the following te
hni
al lemma.

Lemma 2.14 Let p and q be two 
hannels, Q a pro
ess in whi
h q may only appear in output

position, and � a type environment su
h that � ` Q and � ` p; q:C(T ). Then

Qf

p

=qg

_

�

=

(�q:C(T )) (Q j q . p).

Proof. See the proof in Appendix A.1.

2

Lemma 2.15 Let � ` pv, for some type environment �. Let q 2 f
(v) with � ` q:C(T ). Let

r 62 
(v) and w = vf

r

=

q

g. Then

pv

�

=

�

(�r:C(T )) (pw j r . q).

Proof. We prove that for any well-typed 
ontext C[�℄, it holds that:

C[pv℄

_

�

=

C[(�r:C(T )) (pw j r . q)℄.

The prove is by stru
tural indu
tion on the 
ontext C[�℄. The most interesting 
ase is when

C[�℄ � [�℄ j R for some pro
ess R. So, in order to prove that

pv j R

_

�

=

(�r:C(T )) (pw j r . q) j R

9



a; b ::= O obje
t

j a.lh a

1

. . a

n

i method invo
ation

j a.l(m method update

j a.
lone shallow 
opy

j a.aliashbi obje
t aliasing

j a.surrogate obje
t surrogation

j a.ping obje
t ping

j s; x; y; z variables

j letx:A=a in b lo
al de�nition

j forkhai thread 
reation

j joinhai thread destru
tion

O ::= [l

j

=m

j

℄

j2J

obje
t re
ord

m

j

::= &(s

j

:A; ~x

j

:

e

B

j

)b

j

method

A;B ::= [l

j

:

e

B

j

!

b

B

j

℄

j2J

obje
t re
ord type

j Thr(A) thread type

Table 4: �jeblik Syntax and Types

we show that the relation

S = f

�

pv j R ; (�r:C(T )) (pw j r . q) j R

�

g [

_

�

=

is a barbed bisimulation up to �. The requirements on the barbs are easily satis�ed. As for the

bisimulation game on silent moves, the only interesting 
ase is when there is a 
ommuni
ation

along p, that is, when R

p(x)

����!R

0

. In this 
ase we get, up to stru
tural equivalen
e, the pair of

pro
esses

�

Qf

q

=rg ; (�r:C(T )) (Q j r . q)

�

where Q = R

0

f

w

=xg. By Lemma 2.14 we 
an 
on
lude.

2

3 �jeblik: A Con
urrent Obje
t Cal
ulus

In this se
tion, we present �jeblik [NHKM00℄, a typed abstra
tion of Obliq designed to study

obje
t migration. �jeblik-expressions and �jeblik-types are generated by the grammar in Table 4,

where a ranges over �jeblik-terms, l over method labels, m over method bodies, s; x; y; z over

variables, O over obje
t re
ords, and A;B over types. The type language extends the one of

the imperative obje
t 
al
ulus [AC96℄ by thread types Thr(A). Pairs ~x

j

:

e

B

j

denote sequen
es

x

1

j

:B

1

j

. .x

n

j

:B

n

j

. Fun
tion types A!B do only o

ur in obje
t types [l

j

:

e

B

j

!

b

B

j

℄

j2J

, so they are

not �rst-
lass types. Yet, we sometimes abbreviate su
h obje
t types by [l

j

:A

j

℄

j2J

to 
larify that

a type is not a thread type. Typed terms are de�ned by adding type annotations to all binding

o

urren
es of variables: in let-expressions and in method de
larations.

For the sake of simpli
ity, 
ompared to Obliq, in �jeblik we omit ground values (like numbers,

booleans, strings, et
.), data operations, and pro
edures, we restri
t �eld sele
tion to method

invo
ation, we restri
t multiple 
loning to single 
loning, we omit 
exibility of obje
t attributes,

we repla
e �eld aliasing with obje
t aliasing, we omit expli
it distribution, and we omit ex
eptions

and advan
ed syn
hronisation, so we get a feasible, but still non-trivial language. As in Obliq,


omputation follows the 
all-by-value evaluation order. In parti
ular, in the following, whenever

we use a term a, we impli
itly assume that we have �rst evaluated a to some a
tual value, i.e. in

most 
ases to an obje
t referen
e.
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Obje
ts

An obje
t re
ord [l

j

=m

j

℄

j2J

is a �nite 
olle
tion of updatable named methods l

j

=m

j

, for pairwise

distin
t labels l

j

. In a method &(s; ~x)b, the letter & denotes a binder for the self variable s and

argument variables ~x within the body b. Moreover, every obje
t in �jeblik 
omes equipped with

spe
ial methods for 
loning, aliasing, surrogation, and ping, whi
h 
annot be overwritten by the

update operation.

Method invo
ation a.lh ~
 i with �eld l of the obje
t a 
ontaining the method &(s; ~x)b results in

the body b with the self variable s repla
ed by (a referen
e to) the en
losing obje
t a, and the

formal parameters ~x repla
ed by (referen
es to) the a
tual parameters ~
 of the invo
ation.

Method update a.l(m overwrites the 
urrent 
ontent of the named �eld l in obje
t a with

method m and returns a referen
e to the modi�ed obje
t.

The 
lone operation a.
lone 
reates a 
lone a

0

of a and returns a referen
e to a

0

.

The operation a.aliashbi repla
es obje
t a with an alias to b, written a�b, regardless of

whether a is already an alias or still an obje
t re
ord; if b itself is an alias, e.g. b�
, then we


onsequently and naturally 
reate an alias 
hain a�b�
. From the 
omputational point of view,

requests arriving at a after the operation a.aliashbi should be forwarded to b. The operation

a.aliashbi returns a referen
e to b.

The operation a.surrogate represents our abstra
tion of migration: by 
alling it, obje
t a is

turned into a proxy for a 
opy of itself. Surrogation is implemented by providing a uniform

method surrogate=&(s)s.aliashs.
lonei. It returns a referen
e to the just 
reated 
lone. Behaving

like standard methods, surrogation is forwarded by aliased obje
ts. This is ne
essary to 
or-

re
tly mimi
 migration: an obje
t should be surrogatable more than on
e, so double-surrogation

a.surrogate; a.surrogate (where ; denotes sequential 
omposition, as de�ned below) should be equiv-

alent to a.surrogate.surrogate. Without forwarding, the surrogation of an already surrogated obje
t

would mistakenly surrogate the proxy.

The operation a.ping is implemented by providing a uniform method: ping=&(s)s. Thus, a.ping

returns the \identity" of the obje
t o resulting from the evaluation of a; note that, due to aliasing

and forwarding, this 
ould be the \identity" of the 
urrent endpoint of an alias 
hain potentially

starting at obje
t o. We add the a.ping method uniformly to �jeblik obje
ts be
ause it allows us to


onveniently express the safety of surrogation/migration as an algebrai
 equation. Furthermore,

su
h a method 
ould be used by 
lients for garbage 
olle
tion of referen
es to surrogated servers

by interrogating the 
urrent identity and using it dire
tly instead of the former indire
t referen
e.

S
oping

Apart from the binding of variables in method bodies, �jeblik also o�ers expli
it s
ope de
larations.

An expression letx= a in b �rst evaluates a, binding the result to x, and then evaluates b within

the s
ope of the new binding. We use the standard indu
tive de�nition fv(a) to denote the free

variables of term a with respe
t to our two forms of binding. �jeblik only admits non-re
ursive

expressions letx= a in b, i.e., with x 62 fv(a). Then, a; b denotes letx= a in b, where x 62 fv(b).

Con
urren
y

While obje
ts represent persistent stateful stru
tural entities, 
omputational a
tivity takes pla
e

within threads. In addition to the main thread that is initially started up with the exe
ution of

a term, new separate threads 
an be 
reated by the fork 
ommand. The term forkhai returns a

new thread identi�er to denote the thread evaluating a. The result of a fork'ed 
omputation is

grabbed by the join 
ommand. If a evaluates to a thread identi�er, then joinhai potentially blo
ks

until that thread �nishes and returns the thread's result, or blo
ks forever, if a join on thread a

was already performed earlier.
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Self-In
i
tion

The 
urrent method of a thread is the last method invoked in it that has not yet 
ompleted. The


urrent self of a thread is the self of its 
urrent method. An �jeblik operation is self-in
i
ted, also


alled internal, if it addresses the 
urrent self; an operation is external if it is not self-in
i
ted.

However, self-in
i
ted operations 
an be invoked from within methods not only literally on the self

variable s, but also indire
tly by an expression that evaluates to the obje
t itself. For instan
e, in

letx=[ l=&(s; z)z.
lone ℄ inx.lhxi

the 
all z.
lone will be self-in
i
ted when it is �nally exe
uted.

Based on the 
on
ept of self-in
i
tion, Obliq, and therefore also our abstra
tion �jeblik, sup-

ports the notions of serialisation and prote
tion of obje
ts.

Serialisation In 
on
urrent obje
t-based settings, the invariant that at most one thread at a

time may be a
tive within an obje
t is often 
alled serialisation. The simplest way to ensure

serialisation is to asso
iate with an obje
t a mutex that is lo
ked when a thread enters the obje
t

and released when the thread exits the obje
t. However, this approa
h is too restri
tive, for

instan
e, it prevents re
ursion. Based on the notion of thread, so-
alled reentrant mutexes, as

in Java, 
an be used to allow an operation to re-enter an obje
t under the assumption that this

operation belongs to the same thread as the operation that is 
urrently a
tive in the obje
t. In

Obliq, however, the more 
autious idea of self-serialisation requires, based on the above notion of

self-in
i
tion, that the mutex is always a
quired for external operations, but never for self-in
i
ted

ones. Note that this 
on
ept allows a method to re
ursively 
all its siblings through self, but it

ex
ludes the kind of inter-obje
t mutual re
ursion, where a method in an obje
t a 
alls a method

in another obje
t b, whi
h then tries to `
all ba
k' another method in a.

Prote
tion Based on self-in
i
tion, obje
ts are prote
ted against external modi�
ations in a

natural way: updates, 
loning, and aliasing are only allowed if these operations are self-in
i
ted.

In Obliq, obje
t migration is supposed to be 
orre
t only for both prote
ted and serialised

obje
ts. So, sin
e we are interested in proving the safety of obje
t migration, all obje
ts in (our

abstra
tion) �jeblik are both prote
ted and serialised.

Finally, in Table 5, we present the rules for stati
 typing. The typing rules themselves are not

surprising. The operations 
lone, alias, surrogate, ping, and update, all yield a result of the same

type as the obje
t that they address. While fork pa
ks a type into a thread type, join unpa
ks

it a

ordingly. The rules for variables, let, and obje
ts, and invo
ations are standard. The usual

properties hold, e.g., the free variables of a term are all 
aptured by the type environment.

As for our type system for the �-
al
ulus, all the standard properties of weakening, 
ontra
tion,

substitution, and narrowing hold for the typings in Table 5.

4 Towards a formal semanti
s for �jeblik

Although, at �rst sight, the informal semanti
s of �jeblik is reasonably 
lear, its formalisation

requires one to 
onsider even the slightest detail. In parti
ular, the behavior of alias 
hains (that

is 
hains of alias nodes), needs to be 
learly spelled out. In our previous work [NHKM00, Mer00℄,

we already showed that the semanti
s of alias nodes, as implemented in Cardelli's Obliq, gives rise

to an in
orre
t behavior of obje
t migration. Roughly, the reason is be
ause, in Obliq, alias nodes

support a too strong form of both prote
tion and serialization. As a 
onsequen
e, in [NHKM00,

Mer00℄ we proposed a variant of Cardelli's semanti
s in whi
h alias nodes have a milder form of

both prote
tion and serialization. In this se
tion, we explain our proposed semanti
s and prepare

the ground for its formal de�nition in terms of �-
al
ulus. In Se
tions 4.1 and 4.2 we �rst explain

a few general 
on
epts about alias 
hains, then in Se
tion 4.3 we show the design 
hoi
es for our
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(T-Var)

�(x) = A

� ` x:A

(T-Let)

� ` a:A �; x:A ` b:B

� ` letx:A=a in b : B

(T-Fork)

� ` a:A

� ` forkhai : Thr(A)

(T-Join)

� ` a : Thr(A)

� ` joinhai : A

(T-Obj)

8j2J �; s

j

:A; ~x

j

:

e

B

j

` b

j

:

b

B

j

A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

� ` [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

: A

(T-Inv)

� ` a : [l

j

:

e

B

j

!

b

B

j

℄

j2J

� `

e

b

k

:

e

B

k

k2J

� ` a.l

k

h

e

b

k

i :

b

B

k

(T-Upd)

� ` a:A A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

�; s:A; ~x:

e

B

k

` b:

b

B

k

k2J

� ` a.l

k

(&(s:A; ~x:

e

B

k

)b : A

(T-Ping)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.ping : A

(T-Clo)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.
lone : A

(T-Ali)

� ` a; b:A A = [l

j

:A

j

℄

j2J

� ` a.aliashbi : A

(T-Sur)

� ` a:A A = [l

j

:A

j

℄

j2J

� ` a.surrogate : A

Table 5: Typing Rules for �jeblik

semanti
s of alias nodes. We address the reader to [NHKM00, Mer00℄ for a full explanation about

the di�eren
es between our aliasing semanti
s and Cardelli's original one.

4.1 On the stability of alias 
hains

As a matter of fa
t, a

ording to the operations' 
hara
ter with respe
t to self-in
i
tion and the

intended node of a
tion, a node x in an alias 
hain 
an be unstable, whi
h means that if it 
urrently

points to node y, it may later on point to a di�erent node z. In order to 
larify this phenomenon,

we distinguish two 
ases based on the notion of a task, whi
h is the run-time entity that is 
reated

by method invo
ation within a single obje
t. A thread may then a
tually be seen as a sta
k of

tasks 
onne
ted via invo
ations. Now, a node 
an be a
tive, in whi
h 
ase it 
ontains running

tasks, or not. The pun
hline of this subse
tion is then that an alias node 
an not be
ome stable

before it has terminated its 
urrent tasks.

Below, we introdu
e pi
tures where we use single/double boxes to denote ina
tive/a
tive nodes,

respe
tively, and single/double arrows to denote unstable/stable aliases, respe
tively. Furthermore,

dashed boxes and dotted arrows denote unspe
i�ed respe
tive entities.

Ina
tive Nodes: No Tasks By de�nition, the only way to re
eive a self-in
i
ted request is to

have already at least one lo
al task running. In other words, if there is no lo
al task, then ea
h

in
oming request is doomed to be external. Now, let us fo
us on the example term:
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let z=[ l=\bar" ℄ in

let y= [ l=\foo" ℄ in

letx= [ l=&(s; w)s.aliashwi ℄ inx.lh y i;x.lh z i

after it 
arried out the invo
ation x.lh y i, that is, when the obje
t referred to by x has turned

itself into an alias for y and then terminated its a
tivity. We depi
t the situation as follows

//
�

+3
__�

�

�

�
__
?

__�

�

�

�
__
?

x

y

z

where, in general, the node x may itself be referred to by other aliases, while y and z may be

either an alias or an obje
t re
ord. In fa
t, the alias x�y is stable in the very sense: no re-aliasing

operation on x to another node will ever possibly take pla
e sin
e it 
ould only be 
arried out

in a self-in
i
ted way by one of its own methods, but any request to su
h a method potentially

starting su
h a self-in
i
ted operation, e.g., by 
alling x.lh z i, is itself forwarded to y su
h that it


an never take pla
e in x.

A
tive nodes: at least one task As an example, let us �rst 
onsider the term

let z=[ l=\bar" ℄ in

let y=[ l=\foo" ℄ in

letx= [ l=&(s; w)s.aliashwi; \bla" ℄ inx.lh y i

just after obje
t x has a

epted the request for method l and turned itself into an alias for y. Sin
e

x 
ontinues to operate on itself, a

ording to \bla" in method l, x is an a
tive alias node:

//
�

//
__�

�

�

�
__
?

__�

�

�

�
__
?

x

y

z

The alias x�y is marked as unstable sin
e \bla" may 
ontain further self-in
i
ted requests, e.g.,

to perform a re-aliasing or a 
loning. Thus, if \bla" 
alls s.aliashzi or s.
lone, we get

//
�

  __�

�

�

�
__
?

__�

�

�

�
__
?

x

y

z

or

�

"*MM
MM

M

MM
MM

M

//
�

//
__�

�

�

�
__
?

__�

�

�

�
__
?

x

y

z

and su
h 
hanges may 
ontinue as long some 
urrent task in x is a
tive. Here, the re-aliased x

remains a
tive, thus unstable, until all 
urrent tasks in x, in our example a

ording to \bla", have

terminated. Note that the 
loning of an a
tive unstable alias x�y provides a new ina
tive stable

alias x

0

�y, be
ause only the state of x is 
opied, not its tasks.

Generalising the above example, we may 
onsider the 
ase where several tasks of the 
urrent

thread are running in an alias or an obje
t. However, by the de�nition of syn
hronous method

invo
ation, only one of them may be a
tive|namely the one on top of the thread's 
all-sta
k,

while the others must be blo
ked. Now, note that it is the a
tive task or any of its an
estors in

the 
all-sta
k who turned the 
urrent node into an alias (in the example it is method l); otherwise,

the node would be stable and the 
urrent tasks would not exist, but have been 
reated in one of

the su

essors of the stable alias node.

4.2 Cy
li
 alias 
hains

Obliq does not prevent the programmer from (either 
ons
iously or a

identally) introdu
ing, via

substitution, self-aliases or alias 
hains with 
y
les. Consider the following example:

letx= [ k=id ; l=&(s; z)s.aliashzi ℄ inx.lhxi;x.k.

14



By 
alling x.lhxi, the aliasing operation x.aliashxi is 
arried out giving rise to the 
y
li
 alias


hain x�x. As a 
onsequen
e, the following external method 
all x.k will give rise to a diverging


omputation.

4.3 On forwarding requests within alias nodes

In this se
tion, we des
ribe the behaviour of single alias nodes in �jeblik by addressing four 
ru
ial

questions.

1. What is the 
urrent self of forwarded requests?

2. Who is in 
harge of sending the result of a forwarded external request?

3. When does the forwarding take pla
e?

4. Whi
h requests are forwarded and whi
h requests fail in an alias node?

Our semanti
s behaves as follows:

What? Let a be an alias node forwarding requests to b, that is, a�b. Let 
 be a third obje
t

invoking a method of a. Then, when serving the (external) request, the alias a simply forwards

the request to b, and 
 is still the 
urrent self. Roughly speaking, it is as if 
 invokes dire
tly a

method of b. The self-in
i
ted 
ase is trivial be
ause then a = 
.

Who? As above, let a�b and 
 be a third obje
t invoking a method of a. Sin
e alias nodes simply

forward requests un
hanged, also the transmission of the result of the request is delegated to b. As

a 
onsequen
e: should the request in a have required a mutex, then the mutex 
an already be

released on
e the request has been forwarded to b.

When? When addressed to stable alias nodes, in
oming external requests do not have to wait

until previously forwarded requests (there 
an only be external ones in this 
ase) have su

essfully

signalled termination from their point of a
tion. However, when addressed to unstable alias nodes,

in
oming external requests must wait for the termination of previous (external and self-in
i
ted)

requests.

Whi
h? Prote
ted external requests are supposed to fail only when addressed to non-aliased

nodes, thus only in endpoints of alias 
hains.

� Method invo
ations (as well as pings and surrogations) are always forwarded (by transitivity

to the endpoint of the 
hain, if it exists).

� Self-in
i
ted 
loning and self-in
i
ted aliasing are performed at the alias node; external


loning and external aliasing are forwarded be
ause they 
an possibly rea
h another node in

the alias 
hain where they are self-in
i
ted and therefore exe
utable.

� Self-in
i
ted update requests are forwarded. External update requests are forwarded be
ause

they may rea
h a (non-aliased) obje
t that serves them.

5 A translational semanti
s for �jeblik

In this se
tion we give a translational semanti
s of �jeblik into L�

+

a

ording to the informal

semanti
s given in Se
tions 3 and 4. In addition to the syntax of L�

+

we use standard abbreviations

for:

� polyadi
 input a(x

1

. .x

n

).P

def

= a(y).let (x

1

. .x

n

)= y inP where y 62 fn(P ). We will also

write C(T

1

. .T

n

) instead of C(hT

1

. .T

n

i) denoting the type of a 
hannel 
arrying a tuple.

� polyadi
 
ase destru
tor ` (x

1

. .x

n

):P

def

= ` (y):let (x

1

. .x

n

)= y inP , where y 62 fn(P );
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[[ a.
lone ℄℄

k

p

def

= (�q)

�

[[ a ℄℄

k

q

�

�

q(y; k

0

) . yh
ln p; k

0

i

�

[[ a.aliashbi ℄℄

k

p

def

= (�q

x

q

y

)

�

[[ a ℄℄

k

q

y

�

�

q

y

(y; k

y

).([[ b ℄℄

k

y

q

x

j q

x

(x; k

x

) . yhali hx; pi; k

x

i)

�

[[ a.l

j

(&(s; ~x)b ℄℄

k

p

def

= (�q)

�

[[ a ℄℄

k

q

�

�

q(y; k

0

).(�t)

�

! t(s; ex; r; k).[[ b ℄℄

k

r

j yhupd

j

ht; pi; k

0

i

�

�

[[ a.l

j

ha

1

. . a

n

i ℄℄

k

p

def

= (�qq

1

� � �q

n

)

�

[[ a ℄℄

k

q

�

�

q(y; k

0

).([[ a

1

℄℄

k

0

q

1

j q

1

(x

1

; k

1

).([[ a

2

℄℄

k

1

q

2

j � � �

q

n

(x

n

; k

n

).yhinv

j

hx

1

. .x

n

; pi; k

n

i � � � ))

�

[[ a.surrogate ℄℄

k

p

def

= (�q)

�

[[ a ℄℄

k

q

j q(y; k

0

) . yhsur p; k

0

i

�

[[ a.ping ℄℄

k

p

def

= (�q)

�

[[ a ℄℄

k

q

j q(y; k

0

) . yhpng p; k

0

i

�

[[ letx=a in b ℄℄

k

p

def

= (�q)

�

[[ a ℄℄

k

q

j q(x; k

0

) . [[ b ℄℄

k

0

p

�

[[ x ℄℄

k

p

def

= phx; ki

[[ fork(a) ℄℄

k

p

def

= (�qt)

�

[[ a ℄℄

�

q

j pht; ki j q(x; k

0

).t(r; k

00

).rhx; k

00

i

�

[[ join(b) ℄℄

k

p

def

= (�q)

�

[[ b ℄℄

k

q

j q(t; k

0

) . thp; k

0

i

�

Table 6: Translational semanti
s of �jeblik | Clients, S
oping, Con
urren
y

� parameterised re
ursive de�nitions A(x

1

. .x

n

)

def

= P and instantiation Ahx

1

. .x

n

i, whi
h


an be faithfully represented in terms of repli
ation [Mil93℄. The typing rule asso
iated with

a re
ursive de�nition is the standard rule, requering the body to be well-typed under the

assumption that the pro
ess name is well-typed.

The semanti
s, as presented in Tables 6 and 7 is a mapping parameterised on two names: in a

term [[ a ℄℄

k

p

, the 
hannel p is used to return the term's result, while the key k represents the term's


urrent self, whi
h is required to deal with self-in
i
tion. In all phases of the translation, whenever

we 
reate �- or input-bindings, we assume that there are no name-
lashes. The essen
e of the

semanti
s is to set up pro
esses representing obje
ts that serve 
lients' requests. Di�erent requests

for operating on obje
ts are distinguished by 
orresponding labels 
ln, ali, upd

j

, inv

j

, png, and

sur. We explain the semanti
s by showing how requests are generated by 
lients, and then how

they are served by obje
ts. S
oping and 
on
urren
y are explained along the way.

We present the translation without type annotations in restri
tions for sake of readability.

However, to make the translation formal su
h type annotations should be added. In Se
tion 6.1

we present a translation of �jeblik types to �-
al
ulus types, that 
an be used to add the ne
essary

type annotations to the translation of an obje
t, based on the type of the obje
t (see [KS98℄).

Clients In Table 6, the 
urrent self k of en
oded terms is `used' as the 
urrent self of the

evaluation of the �rst subterm in left-to-right evaluation order. All the translations in Table 6

follow a 
ommon s
heme. For example, in the translation of a method invo
ation [[ a.l

j

h a

1

. . a

n

i ℄℄

k

p

,

the subterms a; a

1

. . a

n

have to be evaluated one after the other: the individual evaluations use

private return 
hannels q; q

1

. . q

n

, whi
h are subsequently asked for the respe
tive results y; x

1

. .x

n

,

but also for the respe
tive new 
urrent self k; k

1

. . k

n

to be used by the next evaluation. After the

last subterm a

n

has returned its result, the a

umulated information is used to send a suitable

request with label inv

j

on self-
hannel y of obje
t a, also 
arrying the overall result 
hannel p

and the latest 
urrent self k

n

. Thus, the responsibility to signal a result on p is passed on to the

respe
tive obje
t waiting at y.

S
oping The semanti
s of let is analogous to [KS98℄ and represents the 
ore of the 
all-by-value

evaluation order in that �rst a is evaluated, and then b possibly using the value of a. Here, in

addition, the evaluation of a passes on the 
urrent self k

0

to be used afterwards.

Con
urren
y To fork a thread means to 
reate a new a
tivity running in parallel with the 
ur-

rent one(s), whi
h is done using the parallel operator. Upon thread 
reation, a fresh key is 
reated
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to be
ome the forked thread's 
urrent self. Sometimes, we use [[ a ℄℄

�

q

to abbreviate (�k) ([[ a ℄℄

k

q

).

The term [[ forkhai ℄℄

k

p

immediately returns on p a private name t, whi
h 
an be used to retrieve the

value of a from the forked thread. Therefore, [[ joinhbi ℄℄

k

p

sends its own result 
hannel p, together

with its latest 
urrent self k

0

, along the value of b.

Obje
ts The semanti
s [[O ℄℄

k

p

of an obje
t O := [l

j

=&(s

j

; ~x

j

)b

j

℄

j2J

, as shown in Table 7 (again

along the style of [KS98℄), 
onsists of a message that returns the obje
t's referen
e s together

with the 
urrent self k on 
hannel p, a 
omposition of repli
ated pro
esses that give a

ess to the

method bodies [[ b

j

℄℄

k

0

r

, and a new obje
t pro
ess newO

O

h s;

e

t i that 
onne
ts invo
ations on s from

the outside to the method bodies, whi
h are invoked by the trigger names

e

t. Correspondingly, new

alias pro
esses of the form newA

O

h s; s

a

i 
onne
t invo
ations from the outside to a target pro
ess

listening at s

a

. Inside newO

O

h s;

e

t i and newA

O

h s; s

a

i, several private names are needed: mutexes

em := m

e

;m

i

are used for serialisation; the (internal) key k

i

is used to dete
t self-in
i
tion; the

(external) key k

e

is used to implement serialisation in a 
on
urrent environment (see later on).

Our semanti
s asso
iates an obje
t manager OM to ea
h obje
t, and an alias manager AM to

ea
h alias. Before entering into the details of the translation in Table 7, we provide, in Figure 1,

a more abstra
t overview of the lifetime of an obje
t manager, possibly turning it into an alias

manager, by emphasising the relevant states passed. Both obje
t and alias managers listen on their

referen
e 
hannel s for requests. Sin
e obje
ts (resp. aliases) in �jeblik are serialised, only one

request shall be a
tive in an obje
t (resp. alias), at any moment. Serialisation is implemented by

two mutexes m

e

and m

i

: the external one must be grabbed in order to get a

ess to the manager;

the internal one pre
isely alternates with the external one and is used to intermediately save some


ontext information. External requests must grab the external-mutex m

e

before being served,

whi
h in turn brings the obje
t manager from state OM

f

to state OM

a

. Then, if the request is

prote
tion-
riti
al it is dis
arded (state OM

n

), otherwise the manager 
ommits to it and serves it

(in state OM

s

) until expli
it termination (state OM

i

). In both 
ases, the obje
t manager be
omes

free again by releasing the external-mutex m

e

(state OM

f

). Noti
e that self-in
i
ted requests 
an

only be served in state OM

s

. Furthermore, when serving self-in
i
ted aliasing requests, the obje
t

be
omes an alias and the obje
t manager is repla
ed by an appropriate alias manager (in state

AM




). AM




is a transient state where the alias manager a

omplishes all pending self-in
i
ted

requests; note that all of the latter were generated by the external request that is also responsible

for 
reating the alias. When this external request is 
ompleted, the manager terminates and

goes to state AM

i

. Afterwards, the mutex m

e

is released and the alias manager be
omes free

(state AM

f

). Only now, external requests addressed to the alias manager are treated again. They

must grab the external-mutex m

e

before being forwarded, bringing the alias manager from state

AM

f

to state AM

a

. After grabbing m

e

, external requests will be a

epted and forwarded to the

alias target (state AM

s

). The alias manager be
omes free again by releasing the external-mutex

m

e

(state AM

f

). Finally, sin
e alias managers always forward external requests, no self-in
i
ted

requests may be generated anymore. This explains why no self-in
i
ted requests are taken into

a

ount in state AM

s

.

The following three paragraphs explain in detail how obje
t and alias managers serve requests,

referring now dire
tly to the translation semanti
s Table 7.

Pre-pro
essing [k

i

6=k 6=k

e

℄

Here, we explain how the serialisation of external requests is implemented. Upon 
reation of a

new obje
t newO (or new alias newA), the fresh mutex 
hannel m

e

is initialised. A

ording to seri-

alisation, the intended 
ontinuation behaviour of an in
oming external requests is blo
ked on m

e

,

on
e it enters a manager. The manager itself is immediately restarted and remains re
eptive.

Arbitrarily many requests 
an be blo
ked this way and 
ompete for the mutex m

e

on
e it be
omes

available. A su

essfully unblo
ked request is resent to the same manager, but now 
arrying the

key k

e

, whi
h allows the manager to dete
t that the request has grabbed the mutex. We 
all

pre-pro
essing the pro
edure of intermediate blo
king of requests. Alongside with the su

essful
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def
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�
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;
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�
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�

OM
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e
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;

e

t i

def
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�

)

�
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i
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h s; em; k

e
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�
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e
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�
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�
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�
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�
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�
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�
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�
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�
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�
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j
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O

h s; em; k

e
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�

;

e

t i j t

j

hs; ex; r; k

�

i ;

sur (r) :OM

O

h s; em; k

e

; k

�

;

e

t i j [[ s.aliashs.
lonei ℄℄

k

�

r

;

png (r) :OM

O

h s; em; k

e

; k

�

;

e

t i j [[ s ℄℄

k

�

r

elif [k=k

e

℄ then

OM

O

h s; em; k

e

; k

�

;

e

t i

�

�
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i

(k).m

e
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a

; r) :m

i

(k).m

e
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upd

j
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0
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(k).m

e
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j
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j
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�

; k

�
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sur (r) : CM[ [[ s.aliashs.
lonei ℄℄

k

�

r

�

℄ ;

png (r) : CM[ [[ s ℄℄

k

�
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�

℄
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O

h s; em; k

e
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i

;

e

t i

�

�

m

e
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�
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�

�
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def
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�
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�
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�
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0

).m

i
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00
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00
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)

�
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; s

a
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def

= s(l; k).(�k

�

)

�
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i
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ase l of 
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O

h s; em; k

e
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�

; s

a

i j (�s

�

)

�
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�
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�
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O
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�

; s
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�
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h s; em; k

e

; k

�
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a
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0
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�
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0
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O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;
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j

(ex; r) :AM

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;

sur (r) :AM

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;

png (r) :AM

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki

elif [k=k

e

℄ then AM

O

h s; em; k

e

; k

�

; s

a

i j m

i

(k).

�

s

a

hl; ki j m

e

�

else AM

O

h s; em; k

e

; k

i

; s

a

i j m

e

.

�

shl; k

e

i j m

i

k

�

�

Table 7: Translational Semanti
s of �jeblik | Obje
ts
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Figure 1: Obje
t and Alias Manager Serving Requests

request, its former 
urrent self k is stored on the (internal) mutex m

i

for re
overy after termina-

tion. This re
overy is a
tually ne
essary sin
e the original 
urrent self k is possibly required for

use later on by the sender of the request. Note that pre-pro
essing also properly takes 
are of the

fa
t that 
ompeting requests may 
hange the state of an obje
t, and even turn it into an alias

by passing from OM

s

to AM




, so pre-pro
essed requests should not be bound too early to some

obje
t manager behaviour. By only resending a request on
e it has grabbed the mutex, it will be

handled by the 
urrent manager, not by the manager in the state of the moment when the request

originally entered the obje
t. Noti
e that pre-pro
essing in alias managers is not super
uous,

be
ause there may be pending requests that have been pre-pro
essed when s was 
onne
ted to

an OM. Finally, pre-pro
essing does not pre
lude the evolution of the system, that is, external

requests 
an be pre-pro
essed at any moment (in any state) by both alias and obje
t managers

19



without a�e
ting the state of the manager, so these transitions are 
ompletely ignored in Figure 1.

Serving external requests [k=k

e

℄

Serialization and prote
tion are required. Here, we explain how external requests, whi
h have

already been pre-pro
essed and have already grabbed the external mutex m

e

, are served by both

obje
t and alias managers.

Obje
t Managers (OM). When serving an external request, the manager OM is immediately

restarted with the same state ex
ept for the fresh internal key k

�

. The key k

�

must subsequently

be used as the 
urrent self when performing the 
urrent request. Later on, we will better explain

the use of k

�

.

Cloning, aliasing, and update, are 
riti
al operations. On
e a respe
tive pre-pro
essed request

is 
onsumed, the manager evolves from state OM

a

into state OM

n

: the request and its former


urrent self k, stored on 
hannel m

i

, are simply dis
arded by 
onsuming m

i

k and releasing m

e

.

Invo
ation, surrogation, and ping are non-
riti
al operations. On
e a respe
tive pre-pro
essed

request is 
onsumed, the manager evolves from state OM

a

into state OM

s

implying that no other

external request shall be served (apart from pre-pro
essing) until the 
urrent one has terminated.

In order to be noti�ed of that event, we employ a 
all manager proto
ol, represented by the


ontext CM[�℄: instead of delegating to some other pro
ess the responsibility of returning a result

on r, a fresh return 
hannel r

�

is 
reated to be used within [�℄ in pla
e of r, su
h that the result

will �rst appear on r

�

. Until this event, other external requests remain blo
ked, while internal

request may well be served. After this event, the manager evolves from state OM

s

into state OM

i

,

where the former 
urrent self 
an be grabbed from m

i

, the result y be forwarded to the intended

result 
hannel r (along with the former 
urrent self), and the mutex m

e

be released. In the


ase of invo
ation (
ase inv

j

), the manager a
tivates the method body bound to l

j

along trigger

name t

j

. Note that (externally) triggered method bodies [[ b

j

℄℄, and also surrogation and ping

bodies [[ s.aliashs.
lonei ℄℄ and [[ s ℄℄, are all run in the 
ontext of the non
e k

�

(see below), whi
h

is now the new internal key of the OM, so their further 
alls to s will be self-in
i
ted. This is

essential for surrogation, sin
e 
loning and aliasing are only allowed internally.

Alias Managers (AM). When serving external requests, alias managers, like obje
t managers,

are immediately restarted with the same state ex
ept for the fresh internal key k

�

. External

requests that arrive at an a
tive alias manager (in state AM

a

) will be simply forwarded (in state

AM

s

) without modi�
ation of the 
urrent-self k (obtained by 
onsuming m

i

k) to the aliasing

target s

a

. Finally, when releasing m

e

, the manager will evolve to state AM

f

.

Serving self-in
i
ted requests [k=k

i

℄

No serialization or prote
tion is required. Here, we explain how self-in
i
ted requests are served

by both obje
t and alias managers.

Obje
t Managers (OM). For ea
h �eld, the manager may a
tivate appropriate instan
es of

method bodies (
ase inv

j

: the method body bound to l

j

along trigger name t

j

) and administer

updates (
ase upd

j

: install a new trigger name t

0

). Cloning (
ase 
ln) restarts the 
urrent obje
t

manager in parallel with a new obje
t, whi
h uses the same method bodies

e

t, but is a

essible

through a fresh referen
e s

�

. In all 
ases ex
ept aliasing, an obje
t manager OM is restarted with

a fresh internal key k

�

. Aliasing (
ase ali) starts an appropriate alias manager AM instead of re-

starting the previous obje
t manager OM. Surrogation and ping (
ases sur and png) are modelled

a

ording to their uniform method de�nitions.

Alias Managers (AM). To perform self-in
i
ted requests the alias manager may only be in the

transient state AM




. Cloning and alias requests are allowed and treated as in the respe
tive 
lauses

of obje
t managers, but restarting AM instead of OM. Invo
ation, surrogation, update, and ping

requests are forwarded to the aliasing target s

a

without modi�
ation of the 
urrent-self k.
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def

=C(X;K)

M(B

1

. .B

n

!
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B)
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=[[B
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℄℄ . . [[B

n

℄℄;R([[
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B ℄℄)

[[ [l
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!
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B
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℄

j2J
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def

=

�X .C(

2

6

6

6

6

6

6
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ln : R(X)

ali : hX;R(X) i

upd

j

:hC(X;M(

e

B

j

!

b

B

j

);K);R(X) i

inv

j

: hM(

e

B

j

!

b

B

j

) i

sur : R(X)

png : R(X)

3

7

7

7

7

7

7
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j2J

;K)

[[ Thr(A) ℄℄

def

=C(R([[A ℄℄);K)

[[ �; x:A ℄℄

def

=[[ � ℄℄; x:[[A ℄℄

Table 8: Translation of �jeblik-types

Non
es (�k

�

)

We use non
es k

�

to implement self-serialisation between self-in
i
ted requests. When serving

self-in
i
ted and external requests, managers OM and AM are always restarted by repla
ing the


urrent self with a fresh key k

�

. A

ording to our semanti
s, program 
ontexts will never give

rise to several 
ompeting (external or self-in
i
ted) requests, but, when reasoning within arbitrary

L�

+


ontexts, as we do in Se
tion 8.1, their existen
e must be taken into a

ount. Therefore,

we add another layer of prote
tion to in
rease the robustness of serialisation: ea
h time a (self-

in
i
ted or external) request enters a manager, a fresh key k

�

is 
reated to be used in the restarted

manager; this key must subsequently be used as the 
urrent self for all a
tivities enabled by the


urrent request. Thus, the 
onsumption of one of the 
ompeting pending requests renders the other


ompetitors external. Noti
e that pre-pro
essing must not reinitialise the key k

i

of the restarted

manager: a 
urrently self-in
i
ted operation interleaved by pre-pro
essing might be hindered to

pro
eed, be
ause it 
ould unintendedly be
ome external.

6 Properties of the translational semanti
s

This se
tion is devoted to show two fundamental properties of our translational semanti
s: (i) the

translation preserves well-typedness; (ii) obje
ts (and alias) managers are unique.

6.1 The L�

+

-translation preserves well-typedness

A translation of the type system of �jeblik into the type system of the �-
al
ulus has several merits:

(i) it strengthens the soundness of our semanti
s of terms, as in Theorem 6.1; (ii) �jeblik's type

system itself is provided with some more formal underpinning, as demonstrated in Proposition 6.2;

(iii) we may employ typeful reasoning about terms, of whi
h we give examples in Proposition 6.3.

The translation of types, shown in Table 8, is similar to the ones for the Fun
tional and Imperative

Obje
t Cal
ulus found in [San98, KS98℄. We use some handy abbreviations to denote (i) the type

R(X) of result 
hannels, whi
h 
an be used to retrieve results of type X , together with the 
urrent

key; (ii) the type M(B

1

. .B

n

!

b

B) of methods, whi
h is self-explanatory. The most 
riti
al part

of the translation is the proper representation in the 
ase of update, but even there, the 
hosen

abbreviations allow us to dire
tly relate the types with the 
orresponding terms in Tables 6 and 7.

The translation of Thr(A) denotes the type of name t in the semanti
s of fork and join in Table 6.

Note that, be
ause we intended to stay within the 
onstraints of L�, we 
ould not use t dire
tly
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to retrieve the value of a fork'ed term a, but we used it to send the result 
hannel of the join'ing

term, together with its 
urrent key|this is pre
isely represented in the translation of Thr(A).

A

ording to the translation of types, we 
an add type de
larations in a straightforward way

to all bindings in the translation of terms, as mentioned, although omitted, in Se
tion 5.

Types witness the 
lean representation of �jeblik terms as �-
al
ulus terms.

Theorem 6.1 (Type Soundness) Let a 2 L, let � be a type-environment, and let A be a type.

Then � ` a:A if and only if [[ � ℄℄ ; p:R([[A ℄℄) ; k:K ` [[ a ℄℄

k

p

for names p and k.

Proof. The impli
ation from left to right is proved using indu
tion in the depth of the derivation

of � ` a:A with a 
ase analysis of the last rule used. The impli
ation from right to left is proved

by indu
tion in the stru
ture of a. Details 
an be found in Appendix A.2.

2

In addition to the initial 
orresponden
e of types in �jeblik and their �-
al
ulus 
ounterparts,

the preservation of types under redu
tion in the �-
al
ulus provides us for free with preservation of

�jeblik types, thus witnessing the subje
t redu
tion theorem based on the operational semanti
s

in [NHKM00℄.

Proposition 6.2 (Subje
t Redu
tion) Let � ` a:A.

If [[ a ℄℄

k

p

=) Q, then [[ � ℄℄ ; p:R([[A ℄℄) ; k:K ` Q .

The type system provides some properties of the translation almost for free. Let us �x some

terminology. A term P o

urs weakly unguarded in Q, if there is Q =) Q

0

�E

0

[P ℄, where E

0

[�℄ is

a stati
 L�

+

-
ontext. By means of the type translation, we 
an show that whenever, at top-level,

a request may be dire
ted to some potential obje
t or alias manager, there will always be some

manger o

urring weakly unguarded and thus being eventually able to serve the request.

Proposition 6.3 Let � ` a:A and E[�℄ be a stati
 L�

+

-
ontext.

1. If [[ a ℄℄

k

p

=)Q�E[sh. . i℄,

then either AM

O

h s; : : : i or OM

O

h s; : : : i o

urs weakly unguarded in Q.

2. If [[ a ℄℄

k

p

=)Q�E[AM

O

h s; : : : ; s

a

i℄,

then either AM

O

h s

a

; : : : i or OM

O

h s

a

; : : : i o

urs weakly unguarded in Q.

Proof. [Sket
h℄ Sin
e � ` a:A, also [[ a ℄℄

k

p

is well-typed. By inspe
tion of the en
oding, whenever

a self-
hannel is 
reated, also the respe
tive manager is 
reated. The well-typedness of [[ a ℄℄

k

p

means that managers 
annot disappear: when they re
eive a message, they 
an only be guarded

by mat
hing, followed by 
ase; by well-typedness, the 
ase 
an be resolved, resulting in a new

manager at the same name. Finally, the 
reation of requests is always guarded by an input of a

self-
hannel and a key, so the 
reation of requests always follows the 
reation of a manager, but

never pro
eeds it. When an obje
t manager 
hanges into an alias manager, it installs as target

the self-
hannel of another manager, whi
h by 
onstru
tion and well-typedness of the translation


annot disappear.

2

As a 
onsequen
e, by transitivity and the �niteness of terms, this proposition tells us that alias


hains are either 
y
li
 or end up with an obje
t manager. In other words, when a request is sent

to an obje
t it either eventually arrives at an obje
t manager, or it 
y
les in a loop between alias

managers.

6.2 Properties of obje
t managers

A 
ru
ial property in obje
t-oriented languages is the uniqueness of obje
ts. The L� 
onstraint

on the output 
apability guarantees this property.

Lemma 6.4 (Uniqueness of obje
ts) Let a be an �jeblik term. If [[ a ℄℄

k

p

=) Z with

either Z � (�ez) (M j OM

O

h s; : : : i ) or Z � (�ez) (M j AM

O

h s; : : : i )

then s 2 ez and s does not appear free in input position within M .
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Proof. By inspe
tion of the en
oding. If a manager is present, it must have been 
reated at some

point as des
ribed in the en
oding, be
ause initially, there is none. Upon 
reation, its name s is

bound. Sin
e we only 
onsider redu
tions, the name remains bound. Finally, the en
oding shows

that managers are only restarted if the former in
arnation disappears. Sin
e there are never two


opies restarted, and only the output 
apability of 
hannels may be transmitted, the uniqueness

of the re
eptor s is preserved.

2

We now analyse, referring dire
tly to Figure 1, how the shape of the 
ontext around a parti
ular

obje
t manager evolves during 
omputation (
.f. Lemma 6.5). Later on, we will need a spe
ial


ase of this result (Lemma 6.6) in the proof of Theorem 8.7.

Observation 1: Pre-pro
essing does not 
hange the state of obje
t managers. At any time, an

obje
t/alias manager is ready to re
eive a request shl; ki with k

e

6=k 6=k

i

. The manager is restarted

afterwards, but there will be a pro
ess m

e

.( shl; k

e

i j m

i

k ) that repla
es the 
onsumed request.

Let us assume requests sv

j

, with v

j

:= h l

j

; k

j

i for j 2 1. .h, (and ev:=v

1

. .v

h

) are pre-pro
essed by

the obje
t manager OM

O

h s;m

e

;m

i

; k

e

; k

i

;

e

t i, so k

e

6=k

j

6=k

i

for all j 2 1. .h. Then:

PP

O

h s;m

e

;m

i

; k

e

; ev i

def

=

Q

j21..h

m

e

.( shl

j

; k

e

i j m

i

k

j

)

Observation 2: While an obje
t manager evolves, its internal key k

i

may be extruded to its

obje
t 
lients, whereas names m

e

;m

i

; k

e

may not. Assume that an inv

j

-request (along s) appears

at OM

O

h s;m

e

;m

i

; k

e

; k

i

;

e

t i, is pre-pro
essed, gets the mutex m

e

and re-enters along s with key k

e

.

At that point, a

ording to the semanti
s, a fresh internal key k

�

is 
reated and extruded to the


orresponding method body. The names en := m

e

;m

i

; k

e

are never extruded; they 
onstitute the

proper boundary of a manager during 
omputation. Observation 2 provides the formal basis to

understand the evolution of obje
t and alias managers as des
ribed in Figure 1. For simpli
ity,

we restri
t our analysis to obje
t managers, but a similar argument applies to alias managers.

Lemma 6.5 (Obje
t manager evolution) Let a be an �jeblik term. If [[[ a ℄℄℄

k

p

=) Z and Z =

E[OM

O

h s; : : : i℄, with E[�℄ stati
, then|without �-
onverting the name s|

Z �

b

E[ (�en) ( M

Z

j OM

O

h s; en; k

i

;

e

t i j PP

O

h s; en; ev i ) ℄

where

b

E[�℄ is a stati
 L�

+

-
ontext, en := m

e

;m

i

; k

e

, and M

Z

is either of

Z M

Z

OM

f

m

e

OM

a

m

i

k j shl; k

e

i

OM

n

m

i

k j m

i

(k).m

e

OM

s

m

i

k j r

�

(y; k

0

).m

i

(k

00

).( rhy; k

00

i j m

e

)

OM

i

m

i

k j m

i

(k

00

).( rhy; k

00

i j m

e

).

with Z denoting the state of OM as in Figure 1.

Proof. By indu
tion on the length of [[[ a ℄℄℄

k

p

=) Z for some �xed s, where we assume that

the prede
essor state Z

0

of Z is in one of the �ve des
ribed \states". Details 
an be found in

Appendix A.3.

2

In the following two observations, we outline two spe
ial 
ases of Lemma 6.5: free obje
t

managers in state OM

f

and 
ommitting obje
t managers ready to evolve from state OM

a

to state

OM

s

.

Observation 3: An obje
t manager is free, if its external-mutex m

e

is available. In our se-

manti
s, a manager is willing to grant a

ess to external requests, if its external-mutex m

e

o

urs

unguarded in the term that des
ribes the 
urrent state, so the general shape of a free obje
t (and

analogously alias) manager is:

freeO

O

h s; k

i

;

e

t; ev i

def

= (�en)

�

m

e

�

�

OM

O

h s; en; k

i

;

e

t i

�

�

PP

O

h s; en; ev i

�

freeA

O

h s; k

i

; s

a

; ev i

def

= (�en)

�

m

e

�

�

AM

O

h s; en; k

i

; s

a

i

�

�

PP

O

h s; en; ev i

�
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where the keys mentioned in ev of PP

O

h : : : i neither mat
h k

e

nor k

i

. Noti
e that

newO

O

h s;

e

t i � (�k

i

) freeO

O

h s; k

i

;

e

t; ; i, and analogously for newA

O

h : : : i.

Observation 4: An obje
t manager is ready to 
ommit, if it may 
onsume a pre-pro
essed

request whi
h has already grabbed m

e

. The following lemma derives from the ability to 
ommit to

a valid external request|visible as the availability of a valid pre-pro
essed request, i.e., a request


arrying k

e

|the shape of the obje
t manager before and after 
ommitment, in
luding all of its


urrent pre-pro
essed requests.

Lemma 6.6 (Committing obje
t manager) Let a be an �jeblik term. If [[[ a ℄℄℄

k

p

=) Z and Z �

E[ shl; k

e

i j OM

O

h s; en; k

i

;

e

t i ℄ with E[�℄ stati
, en = m

e

;m

i

; k

e

, and l 2 finv

j

hex; ri; png r; sur rg,

then Z

�

��! Z

0

where

Z �

b

E[ (�en)

�

m

i

k j PP

O

h s; en; ev i j OM

O

h s; en; k

i

;

e

t i j shl; k

e

i

�

℄

Z

0

�

b

E[ (�en)

�

m

i

k j PP

O

h s; en; ev i j (�k

�

)(OM

O

h s; en; k

�

;

e

t i j CM[X

l

h s i

k

�

r

�

℄ )

�

℄

for some stati
 
ontext

b

E[�℄, some key k, some set ev of pre-pro
essed requests, and X

l

h s i denoting

the respe
tive 
ontinuation behaviour of Table 7.

Proof. A

ording to Lemma 6.5, the property holds in state OM

a

whi
h is the only state that

mat
hes the premise.

2

As spe
ial 
ases, for l 2 fpng r; sur rg, of 
ommitted obje
t managers, we de�ne

F [�℄

def

= (�enk

�

)

�

m

i

k

�

�

PP

O

h s; en; ev i

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

[�℄

�

pingO

O

h s; r; k;

e

t; ev i

def

= F [CM[ [[ s ℄℄

k

�

r

�

℄℄

surO

O

h s; r; k;

e

t; ev i

def

= F [CM[ [[ s.aliashs.
lonei ℄℄

k

�

r

�

. ℄℄

As we will see in Se
tion 8.1, pingO

O

h s; r; k;

e

t; ev i and surO

O

h s; r; k;

e

t; ev i model the obje
t manager

before and after surrogation, respe
tively.

7 Towards a formalization of safe surrogation

In [NHKM00℄, we motivated an equation on �jeblik terms to model the safety of obje
t surro-

gation. In Subse
tion 7.1, we replay the argument leading to that equation and adapt it to the

translational semanti
s of �jeblik. In [NHKM00℄, we also observed that the equation intrinsi
ally


an only be true in a restri
ted sense. The te
hniques of Subse
tion 7.2 will allow us pre
isely

formalize this restri
tion.

7.1 Safety as an Equation

We re
all that in order to be safe, obje
t surrogation should be transparent to obje
t 
lients. In

other words an obje
t should behave the same before and after surrogation, in all possible 
ontexts.

The following equation is a �rst attempt to model this property:

a

.

= a.surrogate (1)

The simplest 
ase of Equation 1 is when a is an obje
t O . In this 
ase the surrogation is surely

safe, be
ause (i) the pro
ess of surrogation is 
arried out 
orre
tly sin
e, due to serialisation, only

the surrogation thread 
an intera
t with the obje
t O , i.e., there 
annot be any interferen
e with

another thread or a
tivity, and (ii) every intera
tion with O is mimi
ked identi
ally by O .surrogate,

whi
h suÆ
es sin
e after surrogation nobody has a

ess to the previous O .

In the general 
ase, however, neither of the two above arguments holds. The reason is be
ause

of possible 
opying of a referen
e to the former obje
t su
h that, after surrogation, requests 
an

still be dire
ted to that referen
e. Observing that a

.

= letx= a inx (in all 
ontexts, the let just
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C[�℄ ::= [�℄ j [ l

k

=&(s; ex)C[�℄ ; l

j 6=k

=m

j 6=k

℄

j2J

j C[�℄.lh ~a i j a.lh ~a; C[�℄; ~a i

j C[�℄.l(m j a.l(&(s; ex)C[�℄

j C[�℄.aliashbi j a.aliashC[�℄i

j C[�℄.
lone

j C[�℄.surrogate j C[�℄.ping

j letx=C[�℄ in b j letx=a inC[�℄

j forkhC[�℄i j joinhC[�℄i

Table 9: �jeblik 
ontexts

adds one un
onditional step after redu
ing a) and that the notion of equivalen
e takes all �jeblik


ontexts into a

ount, Equation 1 
an be redu
ed to the problem of surrogation on variables:

x

.

= x.surrogate (2)

However, there is an inherent problem with Equation 2, whi
h is exhibited by the following 
ontext

that 
reates a self-alias via method 
all:

C[�℄ := let x = [ l=&(s)s.aliashsi ℄ in x.l; [�℄

It holds that C[x℄+, whereas C[x.surrogate℄6+. Indeed, in C[x℄+ the evaluation of x returns imme-

diately, while in C[x.surrogate℄6+, the request x.surrogate is never served be
ause it travels into a

loop along the self alias 
hain x�x. The problem in Equation 2 is that we do not 
he
k whether

the \obje
t before surrogation" is a
tually rea
hable. This 
an be easily done as follows

x.ping

.

= x.surrogate (3)

The equation 3 dete
ts 
y
li
 
hains by means of the ping-request whi
h travels to the endpoint

of the alias 
hain possibly starting at x. For the above 
ontext, C[x.ping℄6+.

In the remainder of the paper, Equation 3 will be referred to as the safety equation. In

order to fully spe
ify it, we la
k the interpretation of the equivalen
e

.

=. A standard way to

de�ne program equivalen
es is to 
ompare the 
onvergen
e behaviour of programs within arbitrary

program 
ontexts, as, for example, shown in previous work on the Imperative Obje
t Cal
ulus

(IOC) [AC96, GHL97℄. This equivalen
e is usually referred to as observational 
ongruen
e [Mor68℄.

In our setting, a

ording to Table 9, an �jeblik 
ontext C[�℄ has a single hole [�℄ that may be �lled

with an �jeblik term. In the remainder of the paper, we assume that �jeblik-
ontexts always

yield well-typed terms when plugging some �jeblik-term into the hole.

Sin
e we have given a translational semanti
s for �jeblik, our program equivalen
e is based

on the en
oding [[ � ℄℄

k

p

. Roughly, the semanti
s [[ a ℄℄

k

p

, of an �jeblik term a is a L�

+

-pro
ess whi
h

returns the result on 
hannel p as soon as it knows it. An �jeblik term 
onverges if its semanti
s

is a pro
ess whi
h may report its result on the 
hannel p.

De�nition 7.1 (Convergen
e) Given an �jeblik term a, we write a+ if [[ a ℄℄

k

p

+

p

.

De�nition 7.2 (Behavioural equivalen
e) Two �jeblik terms a and b are behaviourally equiv-

alent, written a

.

= b, if

C[a℄ + i� C[b℄ +

for all �jeblik 
ontexts C[�℄.
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7.2 On the absen
e of self-in
i
ted surrogation

One of the main observations in [NHKM00℄ was that the safety equation 
an not hold in full

generality for �jeblik-
ontexts, in whi
h the operation x.surrogate 
ould o

ur internally. The

reason is that, after internal surrogation, an obje
t may misuse by intention the old and new

referen
es to itself. A
tually, the advi
e to avoid internal surrogation is somehow analogous to the

fa
t that programmers, knowing that x=0, should never use division by x. \Observable internal-

surrogations" should be interpreted as programming errors and not as a semanti
s fault. On the

other hand, \observable external-surrogations" represents a mu
h more serious problem. In this


ase, (external) obje
t 
lients 
an distinguish whether an obje
t has moved or not. Somehow,

it 
orresponds to the 
ase where a program re
eives x from some other module, so it should be

guaranteed that x will never be 0. In [NHKM00℄, we 
onje
tured that in our semanti
s external

surrogation is guaranteed to be safe. Although this is an unde
idable 
riterion [Car95℄, we may still

formalise it in terms of our �-
al
ulus semanti
s, whi
h is pre
isely what we do in this Subse
tion:

we formalise the 
lass of �jeblik-
ontexts C[�℄ that will never lead to self-in
i
ted o

urren
es of

the term x.surrogate, when plugged into the hole.

In our semanti
s, the 
omputation [[ a ℄℄

k

p

=) Z of an �jeblik term a yields a self-in
i
ted sur-

request if Z � E[ shsur r; ki j OM

O

h s; em; k

e

; k

i

;

e

t i ℄; for some stati
 
ontext E[�℄ in L�

+

, with k=k

i

.

Sin
e we must ensure that a sur-request never leads to internal surrogation, we must quantify over

all derivatives of [[ a ℄℄

k

p

and 
he
k for self-in
i
tion in ea
h of them.

Note that, starting from the term [[C[x.surrogate℄ ℄℄

k

p

, we should not be 
on
erned with arbitrary

sur-requests that appear at top-level during 
omputation, but only with those that \arise from

the request in the hole". However, this property is hard to determine for two di�erent reasons:

(1) All of the names mentioned in a sur-request may be 
hanged dynami
ally by instantiation:

s (due to forwarding), r (due to a 
all manager proto
ol), and k (due to pre-pro
essing). (2) We

have to 
onsider arbitrarily many dupli
ations of the request in the 
ase that the hole appears, at

the level of �jeblik terms, within in a method body, whi
h leads to repli
ation in the �-
al
ulus

semanti
s. For both reasons, we need a tool to uniquely identify the various in
arnations of the

request.

Let operate 2 fping; surrogateg, and let op 2 fpng; surg denote the 
orresponding �-
al
ulus

labels (
.f. Table 6). We introdu
e the additional �jeblik labels operate

?

2 fping

?

; surrogate

?

g. The

intuition is that tagged labels are semanti
ally treated exa
tly like their untagged 
ounterparts,

but 
an synta
ti
ally be distinguished from them. Consequently, we have to adapt the given

semanti
s to take this into a

ount. Table 10 presents the required straightforward additions,

where we use the tagged �-
al
ulus labels op

?

2 fpng

?

; sur

?

g, respe
tively: the individual 
lauses

of the tagged semanti
s, written [[[ � ℄℄℄

k

p

, are just 
opies of the 
lauses for the untagged requests.

As a result, both tagged and untagged requests 
an be sent to obje
t and alias managers; obje
t

managers ignore the tagging information of requests and treat op

?

-and op-requests identi
ally, but

alias managers preserve the tagging information sin
e they simply forward requests. We also add a

tag to all parameterised de�nitions and abbreviations when 
onsidering the tagged semanti
s, for

instan
e, OM

?

, AM

?

, pingO

?

and surO

?

are de�ned as expe
ted. Noti
e that the semanti
s is not

a�e
ted by in
luding tagging information. As a 
onsequen
e, all results proved for the untagged

semanti
s are valid for the tagged semanti
s as well.

Lemma 7.3 Let x be an �jeblik variable and C[�℄ an untagged �jeblik 
ontext. Then:

C[x.operate℄+ i� [[[C[x.operate

?

℄ ℄℄℄

k

p

+

p

.

Proof. The proof is in two steps:

[[C[x.operate℄ ℄℄

k

p

+

p

i� [[[C[x.operate℄ ℄℄℄

k

p

+

p

i� [[[C[x.operate

?

℄ ℄℄℄

k

p

+

p

.

The �rst step 
ompares the 
onvergen
e behaviour of untagged requests|note that C[x.operate℄

is untagged by assumption|with respe
t to the tagged and the untagged semanti
s. On untagged

requests, the tagged and the untagged semanti
s behave exa
tly the same. The se
ond step
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[[[ a.surrogate

?

℄℄℄

k

p

def

= (�q)

�

[[[ a ℄℄℄

k

q

j q(y; i) . yhsur

?

p; ii

�

[[[ a.ping

?

℄℄℄

k

p

def

= (�q)

�

[[[ a ℄℄℄

k

q

j q(y; i) . yhpng

?

p; ii

�

OM

?

O

h s; em; k

e

; k

i

;

e

t i

def

= s(l; k).(�k

�

)

�

if [k=k

i

℄ then


ase l of : : : : : : :

sur (r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[ s.aliashs.
lonei ℄℄℄

k

�

r

;

png (r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[ s ℄℄℄

k

�

r

;

sur

?

(r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[ s.aliashs.
lonei ℄℄℄

k

�

r

;

png

?

(r) :OM

?

O

h s; em; k

e

; k

�

;

e

t i j [[[ s ℄℄℄

k

�

r

elif [k=k

e

℄ then

OM

?

O

h s; em; k

e

; k

�

;

e

t i

�

�


ase l of : : : : : : :

sur (r) : CM[ [[[ s.aliashs.
lonei ℄℄℄

k

�

r

� ℄ ;

png (r) : CM[ [[[ s ℄℄℄

k

�

r

� ℄ ;

sur

?

(r) : CM[ [[[ s.aliashs.
lonei ℄℄℄

k

�

r

� ℄ ;

png

?

(r) : CM[ [[[ s ℄℄℄

k

�

r

� ℄

else OM

?

O

h s; em; k

e

; k

i

;

e

t i

�

�

m

e

.

�

shl; k

e

i j m

i

k

�

�

AM

?

O

h s; em; k

e

; k

i

; s

a

i

def

= s(l; k).(�k

�

)

�

if [k=k

i

℄ then


ase l of : : : : : : :

sur (r) : AM

?

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;

png (r) : AM

?

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;

sur

?

(r) : AM

?

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki ;

png

?

(r) : AM

?

O

h s; em; k

e

; k

�

; s

a

i j s

a

hl; ki

elif [k=k

e

℄ then AM

?

O

h s; em; k

e

; k

�

; s

a

i j m

i

(k).

�

s

a

hl; ki j m

e

�

else AM

?

O

h s; em; k

e

; k

i

; s

a

i j m

e

.

�

shl; k

e

i j m

i

k

�

�

Table 10: Translational semanti
s | Additional tagged 
lauses

27




ompares the 
onvergen
e behaviour of a tagged term and its untagged 
ounterpart with respe
t

to the tagged semanti
s. By de�nition, the tagged semanti
s treats tagged and untagged requests

in exa
tly the same manner.

2

Tagging helps us to dete
t all \requests arising from the hole".

De�nition 7.4 (External Contexts) Let x be a variable and C[�℄ an untagged �jeblik 
ontext.

Then, C[�℄ is 
alled external for x.surrogate, if whenever

[[[C[x.surrogate

?

℄ ℄℄℄

k

p

=)

�

E[ shsur

?

r; ki j OM

?

O

h s; em; k

e

; k

i

;

e

t i ℄

it holds that k 6= k

i

.

We replay the de�nition using ping instead of surrogate. By de�nition of the semanti
s, an �jeblik


ontext C[�℄ is then external for x.surrogate if and only if it is external for x.ping. For 
onvenien
e,

by abuse, we simply 
all C[�℄ to be external for x.

8 On the safety of surrogation

In this se
tion, we prove that that

C[x.ping℄+ i� C[x.surrogate℄+

under the assumption that C[�℄ will never lead to self-in
i
ted o

urren
es of x.surrogate. In

Subse
tion 8.1, we study the behavior of the 
ommitted obje
t managers pingO

O

h s; : : : i and

surO

O

h s; : : : i, as de�ned at the end of Subse
tion 6.2, and prove them algebrai
ally to be barbed

�-equivalent. In Subse
tion 8.2, we then give the formal proof for the safety of external surrogations

by iteratively simulating 
onvergen
e sequen
es for the proof goal above. Finally in Subse
tion 8.3,

we give a stati
 type system that guarantees that surrogations will always be external.

8.1 On 
ommitting external surrogations

By Lemma 6.6, when an obje
t manager 
ommits to either a png or a sur request, we get the

pro
esses pingO

O

h s; r; k;

e

t; ev i or surO

O

h s; r; k;

e

t; ev i; respe
tively. These pro
esses also represent

(the state of) the obje
t manager before and after external surrogation, respe
tively; re
all that

pingO

O

h s; : : : i just tells us that the obje
t manager at the end of the 
hain was rea
hable. Noti
e

that due to the use of non
es (
.f. page 21) in the implementation of the obje
t and alias managers,

in both pro
esses pingO

O

h s; : : : i and surO

O

h s; : : : i the key k

�

is fresh and therefore di�erent from

any key appearing in the pro
ess PP

O

h s; en; ev i 
ontained in both pingO

O

h s; : : : i and surO

O

h s; : : : i.

In the following we show that pro
esses pingO

O

h s; : : : i and surO

O

h s; : : : i are related by typed

barbed equivalen
e '

�;s

(De�nition 2.10).

Theorem 8.1 Let � be a type environment with � ` surO

O

h s; r; k;

e

t; ev i; pingO

O

h s; r; k;

e

t; ev i. Then:

surO

O

h s; r; k;

e

t; ev i '

�;s

pingO

O

h s; r; k;

e

t; ev i.

The proof of Theorem 8.1 requires several strong lemmas. The proofs of the latter 
an be found

in Appendix A. In all the lemmas below the well-typedness requirement is ne
essary to ensure

that (i) the environment sends along the obje
t referen
e s only values of the right type, (ii) the

environment never uses 
hannel s in input.

Lemma 8.2 proves that surrogation results in an alias pointing to a 
lone of the old obje
t. The

proof relies on the non
es used in the implementation of both obje
t and alias managers, whi
h


ontrol the interferen
e with the environment.

Lemma 8.2 If � is a suitable type environment for the pro
esses below, then:

surO

O

h s; r; k;

e

t; ev i �

�;s

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ev i

�

�

newO

O

h s

�

;

e

t i

�

�

rhs

�

; ki

�

.
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Lemma 8.3 proves that the alias manager appearing in Lemma 8.2 behaves as a forwarder.

This will allow us to apply the theory of L�.

Lemma 8.3 Let ev := v

1

. . v

n

, and v

j

:=h l

j

; k

j

i for 1�j�n. If � is a suitable type environment

for the pro
esses below, then:

(�k

i

) freeA

O

h s; k

i

; s

�

; ev i �

�;s

s . s

�

�

�

Q

1�j�n

s

�

v

j

.

Noti
e that without the well-typedness hypothesis, after having re
eived a wrong value along

s, the two pro
esses above would have a di�erent behaviour.

Lemma 8.4 uses the algebrai
 law of L�

+

of Lemma 2.15. Note that the proof of Lemma 8.4

is not a trivial appli
ation of Lemma 2.15.

Lemma 8.4 Let P be a pro
ess and s a 
hannel su
h that s 62 f
(P ). If � is a suitable type

environment for the pro
esses below, then:

(�s

�

)

�

s . s

�

j P

�

'

�;s

Pf

s

=

s

�

g.

Lemma 8.5 proves that pre-pro
essing external requests does not pre
lude other requests.

Lemma 8.5 Let ev := v

1

. . v

n

with v

j

:=h l

j

; k

j

i and k

j

6=k

i

for 1�j�n. If � is a suitable type

environment for the pro
esses below, then:

Q

1�j�n

sv

j

�

�

newO

O

h s;

e

t i �

�;s

(�k

i

) freeO

O

h s; k

i

;

e

t; ev i.

Lemma 8.6 is a te
hni
al lemma involving two 
on
uent redu
tions.

Lemma 8.6 Let ev := v

1

. . v

n

with v

j

:=h l

j

; k

j

i and k

j

6=k

i

for 1�j�n. If � is a suitable type

environment for the pro
esses below, then:

rhs; ki

�

�

(�k

i

) freeO

O

h s; k

i

;

e

t; ev i �

�

pingO

O

h s; r; k;

e

t; ev i.

Proof of Theorem 8.1 Proof. We re
all that relations �

�

and �

�;s

imply '

�;s

. By subse-

quently applying Lemmas 8.2, 8.3, 8.4, 8.5, and 8.6 we have:

surO

O

h s; r; k;

~

t; ev i

'

�;s

(�s

�

)

�

(�k

i

) (freeA

O

h s; k

i

; s

�

; ev i) j newO

O

h s

�

;

~

t i j rhs

�

; ki

�

'

�;s

(�s

�

)

�

s . s

�

j

Q

1�j�n

s

�

v

j

j newO

O

h s

�

;

~

t i j rhs

�

; ki

�

'

�;s

Q

1�j�n

sv

j

j newO

O

h s;

~

t i j rhs; ki

'

�;s

(� em

e

k)

�

m

e

j OM

O

h s; em;

e

k;

~

t i j PP

O

h s; en; ev i

�

j rhs; ki

'

�;s

pingO

O

h s; r; k;

~

t; ~v i.

2

8.2 External Surrogation is Safe

Based on the knowledge of Theorem 8.1 that the 
ommitted obje
t managers pingO

O

h s; : : : i and

surO

O

h s; : : : i are equivalent, we pro
eed to 
onstru
t simulation sequen
es up to this equivalen
e.

More pre
isely, whenever needed we may repla
e one of the managers by the other, be
ause typed

barbed equivalen
e provides us with the same 
onvergen
e behaviour in all stati
 
ontexts.

Theorem 8.7 (Safety) Let x be an obje
t variable and C[�℄ an (untagged) well-typed 
ontext in

�jeblik. If C[�℄ is external for x, then

C[x.ping℄+ i� C[x.surrogate℄+.
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Proof. By Lemma 7.3 our proof obligation is equivalent to:

[[[C[x.ping

?

℄ ℄℄℄

k

p

+

p

i� [[[C[x.surrogate

?

℄ ℄℄℄

k

p

+

p

.

This allows us to make use of the assumption on 
ontext C[�℄.

Sin
e the semanti
s [[[ � ℄℄℄

k

p

is 
ompositional, there is an L�

+


ontext D[�℄ and names y; j; q, su
h

that [[[C[x.operate

?

℄ ℄℄℄

k

p

= D[yhop

?

q; ji℄, where D[�℄ itself does not 
ontain any message 
arrying

a tagged request. Sin
e the translation preserves well-typedness (
.f. Proposition 6.2) there is an

L�

+

typing � su
h that � ` D[yhop

?

q; ji℄. We prove that

D[yhpng

?

q; ji℄+

p

i� D[yhsur

?

q; ji℄+

p

and 
on
entrate on the impli
ation from right to left. The 
onverse is analogous.

Assume that D[yhsur

?

q; ji℄ +

p

. If D[N ℄+

p

for every pro
ess N , then this is also the 
ase for

N = yhpng

?

q; ji; otherwise, the sur

?

-request must 
ontribute to the barb. Therefore, we assume

D[yhsur

?

q; ji℄ =) P #

p

and show that there is a 
orresponding sequen
e D[yhpng

?

q; ji℄ =)

'

�

Q #

p

where Q = P [

png

?

=

sur

?

℄. Sin
e typed barbed equivalen
e '

�

and relabelling preserve 
onver-

gen
e, this suÆ
es.

A

ording to the dis
ussion in Se
tion 6.2, a redu
tion step due to an external request is


ommitting, if it represents the 
onsumption of a pre-pro
essed request by an obje
t manager.

Now, we 
ombine this knowledge with the fa
t that we have to 
on
entrate on surrogation requests

arising from the hole within the redu
tion sequen
e D[yhsur

?

q; ji℄ =) P #

p

and 
all signi�
ant

( �!

s

) pre
isely those steps that exhibit the 
ommitment to a sur

?

-request. All the other steps


an be 
onsidered insigni�
ant be
ause|as we show during the proof|they 
an be mimi
ked in

a straightforward way by the png

?

-ed 
ounterpart.

Whenever P

�

��! P

0

, we know that either

1. P � (�ez) ( wv j w(x).R jM ) and P

0

� (�ez) ( Rf

v

=

x

g jM ), or

2. P � (�ez) ( wv j !w(x).R jM ) and

P

0

� (�ez) ( Rf

v

=

x

g j !w(x).R jM ).

A silent move P

�

��! P

0

(de
omposed as above) is 
alled

signi�
ant if 
ase 1 applies where wv = shsur

?

q; k

e

i and

w(x).R = OMh s; em; k

e

; k

i

;

e

t i. We denote these P �!

s

P

0

.

insigni�
ant if either

� 
ase 2 applies, or

� 
ase 1 applies where v does not 
arry a sur

?

-request, or

� 
ase 1 applies where wv = shsur

?

q; ji and

w(x).R = AMh s; em; k

e

; k

i

;

e

t i, or

� 
ase 1 applies where wv = shsur

?

q; ji and

w(x).R = OMh s; em; k

e

; k

i

;

e

t i with k

i

6= j 6= k

e

.

We denote this as P �!

i

P

0

.

The missing 
ase of wv = shsur

?

q; ki and w(x).R = OMh s; em; k

e

; k

i

;

e

t i with k = k

i

is ex
luded

by the assumption that C[�℄ is external for x (
.f. De�nition 7.4). Note that starting with a

sur

?

-request in the hole, we will never en
ounter png

?

-requests during the 
omputation, and vi
e

versa.

Now, we apply the 
lassi�
ation of redu
tion steps to the given redu
tion sequen
eD[yhsur

?

q; ji℄ =)

P #

p

, assuming that it 
ontains d > 0 signi�
ant steps (if d = 0, then D[N ℄+

p

for all pro
esses N):

D[yhsur

?

q; ji℄ =

P

1;1

�!

i

P

1;2

�!

i

� � � �!

i

P

1;n

1

�!

s

P

1

= P

2;1

P

2;1

�!

i

P

2;2

�!

i

� � � �!

i

P

2;n

2

�!

s

P

2

= P

3;1

.

.

.

.

.

.

.

.

.

.

.

.

P

d;1

�!

i

P

d;2

�!

i

� � � �!

i

P

d;n

d

�!

s

P

d

= P

d+1;1

P

d+1;1

�!

i

P

d+1;2

�!

i

� � � �!

i

P

d+1;n

d+1

= P#

p
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By (the tagged 
ounterpart of) Lemma 6.6 it holds that:

P

h

� (�ez

h

)

�

M

h

j surO

?

O

h s

h

; q

h

; k

h

;

e

t

h

; ev

h

i

�

for some ez

h

and M

h

. Now, we simulate the previous redu
tion sequen
e, whi
h uses sur

?

-requests,

but now using png

?

-requests and pro
eeding up to stru
tural equivalen
e and barbed equivalen
e.

D[yhpng

?

q; ji℄ =

Q

1;1

�!

i

Q

1;2

�!

i

� � � �!

i

Q

1;n

1

�!

s

Q

1

'

�

b

Q

1

� Q

2;1

Q

2;1

�!

i

Q

2;2

�!

i

� � � �!

i

Q

2;n

2

�!

s

Q

2

'

�

b

Q

2

� Q

3;1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Q

d;1

�!

i

Q

d;2

�!

i

� � � �!

i

Q

d;n

d

�!

s

Q

d

'

�

b

Q

d

� Q

d+1;1

Q

d+1;1

�!

i

Q

d+1;2

�!

i

� � � �!

i

Q

d+1;n

d+1

def

= Q#

p

where:

Q

h;g

def

= P

h;g

[

png

?

=

sur

?

℄

The insigni�
ant redu
tion steps �!

i

exist be
ause of Lemma 8.8. The signi�
ant redu
tion

steps Q

h;n

h

�!

s

Q

h

are analogous to their 
ounterparts P

h;n

h

�!

s

P

h

. Pre
isely, by (the tagged


ounterpart of) Lemma 6.6, they give rise (up to stru
tural equivalen
e) to a pingO

?

instead of a

surO

?

, that is:

Q

h

� (�ez

h

)

�

M

h

j pingO

?

O

h s

h

; q

h

; j

h

;

e

t

h

; ev

h

i

�

[

png

?

=

sur

?

℄.

The pro
esses

b

Q

h

are de�ned as follows:

b

Q

h

def

= (�ez

h

)

�

M

h

j surO

?

O

h s

h

; q

h

; j

h

;

e

t

h

; ev

h

i

�

[

png

?

=

sur

?

℄

The relations Q

h

'

�

b

Q

h

hold by appli
ation of (the tagged 
ounterparts of) Theorem 8.1 and

Lemma 6.4, and sin
e '

�

is preserved by relabelling [

png

?

=

sur

?

℄. The relations

b

Q

h

� Q

h+1;1

hold

sin
e

b

Q

h

� P

h

[

png

?

=

sur

?

℄ = P

h+1;1

[

png

?

=

sur

?

℄

def

= Q

h+1;1

.

Lemma 8.8 Let a be an �jeblik term possibly 
ontaining a tagged request. If [[[ a ℄℄℄

k

p

=) R �!

i

R

0

,

then R[

png

?

=

sur

?

℄ �!

i

R

0

[

png

?

=

sur

?

℄ and R[

sur

?

=

png

?

℄ �!

i

R

0

[

sur

?

=

png

?

℄.

Proof. By 
ase analysis on the four di�erent shapes of insigni�
ant steps. In ea
h of them,

the relabelling distributes over the 
omponents of R, whi
h allows us afterwards to derive the


orresponding redu
tion step.

2

This 
on
ludes the proof of Theorem 8.7.

2

8.3 Typing for External Surrogation

Sin
e only external surrogations are safe, we look for some way to stati
ally ensure that this is

the 
ase. To avoid su
h unwanted situations, the most obvious 
ase is s.operate, where s is the

self-variable of the immediately en
losing method. A less obvious 
ase is a.operate, where a may

evaluate to the 
urrent self or to the self of a node in an alias 
hain leading to the 
urrent self. In

the least obvious 
ase, 
on
urrent threads may render the evaluation of a nondeterministi
, su
h

that it may or may not evaluate to the 
urrent self.

At �rst, it might seem hopeless to 
ome up with a good way of ensuring that an operation is

external. However, if a evaluates to the 
urrent self, or a node in an alias 
hain leading to the


urrent self, then a must have the same type as the type of the 
urrent self. This implies, that if

we ensure that the type of a is not the same as for the 
urrent self, then a.operate 
annot result

in operate being an internal operation. Su
h a 
he
k 
an be in
orporated into the type system of

Table 5. In the new system, judgements are now on the form � `

D

a:A where D denotes the type

of the self variable for the method en
losing a. In Table 11 we present the modi�
ations of the

type system; the rules missing are as the ones in Table 5 with ` repla
ed by `

D

.
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(T-Obj)

8j2J �; s

j

:A; ~x

j

:

e

B

j

`

A

b

j

:

b

B

j

A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

� `

D

[l

j

: &(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

: A

(T-Upd)

� `

D

a:A A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

�; s

k

:A; ~x

k

:

e

B

k

`

A

b

k

:

b

B

k

k2J

� `

D

a.l

k

(&(s

k

:A; ~x

k

:

e

B

k

)b

k

: A

(T-Sur)

� `

D

a:A A = [l

j

:A

j

℄

j2J

D 6= A

� `

D

a.surrogate : A

(T-Fork)

� `

Thr(A)

a:A

� `

D

forkhai : Thr(A)

Table 11: Typing Rules Ensuring External Surrogate Operations

Theorem 8.9 If � `

Thr(A)

C[x.surrogate℄ : A, then C[�℄ is external for x.

Proof. [Sket
h℄ We pro
eed in four steps. (1) Re�ne the typing of keys a

ording to the �jeblik

obje
t (or thread) type that they are used with. When a manager hands out a key k

i

, the latter

is always annotated with the same type as the one 
arried by the self-
hannel of the manager.

(2) Observe that a request shl; ki must be external if the type of k does not mat
h the type of s.

(3) Observe, that in a request the types of k and s never 
hange. (4) Prove that if � `

D

x.surrogate,

then [[ � ℄℄ ` [[x.surrogate ℄℄

k

p

for [[ � ℄℄(x)=[[A ℄℄, [[ � ℄℄(k)=K

B

with A 6= B.

2

Let us adapt the notion of behavioral equivalen
e of De�nition 7.2 to take into a

ount the

proposed type system. This is done in a standard fashion by only 
onsidering for a term P only


ontexts C[�℄ su
h that C[P ℄ is typable.

De�nition 8.10 (Typed Equivalen
e) Two �jeblik terms a; b with � ` a; b : A for some �

and A are typed equivalent, written a

.

=

`

ext

b, if C[a℄+ i� C[b℄+ for all 
ontexts C[�℄ with

� `

Thr(B)

C[a℄; C[b℄ : B for some � and B.

Corollary 8.11 If x is an obje
t variable, then x.ping

.

=

`

ext

x.surrogate.

9 Con
lusion

In this paper, we have outlined a formal proof of the safety of obje
t surrogation, a distribution-

free abstra
tion of obje
t migration, for a dynami
ally de�ned 
lass of program 
ontexts that

render surrogations always external. Moreover, for improved feasibility of the use of surrogation

in programming, we have provided a simple stati
 type system that guarantees that all well-typed

o

urren
es of surrogation are indeed external.

Sin
e we have 
arried out this work on an abstra
tion of migration, it is required to ask for

the meaningfulness of our result for migration itself. Sin
e Obliq is a lexi
ally-s
oped distributed

language, our results tell that any well-typed program|assuming that our type system is lifted

to Obliq, and that Obliq is equipped with a forwarder model, as in [NHKM00℄|will never ob-

serve a di�eren
e in the view of may-
onvergen
e between an obje
t before and after surrogation,

unless one of the involved distribution sites fails, and unless 
ontexts 
ould retrieve (by language

primitives) the a
tual lo
ation of an obje
t.

A natural potential 
riti
ism on results based on a semanti
s by translation into another

formalism is that it is sometimes hard to evaluate what the results a
tually say about the original

subje
t. On the one hand, as in our 
ase, where we have also developed several dire
t operational
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semanti
s for �jeblik, the question for some formal 
orresponden
e result among the semanti
s by

translation and the dire
t semanti
s arises. On the other hand, one may ask to 
arry out the proofs

on the dire
t semanti
s instead of employing some other lower-level formalism. However, we found

it very natural and useful to develop two semanti
s at di�erent abstra
tion levels hand-in-hand.

In fa
t, most of the examples of unsafe surrogation were dis
overed by means of the �-
al
ulus

semanti
s, and only then \veri�ed" in the dire
t semanti
s. Moreover, sin
e we have developed

both levels of semanti
s in lo
k-step, we have a good basis for formalizing their interrelation.

Finally, in 
ontrast to our abstra
t 
on�guration-style semanti
s for 
losed terms only, the �-
al-


ulus provides indeed a very ri
h set of approved reasoning tools that make the life of a theorem

prover mu
h easier, as exempli�ed by Kleist and Sangiorgi [KS98℄, and also in this paper.

Other strands of future work are twofold. One is to 
ontinue to develop and exploit semanti
s

for the Obliq-style of obje
t migration, and to use our semanti
s also to prove other equations

on Obliq-programs. For example, also equations like joinhforkhaii=a do only hold under 
ertain


onditions in
i
ted by self-in
i
tion. Another strand is to try to 
arry over our results to settings

that are not based on the notion of serialization via self-in
i
tion, but rather reentrant mutexes,

as in Java.
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A Proofs

A.1 Proof of Lemma 2.14

Proof. We show that the relation

S = f

�

Qf

p

=qg ; (�q:C(T )) (Q j q . p)

�

: q in Q only in output positiong

is a barbed bisimulation up to stru
tural equivalen
e.

� Let Qf

p

=qg

�

��!Q

0

f

p

=qg. There are two 
ases.

1. Q

�

��!Q

0

. This 
ase 
an be easily treated.

2. Otherwise, sin
e p and q are 
hannels and they never appear in testing, this means

that the � -a
tion is due to a 
ommuni
ation along p. More pre
isely, Q must 
ontain

an o

urren
e of q in output subje
t position and an o

urren
e of p in input position

whi
h give rise to the 
ommuni
ation. Up to stru
tural equivalen
e, this implies that

(�q:C(T )) (Q j q . p)

�

��!

�

��! � (�q:C(T )) (Q

0

j q . p).

As desired.

� Let (�q:C(T )) (Q j q . p)

�

��!R for some R. There are two 
ases.

1. R = (�q:C(T )) (Q

0

j q . p) sin
e Q

�

��!Q

0

. This 
ase 
an be easily treated.

2. The � -a
tion is due to some 
ommuni
ation along q between Q and the link q . p. More

pre
isely,

(�q:C(T )) (Q j q . p) � (�q:C(T )) ((�~z) (Q

0

j qv) j q . p)

and

(�q:C(T )) (Q j q . p)

�

��! � (�q:C(T )) ((�~z) (Q

0

j pv) j q . p).

The left side 
an easily mimi
 the move as follows:

Q

0

f

p

=qg =)� (�~z) (Q

0

j qv)f

p

=qg = (�~z) (Q

0

j pv)f

p

=qg.

As desired.

2

A.2 Proof of Theorem 6.1

To prove Theorem 6.1 we need the following lemma, allowing us to type obje
t/alias managers

using the translation of an obje
t type.

Lemma A.1 If A = [l

j

:

e

B

j

!

b

B

j

℄

j21..n

and � ` O :A.

� = s:[[A ℄℄; t

1

:C([[A ℄℄;M(

e

B

1

!

b

B

1

);K) : : :

t

n

:C([[A ℄℄;M(

e

B

n

!

b

B

n

);K);m

e

:C();m

i

:C(K); k

e

:K; k

i

:K

and

�

0

= s:[[A ℄℄; s

a

:[[A ℄℄;m

e

:C();m

i

:C(K); k

e

:K; k

i

:K

then � ` OM

O

h s;m

e

;m

i

; k

e

; k

i

; t

1

: : : t

n

i and �

0

` AM

O

h s;m

e

;m

i

; k

e

; k

i

; s

a

i.

Proof. The proof is in both 
ases a lengthy type derivation. Here, we only show a part of the

derivation of � ` OM

O

h s;m

e

;m

i

; k

e

; k

i

; t

1

: : : t

n

i.
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Before we start, let

A

�

(X) denote

2

6

6

6

6

6

6

4


ln : R(X)

ali : hX;R(X) i

upd

j

: hC(X;M(

e

B

j

!

b

B

j

);K);R(X) i

inv

j

: hM(

e

B

j

!

b

B

j

) i

sur : R(X)

png : R(X)

3

7

7

7

7

7

7

5

j21..n;

with this abbreviation [[A ℄℄ = �X .C(A

�

(X);K).

The de�nition of OM

O

h s;m

e

;m

i

; k

e

; k

i

; t

1

: : : t

n

i is

s(l; k).(�k

�

:K)

�

if [k=k

i

℄ then P

1

elif [k=k

e

℄ then P

2

else P

3

�

and we are to 
he
k that this pro
ess is well-typed under � with the extra assumption that

OM

O

h s;m

e

;m

i

; k

e

; k

i

; t

1

: : : t

n

i is well-typed under �.

By rule (T-Inp) we must establish that s has a 
hannel type. In � we have the assumption

s:[[A ℄℄, and using (T-re
2) we 
an unfold [[A ℄℄, obtaining C(A

�

([[A ℄℄);K). This yields as new

subgoal (using (T-Res) to handle the restri
tion), that we must prove:

�

0

` if [k=k

i

℄ then P

1

elif [k=k

e

℄ then P

2

else P

3

with �

0

= �; l:A

�

([[A ℄℄); k:K; k

�

:K. Che
king that all of k; k

i

and k

e

has type K as required by

(T-If) is easily done by a lookup in �

0

. And we must now prove that pro
esses P

1

, P

2

and P

3

are

well-typed under �

0

. We restri
t ourselves to 
onsider only P

1

. P

1

is a large 
ase 
onstru
t


ase l of 
ln (r) : OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i j (�s

�

)

�

rhs

�

; k

�

i j newO

O

h s

�

;

e

t i

�

;

ali (s

a

; r) : AM

O

h s;m

e

;m

i

; k

e

; k

�

; s

a

i j rhs

a

; k

�

i ;

upd

j

(t

0

; r) : OM

O

h s;m

e

;m

i

; k

e

; k

�

; t

1

. . t

j�1

; t

0

; t

j+1

. . t

n

i j rhs; k

�

i ;

inv

j

(ex; r) : OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i j t

j

hs; ex; r; k

�

i ;

sur (r) : OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i j [[ s.aliashs.
lonei ℄℄

k

�

r

;

png (r) : OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i j [[ s ℄℄

k

�

r

with j 2 1. .n. By inspe
tion we see that the 
ase 
onstru
t has the labels required by A

�

(X).

And we must now type the 
ontinuations. We only show how the 
ontinuation for label inv

j

(ex; r)

is handled. Let �

00

= �

0

; ex:[[

e

B

j

℄℄; r:R(

b

B

j

). We shall now establish

�

00

` OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i j t

j

hs; ex; r; k

�

i

By narrowing �

00

and our initial assumption, we get that

�

00

` OM

O

h s;m

e

;m

i

; k

e

; k

�

;

e

t i

and by lookup in �

00

we get that

�

00

` t

j

:C([[A ℄℄; [[

e

B

j

℄℄;R(

b

B

j

);K); s:[[A ℄℄; ex:[[

e

B

j

℄℄; r:R(

b

B

j

); k

�

:K

2

Proof of Theorem 6.1. The impli
ation from left to right is proved using indu
tion in the

depth of the derivation of � ` a:A with a 
ase analysis of the last rule used. We show a few of the


ases below.

(T-Var) Assume � ` x:A, by rule (T-Var) we have �(x) = A. The translation of x is phx; ki

and [[ � ℄℄(x) = [[A ℄℄. Let �

0

= [[ � ℄℄; p:R([[A ℄℄) ; k:K We 
an now 
omplete the derivation:

�

0

` p:C([[A ℄℄;K); x:[[A ℄℄; k:K

�

0

` phx; ki
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(T-Obj) Assume � ` [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

:A with A = [l

j

:

e

B

j

!

b

B

j

℄

j2J

. By indu
tion

[[ �; s

j

:A; ~x

j

:

e

B

j

℄℄; r:R([[

b

B

j

℄℄); k

0

:K ` [[ b

j

℄℄

k

0

r

for all j 2 J .

The translation of [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

is

(�s:[[A ℄℄; t

j

:T

j

)

j2J

�

phs; ki

�

�

newO

O

h s;

e

t i

�

�

Y

j2J

! t

j

(s

j

; ex

j

; r; k

0

).[[ b

j

℄℄

k

0

r

�

where T

j

= C([[A ℄℄; [[

e

B

j

℄℄;R(

b

B

j

);K) and

e

t = t

j

j 2 J . Let

�

0

= [[ � ℄℄; p:R([[A ℄℄); k:K; s:[[A ℄℄; T

j j2J

.

We now got three subgoals. Proving that �

0

` phs; ki follows easily from a lookup in �

0

.

That �

0

` newO

O

h s;

e

t i, follows from appli
ations of (T-Res), (T-Par), narrowing and

Lemma A.1. Finally, to establish �

0

` ! t

j

(s

j

; ex

j

; r; k

0

).[[ b

j

℄℄

k

0

r

we apply (T-Rep), (T-Inp)

and the indu
tion hypothesis.

(T-Fork) Assume � ` forkhai: Thr(A). The translation of forkhai is

(�q:R([[A ℄℄); t:[[ Thr(A) ℄℄; k

�

:K)

�

[[ a ℄℄

k

�

q

j pht; ki j q(x; k

0

).t(r; k

00

).rhx; k

00

i

�

Let �

0

= [[ � ℄℄; p:R([[ Thr(A) ℄℄); k:K; q:R([[A ℄℄); t:[[ Thr(A) ℄℄. We now got three subgoals. �

0

`

[[ a ℄℄

k

0

q

follows using narrowing and the indu
tion hypothesis. � ` pht; k

�

i follows using (T-

Out). Finally, the following derivation

�

0

` q:C([[A ℄℄;K)

�

0

; x:[[A ℄℄; k

0

:K ` t:C(R([[A ℄℄);K)

�

0

; x:[[A ℄℄; k

0

:K; r:R([[A ℄℄); k

00

:K ` r:C([[A ℄℄;K); x:[[A ℄℄; k

00

:K

�

0

; x:[[A ℄℄; k

0

:K ` t(r; k

00

).rhx; k

00

i

�

0

` q(x; k

0

).t(r; k

00

).rhx; k

00

i

proves the last subgoal.

(T-Clo) Assume � ` a.
lone:A with A = [l

j

:A

j

℄

j2J

. The translation of a.
lone is

(�q:R([[A ℄℄)) ([[ a ℄℄

k

q

�

�

q(y; k

0

) . yh
ln p; k

0

i).

Let �

0

= �; p:R([[ Thr(A) ℄℄); k:K; q:R([[ Thr(A) ℄℄). We have two subgoals. �

0

` [[ a ℄℄

k

q

follows

from narrowing and the indu
tion hypothesis. For the se
ond subgoal, appli
ation of (T-Inp)

yields that we must establish �

0

; y:[[A ℄℄; k

0

:K ` yh
ln p; k

0

i, whi
h is handled using (T-Re
2)

to unfold the translation of the obje
t type [l

j

:A

j

℄

j2J

, (T-Var) to 
he
k that the unfolded

type has the required variant tag, and �nally (T-Bas) to 
he
k that p has type [[A ℄℄.

The impli
ation from right to left is proved by indu
tion in the stru
ture of a. Again we again

only show a few of the 
ases.

x: Assume [[ � ℄℄; p:R([[A ℄℄); k:K ` phx; ki. This typing must have been derived using (T-Out)

with premise �

0

` p:C([[A ℄℄;K); x:[[A ℄℄; k:K. This 
an only be true if x 2 dom(�) with

�(x) = A. We 
an now apply (T-Var) to derive � ` x:A.

[l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

: Assume [[ � ℄℄; p:R([[A ℄℄); k:K ` [[ [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

℄℄. The type

A 
an either be an obje
t type [l

k

=&(s

k

:A; ~x

k

:

e

B

k

)b

k

℄

k2K

or a thread type Thr(B). The

translation of [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

is

(�s:[[A ℄℄; t

j

:T

j

)

j2J

�

phs; ki

�

�

newO

O

h s;

e

t i

�

�

Y

j2J

! t

j

(s

j

; ex

j

; r; k

0

).[[ b

j

℄℄

k

0

r

�

We 
an easily rule out the possibility that A = Thr(B) be
ause if A was a thread type, we

would not be able to type the obje
t manager. Therefore A = [l

k

=&(s

k

:A; ~x

k

:

e

B

k

)b

k

℄

k2K

,
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and in order to type the obje
t manager we must also have K = J in order to have the same

number of methods in the type and the obje
t manger. The typing of the obje
t manger

also yields that we must have the types T

j

= C([[A ℄℄; [[

e

B

j

℄℄;R(

b

B

j

);K). We are now able to

write a typing for ! t

j

(s

j

; ex

j

; r; k

0

).[[ b

j

℄℄

k

0

r

, whi
h as premise has

�

0

; s:[[A ℄℄; t

j

:T

j

; s

j

:[[A ℄℄; k

0

:K; r

j

:R([[

b

B

j

℄℄); ex

j

:[[

e

B

j

℄℄ ` [[ b

j

℄℄

k

0

r

.

Using narrowing and the indu
tion hypothesis we derive that �; s

j

:A; ex

j

` b

j

:

b

B

j

. And we


an now apply (T-Obj) to 
on
lude � ` [l

j

=&(s

j

:A; ~x

j

:

e

B

j

)b

j

℄

j2J

:A.

a.
lone: Assume [[ � ℄℄; p:R([[A ℄℄); k:K ` a.
lone. The type A 
an either be an obje
t type

[l

j

:

e

B

j

!

b

B

j

℄

j2J

or a thread type Thr(B). The translation of a.
lone is

(�q:T ) ([[ a ℄℄

k

q

�

�

q(y; k

0

) . yh
ln p; k

0

i)

for some type annotation T . By the use of the name q we 
an 
on
lude that T = R([[A ℄℄)

and that A 
annot be a thread type (be
ause of the 
ln p request). Knowing that q has type

R([[A ℄℄) allows us to use the indu
tion hypothesis (together with narrowing) to 
on
lude

that � ` a:A, and then we 
an apply (T-Cln) to get � ` a.
lone:A.

2

A.3 Proof of Lemma 6.5

Proof. As the base 
ase, we 
onsider Z, where the obje
t manager at s has just been 
reated;

all previous steps in the sequen
e are obviously irrelevant, be
ause the 
ondition of 
ontaining

newO

O

h s;

e

t i is not ful�lled. Then

Z = C

0

[ newO

O

h s;

e

t
i ℄ = C

0

[ (�enk

i

) (
m

e

j OM

O

h s; en; k

i

;

e

t
i ) ℄

Using stru
tural equivalen
e, we immediately get

Z � E[ (�en) ( m

e

j OM

O

h s; en; k

i

;

e

t i j PP

O

h s; en; ; i ) ℄

for some stati
 
ontext E[�℄, su
h that Z 
orresponds to state OM

f

. It is important to noti
e that

names in en will only appear inside the obje
t manager and the pre-pro
essed requests.

State OM

f


an only evolve into some state OM

a

; it does so by grabbing the external mutex m

e

for one of its pre-pro
essed requests in ev. The only other possible redu
tion involving state OM

f

is pre-pro
essing another request, but su
h an a
tion does not 
hange the state|it only adds to

the set of pre-pro
essed requests ev. A similar reasoning applies to the other states, so we simply

skip pre-pro
essing.

Thus, by 
onsuming the pre-pro
essed request shl; ki and leaving untou
hed the other pre-

pro
essed requests ev, we may arrive at some Z of the form:

E[ (�en) ( m

e

j OM

O

h s; en; k

i

;

e

t i j PP

O

h s; en; ev i ) ℄

�!

�

E[ (�en) ( m

i

k j shl; k

e

i j OM

O

h s; en; k

i

;

e

t i j PP

O

h s; en; ev�h l; k i i ) ℄

def

= Z

where Z 
orresponds to state OM

a

.

State OM

a


an only evolve into either state OM

n

or OM

s

, by 
onsuming the request shl; k

e

i:

� State OM

a

evolves into state OM

n

if l is one of ali hx; pi, 
ln p, or upd

j

ht; pi, whi
h are disal-

lowed as external request, the obje
t manager is restarted and, up to stru
tural equivalen
e,

we get state OM

n

.

� In the remaining 
ases, that is, when l is one of inv

j

hx; pi, sur p, or sur hpi, state OM

a

evolves into state OM

s

. Indeed, a 
all-manager is started 
on
urrently with the restarted

obje
t manager. By using stru
tural equivalen
e, we 
an move 
omponents that are not in

the s
ope of en outside this s
ope, so as to re
ognize state OM

s

.
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In state OM

s

, a png request drives the system into state OM

i

. In the 
ase of method invo
ation

a redu
tion along t

j

may o

ur whi
h allows the evaluation of the method body. At this point a

number of self-in
i
ted requests may be served (external requests are blo
ked be
ause the external

mutex m

e

is no available). This part of the 
omputation will not 
hange the state. Noti
e that,

by hypothesis, sin
e we suppose that Z 
ontain an obje
t manager and non an alias manager,

we ex
lude self-in
i
ted aliasing operations. When the last self-in
i
ted request is served, a reply

r

�

h o; k i will appear unguarded. The 
on
uent redu
tion along r

�

will drive the 
omputation to

state OM

i

. sur requests are treated similarly.

State OM

i


an only evolve, by redu
ing along m

i

, to state OM

f

.

2

A.4 Proof of Lemma 8.2

We show that there is a sequen
e of � -a
tions su
h that:

surO

O

h s; r; k;

~

t; ~v i)

�

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

We prove that �

�;s

is insensitive to these parti
ular � -a
tions. To this end, we supply the two

lemmas A.2 and A.3. We re
all that CM[�℄ denote the 
all manager proto
ol as de�ned in Table 7.

Lemma A.2 Let en := m

e

;m

i

; k

e

, and ev := v

1

. . v

n

with v

j

:= h l

j

; k

j

i for j 2 1.n, and

C

1

:= CM[ (�q) (sh
ln q; k

�

i j q(x; k

0

).shali hx; r

�

i; k

0

i) ℄

C

2

:= CM[ (�q) (qhs

�

; k

�

i j q(x; k

0

).shali hx; r

�

i; k

0

i) ℄

P hevi := (�enk

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

1

�

with k

�

62 fn(ev)

Qhevi := (�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

2

�

with k

�

62 fn(ev)

� ` P hevi; Qhevi for some �.

Then, P hevi �

�;s

Qhevi.

Proof. For simpli
ity, we omit the obligations on types in the 
oindu
tive de�nition of �

�;s

.

So, we prove that the relation:

S = f(P h ewi; Qh ewi) : ew = w

1

. .w

m

with w

j

:= h l

j

; k

j

i; j 2 1. .ng [ I

where I is the identity relation, is a �

�;s

-bisimulation up to �.

The only 
hannel whi
h appear free in subje
t position in P h ewi and Qh ewi is s. Sin
e both the

external key k

e

and the internal key k

�

are restri
ted in P h ewi and Qh ewi, an by well-typedness,

the environment 
an send requests only of the form shl; ki with k

e

6= k 6= k

�

.

The pro
ess P h ewi 
an perform only two kinds of a
tions. Either (i) an input a
tion shl; ki (with

k

e

6= k 6= k

�

), or (ii) a silent move along s involving the self-in
i
ted 
loning request 
ontained

in C

1

. In 
ase (i), the pre-pro
essing of the request 
reates the pro
ess m

e

.(shl; k

e

i j m

i

k) whi
h


an be added in PP

O

h s; en; ew i obtaining some PP

O

h s; en;

f

w

0

i with

f

w

0

= ew [ hl; ki. The pro
ess

Qh ewi 
an perform the same a
tion and the derivatives are again related by S. In 
ase (ii), the

pro
ess Qh ewi 
an mimi
 the � -a
tion by not performing any redu
tion at all. Up to stru
tural

equivalen
e, we get into the identity relation.

The pro
ess Qh ewi 
an only perform two kinds of a
tions. Either (i) a input a
tion shl; ki (with

k

e

6= k 6= k

�

), and we reason as above, or (ii) a silent move along the restri
ted 
hannel q in C

2

. In

this 
ase P h ewi 
an perform two silent a
tions, along s and q, getting, up to stru
tural equivalen
e,

into the identity relation.

2

Lemma A.3 Let en := m

e

;m

i

; k

e

, and ev := v

1

. . v

n

with v

j

:= h l

j

; k

j

i for j 2 1. .n, and
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C

3

:= CM[ shali hs

�

; r

�

i; k

�

i ℄

C

4

:= CM[ r

�

hs

�

; k

�

i ℄

P hevi := (�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

3

�

with k

�

62 fn(ev)

Qhevi := (�enk

�

s

�

)

�

m

i

k

�

�

AM

O

h s; en; k

�

; s

�

i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

4

�

with k

�

62 fn(ev).

� ` P hevi; Qhevi for some �.

Then, P hevi �

�;s

Qhevi.

Proof. Similar to that of Lemma A.2.

2

Proof of Lemma 8.2. As said above there is a sequen
e of � -a
tions, su
h that:

surO

O

h s; r; k;

~

t; ~v i)

�

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

The above sequen
e 
onsists of 7 silent steps. These � -steps are of two kinds: (i) 
on
uent

redu
tions along restri
ted 
hannels of the form

C[(�q) (qhevi j q(ex).P )℄

�

��!

�

C[Pf

ev

=

ex

g℄

where q 62 fn(P ), let us 
all these redu
tions of kind �; (ii) redu
tions involving self-in
i
ted

requests (indu
ed by the surrogation) of the form

C[(�k

�

) (OM

O

h s; em; k

e

; k

�

;

~

t i j shop r

�

; k

�

i)℄

�

��! : : :

let us 
all these redu
tions of kind �. It is well-known that �

�

(as well as �

�;s

) is insensitive to

redu
tions of kind �. In Lemma A.2 and A.3 we show that �

�;s

is insensitive to the redu
tions of

kind � appearing in the sequen
e mentioned above. This is possible be
ause, in the implementation

of obje
t and alias managers, we use non
es (
.f. page 21) in order to guarantee that the self-

in
i
ted key of the obje
t manager is always restri
ted. In this manner, the environment 
annot

produ
e any \mali
ious" self-in
i
ted request whi
h might potentially interfere with the 
loning

and the aliasing requests.

The �rst and the se
ond redu
tions are of kind � and they are due to the pro
ess CM[ [[ s.aliashs.
lonei ℄℄

k

�

r

�

℄

(
ontained in surO

O

h s; r; k;

~

t; ~v i) whi
h, after two � -steps, redu
es to the pro
ess

CM[ (�q) (sh
ln q; k

�

i j q(x; i).shali hx; r

�

i; ii) ℄.

We abbreviate this pro
ess by C

1

. The situation is that:

surO

O

h s; r; k;

~

t; ~v i

�

��!

�

��!(�enk

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

1

�

where k

�

62 fn(ev).

The third redu
tion is of kind � and involves the self-in
i
ted 
loning request in C

1

. Let C

2

be the pro
ess CM[ (�q) (qhs

�

; k

�

i j q(x; i).shali hx; r

�

i; ii) ℄, then the pro
ess

(�enk

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

1

�

redu
es, up to stru
tural equivalen
e, to

(�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

2

�

where k

�

62 fn(ev). By Lemma A.2 the relation �

�;s

is insensitive to this redu
tion.

The fourth redu
tion is of kind � and it is due to C

2

. So, if we denote with C

3

the pro
ess

CM[ shali s

�

; r

�

; k

�

i ℄ the situation is that that surO

O

h s; r; k;

~

t; ~v i evolves in four silent steps, up

to stru
tural equivalen
e, to

(�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

3

�
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where k

�

62 fn(ev).

In the �fth � -step we redu
e the self-in
i
ted aliasing request 
ontained in C

3

. So, let us denote

with C

4

the pro
ess CM[ r

�

hs

�

; k

�

i ℄. It holds that the pro
ess

(�enk

�

s

�

)

�

m

i

k

�

�

OM

O

h s; en; k

�

;

e

t i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

3

�

redu
es, up to stru
tural equivalen
e, to

(�enk

�

s

�

)

�

m

i

k

�

�

AM

O

h s; en; k

�

; s

�

i

�

�

newO

O

h s

�

;

e

t i

�

�

PP

O

h s; en; ev i

�

�

C

4

�

where k

�

62 fn(ev). By Lemma A.3 the relation �

�;s

is insensitive to this redu
tion.

The sixth and the seventh redu
tions are of kind � and involve 
hannels r

�

andm

i

, respe
tively.

Up to stru
tural equivalen
e we get the desired pro
ess

(�s

�

)

�

(�k

i

) freeA

O

h s; k

i

; s

�

; ~v i

�

�

newO

O

h s

�

;

~

t i

�

�

rhs

�

; ki

�

.

2

A.5 Proof of Lemma 8.3

Lemma 8.3 proves that the aliased obje
t manager appearing in Lemma 8.2 behaves as a forwarder.

As a �rst step we re
all a well-known property of repli
ated input.

Lemma A.4 Let C[�℄ be a �-
al
ulus 
ontext where 
hannel 
 does not appear either in input or

in output obje
t position. Then

(�
)

�

! 
(x).P

�

�

C[
v℄

�

�

�

(�
)

�

! 
(x).P

�

�

C[Pf

v

=

x

g℄

�

Proof. By applying Milner's repli
ations theorems [Mil93℄.

2

Proof of Lemma 8.3. The obligations on types guarantee that values re
eived along 
hannel

s are of the right type. This allows us to use polyadi
 input along s. By observing pro
ess

(�k

i

)AM

O

h s; em; k

e

; k

i

; s

�

i we note that, sin
e k

i

is restri
ted and never extruded, the aliased obje
t

manager will never re
eive self-in
i
ted requests. By exhibiting the appropriate bisimulation, we


an prove that su
h a pro
ess has the following fun
tional behaviour.

(�k

i

) (AM

O

h s; em; k

e

; k

i

; s

�

i) �

�

! s(l; k).if [k=k

e

℄ then m

i

(k).(s

�

hl; ki j m

e

)

else m

e

.(shl; k

e

i j m

i

k)

Sin
e �

�

is preserved by parallel 
omposition and restri
tion, we have that:

(�k

i

) (freeA

O

h s; k

i

; s

�

; ev i)

�

�

(� emk

e

)

�

m

e

j ! s(l; k).if [k=k

e

℄ then m

i

(k).(s

�

hl; ki j m

e

)

else m

e

.(shl; k

e

i j m

i

k)

j

Q

j21..n

m

e

.

�

shl

j

; k

e

i j m

i

k

j

� �

If we assume that the environment 
annot use s in input, then all requests on s are 
aptured by the

unique repli
ated input on s. Moreover, the external identity k

e

is restri
ted and never extruded to

the environment, and therefore only pre-pro
essed requests \knows" k

e

. Using these informations,

up to harmless 
on
uent redu
tions along m

i

, we 
an safely internalise the management of pre-

pro
essed requests by introdu
ing a restri
ted 
hannel s

e

with the same type as s and s

�

. In this

manner we 
an drop the mat
hing on the identity, and the repli
ated input on s will only take


are of serving external requests. Formally, we have the following.
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(� emk

e

)

�

m

e

j ! s(l; k).if [k=k

e

℄ then m

i

(k).(s

�

hl; ki j m

e

)

else m

e

.(shl; k

e

i j m

i

k)

j

Q

j21..n

m

e

.

�

shl

j

; k

e

i j m

i

k

j

� �

�

�;s

(by exhibiting the appropriate bisimulation)

(� ems

e

)

�

m

e

j ! s(l; k).m

e

.(s

e

hl; ki j m

i

k)

j ! s

e

(l; k).m

i

(k).(s

�

hl; ki j m

e

)

j

Q

j21..n

m

e

.(s

e

hl

j

; k

j

i j m

i

k

j

)

�

�

�

(redu
tions on m

i

are 
on
uent)

(�m

e

s

e

)

�

m

e

j ! s(l; k).m

e

.s

e

hl; ki

j ! s

e

(l; k).(s

�

hl; ki j m

e

)

j

Q

j21..n

m

e

.s

e

hl

j

; k

j

i

�

�

�

(by Lemma A.4)

(�m

e

s

e

)

�

m

e

j ! s(l; k).m

e

.

�

s

�

hl; ki j m

e

�

j ! s

e

(l; k).(s

�

hl; ki j m

e

)

j

Q

j21..n

m

e

.(s

�

hl

j

; k

j

i j m

e

)

�

�

�

(by garbage 
olle
tion on s

e

)

(�m

e

)

�

m

e

j ! s(l; k).m

e

.

�

s

�

hl; ki j m

e

�

j

Q

j21.n

m

e

.

�

s

�

hl

j

; k

j

i j m

e

� �

�

�

(redu
tions on m

e

are 
on
uent)

! s(l; k).s

�

hl; ki

�

�

Y

j21..n

s

�

hl

j

; k

j

i

def

= (by de�nition)

s . s

�

�

�

Y

j21..n

s

�

v

j

2

A.6 Proof of Lemma 8.4

This is a rather te
hni
al lemma. It is the only pla
e where the theory of L� is exploited.

Proof. We apply Lemma 2.15 to pro
ess P to remove all the o

urren
es of s

�

in output obje
t

position. Let's 
all

b

P the pro
ess obtained by applying Lemma 2.15 in su
h a way. Note that

we fo
us only on 
hannel s

�

. The other 
hannels are not a�e
ted by our transformation. Sin
e

Lemma 2.15 works with respe
t to (typed) barbed 
ongruen
e, it holds that P

�

=

�

b

P . This implies

(�s

�

)

�

s . s

�

j P

�

�

=

�

(�s

�

)

�

s . s

�

j

b

P

�

and Pf

s

=

s

�

g

�

=

�

b

Pf

s

=

s

�

g.

So, we are left with proving that (�s

�

)

�

s . s

�

j

b

P

�

'

�;s

b

Pf

s

=

s

�

g. The proof follows by showing

that the relation:

f( (�s

�

) (s . s

�

j

b

P ) ;

b

Pf

s

=

s

�

g ) : s 62 fn(

b

P ) and s

�

not free in obj. pos. in

b

Pg

is a �

�;s

bisimilarity. The obligations on types guarantee that values re
eived along 
hannel s are

of the right type. A part this, we 
an safely omit the types in the 
oindu
tive de�nition of �

�;s

.
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We re
all that �

�;s

is ground on 
hannels. This means that we alway suppose to re
eive fresh


hannels, in parti
ular, we never re
eive 
hannels s and s

�

.

As regards the left side, the only interesting transition is the input a
tion along s. This a
tion


an be emulated by the right side by exploiting the asyn
hronous 
lause for input.

As regards the right side, we re
all that �

�;s

is not sensitive to output a
tions along s. Sin
e

s

�

does not appear free in output obje
t position in

b

P , the only interesting a
tion of

b

Pf

s

=

s

�

g is

the input a
tion along s whi
h 
an be mimi
ked by the left side up to a � -a
tion.

2

A.7 Proof of Lemma 8.5

We �rst prove a more general result asserting that pre-pro
essing of external requests is harmless.

Lemma A.5 Let ev := v

1

. . v

n

where v

j

:= h l

j

; k

j

i with k

e

6= k

j

6= k

i

for j 2 1. .n. It holds that:

OM

O

h s; em; k

e

; k

i

;

~

t i

�

�

Y

j21..n

sv

j

�

�;s

OM

O

h s; em; k

e

; k

i

;

~

t i

�

�

PP

O

h s; en; ev i.

Proof. We prove the result by indu
tion on the number of elements of ev.

Case n = 0. Trivial.

Indu
tive 
ase. Let

Q

j21..n

sv

j

def

= sv

1

�

�

Q

j22..n

sv

j

and

PP

O

h s; en; ev i

def

= m

e

.

�

shl

1

; k

e

i j m

i

k

1

�

j PP

O

h s; en; v

2

. . v

n

i.

By indu
tive hypothesis it holds that:

OM

O

h s; em;

e

k;

~

t i

�

�

Y

j22..n

sv

j

�

�;s

OM

O

h s; em;

e

k;

~

t i

�

�

PP

O

h s; en; v

2

. . v

n

i.

Sin
e �

�;s

is preserved by parallel 
omposition, for proving our result it suÆ
es to show that:

OM

O

h s; em;

e

k;

~

t i

�

�

sv

1

�

�;s

OM

O

h s; em;

e

k;

~

t i

�

�

m

e

.

�

shl

1

; k

e

i j m

i

k

1

�

.

Let A

def

= OM

O

h s; em;

e

k;

~

t i j sv

1

and

B

def

= OM

O

h s; em;

e

k;

~

t i j m

e

.

�

shl

1

; k

e

i j m

i

k

1

�

we prove that the relation:

S = f

�

(�ez) (A j R); (�ez) (B j R)

�

: s 62 ez and s not in input in Rg [ I

where I is the identity relation, is a �

�;s

-bisimulation up to stru
tural equivalen
e. The obligation

on types in the 
oindu
tive de�nition of �

�;s


an be safely omitted. We �rst show how the right

side 
an emulate the a
tions performed by the left side and then the vi
e versa.

From left to right. Let us see the possible a
tions of (�ez) (A j R).

1. If (�ez) (A j R)

�

��!(�ey) (A j R

0

) then it is easy.

2. If (�ez) (A j R)

shl;ki

�����!(�ez) (A

0

j R), then there are three possibilities: (i) either k = k

i

, or

(ii) k = k

e

, or (iii) k

i

6= k 6= k

e

. In ea
h 
ase the right side 
an perform an input shl; ki

obtaining a pro
ess (�ez) (B

0

j R). By inspe
tion of the en
oding we have that (�ez) (A

0

j

R) � (�ey) (A

00

j R

0

) and (�ez) (B

0

j R) � (�ey) (B

00

j R

0

), for some ey and some pro
ess R

0

,

where A

00

(resp. B

00

) is the same as A (resp. A

00

), up to renaming k

i

with a fresh key k

�

.

Therefore (�ey) (A

00

j R

0

) S (�ey) (B

00

j R

0

).
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3. If (�ez) (A j R)

�

��!(�ey) (A

0

j R

0

), where the � -a
tion is due to a 
ommuni
ation along s

between A and R (re
all that s 
an only appear in output in R), then we reason similarly

to the previous 
ase.

4. If (�ez) (A j R)

�

��!(�ez) (A

0

j R), where the � a
tions is due to a 
ommuni
ation along

s between the obje
t manager and the external request sv

1

, then, by inspe
tion of the

en
oding, it holds that A

0

� B. On the right side we 
an mimi
 the � a
tion by performing

(�ez) (B j R) =) (�ez) (B j R). It holds that (�ez) (A

0

j R) �S (�ez) (B j R).

From right to left. Let us see the possible a
tions of (�ez) (B j R).

1. If (�ez) (B j R)

�

��!(�ey) (B j R

0

) then it is easy.

2. If (�ez) (B j R)

shl;ki

�����!(�ez) (B

0

j R), then there are three possibilities: (i) either k = k

i

, or

(ii) k = k

e

, or (iii) k

i

6= k 6= k

e

. In ea
h 
ase the left side 
an perform an input shl; ki

obtaining a pro
ess (�ez) (A

0

j R). By inspe
tion of the en
oding we have that (�ez) (B

0

j

R) � (�ey) (B

00

j R

0

) and (�ez) (A

0

j R) � (�ey) (A

00

j R

0

), for some ey and some pro
ess R

0

,

where B

00

(resp. A

00

) is the same as B (resp. A), up to renaming k

i

with a fresh key k

�

.

Therefore (�ey) (B

00

j R

0

) S (�ey) (A

00

j R

0

).

3. If (�ez) (B j R)

�

��!(�ey) (B

0

j R

0

), where the � -a
tion is due to a 
ommuni
ation along s

between B and R (re
all that s 
an only appear in output in R), then we reason similarly

to the previous 
ase.

4. If (�ez) (B j R)

m

e

���!(�ez) (B

0

j R) and B

0

= OM

O

h s; em;

e

k;

~

t i

�

�

shl

1

; k

e

i j m

i

k

1

, then the left

side 
an mimi
 this a
tion by serving the request sv

1

and then grabbing the mutex. In

pra
tise,

(�ez) (A j R)

�

��!

m

e

���!(�ez) (A

0

j R) with A

0

� B

0

. So, (�ez) (B

0

j R) S (�ez) (A

0

j R).

2

Proof of Lemma 8.5. It follows dire
tly from Lemma A.5 and the fa
t that �

�;s

is preserved

by parallel 
omposition and restri
tion.

2

A.8 Proof of Lemma 8.6

Proof. It holds that:

pingO

O

h s; r; k;

e

t; ev i

�

��!

2

�

(� em

e

k)

�

m

e

�

�

OM

O

h s; em;

e

k;

e

t i

�

�

PP

O

h s; en; ev i

�

�

�

rhs; ki.

Sin
e �

�

is insensitive to these two silent moves, we 
an 
on
lude.

2
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