
Information Flow vs. Resour
e A

ess in the

Asyn
hronous Pi-Cal
ulus

Matthew Hennessy and James Riely

Abstra
t. We propose an extension of the asyn
hronous �-
al
ulus

in whi
h a variety of se
urity properties may be
aptured using

types. These are an extension of the Input/Output types for the

�-
al
ulus in whi
h I/O
apabilities are assigned spe
i�
 se
urity

levels.

We de�ne a typing system whi
h ensures that pro
esses running

at se
urity level �
annot a

ess resour
es with a se
urity level

higher than �. The notion of a

ess
ontrol guaranteed by this

system is formalized in terms of a Type Safety theorem.

We then show that, for a
ertain
lass of pro
esses, our system

prohibits impli
it information
ow from high-level to low-level pro-

esses. We prove that low-level behaviour
an not be in
uen
ed

by
hanges to high-level behaviour. This is formalized as a Non-

Interferen
e Theorem with respe
t to may testing.

1 Introdu
tion

The problem of prote
ting information and resour
es in systems with mul-

tiple sensitivity or se
urity levels, [2℄, has been studied extensively. Flow

analysis te
hniques have been used in [3, 4℄, axiomati
 logi
 in [13℄ while

in [27, 15℄ type systems have been developed for a number of prototypi
al

programming languages. In this paper, we explore the extent to whi
h

type systems for ensuring various forms of se
urity
an also be developed

for the asyn
hronous �-
al
ulus [5, 16℄. We dis
uss two se
urity issues:

resour
e a

ess
ontrol and information
ontrol. The former is des
ribed

in terms of runtime errors, the latter in terms of non-interferen
e [27, 11℄.

The (asyn
hronous) �-
al
ulus is a very expressive language for de-

s
ribing distributed systems, [5, 22, 12℄, in whi
h pro
esses inter
ommuni-

ate using
hannels. Thus n?(x)P is a pro
ess whi
h re
eives some value

on the
hannel named n, binds it to the variable x and exe
utes the
ode

P . Corresponding to this input
ommand is the asyn
hronous output

ommand n!hvi whi
h outputs the value v on n. The set of values whi
h

Email: matthewh�
ogs.susx.a
.uk, jriely�
s.depaul.edu

2 Matthew Hennessy and James Riely

may be transmitted on
hannels in
ludes
hannel names themselves; this,

together with the ability to dynami
ally
reate new
hannel names, gives

the language its des
riptive power.

Within the setting of the �-
al
ulus we wish to investigate the use

of types to enfor
e se
urity poli
ies. To fa
ilitate the dis
ussion we ex-

tend the syntax with a new
onstru
t to represent a pro
ess running at a

given se
urity
learan
e, �JP K. Here � is some se
urity level taken from

a
omplete latti
e of se
urity levels SL and P is the
ode of the pro
ess.

Further, we asso
iate with ea
h
hannel, the resour
es in our language,

a set of input/output
apabilities [21, 23℄, ea
h de
orated with a spe
i�

se
urity level. Intuitively, if
hannel n has a read
apability at level �,

then only pro
esses running at se
urity level � or higher may be read

from n. This leads to the notion of a se
urity poli
y �, whi
h asso
iates a

set of
apabilities with ea
h
hannel in the system. The question then is

to design a typing system whi
h ensures that pro
esses do not violate the

given se
urity poli
y.

Of
ourse this depends on when we
onsider su
h a violation to take

pla
e. For example if � assigns the
hannel or resour
e n the highest

se
urity level top then it is reasonable to say that a violation will eventually

o

ur in

!hni j botJ
?(x) x?(y)P K

as after the
ommuni
ation on
, a low level pro
ess, botJn?(y)P K has

gained a

ess to the high level resour
e n. Underlying this example is the

prin
iple that pro
esses at a given se
urity level � should have a

ess to

resour
es at se
urity level at most �. We formalize this prin
iple in terms

of a relation P

�

7�! err, indi
ating that P violates the se
urity poli
y �.

To prevent su
h errors, we restri
t attention to se
urity poli
ies that

are somehow
onsistent. Let � be su
h a
onsistent poli
y;
onsisten
y is

de�ned by restri
ting types so that they respe
t a subtyping relation. We

then introdu
e a typing system, � ` P , whi
h ensures that P
an never

violate �:

If � ` P then for every
ontext C[℄ su
h that � ` C[P ℄ and every

Q whi
h o

urs during the exe
ution of C[P ℄, that is C[P ℄ 7!

�

Q,

we have Q

�

7�X�! err.

Thus our typing system ensures that low level pro
esses will never gain

a

ess to high level resour
es. The typing system implements a parti
ular

view of se
urity, whi
h we refer to as the R-se
urity poli
y, as it o�ers

prote
tion to resour
es. Here
ommuni
ation is allowed between high level

and low level prin
ipals, provided of
ourse that the values involved are

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 3

appropriate.

This poli
y does not rule out the possibility of information leaking

indire
tly from high se
urity to low se
urity prin
ipals. Suppose h is a

high
hannel and hl is a
hannel with high-level write a

ess and low-level

read a

ess in:

top

q

h?(x) if x = 0 then hl!h0i else hl!h1i

y

j bot

q

hl?(z)Q

y

This system
an be well-typed although there is some impli
it information

ow from the high se
urity agent to the low se
urity one; the value re
eived

on the high level
hannel h
an be determined by the low level pro
ess Q.

It is diÆ
ult to formalize exa
tly what is meant by impli
it information

ow and in the literature various authors have instead relied on non-

interferen
e, [14, 25, 11, 26℄, a
on
ept more amenable to formalization,

whi
h ensures, at least informally, the absen
e of impli
it information
ow.

To obtain su
h results for the �-
al
ulus we need, as the above example

shows, a stri
ter se
urity poli
y, whi
h we refer to as the I-se
urity poli
y.

This allows a high level prin
ipal to read from low level resour
es but not

to write to them. Using the terminology of [2, 7℄:

� write up: a pro
ess at level � may only write to
hannels at level � or

above

� read down: a pro
ess at level � may only read from
hannels at level

� or below.

In fa
t the type inferen
e system remains the same and we only need

onstrain the notion of type. In this restri
ted type system well-typing,

�
 P , ensures a form of non-interferen
e.

To formalize this non-interferen
e result we need to develop a notion of

pro
ess behaviour, relative to a given se
urity level. Sin
e the behaviour

of pro
esses also depends on the type environment in whi
h they operate

we need to de�ne a relation

P �

�

�

Q

whi
h intuitively states that, relative to �, there is no observable dis-

tin
tion between the behaviour of P and Q at se
urity level �; pro
esses

running at se
urity level �
an observe no di�eren
e in the behaviour of

P and Q. La
k of information
ow from high to low se
urity levels now

means that this relation is invariant under
hanges in high-level values; or

indeed under
hanges in high-level behaviour.

It turns out that the extent to whi
h this is true depends on the exa
t

formulation of the behavioural equivalen
e �

�

�

. We show that it is not true

if �

�

�

is based on observational equivalen
e [18℄ ormust testing equivalen
e

[20℄. But a result
an be established if we restri
t our attention to may

4 Matthew Hennessy and James Riely

Figure 1 Syntax

P;Q ::= Terms

u!hvi Output

u?(X

:

A)P Input

if u = v then P else Q Mat
hing

�JP K Se
urity level

(new a

:

A) P Name
reation

P jQ Composition

�P Repli
ation

0 Termination

X;Y ::= Patterns

x Variable

(X

1

; : : : ; X

k

) Tuple

u; v; w ::= Values

bv Base Value

a Name

x Variable

(u

1

; : : : ; u

k

) Tuple

testing equivalen
e (here written '

�

�

). Spe
i�
ally we will show that, for

ertain H;K:

If �

�

P; Q and �

top

H; K then P '

�

�

Q implies P jH '

�

�

Q jK.

High-level behaviour
an be arbitrarily
hanged without a�e
ting low-level

equivalen
es. This is the main result of the paper.

The remainder of the paper is organized as follows. In the next se
tion

we de�ne the se
urity �-
al
ulus, giving a labelled transition semanti
s

and a formal de�nition of runtime errors. In Se
tion 3 we design a set of

types and a typing system whi
h implements the resour
e
ontrol poli
y.

The types are an extension of the IO-types for the �-
al
ulus from [21, 23℄

in whi
h se
urity levels are asso
iated with spe
i�

apabilities. This

se
tion also
ontains Subje
t Redu
tion and Type Safety theorems. In

Se
tion 4 we motivate the restri
tions required on types and terms in

order to implement the information
ontrol poli
y. We also give a pre
ise

statement of our non-interferen
e result, and give
ounter-examples to

related
onje
tures based on equivalen
es other than may testing. The

proof of our main theorem depends on an analysis of may testing in terms

of asyn
hronous sequen
es of a
tions [6℄ whi
h in turn depends on detailed

operational semanti
s for our language, where a
tions are paramterised

relative to a typing environment. This is the topi
 of Se
tion 5, whi
h also

ontains the proof of our main theorem.

2 The Language

The syntax of the se
urity �-
al
ulus, given in Figure 1, uses a prede�ned

set of names, ranged over by a; b; : : : ; n and a set of variables, ranged over

by x; y; z. Identi�ers are either variables or names. Se
urity annotations,

ranged over by small Greek letters �; �; : : : , are taken from a
omplete

latti
e hSL;�;u;t; top; boti of se
urity levels. We also assume for ea
h �

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 5

Figure 2 Labelled Transition Semanti
s

(l-out)

a!hvi

a!v

��! 0

(l-in)

a?(X)P

(e

:

e

C)a?v

������! Pfj

v

=Xjg

~
 =2 fn(P)

(l-open)

P

(~

:

~

C)a!v

�����! P

0

(new b

:

B) P

(b

:

B)(e

:

e

C)a!v

���������! P

0

b 6= a

b 2 fn(v)

(l-
om)

P

�

�! P

0

; Q

�

�! Q

0

P jQ

�

�!
(new E(�)) (P

0

jQ

0

)

(l-eq)

if u = u then P else Q

�

�! P if u = w then P else Q

�

�! Q

u 6= w

(l-
txt)

P

�

�! P

0

�P

�

�! �P j P

0

�JP K

�

�! �JP

0

K

P

�

�! P

0

P jQ

�

�! P

0

jQ

Q j P

�

�! Q j P

0

bn(�) 62 fn(Q)

P

�

�! P

0

(new a

:

A) P

�

�! (new a

:

A) P

0

a 62

n

(�)

a set of basi
 values BV

�

; we use bv to range over base values. We require

that all synta
ti
 sets be disjoint.

The input
onstru
t `u?(X

:

A)P ' binds all variables in the pattern X

while the
onstru
t `(new a

:

A) P ' binds names and asso
iated with these.

We have the usual notions of free and bound names and variables, �-

equivalen
e and substitution. We identify terms up to �-equivalen
e. Let

fn(P) and fv(P) denote the set of free names and variables, respe
tively, of

the term P . We use `Pfj

v

=Xjg' to denote the substitution of the identi�ers

o

urring in the value v for the variables o

urring in the pattern X. For

`Pfj

v

=Xjg' to be well-de�ned X and v must have the same stru
ture; to

avoid unne
essary
ompli
ations we assume that a variable
an o

ur at

most on
e in a pattern. The binding
onstru
ts have types asso
iated

with them; these will be explained in Se
tion 3 but are ignored for the

moment. In general these types (and the various se
urity annotations)

will be omitted from terms unless they are relevant to the dis
ussion at

hand.

6 Matthew Hennessy and James Riely

The behaviour of a pro
ess is determined by the intera
tions in whi
h

it
an engage. To de�ne these, we give a labelled transition semanti
s

(LTS) for the language. The set A
t of labels, or a
tions, is de�ned as

follows:

� ::= A
tions

� Internal a
tion

(~

:

~

C)a?v Input of v on a learning private names ~

(~

:

~

C)a!v Output of v on a revealing private names ~

Let VA
t = A
t n f�g be the set of the visible a
tions, ranged over by �,

�, either input or output. Whenever these are used we assume that the

bound names ~
 o

ur in the value v. Formally the bound names of an

a
tion are de�ned by bn(�) = ; and bn((~

:

~

C)a!v) = bn((~

:

~

C)a?v) = f~
g.

We also use E(�) to denote the bound names in �, together with their

types: E((~

:

~

C)a!v) = E((~

:

~

C)a?v) = (~

:

~

C). Further, let

n

(�) be the

set of names o

urring in �, whether free or bound. We say that the

a
tions `(~

:

~

C)a?v' and `(~

:

~

C)a!v' are
omplementary. Given a visible

a
tion �, we write � to indi
ate the a
tion
omplementary to �; note that

bn(�) = bn(�) and E(�) = E(�).

The LTS is de�ned in Figure 5 and for the most part the rules are

straightforward; it is based on the standard operational semanti
s from

[19℄, to whi
h the reader is referred for more motivation. Note that in the

input rule (l-in) we are assuming the a
tion (~

:

~

C)a?v is well-de�ned; in

prin
iple the pro
ess a?(X)P
an input any value v, but for the a
tion to

be valid the bound names ~
 must appear in v and moreover must be new

to the pro
ess.

Informally a se
urity poli
y asso
iates with ea
h
hannel a se
urity

level. Our approa
h, slightly more general, is to in
orporate this informa-

tion into the standard notion of
hannel types for the �-
al
ulus[21, 23℄,

designed to rule out run-time mistypings, su
h as sending a triple on a

hannel designed for pairs. In parti
ular we will asso
iate se
urity levels

with
apabilities on
hannels, rather than
hannels themselves, although

indire
tly we will be able to asso
iate se
urity levels with
hannels. To

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 7

this end, Pre-
apabilities and pre-types are de�ned as follows:

ap ::= Pre-Capability

w

�

hAi �-level pro
ess
an write values with type A

r

�

hAi �-level pro
ess
an read values with type A

A ::= Pre-Type

B

�

Base type

f
ap

1

; : : : ;
ap

k

g Resour
e type (k � 0)

(A

1

; : : : ;A

k

) Tuple type (k � 0)

We will tend to abbreviate a singleton set of
apabilities, f
apg, to
ap.

A se
urity poli
y, �, is a �nite mapping from names to pre-types. Thus,

for example, if � maps the
hannel lh to the pre-type fw

bot

hBi; r

top

hAig,

for some appropriate A; B, then low level pro
esses may write to lh but

only high level ones may read from it; this is an approximation of the

se
urity asso
iated with a mailbox. On the other hand if � maps hl to

fr

bot

hAi; w

top

hBig then hl a
ts more like an information
hannel; anybody

an read from it but only high level pro
esses may pla
e information there.

The import of a se
urity poli
y may be underlined by de�ning what

it means to violate it. Our de�nition is given in Figure 3, in terms of

a relation P

�

7�! err. As an example of runtime errors we have that

�Ja!hviP K

�

7�! err if any of the following hold: (a) �(a) is unde�ned,

(b) a has no write
apability for pro
esses at level �, or (
) v
ontains

a base value that is restri
ted from �-level pro
esses. As explained in

the Introdu
tion here we are attempting to
ontrol a

ess to resour
es:

hannels and base values. Prin
ipals at level � have a

ess to all resour
es

at levels up to and in
luding �. So even if � assigns a a low se
urity level

topJa!hviP K does not
ause a runtime error unless v
an not be assigned

a type appropriate to �(a).

Example 2.1. Here we assume the poli
y � de�ned above, mapping lh to

fw

bot

hBi; r

top

hAig and hl to fw

top

hBi; r

bot

hAig, for some appropriate A;B.

� Consider the pro
ess topJ
!hhliK j botJ
?(x) x!hviK. Then after one re-

du
tion step there is a se
urity error be
ause botJhl!hviK

�

7�! err: A low

se
urity pro
ess has read a

ess to se
urity
hannel hl on whi
h write

a

ess is reserved for high-se
urity pro
esses.

� Assuming an appropriate typing for
 and v the same se
urity error

does not o

ur in topJ
!hlhiK jbotJ
?(x)x!hviK: The low se
urity pro
ess

botJlh!hviQK has the right to write on the
hannel lh.

� If � assigns to the
hannel
 a pre-type whi
h in
ludes a
apability of

the form r

bot

hCi then apriori there is no type error in the expression

8 Matthew Hennessy and James Riely

Figure 3 Runtime Errors

(e-rd) �Ja?(X)P K

�

7�! err if � � � implies for all A, r

�

hAi =2 �(a)

(e-wr

1

) �Ja!hviK

�

7�! err if � � � implies for all A, w

�

hAi =2 �(a)

(e-wr

2

) �Ja!hviK

�

7�! err if bv 2 v, bv 2 B

�

and � 6� �

(e-str)

P

�

7�! err

P jQ

�

7�! err

P

�

7�! err

�JP K

�

7�! err

P � Q; P

�

7�! err

Q

�

7�! err

P

�;a

:

A

7����! err

(newn

:

A) P

�

7�! err

!hlhi although intuitively it involves a se
urity leak; a low se
urity

agent
an read from
 a
hannel whi
h has at least some
apability

whi
h should only be a

essible to high se
urity prin
ipals. However

it is straightforward to pla
e it in a
ontext in whi
h a se
urity leak

o

urs:
!hlhi j botJ
?(x) x!hviK: Thus our typing system will also be

required to rule out su
h pro
esses. �

3 Resour
e Control

Our typing system will apply only to
ertain se
urity poli
ies, those in

whi
h the pre-types are in some sense
onsistent. Consisten
y is imposed

using a system of kinds: the kind RType

�

omprises the value types a
-

essible to pro
esses at se
urity level �. These kinds are in turn de�ned

using a subtyping relation on pre-
apabilities and pre-types.

Definition 3.1. Let <

:

be the least preorder on pre-
apabilities and pre-

types su
h that:

(u-wr) w

�

hAi <

:

w

�

hBi if B <

:

A

(u-rd) r

�

hAi <

:

r

�

hBi if A <

:

B and � � �

(u-base) B

�

<

:

B

�

if � � �

(u-res) f
ap

i

g

i2I

<

:

f
ap

0

j

g

j2J

if (8j)(9i)
ap

i

<

:

ap

0

j

(u-tup) (A

1

; : : : ;A

k

) <

:

(B

1

; : : : ;B

k

) if (8i) A

i

<

:

B

i

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 9

For ea
h �, let RType

�

be the least set that satis�es:

(rt-wr)

A 2 RType

�

fw

�

hAig 2 RType

�

� � �

(rt-rd)

A 2 RType

�

fr

�

hAig 2 RType

�

� � �

(rt-wrrd)

A 2 RType

�

A

0

2 RType

�

0

fw

�

hAi; r

�

0

hA

0

ig 2 RType

�

� � �

�

0

� �

A <

:

A

0

(rt-base)

B

�

2 RType

�

� � �

(rt-tup)

A

i

2 RType

�

(8i)

(A

1

; : : : ;A

k

) 2 RType

�

Let RType be the union of the kinds RType

�

over all �. �

Note that if � � � then RType

�

� RType

�

. Intuitively, low level values

are a

essible to high level pro
esses. However the
onverse is not true.

For example w

top

hi 2 RType

top

but w

top

hi is not in RType

bot

. Note also

that there is no relation between subtyping and a

essibility at a given

se
urity level. For example:

w

bot

hi 2 RType

bot

and fw

bot

hi; r

top

hig <

:

r

bot

hi but fw

bot

hi;w

top

hig 62 RType

bot

r

bot

hi 2 RType

bot

and r

bot

hi <

:

r

top

hi but r

top

hi 62 RType

bot

The
ompatibility requirement between read and write
apabilities in

a type (rt-wrrd), in addition to the typing impli
ations dis
ussed in

[23℄, also has se
urity impli
ations. For example suppose r

bot

hB

�

i and

w

top

hBi are
apabilities in a valid
hannel type. Then apriori a high level

pro
ess
an write to the
hannel while a low level pro
ess may read from

it. However the only possibility for � is bot, that is only low level values

may be read. Moreover the requirement B <

:

B

�

implies that B must also

be B

bot

. So although high level pro
esses may write to the
hannel they

may only write low level values.

Remark. Most of the restri
tions imposed on types are essential to a
hiev-

ing Subje
t Redu
tion, but a few are not. First, Subje
t Redu
tion still

holds if we weaken (u-wr) to: w

�

hAi <

:

w

�

hBi if B <

:

A and � � �.

Were we to adopt this rule, it would be true that every pro
ess typable at

level � would also be typable at level �, for � � �. Given our de�nition,

this is not true. Nonetheless, every pro
ess typable at �
an be trivially

rewritten so that it is typable at � given our de�nition (one must sim-

ply surround output a
tions with expli
it se
urity restri
tions). We have

10 Matthew Hennessy and James Riely

Figure 4 Typing Rules

(t-id)

�(u) <

:

A

� ` u

:

A

(t-base)

bv 2 B

�

� ` bv

:

B

�

(t-tup)

� ` v

i

:

A

i

(8i)

� ` (v

1

; : : : ; v

k

)

:

(A

1

; : : : ;A

k

)

(t-in)

�; X

:

A `

�

P

� ` u

:

r

�

hAi

� `

�

u?(X

:

A)P

(t-out)

� ` u

:

w

�

hAi

� ` v

:

A

� `

�

u!hvi

(t-eq)

� ` u

:

A; v

:

B

� `

�

Q

� u fu

:

B; v

:

Ag `

�

P

� `

�

if u = v then P else Q

(t-sr)

� `

�u�

P

� `

�

�JP K

(t-new)

�; a

:

A `

�

P

� `

�

(new a

:

A) P

(t-str)

� `

�

P; Q

� `

�

P jQ; �P; 0

adopted the stronger rule be
ause it is ne
essary in the next se
tion and

results in no substantive loss of expressivity.

Se
ond, we have limited types to
ontain at most one read and one

write
apability. We have done so to simplify the proofs, parti
ularly in

the next se
tion. This
learly results in a loss of expressiveness. We have

yet to �nd, however, a
ompelling example that requires a resour
e to

have more than one read or one write
apability. It is usually sensible to

simply take the meet. �

Proposition 3.2. For every �, RType

�

is a preorder with respe
t to <

:

,

with both a partial meet operation u and a partial join t.

Proof. Straightforward adaptation of Proposition 6.2 of [23℄. The partial

operations u and t are �rst de�ned by stru
tural indu
tion on types.

Typi
al
lauses are

r

�

hAi u r

�

0

hA

0

i = r

�u�

0

hA uA

0

i

w

�

hAi u w

�

hA

0

i = w

�

hA tA

0

i

r

�

hAi t r

�

0

hAi = r

�t�

0

hA tA

0

i

w

�

hAi t w

�

hA

0

i = w

�

hA uA

0

i

One
an then show, by indu
tion on the de�nitions, that:

A 2 RType

�

and A 2 RType

�

0

implies A u B 2 RType

�u�

0

and

A t B 2 RType

�t�

0

.

Finally it is straightforward to show that u and t, de�ned in this manner,

are indeed partial meet and partial join operators. �

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 11

We now dis
uss the typing system, whi
h is de�ned using restri
ted

se
urity poli
ies,
alled type environments. A type environment is a �nite

mapping from identi�ers (names and variables) to types. We adopt some

standard notation. For example, let `�; u

:

A' denote the obvious extension

of �; `�; u

:

A' is only de�ned if u is not in the domain of �. The subtyp-

ing relation <

:

together with the partial operators u and t may also be

extended to environments. For example � <

:

� if for all u in the domain

of �, �(u) <

:

�(u). The partial meet enables us to de�ne more subtle

extensions. For example �ufu

:

Ag may be de�ned even if u is already in

the domain of �. It is well de�ned when �(u) uA exists, in whi
h
ase it

maps u to this type. We will normally abbreviate the simple environment

fu

:

Ag to u

:

A and moreover use v

:

A to denote its obvious generalisation

to values; this is only well-de�ned when the value v has the same stru
ture

as the type A.

The typing system is given in Figure 4 where the judgements are of

the form `� `

�

P '. If � `

�

P we say that P is a �-level pro
ess. Also, let

`� ` P ' abbreviate `� `

top

P '.

Intuitively `� `

�

P ' indi
ates that the pro
ess P will not
ause any

se
urity errors if exe
uted with se
urity
learan
e �. The rules are very

similar to those used in papers su
h as [23, 21℄ for the standard IO typing

of the �-
al
ulus. Indeed the only signi�
ant use of the se
urity levels is

in the (t-in) and (t-out) rules, where the
hannels are required to have

a spe
i�
 se
urity level. This is inferred using auxiliary value judgements,

of the form � ` v

:

A. It is interesting to note that se
urity levels play no

dire
t role in their derivation. One might expe
t that the judgements for

values would need to ensure that a value written to a
hannel be a

essible

at the appropriate se
urity level. This job, however, is already handled

by our de�nition of types. For example, in order for w

�

hAi to be a type,

A must be a type a

essible to �.

The typing system enjoys many expe
ted properties, the proof of whi
h

we leave to the reader.

Proposition 3.3.

� (Spe
ialization) � ` v

:

A and A <

:

B then � ` v

:

B

� (Weakening) � `

�

P and � <

:

� then � `

�

P

� (Restri
tion) �; u

:

A `

�

P and u 62 fv(P) [fn(P) implies � `

�

P: �

The main te
hni
al tool required for Subje
t Redu
tion is, as usual, a

substitution result.

Lemma 3.4 (Substitution). If � ` v

:

A then

12 Matthew Hennessy and James Riely

� � ` u

:

A implies � ` ufj

v

=Xjg

� �; X

:

A `

�

P implies � `

�

Pfj

v

=Xjg

Proof. Easily re
onstru
ted from the
orresponding proof in [23℄, Lemma

4.7. �

Theorem 3.5 (Subje
t Redu
tion). Suppose � `

�

P . Then

� P

�

�! Q implies � `

�

Q

� P

(~

:

~

C)a?v

������! Q implies there exists a type A su
h that � ` a

:

r

Æ

hAi for

some Æ � �, and if � u v

:

A is well-de�ned then � u v

:

A `

�

Q.

� P

(~

:

~

C)a!v

�����! Q implies there exists a type A su
h that � ` a

:

w

Æ

hAi for

some Æ � �, �; ~

:

~

C ` v

:

A and �; ~

:

~

C `

�

Q.

Proof. The three statements are proved simultaneously by indu
tion on

the inferen
e P

�

�! Q. We examine some
ases.

The rule (l-in): a?(X

:

A)P

(~

:

~

C)a?v

������! Pfj

v

=Xjg. Be
ause � `

�

a?(X

:

A)P

we know � ` a

:

r

�

hAi and �; X

:

A `

�

P . Now suppose � u v

:

A is well-

de�ned. By Weakening we obtain (� u v

:

A); X

:

A `

�

P and therefore

applying the Substitution Lemma we obtain �u v

:

A `

�

Pfj

v

=Xjg. The rule

(l-out) is similar.

We
onsider one example of the rule (l-
txt): �JP K

�

�! �JP

0

K be
ause

P

�

�! P

0

. The pre
ise details depend on �, but in ea
h of the three

possibilities the reasoning is very similar; so suppose � is an input a
tion

(~

:

~

C)a?v. We know, by well-typing, that � `

�u�

P and therefore we

may apply indu
tion to obtain a type A and a Æ � � u � su
h that � `

a

:

r

Æ

hAi; in parti
ular Æ � �. Now suppose � u v

:

A exists. Then, again

by indu
tion, we know �u v

:

A `

�u�

P

0

and therefore applying the typing

rule (t-sr) we obtain the required � u v

:

A `

�

�JP

0

K.

The rule (l-open): (new b

:

B) P

(b

:

B)(~

:

~

C)a!v

���������! P

0

be
ause P

(~

:

~

C)a!v

�����!

P

0

. Here we know �; b

:

B `

�

P and therefore applying indu
tion to the

a
tion P

(~

:

~

C)a!v

�����! P

0

we obtain a type A su
h that �; b

:

B; ~

:

~

C `

�

P

0

and �; b

:

B; ~

:

~

C ` v

:

A; moreover �; b

:

B ` a

:

r

Æ

hAi, for some Æ � �.

However sin
e (l-open) requires that b 6= a we may
on
lude, as required,

� ` a

:

r

Æ

hAi.

As a �nal example
onsider the rule (l-
om): P jQ

�

�! (new E(�)) (P

0

j

Q

0

) be
ause P

�

�! P

0

and Q

�

�! Q

0

. Without loss of generality we may

assume � is the input a
tion (~

:

~

C)a?v. We know � `

�

P; Q and therefore

we may apply indu
tion to both redu
tion statements. Applying it to

Q

�

�! Q

0

we obtain �; ~

:

~

C ` v

:

A and �; ~

:

~

C `

�

Q. The former implies

that � u v

:

A is well-de�ned and therefore indu
tion applied to P

�

�! P

0

gives �u v

:

A `

�

P

0

. Sin
e �; ~

:

~

C ` v

:

A it follows that �; ~

:

~

C <

:

�u v

:

A

and therefore by Weakening we have �; ~

:

~

C `

�

P

0

. An appli
ation of

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 13

(t-str), followed by (t-new), gives the required � `

�

(new E(�)) (P

0

jQ

0

).

�

We
an now prove the �rst main result:

Theorem 3.6 (Type Safety). If � ` P then for every
losed
ontext

C[℄ su
h that � ` C[P ℄ and every Q su
h that C[P ℄

�

�!

�

Q we have

Q

�

7�X�! err

Proof. By Subje
t Redu
tion we know that � `

top

Q and therefore it is

suÆ
ient to prove that � `

top

Q implies Q

�

7�X�! err. In fa
t we prove the

ontrapositive, Q

�

7�! err implies � 6`

top

Q by indu
tion on the de�nition

of Q

�

7�! err.

This is a straightforward indu
tive proof on the derivation ofQ

�

7�! err.

For example
onsider the
ase (e-rd). Suppose that �Ja?(X)P K

�

7�! err

be
ause � � � implies for all A, r

�

hAi =2 �(a). By supposition, we have

that �(a) either has no read
apability or it has a read
apability at level

Æ, where Æ 6� �. In either
ase, the judgement � `

�

a?(X)P
annot be

derived, and therefore � `

top

�Ja?(X)P K is also underivable. �

We end this se
tion with a brief dis
ussion on the use of the syntax

�JP K in our language. We have primarily introdu
ed it in order to dis
uss

typing issues. Having de�ned our typing system we may now view �JP K

simply as notation for the fa
t that, relative to the
urrent typing envi-

ronment �, the pro
ess P is well-typed at level �, i.e. � `

�

P . Te
hni
ally

we
an view �JP K to be stru
turally equivalent to P , assuming we are

working in an environment � su
h that � `

�

P . This will be formalised in

Se
tion 5.

4 Information Flow

We have shown in the previous se
tions that, in well-typed systems, pro-

esses running at a given se
urity level
an only a

ess resour
es appropri-

ate to that level. However, as pointed out in the Introdu
tion this does not

rule out (impli
it) information
ow between levels. Consider the following

system

top

q

h?(x) if x = 0 then hl!h0i else hl!h1i

y

j bot

q

hl?(z)Q

y

(?)

exe
uting in an environment in whi
h h is a top-level read/write
hannel

and hl is a top-level write and bot-level read
hannel. This system
an be

well-typed, using R-types, so the pro
esses only a

ess resour
es appro-

priate to their se
urity level. Nevertheless there is some impli
it
ow of

14 Matthew Hennessy and James Riely

information from top to bot; the low-level pro
ess, botJhl?(z)QK, by test-

ing the value re
eived on z
an gain some information about the high-level

value x re
eived by the high-level pro
ess on the high-level
hannel h.

One way of formalizing this notion of
ow of information is to
onsider

the behaviour of pro
esses and how it
an be in
uen
ed. If the behaviour

of low-level pro
esses is independent of any high-level values in its environ-

ment then we
an say that there
an be no impli
it
ow of information from

high-level to low-level. This is not the
ase in the example above. Suppose,

for example, that Q is the
ode fragment `if z = 0 then l

1

!hi else l

2

!hi'.

If (?) were pla
ed in an environment with `topJh!h0iK', then the resour
e

l

1

would be
alled. If, instead, (?) were pla
ed in an environment with

`topJh!h42iK', then l

2

would be
alled. In other words the behaviour of

the low-level pro
ess
an be in
uen
ed by high-level
hanges; there is a

possibility of information
ow downwards.

This is not surprising in view of the type asso
iated with the
hannel

hl; in the terminology of [2℄ it allows a write down from a high-level pro
ess

to a low-level pro
ess. Thus if we are to eliminate impli
it information

ow between levels in well-typed pro
esses we need to restri
t further the

allowed types; types su
h as fw

top

hi; r

bot

hig
learly
ontradi
t the spirit of

se
re
y. Thus, for the rest of the paper we work with the more restri
tive

set IType, the Information types. In order for fw

�

hAi; r

�

0

hA

0

ig to be in

IType, it must be that � � �

0

; this is not ne
essarily true for types in

RType.

Definition 4.1. For ea
h �, let IType

�

, be the least set that satis�es the

rules in De�nition 3.1, with (rt-wrrd) repla
ed by:

(it-wrrd)

A 2 IType

�

A

0

2 IType

�

0

fw

�

hAi; r

�

0

hA

0

ig 2 IType

�

� � �

0

�

0

� �

A <

:

A

0

Let IType be the union of IType

�

over all �. We write �

�

P if � `

�

P
an

be derived from the rules of Figure 4 using these more restri
tive types.�

All of the results of the previous se
tion
arry over to the stronger typing

system; we leave their elaboration to the reader.

Unfortunately, due to the expressiveness of our language, the use of I-

types still does not pre
lude information
ow downwards, between levels.

Consider the system

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 15

top

q

h?(x) if x = 0 then botJl!h0iK else botJl!h1iK

y

j bot

q

l?(z)Q

y

exe
uting in an environment in whi
h h is a top-level read/write
hannel

and l is a bot-level read/write
hannel. This system
an be well-typed

using I-types, but there still appears to be some some impli
it
ow of

information from top to bot. The problem here is that our syntax allows

a high-level pro
ess, whi
h
an not write to low-level
hannels, to evolve

into a low-level pro
ess whi
h does have this
apability; we need to pla
e a

boundary between low- and high-level pro
esses whi
h ensures a high-level

pro
ess never gains write a

ess to low-level
hannels. This is the aim of

the following de�nition:

Definition 4.2. De�ne the se
urity levels of a term below �, sl

�

(P), as

follows:

sl

�

(�P) = sl

�

(P) sl

�

(0) = f�g sl

�

(�JP K) = f� u �g [sl

�u�

(P)

sl

�

((new a

:

A) P) = sl

�

(P) sl

�

(u!hvi) = ; sl

�

(P jQ) = sl

�

(P) [sl

�

(Q)

sl

�

(u?(X

:

B)P) = sl

�

(P) sl

�

(if u = v then P else Q) = sl

�

(P) [sl

�

(Q)

A pro
ess P is �-free if for every � in sl

top

(P), � 6� �. �

Note that top 2 sl

top

(P) for every P and therefore if P is �-free it must

be that � 6= top.

In general �-freedom restri
ts the ability of pro
esses to redu
e their

se
urity level to �; this will restri
t their ability to write to �-level pro-

esses, but not their ability to read from them. The de�nition may appear

ompli
ated but unfortunately it is not suÆ
ient to disallow o

urren
es of

�J K from P . Consider for example the pro
ess �

1

J�

2

JQKK, where �

1

6� �.

This does not
ontain any o

urren
e of �J K, (assuming it does not o

ur

in Q), but if �

1

u �

2

= � then e�e
tively Q is running at se
urity level �.

To what extent, therefore, does �-freedom pre
lude impli
it informa-

tion
ow? We avoid giving a formal de�nition of impli
it information

ow. Instead we
an demand that, in order to informally pre
lude su
h

information
ow, low-level behaviour be
ompletely independent of arbi-

trary high-level behaviour; it should not be possible to in
uen
e low-level

behaviour by
hanging high-level behaviour. This
an be formalized as a

non-interferen
e result of the form:

Suppose P and Q are �-levl pro
esses and P �

�

Q. Further sup-

pose that H and K are arbitrary top-level �-free pro
esses. Then

P jH �

�

Q jK.

16 Matthew Hennessy and James Riely

Here �

�

is some form of behavioural equivalen
e that is sensitive only to

behaviour of pro
esses that are �-level or lower. It turns out that su
h a

result is very dependent on the exa
t formulation used, as the following

example illustrates.

Let A denote the type fw

bot

hi; r

bot

hig and B denote fr

bot

hig. Fur-

ther, let � map a and b to A and B, respe
tively, and n to the type

fw

bot

hAi; r

bot

hAig. Now
onsider the terms P and H de�ned by

P (botJn!hai j n?(x

:

A) x!hiK H (topJn?(x

:

B) b?(y) 0K

It is very easy to
he
k that �
 P;H and that H is bot-free. Note that in

the term P jH there is
ontention between the low and high-level pro
esses

for who will re
eive a value on the
hannel n. This means that if we were

to base the semanti
 relation � on any of strong bisimulation equivalen
e,

weak bisimulation equivalen
e, [18℄, or must testing, [20℄, we would have

P j 0 6�

�

P jH

The essential reason is that the
onsumption of writes
an be dete
ted;

the redu
tion

P jH

�

�! botJn?(x

:

A) x!hiK j topJb?(y) : 0K

annot be mat
hed by P j0. Using the terminology of [20℄, P j0 guarantees

the test botJa?(x)!!hiK whereas P jH does not.

Even obtaining results with respe
t tomay testing, de�ned in Se
tion 5,

is deli
ate. If we allowed syn
hronous tests then we would also have:

P j 0 6�

�

P jH

Let T be the test botJb!hi!!hiK. Then P j H j T may eventually produ
e

an output on ! whereas P j 0 jT
annot. However, sin
e our language is

asyn
hronous, su
h tests are not allowed.

In the following se
tion, we prove a non-interferen
e result using may

testing on pro
esses typable using I-types.

5 Noninterferen
e up to May Testing

May equivalen
e is de�ned in terms of tests. A test is a pro
ess with an

o

urren
e of a new reserved resour
e name !. We use T to range over

tests, with the typing rule �

�

!!hi for all �. When pla
ed in parallel

with a pro
ess P , a test may intera
t with P , produ
ing an output on !

if some desired behaviour of P has been observed.

Definition 5.1. We write T+ if T

�

�!

�

T

0

, where T

0

has the form

(new ~
) (!!hi j T

00

) for some T

00

and ~
. �

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 17

We wish to
apture the behaviour of pro
esses at a given level of se
u-

rity. Consequently we only
ompare their ability to pass tests that are

well-typed at that level. The de�nition must also take into a

ount the

environment in whi
h the pro
esses are used, as this determines the se
u-

rity level asso
iated with resour
es.

Definition 5.2. We write P '

�

�

Q if for every test T su
h that �

�

T :

(P j T)+ if and only if (Q j T)+ �

Note that in the de�nition of `P '

�

�

Q', P and Q need not be well-typed.

� is a
onstraint on the environment in whi
h the pro
esses are run, not

on the pro
esses themselves. Nevertheless, at least in this paper, the

de�nition will only be applied to pro
esses whi
h are well-behaved with

respe
t to the
onstraint �.

We
an now state the main result of the paper.

Theorem 5.3 (Non-Interferen
e). If �

�

P; Q and �

top

H; K where

H and K are �-free pro
esses, then P '

�

�

Q implies P jH '

�

�

Q jK:

The proof of the theorem relies on
onstru
ting suÆ
ient
onditions to

guarantee that two pro
esses are may equivalent. This is the topi
 of the

next subse
tion, whi
h is followed by a subse
tion giving the proof of the

non-interferen
e result.

5.1 SuÆ
ient Conditions

The purpose of the LTS semanti
s given in Figure 2 is to
apture the

possible intera
tions in whi
h a pro
ess
an engage with its environment.

However our language is typed and therefore the type environment,
on-

straining the environment, may forbid intera
tions whi
h the pro
ess, in

prin
iple, is
apable of performing. For example if � is an environment

whi
h asso
iates with the
hannel a only a read
apability then we will

have the identity

a?(X)P '

�

�

0

be
ause there
an be no test T su
h that �

�

T whi
h
an intera
t with

a?(X)P to dis
over its behaviour.

In other words we need to modify the LTS semanti
s to take into

a

ount the environment in whi
h the pro
ess is being tested. This leads

us to judgements of the form � . P

�

�!

�

�

0

. P

0

. Intuitively, this should

be read:

18 Matthew Hennessy and James Riely

Figure 5 Context LTS

(
-red)

P

�

�! P

0

� . P

�

�!

�

� . P

0

(
-out)

�
 a

:

r

Æ

hBi

� . a!hvi

a!v

��!

�

� . 0

Æ � �

(
-in)

�
 a

:

w

Æ

hBi �; ~

:

~

C
 v

:

B

� . a?(X

:

A)P

(e

:

e

C)a?v

������!

�

�;e

:

e

C . Pfj

v

=Xjg

Æ � �

~
 =2 fn(P)

(
-open)

� . P

(~

:

~

C)a!v

�����!

�

�

0

. P

0

� . (new b

:

B) P

(b

:

B)(e

:

e

C)a!v

���������!

�

�

0

; b

:

B . P

0

b 6= a

b 2 fn(v)

(
-
txt)

� . P

�

�!

�

�

0

. P

0

� . �P

�

�!

�

�

0

. �P j P

0

� . �JP K

�

�!

�

�

0

. �JP

0

K

� . P

�

�!

�

�

0

. P

0

� . P jQ

�

�!

�

�

0

. P

0

jQ

� . Q j P

�

�!

�

�

0

. Q j P

0

bn(�) 62 fn(Q)

� . P

�

�!

�

�

0

. P

0

� . (new a

:

A) P

�

�!

�

�

0

. (new a

:

A) P

0

a 62

n

(�)

Let T be a test su
h that �

�

T . Then P
an intera
t with T

by performing the a
tion � and evolving to P

0

. As a result of this

intera
tion, the
apabilities of the
ontext may be in
reased, as

re
e
ted in �

0

.

The modi�ed LTS is de�ned in Figure 5 and the rules are straightfor-

ward. However note that in the rule (
-out) it is understood that the

environment already knows the value v being output; it is only in the rule

(
-open) where the environment learns new information.

Some properties of this modi�ed LTS are easy to establish. For exam-

ple in �.P

�

�!

�

�

0

.P

0

the new environment �

0

is
ompletely determined

by � and the a
tion �. If � is � then �

0

oin
ides with �; otherwise it is

� augmented with the type environment E(�), the bound names together

with their de
lared types. For this reason the following Lemma is easily

established:

Lemma 5.4. � . P

�

�!

�

�

0

. P

0

and �
 P implies �

0

 P

0

.

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 19

Proof. By indu
tion on the derivation of the judgement �.P

�

�!

�

�

0

.P

0

.

�

There are also very simple
onditions whi
h ensure that apriori untyped

a
tions may be performed in a type environment:

Lemma 5.5. Let P

�

�! Q.

� Suppose � is (~

:

~

C)a?v. If �
 a

:

w

Æ

hBi, where Æ � �, and �; ~

:

~

C

v

:

B then � . P

�

�!

�

�; ~

:

~

C . Q.

� Suppose � is (~

:

~

C)a!v. If �
 a

:

r

Æ

hBi, where Æ � �, then � . P

�

�!

�

�; ~

:

~

C . Q.

Proof. A simple proof by indu
tion on the derivation of P

�

�! Q. �

However it is the following De
omposition Lemma whi
h makes the aug-

mented LTS of interest:

Lemma 5.6 (De
omposition). Suppose �

�

T and �
P . Then P j

T

�

�! R implies one of the following:

(a) R = P

0

j T and � . P

�

�! � . P

0

,

(b) R = P j T

0

and T

�

�! T

0

,

(
) R = (new ~

:

~

C) P

0

j T

0

and � . P

(~

:

~

C)a!v

�����!

�

�

0

. P

0

and T

a?v

��! T

0

, or

(d) R = (new ~

:

~

C) P

0

j T

0

and � . P

(~

:

~

C)a?v

������!

�

�

0

. P

0

and T

(~

:

~

C)a!v

�����! T

0

.

Furthermore in the last two
ases �

0

�

T

0

.

Proof. By indu
tion on the derivation of P jT

�

�! R. The only interesting

ase is when this is inferred using the rule (l-
om), where R has the form

(new ~

:

~

C) (P

0

j T

0

). There are two possibilities.

First suppose P

(~

:

~

C)a?v

������! P

0

; T

(~

:

~

C)a!v

�����! T

0

. By Subje
t Redu
tion

applied to �

�

T we know �
 a

:

w

Æ

hBi, for some Æ � � and some type

B su
h that �; ~

:

~

C
 v

:

B. We may now apply the previous Lemma, to

obtain the required � . P

(~

:

~

C)a?v

������!

�

�; ~

:

~

C . P

0

. The fa
t that �

0

�

T

0

follows by Subje
t Redu
tion.

The se
ond
ase, when P outputs and T inputs, is similar. Here

P

(~

:

~

C)a!v

�����! P

0

; T

(~

:

~

C)a?v

������! T

0

and the only diÆ
ulty is to show that

�; ~

:

~

C

�

T

0

. We know, by Subje
t Redu
tion, that �
 a

:

r

�

hAi and

if � u v

:

A exists then � u v

:

A

�

T

0

. However we also know �
 P

and therefore by Subje
t Redu
tion, applied to P

(~

:

~

C)a!v

�����! P

0

we know

�; ~

:

~

C
 v

:

B for some type B su
h that �
 w

�

hBi. It follows that

B <

:

A and therefore, by Weakening, �; ~

:

~

C
 v

:

A. This means � u v

:

A

is indeed well-de�ned, and �; ~

:

~

C <

:

�u v

:

A. Applying Weakening again

we obtain the required �; ~

:

~

C

�

T

0

. �

20 Matthew Hennessy and James Riely

Note that in this Lemma the requirement �
P is essential to ensure

that if T re
eives a value v then that value is
ompatible with the type

environment �.

May testing is determined by the tra
es, s, t, in VA
t

�

whi
h pro
esses

an perform. Let � represent the empty tra
e. The notion of
omplemen-

tary a
tions lifts element-wise to tra
es, s. The names in a tra
e

n

(s) is

de�ned as the union of the names in the individual a
tions; likewise the

bound names in a tra
e bn(s) is de�ned as the union of the bound names

in the individual a
tions.

Definition 5.7 (Tra
es). Let � . P

s

=)

�

�

0

. P

0

be the least relation

su
h that:

(tr-�)

� . P

�

=)

�

� . P

(tr-�)

� . P

�

�!

�

�

0

. P

0

� . P

0

s

=)

�

�

00

. P

00

� . P

s

=)

�

�

00

. P

00

(tr-�)

� . P

�

�!

�

�

0

. P

0

�

0

. P

0

s

=)

�

�

00

. P

00

� . P

��s

=)

�

�

00

. P

00

n

(�) \ bn(s) = ;

�

We
an generalise the fun
tion E from a
tions to sequen
es by:

E(�) = ; E((~

:

~

C)a?v � s) = f~

:

~

Cg; E(s) E((~

:

~

C)a!v � s) = f~

:

~

Cg; E(s)

Note that E(s) = E(s). This notation enables us to generalise the De-

omposition Lemma, Lemma 5.6, to tra
es. The statement assumes a

de�nition of the untyped redu
tions P

s

=) P

0

, similar to that in De�ni-

tion 5.7

Proposition 5.8 (Tra
e De
omposition). Suppose �

�

T and �

P . Then P j T

�

�!

�

R implies there exists a tra
e s su
h that R has the

form (new E(s)) (P

0

jT

0

) and �.P

s

=)

�

�

0

.P

0

and T

s

=) T

0

and �

0

�

T

0

.

Proof. By indu
tion on the length of P j T

�

�!

�

R, using Lemma 5.6. �

In general the
onverse to this result is not true; the behaviour of

a pro
ess P is not determined by the set of sequen
es s su
h that �

P

s

=)

�

. For example, if � allows the value v to be sent and re
eived on

hannel a at level � then

0 '

�

�

(a?(X) 0) j a!hvi :

Our language is asyn
hronous and therefore, as in [16, 6℄, we need to

onsider the asyn
hronous a
tions of pro
esses.

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 21

Definition 5.9. (Asyn
hronous tra
es) Let �.P

s

=)

a

�

�

0

.Q be the least

relation whi
h, in addition to the
lauses in De�nition 5.7, satis�es

(
-ain)

�
 a

:

w

Æ

hBi;

�; ~

:

~

C
 v

:

B;

�; ~

:

~

C . P j ÆJa!hviK

s

=)

a

�

� . Q

� . P

(e

:

e

C)a?v:s

======)

a

�

�

0

. Q

Æ � �

~
 =2 fn(P)

�

The ability to
ompose asyn
hronous tra
es depends on the fa
t that our

language is asyn
hronous. To state the required
ompositional property

we need a stru
tural equivalen
e on pro
esses. This is least equivalen
e

preserved by the stati
 operators (�J K; j and (new a)) generated by the

following equations, where for
onvenien
e the types of bound variables

are omitted.

(s-sr) P �

�

�JP K if �

�

P

(s-srsr) �

q

�JP K

y

�

�

(�u�)JP K

(s-srpar) �JP jQK �

�

�JP K j �JQK

(s-srnew) �J(new a) P K �

�

(new a) �JP K

(s-newnew) (new a)(new b) P �

�

(new b)(new a) P if a 6= b

(s-newpar) P j (new a) Q �

�

(new a) (P jQ) if a 62 fn(P)

(s-
omm) P jQ �

�

Q j P

(s-zero) P j 0 �

�

P

(s-iter) �P �

�

�P j P

The �rst three equations allow us to manipulate the typing annotations

�J K, as dis
ussed brie
y at the end of Se
tion 3; the remainder are familiar

from [19℄. We leave to the reader the rather tedious
hore of proving that

this equivalen
e is preserved under redu
tions:

Lemma 5.10. If P �

�

Q and P

�

�! P

0

then there exists some Q

0

�

�

P

0

su
h that Q

�

�! Q

0

. �

Lemma 5.11 (Asyn
hronous A
tions). If �

�

T and T

(~

:

~

Ca!v)

�����! T

0

then T �

�

(new ~

:

~

C) (ÆJa!hviK j T

0

), for some Æ � �.

Proof. By indu
tion on the derivation of T

(~

:

~

Ca!v)

�����! T

0

. We give two

examples.

� a!hvi

a!v

��! 0.

Sin
e �

�

a!hvi we have a!hvi �

�

�Ja!hviK and the result follows.

22 Matthew Hennessy and James Riely

� �JP K

(~

:

~

Ca!v)

�����! �JP

0

K be
ause P

(~

:

~

Ca!v)

�����! P

0

.

�

�

�JP K implies �

�u�

P and so by indu
tion

P �

�

(new ~

:

~

C) (ÆJa!hviK j P

0

)

for some Æ � � u �. Using the rules (s-srnew)(s-srsr) and (s-srpar)

we
an then show �JP K �

�

(new ~

:

~

C) (� u ÆJa!hviK j �JP

0

K).

�

Proposition 5.12 (Tra
e Composition). Suppose �

�

T . If �.P

s

=)

a

�

�

0

. P

0

and T

s

=) T

0

, then P j T

�

�!

�

(new E(s)) (P

0

j T

0

).

Proof. By indu
tion on the derivation � . P

s

=)

a

�

�

0

. P

0

. We examine

the most interesting
ase, when s has the form �:s

0

and � is the input

a
tion (~

:

~

C)a?v. Further let us assume that the derivation T

s

=) T

0

has

the form T

�

�! T

00

s

0

=) T

0

. There are two (interesting) possibilities for the

derivation � . P

s

=)

a

�

�

0

. P

0

.

� � .P

�

�!

�

�

0

.P

00

s

=)

a

�

�

0

.P

0

. Using Subje
t Redu
tion we
an show

that �

0

�

T

00

, sin
e �

0

is determined by the a
tion �. So we may apply

indu
tion to obtain a redu
tion P

00

j T

00

�

�!

�

(new E(s

0

)) (P

0

j T

0

). We

also have, by the rule (l-
om), P j T

�

�! (new ~

:

~

C) (P

00

j T

00

). By

ombining these we may easily obtain a required redu
tion P j T

�

�!

�

(new E(s)) (P

0

j T

0

).

� �; ~

:

~

C.P jÆJa!hviK

s

0

=)

a

�

�

0

.P

0

, where �
 a

:

w

Æ

hBi and �; ~

:

~

C
 v

:

B.

Again we
an apply indu
tion to obtain a derivation (P j ÆJa!hviK) j

T

00

�

�!

�

(new E(s

0

)) (P

0

j T

0

). and therefore

(new ~

:

~

C) (P j ÆJa!hviK j T

00

)

�

�!

�

(new E(s)) (P

0

j T

0

):

However we
an we apply the previous Lemma to the derivation T

�

�!

T

00

to obtain the fa
t that T �

�

(new ~

:

~

C) (ÆJa!hviK j T

00

). Moreover

sin
e the names ~
 are new to P we have

P j T �

�

(new ~

:

~

C) (P j ÆJa!hviK j T

00

)

and the result follows.

�

These two results immediately give us a suÆ
ient
ondition for two

pro
esses to be semanti
ally equivalent.

Definition 5.13. We write �

�

P '

aseq

Q to mean �
 P

s

=)

a

�

if and

only if Q

s

=)

a

�

, for every sequen
e s. �

Theorem 5.14. Suppose �
 P; Q. Then �

�

P '

aseq

Q implies �

�

P '

may

Q. �

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 23

Proof. Immediate from the Tra
e Composition and De
omposition results.

�

5.2 Proof of the Main Result

The proof of the non-interferen
e result will now depend on
omparing the

tra
es of the pro
esses P and P jH . First we must show some properties

of �-free pro
esses.

Lemma 5.15. If H is �-free and H

�

�! H

0

then H

0

is also �-free.

Proof. A simple indu
tion on H

�

�! H

0

. �

We now show that, in appropriate environments, �-free pro
esses
an

never perform �-level write a
tions. Unfortunately the proof, whi
h is

indu
tive, requires a slight generalisation of the notion of �-freedom.

Definition 5.16. We say P is �-free relative to Æ if � 6� � for every� in

sl

Æ

(P). �

Note that if P is �-free relative to Æ then, sin
e Æ 2 sl

Æ

(P), we know that

Æ 6� �. Also P being �-free relative to top means pre
isely that P is �-free.

Lemma 5.17. Suppose �

Æ

P , where P is �-free relative to Æ. Then

� . P

�

�!

�

�

0

. P

0

, where � is an output a
tion, implies � 6� �.

Proof. By indu
tion on the derivation of � . P

�

�!

�

�

0

. P

0

. We give the

two most important
ases.

� � . a!hvi

a!v

��!

�

� . 0, be
ause �
 a

:

r

�

0

hAi for some �

0

� �. But from

�

Æ

a!hvi we have �
 a

:

w

Æ

hBi and by the fa
t that �(a) must be a

well-de�ned type Æ � �

0

. Sin
e Æ 6� � it follows that � 6� �.

� � . �JQK

�

�!

�

� . �JQ

0

K be
ause � . Q

�

�!

�

� . Q. Here we need to

apply indu
tion.

Note that sl

Æ

(P) = f� u Æg [sl

�uÆ

(Q) and therefore Q is �-free

relative to � u Æ. Moreover �

Æ

P implies �

�uÆ

Q and therefore

indu
tion
an be applied to obtain the required � 6� �.

�

The main te
hni
al result required for non-interferen
e is given in the

following Lemma:

Proposition 5.18. Suppose �

�

P and �

top

H, where H is �-free.

Then � . P jH

s

=)

a

�

implies � . P

s

=)

a

�

.

24 Matthew Hennessy and James Riely

Proof. The proof is by indu
tion on the derivation of � . P jH

s

=)

a

�

. We

examine the most interesting
ases.

� � . P jH

�

�!

�

� . R

s

=)

a

�

.

The most important
ase here is when there is
ommuni
ation be-

tween P and H . Here P

�

�! P

0

, H

�

�! H

0

, R is (new ~

:

~

C) (P

0

jH

0

),

where ~
 are the bound variables in �. There are two possibilities.

{ Output from P to H ; � has the form (~

:

~

C)a!v. Let us examine

the tra
e � . (new ~

:

~

C) (P

0

jH

0

)

s

=)

a

�

. Somewhere in s the names

in ~
 may be exported. In general we
an
onstru
t a related tra
e

s

su
h that �; ~

:

~

C . (P

0

jH)

s

=)

a

�

, with the property that for any

Q, �; ~

:

~

C . Q

s

=)

a

�

implies � . Q

s

=)

a

�

; s

is obtained from s by

omitting any bounds (

:

C) found on its output a
tions.

Now we may apply indu
tion to �; ~

:

~

C(P

0

j H

0

).

s

=)

a

�

, sin
e

�

�

P

0

by Subje
t Redu
tion and �; ~

:

~

C

top

H

0

by Lemma 5.4.

This gives �; ~

:

~

C . P

0

s

=)

a

�

.

Applying Lemma 5.11 we know that P is stru
turally equivalent

to (~

:

~

C)(a!hvi jP

0

). Trivially �; ~

:

~

C . (a!hvi jP

0

)

s

=)

a

�

from whi
h

it follows immediately that � . P

s

=)

a

�

.

{ Output from H to P . We show that this
ase is not possible as it

would involve a write down. Here � would have the form (~

:

~

C)a?v

and applying Subje
t Redu
tion to both �

�

P and �

top

H we

would obtain both �
 a

:

r

�

hAi and �
 a

:

w

top

hBi. Sin
e � is a

well-de�ned type this would imply top � �, whi
h
ontradi
ts the

fa
t that H is �-free.

� � . P jH

�

�!

�

�

0

. R

s

0

=)

a

�

, where � is an input a
tion (~

:

~

C)a?v.

Here, again, there are two possibilities depending on whi
h of P; H

performs the input move. In the former
ase a simple argument by

indu
tion suÆ
es. If on the other hand it is H , an appli
ation of

indu
tion gives �

0

. P

s

0

=)

a

�

.

However from the inferen
e � . H

�

�!

�

�

0

. H we know that �

a

:

w

Æ

hAi, for some Æ � � and some A su
h that �

0

 v

:

A. From

the result of the appli
ation of indu
tion we
an dedu
e �

0

. (ÆJa!hviK j

P)

s

0

=)

a

�

; This is suÆ
ient for us to apply De�nition 5.9 to
on
lude

� . P

s

=)

a

�

.

� � . P jH

�

�!

�

�

0

.

s

0

=)

a

�

, where � is an output a
tion (~

:

~

C)a!v.

Here Lemma 5.17 implies that H
an not be responsible for the

a
tion; it must be P , and again a simple indu
tive argument suÆ
es.

� s has the form �:s

0

, where � is an input a
tion (~

:

~

C)a?v, and �; ~

:

~

C .

P jH j ÆJa!hviK

s

0

=)

a

�

, be
ause �
 a

:

w

Æ

hBi and �; ~

:

~

C
 v

:

B.

Sin
e �; ~

:

~

C

�

(P j a!hvi) we may apply indu
tion to obtain

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 25

�; ~

:

~

C . (P j ÆJa!hviK)

s

0

=)

a

�

. Again we may now De�nition 5.9 to

obtain the required �; ~

:

~

C . P

s

0

=)

a

�

.

�

Given this te
hni
al result, we
an now prove the Non-Interferen
e

Theorem.

Theorem (5.3). If �

�

P; Q and �

top

H; K where H, K are �-free

pro
esses, then:

P '

�

�

Q implies P jH '

�

�

Q jK:

Proof. To establish the result, it is suÆ
ient to show that P '

�

�

P j H .

In fa
t by Theorem 5.14 it is suÆ
ient to show � . P

s

=)

a

�

implies � .

P jH

s

=)

a

�

, whi
h is immediate, and � . P jH

s

=)

a

�

implies � . P

s

=)

a

�

;

this follows from the previous Proposition. �

Note that the requirement that P;Q be well-typed pro
esses at level �

is ne
essary for this result to be true. For example
onsider the pro
ess P

de�ned by h?(x) l?y: 0 in an environment � in whi
h h; l are high-level and

low-level resour
es respe
tively. Then P '

bot

�

0. However P j H 6'

bot

�

H ,

where H is the high-level pro
ess h!hi.

6 Con
lusions and Related Work

In this paper we have proposed simple typing systems for enfor
ing a

variety of se
urity properties for the se
urity �-
al
ulus. The types are

obtained by adding se
urity levels to the standard input/output types

of the �-
al
ulus, [21, 23℄. The �rst typing system, based on R-Types,

is designed with resour
e a

ess
ontrol in mind; the se
urity level of a

resour
e (or more formally a
apability on a resour
e) di
tates the se
urity

learan
e required by any pro
ess seeking to a

ess that resour
e. In future

work we hope to extend these types for use in distributed systems, [24℄.

The se
ond typing system, based on the more restri
ted I-types,
ontrols

the (impli
it)
ow of information from high to low se
urity levels; this is

formalised via a non-interferen
e result for may testing equivalen
e over

our se
urity �-
al
ulus.

The non-interferen
e result usesmay testing rather than some stronger,

deadlo
k preserving equivalen
e su
h as must testing or observational

equivalen
e be
ause of the ri
hness of I-types and the expressiveness of

our language. For example if we restri
ted the set of types to ensure that

there is no
ontention between high-level and low-level pro
esses over read

a

ess to
hannels then it may be possible to strengthen our result to must

testing equivalen
e. Similarly if we restri
ted our language so that when

26 Matthew Hennessy and James Riely

a high-level pro
ess reads a value from a low-level
hannel it immediately

restores it. Indeed we believe that the se
urity �-
al
ulus is an ex
ellent

vehi
le for a general investigation of restri
tions required on high-level and

low-low pro
esses in order to
ontrol information
ow.

Methods for
ontroling information
ow are a
entral resear
h issue in

omputer se
urity [7, 14, 27℄ and in the Introdu
tion we have indi
ated a

number of di�erent approa
hes to its formalisation. Non-interferen
e has

emerged as a useful
on
ept and is widely used to infer (indire
tly) the

absen
e of information
ow. In publi
ations su
h as [25, 9℄ it has been

pointed out that pro
ess algebras may be fruitfully used to formalise and

investigate this
on
ept; for example in [8℄ pro
ess algebra based meth-

ods are suggested for investigating se
urity proto
ols, essentially using a

formalisation of non-interferen
e for CCS.

However in these publi
ations the non-interferen
e is always de�ned

behaviourally, as a
ondition on the possible tra
es of CCS or CSP pro-

esses; useful surveys of tra
e based non-interferen
e may be found in

[9, 26℄. Here, we work with the more expressive �-
al
ulus, whi
h allows

dynami
 pro
ess
reation and network re
on�guration. Our approa
h to

non-interferen
e is also more extensional in that it is expressed in terms

of how pro
esses e�e
t their environments, relative to a parti
ular be-

havioural equivalen
e. However the proof of our main result, Theorem 5.3,

des
ribes may equivalen
e in terms of (typed) tra
es; presumably a tra
e

based de�nition of non-interferen
e, similar in style to those in [9, 26℄

ould be extra
ted from this proof.

More importantly our approa
h di�ers from mu
h of the re
ent pro
ess

al
ulus based se
urity resear
h in that we develop purely stati
 methods

for ensuring se
urity. Pro
esses are shown to be se
ure not by demon-

strating some property of tra
e sets, using a tool as su
h as that in [10℄,

but by type-
he
king. Types have also been used in this manner in [1℄ for

an extension of the �-
al
ulus
alled the spi-
al
ulus. But there the stru
-

ture of the types are very straightforward; the type Se
ret representing a

se
ret
hannel, the type Publi
 representing a publi
 one, and Any whi
h

ould be either. However the main interest is in the type rules for the en-

ryption/de
ryption primitives of the spi-
al
ulus. The non-interferen
e

result also has a di�erent formulation to ours; it states that the behaviour

of well-typed pro
esses is invariant, relative to may testing, under
ertain

value-substitutions. Intuitively, it means that the en
ryption/de
ryption

primitives preserve values of type Se
ret from
ertain kinds of atta
kers. It

would be interesting to add these primitives to the our se
urity �-
al
ulus

and to try to adapt the asso
iated type rules to the set of I-Types.

An extension of the �-
al
ulus is also
onsidered in [17℄, where a sophis-

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 27

ti
ated type system is used to
ontrol information
ow. The judgements

in their system take the form

� `

s

P . A

where s is a se
urity level, P is a pro
ess term, A is a poset of so-
alled a
-

tion nodes and � is a type environment. Their environments are quite sim-

ilar to ours, essentially asso
iating with
hannels a version of input/output

types annotated with, among other things, se
urity levels. However their

intuition, and mu
h of the te
hni
al development, is quite di�erent from

ours. Intuitively the above statement indi
ates that the pro
ess P will

only a�e
t
hannels at se
urity level s or above. The pro
ess language

used is a
onsiderable extension to the �-
al
ulus; for example there are

bran
hing input statements and left/right sele
tion outputs. In addition

to the standard
hannels there are are linear and re
ursive versions. More

importantly, in
ontrast to the present paper, their type system when re-

stri
ted to the original �-
al
ulus allows very little intera
tion between

pro
esses running at di�erent se
urity levels. Instead information
ow

is allowed via the linear and re
ursive
hannels and is tightly
ontrolled

via the extensive type system. The types are heavily in
uen
ed by the

notion of behaviour types from [28℄; in the judgement above the poset

A des
ribes
ausal dependen
ies between input/output a
tions o

uring

at linear or re
ursive
hannels in P . The individual a
tion nodes whi
h

omprise A are similar to our types, ex
ept they
arry more annotations.

These annotations, for example, re
ord whether or not the behaviour is

stateful, i.e.
hanges the state of the environment or simply interrogates

it.

In summary it appears that our type system addresses information
ow

within the
ore �-
al
ulus while the more sophisti
ated one of [17℄
on-

trols the
ow allowed via the extra synta
ti

onstru
ts of their language.

However a more thorough
omparison between the two systems deserves

to be made.

A
knowledgements: The resear
h was partially funded by EPSRC

grant GR/L93056, and ESPRT Working Group Confer2. The authors

would like to thank I. Castellani for a
areful reading of a draft version of

the paper.

Referen
es

[1℄ Mart��n Abadi. Se
re
y by typing in se
urity proto
ols. In Pro
eedings of TACS'97,

volume 1281 of Le
ture Notes in Computer S
ien
e, pages 611{637. Springer Ver-

lag, 1997.

28 Matthew Hennessy and James Riely

[2℄ D. E. Bell and L. J. LaPadula. Se
ure
omputer system: Uni�ed exposition and

multi
s interpretation. Te
hni
al report MTR-2997, MITRE Corporation, 1975.

[3℄ C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Control
ow analysis for the

�-
al
ulus. In Pro
. CONCUR'98, number 1466 in Le
ture Notes in Computer

S
ien
e, pages 84{98. Springer-Verlag, 1998.

[4℄ C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Stati
 analysis of pro
esses

for no read-up and no write-down. In Pro
. FOSSACS'99, number 1578 in Le
ture

Notes in Computer S
ien
e, pages 120{134. Springer-Verlag, 1999.

[5℄ G. Boudol. Asyn
hrony and the �-
al
ulus. Te
hni
al Report 1702, INRIA-Sophia

Antipolis, 1992.

[6℄ Ilaria Castellani and Matthew Hennessy. Testing theories for asyn
hronous lan-

guages. In V Arvind and R Ramanujam, editors, 18th Conferen
e on Foundations

of Software Te
hnology and Theoreti
al Computer S
ien
e (Chennai, India, De-

ember 17{19, 1998), LNCS 1530. Springer-Verlag, De
ember 1998.

[7℄ D. Denning. Certi�
ation of programs for se
ure information
ow. Communi
a-

tions of the ACM, 20:504{513, 1977.

[8℄ Ri

ardo Fo
ardi, Anna Ghelli, and Roberto Gorrieri. Using non interferen
e for

the analysis of se
urity proto
ols. In Pro
eedings of DIMACS Workshop on Design

and Formal Veri�
ation of Se
urity Proto
ols, 1997.

[9℄ Ri

ardo Fo
ardi and Roberto Gorrieri. A
lassi�
ation of se
urity properties for

pro
ess algebras. Journal of Computer Se
urity, 3(1), 1995.

[10℄ Ri

ardo Fo
ardi and Roberto Gorrieri. The
ompositional se
urity
he
ker: A

tool for the veri�
ation of information
ow se
urity properties. IEEE Transa
tions

on Software Engineering, 23, 1997.

[11℄ Ri

ardo Fo
ardi and Roberto Gorrieri. Non interferen
e: Past, present and future.

In Pro
eedings of DARPA Workshop on Foundations for Se
ure Mobile Code,

1997.

[12℄ C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A
al
ulus of

mobile agents. In U. Montanari and V. Sassone, editors, CONCUR: Pro
eedings

of the International Conferen
e on Con
urren
y Theory, volume 1119 of Le
ture

Notes in Computer S
ien
e, pages 406{421, Pisa, August 1996. Springer-Verlag.

[13℄ R. Reitmas G. Andrews. An axiomati
 approa
h to information
ow in programs.

ACM Transa
tions on Programming Languages and Systems, 2(1):56{76, 1980.

[14℄ J. A. Goguen and J. Meseguer. Se
urity poli
ies and se
urity models. In IEEE

Symposium on Se
urity and priva
y, 1992.

[15℄ Nevin Heintz and Jon G. Rie
ke. The SLam
al
ulus: Programming with se
re
y

and integrity. In Conferen
e Re
ord of the ACM Symposium on Prin
iples of

Programming Languages, San Diego, January 1998.

[16℄ Kohei Honda and Mario Tokoro. On asyn
hronous
ommuni
ation semanti
s.

In P. Wegner M. Tokoro, O. Nierstrasz, editor, Pro
eedings of the ECOOP '91

Workshop on Obje
t-Based Con
urrent Computing, volume 612 of LNCS 612.

Springer-Verlag, 1992.

[17℄ Kohei Honda, Vas
o Vas
on
elos, and Nobuko Yoshida Honda. Se
ure informa-

tion
ow as typed pro
ess behaviour. In Pro
eedings of European Symposium on

Programming (ESOP) 2000. Springer-Verlag, 2000.

[18℄ R. Milner. Communi
ation and Con
urren
y. Prenti
e-Hall, 1989.

[19℄ R. Milner, J. Parrow, and D. Walker. Mobile logi
s for mobile pro
esses. Theo-

Information Flow vs. Resour
e A

ess in the Asyn
hronous Pi-Cal
ulus 29

reti
al Computer S
ien
e, 114:149{171, 1993.

[20℄ R. De Ni
ola and M. Hennessy. Testing equivalen
es for pro
esses. Theoreti
al

Computer S
ien
e, 24:83{113, 1984.

[21℄ Benjamin Pier
e and Davide Sangiorgi. Typing and subtyping for mobile pro
esses.

Mathemati
al Stru
tures in Computer S
ien
e, 6(5):409{454, 1996. Extended ab-

stra
t in LICS '93.

[22℄ Benjamin C. Pier
e and David N. Turner. Pi
t: A programming language based

on the pi-
al
ulus. Te
hni
al Report CSCI 476, Computer S
ien
e Department,

Indiana University, 1997. To appear in Proof, Language and Intera
tion: Essays in

Honour of Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte, editors,

MIT Press.

[23℄ James Riely and Matthew Hennessy. Resour
e a

ess
ontrol in systems of mobile

agents (extended abstra
t). In Pro
eedings of 3rd International Workshop on

High-Level Con
urrent Languages, Ni
e, Fran
e, September 1998. Full version

available as Computer S
ien
e Te
hni
al Report 2/98, University of Sussex, 1997.

Available from http://www.
ogs.susx.a
.uk/.

[24℄ James Riely and Matthew Hennessy. Trust and partial typing in open systems of

mobile agents (extended abstra
t). In Conferen
e Re
ord of POPL '99 The 26th

ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages,

pages 93{104, 1999.

[25℄ A.W. Ros
oe, J.C.P. Wood
o
k, and L. Wulf. Non-interferen
e through determin-

ism. In European Symposium on Resear
h in Computer Se
urity, volume 875 of

LNCS, 1994.

[26℄ P.Y.A. Ryan and S.A. S
hneider. Pro
ess algebra and non-interferen
e. In CSFW

12. IEEE, 1997.

[27℄ Geo�rey Smith and Dennis Volpano. Se
ure information
ow in a multi-threaded

imperative language. In Conferen
e Re
ord of the ACM Symposium on Prin
iples

of Programming Languages, San Diego, January 1998.

[28℄ Nobuko Yoshida. Graph types for monadi
 mobile pro
esses. In FSTTCS, volume

1180, pages 371{386. Springer-Verlag, 1996.

