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Abstract

Obliq is a lexically-scoped, distributed, object-based programming language. In Obliq, the mi-
gration of an object is proposed as creating a clone of the object at the target site, whereafter
the original object is turned into an alias for the clone. Obliq has only an informal semantics,
so there is no proof that this style of migration is safe, i.e., transparent to object clients. In
previous work, we introduced @jeblik, an abstraction of Obliq, where, by lexical scoping, sites
have been abstracted away. We used @jeblik in order to exhibit how the semantics behind Obliq’s
implementation renders migration unsafe. We also suggested a modified semantics that we con-
jectured instead to be safe. In this paper, we rewrite our modified semantics of @jeblik in terms
of w-calculus, and we use it to formally prove the correctness of object surrogation, the abstraction

of object migration in @jeblik.



1 Introduction

The work presented in this paper is in line with the research activity to use the w-calculus as a
toolbox for reasoning about object-based programming languages. Former works on the semantics
of objects as processes showed the value of this approach: while [Wal95, HK96, San98, KS98|
focused on just providing formal semantics to object-oriented languages and language features,
the work of others [PW98, San99b] has been driven by a specific programming problem. Our work
tackles a problem in Cardelli’s lezically-scoped distributed programming language Oblig [Car95].
Cardelli proposed to derive object migration from two other primitives, cloning and aliasing, by
performing one after the other. In Obliq, immutable values can be freely copied from site to site,
whereas mutable values are stationary. Only references to mutable values may be transmitted
between different sites. Accordingly, since objects are mutable, the migration of an object does
not physically move the object, but instead creates a clone of the object at the target site and then
turns the original (local) object into an alias—sometimes called a prozy—for the new (remote)
object.

1.1 Previous work

When is object migration correct? In concurrent and distributed programs, it is important
that certain state changes, in parts of the running system, may happen transparently from the
point of view of the rest of the system. Ensuring that the implementation of such state changes
is in fact transparent can be a difficult task since the programmer must in principle anticipate
all possible execution scenarios. In Obliq, a natural question is, whether migration of an object
is transparent to the object’s clients, and how that can be stated formally. Intuitively, migration
of an object a to some other site works transparently, or safely, if (i) during migration it is not
possible to interact with a in a way that prevents the migration operation from proper completion,
and if (ii) after the migration a client of a cannot tell that a is now an alias. In Obliq, mobile
objects are therefore required to be serialised and protected: serialization guarantees atomicity of
the two-phase migration operation; protection guarantees that aliases are persistent.

From Migration to Surrogation Lezical scoping in distributed settings makes program anal-
ysis easier since the binding of variables is completely determined by their location in the program
text, and not by the execution site. Since Obliq is lexically-scoped, we can ignore the aspects of
distribution, at least when regarding the results of Obliq computations, unless sites fail. Follow-
ing this idea, we focus on @jeblik [NHKMO0O0], an object-based language that represents Obliq’s
concurrent, core, but can also be seen as a concurrent extension of the Imperative Object Calcu-
lus [AC96]. Djeblik supports a distribution-free abstraction of migration called surrogation. Like
migration, the surrogation of an object a is described as the creation of a clone b of a and then
turning a itself into a proxy for b, which forwards future request for methods of a to b. The main
difference with respect to migration is that neither a nor b are attached to any site.

Correctness as an equation In [NHKMO00], we gave a formal definition of correctness for object
surrogation in @jeblik which can be straightforwardly adapted to object migration in Obliq. The
intuition is that, in order to be correct, the surrogation of an object must be transparent to the
clients of that object, i.e., the object must behave the same before and after surrogation. We
formalized this concept by means of a simple equation:

a.ping = a.surrogate

where the left side represents the object a before surrogation (a.ping returns the object resulting
from the evaluation of a), the right side represents the object a after surrogation (a.surrogate
returns the surrogated object), and = is an appropriate contextual equivalence, based on the
possibility of convergence.



Aliasing Semantics In [NHKMO0], we gave several proposals of configuration-style semantics
for @jeblik. One of them fits the Obliq implementation [Car94, Car95], but does not guarantee the
correctness of object surrogation as defined above. This was formally shown by exhibiting @jeblik
contexts that are able to distinguish the terms a.ping and a.surrogate. Similar counterexamples
apply to object migration in Obliq, as we tested using the Obliq interpreter [Car94]. Roughly,
the reason is because, in Oblig, alias nodes support a too strong form of both protection and
serialization. As a consequence, in [NHKMO00] we proposed a different semantics in which alias
nodes have a milder form of both protection and serialization. In that paper, we conjectured that
object migration is safe when considering this new semantics, but no proof was given.

1.2 Contribution

In this paper, we present a w-calculus semantics for @jeblik corresponding to the aforementioned
variant proposed in [NHKMO00]. We also give a notion of contextual equivalence for objects defined
in terms of may convergence on 7-processes corresponding to the equivalence =. More precisely, our
semantics uses Local m [MS98, Mer00], in short L7, a variant of the asynchronous 7-calculus [HT91,
Bou92], where, like in Join-calculus [FG96], the recipients of a channel are local to the process
that has created the channel. We prove the correctness of surrogation for a wide class of Qje-
blik-programs. The proof is in two parts: an algebraic part and an iterative part. The algebraic
part (Theorem 8.1) relates the core component of the translation of a single object after having
committed to a ping and a surrogate request, respectively. We use powerful adaptations of proof
techniques, from standard m-calculus and Lz. The iterative part (Theorem 8.7) relates the may-
convergence behavior of the terms a.ping and a.surrogate within arbitrary @jeblik-contexts; note
that in these terms the operations have not yet been performed, and will only do so at some point
if the context permits. In Theorem 8.7, we constructively simulate arbitrarily long converging
sequences “up to” Theorem 8.1. The main difficulty of Theorem 8.7 is that inherently concurrent
Ojeblik-contexts may non-deterministically prevent either term from eventually committing to the
requested operation.

The proof is non-trivial, and we give (to our knowledge) the first formal proof that object mi-
gration can be correctly implemented in terms of cloning and aliasing (apart from a very restrictive
and informal sketch of our own [HKMN99], on which we improve substantially, here). Finally, we
want to remark that most counterexamples presented in [NHKMO00, Mer00] (exhibiting the prob-
lems of Obliq’s original semantics) were actually discovered while using some 7-calculus semantics
to understand Obliq programs and trying to prove the correctness of surrogation.

1.3 Related work

The work closest to ours is [KS98] where an interpretation of Abadi and Cardelli’s object cal-
culus [AC96] into typed m-calculus is presented. Unlike [KS98], we focus on a concurrent object
calculus. Gordon and Hankin [GH98], and Di Blasio and Fisher [DF96] describe two concurrent
object calculi, but no account of object migration is given for them. An early version of Emer-
ald [JLHBS8S] includes a form of object migration similar to that one in Oblig, but little formal
work is known about it. Finally, in Distributed Oz [VHB*97], object migration is a primitive no-
tion, so objects are physically mobile and travel according to a provably safe mobile state protocol
from site to site, wherever they are needed or intend to go.

2 Local m: An “Object-Oriented” m-Calculus

Local m [MS98, Mer00], in short L, is a variant of the asynchronous m-calculus [HT91, Bou92]
where, similar to the Join-calculus [FG96], the recipients of a channel are local to the process
that has created the channel. This is achieved by imposing the syntactic constraint that only the
output capability of channels may be transmitted, i.e., the recipient of a channel may only use it
in output actions. This property makes L particularly suitable for giving the semantics to, and



Channels: ceC Values
Keys: ke K v ou= oz variable
Names: eEN | (w variant
n o= ¢ | k | (v1..0n) tuple
Auziliary: uwelU Types
Variables: eX T == C(T) channel type
r o= n | u | K key type
| [Ty 5l Ty ] variant type
Labels eL | (T1..Tw) tuple type
b0y, 0s,. .. | X type variable
| wX.T recursive type
Processes
P =0 nil process
| c(x).P single input
| ©@v output
| PP parallel
| (vn:T)P restriction
| le(z).P replicated input
| if [k=Fk1] then Py elif [k=k.] then P; else Ps key testing
| casewvof {y_(x1):Prj...;4m(xm):Pn variant destructor
| let(z1..2pm)=vin P tuple destructor
| wrong run time error
The locality constraint requires that in (single and replicated) inputs and in
(variant and tuple) destructors the bound names z, 1, ...,z,, must not be
used in free input position within the respective scope P, Py, ..., Py,.

Table 1: The Calculus L7+

reasoning about, concurrent object-oriented languages. In particular, we can easily guarantee the
uniqueness of object identities—a fundamental feature of objects: in object-oriented languages,
the name of an object may be transmitted; the recipient may use that name to access the methods
of the object, but it cannot create a new object with the same name. When representing objects
in the m-calculus, this translates directly into the constraint that the process receiving an object
name may only use it in output actions—a guarantee in our setting.

2.1 Terms and Types

In Table 1, we introduce the calculus Lz, a typed version of polyadic Lw with: (i) labelled
values (_v, called variants [San98], with case analysis; (ii) tuple values (wv;..v, ), with pattern
matching, (iii) constants k, called keys, with equality; (iv) a wrong construct to model run-time
typing errors.

We introduce a few syntactic categories: the set X of wvariables includes the set N of names
(constants and variables) consisting of the two disjoint sets C of channels and K of keys. The
auxiliary variables in the set U are variables for complex values. L is the set of labels. In addition
to the metavariables mentioned in the grammar, we let s,p,q,r, m,t range over channels, y over
variables, w over values, ) over processes, and 4, j, d, h, m over tuple, variant, or other indices. We
abbreviate £_() and £_() as ¢, as well as g() and ¢().P as g and ¢.P, respectively, while ¥ denotes



a sequence vy . . Up,.

Restriction, both inputs, and both destructors are binders for the names z,z1,...,Z,, in the
respective scopes P, Py, ..., Py,. We assume the usual definitions of free and bound occurrences of
names, based on these binders; the inductively defined functions fn(P) and bn(P) denote those of
process P. Similarly, fc(P) and be(P) denote the free and bound channels of process P. Moreover,
n(P)=fn(P)Ubn(P) and c(P)=fc(P)Ubc(P). Substitutions, ranged over by o, are type-preserving
functions from variables to values (types are introduced below). For an expression e, eo is the
result of applying o to e, with the usual renaming to avoid captures. Relabellings, ranged over
by p, permit replacing a label £ with another label /. We denote such a relabelling with [l’/g].
The application of a relabelling to a term is defined thus:

(E0)[ ] 2= 0 [’ )

(6" 0)[ o] i= 0" off o] if €74

Tpi=z

wrongp := wrong

((vn:T) P)p := (vn:Tp) Pp

(case v of U1 _(x1):Py;...;0n-(xy):Py)p := case vp of L1 _(x1):(P1p);...;lnA(xn):(Pnp).

For the remaining (value and process) constructors, relabellings act as simple homomorphisms.
Substitution and relabelling have the highest operator precedence, parallel composition the lowest.

To rearrange processes we use the following notion of structural equivalence that is extended
to deal with if-, case-, and let-constructs.

Definition 2.1 Structural equivalence, written =, is the smallest relation preserved by parallel
composition and restriction, which satisfies the axioms below:

P =Q, if P is a-convertible to Q
PIO=P,P|Q=Q|P,P|(Q|R)=(P|Q)|R

(vn:T)0 =0, (vni:T1) (vna:Ts) P = (vno:Ts) (vni:Ty) P, if ny # no
(wn:T)(P|Q)=P| (vnT)Q, if n & In(P)

if [klzkl] then Pl elif [kl :kg] then P2 else P3 = Pl

if [kgzk'l] then Py elif [kgzk'g] then P, else P3; = P, Zf k‘17ék'2

if [kzkl] then P elif [ksz] then P; else P; = Ps, Zf k1 ;ék';ékg

case {;_v; of b _(z1):Pr ;... ;Zj_(a:j):Pj el (T): Py = P]’{Uj/:cj}
case v of €1_(z1):P15...;lm-(2m):Pm = wrong, if v#AL; v; for any j€ 1..m and value v;
let (z1..2,) = (vi..vm ) in P = P{VF};

let (z1..2, ) = v in P =wrong, if v£(vy..vy ) for any values vy .. vy,.

In Table 2 we give typing rules for values and processes. Types are introduced for essentially
three reasons: (i) they allow us to cleanly define some abbreviations, (ii) we use them to give a
typed semantics of Qjeblik, and (iii) they allow us to formally prove the main result of the paper
using typed behavioural equivalences. Abusing the notation for sets of names and the correspond-
ing types, we use K and C also as type constructors, where channel types are parameterised over
the type of value they carry. For variants and tuples we use standard notations (c.f. [San98]). In
a recursive type puX.T, occurrences of variable X in type T must be guarded, i.e., underneath
variant, tuple, or channel constructors. We often omit the type annotation of restriction, when it
is clear from the context or not important for the discussion.

A type environment T is a finite mapping from variables to types. A typing judgement T+ P
asserts that process P is well-typed in T', and I" - v:T that value v has type T in I'. We say that
a type environment I' is closed if all names mentioned in I' are of type channel C(T") or of type
key K. We only consider closed terms, i.e. terms which are well-typed in some closed typing I'.

As expected, the typing in Table 2 satisfies all basic fundamental properties of type environ-
ments such as: weakening, contraction, substitution, and narrowing.



Iz)=T

(T-BAS) 7
[ FouT{*XT/x} F'FopX.T
(T-rRECL) —F X T (T-REC2) i T7
'+ovT F'tv:T; VYiel..m
(T-VAR) T ] (T-TUP) o om ) (Th . Ton)
I,eC(T)FP reKkFP
(T-Resl) = 0.cm)) P (T-ReS2) k) P
TP, TFP r-P _
(T-PAR) — 5T (T-REP) 775 (T-NIL) 75
[+ eC(T) T,zT+ P T eC(T) TFol
(T-Ine) TFc).P (T-Our) TFa
(T-IF) F"k,kl,k2CK F"Pl,Pg,Pzg
Ik if [k=Fk1] then Py elif [k=k-] then P; else P3
Tro:(Ty..Tw) T,o1Th,...,2;mTm - P
(T-LeT) Fklet(zy..2zm)=vinP
(T-CasE) Pro:[i:Ts. . 50m: T Dz, T; P, Viel..m

Tk casevof £1_(x1):P;...;lmi(Tm):Pn

Table 2: Typing for Values and Processes




(INP) c(z).P N P{/,} (REP) le(z).P N PL/a} | Le@) P
_ (v3T)ev , _

(Our) ——=—— (OpEN) £ — ”f~n§v)\{q,c}
cv — 0 (V’I’L:T) P (vn:T,§:T) cv p!

(Co) _Pr WD b g Py Gfa(By) =0

P | P, — (v@T) (P | P3)

P 5 Pl bo(p)Nin(Py) =0

(PAR) m
Pl | P2 — Pll | P2
K /
(REs) P —P i n & n(u)
(vn:T)P — (vn:T) P’
(Test-1) PP ky =k
if [k=k] then P, elif [k=k,] then P, else Py 5 P!
(Trsr-2) P, 5 P ki # k= ko
if [k=k1] then Py elif [k=k,] then P else P; —— P}
(Tesr-3) P, 5 P} ki # k # ks
if [k=Fk1] then P, elif [k=k,] then P, else P; —— P}
v Iz .
(CASE) Pi{’f;} — Q Jjel..m
case £;_v of l1_(x1):Pr;...;lm-(Tm):Pm SNy
(LET) P{Ul"vm/xl--xm} L) Q

let (z1..2m )={(v1..0p)inP L)Q

Table 3: Labelled Transition System for La™.

2.2 Operational and Behavioural semantics

Table 3 shows the transition rules for Lx™ in an early style; the symmetric rules of (CoMm) and
(PAR) are omitted. Labelled transitions are of the form P - P’  where action p is: T (inter-
action), cv (free input), (vi:T) v (output at ¢ of value v containing private names 7 of type T,
which we often omit), where c is the subject and v the object. The functions fn(-), bn(-), n(+), fc(+),
be(-), and c(-) are extended to actions as usual. Relation = is the reflexive-transitive closure of
—5; =% denotes = N =; == denotes == if u # 7, and = if = 7. For any relation R on

processes, —s denotes R —R, and =% the reflexive-transitive closure of —sx.
The typing in Table 2 is preserved under T-actions, which are also called reductions.

Theorem 2.2 (Type Soundness) Let I' be a closed type environment.

1. If T'F P then P # @ where Q contains wrong.
2. IfTFPand P = Q, then T F Q.



The proof of the above result is standard (see for instance [San98]).

A crucial notion in a process calculus is that of behavioural equality between processes. We focus
on bisimulation-based behavioural equivalences, precisely on (weak) barbed bisimulation [MS92].
Barbed bisimulation can be defined in any calculus possessing: (i) an interaction relation (the 7-
steps in the m-calculus), modelling the evolution of the system; and (ii) an observability predicate
Je for each channel ¢, to detect the possibility of a process to accept a communication with the
environment at ¢. We recall that in asynchronous calculi only output actions are observed [ACS98]
because the environment has no direct way of knowing if the message it has sent has been received.

Definition 2.3 (Asynchronous observability) We write P |. if there is a derivative P', and

an output action p with subject ¢, such that P-*5P'. We write P |. if there is P' such that
P = P'" and P'|..

Definition 2.4 (Barbed bisimilarity) A symmetric relation S on processes is an barbed bisim-
ulation if P S Q implies:

o If P-I5P' then there exists Q' such that Q = Q' and P' S Q.
o If P . then Q ..

Two processes P and Q are barbed bisimilar, written P = Q, if P S Q for some barbed bisimulation

S.

Barbed bisimilarity equips a global observer with a minimal ability to observe actions and/or
process states but it is not a congruence. By closing barbed bisimilarity under contexts we ob-
tain a much finer relation. Since Lzt is a typed calculus, only well-typed contexts should be
considered [PS96, SWO1].

Definition 2.5 (Context) A (monadic) context C[-] is a process expression with a single hole
in it, written [-]. Given a process P, C[P] is the process obtained by plugging the process P into
the hole. A context C[] is static if it is structurally equivalent to (vn) (P | [']), for some P and n.

Definition 2.6 Let I' and A be two type environments. We say that T' extends A if dom(A) C
dom(I") and T’ - n:A(n) for all names n on which A is defined. We say that T' is a closed extension
of A if T is closed and extends A.

Definition 2.7 Let I' and A be two type environments. We say that C[-] is a (A/T')-context if
A F C[] is a valid type judgement when the hole [] is considered as a process and the following
typing rule for [-] is added:

O extends T

(T-HOLE) or[]

(in the rule, T is one of the given type environments and © is a metavariable over type environ-
ments).

Definition 2.8 (Typed barbed relations) Let T be a typing, and P and Q two processes such
that T - P,QQ. We say that P and () are barbed T'-equivalent, written P ~p @Q, if for each
closed type environment A and static (A/T)-context C[-], we have C[P] = C[Q]. We say that
P and @ are barbed I'-congruent, written P =Zp Q, if for each closed type environment A and

(A/T)-context C[-], we have C[P] = C[Q].

Context-based behavioural equalities like barbed congruence suffer from the universal quantifi-
cation on contexts. Simpler proof techniques are based on labelled bisimulations whose definitions
do not use context quantification. These bisimulations should imply, or (better) coincide with,
barbed congruence. Labelled bisimilarities for typed barbed relations must take into account types.
A typed relation is a set of triples (A; P; Q) where A is a closed typing and A F P, Q. Below, we
give a typed variant of Amadio, Castellani, and Sangiorgi’s asynchronous bisimilarity [ACS98].



Definition 2.9 (Typed bisimilarity) Typed bisimilarity, is the largest typed relation S such
that (A; P;Q) € S implies:

1. If P =5 P!, then there exists Q' s.t. Q = Q' and (A;P;Q') € S.
vin:T) v )

2. If P (—> P', with n N fn(Q) = 0, then there exists Q' such that Q % Q' and
(A, mT); P1;Q'") € S.
3. If
(i) T is a closed extension of A,
(ii) T Fe:C(T) and T + u:T,
(iii) P =5 P', with fc(v) Nfe(P | Q) = 0,
then there exists (' such that:
(i) either @ == Q' and (T; P';Q") € S,
(i) or @ = Q' and (T; P';(Q' |cv)) € S.

Let T be a closed typing with T+ P,Q. We say that P and @ are typed bisimilar at T, written
P rr Q, if (T; P;Q) is contained in typed bisimilarity.

The bisimilarity above is early on keys and ground on channels. Indeed, in the input clause, there
is an implicit universal quantification on the received keys, whereas we always assume to receive
fresh channels by requiring fc(v) Nfc(P | Q) = . In asynchronous calculi without name testing,
ground and early bisimilarity coincide [San00, Hon92]. Since we only have testing on keys (i) it
makes sense to have the simpler ground clause on channels, (ii) our bisimilarity coincides with
its (channel) early variant in which the requirement fc(v) Nfc(P | Q) = 0, in the input clause, is
omitted. The proof that this early variant is a congruence (on well-typed contexts) is essentially
the same as that for untyped asynchronous early bisimilarity [ACS98]. As a consequence, =
implies ~r and therefore 2.

Later on, we will work with processes containing channels which can be used by the environment
only in output. We model this constraint as follows:

Definition 2.10 (Barbed I';C-relations) Let C C C. Barbed C-bisimilarity, written e, is the
largest symmetric relation on processes, such that P ¢ Q implies:

1. If P =5 P', then there ezists Q' such that Q = Q' and P' ¢ Q'
2. If P|., with c ¢ C, then Q..

Let T be a typing, and P and Q two processes such that I' = P,Q). We say that P and @ are
barbed I';C-equivalent, written P ~r.c Q, if for each closed type environment A and static (A/T)-
context C[-] not containing names in C in input position, we have C[P] =¢ C[Q]. We say that P
and @ are barbed I';C-congruent, written P =p.c Q, if for each closed type environment A and
(A/T)-context C[-] not containing names in C in input position, we have C[P] =¢ C[Q].

Roughly, C denotes the set of channels which cannot be used in input by the environment. In
Definition 2.10, when C=0, we get the standard definitions of typed barbed bisimilarity. If C={s},
as abbreviations, we write 2p,s for =p,c and ~r for ~p,c. Due to the restriction on the contexts,
it holds that Sv =r.; 0 and, by asynchrony, s(z).0 =r.; 0. Below, we give the labelled counterpart
of barbed I';C-equivalence.

Definition 2.11 (Typed C-bisimilarity) Typed C-bisimilarity is the largest typed relation S
such that (A; P; Q) € S implies:

1. If P =5 P!, then there exists Q' s.t. Q = Q' and (A; P;Q') € S.
(vn:T) ev (vn:T) ev

2. If P —————— P', with ¢ € C and nNin(Q) = 0, then there exists Q' such that Q ——
Q' and ((A,n:T); P";Q") € S.
3. If



(i) T is a closed extension of A,

(i) T Fe:C(T) and T + v:T,
(iii) P = P', with fc(v) Nfe(P | Q) = 0,
then there exists (' such that:

(i) either @ == Q' and (T; P';Q") € S,
(i) or @ = Q" and (I'; P';(Q' |cv)) € S.

Let T be a closed typing with T'+ P, Q. We say that P and Q are typed C-bisimilar at T', written
P =rc Q, if (T; P; Q) is contained in typed C-bisimilarity.

When C={s}, for some channel s, we abbreviate ~r.c with ~r.

Theorem 2.12 Let I' be a type environment, C a set of channels, and P and @Q two processes
such that ' = P,Q. Then, P ~r,c Q implies P ~1.c Q).

ProoF. [Sketch] We have to prove that mr.c is preserved by well-typed static contexts. Since
Lzt is an asynchronous calculus without testing on channels, ~r.c coincides with its early variant
where the requirement fc(v) N fe(P | Q) = @, in the input clause, is omitted. The proof that this
(early) variant is preserved by parallel composition and restriction is standard (parallel composition
require some care because the processes in parallel must not contain input along channels in C).
So, also ~r,¢ is preserved by parallel composition and restriction. Since ar,c implies = it follows
that ~p,c C ~p.c. O

It is easy to prove that ~r implies ~r,c and ~r implies ~p.c.

Finally, in Lemma 2.15 we give an algebraic law which will be used to prove one of the crucial
results of the paper (Theorem 8.1). This law is based on special processes called link that behave
as name buffers receiving values at one end and retransmitting them at the other end (in the
w-calculus literature, links are sometimes called forwarders [HY95] or wires [SWO01]). A similar
law has already been used in a typed w-calculus with the name discipline of uniform receptive-
ness [San99a.

Definition 2.13 (Link) Given two channels p and q withT' F p,q : C(T'), we call link the process
'p(u).qu, abbreviated pv q.

In order to prove Lemma 2.15, we need the following technical lemma.

Lemma 2.14 Let p and q be two channels, @ a process in which ¢ may only appear in output
position, and T a type environment such that T+ Q and T+ p,¢:C(T). Then

Q{Pla} = (v¢:C(T)) (Q | gv p).

PROOF. See the proof in Appendix A.1. O

Lemma 2.15 Let T' - pv, for some type environment T'. Let q € fc(v) with T' - ¢:C(T). Let
r & c(v) and w =v{"/;}. Then

pv &p (vr:C(T)) (pw | r>q).
PROOF. We prove that for any well-typed context C[-], it holds that:
C[pv] = C[(vr:C(T)) (pw | r > q)].

The prove is by structural induction on the context C[-]. The most interesting case is when
C[] =[] | R for some process R. So, in order to prove that

pv | R= (vr:C(T)) (pw |r>q) | R



a,b :=0 object
|al(ay..an) method invocation
| alem method update
| a.clone shallow copy
| a.alias(b) object aliasing
| a.surrogate object surrogation
| a.ping object ping
| s,z,y,2 variables
|letz:A=ainb local definition
| fork(a) thread creation
| join(a) thread destruction

0 == [lj=mjljes object record
m; =q(s;:A, j:B;j)b; method
A,B :=[1;:B;=Bjljes object record type
| Thr(A) thread type

Table 4: Djeblik Syntax and Types

we show that the relation
S={(pv|R, (ur:C(T)) (pw | r>q) | R)} U =

is a barbed bisimulation up to =. The requirements on the barbs are easily satisfied. As for the
bisimulation game on silent moves, the only interesting case is when there is a communication

along p, that is, when R ﬂ>R’ . In this case we get, up to structural equivalence, the pair of

processes
({4}, (wr:C(T)(Q]r>q))
where Q = R'{W/r}. By Lemma 2.14 we can conclude. O

3 jeblik: A Concurrent Object Calculus

In this section, we present @Djeblik [NHKMOO], a typed abstraction of Obliq designed to study
object migration. @Djeblik-expressions and @jeblik-types are generated by the grammar in Table 4,
where a ranges over (jeblik-terms, 1 over method labels, m over method bodies, s,z,y,z over
variables, O over object records, and A, B over types. The type language extends the one of
the imperative object calculus [AC96] by thread types Thr(A4). Pairs #;:B; denote sequences
x1;:B1; ..y, :By;. Function types A—B do only occur in object types [lj:gj—)gj]jej, so they are
not first-class types. Yet, we sometimes abbreviate such object types by [1j:4;];es to clarify that
a type is not a thread type. Typed terms are defined by adding type annotations to all binding
occurrences of variables: in let-expressions and in method declarations.

For the sake of simplicity, compared to Obliq, in @jeblik we omit ground values (like numbers,
booleans, strings, etc.), data operations, and procedures, we restrict field selection to method
invocation, we restrict multiple cloning to single cloning, we omit flexibility of object attributes,
we replace field aliasing with object aliasing, we omit explicit distribution, and we omit exceptions
and advanced synchronisation, so we get a feasible, but still non-trivial language. As in Obliq,
computation follows the call-by-value evaluation order. In particular, in the following, whenever
we use a term a, we implicitly assume that we have first evaluated a to some actual value, i.e. in
most cases to an object reference.
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Objects

An object record [l;=m;];cs is a finite collection of updatable named methods 1;=m;, for pairwise
distinct labels 1;. In a method ¢(s,#)b, the letter ¢ denotes a binder for the self variable s and
argument variables # within the body b. Moreover, every object in @jeblik comes equipped with
special methods for cloning, aliasing, surrogation, and ping, which cannot be overwritten by the
update operation.

Method invocation a.1{¢) with field 1 of the object a containing the method <(s, )b results in
the body b with the self variable s replaced by (a reference to) the enclosing object a, and the
formal parameters & replaced by (references to) the actual parameters é of the invocation.

Method update a.l<=m overwrites the current content of the named field 1 in object a with
method m and returns a reference to the modified object.

The clone operation a.clone creates a clone a’ of a and returns a reference to a'.

The operation a.alias(b) replaces object a with an alias to b, written a>>b, regardless of
whether a is already an alias or still an object record; if b itself is an alias, e.g. b>>¢, then we
consequently and naturally create an alias chain a>>b>c. From the computational point of view,
requests arriving at a after the operation a.alias(b) should be forwarded to b. The operation
a.alias(b) returns a reference to b.

The operation a.surrogate represents our abstraction of migration: by calling it, object a is
turned into a proxy for a copy of itself. Surrogation is implemented by providing a uniform
method surrogate=¢(s)s.alias(s.clone). It returns a reference to the just created clone. Behaving
like standard methods, surrogation is forwarded by aliased objects. This is necessary to cor-
rectly mimic migration: an object should be surrogatable more than once, so double-surrogation
a.surrogate; a.surrogate (where ; denotes sequential composition, as defined below) should be equiv-
alent to a.surrogate.surrogate. Without forwarding, the surrogation of an already surrogated object
would mistakenly surrogate the proxy.

The operation a.ping is implemented by providing a uniform method: ping=¢(s)s. Thus, a.ping
returns the “identity” of the object o resulting from the evaluation of a; note that, due to aliasing
and forwarding, this could be the “identity” of the current endpoint of an alias chain potentially
starting at object 0. We add the a.ping method uniformly to @jeblik objects because it allows us to
conveniently express the safety of surrogation/migration as an algebraic equation. Furthermore,
such a method could be used by clients for garbage collection of references to surrogated servers
by interrogating the current identity and using it directly instead of the former indirect reference.

Scoping

Apart from the binding of variables in method bodies, @jeblik also offers explicit scope declarations.
An expression letxz =ainb first evaluates a, binding the result to z, and then evaluates b within
the scope of the new binding. We use the standard inductive definition fv(a) to denote the free
variables of term a with respect to our two forms of binding. @jeblik only admits non-recursive
expressions letz =ainb, i.e., with z ¢ fv(a). Then, a;b denotes letz =ainb, where x ¢ fv(b).

Concurrency

While objects represent persistent stateful structural entities, computational activity takes place
within threads. In addition to the main thread that is initially started up with the execution of
a term, new separate threads can be created by the fork command. The term fork(a) returns a
new thread identifier to denote the thread evaluating a. The result of a fork’ed computation is
grabbed by the join command. If a evaluates to a thread identifier, then join(a) potentially blocks
until that thread finishes and returns the thread’s result, or blocks forever, if a join on thread a
was already performed earlier.
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Self-Infliction

The current method of a thread is the last method invoked in it that has not yet completed. The
current self of a thread is the self of its current method. An Qjeblik operation is self-inflicted, also
called internal, if it addresses the current self; an operation is external if it is not self-inflicted.
However, self-inflicted operations can be invoked from within methods not only literally on the self
variable s, but also indirectly by an expression that evaluates to the object itself. For instance, in

let x =[1=¢(s, 2)z.clone]inz.1(z)

the call z.clone will be self-inflicted when it is finally executed.
Based on the concept of self-infliction, Obliq, and therefore also our abstraction @jeblik, sup-
ports the notions of serialisation and protection of objects.

Serialisation In concurrent object-based settings, the invariant that at most one thread at a
time may be active within an object is often called serialisation. The simplest way to ensure
serialisation is to associate with an object a mutex that is locked when a thread enters the object
and released when the thread exits the object. However, this approach is too restrictive, for
instance, it prevents recursion. Based on the notion of thread, so-called reentrant mutexes, as
in Java, can be used to allow an operation to re-enter an object under the assumption that this
operation belongs to the same thread as the operation that is currently active in the object. In
Obliq, however, the more cautious idea of self-serialisation requires, based on the above notion of
self-infliction, that the mutex is always acquired for external operations, but never for self-inflicted
ones. Note that this concept allows a method to recursively call its siblings through self, but it
excludes the kind of inter-object mutual recursion, where a method in an object a calls a method
in another object b, which then tries to ‘call back’ another method in a.

Protection Based on self-infliction, objects are protected against external modifications in a
natural way: updates, cloning, and aliasing are only allowed if these operations are self-inflicted.

In Obliq, object migration is supposed to be correct only for both protected and serialised
objects. So, since we are interested in proving the safety of object migration, all objects in (our
abstraction) Jjeblik are both protected and serialised.

Finally, in Table 5, we present the rules for static typing. The typing rules themselves are not
surprising. The operations clone, alias, surrogate, ping, and update, all yield a result of the same
type as the object that they address. While fork packs a type into a thread type, join unpacks
it accordingly. The rules for variables, let, and objects, and invocations are standard. The usual
properties hold, e.g., the free variables of a term are all captured by the type environment.

As for our type system for the m-calculus, all the standard properties of weakening, contraction,
substitution, and narrowing hold for the typings in Table 5.

4 Towards a formal semantics for @jeblik

Although, at first sight, the informal semantics of @jeblik is reasonably clear, its formalisation
requires one to consider even the slightest detail. In particular, the behavior of alias chains (that
is chains of alias nodes), needs to be clearly spelled out. In our previous work [NHKMO00, Mer00],
we already showed that the semantics of alias nodes, as implemented in Cardelli’s Obliq, gives rise
to an incorrect behavior of object migration. Roughly, the reason is because, in Obliq, alias nodes
support a too strong form of both protection and serialization. As a consequence, in [NHKMO00,
Mer00] we proposed a variant of Cardelli’s semantics in which alias nodes have a milder form of
both protection and serialization. In this section, we explain our proposed semantics and prepare
the ground for its formal definition in terms of m-calculus. In Sections 4.1 and 4.2 we first explain
a few general concepts about alias chains, then in Section 4.3 we show the design choices for our
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(T-OBJ) vieJ F’Sj:A’jf:gf F biﬁj _ A= [ljiéj—)gj]]'EJ
'k [ljzg‘(Sj:A,i'j:Bj)bj]jeJ - A
(T-INV) Pha: B~ Bilies _rr by.: By, keJ

'k alk<bk) : Bk

I'kFaAd A= [lj:éj—)gj]jeJ r, s:A,:ﬁ:gk F b:ﬁk keJ

(T-Upn) —=
I'kalg<sc(s:A,2:Bp)b: A

I'FaA A= [lj:Aj]jej
't a.ping: A

(T-PING)

I'kFaAd A= [lj:A]']jEJ

(T-Cro)

I'+aclone: A
'k a, b:A A= [lj:Aj]jeJ

(T-AL1) I'F a.alias(b) : A
(T—SUR) I'kaA A= [lj:Aj]jEJ

I' F a.surrogate : A

Table 5: Typing Rules for @jeblik

semantics of alias nodes. We address the reader to [NHKMO00, Mer00] for a full explanation about
the differences between our aliasing semantics and Cardelli’s original one.

4.1 On the stability of alias chains

As a matter of fact, according to the operations’ character with respect to self-infliction and the
intended node of action, a node x in an alias chain can be unstable, which means that if it currently
points to node y, it may later on point to a different node z. In order to clarify this phenomenon,
we distinguish two cases based on the notion of a task, which is the run-time entity that is created
by method invocation within a single object. A thread may then actually be seen as a stack of
tasks connected via invocations. Now, a node can be active, in which case it contains running
tasks, or not. The punchline of this subsection is then that an alias node can not become stable
before it has terminated its current tasks.

Below, we introduce pictures where we use single/double boxes to denote inactive/active nodes,
respectively, and single/double arrows to denote unstable/stable aliases, respectively. Furthermore,
dashed boxes and dotted arrows denote unspecified respective entities.

Inactive Nodes: No Tasks By definition, the only way to receive a self-inflicted request is to
have already at least one local task running. In other words, if there is no local task, then each
incoming request is doomed to be external. Now, let us focus on the example term:
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let z = [1= “bar”]in
lety =[1=“foo”]in
let x = [1=¢(s,w)s.alias(w) Jinz.1{y); z.1( z)

after it carried out the invocation z.1{y), that is, when the object referred to by z has turned
itself into an alias for y and then terminated its activity. We depict the situation as follows

________ )IE):>L|J LH

where, in general, the node x may itself be referred to by other aliases, while y and z may be
either an alias or an object record. In fact, the alias 2>y is stable in the very sense: no re-aliasing
operation on x to another node will ever possibly take place since it could only be carried out
in a self-inflicted way by one of its own methods, but any request to such a method potentially
starting such a self-inflicted operation, e.g., by calling x.1( 2}, is itself forwarded to y such that it
can never take place in z.

Active nodes: at least one task As an example, let us first consider the term

let z =[1= “bar”] in
let y =[1=“foo”]in
letz = [1=¢(s, w)s.alias{w); “bla”]inz.1(y)

just after object  has accepted the request for method 1 and turned itself into an alias for y. Since
2 continues to operate on itself, according to “bla” in method 1, z is an active alias node:

T Yy z

The alias >y is marked as unstable since “bla” may contain further self-inflicted requests, e.g.,
to perform a re-aliasing or a cloning. Thus, if “bla” calls s.alias{z) or s.clone, we get

>
........ . @%@ 7
z Y z

x ) T

and such changes may continue as long some current task in z is active. Here, the re-aliased =
remains active, thus unstable, until all current tasks in z, in our example according to “bla”, have
terminated. Note that the cloning of an active unstable alias z>>y provides a new inactive stable
alias >y, because only the state of x is copied, not its tasks.

Generalising the above example, we may consider the case where several tasks of the current
thread are running in an alias or an object. However, by the definition of synchronous method
invocation, only one of them may be active—mnamely the one on top of the thread’s call-stack,
while the others must be blocked. Now, note that it is the active task or any of its ancestors in
the call-stack who turned the current node into an alias (in the example it is method 1); otherwise,
the node would be stable and the current tasks would not exist, but have been created in one of
the successors of the stable alias node.

4.2 Cyclic alias chains

Obliq does not prevent the programmer from (either consciously or accidentally) introducing, via
substitution, self-aliases or alias chains with cycles. Consider the following example:

letz =[k=id, l=¢(s, z)s.alias(z) ] inz.1(z}); z.k.
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By calling z.1(z), the aliasing operation z.alias(z) is carried out giving rise to the cyclic alias
chain z>>x. As a consequence, the following external method call z.k will give rise to a diverging
computation.

4.3 On forwarding requests within alias nodes

In this section, we describe the behaviour of single alias nodes in @jeblik by addressing four crucial
questions.

What is the current self of forwarded requests?

Who is in charge of sending the result of a forwarded external request?
When does the forwarding take place?

Which requests are forwarded and which requests fail in an alias node?

-

Our semantics behaves as follows:

What? Let a be an alias node forwarding requests to b, that is, a>b. Let ¢ be a third object
invoking a method of a. Then, when serving the (external) request, the alias a simply forwards
the request to b, and ¢ is still the current self. Roughly speaking, it is as if ¢ invokes directly a
method of b. The self-inflicted case is trivial because then a = c.

Who? As above, let a>>b and ¢ be a third object invoking a method of a. Since alias nodes simply
forward requests unchanged, also the transmission of the result of the request is delegated to b. As
a consequence: should the request in a have required a mutex, then the mutex can already be
released once the request has been forwarded to b.

When? When addressed to stable alias nodes, incoming external requests do not have to wait
until previously forwarded requests (there can only be external ones in this case) have successfully
signalled termination from their point of action. However, when addressed to unstable alias nodes,
incoming external requests must wait for the termination of previous (external and self-inflicted)
requests.

Which? Protected external requests are supposed to fail only when addressed to non-aliased
nodes, thus only in endpoints of alias chains.

e Method invocations (as well as pings and surrogations) are always forwarded (by transitivity
to the endpoint of the chain, if it exists).

o Self-inflicted cloning and self-inflicted aliasing are performed at the alias node; external
cloning and external aliasing are forwarded because they can possibly reach another node in
the alias chain where they are self-inflicted and therefore executable.

e Self-inflicted update requests are forwarded. External update requests are forwarded because
they may reach a (non-aliased) object that serves them.

5 A translational semantics for @jeblik

In this section we give a translational semantics of @jeblik into LzT according to the informal
semantics given in Sections 3 and 4. In addition to the syntax of Lz we use standard abbreviations
for:

e polyadic input a(z ..xz,).P def a(y).let(zy..2, ) =yin P where y ¢ fn(P). We will also
write C(T} ..T,) instead of C((T} ..T, )) denoting the type of a channel carrying a tuple.

e polyadic case destructor £_(z1 .. xzy):P def L_(y):let (z1 ..z, ) =yin P, where y & fn(P);
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[a.clone]} = (vq) ([al} |a(y, ) . Hlclnp,K) )

[aalias®)]5 < (vaea) (([alh, | (v, k) (1016 | go(2,ka) ali(2,p), K)) )
[alj=s(s, 2015 < (vg) (Tl |aly, K).(vt) (1 t(s, 7, k). [D] | Gupd; 8, ), K')) )
[ali(ar an)s & wagrq0) ([al}] aly, ko)-([ar 162 | qa (o, ko) ([an 3 |-

Gn (B, ) GV (21 20, ), en) ) )

[a.surrogate]y = (vq) ([alk | a(y, k') . G(sur_p, k') )
[a-ping]s = (vq) ([al} | a(y, k') -T(png-p, k') )
[letz =ainb]k d=Ef(

[2]5 e,
[fork(a)]h = ( | q(z,k").t(r, k") 7 (2, k"))
Lioin(®0) 15 = (vq) ([b]% | a(t,K) . E(p,K') )

(
(
va) ([alt | a(a,k).[b]5)
k
)

Table 6: Translational semantics of @jeblik — Clients, Scoping, Concurrency

e parameterised recursive definitions A(zy ..xy) P and instantiation A(xy ..z, ), which

can be faithfully represented in terms of replication [Mil93]. The typing rule associated with
a recursive definition is the standard rule, requering the body to be well-typed under the
assumption that the process name is well-typed.

The semantics, as presented in Tables 6 and 7 is a mapping parameterised on two names: in a
term [[a]]’;, the channel p is used to return the term’s result, while the key k represents the term’s
current self, which is required to deal with self-infliction. In all phases of the translation, whenever
we create v- or input-bindings, we assume that there are no name-clashes. The essence of the
semantics is to set up processes representing objects that serve clients’ requests. Different requests
for operating on objects are distinguished by corresponding labels cln, ali, upd;, inv;, png, and
sur. We explain the semantics by showing how requests are generated by clients, and then how
they are served by objects. Scoping and concurrency are explained along the way.

We present the translation without type annotations in restrictions for sake of readability.
However, to make the translation formal such type annotations should be added. In Section 6.1
we present a translation of @jeblik types to w-calculus types, that can be used to add the necessary
type annotations to the translation of an object, based on the type of the object (see [KS98]).

Clients In Table 6, the current self k of encoded terms is ‘used’ as the current self of the
evaluation of the first subterm in left-to-right evaluation order. All the translations in Table 6
follow a common scheme. For example, in the translation of a method invocation [a.l;(a1 .. ay ) ]]Ili,
the subterms a,a; ..a, have to be evaluated one after the other: the individual evaluations use
private return channels g, q; . . ¢,, which are subsequently asked for the respective results y, z1 .. x,,
but also for the respective new current self &, k1 .. k,, to be used by the next evaluation. After the
last subterm a, has returned its result, the accumulated information is used to send a suitable
request with label inv; on self-channel y of object a, also carrying the overall result channel p
and the latest current self k,. Thus, the responsibility to signal a result on p is passed on to the
respective object waiting at y.

Scoping The semantics of let is analogous to [KS98] and represents the core of the call-by-value
evaluation order in that first a is evaluated, and then b possibly using the value of a. Here, in
addition, the evaluation of a passes on the current self k¥’ to be used afterwards.

Concurrency To fork a thread means to create a new activity running in parallel with the cur-
rent one(s), which is done using the parallel operator. Upon thread creation, a fresh key is created
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to become the forked thread’s current self. Sometimes, we use [a]¥ to abbreviate (vk) ([a]F).
The term [fork(a) ] immediately returns on p a private name ¢, which can be used to retrieve the

value of a from the forked thread. Therefore, [join(b)]* sends its own result channel p, together
with its latest current self k', along the value of b.

Objects The semantics [Q]% of an object O := [lj=¢(s;,%;)b;]jes, as shown in Table 7 (again
along the style of [KS98]), consists of a message that returns the object’s reference s together
with the current self k£ on channel p, a composition of replicated processes that give access to the
method bodies [b; ], and a new object process newOg( s, ) that connects invocations on s from
the outside to the method bodies, which are invoked by the trigger names t. Correspondingly, new
alias processes of the form newAq( s, s, ) connect invocations from the outside to a target process
listening at s,. Inside newOq(s,7) and newAq(s, s, ), several private names are needed: mutezes
m = me,m; are used for serialisation; the (internal) key k; is used to detect self-infliction; the
(external) key ke is used to implement serialisation in a concurrent environment (see later on).

Our semantics associates an object manager OM to each object, and an alias manager AM to
each alias. Before entering into the details of the translation in Table 7, we provide, in Figure 1,
a more abstract overview of the lifetime of an object manager, possibly turning it into an alias
manager, by emphasising the relevant states passed. Both object and alias managers listen on their
reference channel s for requests. Since objects (resp. aliases) in @jeblik are serialised, only one
request shall be active in an object (resp. alias), at any moment. Serialisation is implemented by
two mutexes m, and m;: the external one must be grabbed in order to get access to the manager;
the internal one precisely alternates with the external one and is used to intermediately save some
context information. External requests must grab the external-mutex me before being served,
which in turn brings the object manager from state OM! to state OM?. Then, if the request is
protection-critical it is discarded (state OM™), otherwise the manager commits to it and serves it
(in state OM®) until explicit termination (state OM'). In both cases, the object manager becomes
free again by releasing the external-mutex m, (state OM). Notice that self-inflicted requests can
only be served in state OM®. Furthermore, when serving self-inflicted aliasing requests, the object
becomes an alias and the object manager is replaced by an appropriate alias manager (in state
AMC®). AMEC is a transient state where the alias manager accomplishes all pending self-inflicted
requests; note that all of the latter were generated by the external request that is also responsible
for creating the alias. When this external request is completed, the manager terminates and
goes to state AM'. Afterwards, the mutex me is released and the alias manager becomes free
(state AMf). Only now, external requests addressed to the alias manager are treated again. They
must grab the external-mutex m, before being forwarded, bringing the alias manager from state
AM® to state AM?®. After grabbing me, external requests will be accepted and forwarded to the
alias target (state AM®). The alias manager becomes free again by releasing the external-mutex
me (state AMf). Finally, since alias managers always forward external requests, no self-inflicted
requests may be generated anymore. This explains why no self-inflicted requests are taken into
account in state AM®.

The following three paragraphs explain in detail how object and alias managers serve requests,
referring now directly to the translation semantics Table 7.

Pre-processing [k;i#k#ke]

Here, we explain how the serialisation of external requests is implemented. Upon creation of a
new object newO (or new alias newA), the fresh mutex channel m, is initialised. According to seri-
alisation, the intended continuation behaviour of an incoming external requests is blocked on m,,
once it enters a manager. The manager itself is immediately restarted and remains receptive.
Arbitrarily many requests can be blocked this way and compete for the mutex me once it becomes
available. A successfully unblocked request is resent to the same manager, but now carrying the
key ke, which allows the manager to detect that the request has grabbed the mutex. We call
pre-processing the procedure of intermediate blocking of requests. Alongside with the successful
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OMo( s, i, ke, ki, 7) % s(1, k). (wk*) (

if [k=Ki] then

OMo( 8,7, ke, k*, 1) | (vs*) (7(s*,k*) | newOo(s*,t) ) ;
AMo( s, m, ke, k*, Sa ) | T(Sa, k*) ;

case [ of cIn_(r (
(
Mo(s,m, ke, k*, t1 .. tj—1,t  tjy1 . . tn) | F(s,k*) ;
(
(
(

ali_(sa,r

)
)
upd;_(t',7)
)

o

inv;_(&,7) : OMo( s, m, ke, k*, 1) | 1;{(s,%,7,k*) ;
sur_(r) : OMq( s, m, ke, k*,t) | [ s.alias(s.clone) ]~ ;
png(r) : OMo (s, m, ke, k*, 1) | [s]F

elif [k=k.] then

OMo( 8,7, ke, k*, 1) | case [ of cIn_(r) : m;(k).me ;
ali_(sqa,7) :mi(k).me ;
apd () sy ) 7
inv; (Z,r) : CM[ (s, Z,r*,k*)] ;
sur_(r) : CM[[ s.alias(s.clone) ]%. ] ;
png-(r) : CM[[ s}
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CM[] E wr) ([ | 7 (g, k) oma(B7).(Fly, k) | )

AMqg( s, m, ke, ki, 5a) dzefs(l,k).(uk*) (
if [k=k;] then

—
S
»

*
~

—
S|

—~
V)
*
o
*
~
>
[¢]
<
>
©
—
»
*
»
o
~
~—

Table 7: Translational Semantics of @jeblik — Objects
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Figure 1: Object and Alias Manager Serving Requests

request, its former current self k is stored on the (internal) mutex m; for recovery after termina-
tion. This recovery is actually necessary since the original current self k is possibly required for
use later on by the sender of the request. Note that pre-processing also properly takes care of the
fact that competing requests may change the state of an object, and even turn it into an alias
by passing from OM® to AM€, so pre-processed requests should not be bound too early to some
object manager behaviour. By only resending a request once it has grabbed the mutex, it will be
handled by the current manager, not by the manager in the state of the moment when the request
originally entered the object. Notice that pre-processing in alias managers is not superfluous,
because there may be pending requests that have been pre-processed when s was connected to
an OM. Finally, pre-processing does not preclude the evolution of the system, that is, external
requests can be pre-processed at any moment (in any state) by both alias and object managers
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without affecting the state of the manager, so these transitions are completely ignored in Figure 1.

Serving external requests [k=k,|

Serialization and protection are required. Here, we explain how external requests, which have
already been pre-processed and have already grabbed the external mutex ms, are served by both
object and alias managers.

Object Managers (OM). When serving an external request, the manager OM is immediately
restarted with the same state except for the fresh internal key k*. The key k* must subsequently
be used as the current self when performing the current request. Later on, we will better explain
the use of k*.

Cloning, aliasing, and update, are critical operations. Once a respective pre-processed request
is consumed, the manager evolves from state OM® into state OM": the request and its former
current self k, stored on channel m;, are simply discarded by consuming mik and releasing 7.

Invocation, surrogation, and ping are non-critical operations. Once a respective pre-processed
request is consumed, the manager evolves from state OM? into state OM® implying that no other
external request shall be served (apart from pre-processing) until the current one has terminated.
In order to be notified of that event, we employ a call manager protocol, represented by the
context CM[-]: instead of delegating to some other process the responsibility of returning a result
on r, a fresh return channel r* is created to be used within [-] in place of r, such that the result
will first appear on 7*. Until this event, other external requests remain blocked, while internal
request may well be served. After this event, the manager evolves from state OM® into state oM,
where the former current self can be grabbed from m;, the result y be forwarded to the intended
result channel r (along with the former current self), and the mutex m. be released. In the
case of invocation (case inv;), the manager activates the method body bound to 1; along trigger
name t;. Note that (externally) triggered method bodies [b;], and also surrogation and ping
bodies [ s.alias(s.clone)] and [s], are all run in the context of the nonce k* (see below), which
is now the new internal key of the OM, so their further calls to s will be self-inflicted. This is
essential for surrogation, since cloning and aliasing are only allowed internally.

Alias Managers (AM). When serving external requests, alias managers, like object managers,
are immediately restarted with the same state except for the fresh internal key k*. External
requests that arrive at an active alias manager (in state AM?) will be simply forwarded (in state
AMP) without modification of the current-self k& (obtained by consuming k) to the aliasing
target s,. Finally, when releasing 7, the manager will evolve to state AME .

Serving self-inflicted requests [k=k;]

No serialization or protection is required. Here, we explain how self-inflicted requests are served
by both object and alias managers.

Object Managers (OM). For each field, the manager may activate appropriate instances of
method bodies (case inv;: the method body bound to 1; along trigger name ¢;) and administer
updates (case upd;: install a new trigger name ¢'). Cloning (case cln) restarts the current object
manager in parallel with a new object, which uses the same method bodies t, but is accessible
through a fresh reference s*. In all cases except aliasing, an object manager OM is restarted with
a fresh internal key k*. Aliasing (case ali) starts an appropriate alias manager AM instead of re-
starting the previous object manager OM. Surrogation and ping (cases sur and png) are modelled
according to their uniform method definitions.

Alias Managers (AM). To perform self-inflicted requests the alias manager may only be in the
transient state AMC. Cloning and alias requests are allowed and treated as in the respective clauses
of object managers, but restarting AM instead of OM. Invocation, surrogation, update, and ping
requests are forwarded to the aliasing target s, without modification of the current-self k.
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R(X) ¥C(X,K)

M(B; .. B,—B) “[B,]..[B.],R(B])

[1;:B;=Bjlies 1=
cln R(X)
ali (X,R(X))
updj:( C(X, M(Bj—>Bj), K),R(X))
PO Gy (M(BBy)) )
sur R(X)
png R(X)

JjeJ

[Thr(4)] € C(R([A]),K)
[T,2:A] €[T],2:[A]

Table 8: Translation of @jeblik-types

Nonces (vk*)

We use nonces k* to implement self-serialisation between self-inflicted requests. When serving
self-inflicted and external requests, managers OM and AM are always restarted by replacing the
current self with a fresh key k*. According to our semantics, program contexts will never give
rise to several competing (external or self-inflicted) requests, but, when reasoning within arbitrary
L7T contexts, as we do in Section 8.1, their existence must be taken into account. Therefore,
we add another layer of protection to increase the robustness of serialisation: each time a (self-
inflicted or external) request enters a manager, a fresh key k* is created to be used in the restarted
manager; this key must subsequently be used as the current self for all activities enabled by the
current request. Thus, the consumption of one of the competing pending requests renders the other
competitors external. Notice that pre-processing must not reinitialise the key k; of the restarted
manager: a currently self-inflicted operation interleaved by pre-processing might be hindered to
proceed, because it could unintendedly become external.

6 Properties of the translational semantics

This section is devoted to show two fundamental properties of our translational semantics: (i) the
translation preserves well-typedness; (ii) objects (and alias) managers are unique.

6.1 The Lr*-translation preserves well-typedness

A translation of the type system of jeblik into the type system of the 7w-calculus has several merits:
(i) it strengthens the soundness of our semantics of terms, as in Theorem 6.1; (ii) Qjeblik’s type
system itself is provided with some more formal underpinning, as demonstrated in Proposition 6.2;
(iii) we may employ typeful reasoning about terms, of which we give examples in Proposition 6.3.
The translation of types, shown in Table 8, is similar to the ones for the Functional and Imperative
Object Calculus found in [San98, KS98]. We use some handy abbreviations to denote (i) the type
R(X) of result channels, which can be used to retrieve results of type X, together with the current
key; (i) the type M(B; ..B,—B) of methods, which is self-explanatory. The most critical part
of the translation is the proper representation in the case of update, but even there, the chosen
abbreviations allow us to directly relate the types with the corresponding terms in Tables 6 and 7.
The translation of Thr(A) denotes the type of name ¢ in the semantics of fork and join in Table 6.
Note that, because we intended to stay within the constraints of Lz, we could not use ¢ directly
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to retrieve the value of a fork’ed term a, but we used it to send the result channel of the join’ing
term, together with its current key—this is precisely represented in the translation of Thr(A).
According to the translation of types, we can add type declarations in a straightforward way
to all bindings in the translation of terms, as mentioned, although omitted, in Section 5.
Types witness the clean representation of @jeblik terms as mw-calculus terms.

Theorem 6.1 (Type Soundness) Let a € L, let T' be a type-environment, and let A be a type.
Then Tt a:A if and only if [T],pR([A]),k:KF [a]l for names p and k.

PrOOF. The implication from left to right is proved using induction in the depth of the derivation
of ' a:A with a case analysis of the last rule used. The implication from right to left is proved
by induction in the structure of a. Details can be found in Appendix A.2. O

In addition to the initial correspondence of types in @jeblik and their 7-calculus counterparts,
the preservation of types under reduction in the w-calculus provides us for free with preservation of
Djeblik types, thus witnessing the subject reduction theorem based on the operational semantics
in [NHKMO00].

Proposition 6.2 (Subject Reduction) Let ' F a:A.
If [[a]]f, = @, then [T],pR([A]),BKFQ .

The type system provides some properties of the translation almost for free. Let us fix some
terminology. A term P occurs weakly unguarded in @Q, if there is Q = Q' = E'[P], where E'[] is
a static LT -context. By means of the type translation, we can show that whenever, at top-level,
a request may be directed to some potential object or alias manager, there will always be some
manger occurring weakly unguarded and thus being eventually able to serve the request.

Proposition 6.3 Let '+ a:A and E[] be a static Ln*-context.

1. If [a]l = Q=E[s(..)],

then either AMqo(s,...) or OMq(s,...) occurs weakly unguarded in Q.
2. If [[a]]f, = Q =FE[AMg(s,...,sa)],

then either AMg( sa,...) or OMg(sa,...) occurs weakly unguarded in Q.

ProOF. [Sketch] Since I' I a: A, also [[a]]zli is well-typed. By inspection of the encoding, whenever
a self-channel is created, also the respective manager is created. The well-typedness of [[a]]’;
means that managers cannot disappear: when they receive a message, they can only be guarded
by matching, followed by case; by well-typedness, the case can be resolved, resulting in a new
manager at the same name. Finally, the creation of requests is always guarded by an input of a
self-channel and a key, so the creation of requests always follows the creation of a manager, but
never proceeds it. When an object manager changes into an alias manager, it installs as target
the self-channel of another manager, which by construction and well-typedness of the translation
cannot disappear. O

As a consequence, by transitivity and the finiteness of terms, this proposition tells us that alias
chains are either cyclic or end up with an object manager. In other words, when a request is sent
to an object it either eventually arrives at an object manager, or it cycles in a loop between alias
managers.

6.2 Properties of object managers

A crucial property in object-oriented languages is the uniqueness of objects. The Lz constraint
on the output capability guarantees this property.

Lemma 6.4 (Uniqueness of objects) Let a be an Jjeblik term. If [[a]]'; = 7 with
either Z = (w2)( M | OMq(s,...)) or Z=(wz)( M | AMq(s,...))

then s € Z and s does not appear free in input position within M .
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PRrOOF. By inspection of the encoding. If a manager is present, it must have been created at some
point as described in the encoding, because initially, there is none. Upon creation, its name s is
bound. Since we only consider reductions, the name remains bound. Finally, the encoding shows
that managers are only restarted if the former incarnation disappears. Since there are never two
copies restarted, and only the output capability of channels may be transmitted, the uniqueness
of the receptor s is preserved. O

We now analyse, referring directly to Figure 1, how the shape of the context around a particular
object manager evolves during computation (c.f. Lemma 6.5). Later on, we will need a special
case of this result (Lemma 6.6) in the proof of Theorem 8.7.

Observation 1: Pre-processing does not change the state of object managers. At any time, an
object/alias manager is ready to receive a request (I, k) with k.#k#k;. The manager is restarted
afterwards, but there will be a process me.(35(l, ko) | ik ) that replaces the consumed request.
Let us assume requests sv;, with v; := (I, k; ) for j € 1..h, (and v:=v;. .vp) are pre-processed by
the object manager OMq( s, me,m;, ke, ki, t ), SO ke#k;j#ki for all j € 1.. h. Then:

PPo( s, e, i, ke, 0) T me.(5(;, ke) | mik; )
jel h

Observation 2: While an object manager evolves, its internal key k; may be extruded to its
object clients, whereas names me, m;, ke may not. Assume that an inv;-request (along s) appears
at OMq( s, me, m;, ke, ki, t~>, is pre-processed, gets the mutex m, and re-enters along s with key k.
At that point, according to the semantics, a fresh internal key k* is created and extruded to the
corresponding method body. The names n := m,, m;, ke are never extruded; they constitute the
proper boundary of a manager during computation. Observation 2 provides the formal basis to
understand the evolution of object and alias managers as described in Figure 1. For simplicity,
we restrict our analysis to object managers, but a similar argument applies to alias managers.

Lemma 6.5 (Object manager evolution) Let a be an Jjeblik term. If [a]t = Z and Z =
E[OMg(s,...)], with E[-] static, then—without a-converting the name s—

Z = E[ (vi) ( Mz | OMg(s, 7, ki, ) | PPo(s,m,7) )]

where E[] is a static LwT -context, 1 := me, mi, ke, and My is either of

VA M
oM™ | mg
OM™ | mik | 3(l, ke)
OM" | mik | mi(k). e
OM® | mik | r*(y, k").mi(K").(¥(y, k") | me)
OM! | ik | mi(kK").(F(y, k") | g ).

with Z denoting the state of OM as in Figure 1.

PROOF. By induction on the length of [a]]¥ = Z for some fixed s, where we assume that
the predecessor state Z' of Z is in one of the five described “states”. Details can be found in
Appendix A.3. O

In the following two observations, we outline two special cases of Lemma 6.5: free object
managers in state OM' and committing object managers ready to evolve from state OM?® to state
oM®,

Observation 3: An object manager is free, if its external-mutex me is available. In our se-
mantics, a manager is willing to grant access to external requests, if its external-mutex m, occurs
unguarded in the term that describes the current state, so the general shape of a free object (and
analogously alias) manager is:

freeOg(s, ki,t,0) = (vi)( e

OMg(s,7, ki, t) | PPo(s,7,7) )
freeAo(s, ki, sa,0) = (vn)(me|A

0
M@(S,ﬁ,k’i,Sa> | PP@(S,’H,G))



where the keys mentioned in ¥ of PPg(...) neither match k. nor k;.  Notice that
newOg(s,t) = (k) freeOg (s, ki, t,0), and analogously for newAg(...).

Observation 4: An object manager is ready to commit, if it may consume a pre-processed
request which has already grabbed me. The following lemma derives from the ability to commit to
a valid external request—visible as the availability of a valid pre-processed request, i.e., a request
carrying ke—the shape of the object manager before and after commitment, including all of its
current pre-processed requests.

Lemma 6.6 (Committing object manager) Let a be an Jjeblik term. Ifﬂ[a]]]g = ZandZ =
E[5(l, ko) | OMo( s, 7, ki, t) | with E[] static, m = me,mi, ke, and | € {inv;_(z,r), png_r,sur _r},
then Z — Z' where

Z = E[(wi)(mik | PPo{s,7,5) | OMo( s, 7, ki,T) | 51, ke)) ] *
Z' E[(Vﬁ)(mk | PP®<Saﬁa:‘7> | (’/k*)(OM@<Saﬁvk*at> | CM[XZ<S>£* ]))]

for some static context E[], some key k, some set U of pre-processed requests, and X;{s) denoting
the respective continuation behaviour of Table 7.

PROOF. According to Lemma, 6.5, the property holds in state OM? which is the only state that
matches the premise. O

As special cases, for | € {png_r,sur_r}, of committed object managers, we define
F[] ¥

pmgo@( 5,7, kaz ;D/>
surOq(s,r k,t,0)

—

(Vﬁk*)(mk| PP@(S,ﬁ,5> | OM@<Saﬁak*7;> | [])
FICM[[s]3= 1]
F[CM[[ s.alias(s.clone) J*-. ]

def

def

As we will see in Section 8.1, pingOq(s,7, k, 1,7 ) and surOg( s, r, k,t,7) model the object manager
before and after surrogation, respectively.

7 Towards a formalization of safe surrogation

In [NHKMO0], we motivated an equation on @jeblik terms to model the safety of object surro-
gation. In Subsection 7.1, we replay the argument leading to that equation and adapt it to the
translational semantics of @jeblik. In [NHKMO00], we also observed that the equation intrinsically
can only be true in a restricted sense. The techniques of Subsection 7.2 will allow us precisely
formalize this restriction.

7.1 Safety as an Equation

We recall that in order to be safe, object surrogation should be transparent to object clients. In
other words an object should behave the same before and after surrogation, in all possible contexts.
The following equation is a first attempt to model this property:

a = a.surrogate (1)

The simplest case of Equation 1 is when a is an object Q. In this case the surrogation is surely
safe, because (i) the process of surrogation is carried out correctly since, due to serialisation, only
the surrogation thread can interact with the object Q) i.e., there cannot be any interference with
another thread or activity, and (ii) every interaction with Q is mimicked identically by O.surrogate,
which suffices since after surrogation nobody has access to the previous Q.

In the general case, however, neither of the two above arguments holds. The reason is because
of possible copying of a reference to the former object such that, after surrogation, requests can
still be directed to that reference. Observing that a = letz =ainz (in all contexts, the let just
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-

| [Le=<(s,Z)C[], Lizgr=mjzk ljes

|C[]1( ) |al(a,C[],a)
| C[]1em | a.l<=¢(s,2)C ]
| C[].alias(b) | a.alias(C[-])

| C'[].clone

| C[].surrogate | C[-].ping

|letz=C[-]inb |letz=ainC[]
| fork(CT]) | join(C])

Table 9: @Djeblik contexts

adds one unconditional step after reducing a) and that the notion of equivalence takes all @jeblik
contexts into account, Equation 1 can be reduced to the problem of surrogation on variables:

x = z.surrogate (2)

However, there is an inherent problem with Equation 2, which is exhibited by the following context
that creates a self-alias via method call:

C[] :=let x = [1=¢(s)s.alias(s) ] in z.1; []

It holds that C[z]{, whereas C[z.surrogate]{f. Indeed, in C[z]J} the evaluation of z returns imme-
diately, while in C[z.surrogate]{{, the request z.surrogate is never served because it travels into a
loop along the self alias chain z>>x. The problem in Equation 2 is that we do not check whether
the “object before surrogation” is actually reachable. This can be easily done as follows

x.ping = z.surrogate (3)

The equation 3 detects cyclic chains by means of the ping-request which travels to the endpoint
of the alias chain possibly starting at z. For the above context, C'[z.ping]{.

In the remainder of the paper, Equation 3 will be referred to as the safety equation. In
order to fully specify it, we lack the interpretation of the equivalence =. A standard way to
define program equivalences is to compare the convergence behaviour of programs within arbitrary
program contexts, as, for example, shown in previous work on the Imperative Object Calculus
(IOC) [AC96, GHLI7]. This equivalence is usually referred to as observational congruence [Mor68].
In our setting, according to Table 9, an Djeblik context C[-] has a single hole [-] that may be filled
with an @jeblik term. In the remainder of the paper, we assume that @jeblik-contexts always
yield well-typed terms when plugging some @jeblik-term into the hole.

Since we have given a translational semantics for @jeblik, our program equivalence is based
on the encoding [-]%. Roughly, the semantics [a]¥, of an Qjeblik term a is a Lz -process which
returns the result on channel p as soon as it knows it. An @jeblik term converges if its semantics
is a process which may report its result on the channel p.

Definition 7.1 (Convergence) Given an (jeblik term a, we write all if [[a]]llﬁup

Definition 7.2 (Behavioural equivalence) Two (jeblik terms a and b are behaviourally equiv-
alent, written a = b, if

Cla) b iff O[] ¥
for all Ojeblik contexts C[-].
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7.2 On the absence of self-inflicted surrogation

One of the main observations in [NHKMO00] was that the safety equation can not hold in full
generality for @jeblik-contexts, in which the operation z.surrogate could occur internally. The
reason is that, after internal surrogation, an object may misuse by intention the old and new
references to itself. Actually, the advice to avoid internal surrogation is somehow analogous to the
fact that programmers, knowing that =0, should never use division by z. “Observable internal-
surrogations” should be interpreted as programming errors and not as a semantics fault. On the
other hand, “observable external-surrogations” represents a much more serious problem. In this
case, (external) object clients can distinguish whether an object has moved or not. Somehow,
it corresponds to the case where a program receives x from some other module, so it should be
guaranteed that = will never be 0. In [NHKMO00], we conjectured that in our semantics external
surrogation is guaranteed to be safe. Although this is an undecidable criterion [Car95], we may still
formalise it in terms of our m-calculus semantics, which is precisely what we do in this Subsection:
we formalise the class of @Qjeblik-contexts C[-] that will never lead to self-inflicted occurrences of
the term x.surrogate, when plugged into the hole.

In our semantics, the computation [[a]]’; = 7 of an Qjeblik term a yields a self-inflicted sur-
request if Z = E[5(sur_r, k) | OMg( s, m, ke, ki, t) ], for some static context E[] in Lz, with k=Fk;.
Since we must ensure that a sur-request never leads to internal surrogation, we must quantify over
all derivatives of [a]% and check for self-infliction in each of them.

Note that, starting from the term [ C'[z.surrogate] ]%, we should not be concerned with arbitrary
sur-requests that appear at top-level during computation, but only with those that “arise from
the request in the hole”. However, this property is hard to determine for two different reasons:
(1) All of the names mentioned in a sur-request may be changed dynamically by instantiation:
s (due to forwarding), r (due to a call manager protocol), and & (due to pre-processing). (2) We
have to consider arbitrarily many duplications of the request in the case that the hole appears, at
the level of @jeblik terms, within in a method body, which leads to replication in the m-calculus
semantics. For both reasons, we need a tool to uniquely identify the various incarnations of the
request.

Let operate € {ping,surrogate}, and let op € {png,sur} denote the corresponding m-calculus
labels (c.f. Table 6). We introduce the additional Qjeblik labels operate* € {ping*, surrogate*}. The
intuition is that tagged labels are semantically treated exactly like their untagged counterparts,
but can syntactically be distinguished from them. Consequently, we have to adapt the given
semantics to take this into account. Table 10 presents the required straightforward additions,
where we use the tagged m-calculus labels op* € {png*, sur*}, respectively: the individual clauses
of the tagged semantics, written |][-]]]I’§, are just copies of the clauses for the untagged requests.

As a result, both tagged and untagged requests can be sent to object and alias managers; object
managers ignore the tagging information of requests and treat op*-and op-requests identically, but
alias managers preserve the tagging information since they simply forward requests. We also add a
tag to all parameterised definitions and abbreviations when considering the tagged semantics, for
instance, OM*, AM*, pingO* and surO* are defined as expected. Notice that the semantics is not
affected by including tagging information. As a consequence, all results proved for the untagged
semantics are valid for the tagged semantics as well.

Lemma 7.3 Let « be an Jjeblik variable and C[-] an untagged ODjeblik context. Then:
Clz.operate]|} iff [ C[z.operate*] ]]]f,l}p.
PROOF. The proof is in two steps:
[ Clz.operate] ]]';Up iff [[C[xz.operate] ]]]’;lip iff [ C[x.operate*] ]]]I’ilip.

The first step compares the convergence behaviour of untagged requests—note that C[z.operate]
is untagged by assumption—with respect to the tagged and the untagged semantics. On untagged
requests, the tagged and the untagged semantics behave exactly the same. The second step
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[a.surrogate* J5 = (vq (ﬂ[a]]]]; | q(y,i).y(sur* p,i) )

)
[aping" Ty = (va) ([als | a(y,i)-Hpng" p,i) )
OMy( s, 7, ke, ki, 1) d:efs(z,k).(uk*)(

if [k=F:] then

case [ of
sur_(r) : OM% (s, i, ke, k*, £ ) | [ s.alias(s.clone) ¥~ ;
png(r) : OMa (s, i, ke, k™, 8) | [sTF ;
sur*_(r) : OM&( s, m, ke, k*, 1) | [ s.alias(s.clone) J*" ;
png* (1) : OM (s, i, ke, k™, ) | [sTF
elif [k=k.] then
OMp( s, i, ke, k™, t) | case I of
sur_(r) : CM[[ s.alias(s.clone) J¥< ] ;
png-(r) : CM[[s]}- ] ;
sur*_(r) : CM[[ s.alias(s.clone) %+ ] ;
png*(r) : CM[[s]}- |
else OM3( s, i, ke, ki, £) | me.( (L, ke) | Tk ) )
AME( 5, 1, ke, ki, $a ) défs(z,k).(uk*)(
if [k=Fki] then
case [ of
sur_(r) : AMo( s, m, ke, k™, sa ) | 3a(l, k) ;
png-(r) : AMo(s, M, ke, k™, sa ) | Sa(l, k)
sur®_(r) : AMg (s, m, ke, k", sa) | 5a(l, k) ;
png*_(r) : AMg (s, m, ke, k™, sa ) | Sa(l, k)
elif [k=ke] then AM§( s, 0, ke, k*, 52 ) | mi(k).(5a(l, k) | e )
else AMS( 5, i, ke, ki, 50 ) | me.(5(1, ko) | Tk )

Table 10: Translational semantics — Additional tagged clauses
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compares the convergence behaviour of a tagged term and its untagged counterpart with respect
to the tagged semantics. By definition, the tagged semantics treats tagged and untagged requests
in exactly the same manner. O

Tagging helps us to detect all “requests arising from the hole”.

Definition 7.4 (External Contexts) Let z be a variable and C[-] an untagged Djeblik context.
Then, C[-] is called external for x.surrogate, if whenever

[ C[x.surrogate*] ]]]Ili =_ E[5(sur* _r, k) | OM}( s, M, ke, ki, 1) ]
it holds that k # k;.

We replay the definition using ping instead of surrogate. By definition of the semantics, an @jeblik
context C[-] is then external for z.surrogate if and only if it is external for x.ping. For convenience,
by abuse, we simply call C[-] to be external for x.

8 On the safety of surrogation

In this section, we prove that that
Clz.ping]l} iff Clz.surrogate]l

under the assumption that C[] will never lead to self-inflicted occurrences of z.surrogate. In
Subsection 8.1, we study the behavior of the committed object managers pingOq(s,...) and
surOg(s,...), as defined at the end of Subsection 6.2, and prove them algebraically to be barbed
I-equivalent. In Subsection 8.2, we then give the formal proof for the safety of external surrogations
by iteratively simulating convergence sequences for the proof goal above. Finally in Subsection 8.3,
we give a static type system that guarantees that surrogations will always be external.

8.1 On committing external surrogations

By Lemma 6.6, when an object manager commits to either a png or a sur request, we get the
processes ping0®(s,r,k,£5> or surOg(s,r, k,t,0), respectively. These processes also represent
(the state of) the object manager before and after external surrogation, respectively; recall that
pingOq(s,...) just tells us that the object manager at the end of the chain was reachable. Notice
that due to the use of nonces (c.f. page 21) in the implementation of the object and alias managers,
in both processes pingOg(s,...) and surOg(s,...) the key k* is fresh and therefore different from
any key appearing in the process PPg( s, 7,7 ) contained in both pingOg(s,...) and surOg(s,...).

In the following we show that processes pingOg(s,...) and surOq(s,...) are related by typed
barbed equivalence ~r.; (Definition 2.10).

Theorem 8.1 Let T be a type environment with T - surOg( s, r, k,t,7), pingOq (s, T, k,t,7). Then:
surOg(s,r, k,t,0) ~rag pingOg (s, 7 k,t,7).

The proof of Theorem 8.1 requires several strong lemmas. The proofs of the latter can be found
in Appendix A. In all the lemmas below the well-typedness requirement is necessary to ensure
that (i) the environment sends along the object reference s only values of the right type, (ii) the
environment never uses channel s in input.

Lemma 8.2 proves that surrogation results in an alias pointing to a clone of the old object. The
proof relies on the nonces used in the implementation of both object and alias managers, which
control the interference with the environment.

Lemma 8.2 IfT is a suitable type environment for the processes below, then:

surOq( s, 7, k,t,0) ~r.s (vs*) ((vk:) freeAo (s, ki, s*,0) | newOq( s*, 1) |F(s*,k>).
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Lemma 8.3 proves that the alias manager appearing in Lemma 8.2 behaves as a forwarder.
This will allow us to apply the theory of Lax.

Lemma 8.3 Let v := v1..0,, and v;:=(l;,k;) for 1<j<n. IfT is a suitable type environment
for the processes below, then:

(Vk;) freeAg( s, ki, s*,0) mrys s> s*| [T s%v;.
1<j<n

Notice that without the well-typedness hypothesis, after having received a wrong value along
s, the two processes above would have a different behaviour.

Lemma 8.4 uses the algebraic law of L7 of Lemma 2.15. Note that the proof of Lemma 8.4
is not a trivial application of Lemma 2.15.

Lemma 8.4 Let P be a process and s a channel such that s ¢ fc(P). If T is a suitable type
environment for the processes below, then:

(vs*) (s >s* | P) ~p.s P{%/s+}.
Lemma 8.5 proves that pre-processing external requests does not preclude other requests.

Lemma 8.5 Let U := vy..v, with v;:=(1;,k;) and k;j#ki for 1<j<n. IfT is a suitable type
environment for the processes below, then:

IT sv; | newOq(s,t) ~r.s (Vk;)freeOo(s, ki, t,v).
1<j<n

Lemma 8.6 is a technical lemma involving two confluent reductions.

Lemma 8.6 Let U := vi..v, with v;:=(l;,k;) and k;j#ki for 1<j<n. IfT is a suitable type
environment for the processes below, then:
7(s, k) | (vk;) freeOq (s, ki, t,0) ~r pingOg(s,r, k,t,7).

Proof of Theorem 8.1 PrRoOF. We recall that relations ~r and ~r, imply ~rp,;. By subse-
quently applying Lemmas 8.2, 8.3, 8.4, 8.5, and 8.6 we have:

surOqg(s,r k,t,7)
~ris (vs®) ((Whi) (freeAg (s, ki, s*,0)) | newOq(s*, ) | T(s*,k))
~rs (ws*) (ses® | 1 s*v; | newOg(s*,t) | 7(s*,k))

1<j<n
~r.s I 3Sv;j | newOg(s,t) | 7(s,k)

1<j<n o
~rs  (vmk)(ms | OMo(s,m,k,t) | PPo(s,n,0)) | 7(s, k)

~r.s pingOg(s, 7 k,t,7).

8.2 External Surrogation is Safe

Based on the knowledge of Theorem 8.1 that the committed object managers pingOg(s,...) and
surOq(s,...) are equivalent, we proceed to construct simulation sequences up to this equivalence.
More precisely, whenever needed we may replace one of the managers by the other, because typed
barbed equivalence provides us with the same convergence behaviour in all static contexts.

Theorem 8.7 (Safety) Let z be an object variable and C[-] an (untagged) well-typed context in
Jjeblik. If C[-] is external for z, then

Clz.ping]{ iff C[z.surrogate].
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PROOF. By Lemma 7.3 our proof obligation is equivalent to:
[Clz.ping*] ]]]glip iff ﬂ[C[m.surrogate*]]]]';Up.

This allows us to make use of the assumption on context C[-].

Since the semantics [ -] g is compositional, there is an LxT context D[-] and names y, 4, ¢, such
that [ C[xz.operate*] |5 = D[y(op*_q,j)], where D[] itself does not contain any message carrying
a tagged request. Since the translation preserves well-typedness (c.f. Proposition 6.2) there is an
Lzt typing T such that T - D[g(op*_q, j)]. We prove that

D[y(png”-q, )Y, iff D[y(sur*_q,j)]{,

and concentrate on the implication from right to left. The converse is analogous.

Assume that D[g(sur*_q,j)] §,. If D[N]{, for every process N, then this is also the case for
N =7y{png*_q, j); otherwise, the sur*-request must contribute to the barb. Therefore, we assume
DI[y(sur*_q,j)] = P |, and show that there is a corresponding sequence D[y{png*_q,j)] =>~p
Q |, where Q = P[P"8 /-] Since typed barbed equivalence ~p and relabelling preserve conver-
gence, this suffices.

According to the discussion in Section 6.2, a reduction step due to an external request is
committing, if it represents the consumption of a pre-processed request by an object manager.
Now, we combine this knowledge with the fact that we have to concentrate on surrogation requests
arising from the hole within the reduction sequence D[g(sur*_q,j)] = P |, and call significant
( —s) precisely those steps that exhibit the commitment to a sur*-request. All the other steps
can be considered insignificant because—as we show during the proof—they can be mimicked in
a straightforward way by the png*-ed counterpart.

Whenever P —— P’, we know that either

1. P=z)(wv |w(z).R| M) and P' = (vz) ( R{*/,} | M ), or
2. P=wz)(wv |'w(z).R| M) and
P'=(w2) (R{')} | Vw(e) R | M ).

A silent move P —— P’ (decomposed as above) is called

significant if case 1 applies where wv = 5(sur*_gq, k.) and
w(z).R = OM(s,m, ke, ki, ). We denote these P — P'.
insignificant if either

e case 2 applies, or
e case 1 applies where v does not carry a sur*-request, or
e case 1 applies where wWv = 3(sur*_gq, j) and
w(z).R = AM(s,m, ke, ki, t ), or
e case 1 applies where wv = 3(sur*_gq, j) and
w(z).R = OM (s, i, ke, ki, t) with ki # j # ke.
We denote this as P —; P'.

The missing case of Wv = 5(sur*_q, k) and w(z).R = OM(s,m, ke, ki, 1) with k = k; is excluded
by the assumption that C[-] is external for x (c.f. Definition 7.4). Note that starting with a
sur*-request in the hole, we will never encounter png*-requests during the computation, and vice
versa.

Now, we apply the classification of reduction steps to the given reduction sequence D[g(sur*_q, j)] =
P |, assuming that it contains d > 0 significant steps (if d = 0, then D[N]{,, for all processes N):

Dly(sur*-q, )] =

Py —i P12 —i s =i Pra, —s P = Py
Py —i Pa2p —i s = Pog, —s P2 = P3;
Py —i Pyp —i ot =i Pygy —s Py = Py
Pat1n =i Pati2 =i - =i Paying,, = Pl



By (the tagged counterpart of) Lemma 6.6 it holds that:
Ph = (l/gh) (Mh |sur06(sh,qh,kh,t~h,ﬁh) )

for some zp, and M},. Now, we simulate the previous reduction sequence, which uses sur*-requests,
but now using png*-requests and proceeding up to structural equivalence and barbed equivalence.

Dly(png*-¢,7)] =

Q1,1 —i Q1,2 =i ot = Qi —s Q1 o~ Q1 = Qan
Q2,1 —i Q2,2 =i ot =i Q2n, —s Q2 ~r Q2 = Qan
Qa1 —i Q42 =i ot =i Qdong —s Qa  ~r Q4 = Qa+t1,1
Qat+1,1 =i Qdy12 —i - i Qdyingy, def Qlp
where:
Qh,g déf Phhq[png*/sur*]

The insignificant reduction steps —; exist because of Lemma 8.8. The significant reduction
steps Qnn, —s Qp are analogous to their counterparts Pj, n, —s Pn. Precisely, by (the tagged
counterpart of) Lemma 6.6, they give rise (up to structural equivalence) to a pingO* instead of a
surQ*, that is:

n = (VZ h | PINgOS(Shy Qhs s thy Uh “Jeur]-
Q (vZn) ( Mn | pingOF( thy ) ) [P four ]
The processes @h are defined as follows:
Qn = (W3) (My | surO5 sn,an, jn, ths B ) ) [P foure]
Q

The relations @ ~r @h hold by application of (the tagged counterparts of) Theorem 8.1 and
Lemma 6.4, and since ~r is preserved by relabelling [p"g*/sur*]. The relations Qp = Qp+1,1 hold
since

~ . . def
Qn = P[P8 fsur ] = Prhg1,1[P" four] = Qh+t1,1-

Lemma 8.8 Let a be an Jjeblik term possibly containing a tagged request. Ifﬂ[a]]]g = R — R,
then R[P" foue] —>i R'[P" -] and R fong-] =i B'[*" fong+]-

PrOOF. By case analysis on the four different shapes of insignificant steps. In each of them,
the relabelling distributes over the components of R, which allows us afterwards to derive the
corresponding reduction step. O

This concludes the proof of Theorem 8.7. O

8.3 Typing for External Surrogation

Since only external surrogations are safe, we look for some way to statically ensure that this is
the case. To avoid such unwanted situations, the most obvious case is s.operate, where s is the
self-variable of the immediately enclosing method. A less obvious case is a.operate, where a may
evaluate to the current self or to the self of a node in an alias chain leading to the current self. In
the least obvious case, concurrent threads may render the evaluation of a nondeterministic, such
that it may or may not evaluate to the current self.

At first, it might seem hopeless to come up with a good way of ensuring that an operation is
external. However, if a evaluates to the current self, or a node in an alias chain leading to the
current self, then a must have the same type as the type of the current self. This implies, that if
we ensure that the type of a is not the same as for the current self, then a.operate cannot result
in operate being an internal operation. Such a check can be incorporated into the type system of
Table 5. In the new system, judgements are now on the form I' Fp a:A where D denotes the type
of the self variable for the method enclosing a. In Table 11 we present the modifications of the
type system; the rules missing are as the ones in Table 5 with F replaced by Fp.
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Vjed F,Sj:A,i‘jiéj Fa bjiﬁj A= [ljiéj—)./éj]jel]

(T-OBJ) =
T'kp [l i ¢(sj:A,&:Bj)bjljes + A

'kpa:A A= [ljigjﬁﬁj]je'] r, SklA,:ﬁklgk Fa bkiﬁk keJ
T'kp a.lk<:q(sk:A,fk:§k)bk DA

(T-Upp)

FI—D a:A Az[ljiAj]jeJ D;éA
I' Fp a.surrogate : A

(T-Sur)

r l_Thr(A) aA

(T-FORK) 1 Forie(ay - Thi(A)

Table 11: Typing Rules Ensuring External Surrogate Operations

Theorem 8.9 If ' Frya) Clz.surrogate] : A, then C[-] is external for .

ProoF. [Sketch] We proceed in four steps. (1) Refine the typing of keys according to the @jeblik
object (or thread) type that they are used with. When a manager hands out a key k;, the latter
is always annotated with the same type as the one carried by the self-channel of the manager.
(2) Observe that a request 5(I, k) must be external if the type of k£ does not match the type of s.
(3) Observe, that in a request the types of k and s never change. (4) Prove that if T' Fp z.surrogate,
then [T'] - [z.surrogate]¥ for [T ](z)=[ A], [T ](k)=Kp with A # B. d

Let us adapt the notion of behavioral equivalence of Definition 7.2 to take into account the
proposed type system. This is done in a standard fashion by only considering for a term P only
contexts C[-] such that C[P] is typable.

Definition 8.10 (Typed Equivalence) Two Ojeblik terms a,b with T' F a,b : A for some T’

and A are typed equivalent, written a =, b, if Cla)ll iff C[b)} for all contexts C[] with
A Frne(p) Cla), C[b] : B for some A and B.

Corollary 8.11 If x is an object variable, then x.ping i:Xt x.surrogate.

9 Conclusion

In this paper, we have outlined a formal proof of the safety of object surrogation, a distribution-
free abstraction of object migration, for a dynamically defined class of program contexts that
render surrogations always external. Moreover, for improved feasibility of the use of surrogation
in programming, we have provided a simple static type system that guarantees that all well-typed
occurrences of surrogation are indeed external.

Since we have carried out this work on an abstraction of migration, it is required to ask for
the meaningfulness of our result for migration itself. Since Obliq is a lexically-scoped distributed
language, our results tell that any well-typed program—assuming that our type system is lifted
to Oblig, and that Obliq is equipped with a forwarder model, as in [NHKMO00]—will never ob-
serve a difference in the view of may-convergence between an object before and after surrogation,
unless one of the involved distribution sites fails, and unless contexts could retrieve (by language
primitives) the actual location of an object.

A natural potential criticism on results based on a semantics by translation into another
formalism is that it is sometimes hard to evaluate what the results actually say about the original
subject. On the one hand, as in our case, where we have also developed several direct operational
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semantics for Djeblik, the question for some formal correspondence result among the semantics by
translation and the direct semantics arises. On the other hand, one may ask to carry out the proofs
on the direct semantics instead of employing some other lower-level formalism. However, we found
it very natural and useful to develop two semantics at different abstraction levels hand-in-hand.
In fact, most of the examples of unsafe surrogation were discovered by means of the m-calculus
semantics, and only then “verified” in the direct semantics. Moreover, since we have developed
both levels of semantics in lock-step, we have a good basis for formalizing their interrelation.
Finally, in contrast to our abstract configuration-style semantics for closed terms only, the 7-cal-
culus provides indeed a very rich set of approved reasoning tools that make the life of a theorem
prover much easier, as exemplified by Kleist and Sangiorgi [KS98], and also in this paper.

Other strands of future work are twofold. One is to continue to develop and exploit semantics
for the Oblig-style of object migration, and to use our semantics also to prove other equations
on Oblig-programs. For example, also equations like join(fork{a))=a do only hold under certain
conditions inflicted by self-infliction. Another strand is to try to carry over our results to settings
that are not based on the notion of serialization via self-infliction, but rather reentrant mutexes,
as in Java.
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A Proofs

A.1 Proof of Lemma 2.14

PrROOF. We show that the relation

S={(Q{¥la}, we:C(T))(Q|grp)) : ¢ in Q only in output position}
is a barbed bisimulation up to structural equivalence.

e Let Q{Plq} —>Q'{Plg}. There are two cases.

1. Q@ 5Q’. This case can be easily treated.

2. Otherwise, since p and ¢ are channels and they never appear in testing, this means
that the 7-action is due to a communication along p. More precisely, () must contain
an occurrence of ¢ in output subject position and an occurrence of p in input position
which give rise to the communication. Up to structural equivalence, this implies that

T T
(vq:C(T)) (Q | g>p) — — = (vg:C(T) (Q" | ¢> p).
As desired.
e Let (vq:C(T)) (Q | ¢> p) —=R for some R. There are two cases.

1. R= (vq:C(T)) (Q' | g> p) since Q —5@Q'. This case can be easily treated.
2. The 7-action is due to some communication along g between ) and the link g > p. More
precisely,

(vq:C(T)) (@ | gvp) = (va:C(T)) (v2) (Q" | qu) | > p)
and
(vg:C(T)) (Q | ¢>p) — = (vg:C(T)) ((v2) (Q" | Bv) | ¢ > p).
The left side can easily mimic the move as follows:

Q'{Pla} == (v2) (Q' | qv){Pla} = (v2) (Q" | Pv){P/a}.
As desired.

A.2 Proof of Theorem 6.1

To prove Theorem 6.1 we need the following lemma, allowing us to type object/alias managers
using the translation of an object type.

Lemma A.1 If A = [;:B;j—Bjljc1., and T+ Q:A.

I= s:[A],t:C([A],M(B,—B,),K)...
tn:C([A],M(B,—By),K), me:C(), m;:C(K), ke K, ki:K

and
" =s:[A], sa:[ A],me:C(), m;:C(K), ke:K, ki: K

then T = OMg( s, me, mi, ke, ki, t1 ... tn ) and T' F AMg( s, me, mi, ke, ki, S )-

ProOF. The proof is in both cases a lengthy type derivation. Here, we only show a part of the
derivation of T' = OMg( s, me, mi, ke, ki, t1 .. .ty ).
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Before we start, let

cln : R(X)
ali : (X,R(X))
A*(X) denote | P45 ¢ (CMI(B;2E;) K),R(X))
nv; (M(B;j—Bj))
sur R(X)
png R(X)

j€l..n,

with this abbreviation [A] = pX.C(A4*(X),K).
The definition of OMq( s, mMe, i, ke, ki, t1 ... 1, ) is

s(l, k).(vk*:K) (if [k=k:] then Py elif [k=F] then P, else P; )

and we are to check that this process is well-typed under I' with the extra assumption that
OMg( s, me, mi, ke, ki, t1 .. .1, ) is well-typed under T.

By rule (T-INP) we must establish that s has a channel type. In " we have the assumption
s:[ A], and using (T-REC2) we can unfold [ A], obtaining C(A*([A]),K). This yields as new
subgoal (using (T-RES) to handle the restriction), that we must prove:

I | if [k=k;] then Py elif [k=Fk,] then P; else P;

with IV = T I:A*([ A]), k:K, k*:K. Checking that all of k, k; and k. has type K as required by
(T-IF) is easily done by a lookup in IV. And we must now prove that processes Py, P, and P are
well-typed under T'. We restrict ourselves to consider only P;. Py is a large case construct

case [ of cIn_(r) OMo( s, me,mi, ke, k*, ) | (vs*) (T(s*,k*) | newOgp(s*,£) ) ;
ali_(sa,7) @ AMg(s, me, mi, ke, k*,52) | T(Sa, k*) ;
upd; (t',7r) : OM@(s,me,mi,ke,k*,tJ..tj_l,t',tHl..tn> | 7(s, k*) ;
inv;_(Z,r) : OMg(s,me,mi, ke, k*,t) | tj(s, 2,7, k*) ;
sur_(r) : OMg(s,me, ms, ke, k*,t) | [ s.alias(s.clone) J¥*
png_(r) : OMog(s,me,mi, ke, k*,1) | [s]*"

with j € 1..n. By inspection we see that the case construct has the labels required by A*(X).
And we must now type the continuations. We only show how the continuation for label inv;_(Z,r)

is handled. Let T =T",#:[ B, ], r:R(B;). We shall now establish
I - OMo( s, me, mi, ke, k*, ) | £;(s, %, 7, k")
By narrowing I'" and our initial assumption, we get that
I F OMg( s, me,mi, ke, k*, )
and by lookup in I'" we get that
[+ 1;:C([AL[B; ], R(B)), K), s AL #[ B; ], rR(B)), k":K
d

ProoOF OF THEOREM 6.1. The implication from left to right is proved using induction in the
depth of the derivation of T' I a: A with a case analysis of the last rule used. We show a few of the
cases below.

(T-VAR) Assume I' - 2:A, by rule (T-VAR) we have I'(z) = A. The translation of z is B(z, k)
and [T](z) =[A]. Let TV = [T],pR([A]) , &K We can now complete the derivation:

Ik p:C([A]LK), 2:[A], &K
'+ p(z, k)

35



(T-OBJ) Assume T' - [lj:§(8j:14,i’j:éj)bj]je]:A with A = [lj:éj—)gj]jeJ. By induction
[T,s;:A,%;:B; ],rR([ B; 1), k" K F [, ]

for all j € J. B
The translation of [l;=¢(s;:A4, Z;:B;)b;]jc.s is

(wsi[ A1, 45:T5) jes ( Bs, k) | newOo( s, B | TT 14(s,%5,m,K)[0;1F)

jeJ
where T; = C([A],[B; ,R(B;),K) and i = t; j € J. Let
I = [[F]]ap:R([[A]])ak:KaS:[[A]]aTj JEJ -

We now got three subgoals. Proving that T F p(s, k) follows easily from a lookup in T".
That T" + newOg(s,t), follows from applications of (T-RES), (T-PAR), narrowing and
Lemma A.1. Finally, to establish I'" + !¢;(s;,z;, 7, k').[b; ]]’7?’ we apply (T-REp), (T-INP)
and the induction hypothesis.

(T-ForK) Assume T I fork(a): Thr(A). The translation of fork{(a) is

(gR(AT), [ Thr(A) ], k" K) ([all | Btk | qla, K)o K) Fa, k") )

Let IV = [T'],p:R([ Thr(A) ]), &K, ¢:R([ A]), t:[ Thr(A) ]. We now got three subgoals. I -
[a]% follows using narrowing and the induction hypothesis. ' F B(t, k*) follows using (T-
OurT). Finally, the following derivation

I ao:[A] K"K FtCR([A]),K)
Ma[A]L KK, rR([A]), k" KFrC([A],K),z:[A], k":K
I a[A] kK F t(r, k") 7z, k")

" Foqa, k).t(r, k") F(x, k")

I q¢C([A],K)

proves the last subgoal.
(T-Cro) Assume I' - a.clone: A with A = [;:4,];c5. The translation of a.clone is

(waR([A]) (Lalf |a(y. k) . FlcIn_p, k')).

Let I'" = T, p:R([ Thr(A) ]), kK, ¢:R([ Thr(A4) ]). We have two subgoals. I F [a]* follows
from narrowing and the induction hypothesis. For the second subgoal, application of (T-INP)
yields that we must establish I, y:[ A], kK F g{cIn_p, k'), which is handled using (T-REC2)
to unfold the translation of the object type [l;:4;];e.s, (T-VAR) to check that the unfolded
type has the required variant tag, and finally (T-BAS) to check that p has type [A].

The implication from right to left is proved by induction in the structure of a. Again we again
only show a few of the cases.

x: Assume [T],p:R([A]), &K F B{x, k). This typing must have been derived using (T-OuT)
with premise I'' F p:C([A],K), 2:[ A], kK. This can only be true if € dom(T") with
I'(z) = A. We can now apply (T-VAR) to derive I' - 2: A.

[lj=c(sj:A, %;:B;j)bjljes: Assume [T'],p:R([A]), k:K + [[lj=c(s;:4,%;:B;j)bjljes]. The type
A can either be an object type [lp=¢(sk:A, Zx:Br)br]rex or a thread type Thr(B). The
translation of [1j=§(8j214, i’j:gj)bj]je.] is

(VS¢[[A]],tj°Tj)jeJ(ﬁ(8,k) | newOo (s, £) | T] tti(s;&5,m K).[b; 1% )
jeJ

We can easily rule out the possibility that A = Thr(B) because if A was a thread type, we
would not be able to type the object manager. Therefore A = [ly=¢(s:A, Zr:Br)bk|rek,
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and in order to type the object manager we must also have K = .J in order to have the same
number of methods in the type and the object manger. The typing of the object manger
also yields that we must have the types T; = C([A],[ B; ], R(B;),K). We are now able to

write a typing for !¢;(s;,%;,r,k').[b;]¥ , which as premise has
U, s:[A] t;:Ty, s [ AL KK, rj:R([B; 1), Z;:[ B ] - [b;]F -

Using narrowing and the induction hypothesis we derive that I',s;:4,%; F bjzﬁj. And we
can now apply (T-OBJ) to conclude T F [I;=¢(s,:4, Z;:B;)b;] ;e 7 A.

a.clone: Assume [T'],p:R([A]),%:K F a.clone. The type A can either be an object type
[lj:éj—)ﬁj]je‘] or a thread type Thr(B). The translation of a.clone is

(vg:T) ([aly |aly, ¥') . 5(cInp, k')

for some type annotation T. By the use of the name ¢ we can conclude that T = R([A])
and that A cannot be a thread type (because of the cln_p request). Knowing that ¢ has type
R([A]) allows us to use the induction hypothesis (together with narrowing) to conclude
that I' - a:A4, and then we can apply (T-CLN) to get I - a.clone: A.

|

A.3 Proof of Lemma 6.5

PRrROOF. As the base case, we consider Z, where the object manager at s has just been created;
all previous steps in the sequence are obviously irrelevant, because the condition of containing
newOq( s,t) is not fulfilled. Then

Z = C'[ newOq(s,t) ] = C'[ (vik;) (e | OMo (s, 7, ki, t) )]
Using structural equivalence, we immediately get
Z = E[ (vii) (Me | OMo(s,7, ki, #) | PPo(s,7,0))]

for some static context E[-], such that Z corresponds to state OM'. Tt is important to notice that
names in n will only appear inside the object manager and the pre-processed requests.

State OM! can only evolve into some state OM?; it does so by grabbing the external mutex m,
for one of its pre-processed requests in v. The only other possible reduction involving state oM’
is pre-processing another request, but such an action does not change the state—it only adds to
the set of pre-processed requests v. A similar reasoning applies to the other states, so we simply
skip pre-processing.

Thus, by consuming the pre-processed request 5(I, k) and leaving untouched the other pre-
processed requests v, we may arrive at some Z of the form:

E[ (vi) (e | OMo(s,7, ki, t) | PPo(s,n,0))]
—= E[(vn)(mik |35(, ke) | OMo(s,n,ki,t) | PPo(s,n,v—(l,k)))]
def o

where Z corresponds to state OM?.
State OM? can only evolve into either state OM" or OM®, by consuming the request 3(l, k.):

e State OM® evolves into state OM™ if [ is one of ali_(z, p), cIn_p, or upd; (t, p), which are disal-
lowed as external request, the object manager is restarted and, up to structural equivalence,
we get state OM".

e In the remaining cases, that is, when [ is one of inv;_(z,p), sur_p, or sur_(p), state OM?
evolves into state OM®. Indeed, a call-manager is started concurrently with the restarted
object manager. By using structural equivalence, we can move components that are not in
the scope of n outside this scope, so as to recognize state OM®.
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In state OM®, a png request drives the system into state OM. In the case of method invocation
a reduction along t; may occur which allows the evaluation of the method body. At this point a
number of self-inflicted requests may be served (external requests are blocked because the external
mutex me is no available). This part of the computation will not change the state. Notice that,
by hypothesis, since we suppose that Z contain an object manager and non an alias manager,
we exclude self-inflicted aliasing operations. When the last self-inflicted request is served, a reply
r*(0, k) will appear unguarded. The confluent reduction along r* will drive the computation to
state OM'. sur requests are treated similarly.

State OM' can only evolve, by reducing along m;, to state (o] Vi O

A.4 Proof of Lemma 8.2

We show that there is a sequence of T-actions such that:

surOg(s,r, k,t,0)=>=
(vs*) ((l/ki)freeA@(s,ki,s*,fJ) | neWO@(s*,f) |F(s*,k)).

We prove that ~r., is insensitive to these particular 7-actions. To this end, we supply the two
lemmas A.2 and A.3. We recall that CM[-] denote the call manager protocol as defined in Table 7.

Lemma A.2 Let 0 := me,mi, ke, and v := vy .. vy with v; := (1, k; ) for j € 1.n, and

Ci := CM[(vq) (5(cIn_g,k*) | q(z, k") .35(ali(z,r*), k")) ]
Cs 1= CM[(va) (@(s, k*) | alz, k') 5(ali(z, 1), KY)
P@) = (vnk*) (mik| OMo(s,n, k*,t) |PPo(s,n,0) | C1)
with k* & fu () . i
Q) == (vnk*s*) (Wk| OMg(s,n, k* t) | newOg( s*,t) | PPo(s,n,v) | Cs)
with k* & fn(v)
' v P@),Q(®) for some T.

Then, P(3) ~r,s Q).

Proor. For simplicity, we omit the obligations on types in the coinductive definition of ~r;;.
So, we prove that the relation:

S ={(P(w),Q(w)) : W = wy ..wy, with w; :==(l;,k;), j€l..n} UT

where 7 is the identity relation, is a ~r,s-bisimulation up to =.

The only channel which appear free in subject position in P(w) and Q(w) is s. Since both the
external key ke and the internal key k* are restricted in P(w) and Q{w), an by well-typedness,
the environment can send requests only of the form 5(I, k) with ke # k # k*.

The process P(w) can perform only two kinds of actions. Either (i) an input action s(l, k) (with
ke # k # k*), or (ii) a silent move along s involving the self-inflicted cloning request contained
in €. In case (i), the pre-processing of the request creates the process me.(5(l, ko) | Mik) which
can be added in PPg(s,n,w) obtaining some PP@(S,ﬁ,J) with w' = @ U (I,k). The process
Q{w) can perform the same action and the derivatives are again related by S. In case (ii), the
process @Q(w) can mimic the 7-action by not performing any reduction at all. Up to structural
equivalence, we get into the identity relation.

The process Q(w) can only perform two kinds of actions. Either (i) a input action s(l, k) (with
ke # k # k*), and we reason as above, or (ii) a silent move along the restricted channel ¢ in C5. In
this case P(w) can perform two silent actions, along s and ¢, getting, up to structural equivalence,
into the identity relation. O

Lemma A.3 Let i := me,mi, ke, and v := vy .. v, with v; := (l;,k;) for j € 1..n, and
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03:2 M[s(ali(s*, "), k") ]

Cy == CM[r ( , k*)]
P{v) = (l/nk* 1|O|\/|@snk t |newO@s t |PP@snv |C’3
with k* ( )
Q@) == (vik*s*)(mik| AMo(s, 71, k*, s* ) | newOq(s*,t) | PPo(s,7,7) | Cy )

with k* ¢ fn( )-
' - P(@),Q(v) for some T.

Then, P(5) ~r.s Q7).
ProoF. Similar to that of Lemma A.2. O

PROOF OF LEMMA 8.2. As said above there is a sequence of m-actions, such that:
surOg( s, r, k, 1,0 )=>=(vs*) ((vk;) freeAg (s, ki, s*, D) | newOq( s*,%) |F(s*, k).

The above sequence consists of 7 silent steps. These 7-steps are of two kinds: (i) confluent
reductions along restricted channels of the form

Clva) @®) | ¢(7)-P)] —= C[P{"z}]

where ¢ ¢ fn(P), let us call these reductions of kind «; (ii) reductions involving self-inflicted
requests (induced by the surrogation) of the form

Cl(wvk*) (OMo (s, i, ke, k*, ) | 5(opr*, k*))] ...

let us call these reductions of kind 3. It is well-known that =rp (as well as =r.5) is insensitive to
reductions of kind «. In Lemma A.2 and A.3 we show that =r,, is insensitive to the reductions of

kind 8 appearing in the sequence mentioned above. This is possible because, in the implementation

of object and alias managers, we use nonces (c.f. page 21) in order to guarantee that the self-
inflicted key of the object manager is always restricted. In this manner, the environment cannot

produce any “malicious” self-inflicted request which might potentially interfere with the cloning

and the aliasing requests.

The first and the second reductions are of kind o and they are due to the process CM[ [ s.alias(s.clone) ]%. ]

(contained in surOg(s,r,k,t,7)) which, after two T-steps, reduces to the process

CM[(vq) (5(cIn_q, k™) | q(,i).5(ali(z, "), ) ].
We abbreviate this process by C. The situation is that:
surOo(s,r, k,1,0) — —(vik*) (k| OMo(s, 7, k*,t) | PPo(s,7,7) | C1 )

where k* ¢ fn ().
The third reduction is of kind £ and involves the self-inflicted cloning request in C;. Let Cs
be the process CM[ (vq) (G{s*, k*) | q(z,%).5(ali_{(z,r*),i))], then the process

(Uﬁk*)(WH OMg(s,m, k" t) | PPo(s,n,v) |01 )
reduces, up to structural equivalence, to
(viik*s*) (k| OMo( s, 7, k*, ) | newOg(s*,t) | PPo(s,m,0) | C2)

where k* ¢ fn(v). By Lemma A.2 the relation ~r., is insensitive to this reduction.

The fourth reduction is of kind « and it is due to C5. So, if we denote with C3 the process
CM[5(ali_s*,r*, k*)] the situation is that that surOg(s,r,k,,7) evolves in four silent steps, up
to structural equivalence, to

(vnk*s*)(mik| OMo(s, 7, k*, t) | newOq(s*, ) | PPo(s,n,7) | Cs )
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where k* ¢ fn ().
In the fifth 7-step we reduce the self-inflicted aliasing request contained in C'5. So, let us denote
with Cy the process CM[r*(s*,k*)]. It holds that the process

(vnk*s*) (mik| OMo(s, 7, k*,t) | newOq(s*, ) | PPo(s,n,7) | Cs )
reduces, up to structural equivalence, to
(Vﬁk*s*)(ﬁiﬂ AMo( s, m, k", s*) | newOq( s*,1) | PPo(s,nm,v) | Cy)

where k* ¢ fn(v). By Lemma A.3 the relation a5 is insensitive to this reduction.
The sixth and the seventh reductions are of kind a and involve channels 7* and m;, respectively.
Up to structural equivalence we get the desired process

(vs*) ((Vk;) freeAq (s, ki, s*,5) | newOg(s™, ) | F(s*, k).

A.5 Proof of Lemma 8.3

Lemma 8.3 proves that the aliased object manager appearing in Lemma 8.2 behaves as a forwarder.
As a first step we recall a well-known property of replicated input.

Lemma A.4 Let C[-] be a w-calculus context where channel ¢ does not appear either in input or
in output object position. Then

(ve) ( Ve(z).P | Clev] ) ~r (ve) ( Ve(z).P | CIP{*/:}] )
ProOOF. By applying Milner’s replications theorems [Mil93]. O

Proor oF LEMMA 8.3. The obligations on types guarantee that values received along channel
s are of the right type. This allows us to use polyadic input along s. By observing process
(vki) AMo( s, m, ke, ki, s* ) we note that, since k; is restricted and never extruded, the aliased object
manager will never receive self-inflicted requests. By exhibiting the appropriate bisimulation, we
can prove that such a process has the following functional behaviour.

(vk;) (AMo( s, m, ke, ki, s*)) ~r Vs(l, k).if [k=Fke] then m;(k).(s*(l, k) | mo)
else me.(5(l, ke) | Tik)

Since =~ is preserved by parallel composition and restriction, we have that:

(vk;) (freeAg( s, ki, s*,7))

~r

(vmke) (me | 's(l,k).if [k=ke] then m;(k).(s* (l k) | me)
else me.(5(l, ko) | Mik)

(
| IT me. (501, ke) | k) )

jE€l.n

If we assume that the environment cannot use s in input, then all requests on s are captured by the
unique replicated input on s. Moreover, the external identity k. is restricted and never extruded to
the environment, and therefore only pre-processed requests “knows” ke. Using these informations,
up to harmless confluent reductions along m;, we can safely internalise the management of pre-
processed requests by introducing a restricted channel s, with the same type as s and s*. In this
manner we can drop the matching on the identity, and the replicated input on s will only take
care of serving external requests. Formally, we have the following.
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| T me (300, ke) | Tk;) )

jE€l.n
~r.s (by exhibiting the appropriate bisimulation)
(vmse) (Me | Vs(l,k).me.(5e(,
| !se(l, k).m;i(k
| IT me.(5e(ly, k;

jEl.n

v
3

5

~—"

~r (reductions on m; are confluent)

(vmese) (Me | 1s(l,k) me-5e(l, k)
| tse(l, k)-(s™(l, k) | e)
| H me-s_e<ljakj>)
JjEL.n
~r (by Lemma A.4)
(vmese) (e | !s(l,k).me_.(s_*(l,k> | M )
I se(l,k).(s* (1, k) | me)

~r (reductions on m, are confluent)

def (by definition)

A.6 Proof of Lemma 8.4

This is a rather technical lemma. It is the only place where the theory of Lz is exploited.

Proor. We apply Lemma 2.15 to process P to remove all the occurrences of s* in output object
position. Let’s call P the process obtained by applying Lemma 2.15 in such a way. Note that
we focus only on channel s*. The other channels are not affected by our transformation. Since
Lemma 2.15 works with respect to (typed) barbed congruence, it holds that P =p P. This implies

(vs*) (s> s* | P) = (vs*) (s> s* | P) and P{*/,.} = P{*/,-}.

So, we are left with proving that (vs*) (s> s* | P) ~p,; P{*/s}. The proof follows by showing

that the relation:

{((vs*) (s> s* | P), P{’/sx}) : s & fn(P) and s* not free in obj. pos. in P}

is a ~r,, bisimilarity. The obligations on types guarantee that values received along channel s are
of the right type. A part this, we can safely omit the types in the coinductive definition of ~r..
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We recall that ~r,s is ground on channels. This means that we alway suppose to receive fresh
channels, in particular, we never receive channels s and s*.

As regards the left side, the only interesting transition is the input action along s. This action
can be emulated by the right side by exploiting the asynchronous clause for input.

As regards the right side, we recall that ~r., is not sensitive to output actions along s. Since

s* does not appear free in output object position in 13, the only interesting action of 13{5/3*} is
the input action along s which can be mimicked by the left side up to a r-action.

A.7 Proof of Lemma 8.5

We first prove a more general result asserting that pre-processing of external requests is harmless.

Lemma A.5 Let v := vy ..v, where vj := (lj,k; ) with ke # k;j # ki for j € 1..n. It holds that:

OMo(s, i, ke, ki, ) | ] Svi ~ris OMo(s, i, ke, ki, t) | PPo(s,7,).
jEL.n

ProoOF. We prove the result by induction on the number of elements of v.
Case n = 0. Trivial.

Inductive case. Let

[T 3v; def sv1 | [] Sv; and
jE€l..n jE2.n

PPo(s,7,0) ' me.(5(l, ke) | Mik1) | PPo(s,7,vs..0,).

By inductive hypothesis it holds that:

OM@(s,ﬁl,%,fH H Sv; R OM@(S,TIN’L,E,£> | PPo(s,m,va..0p ).

j€2..n

Since =15 is preserved by parallel composition, for proving our result it suffices to show that:

OMo( s, 7, k, i) | 5v1 ~rys OMo(s, i, k1) | me. (51, ke) | ks ).

Let A % OMg(s,m, k,i) | Sv; and

B Y OMo(s,m, kL) | me.(5(11, ke) | Tiks)
we prove that the relation:
S={(w?)(A|R),(vZ)(B|R)) : s¢Z and s not in input in R} U Z

where 7 is the identity relation, is a /2, s-bisimulation up to structural equivalence. The obligation
on types in the coinductive definition of ~r s can be safely omitted. We first show how the right
side can emulate the actions performed by the left side and then the vice versa.

From left to right. Let us see the possible actions of (vZ) (A | R).

1. If (%) (A | R) 55(vi) (A | R) then it is easy.
2. If (v2) (A | R) M)(V%) (A" | R), then there are three possibilities: (i) either k& = k;, or

(ii) k = ke, or (iil) ki # k # ke. In each case the right side can perform an input s(l, k)
obtaining a process (vZ) (B’ | R). By inspection of the encoding we have that (vz) (A’ |
R) = (vy) (A" | R') and (v2) (B' | R) = (vy) (B" | R'), for some gy and some process R’,
where A" (resp. B") is the same as A (resp. A”), up to renaming k; with a fresh key k*.
Therefore (vy) (A" | R') S (vy) (B" | R').
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3. If (b2)(A | R) 5 (v7) (4’ | R'), where the T-action is due to a communication along s
between A and R (recall that s can only appear in output in R), then we reason similarly
to the previous case.

4. If (v?)(A | R) 5 (v2) (A’ | R), where the T actions is due to a communication along
s between the object manager and the external request sv;, then, by inspection of the
encoding, it holds that A’ = B. On the right side we can mimic the 7 action by performing
(v2) (B | R) = (v2) (B | R). It holds that (v2) (A" | R) =S (v2) (B | R).

From right to left. Let us see the possible actions of (vZ) (B | R).

1. If (%) (B | R) 25 () (B | R') then it is easy.
2. If (v2)(B | R) ﬂ)(1/2) (B" | R), then there are three possibilities: (i) either k = k;, or

(ii) k = ke, or (iii) ki # k # ke. In each case the left side can perform an input s(l, k)
obtaining a process (vZ) (A’ | R). By inspection of the encoding we have that (vZ) (B’ |
R) = (vy) (B" | R') and (v2) (A" | R) = (vy) (A" | R'), for some y and some process R’,
where B" (resp. A”) is the same as B (resp. A), up to renaming k; with a fresh key k*.
Therefore (vy) (B" | R') S (vy) (A" | R').

3. If (b3) (B | R) (v)) (B' | R'), where the r-action is due to a communication along s
between B and R (recall that s can only appear in output in R), then we reason similarly
to the previous case.

4. If (v3) (B | R) 2=5(v3) (B' | R) and B' = OMo( s, i, k, &) | 3(l1, ko) | miky, then the left
side can mimic this action by serving the request sv; and then grabbing the mutex. In
practise,

(v?) (A | R) 5 25 (w?) (A" | R) with A’ = B'. So, (v3) (B’ | R) S (v?) (A" | R).
Ol

Proor or LEMMA 8.5. It follows directly from Lemma A.5 and the fact that ~r,, is preserved
by parallel composition and restriction. O

A.8 Proof of Lemma 8.6
ProoF. It holds that:

pingOg (5,7 k, £, 7)o (vink) (77 | OMo (s, 7, K, F) | PP (5,71,5) ) | (s, k).

Since ~r is insensitive to these two silent moves, we can conclude. O
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