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ABSTRACT. We propose an extension of the asynchronous 7-calculus
in which a variety of security properties may be captured using
types. These are an extension of the Input/Output types for the
m-calculus in which 1/O capabilities are assigned specific security
levels.

We define a typing system which ensures that processes running
at security level o cannot access resources with a security level
higher than o. The notion of access control guaranteed by this
system is formalized in terms of a Type Safety theorem.

We then show that, for a certain class of processes, our system
prohibits implicit information flow from high-level to low-level pro-
cesses. We prove that low-level behaviour can not be influenced
by changes to high-level behaviour. This is formalized as a Non-
Interference Theorem with respect to may testing.

1 Introduction

The problem of protecting information and resources in systems with mul-
tiple sensitivity or security levels, [2], has been studied extensively. Flow
analysis techniques have been used in [3, 4], axiomatic logic in [13] while
in [27, 15] type systems have been developed for a number of prototypical
programming languages. In this paper, we explore the extent to which
type systems for ensuring various forms of security can also be developed
for the asynchronous w-calculus [5, 16]. We discuss two security issues:
resource access control and information control. The former is described
in terms of runtime errors, the latter in terms of non-interference [27, 11].

The (asynchronous) m-calculus is a very expressive language for de-
scribing distributed systems, [5, 22, 12], in which processes intercommuni-
cate using channels. Thus n?(z) P is a process which receives some value
on the channel named n, binds it to the variable x and executes the code
P. Corresponding to this input command is the asynchronous output
command n!(v) which outputs the value v on n. The set of values which
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may be transmitted on channels includes channel names themselves; this,
together with the ability to dynamically create new channel names, gives
the language its descriptive power.

Within the setting of the m-calculus we wish to investigate the use
of types to enforce security policies. To facilitate the discussion we ex-
tend the syntax with a new construct to represent a process running at a
given security clearance, o[P]. Here o is some security level taken from
a complete lattice of security levels SL and P is the code of the process.
Further, we associate with each channel, the resources in our language,
a set of input/output capabilities [21, 23], each decorated with a specific
security level. Intuitively, if channel n has a read capability at level o,
then only processes running at security level ¢ or higher may be read
from n. This leads to the notion of a security policy >, which associates a
set of capabilities with each channel in the system. The question then is
to design a typing system which ensures that processes do not violate the
given security policy.

Of course this depends on when we consider such a violation to take
place. For example if Y assigns the channel or resource n the highest
security level top then it is reasonable to say that a violation will eventually
occur in

cl{n) | bot[c?(z) 27 (y) P]

as after the communication on ¢, a low level process, bot[n?(y) P] has
gained access to the high level resource n. Underlying this example is the
principle that processes at a given security level ¢ should have access to
resources at security level at most . We formalize this principle in terms
of a relation P +=» err, indicating that P violates the security policy .

To prevent such errors, we restrict attention to security policies that
are somehow consistent. Let I' be such a consistent policy; consistency is
defined by restricting types so that they respect a subtyping relation. We
then introduce a typing system, I' - P, which ensures that P can never
violate I':

If ' F P then for every context C] ] such that I' F C[P] and every
() which occurs during the execution of C[P], that is C[P] —* @,
we have Q -5 err.

Thus our typing system ensures that low level processes will never gain
access to high level resources. The typing system implements a particular
view of security, which we refer to as the R-security policy, as it offers
protection to resources. Here communication is allowed between high level
and low level principals, provided of course that the values involved are
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appropriate.

This policy does not rule out the possibility of information leaking
indirectly from high security to low security principals. Suppose h is a
high channel and hl is a channel with high-level write access and low-level
read access in:

top [[h?(;c) if z = 0 then hl!{0) else hI!(l)] | bot[[hl?(z) Q]]

This system can be well-typed although there is some implicit information
flow from the high security agent to the low security one; the value received
on the high level channel h can be determined by the low level process Q).

It is difficult to formalize exactly what is meant by implicit information
flow and in the literature various authors have instead relied on non-
interference, [14, 25, 11, 26], a concept more amenable to formalization,
which ensures, at least informally, the absence of implicit information flow.

To obtain such results for the w-calculus we need, as the above example
shows, a stricter security policy, which we refer to as the I-security policy.
This allows a high level principal to read from low level resources but not
to write to them. Using the terminology of [2, 7]:

e write up: a process at level ¢ may only write to channels at level o or
above

e read down: a process at level 0 may only read from channels at level
o or below.

In fact the type inference system remains the same and we only need
constrain the notion of type. In this restricted type system well-typing,
I' IF P, ensures a form of non-interference.

To formalize this non-interference result we need to develop a notion of
process behaviour, relative to a given security level. Since the behaviour
of processes also depends on the type environment in which they operate
we need to define a relation

~r @
which intuitively states that, relative to I', there is no observable dis-
tinction between the behaviour of P and () at security level o; processes
running at security level o can observe no difference in the behaviour of
P and Q). Lack of information flow from high to low security levels now
means that this relation is invariant under changes in high-level values; or
indeed under changes in high-level behaviour.

It turns out that the extent to which this is true depends on the exact
formulation of the behavioural equivalence ~7.. We show that it is not true
if ~7 is based on observational equivalence [18] or must testing equivalence
[20]. But a result can be established if we restrict our attention to may
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FIGURE 1 Syntax

P,Q = Terms XY = Patterns
ul(v) Output x Variable
u?(X:A)P Input (X1, ..., Xx) Tuple
if u =wv then P else Q Matching
o[P] Security level u,v,w = Values
(newa:A) P Name creation bv Base Value
P|Q Composition a Name
* P Replication x Variable
0 Termination (w1, ..., ug) Tuple

testing equivalence (here written ~%). Specifically we will show that, for
certain H, K:

IfTIF P,Q and T I H, K then P ~¢ @ implies P | H ~% Q| K.

High-level behaviour can be arbitrarily changed without affecting low-level
equivalences. This is the main result of the paper.

The remainder of the paper is organized as follows. In the next section
we define the security m-calculus, giving a labelled transition semantics
and a formal definition of runtime errors. In Section 3 we design a set of
types and a typing system which implements the resource control policy.
The types are an extension of the IO-types for the 7-calculus from [21, 23]
in which security levels are associated with specific capabilities. This
section also contains Subject Reduction and Type Safety theorems. In
Section 4 we motivate the restrictions required on types and terms in
order to implement the information control policy. We also give a precise
statement of our non-interference result, and give counter-examples to
related conjectures based on equivalences other than may testing. The
proof of our main theorem depends on an analysis of may testing in terms
of asynchronous sequences of actions [6] which in turn depends on detailed
operational semantics for our language, where actions are paramterised
relative to a typing environment. This is the topic of Section 5, which also
contains the proof of our main theorem.

2 The Language

The syntax of the security m-calculus, given in Figure 1, uses a predefined
set of names, ranged over by a,b,... ,n and a set of variables, ranged over
by x,vy, z. Identifiers are either variables or names. Security annotations,
ranged over by small Greek letters o,p,..., are taken from a complete
lattice (SL, <,M, L, top, bot) of security levels. We also assume for each o
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Ficure 2 Labelled Transition Semantics

(L-ouT) (L-1N)

A0) “5 0 a2(X) P e propg CEN0)

(L-OPEN)
¢:C)alv
p (&:Clalu pr b+a

(newb:B) P (6:B)(@:Clalu pr b e fn(v)

(L-com)
PP, Q-%Q
P|Q — (new&(a)) (P'| Q)

(1-EQ)

. ; U F# w
if u=wuthen Pelse @ — P if u = w then Pelse Q — @
(L-cTXT)

e P £ p! . )

o[P] 0[Pl QIP4Q | P

pP L p!

(newa:A) P -5 (newa:A) P’ @& nlw)

a set of basic values BV, ; we use bv to range over base values. We require
that all syntactic sets be disjoint.

The input construct ‘u?(X : A) P’ binds all variables in the pattern X
while the construct ‘(newa: A) P’ binds names and associated with these.
We have the usual notions of free and bound names and variables, a-
equivalence and substitution. We identify terms up to a-equivalence. Let
fn(P) and fv(P) denote the set of free names and variables, respectively, of
the term P. We use ‘P{Y/x]}’ to denote the substitution of the identifiers
occurring in the value v for the variables occurring in the pattern X. For
‘P{¥/x]}’ to be well-defined X and v must have the same structure; to
avoid unnecessary complications we assume that a variable can occur at
most once in a pattern. The binding constructs have types associated
with them; these will be explained in Section 3 but are ignored for the
moment. In general these types (and the various security annotations)
will be omitted from terms unless they are relevant to the discussion at
hand.
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The behaviour of a process is determined by the interactions in which
it can engage. To define these, we give a labelled transition semantics
(LTS) for the language. The set Act of labels, or actions, is defined as
follows:

o= Actions
T Internal action
(&:C)a?v Input of v on a learning private names ¢
(&:C)alv Output of v on a revealing private names ¢

Let VAct = Act\ {7} be the set of the visible actions, ranged over by a,
B, either input or output. Whenever these are used we assume that the
bound names ¢ occur in the value v. Formally the bound names of an

action are defined by bn(7) = () and bn((¢: C)alv) = bn((¢: C)a?v) = {c}.
We also use £(a) to denote the bound names in «, together with their
types: £((¢:C)alv) = E((¢:C)a?v) = (é:C). Further, let n(x) be the
set of mames occurring in pu, whether free or bound. We say that the
actions ¢(é:C)a?v’ and (é:C)alv’ are complementary. Given a visible
action «, we write @ to indicate the action complementary to «; note that
bn(a) = bn(@) and £(a) = E(@).

The LTS is defined in Figure 5 and for the most part the rules are
straightforward; it is based on the standard operational semantics from
[19], to which the reader is referred for more motivation. Note that in the
input rule (L-IN) we are assuming the action (é:C)a?v is well-defined; in
principle the process a?(X) P can input any value v, but for the action to
be valid the bound names ¢ must appear in v and moreover must be new
to the process.

Informally a security policy associates with each channel a security
level. Our approach, slightly more general, is to incorporate this informa-
tion into the standard notion of channel types for the m-calculus[21, 23],
designed to rule out run-time mistypings, such as sending a triple on a
channel designed for pairs. In particular we will associate security levels
with capabilities on channels, rather than channels themselves, although
indirectly we will be able to associate security levels with channels. To
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this end, Pre-capabilities and pre-types are defined as follows:

cap = Pre-Capability
w, (A) o-level process can write values with type A
ro (A) o-level process can read values with type A
A = Pre-Type
B, Base type
{cap1,..., capi} Resource type (k > 0)
(Aq,...,Ax) Tuple type (k > 0)

We will tend to abbreviate a singleton set of capabilities, {cap}, to cap.

A security policy, X2, is a finite mapping from names to pre-types. Thus,
for example, if ¥ maps the channel lh to the pre-type {wpot(B), reop(A)},
for some appropriate A, B, then low level processes may write to |h but
only high level ones may read from it; this is an approximation of the
security associated with a mailbox. On the other hand if ¥ maps hl to
{rbot (A), Wiop(B)} then hl acts more like an information channel; anybody
can read from it but only high level processes may place information there.

The import of a security policy may be underlined by defining what
it means to violate it. Our definition is given in Figure 3, in terms of
a relation P +=» err. As an example of runtime errors we have that
pla!(v) P] =5 err if any of the following hold: (a) (a) is undefined,
(b) a has no write capability for processes at level p, or (¢) v contains
a base value that is restricted from p-level processes. As explained in
the Introduction here we are attempting to control access to resources:
channels and base values. Principals at level o have access to all resources
at levels up to and including o. So even if ¥ assigns a a low security level
top[a!(v) P] does not cause a runtime error unless v can not be assigned
a type appropriate to 3(a).

EXAMPLE 2.1. Here we assume the policy ¥ defined above, mapping lh to
{Whot (B), riop(A)} and hl to {wiep(B), rpet(A)}, for some appropriate A, B.

e Consider the process top[c!(hl)] | bot[c?(z) z!(v)]. Then after one re-
duction step there is a security error because bot[hl!(v)] ¥ err. A low
security process has read access to security channel hl on which write
access is reserved for high-security processes.

e Assuming an appropriate typing for ¢ and v the same security error
does not occur in top[c!(lh}] |bot[c?(z) z!(v)]. The low security process
bot[lh!(v) @] has the right to write on the channel Ih.

e If X assigns to the channel ¢ a pre-type which includes a capability of
the form rpo (C) then apriori there is no type error in the expression
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Ficure 3 Runtime Errors

(e-rD) pla?(X) P] += err if o < p implies for all A, r,(A) ¢ ¥(a)
(e-wry) plal(v)] = err if 0 < p implies for all A, w,(A) ¢ ¥(a)
(e-wra) plal(v)] = err if bve v, bve B, and 0 A p
P = err P = err P=Q, P+=serr
(B-STR) B | Q —= err  p[P] V= err Q = err
P Eaih oy

(newn:A) P = err

cl{lh) although intuitively it involves a security leak; a low security
agent can read from c¢ a channel which has at least some capability
which should only be accessible to high security principals. However
it is straightforward to place it in a context in which a security leak
occurs: cl(lh) | bot[c?(x) z!(v)]. Thus our typing system will also be
required to rule out such processes. (]

3 Resource Control

Our typing system will apply only to certain security policies, those in
which the pre-types are in some sense consistent. Consistency is imposed
using a system of kinds: the kind RType, comprises the value types ac-
cessible to processes at security level 0. These kinds are in turn defined
using a subtyping relation on pre-capabilities and pre-types.

DEFINITION 3.1. Let <: be the least preorder on pre-capabilities and pre-
types such that:

(U-WR) w, (A) < w,(B) if B<: A
(U-RD) re(A) <t r,(B) ifA<Bando <p
(U-BASE) B, << B, ifo<p

(U-RES) {cap;}ier < {cap}}jes if (Vj)(F) cap; < cap)
(u-TuUP) (Al, ce ,Ak) <: (Bl, e ,Bk) if (Vl) A; < B;
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For each p, let RType, be the least set that satisfies:

(RT-WR)
A € RType,
o=xp

{w,(A)} € RType,

(RT-RD)

A € RType, (RT-BASE)

{r«(A)} € RType, o= p

(RT-WRRD) B, € RTyp €p

A € RType, o <p (RT-TUP)

A’ € RType, o = p A; € RType, (Vi)

{w,(A), ror(A"Y} € RType, A< A (A1,...,Ar) € RType,
Let RType be the union of the kinds RType, over all p. ]

Note that if ¢ < p then RType, C RType,. Intuitively, low level values
are accessible to high level processes. However the converse is not true.
For example wWiop() € RTyperop but wiop() is not in RTypepor. Note also
that there is no relation between subtyping and accessibility at a given
security level. For example:

Wbot<> S RTypebot and {Wbot<>a rtop<>} < rbot<> but {Wbot<>aWtop<>} Q/ RTypebot
rbot<> S RTypebot and rbot<> < rtop<> but rtop<> Q/ RTypebot

The compatibility requirement between read and write capabilities in
a type (RT-WRRD), in addition to the typing implications discussed in
[23], also has security implications. For example suppose rpot(B,) and
Wiop(B) are capabilities in a valid channel type. Then apriori a high level
process can write to the channel while a low level process may read from
it. However the only possibility for o is bot, that is only low level values
may be read. Moreover the requirement B <: B, implies that B must also
be Bpot- So although high level processes may write to the channel they
may only write low level values.

Remark. Most of the restrictions imposed on types are essential to achiev-
ing Subject Reduction, but a few are not. First, Subject Reduction still
holds if we weaken (U-WR) to: wy,(A) <t w,(B) ifB<: Aando <p.
Were we to adopt this rule, it would be true that every process typable at
level 0 would also be typable at level p, for 0 < p. Given our definition,
this is not true. Nonetheless, every process typable at o can be trivially
rewritten so that it is typable at p given our definition (one must sim-
ply surround output actions with explicit security restrictions). We have
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Ficure 4 Typing Rules

(T-D) (T-BASE) (T-TUP)

[(u) < A bv € B, Ckw; A (Vi)

'-u:A Fl—vaBg Fl—(vl,...,Uk,)I(Al,...,Ak)
(T-EQ)

(T-1N) (T-oUT) '+ u:A,v:B

[LX:AEFP ['Fu:wy(A) ' Q

C'Fu:r,(A) F'ov:A F'M{u:B,v:A} ¥ P

P u?(X:A)P T ulv) ' if u = v then P else Q

(T-SR) (T-NEW) (T-STR)

L p Ta:AEP e P Q

't p[P] 't (newa:A) P TF P|Q,=*P,0

adopted the stronger rule because it is necessary in the next section and
results in no substantive loss of expressivity.

Second, we have limited types to contain at most one read and one
write capability. We have done so to simplify the proofs, particularly in
the next section. This clearly results in a loss of expressiveness. We have
yet to find, however, a compelling example that requires a resource to
have more than one read or one write capability. It is usually sensible to
simply take the meet. (]

PROPOSITION 3.2. For every p, RType, is a preorder with respect to <:,
with both a partial meet operation M and a partial join L.

Proof. Straightforward adaptation of Proposition 6.2 of [23]. The partial
operations M and U are first defined by structural induction on types.
Typical clauses are

(o (A) M (A7) = rpmr (A TTAY)
W(,< ) Mwy (A7) = wy (A LIA)
o (A) U ror (A) = rouor (A LIA)

we (A) Uw, (A7) = W,,(A MA’)
One can then show, by induction on the definitions, that:

A € RType, and A € RType, implies A M B € RType,n, and
A UB € RType,, .

Finally it is straightforward to show that M and LI, defined in this manner,
are indeed partial meet and partial join operators. [
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We now discuss the typing system, which is defined using restricted
security policies, called type environments. A type environment is a finite
mapping from identifiers (names and variables) to types. We adopt some
standard notation. For example, let ‘I", u : A’ denote the obvious extension
of I'; ‘T',u: A’ is only defined if u is not in the domain of I'. The subtyp-
ing relation <: together with the partial operators M and LI may also be
extended to environments. For example I' <: A if for all v in the domain
of A, I'(u) <2 A(u). The partial meet enables us to define more subtle
extensions. For example I'M{u: A} may be defined even if u is already in
the domain of T'. It is well defined when I'(u) M A exists, in which case it
maps u to this type. We will normally abbreviate the simple environment
{u:A} to u:A and moreover use v: A to denote its obvious generalisation
to values; this is only well-defined when the value v has the same structure
as the type A.

The typing system is given in Figure 4 where the judgements are of
the form ‘T' I° P’. If ' I P we say that P is a o-level process. Also, let
‘T + P’ abbreviate ‘T P P’.

Intuitively ‘I" I° P’ indicates that the process P will not cause any
security errors if executed with security clearance o. The rules are very
similar to those used in papers such as [23, 21] for the standard IO typing
of the m-calculus. Indeed the only significant use of the security levels is
in the (T-IN) and (T-OUT) rules, where the channels are required to have
a specific security level. This is inferred using auxiliary value judgements,
of the form I' - v : A. Tt is interesting to note that security levels play no
direct role in their derivation. One might expect that the judgements for
values would need to ensure that a value written to a channel be accessible
at the appropriate security level. This job, however, is already handled
by our definition of types. For example, in order for w,(A) to be a type,
A must be a type accessible to o.

The typing system enjoys many expected properties, the proof of which
we leave to the reader.

PROPOSITION 3.3.

e (SPECIALIZATION) '+ v:A and A<: B then ' v:B
e (WEAKENING) '? P and A <: T then A¥ P
e (RESTRICTION) I u: A ® P and u & fv(P) U fn(P) implies T' 12 P. [

The main technical tool required for Subject Reduction is, as usual, a
substitution result.

LEMMA 3.4 (SUBSTITUTION). If['tv:A then
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e 'Fu:A z'mplies N u{]”/XI}
o ', X: A1 P implies T I¥ P{%x}}

Proof. Easily reconstructed from the corresponding proof in [23], Lemma
4.7. ]

THEOREM 3.5 (SUBJECT REDUCTION).  Suppose I' t? P. Then

o P55 (Q impliesT'I° QQ

o P (&€ ) ymnlies there exists a type A such that T F a:rs (A) for
some § <o, and if [ Mv:A is well-defined then T Mv: A ¥ Q.

o P (&:Clalv ) ymplies there exists a type A such that T + a:wg(A) for
somed <o, [,¢:CHuv:A andT,é:C 12 Q.

Proof. The three statements are proved simultaneously by induction on
the inference P £+ (). We examine some cases.

The rule (L-IN): a?(X :A) P (CHOLIN P{v/x]}. Because ' ¥ a?(X : A) P
we know I' F a:ry(A) and I', X : A I P. Now suppose ' T v:A is well-
defined. By Weakening we obtain (TMv:A),X:A I P and therefore
applying the Substitution Lemma we obtain I'Mwv: At P{YXx]}. The rule
(L-OUT) is similar.

We consider one example of the rule (L-CcTXT): p[P] - p[P’] because
P -£5 P’ The precise details depend on u, but in each of the three
possibilities the reasoning is very similar; so suppose u is an input action
(¢:C)a?v. We know, by well-typing, that T' 12" P and therefore we
may apply induction to obtain a type A and a § < o M p such that T' F
a:rs{A); in particular § < 0. Now suppose ' v : A exists. Then, again
by induction, we know I'Mv: A 12""” P’ and therefore applying the typing
rule (T-SR) we obtain the required I' v : A 12 p[P'].

The rule (L-OPEN): (newb:B) P {2:BlE: C)“'U\ P’ because P {£:Qlaly
P’. Here we know I', b:B I° P and therefore applying induction to the
action P {&:Qaly P’ we obtain a type A such that T, b:B,é:C 12 P’
and T', b:B,é:C F v:A; moreover T, b:B  a:rs(A), for some § < o.
However since (L-OPEN) requires that b # a we may conclude, as required,
['Fa:rg(A).

As a final example consider the rule (L-coM): P|Q - (new &(a)) (P’|
Q') because P -+ P’ and Q -2+ Q’. Without loss of generality we may
assume « is the input action (&:C)a?v. We know I' ¥ P, @ and therefore
we may apply induction to both reduction statements. Applying it to
Q % Q weobtain I',é:C F v:A and T,é:C 12 Q. The former implies
that T' Mo : A is well- deﬁned and therefore induction applied to P = P’
gives v A P, Since I',é:CFv: A it follows that T,é:C < TMo: A
and therefore by Weakening we have I',é:C 1€ P’ An application of




Information Flow vs. Resource Access in the Asynchronous Pi-Calculus 13

(T-STR), followed by (T-NEW), gives the required I' I¥ (new &(a)) (P’ Q).
]

We can now prove the first main result:

THEOREM 3.6 (TYPE SAFETY). If I' = P then for every closed context
C[] such that T + C[P] and every @ such that C[P] ——* @ we have
Q — err

Proof. By Subject Reduction we know that I' F°® @ and therefore it is
sufficient to prove that I' P Q implies Q —= err. In fact we prove the
contrapositive, Q —— err implies T *® @ by induction on the definition
of Q v err.

This is a straightforward inductive proof on the derivation of Q +— err.
For example consider the case (E-RD). Suppose that p[a?(X) P] -5 err
because o < p implies for all A, r,(A) ¢ ¥(a). By supposition, we have
that I'(a) either has no read capability or it has a read capability at level
§, where 6 A p. In either case, the judgement I' ¥ a?(X) P cannot be
derived, and therefore T P p[a?(X) P] is also underivable. O

We end this section with a brief discussion on the use of the syntax
o[P] in our language. We have primarily introduced it in order to discuss
typing issues. Having defined our typing system we may now view o[P]
simply as notation for the fact that, relative to the current typing envi-
ronment I', the process P is well-typed at level o, i.e. I' 12 P. Technically
we can view o[P] to be structurally equivalent to P, assuming we are
working in an environment I' such that I' ¥ P. This will be formalised in
Section 5.

4 Information Flow

We have shown in the previous sections that, in well-typed systems, pro-
cesses running at a given security level can only access resources appropri-
ate to that level. However, as pointed out in the Introduction this does not
rule out (implicit) information flow between levels. Consider the following
system

top[[h?(z)if z = 0 then hI{0) else hi!(1) ] | bot[ hi?(z) Q] (%)

executing in an environment in which A is a top-level read/write channel
and hl is a top-level write and bot-level read channel. This system can be
well-typed, using R-types, so the processes only access resources appro-
priate to their security level. Nevertheless there is some implicit flow of
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information from top to bot; the low-level process, bot[hl?(z) Q], by test-
ing the value received on z can gain some information about the high-level
value x received by the high-level process on the high-level channel h.

One way of formalizing this notion of flow of information is to consider
the behaviour of processes and how it can be influenced. If the behaviour
of low-level processes is independent of any high-level values in its environ-
ment then we can say that there can be no implicit flow of information from
high-level to low-level. This is not the case in the example above. Suppose,
for example, that @) is the code fragment ‘if z = 0 then [1!() else l5!() .
If (%) were placed in an environment with ‘top[h!(0)]’, then the resource
[; would be called. If, instead, (x) were placed in an environment with
‘top[h!(42)]’, then l2 would be called. In other words the behaviour of
the low-level process can be influenced by high-level changes; there is a
possibility of information flow downwards.

This is not surprising in view of the type associated with the channel
hl; in the terminology of [2] it allows a write down from a high-level process
to a low-level process. Thus if we are to eliminate implicit information
flow between levels in well-typed processes we need to restrict further the
allowed types; types such as {wiop(), rbot() } clearly contradict the spirit of
secrecy. Thus, for the rest of the paper we work with the more restrictive
set IType, the Information types. In order for {w,(A), ro(A’)} to be in
IType, it must be that o < ¢’; this is not necessarily true for types in
RType.

DEFINITION 4.1. For each p, let IType,, be the least set that satisfies the
rules in Definition 3.1, with (RT-WRRD) replaced by:

(IT-WRRD)
A € IType, o<
A’ € ITypey: o = p

{w,(A), ro (A"} € IType, A< A

Let IType be the union of IType, over all p. We write I' IF P if I' ¥ P can
be derived from the rules of Figure 4 using these more restrictive types. [

All of the results of the previous section carry over to the stronger typing
system; we leave their elaboration to the reader.

Unfortunately, due to the expressiveness of our language, the use of I-
types still does not preclude information flow downwards, between levels.
Consider the system
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top[h?(z) if z = 0 then bot[I!(0)] else bot[I!(1)]] | bot[I?(z) Q]

executing in an environment in which h is a top-level read /write channel
and [ is a bot-level read/write channel. This system can be well-typed
using I-types, but there still appears to be some some implicit flow of
information from top to bot. The problem here is that our syntax allows
a high-level process, which can not write to low-level channels, to evolve
into a low-level process which does have this capability; we need to place a
boundary between low- and high-level processes which ensures a high-level
process never gains write access to low-level channels. This is the aim of
the following definition:

DEFINITION 4.2. Define the security levels of a term below p, sl,(P), as
follows:

B,(P) =sL,(P)  s1,(0) = {o} sl(oTP]) = {071 p} Uslory(P)
sl,((newa:A) P)=sl,(P) sl,(ul{v)) =0 sl,(P | Q) =sl,(P) Usl,(Q)
sl,(u?(X : B) P) =sl,(P) sl,(if w = v then P else Q) = sl,(P) Usl,(Q)

A process P is o-free if for every p in sliop(P), p £ 0. ]

Note that top € slip(P) for every P and therefore if P is o-free it must
be that o # top.

In general o-freedom restricts the ability of processes to reduce their
security level to o; this will restrict their ability to write to o-level pro-
cesses, but not their ability to read from them. The definition may appear
complicated but unfortunately it is not sufficient to disallow occurrences of
o[ ] from P. Consider for example the process p1[p2[@]], where p1 £ o.
This does not contain any occurrence of o[ ||, (assuming it does not occur
in @), but if p; M py = o then effectively @ is running at security level o.

To what extent, therefore, does o-freedom preclude implicit informa-
tion flow? We avoid giving a formal definition of implicit information
flow. Instead we can demand that, in order to informally preclude such
information flow, low-level behaviour be completely independent of arbi-
trary high-level behaviour; it should not be possible to influence low-level
behaviour by changing high-level behaviour. This can be formalized as a
non-interference result of the form:

Suppose P and () are o-levl processes and P ~? (). Further sup-
pose that H and K are arbitrary top-level o-free processes. Then
P|H~ Q|K.
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Here =7 is some form of behavioural equivalence that is sensitive only to
behaviour of processes that are o-level or lower. It turns out that such a
result is very dependent on the exact formulation used, as the following
example illustrates.

Let A denote the type {wpot(), rbot()} and B denote {rpot()}. Fur-
ther, let I' map a and b to A and B, respectively, and n to the type
{Whot (A), rbot (A) }. Now consider the terms P and H defined by

P < bot[n!{a) [ n?(x:A) z!()] H < top[n?(xz:B) b?(y) 0]

It is very easy to check that I' I P, H and that H is bot-free. Note that in
the term P|H there is contention between the low and high-level processes
for who will receive a value on the channel n. This means that if we were
to base the semantic relation ~ on any of strong bisimulation equivalence,
weak bisimulation equivalence, [18], or must testing, [20], we would have

P|0%° P|H

The essential reason is that the consumption of writes can be detected;
the reduction

P|H s bot[n?(z: A) #!()] | top[b?(y) . 0]

cannot be matched by P|0. Using the terminology of [20], P|0 guarantees
the test bot[a?(z) w!()] whereas P | H does not.

Even obtaining results with respect to may testing, defined in Section 5,
is delicate. If we allowed synchronous tests then we would also have:

P|0%° P|H

Let T be the test bot[b!{) w!()]. Then P | H | T may eventually produce
an output on w whereas P | 0|7 cannot. However, since our language is
asynchronous, such tests are not allowed.

In the following section, we prove a non-interference result using may
testing on processes typable using I-types.

5 Noninterference up to May Testing

May equivalence is defined in terms of tests. A test is a process with an
occurrence of a new reserved resource name w. We use T to range over
tests, with the typing rule T' I¥ w!() for all ' When placed in parallel
with a process P, a test may interact with P, producing an output on w
if some desired behaviour of P has been observed.

DEFINITION 5.1. We write T if T -=»* T', where T’ has the form
(new ¢) (w!() | T") for some T" and é. O



Information Flow vs. Resource Access in the Asynchronous Pi-Calculus 17

We wish to capture the behaviour of processes at a given level of secu-
rity. Consequently we only compare their ability to pass tests that are
well-typed at that level. The definition must also take into account the
environment in which the processes are used, as this determines the secu-
rity level associated with resources.

DEFINITION 5.2. We write P ~f (@ if for every test 1" such that I ¥ T
(P|T)| if and only if (Q|T)| O]

Note that in the definition of ‘P ~7 @)°, P and ) need not be well-typed.
I' is a constraint on the environment in which the processes are run, not
on the processes themselves. Nevertheless, at least in this paper, the
definition will only be applied to processes which are well-behaved with
respect to the constraint I'.

We can now state the main result of the paper.

THEOREM 5.3 (NON-INTERFERENCE). IfT' 1€ P, Q andT IF°® H, K where
H and K are o-free processes, then P ~% @ implies P | H ~% Q | K.

The proof of the theorem relies on constructing sufficient conditions to
guarantee that two processes are may equivalent. This is the topic of the
next subsection, which is followed by a subsection giving the proof of the
non-interference result.

5.1 Sufficient Conditions

The purpose of the LTS semantics given in Figure 2 is to capture the
possible interactions in which a process can engage with its environment.
However our language is typed and therefore the type environment, con-
straining the environment, may forbid interactions which the process, in
principle, is capable of performing. For example if I' is an environment
which associates with the channel a only a read capability then we will
have the identity

a?(X)P ~70

because there can be no test T such that I' I T which can interact with
a?(X) P to discover its behaviour.

In other words we need to modify the LTS semantics to take into
account the environment in which the process is being tested. This leads
us to judgements of the form I'> P £+, IV > P’. Intuitively, this should
be read:
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Ficure 5 Context LTS

(C-RED) (c-ouT)

P = P Al a:rs(B) 52
AbP T3, Ap P Aval(v) 2% As0 " °
(c-IN) ~
A Ik a:wg(B) A,¢c:ClFv:B 5<o
Ava?(X:A) p &8 A 7 Cp Pyx] €¢MP)
(C-OPEN) .

Ap P (c:C)a!v;o_A/DP/ b£a

A (newb:B) p (iBle:Claly, “Arp. By p! b€ fn(v)
(c-cTXT)
A>P £ Ap> P
Ap>*xP £, A'>xP | P’
A p[P] 55 A’ > p[P']
Ap>P £ AP
A>P|Q -, A'>P | Q
AvQ|P 5, A'>Q | P
Ap>P £ AP

A (newa:A) P +£5, A'> (newa: A

bn(u) € fn(Q)

P a & n(p)

Let T be a test such that I' IF T. Then P can interact with T
by performing the action y and evolving to P’. As a result of this
interaction, the capabilities of the context may be increased, as
reflected in I".

The modified LTS is defined in Figure 5 and the rules are straightfor-
ward. However note that in the rule (c-0ouUT) it is understood that the
environment already knows the value v being output; it is only in the rule
(C-OPEN) where the environment learns new information.

Some properties of this modified LTS are easy to establish. For exam-
plein ' P £, I''> P’ the new environment IV is completely determined
by I' and the action u. If g is 7 then I coincides with I'; otherwise it is
[ augmented with the type environment £ (i), the bound names together
with their declared types. For this reason the following Lemma is easily

established:

LEMMA 5.4. ' P £, T"> P and I' Ik P implies I'' I+ P’.
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Proof. By induction on the derivation of the judgement I'> P 5, I > P/,
]

There are also very simple conditions which ensure that apriori untyped
actions may be performed in a type environment:

LEMMA 5.5. Let P =5 ().

e Suppose a is (¢:C)a?v. IfT'IF a:ws(B), where § < o, and T, é:C Ik
v:Bthen ' P %, T, ¢:C>Q.
e Suppose o is (¢:C)alv. IfT'I-a:rs(B), where 6 < o, then I'> P -,
I c:Cr Q.
Proof. A simple proof by induction on the derivation of P - (). O]

However it is the following Decomposition Lemma which makes the aug-
mented LTS of interest:

LEMMA 5.6 (DECOMPOSITION). Suppose I' ¥ T and T' IFP. Then P |
T — R implies one of the following:

(a) R=P'|T andT>P 5T P,
(b)R P |T and T — T,
(¢) R=(newé:C) P’ |T" and T P L&:Qaly, 1V progng T 223 77,

(d) R (newé:é) P'|T" andT'> P (&:Calu, [/ Pl ognd T L€ Salo T’.

Furthermore in the last two cases T 1€ T".

Proof. By induction on the derivation of P|T -+ R. The only interesting
case is when this is inferred using the rule (L-coM), where R has the form
(newé: C) (P’ | T"). There are two possibilities.

First suppose P {&:Cla?s, pr 7 (e:Clalu 77 By Suhject Reduction
applied to T' I¥ T" we know I IF a:ws(B), for some § < o and some type
B such that I', ¢: CIFv:B. We may now apply the previous Lemma, to
obtain the requlred I'>P M I,é:C > P'. The fact that IV 1€ T
follows by Subject Reduction.

The second case, when P outputs and 7T inputs, is similar. Here
p (&:Claly, P, T M T’ and the only difficulty is to show that
r,é:C e 71 We know, by Subject Reduction, that " IF a:r,(A) and
if I Mov:A exists then I'Mwv:A I T'. However we also know I' IF P
and therefore by Subject Reduction, applied to P (e:Clalv, P/ we know
T,é:C IF v:B for some type B such that T' I w,(B). Tt follows that
B <: A and therefore, by Weakening, I',é: C' I+ v: A. This means I Muv: A
is indeed well-defined, and T',é: C' <: T'Mv: A. Applying Weakening again
we obtain the required T',é: C 1€ T". ]
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Note that in this Lemma the requirement I' IF P is essential to ensure
that if T" receives a value v then that value is compatible with the type
environment I'.

May testing is determined by the traces, s, t, in VAct* which processes
can perform. Let € represent the empty trace. The notion of complemen-
tary actions lifts element-wise to traces, s. The names in a trace n(s) is
defined as the union of the names in the individual actions; likewise the
bound names in a trace bn(s) is defined as the union of the bound names
in the individual actions.

DEFINITION 5.7 (TRACES). Let I'> P =%, I > P’ be the least relation
such that:

(TR-T) (TR-«)
(TR-€) 'sP 5, TVp>P TI'sP %, >P
rsP =%, TI"sP" TP =_T"p>P’
rs-Pp=<%,I'eP TI'vP =,T"vP’" TP 2 T">P

n(a) Nbn(s) =0
]

We can generalise the function £ from actions to sequences by:
Ee)=0 E((é:C)atv-s)={&:C}, E(s) E((¢:C)alv-s) ={&:Cl, £(s)

Note that £(s) = £(5). This notation enables us to generalise the De-
composition Lemma, Lemma 5.6, to traces. The statement assumes a
definition of the untyped reductions P =% P’, similar to that in Defini-
tion 5.7

PROPOSITION 5.8 (TRACE DECOMPOSITION). Suppose I' IF T and T I+
P. Then P|T —=* R implies there exists a trace s such that R has the
form (new&(s)) (P'|T") and TP =%, I"'> P and T == T and T IF T".
Proof. By induction on the length of P|T —* R, using Lemma 5.6. [

In general the converse to this result is not true; the behaviour of
a process P is not determined by the set of sequences s such that I' IF
P = ,. For example, if T" allows the value v to be sent and received on
channel a at level o then

~7 (a?(X)0) | al(v).

Our language is asynchronous and therefore, as in [16, 6], we need to
consider the asynchronous actions of processes.
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DEFINITION 5.9. (Asynchronous traces) Let I'> P =2 T > Q) be the least
relation which, in addition to the clauses in Definition 5.7, satisfies

(c-AIN)

['IFa:ws(B),

r,é:Clkv:B,

I,é:CoP|éfal(v)] =2T>Q 5~
> P !'E:C!a?v.g g F,DQ ¢ ¢ fn(P)

[

The ability to compose asynchronous traces depends on the fact that our
language is asynchronous. To state the required compositional property
we need a structural equivalence on processes. This is least equivalence
preserved by the static operators (o[ |, | and (newa) ) generated by the
following equations, where for convenience the types of bound variables
are omitted.

S-SR) P =r o[P] ifTIF P

S-SRSR) o[p[P]] =r (o71p)[P]

S-SRPAR) o[P| Q] =r o[P] | o[Q]

S-SRNEW ) o[(newa) P] =r (newa) o[P]

S-NEWNEW) (newa)(newb) P =r (newb)(newa) P if a #b
S-NEWPAR) P|(newa) @ =r (newa) (P | Q) if a & fn(P)

NN NN NN TN TN TN

S-COMM) PlQ=rQ|P
S-ZERO) P|0 =P
S-ITER) *P =p *P | P

The first three equations allow us to manipulate the typing annotations
o[ ], as discussed briefly at the end of Section 3; the remainder are familiar
from [19]. We leave to the reader the rather tedious chore of proving that
this equivalence is preserved under reductions:

LEMMA 5.10. If P =r Q and P £5 P’ then there exists some Q' =r P’
such that Q £ Q’. ]

LEMMA 5.11 (ASYNCHRONOUS ACTIONS). If T IF T and T {&Ca), v
then T =r (new¢:C) (6[al(v)] | T"), for some 6§ < o.

Proof. By induction on the derivation of T (&:Calv) v e give two
examples.
e al(v) 4% 0.
Since T" IF a!(v) we have a!(v) =r ofa!(v)] and the result follows.
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° p[[P]] gé:é’a!v) p[[Pl]] because P gé:é’a!v); )2

[ 1€ p[P] implies T I¥™"” P and so by induction
P =r (newé: C) (6[a!(v)] | P’)

for some § < o M p. Using the rules (S-SRNEW)(S-SRSR) and (S-SRPAR)
we can then show p[P] =r (newé:C) (pMdfal{v)] | p[P'])-
[

PROPOSITION 5.12 (TRACE COMPOSITION). SupposeI' |F T. IfT'>P =2
I'>P and T =2 T, then P | T —=+* (new&(s)) (P'|T").

Proof. By induction on the derivation I'> P =% TV > P’. We examine
the most interesting case, when s has the form «.s’ and « is the input
action (&:C)a?v. Further let us assume that the derivation T =% T” has
the form T -2 T" = T". There are two (interesting) possibilities for the
derivation I'> P =54 [ > P,

S

o ' P %, I">P”" =2 T"> P'. Using Subject Reduction we can show

that IV I¥ T”, since IV is determined by the action .. So we may apply
induction to obtain a reduction P” | T" * (new £(s")) (P'|T"). We
also have, by the rule (L-com), P | T - (newé:C) (P” | T"). By
combining these we may easily obtain a required reduction P | T —*
(new E(s)) (P | T).

T, é:CoP|8[al(v)] =52 I'bP’, where T' I a:wy(B) and ', &: C IF v : B.
Again we can apply induction to obtain a derivation (P | §[a!(v)]) |
T" T5* (new&(s")) (P’ | T”). and therefore

(newé: C) (P | 8[al(v)] | T") =* (new E(s)) (P | T").

However we can we apply the previous Lemma to the derivation T' e
T" to obtain the fact that T =p (new¢:C) (§[a!(v)] | T"). Moreover
since the names ¢ are new to P we have

P|T =r (newé:C) (P |6[al(w)] | T")

and the result follows.
]

These two results immediately give us a sufficient condition for two

processes to be semantically equivalent.

DEFINITION 5.13. We write I' IF P ~,5., @ to mean I' IF P =2 if and
only if Q) =2, for every sequence s. O

THEOREM 5.14. Suppose I' IF P, Q. Then I' IF P ~g5, Q implies I' IF
P ~pay Q. ]
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Proof. Immediate from the Trace Composition and Decomposition results.
O

5.2 Proof of the Main Result

The proof of the non-interference result will now depend on comparing the
traces of the processes P and P | H. First we must show some properties
of o-free processes.

LEMMA 5.15. If H is o-free and H £ H' then H' is also o-free.
Proof. A simple induction on H £ H'. ]

We now show that, in appropriate environments, o-free processes can
never perform o-level write actions. Unfortunately the proof, which is
inductive, requires a slight generalisation of the notion of o-freedom.

DEFINITION 5.16. We say P is o-free relative to § if p A o for everyp in
sls(P). O

Note that if P is o-free relative to § then, since § € sls(P), we know that
d A 0. Also P being o-free relative to top means precisely that P is o-free.

LEMMA 5.17. Suppose ' I¢ P, where P is o-free relative to 8. Then
I'>P =, I"> P, where o is an output action, implies p £ o.

Proof. By induction on the derivation of I'> P %, I'" > P’'. We give the
two most important cases.

o T'>al(v) “, T'n0, because T' IF a:r,(A) for some p’ < p. But from
' £ al(v) we have T' IF a:w;(B) and by the fact that I'(a) must be a
well-defined type 0 < p’. Since § £ o it follows that p A o.

o I've[Q] =, I'>€e[Q'] because I'> @ <+, I'> (). Here we need to
apply induction.

Note that sls(P) = {eMd} Uslens(Q) and therefore @ is o-free
relative to € M d. Moreover I' [® P implies T’ o () and therefore

induction can be applied to obtain the required p & o.
O

The main technical result required for non-interference is given in the
following Lemma:

PROPOSITION 5.18. Suppose T' 1€ P and T If°? H, where H is o-free.
Then I'> P | H =% implies I'> P =52
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Proof. The proof is by induction on the derivation of I'> P | H =%-%. We
examine the most interesting cases.

e '>P|H T, I'>R =1,
The most important case here is when there is communication be-
tween P and H. Here P % P', H % H' Ris (newé:C) (P'| H'),
where ¢ are the bound variables in «. There are two possibilities.

— Output from P to H; « has the form (&:C)alv. Let us examine
the trace I'> (new é: C) (P’ | H') =%, Somewhere in s the names
in ¢ may be exported. In general we can construct a related trace
sc such that T',é:C'»> (P’ | H) =%, with the property that for any
Q, Ié:Cw Q =% implies I' > Q 2.9 5. is obtained from s by
omitting any bounds (c¢: (') found on its output actions.

Now we may apply induction to T',é:C(P' | H')> =29, since
I' € P’ by Subject Reduction and I',é: C If°® H’ by Lemma 5.4.
This gives T, é:C' > P’ £22.

Applymg Lemma 5.11 we know that P is structurally equivalent

o (¢:C)(al(v) | P"). Trivially I, é: C'»> (a!(v) | P") =22 from which
it follows immediately that I'> P ==-2.

— Output from H to P. We show that this case is not possible as it
would involve a write down. Here a would have the form (¢:C)a?v
and applying Subject Reduction to both I' I€ P and T IF°* H we
would obtain both I' IF a:r,(A) and ' IF a:wyep(B). Since T is a
well-defined type this would imply top < o, which contradicts the
fact that H is o-free.

e I'>P|H %, "> R =54 where « is an input action (¢:C)a?v.
Here, again, there are two possibilities depending on which of P, H
performs the input move. In the former case a simple argument by
induction suffices. If on the other hand it is H, an application of
induction gives I > P =552
However from the inference I' > H %+, IV > H we know that T" IF
a:wgs(A), for some § < o and some A such that IV IF v:A. From
the result of the application of induction we can deduce I'' > (d[a!(v)] |
P) S:'g, This is sufficient for us to apply Definition 5.9 to conclude
I'>P =2,
e I'>P|H -2, "> =59 where a is an output action (¢: C)alv.
Here Lemma 5.17 implies that H can not be responsible for the
action; it must be P, and again a simple inductive argument suffices.
e s has the form a.s' Where « is an input action (¢: C)a% and T, &:C>
P | H |d[a!(v)] :> , because I' IF a:ws(B) and I',é: C IF v: B.
Since T, &:C IF (P | al(v)) we may apply induction to obtain
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T,é:C> (P éal(v)]) =0 Again we may now Definition 5.9 to
obtain the required I', ¢: C'> P =2,

]

Given this technical result, we can now prove the Non-Interference
Theorem.

THEOREM (5.3). If ' I P, Q and T I H, K where H, K are o-free

processes, then:

P ~7 Q implies P | H ~7 Q | K.
Proof. To establish the result, it is sufficient to show that P ~% P | H.
In fact by Theorem 5.14 it is sufficient to show I' > P =%=2 implies I' >
P | H =2, which is immediate, and T' > P | H =2 implies T > P =2;
this follows from the previous Proposition. ]

Note that the requirement that P, ) be well-typed processes at level o
is necessary for this result to be true. For example consider the process P
defined by h?(x)[?y.0 in an environment I" in which A, [ are high-level and
low-level resources respectively. Then P ~P°t 0. However P | H #P°* H,
where H is the high-level process hl().

6 Conclusions and Related Work

In this paper we have proposed simple typing systems for enforcing a
variety of security properties for the security mw-calculus. The types are
obtained by adding security levels to the standard input/output types
of the m-calculus, [21, 23]. The first typing system, based on R-Types,
is designed with resource access control in mind; the security level of a
resource (or more formally a capability on a resource) dictates the security
clearance required by any process seeking to access that resource. In future
work we hope to extend these types for use in distributed systems, [24].
The second typing system, based on the more restricted I-types, controls
the (implicit) flow of information from high to low security levels; this is
formalised via a non-interference result for may testing equivalence over
our security m-calculus.

The non-interference result uses may testing rather than some stronger,
deadlock preserving equivalence such as must testing or observational
equivalence because of the richness of I-types and the expressiveness of
our language. For example if we restricted the set of types to ensure that
there is no contention between high-level and low-level processes over read
access to channels then it may be possible to strengthen our result to must
testing equivalence. Similarly if we restricted our language so that when
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a high-level process reads a value from a low-level channel it immediately
restores it. Indeed we believe that the security w-calculus is an excellent
vehicle for a general investigation of restrictions required on high-level and
low-low processes in order to control information flow.

Methods for controling information flow are a central research issue in
computer security [7, 14, 27] and in the Introduction we have indicated a
number of different approaches to its formalisation. Non-interference has
emerged as a useful concept and is widely used to infer (indirectly) the
absence of information flow. In publications such as [25, 9] it has been
pointed out that process algebras may be fruitfully used to formalise and
investigate this concept; for example in [8] process algebra based meth-
ods are suggested for investigating security protocols, essentially using a
formalisation of non-interference for CCS.

However in these publications the non-interference is always defined
behaviourally, as a condition on the possible traces of CCS or CSP pro-
cesses; useful surveys of trace based non-interference may be found in
[9, 26]. Here, we work with the more expressive m-calculus, which allows
dynamic process creation and network reconfiguration. Our approach to
non-interference is also more extensional in that it is expressed in terms
of how processes effect their environments, relative to a particular be-
havioural equivalence. However the proof of our main result, Theorem 5.3,
describes may equivalence in terms of (typed) traces; presumably a trace
based definition of non-interference, similar in style to those in [9, 26]
could be extracted from this proof.

More importantly our approach differs from much of the recent process
calculus based security research in that we develop purely static methods
for ensuring security. Processes are shown to be secure not by demon-
strating some property of trace sets, using a tool as such as that in [10],
but by type-checking. Types have also been used in this manner in [1] for
an extension of the m-calculus called the spi-calculus. But there the struc-
ture of the types are very straightforward; the type Secret representing a
secret channel, the type Public representing a public one, and Any which
could be either. However the main interest is in the type rules for the en-
cryption/decryption primitives of the spi-calculus. The non-interference
result also has a different formulation to ours; it states that the behaviour
of well-typed processes is invariant, relative to may testing, under certain
value-substitutions. Intuitively, it means that the encryption/decryption
primitives preserve values of type Secret from certain kinds of attackers. It
would be interesting to add these primitives to the our security m-calculus
and to try to adapt the associated type rules to the set of I-Types.

An extension of the m-calculus is also considered in [17], where a sophis-
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ticated type system is used to control information flow. The judgements
in their system take the form

Tk, P> A

where s is a security level, P is a process term, A is a poset of so-called ac-
tion nodes and I' is a type environment. Their environments are quite sim-
ilar to ours, essentially associating with channels a version of input/output
types annotated with, among other things, security levels. However their
intuition, and much of the technical development, is quite different from
ours. Intuitively the above statement indicates that the process P will
only affect channels at security level s or above. The process language
used is a considerable extension to the w-calculus; for example there are
branching input statements and left /right selection outputs. In addition
to the standard channels there are are linear and recursive versions. More
importantly, in contrast to the present paper, their type system when re-
stricted to the original m-calculus allows very little interaction between
processes running at different security levels. Instead information flow
is allowed via the linear and recursive channels and is tightly controlled
via the extensive type system. The types are heavily influenced by the
notion of behaviour types from [28]; in the judgement above the poset
A describes causal dependencies between input/output actions occuring
at linear or recursive channels in P. The individual action nodes which
comprise A are similar to our types, except they carry more annotations.
These annotations, for example, record whether or not the behaviour is
stateful, i.e. changes the state of the environment or simply interrogates
it.

In summary it appears that our type system addresses information flow
within the core m-calculus while the more sophisticated one of [17] con-
trols the flow allowed via the extra syntactic constructs of their language.
However a more thorough comparison between the two systems deserves
to be made.
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