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Abstrat. We propose an extension of the asynhronous �-alulus

in whih a variety of seurity properties may be aptured using

types. These are an extension of the Input/Output types for the

�-alulus in whih I/O apabilities are assigned spei� seurity

levels.

We de�ne a typing system whih ensures that proesses running

at seurity level � annot aess resoures with a seurity level

higher than �. The notion of aess ontrol guaranteed by this

system is formalized in terms of a Type Safety theorem.

We then show that, for a ertain lass of proesses, our system

prohibits impliit information ow from high-level to low-level pro-

esses. We prove that low-level behaviour an not be inuened

by hanges to high-level behaviour. This is formalized as a Non-

Interferene Theorem with respet to may testing.

1 Introdution

The problem of proteting information and resoures in systems with mul-

tiple sensitivity or seurity levels, [2℄, has been studied extensively. Flow

analysis tehniques have been used in [3, 4℄, axiomati logi in [13℄ while

in [27, 15℄ type systems have been developed for a number of prototypial

programming languages. In this paper, we explore the extent to whih

type systems for ensuring various forms of seurity an also be developed

for the asynhronous �-alulus [5, 16℄. We disuss two seurity issues:

resoure aess ontrol and information ontrol. The former is desribed

in terms of runtime errors, the latter in terms of non-interferene [27, 11℄.

The (asynhronous) �-alulus is a very expressive language for de-

sribing distributed systems, [5, 22, 12℄, in whih proesses interommuni-

ate using hannels. Thus n?(x)P is a proess whih reeives some value

on the hannel named n, binds it to the variable x and exeutes the ode

P . Corresponding to this input ommand is the asynhronous output

ommand n!hvi whih outputs the value v on n. The set of values whih
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may be transmitted on hannels inludes hannel names themselves; this,

together with the ability to dynamially reate new hannel names, gives

the language its desriptive power.

Within the setting of the �-alulus we wish to investigate the use

of types to enfore seurity poliies. To failitate the disussion we ex-

tend the syntax with a new onstrut to represent a proess running at a

given seurity learane, �JP K. Here � is some seurity level taken from

a omplete lattie of seurity levels SL and P is the ode of the proess.

Further, we assoiate with eah hannel, the resoures in our language,

a set of input/output apabilities [21, 23℄, eah deorated with a spei�

seurity level. Intuitively, if hannel n has a read apability at level �,

then only proesses running at seurity level � or higher may be read

from n. This leads to the notion of a seurity poliy �, whih assoiates a

set of apabilities with eah hannel in the system. The question then is

to design a typing system whih ensures that proesses do not violate the

given seurity poliy.

Of ourse this depends on when we onsider suh a violation to take

plae. For example if � assigns the hannel or resoure n the highest

seurity level top then it is reasonable to say that a violation will eventually

our in

!hni j botJ?(x) x?(y)P K

as after the ommuniation on , a low level proess, botJn?(y)P K has

gained aess to the high level resoure n. Underlying this example is the

priniple that proesses at a given seurity level � should have aess to

resoures at seurity level at most �. We formalize this priniple in terms

of a relation P

�

7�! err, indiating that P violates the seurity poliy �.

To prevent suh errors, we restrit attention to seurity poliies that

are somehow onsistent. Let � be suh a onsistent poliy; onsisteny is

de�ned by restriting types so that they respet a subtyping relation. We

then introdue a typing system, � ` P , whih ensures that P an never

violate �:

If � ` P then for every ontext C[ ℄ suh that � ` C[P ℄ and every

Q whih ours during the exeution of C[P ℄, that is C[P ℄ 7!

�

Q,

we have Q

�

7�X�! err.

Thus our typing system ensures that low level proesses will never gain

aess to high level resoures. The typing system implements a partiular

view of seurity, whih we refer to as the R-seurity poliy, as it o�ers

protetion to resoures. Here ommuniation is allowed between high level

and low level prinipals, provided of ourse that the values involved are
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appropriate.

This poliy does not rule out the possibility of information leaking

indiretly from high seurity to low seurity prinipals. Suppose h is a

high hannel and hl is a hannel with high-level write aess and low-level

read aess in:

top

q

h?(x) if x = 0 then hl!h0i else hl!h1i

y

j bot

q

hl?(z)Q

y

This system an be well-typed although there is some impliit information

ow from the high seurity agent to the low seurity one; the value reeived

on the high level hannel h an be determined by the low level proess Q.

It is diÆult to formalize exatly what is meant by impliit information

ow and in the literature various authors have instead relied on non-

interferene, [14, 25, 11, 26℄, a onept more amenable to formalization,

whih ensures, at least informally, the absene of impliit information ow.

To obtain suh results for the �-alulus we need, as the above example

shows, a striter seurity poliy, whih we refer to as the I-seurity poliy.

This allows a high level prinipal to read from low level resoures but not

to write to them. Using the terminology of [2, 7℄:

� write up: a proess at level � may only write to hannels at level � or

above

� read down: a proess at level � may only read from hannels at level

� or below.

In fat the type inferene system remains the same and we only need

onstrain the notion of type. In this restrited type system well-typing,

�  P , ensures a form of non-interferene.

To formalize this non-interferene result we need to develop a notion of

proess behaviour, relative to a given seurity level. Sine the behaviour

of proesses also depends on the type environment in whih they operate

we need to de�ne a relation

P �

�

�

Q

whih intuitively states that, relative to �, there is no observable dis-

tintion between the behaviour of P and Q at seurity level �; proesses

running at seurity level � an observe no di�erene in the behaviour of

P and Q. Lak of information ow from high to low seurity levels now

means that this relation is invariant under hanges in high-level values; or

indeed under hanges in high-level behaviour.

It turns out that the extent to whih this is true depends on the exat

formulation of the behavioural equivalene �

�

�

. We show that it is not true

if �

�

�

is based on observational equivalene [18℄ ormust testing equivalene

[20℄. But a result an be established if we restrit our attention to may
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Figure 1 Syntax

P;Q ::= Terms

u!hvi Output

u?(X

:

A)P Input

if u = v then P else Q Mathing

�JP K Seurity level

(new a

:

A) P Name reation

P jQ Composition

�P Repliation

0 Termination

X;Y ::= Patterns

x Variable

(X

1

; : : : ; X

k

) Tuple

u; v; w ::= Values

bv Base Value

a Name

x Variable

(u

1

; : : : ; u

k

) Tuple

testing equivalene (here written '

�

�

). Spei�ally we will show that, for

ertain H;K:

If � 

�

P; Q and � 

top

H; K then P '

�

�

Q implies P jH '

�

�

Q jK.

High-level behaviour an be arbitrarily hanged without a�eting low-level

equivalenes. This is the main result of the paper.

The remainder of the paper is organized as follows. In the next setion

we de�ne the seurity �-alulus, giving a labelled transition semantis

and a formal de�nition of runtime errors. In Setion 3 we design a set of

types and a typing system whih implements the resoure ontrol poliy.

The types are an extension of the IO-types for the �-alulus from [21, 23℄

in whih seurity levels are assoiated with spei� apabilities. This

setion also ontains Subjet Redution and Type Safety theorems. In

Setion 4 we motivate the restritions required on types and terms in

order to implement the information ontrol poliy. We also give a preise

statement of our non-interferene result, and give ounter-examples to

related onjetures based on equivalenes other than may testing. The

proof of our main theorem depends on an analysis of may testing in terms

of asynhronous sequenes of ations [6℄ whih in turn depends on detailed

operational semantis for our language, where ations are paramterised

relative to a typing environment. This is the topi of Setion 5, whih also

ontains the proof of our main theorem.

2 The Language

The syntax of the seurity �-alulus, given in Figure 1, uses a prede�ned

set of names, ranged over by a; b; : : : ; n and a set of variables, ranged over

by x; y; z. Identi�ers are either variables or names. Seurity annotations,

ranged over by small Greek letters �; �; : : : , are taken from a omplete

lattie hSL;�;u;t; top; boti of seurity levels. We also assume for eah �
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Figure 2 Labelled Transition Semantis

(l-out)

a!hvi

a!v

��! 0

(l-in)

a?(X)P

(e

:

e

C)a?v

������! Pfj

v

=Xjg

~ =2 fn(P )

(l-open)

P

(~

:

~

C)a!v

�����! P

0

(new b

:

B) P

(b

:

B)(e

:

e

C)a!v

���������! P

0

b 6= a

b 2 fn(v)

(l-om)

P

�

�! P

0

; Q

�

�! Q

0

P jQ

�

�!
(new E(�)) (P

0

jQ

0

)

(l-eq)

if u = u then P else Q

�

�! P if u = w then P else Q

�

�! Q

u 6= w

(l-txt)

P

�

�! P

0

�P

�

�! �P j P

0

�JP K

�

�! �JP

0

K

P

�

�! P

0

P jQ

�

�! P

0

jQ

Q j P

�

�! Q j P

0

bn(�) 62 fn(Q)

P

�

�! P

0

(new a

:

A) P

�

�! (new a

:

A) P

0

a 62

n

(�)

a set of basi values BV

�

; we use bv to range over base values. We require

that all syntati sets be disjoint.

The input onstrut `u?(X

:

A)P ' binds all variables in the pattern X

while the onstrut `(new a

:

A) P ' binds names and assoiated with these.

We have the usual notions of free and bound names and variables, �-

equivalene and substitution. We identify terms up to �-equivalene. Let

fn(P ) and fv(P ) denote the set of free names and variables, respetively, of

the term P . We use `Pfj

v

=Xjg' to denote the substitution of the identi�ers

ourring in the value v for the variables ourring in the pattern X. For

`Pfj

v

=Xjg' to be well-de�ned X and v must have the same struture; to

avoid unneessary ompliations we assume that a variable an our at

most one in a pattern. The binding onstruts have types assoiated

with them; these will be explained in Setion 3 but are ignored for the

moment. In general these types (and the various seurity annotations)

will be omitted from terms unless they are relevant to the disussion at

hand.
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The behaviour of a proess is determined by the interations in whih

it an engage. To de�ne these, we give a labelled transition semantis

(LTS) for the language. The set At of labels, or ations, is de�ned as

follows:

� ::= Ations

� Internal ation

(~

:

~

C)a?v Input of v on a learning private names ~

(~

:

~

C)a!v Output of v on a revealing private names ~

Let VAt = At n f�g be the set of the visible ations, ranged over by �,

�, either input or output. Whenever these are used we assume that the

bound names ~ our in the value v. Formally the bound names of an

ation are de�ned by bn(� ) = ; and bn((~

:

~

C)a!v) = bn((~

:

~

C)a?v) = f~g.

We also use E(�) to denote the bound names in �, together with their

types: E((~

:

~

C)a!v) = E((~

:

~

C)a?v) = (~

:

~

C). Further, let

n

(�) be the

set of names ourring in �, whether free or bound. We say that the

ations `(~

:

~

C)a?v' and `(~

:

~

C)a!v' are omplementary. Given a visible

ation �, we write � to indiate the ation omplementary to �; note that

bn(�) = bn(�) and E(�) = E(�).

The LTS is de�ned in Figure 5 and for the most part the rules are

straightforward; it is based on the standard operational semantis from

[19℄, to whih the reader is referred for more motivation. Note that in the

input rule (l-in) we are assuming the ation (~

:

~

C)a?v is well-de�ned; in

priniple the proess a?(X)P an input any value v, but for the ation to

be valid the bound names ~ must appear in v and moreover must be new

to the proess.

Informally a seurity poliy assoiates with eah hannel a seurity

level. Our approah, slightly more general, is to inorporate this informa-

tion into the standard notion of hannel types for the �-alulus[21, 23℄,

designed to rule out run-time mistypings, suh as sending a triple on a

hannel designed for pairs. In partiular we will assoiate seurity levels

with apabilities on hannels, rather than hannels themselves, although

indiretly we will be able to assoiate seurity levels with hannels. To
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this end, Pre-apabilities and pre-types are de�ned as follows:

ap ::= Pre-Capability

w

�

hAi �-level proess an write values with type A

r

�

hAi �-level proess an read values with type A

A ::= Pre-Type

B

�

Base type

fap

1

; : : : ; ap

k

g Resoure type (k � 0)

(A

1

; : : : ;A

k

) Tuple type (k � 0)

We will tend to abbreviate a singleton set of apabilities, fapg, to ap.

A seurity poliy, �, is a �nite mapping from names to pre-types. Thus,

for example, if � maps the hannel lh to the pre-type fw

bot

hBi; r

top

hAig,

for some appropriate A; B, then low level proesses may write to lh but

only high level ones may read from it; this is an approximation of the

seurity assoiated with a mailbox. On the other hand if � maps hl to

fr

bot

hAi; w

top

hBig then hl ats more like an information hannel; anybody

an read from it but only high level proesses may plae information there.

The import of a seurity poliy may be underlined by de�ning what

it means to violate it. Our de�nition is given in Figure 3, in terms of

a relation P

�

7�! err. As an example of runtime errors we have that

�Ja!hviP K

�

7�! err if any of the following hold: (a) �(a) is unde�ned,

(b) a has no write apability for proesses at level �, or () v ontains

a base value that is restrited from �-level proesses. As explained in

the Introdution here we are attempting to ontrol aess to resoures:

hannels and base values. Prinipals at level � have aess to all resoures

at levels up to and inluding �. So even if � assigns a a low seurity level

topJa!hviP K does not ause a runtime error unless v an not be assigned

a type appropriate to �(a).

Example 2.1. Here we assume the poliy � de�ned above, mapping lh to

fw

bot

hBi; r

top

hAig and hl to fw

top

hBi; r

bot

hAig, for some appropriate A;B.

� Consider the proess topJ!hhliK j botJ?(x) x!hviK. Then after one re-

dution step there is a seurity error beause botJhl!hviK

�

7�! err: A low

seurity proess has read aess to seurity hannel hl on whih write

aess is reserved for high-seurity proesses.

� Assuming an appropriate typing for  and v the same seurity error

does not our in topJ!hlhiK jbotJ?(x)x!hviK: The low seurity proess

botJlh!hviQK has the right to write on the hannel lh.

� If � assigns to the hannel  a pre-type whih inludes a apability of

the form r

bot

hCi then apriori there is no type error in the expression
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Figure 3 Runtime Errors

(e-rd) �Ja?(X)P K

�

7�! err if � � � implies for all A, r

�

hAi =2 �(a)

(e-wr

1

) �Ja!hviK

�

7�! err if � � � implies for all A, w

�

hAi =2 �(a)

(e-wr

2

) �Ja!hviK

�

7�! err if bv 2 v, bv 2 B

�

and � 6� �

(e-str)

P

�

7�! err

P jQ

�

7�! err

P

�

7�! err

�JP K

�

7�! err

P � Q; P

�

7�! err

Q

�

7�! err

P

�;a

:

A

7����! err

(newn

:

A) P

�

7�! err

!hlhi although intuitively it involves a seurity leak; a low seurity

agent an read from  a hannel whih has at least some apability

whih should only be aessible to high seurity prinipals. However

it is straightforward to plae it in a ontext in whih a seurity leak

ours: !hlhi j botJ?(x) x!hviK: Thus our typing system will also be

required to rule out suh proesses. �

3 Resoure Control

Our typing system will apply only to ertain seurity poliies, those in

whih the pre-types are in some sense onsistent. Consisteny is imposed

using a system of kinds: the kind RType

�

omprises the value types a-

essible to proesses at seurity level �. These kinds are in turn de�ned

using a subtyping relation on pre-apabilities and pre-types.

Definition 3.1. Let <

:

be the least preorder on pre-apabilities and pre-

types suh that:

(u-wr) w

�

hAi <

:

w

�

hBi if B <

:

A

(u-rd) r

�

hAi <

:

r

�

hBi if A <

:

B and � � �

(u-base) B

�

<

:

B

�

if � � �

(u-res) fap

i

g

i2I

<

:

fap

0

j

g

j2J

if (8j)(9i) ap

i

<

:

ap

0

j

(u-tup) (A

1

; : : : ;A

k

) <

:

(B

1

; : : : ;B

k

) if (8i) A

i

<

:

B

i
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For eah �, let RType

�

be the least set that satis�es:

(rt-wr)

A 2 RType

�

fw

�

hAig 2 RType

�

� � �

(rt-rd)

A 2 RType

�

fr

�

hAig 2 RType

�

� � �

(rt-wrrd)

A 2 RType

�

A

0

2 RType

�

0

fw

�

hAi; r

�

0

hA

0

ig 2 RType

�

� � �

�

0

� �

A <

:

A

0

(rt-base)

B

�

2 RType

�

� � �

(rt-tup)

A

i

2 RType

�

(8i)

(A

1

; : : : ;A

k

) 2 RType

�

Let RType be the union of the kinds RType

�

over all �. �

Note that if � � � then RType

�

� RType

�

. Intuitively, low level values

are aessible to high level proesses. However the onverse is not true.

For example w

top

hi 2 RType

top

but w

top

hi is not in RType

bot

. Note also

that there is no relation between subtyping and aessibility at a given

seurity level. For example:

w

bot

hi 2 RType

bot

and fw

bot

hi; r

top

hig <

:

r

bot

hi but fw

bot

hi;w

top

hig 62 RType

bot

r

bot

hi 2 RType

bot

and r

bot

hi <

:

r

top

hi but r

top

hi 62 RType

bot

The ompatibility requirement between read and write apabilities in

a type (rt-wrrd), in addition to the typing impliations disussed in

[23℄, also has seurity impliations. For example suppose r

bot

hB

�

i and

w

top

hBi are apabilities in a valid hannel type. Then apriori a high level

proess an write to the hannel while a low level proess may read from

it. However the only possibility for � is bot, that is only low level values

may be read. Moreover the requirement B <

:

B

�

implies that B must also

be B

bot

. So although high level proesses may write to the hannel they

may only write low level values.

Remark. Most of the restritions imposed on types are essential to ahiev-

ing Subjet Redution, but a few are not. First, Subjet Redution still

holds if we weaken (u-wr) to: w

�

hAi <

:

w

�

hBi if B <

:

A and � � �.

Were we to adopt this rule, it would be true that every proess typable at

level � would also be typable at level �, for � � �. Given our de�nition,

this is not true. Nonetheless, every proess typable at � an be trivially

rewritten so that it is typable at � given our de�nition (one must sim-

ply surround output ations with expliit seurity restritions). We have
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Figure 4 Typing Rules

(t-id)

�(u) <

:

A

� ` u

:

A

(t-base)

bv 2 B

�

� ` bv

:

B

�

(t-tup)

� ` v

i

:

A

i

(8i)

� ` (v

1

; : : : ; v

k

)

:

(A

1

; : : : ;A

k

)

(t-in)

�; X

:

A `

�

P

� ` u

:

r

�

hAi

� `

�

u?(X

:

A)P

(t-out)

� ` u

:

w

�

hAi

� ` v

:

A

� `

�

u!hvi

(t-eq)

� ` u

:

A; v

:

B

� `

�

Q

� u fu

:

B; v

:

Ag `

�

P

� `

�

if u = v then P else Q

(t-sr)

� `

�u�

P

� `

�

�JP K

(t-new)

�; a

:

A `

�

P

� `

�

(new a

:

A) P

(t-str)

� `

�

P; Q

� `

�

P jQ; �P; 0

adopted the stronger rule beause it is neessary in the next setion and

results in no substantive loss of expressivity.

Seond, we have limited types to ontain at most one read and one

write apability. We have done so to simplify the proofs, partiularly in

the next setion. This learly results in a loss of expressiveness. We have

yet to �nd, however, a ompelling example that requires a resoure to

have more than one read or one write apability. It is usually sensible to

simply take the meet. �

Proposition 3.2. For every �, RType

�

is a preorder with respet to <

:

,

with both a partial meet operation u and a partial join t.

Proof. Straightforward adaptation of Proposition 6.2 of [23℄. The partial

operations u and t are �rst de�ned by strutural indution on types.

Typial lauses are

r

�

hAi u r

�

0

hA

0

i = r

�u�

0

hA uA

0

i

w

�

hAi u w

�

hA

0

i = w

�

hA tA

0

i

r

�

hAi t r

�

0

hAi = r

�t�

0

hA tA

0

i

w

�

hAi t w

�

hA

0

i = w

�

hA uA

0

i

One an then show, by indution on the de�nitions, that:

A 2 RType

�

and A 2 RType

�

0

implies A u B 2 RType

�u�

0

and

A t B 2 RType

�t�

0

.

Finally it is straightforward to show that u and t, de�ned in this manner,

are indeed partial meet and partial join operators. �
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We now disuss the typing system, whih is de�ned using restrited

seurity poliies, alled type environments. A type environment is a �nite

mapping from identi�ers (names and variables) to types. We adopt some

standard notation. For example, let `�; u

:

A' denote the obvious extension

of �; `�; u

:

A' is only de�ned if u is not in the domain of �. The subtyp-

ing relation <

:

together with the partial operators u and t may also be

extended to environments. For example � <

:

� if for all u in the domain

of �, �(u) <

:

�(u). The partial meet enables us to de�ne more subtle

extensions. For example �ufu

:

Ag may be de�ned even if u is already in

the domain of �. It is well de�ned when �(u) uA exists, in whih ase it

maps u to this type. We will normally abbreviate the simple environment

fu

:

Ag to u

:

A and moreover use v

:

A to denote its obvious generalisation

to values; this is only well-de�ned when the value v has the same struture

as the type A.

The typing system is given in Figure 4 where the judgements are of

the form `� `

�

P '. If � `

�

P we say that P is a �-level proess. Also, let

`� ` P ' abbreviate `� `

top

P '.

Intuitively `� `

�

P ' indiates that the proess P will not ause any

seurity errors if exeuted with seurity learane �. The rules are very

similar to those used in papers suh as [23, 21℄ for the standard IO typing

of the �-alulus. Indeed the only signi�ant use of the seurity levels is

in the (t-in) and (t-out) rules, where the hannels are required to have

a spei� seurity level. This is inferred using auxiliary value judgements,

of the form � ` v

:

A. It is interesting to note that seurity levels play no

diret role in their derivation. One might expet that the judgements for

values would need to ensure that a value written to a hannel be aessible

at the appropriate seurity level. This job, however, is already handled

by our de�nition of types. For example, in order for w

�

hAi to be a type,

A must be a type aessible to �.

The typing system enjoys many expeted properties, the proof of whih

we leave to the reader.

Proposition 3.3.

� (Speialization) � ` v

:

A and A <

:

B then � ` v

:

B

� (Weakening) � `

�

P and � <

:

� then � `

�

P

� (Restrition) �; u

:

A `

�

P and u 62 fv(P ) [ fn(P ) implies � `

�

P: �

The main tehnial tool required for Subjet Redution is, as usual, a

substitution result.

Lemma 3.4 (Substitution). If � ` v

:

A then
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� � ` u

:

A implies � ` ufj

v

=Xjg

� �; X

:

A `

�

P implies � `

�

Pfj

v

=Xjg

Proof. Easily reonstruted from the orresponding proof in [23℄, Lemma

4.7. �

Theorem 3.5 (Subjet Redution). Suppose � `

�

P . Then

� P

�

�! Q implies � `

�

Q

� P

(~

:

~

C)a?v

������! Q implies there exists a type A suh that � ` a

:

r

Æ

hAi for

some Æ � �, and if � u v

:

A is well-de�ned then � u v

:

A `

�

Q.

� P

(~

:

~

C)a!v

�����! Q implies there exists a type A suh that � ` a

:

w

Æ

hAi for

some Æ � �, �; ~

:

~

C ` v

:

A and �; ~

:

~

C `

�

Q.

Proof. The three statements are proved simultaneously by indution on

the inferene P

�

�! Q. We examine some ases.

The rule (l-in): a?(X

:

A)P

(~

:

~

C)a?v

������! Pfj

v

=Xjg. Beause � `

�

a?(X

:

A)P

we know � ` a

:

r

�

hAi and �; X

:

A `

�

P . Now suppose � u v

:

A is well-

de�ned. By Weakening we obtain (� u v

:

A); X

:

A `

�

P and therefore

applying the Substitution Lemma we obtain �u v

:

A `

�

Pfj

v

=Xjg. The rule

(l-out) is similar.

We onsider one example of the rule (l-txt): �JP K

�

�! �JP

0

K beause

P

�

�! P

0

. The preise details depend on �, but in eah of the three

possibilities the reasoning is very similar; so suppose � is an input ation

(~

:

~

C)a?v. We know, by well-typing, that � `

�u�

P and therefore we

may apply indution to obtain a type A and a Æ � � u � suh that � `

a

:

r

Æ

hAi; in partiular Æ � �. Now suppose � u v

:

A exists. Then, again

by indution, we know �u v

:

A `

�u�

P

0

and therefore applying the typing

rule (t-sr) we obtain the required � u v

:

A `

�

�JP

0

K.

The rule (l-open): (new b

:

B) P

(b

:

B)(~

:

~

C)a!v

���������! P

0

beause P

(~

:

~

C)a!v

�����!

P

0

. Here we know �; b

:

B `

�

P and therefore applying indution to the

ation P

(~

:

~

C)a!v

�����! P

0

we obtain a type A suh that �; b

:

B; ~

:

~

C `

�

P

0

and �; b

:

B; ~

:

~

C ` v

:

A; moreover �; b

:

B ` a

:

r

Æ

hAi, for some Æ � �.

However sine (l-open) requires that b 6= a we may onlude, as required,

� ` a

:

r

Æ

hAi.

As a �nal example onsider the rule (l-om): P jQ

�

�! (new E(�)) (P

0

j

Q

0

) beause P

�

�! P

0

and Q

�

�! Q

0

. Without loss of generality we may

assume � is the input ation (~

:

~

C)a?v. We know � `

�

P; Q and therefore

we may apply indution to both redution statements. Applying it to

Q

�

�! Q

0

we obtain �; ~

:

~

C ` v

:

A and �; ~

:

~

C `

�

Q. The former implies

that � u v

:

A is well-de�ned and therefore indution applied to P

�

�! P

0

gives �u v

:

A `

�

P

0

. Sine �; ~

:

~

C ` v

:

A it follows that �; ~

:

~

C <

:

�u v

:

A

and therefore by Weakening we have �; ~

:

~

C `

�

P

0

. An appliation of
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(t-str), followed by (t-new), gives the required � `

�

(new E(�)) (P

0

jQ

0

).

�

We an now prove the �rst main result:

Theorem 3.6 (Type Safety). If � ` P then for every losed ontext

C[ ℄ suh that � ` C[P ℄ and every Q suh that C[P ℄

�

�!

�

Q we have

Q

�

7�X�! err

Proof. By Subjet Redution we know that � `

top

Q and therefore it is

suÆient to prove that � `

top

Q implies Q

�

7�X�! err. In fat we prove the

ontrapositive, Q

�

7�! err implies � 6`

top

Q by indution on the de�nition

of Q

�

7�! err.

This is a straightforward indutive proof on the derivation ofQ

�

7�! err.

For example onsider the ase (e-rd). Suppose that �Ja?(X)P K

�

7�! err

beause � � � implies for all A, r

�

hAi =2 �(a). By supposition, we have

that �(a) either has no read apability or it has a read apability at level

Æ, where Æ 6� �. In either ase, the judgement � `

�

a?(X)P annot be

derived, and therefore � `

top

�Ja?(X)P K is also underivable. �

We end this setion with a brief disussion on the use of the syntax

�JP K in our language. We have primarily introdued it in order to disuss

typing issues. Having de�ned our typing system we may now view �JP K

simply as notation for the fat that, relative to the urrent typing envi-

ronment �, the proess P is well-typed at level �, i.e. � `

�

P . Tehnially

we an view �JP K to be struturally equivalent to P , assuming we are

working in an environment � suh that � `

�

P . This will be formalised in

Setion 5.

4 Information Flow

We have shown in the previous setions that, in well-typed systems, pro-

esses running at a given seurity level an only aess resoures appropri-

ate to that level. However, as pointed out in the Introdution this does not

rule out (impliit) information ow between levels. Consider the following

system

top

q

h?(x) if x = 0 then hl!h0i else hl!h1i

y

j bot

q

hl?(z)Q

y

(?)

exeuting in an environment in whih h is a top-level read/write hannel

and hl is a top-level write and bot-level read hannel. This system an be

well-typed, using R-types, so the proesses only aess resoures appro-

priate to their seurity level. Nevertheless there is some impliit ow of
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information from top to bot; the low-level proess, botJhl?(z)QK, by test-

ing the value reeived on z an gain some information about the high-level

value x reeived by the high-level proess on the high-level hannel h.

One way of formalizing this notion of ow of information is to onsider

the behaviour of proesses and how it an be inuened. If the behaviour

of low-level proesses is independent of any high-level values in its environ-

ment then we an say that there an be no impliit ow of information from

high-level to low-level. This is not the ase in the example above. Suppose,

for example, that Q is the ode fragment `if z = 0 then l

1

!hi else l

2

!hi'.

If (?) were plaed in an environment with `topJh!h0iK', then the resoure

l

1

would be alled. If, instead, (?) were plaed in an environment with

`topJh!h42iK', then l

2

would be alled. In other words the behaviour of

the low-level proess an be inuened by high-level hanges; there is a

possibility of information ow downwards.

This is not surprising in view of the type assoiated with the hannel

hl; in the terminology of [2℄ it allows a write down from a high-level proess

to a low-level proess. Thus if we are to eliminate impliit information

ow between levels in well-typed proesses we need to restrit further the

allowed types; types suh as fw

top

hi; r

bot

hig learly ontradit the spirit of

serey. Thus, for the rest of the paper we work with the more restritive

set IType, the Information types. In order for fw

�

hAi; r

�

0

hA

0

ig to be in

IType, it must be that � � �

0

; this is not neessarily true for types in

RType.

Definition 4.1. For eah �, let IType

�

, be the least set that satis�es the

rules in De�nition 3.1, with (rt-wrrd) replaed by:

(it-wrrd)

A 2 IType

�

A

0

2 IType

�

0

fw

�

hAi; r

�

0

hA

0

ig 2 IType

�

� � �

0

�

0

� �

A <

:

A

0

Let IType be the union of IType

�

over all �. We write � 

�

P if � `

�

P an

be derived from the rules of Figure 4 using these more restritive types.�

All of the results of the previous setion arry over to the stronger typing

system; we leave their elaboration to the reader.

Unfortunately, due to the expressiveness of our language, the use of I-

types still does not prelude information ow downwards, between levels.

Consider the system
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top

q

h?(x) if x = 0 then botJl!h0iK else botJl!h1iK

y

j bot

q

l?(z)Q

y

exeuting in an environment in whih h is a top-level read/write hannel

and l is a bot-level read/write hannel. This system an be well-typed

using I-types, but there still appears to be some some impliit ow of

information from top to bot. The problem here is that our syntax allows

a high-level proess, whih an not write to low-level hannels, to evolve

into a low-level proess whih does have this apability; we need to plae a

boundary between low- and high-level proesses whih ensures a high-level

proess never gains write aess to low-level hannels. This is the aim of

the following de�nition:

Definition 4.2. De�ne the seurity levels of a term below �, sl

�

(P ), as

follows:

sl

�

(�P ) = sl

�

(P ) sl

�

(0) = f�g sl

�

(�JP K) = f� u �g [ sl

�u�

(P )

sl

�

((new a

:

A) P ) = sl

�

(P ) sl

�

(u!hvi) = ; sl

�

(P jQ) = sl

�

(P ) [ sl

�

(Q)

sl

�

(u?(X

:

B)P ) = sl

�

(P ) sl

�

(if u = v then P else Q) = sl

�

(P ) [ sl

�

(Q)

A proess P is �-free if for every � in sl

top

(P ), � 6� �. �

Note that top 2 sl

top

(P ) for every P and therefore if P is �-free it must

be that � 6= top.

In general �-freedom restrits the ability of proesses to redue their

seurity level to �; this will restrit their ability to write to �-level pro-

esses, but not their ability to read from them. The de�nition may appear

ompliated but unfortunately it is not suÆient to disallow ourrenes of

�J K from P . Consider for example the proess �

1

J�

2

JQKK, where �

1

6� �.

This does not ontain any ourrene of �J K, (assuming it does not our

in Q), but if �

1

u �

2

= � then e�etively Q is running at seurity level �.

To what extent, therefore, does �-freedom prelude impliit informa-

tion ow? We avoid giving a formal de�nition of impliit information

ow. Instead we an demand that, in order to informally prelude suh

information ow, low-level behaviour be ompletely independent of arbi-

trary high-level behaviour; it should not be possible to inuene low-level

behaviour by hanging high-level behaviour. This an be formalized as a

non-interferene result of the form:

Suppose P and Q are �-levl proesses and P �

�

Q. Further sup-

pose that H and K are arbitrary top-level �-free proesses. Then

P jH �

�

Q jK.
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Here �

�

is some form of behavioural equivalene that is sensitive only to

behaviour of proesses that are �-level or lower. It turns out that suh a

result is very dependent on the exat formulation used, as the following

example illustrates.

Let A denote the type fw

bot

hi; r

bot

hig and B denote fr

bot

hig. Fur-

ther, let � map a and b to A and B, respetively, and n to the type

fw

bot

hAi; r

bot

hAig. Now onsider the terms P and H de�ned by

P ( botJn!hai j n?(x

:

A) x!hiK H ( topJn?(x

:

B) b?(y) 0K

It is very easy to hek that �  P;H and that H is bot-free. Note that in

the term P jH there is ontention between the low and high-level proesses

for who will reeive a value on the hannel n. This means that if we were

to base the semanti relation � on any of strong bisimulation equivalene,

weak bisimulation equivalene, [18℄, or must testing, [20℄, we would have

P j 0 6�

�

P jH

The essential reason is that the onsumption of writes an be deteted;

the redution

P jH

�

�! botJn?(x

:

A) x!hiK j topJb?(y) : 0K

annot be mathed by P j0. Using the terminology of [20℄, P j0 guarantees

the test botJa?(x)!!hiK whereas P jH does not.

Even obtaining results with respet tomay testing, de�ned in Setion 5,

is deliate. If we allowed synhronous tests then we would also have:

P j 0 6�

�

P jH

Let T be the test botJb!hi!!hiK. Then P j H j T may eventually produe

an output on ! whereas P j 0 jT annot. However, sine our language is

asynhronous, suh tests are not allowed.

In the following setion, we prove a non-interferene result using may

testing on proesses typable using I-types.

5 Noninterferene up to May Testing

May equivalene is de�ned in terms of tests. A test is a proess with an

ourrene of a new reserved resoure name !. We use T to range over

tests, with the typing rule � 

�

!!hi for all �. When plaed in parallel

with a proess P , a test may interat with P , produing an output on !

if some desired behaviour of P has been observed.

Definition 5.1. We write T+ if T

�

�!

�

T

0

, where T

0

has the form

(new ~) (!!hi j T

00

) for some T

00

and ~. �
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We wish to apture the behaviour of proesses at a given level of seu-

rity. Consequently we only ompare their ability to pass tests that are

well-typed at that level. The de�nition must also take into aount the

environment in whih the proesses are used, as this determines the seu-

rity level assoiated with resoures.

Definition 5.2. We write P '

�

�

Q if for every test T suh that � 

�

T :

(P j T )+ if and only if (Q j T )+ �

Note that in the de�nition of `P '

�

�

Q', P and Q need not be well-typed.

� is a onstraint on the environment in whih the proesses are run, not

on the proesses themselves. Nevertheless, at least in this paper, the

de�nition will only be applied to proesses whih are well-behaved with

respet to the onstraint �.

We an now state the main result of the paper.

Theorem 5.3 (Non-Interferene). If � 

�

P; Q and � 

top

H; K where

H and K are �-free proesses, then P '

�

�

Q implies P jH '

�

�

Q jK:

The proof of the theorem relies on onstruting suÆient onditions to

guarantee that two proesses are may equivalent. This is the topi of the

next subsetion, whih is followed by a subsetion giving the proof of the

non-interferene result.

5.1 SuÆient Conditions

The purpose of the LTS semantis given in Figure 2 is to apture the

possible interations in whih a proess an engage with its environment.

However our language is typed and therefore the type environment, on-

straining the environment, may forbid interations whih the proess, in

priniple, is apable of performing. For example if � is an environment

whih assoiates with the hannel a only a read apability then we will

have the identity

a?(X)P '

�

�

0

beause there an be no test T suh that � 

�

T whih an interat with

a?(X)P to disover its behaviour.

In other words we need to modify the LTS semantis to take into

aount the environment in whih the proess is being tested. This leads

us to judgements of the form � . P

�

�!

�

�

0

. P

0

. Intuitively, this should

be read:
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Figure 5 Context LTS

(-red)

P

�

�! P

0

� . P

�

�!

�

� . P

0

(-out)

�  a

:

r

Æ

hBi

� . a!hvi

a!v

��!

�

� . 0

Æ � �

(-in)

�  a

:

w

Æ

hBi �; ~

:

~

C  v

:

B

� . a?(X

:

A)P

(e

:

e

C)a?v

������!

�

�;e

:

e

C . Pfj

v

=Xjg

Æ � �

~ =2 fn(P )

(-open)

� . P

(~

:

~

C)a!v

�����!

�

�

0

. P

0

� . (new b

:

B) P

(b

:

B)(e

:

e

C)a!v

���������!

�

�

0

; b

:

B . P

0

b 6= a

b 2 fn(v)

(-txt)

� . P

�

�!

�

�

0

. P

0

� . �P

�

�!

�

�

0

. �P j P

0

� . �JP K

�

�!

�

�

0

. �JP

0

K

� . P

�

�!

�

�

0

. P

0

� . P jQ

�

�!

�

�

0

. P

0

jQ

� . Q j P

�

�!

�

�

0

. Q j P

0

bn(�) 62 fn(Q)

� . P

�

�!

�

�

0

. P

0

� . (new a

:

A) P

�

�!

�

�

0

. (new a

:

A) P

0

a 62

n

(�)

Let T be a test suh that � 

�

T . Then P an interat with T

by performing the ation � and evolving to P

0

. As a result of this

interation, the apabilities of the ontext may be inreased, as

reeted in �

0

.

The modi�ed LTS is de�ned in Figure 5 and the rules are straightfor-

ward. However note that in the rule (-out) it is understood that the

environment already knows the value v being output; it is only in the rule

(-open) where the environment learns new information.

Some properties of this modi�ed LTS are easy to establish. For exam-

ple in �.P

�

�!

�

�

0

.P

0

the new environment �

0

is ompletely determined

by � and the ation �. If � is � then �

0

oinides with �; otherwise it is

� augmented with the type environment E(�), the bound names together

with their delared types. For this reason the following Lemma is easily

established:

Lemma 5.4. � . P

�

�!

�

�

0

. P

0

and �  P implies �

0

 P

0

.
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Proof. By indution on the derivation of the judgement �.P

�

�!

�

�

0

.P

0

.

�

There are also very simple onditions whih ensure that apriori untyped

ations may be performed in a type environment:

Lemma 5.5. Let P

�

�! Q.

� Suppose � is (~

:

~

C)a?v. If �  a

:

w

Æ

hBi, where Æ � �, and �; ~

:

~

C 

v

:

B then � . P

�

�!

�

�; ~

:

~

C . Q.

� Suppose � is (~

:

~

C)a!v. If �  a

:

r

Æ

hBi, where Æ � �, then � . P

�

�!

�

�; ~

:

~

C . Q.

Proof. A simple proof by indution on the derivation of P

�

�! Q. �

However it is the following Deomposition Lemma whih makes the aug-

mented LTS of interest:

Lemma 5.6 (Deomposition). Suppose � 

�

T and � P . Then P j

T

�

�! R implies one of the following:

(a) R = P

0

j T and � . P

�

�! � . P

0

,

(b) R = P j T

0

and T

�

�! T

0

,

() R = (new ~

:

~

C) P

0

j T

0

and � . P

(~

:

~

C)a!v

�����!

�

�

0

. P

0

and T

a?v

��! T

0

, or

(d) R = (new ~

:

~

C) P

0

j T

0

and � . P

(~

:

~

C)a?v

������!

�

�

0

. P

0

and T

(~

:

~

C)a!v

�����! T

0

.

Furthermore in the last two ases �

0



�

T

0

.

Proof. By indution on the derivation of P jT

�

�! R. The only interesting

ase is when this is inferred using the rule (l-om), where R has the form

(new ~

:

~

C) (P

0

j T

0

). There are two possibilities.

First suppose P

(~

:

~

C)a?v

������! P

0

; T

(~

:

~

C)a!v

�����! T

0

. By Subjet Redution

applied to � 

�

T we know �  a

:

w

Æ

hBi, for some Æ � � and some type

B suh that �; ~

:

~

C  v

:

B. We may now apply the previous Lemma, to

obtain the required � . P

(~

:

~

C)a?v

������!

�

�; ~

:

~

C . P

0

. The fat that �

0



�

T

0

follows by Subjet Redution.

The seond ase, when P outputs and T inputs, is similar. Here

P

(~

:

~

C)a!v

�����! P

0

; T

(~

:

~

C)a?v

������! T

0

and the only diÆulty is to show that

�; ~

:

~

C 

�

T

0

. We know, by Subjet Redution, that �  a

:

r

�

hAi and

if � u v

:

A exists then � u v

:

A 

�

T

0

. However we also know �  P

and therefore by Subjet Redution, applied to P

(~

:

~

C)a!v

�����! P

0

we know

�; ~

:

~

C  v

:

B for some type B suh that �  w

�

hBi. It follows that

B <

:

A and therefore, by Weakening, �; ~

:

~

C  v

:

A. This means � u v

:

A

is indeed well-de�ned, and �; ~

:

~

C <

:

�u v

:

A. Applying Weakening again

we obtain the required �; ~

:

~

C 

�

T

0

. �
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Note that in this Lemma the requirement � P is essential to ensure

that if T reeives a value v then that value is ompatible with the type

environment �.

May testing is determined by the traes, s, t, in VAt

�

whih proesses

an perform. Let � represent the empty trae. The notion of omplemen-

tary ations lifts element-wise to traes, s. The names in a trae

n

(s) is

de�ned as the union of the names in the individual ations; likewise the

bound names in a trae bn(s) is de�ned as the union of the bound names

in the individual ations.

Definition 5.7 (Traes). Let � . P

s

=)

�

�

0

. P

0

be the least relation

suh that:

(tr-�)

� . P

�

=)

�

� . P

(tr-�)

� . P

�

�!

�

�

0

. P

0

� . P

0

s

=)

�

�

00

. P

00

� . P

s

=)

�

�

00

. P

00

(tr-�)

� . P

�

�!

�

�

0

. P

0

�

0

. P

0

s

=)

�

�

00

. P

00

� . P

��s

=)

�

�

00

. P

00

n

(�) \ bn(s) = ;

�

We an generalise the funtion E from ations to sequenes by:

E(�) = ; E((~

:

~

C)a?v � s) = f~

:

~

Cg; E(s) E((~

:

~

C)a!v � s) = f~

:

~

Cg; E(s)

Note that E(s) = E(s). This notation enables us to generalise the De-

omposition Lemma, Lemma 5.6, to traes. The statement assumes a

de�nition of the untyped redutions P

s

=) P

0

, similar to that in De�ni-

tion 5.7

Proposition 5.8 (Trae Deomposition). Suppose � 

�

T and � 

P . Then P j T

�

�!

�

R implies there exists a trae s suh that R has the

form (new E(s)) (P

0

jT

0

) and �.P

s

=)

�

�

0

.P

0

and T

s

=) T

0

and �

0



�

T

0

.

Proof. By indution on the length of P j T

�

�!

�

R, using Lemma 5.6. �

In general the onverse to this result is not true; the behaviour of

a proess P is not determined by the set of sequenes s suh that � 

P

s

=)

�

. For example, if � allows the value v to be sent and reeived on

hannel a at level � then

0 '

�

�

(a?(X) 0) j a!hvi :

Our language is asynhronous and therefore, as in [16, 6℄, we need to

onsider the asynhronous ations of proesses.
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Definition 5.9. (Asynhronous traes) Let �.P

s

=)

a

�

�

0

.Q be the least

relation whih, in addition to the lauses in De�nition 5.7, satis�es

(-ain)

�  a

:

w

Æ

hBi;

�; ~

:

~

C  v

:

B;

�; ~

:

~

C . P j ÆJa!hviK

s

=)

a

�

� . Q

� . P

(e

:

e

C)a?v:s

======)

a

�

�

0

. Q

Æ � �

~ =2 fn(P )

�

The ability to ompose asynhronous traes depends on the fat that our

language is asynhronous. To state the required ompositional property

we need a strutural equivalene on proesses. This is least equivalene

preserved by the stati operators (�J K; j and (new a) ) generated by the

following equations, where for onveniene the types of bound variables

are omitted.

(s-sr) P �

�

�JP K if � 

�

P

(s-srsr) �

q

�JP K

y

�

�

(�u�)JP K

(s-srpar) �JP jQK �

�

�JP K j �JQK

(s-srnew) �J(new a) P K �

�

(new a) �JP K

(s-newnew) (new a)(new b) P �

�

(new b)(new a) P if a 6= b

(s-newpar) P j (new a) Q �

�

(new a) (P jQ) if a 62 fn(P )

(s-omm) P jQ �

�

Q j P

(s-zero) P j 0 �

�

P

(s-iter) �P �

�

�P j P

The �rst three equations allow us to manipulate the typing annotations

�J K, as disussed briey at the end of Setion 3; the remainder are familiar

from [19℄. We leave to the reader the rather tedious hore of proving that

this equivalene is preserved under redutions:

Lemma 5.10. If P �

�

Q and P

�

�! P

0

then there exists some Q

0

�

�

P

0

suh that Q

�

�! Q

0

. �

Lemma 5.11 (Asynhronous Ations). If � 

�

T and T

(~

:

~

Ca!v)

�����! T

0

then T �

�

(new ~

:

~

C) (ÆJa!hviK j T

0

), for some Æ � �.

Proof. By indution on the derivation of T

(~

:

~

Ca!v)

�����! T

0

. We give two

examples.

� a!hvi

a!v

��! 0.

Sine � 

�

a!hvi we have a!hvi �

�

�Ja!hviK and the result follows.
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� �JP K

(~

:

~

Ca!v)

�����! �JP

0

K beause P

(~

:

~

Ca!v)

�����! P

0

.

� 

�

�JP K implies � 

�u�

P and so by indution

P �

�

(new ~

:

~

C) (ÆJa!hviK j P

0

)

for some Æ � � u �. Using the rules (s-srnew)(s-srsr) and (s-srpar)

we an then show �JP K �

�

(new ~

:

~

C) (� u ÆJa!hviK j �JP

0

K).

�

Proposition 5.12 (Trae Composition). Suppose � 

�

T . If �.P

s

=)

a

�

�

0

. P

0

and T

s

=) T

0

, then P j T

�

�!

�

(new E(s)) (P

0

j T

0

).

Proof. By indution on the derivation � . P

s

=)

a

�

�

0

. P

0

. We examine

the most interesting ase, when s has the form �:s

0

and � is the input

ation (~

:

~

C)a?v. Further let us assume that the derivation T

s

=) T

0

has

the form T

�

�! T

00

s

0

=) T

0

. There are two (interesting) possibilities for the

derivation � . P

s

=)

a

�

�

0

. P

0

.

� � .P

�

�!

�

�

0

.P

00

s

=)

a

�

�

0

.P

0

. Using Subjet Redution we an show

that �

0



�

T

00

, sine �

0

is determined by the ation �. So we may apply

indution to obtain a redution P

00

j T

00

�

�!

�

(new E(s

0

)) (P

0

j T

0

). We

also have, by the rule (l-om), P j T

�

�! (new ~

:

~

C) (P

00

j T

00

). By

ombining these we may easily obtain a required redution P j T

�

�!

�

(new E(s)) (P

0

j T

0

).

� �; ~

:

~

C.P jÆJa!hviK

s

0

=)

a

�

�

0

.P

0

, where �  a

:

w

Æ

hBi and �; ~

:

~

C  v

:

B.

Again we an apply indution to obtain a derivation (P j ÆJa!hviK) j

T

00

�

�!

�

(new E(s

0

)) (P

0

j T

0

). and therefore

(new ~

:

~

C) (P j ÆJa!hviK j T

00

)

�

�!

�

(new E(s)) (P

0

j T

0

):

However we an we apply the previous Lemma to the derivation T

�

�!

T

00

to obtain the fat that T �

�

(new ~

:

~

C) (ÆJa!hviK j T

00

). Moreover

sine the names ~ are new to P we have

P j T �

�

(new ~

:

~

C) (P j ÆJa!hviK j T

00

)

and the result follows.

�

These two results immediately give us a suÆient ondition for two

proesses to be semantially equivalent.

Definition 5.13. We write � 

�

P '

aseq

Q to mean �  P

s

=)

a

�

if and

only if Q

s

=)

a

�

, for every sequene s. �

Theorem 5.14. Suppose �  P; Q. Then � 

�

P '

aseq

Q implies � 

�

P '

may

Q. �
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Proof. Immediate from the Trae Composition and Deomposition results.

�

5.2 Proof of the Main Result

The proof of the non-interferene result will now depend on omparing the

traes of the proesses P and P jH . First we must show some properties

of �-free proesses.

Lemma 5.15. If H is �-free and H

�

�! H

0

then H

0

is also �-free.

Proof. A simple indution on H

�

�! H

0

. �

We now show that, in appropriate environments, �-free proesses an

never perform �-level write ations. Unfortunately the proof, whih is

indutive, requires a slight generalisation of the notion of �-freedom.

Definition 5.16. We say P is �-free relative to Æ if � 6� � for every� in

sl

Æ

(P ). �

Note that if P is �-free relative to Æ then, sine Æ 2 sl

Æ

(P ), we know that

Æ 6� �. Also P being �-free relative to top means preisely that P is �-free.

Lemma 5.17. Suppose � 

Æ

P , where P is �-free relative to Æ. Then

� . P

�

�!

�

�

0

. P

0

, where � is an output ation, implies � 6� �.

Proof. By indution on the derivation of � . P

�

�!

�

�

0

. P

0

. We give the

two most important ases.

� � . a!hvi

a!v

��!

�

� . 0, beause �  a

:

r

�

0

hAi for some �

0

� �. But from

� 

Æ

a!hvi we have �  a

:

w

Æ

hBi and by the fat that �(a) must be a

well-de�ned type Æ � �

0

. Sine Æ 6� � it follows that � 6� �.

� � . �JQK

�

�!

�

� . �JQ

0

K beause � . Q

�

�!

�

� . Q. Here we need to

apply indution.

Note that sl

Æ

(P ) = f� u Æg [ sl

�uÆ

(Q) and therefore Q is �-free

relative to � u Æ. Moreover � 

Æ

P implies � 

�uÆ

Q and therefore

indution an be applied to obtain the required � 6� �.

�

The main tehnial result required for non-interferene is given in the

following Lemma:

Proposition 5.18. Suppose � 

�

P and � 

top

H, where H is �-free.

Then � . P jH

s

=)

a

�

implies � . P

s

=)

a

�

.
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Proof. The proof is by indution on the derivation of � . P jH

s

=)

a

�

. We

examine the most interesting ases.

� � . P jH

�

�!

�

� . R

s

=)

a

�

.

The most important ase here is when there is ommuniation be-

tween P and H . Here P

�

�! P

0

, H

�

�! H

0

, R is (new ~

:

~

C) (P

0

jH

0

),

where ~ are the bound variables in �. There are two possibilities.

{ Output from P to H ; � has the form (~

:

~

C)a!v. Let us examine

the trae � . (new ~

:

~

C) (P

0

jH

0

)

s

=)

a

�

. Somewhere in s the names

in ~ may be exported. In general we an onstrut a related trae

s



suh that �; ~

:

~

C . (P

0

jH)

s



=)

a

�

, with the property that for any

Q, �; ~

:

~

C . Q

s



=)

a

�

implies � . Q

s



=)

a

�

; s



is obtained from s by

omitting any bounds (

:

C) found on its output ations.

Now we may apply indution to �; ~

:

~

C(P

0

j H

0

).

s



=)

a

�

, sine

� 

�

P

0

by Subjet Redution and �; ~

:

~

C 

top

H

0

by Lemma 5.4.

This gives �; ~

:

~

C . P

0

s



=)

a

�

.

Applying Lemma 5.11 we know that P is struturally equivalent

to (~

:

~

C)(a!hvi jP

0

). Trivially �; ~

:

~

C . (a!hvi jP

0

)

s



=)

a

�

from whih

it follows immediately that � . P

s

=)

a

�

.

{ Output from H to P . We show that this ase is not possible as it

would involve a write down. Here � would have the form (~

:

~

C)a?v

and applying Subjet Redution to both � 

�

P and � 

top

H we

would obtain both �  a

:

r

�

hAi and �  a

:

w

top

hBi. Sine � is a

well-de�ned type this would imply top � �, whih ontradits the

fat that H is �-free.

� � . P jH

�

�!

�

�

0

. R

s

0

=)

a

�

, where � is an input ation (~

:

~

C)a?v.

Here, again, there are two possibilities depending on whih of P; H

performs the input move. In the former ase a simple argument by

indution suÆes. If on the other hand it is H , an appliation of

indution gives �

0

. P

s

0

=)

a

�

.

However from the inferene � . H

�

�!

�

�

0

. H we know that � 

a

:

w

Æ

hAi, for some Æ � � and some A suh that �

0

 v

:

A. From

the result of the appliation of indution we an dedue �

0

. (ÆJa!hviK j

P )

s

0

=)

a

�

; This is suÆient for us to apply De�nition 5.9 to onlude

� . P

s

=)

a

�

.

� � . P jH

�

�!

�

�

0

.

s

0

=)

a

�

, where � is an output ation (~

:

~

C)a!v.

Here Lemma 5.17 implies that H an not be responsible for the

ation; it must be P , and again a simple indutive argument suÆes.

� s has the form �:s

0

, where � is an input ation (~

:

~

C)a?v, and �; ~

:

~

C .

P jH j ÆJa!hviK

s

0

=)

a

�

, beause �  a

:

w

Æ

hBi and �; ~

:

~

C  v

:

B.

Sine �; ~

:

~

C 

�

(P j a!hvi) we may apply indution to obtain
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�; ~

:

~

C . (P j ÆJa!hviK)

s

0

=)

a

�

. Again we may now De�nition 5.9 to

obtain the required �; ~

:

~

C . P

s

0

=)

a

�

.

�

Given this tehnial result, we an now prove the Non-Interferene

Theorem.

Theorem (5.3). If � 

�

P; Q and � 

top

H; K where H, K are �-free

proesses, then:

P '

�

�

Q implies P jH '

�

�

Q jK:

Proof. To establish the result, it is suÆient to show that P '

�

�

P j H .

In fat by Theorem 5.14 it is suÆient to show � . P

s

=)

a

�

implies � .

P jH

s

=)

a

�

, whih is immediate, and � . P jH

s

=)

a

�

implies � . P

s

=)

a

�

;

this follows from the previous Proposition. �

Note that the requirement that P;Q be well-typed proesses at level �

is neessary for this result to be true. For example onsider the proess P

de�ned by h?(x) l?y: 0 in an environment � in whih h; l are high-level and

low-level resoures respetively. Then P '

bot

�

0. However P j H 6'

bot

�

H ,

where H is the high-level proess h!hi.

6 Conlusions and Related Work

In this paper we have proposed simple typing systems for enforing a

variety of seurity properties for the seurity �-alulus. The types are

obtained by adding seurity levels to the standard input/output types

of the �-alulus, [21, 23℄. The �rst typing system, based on R-Types,

is designed with resoure aess ontrol in mind; the seurity level of a

resoure (or more formally a apability on a resoure) ditates the seurity

learane required by any proess seeking to aess that resoure. In future

work we hope to extend these types for use in distributed systems, [24℄.

The seond typing system, based on the more restrited I-types, ontrols

the (impliit) ow of information from high to low seurity levels; this is

formalised via a non-interferene result for may testing equivalene over

our seurity �-alulus.

The non-interferene result usesmay testing rather than some stronger,

deadlok preserving equivalene suh as must testing or observational

equivalene beause of the rihness of I-types and the expressiveness of

our language. For example if we restrited the set of types to ensure that

there is no ontention between high-level and low-level proesses over read

aess to hannels then it may be possible to strengthen our result to must

testing equivalene. Similarly if we restrited our language so that when
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a high-level proess reads a value from a low-level hannel it immediately

restores it. Indeed we believe that the seurity �-alulus is an exellent

vehile for a general investigation of restritions required on high-level and

low-low proesses in order to ontrol information ow.

Methods for ontroling information ow are a entral researh issue in

omputer seurity [7, 14, 27℄ and in the Introdution we have indiated a

number of di�erent approahes to its formalisation. Non-interferene has

emerged as a useful onept and is widely used to infer (indiretly) the

absene of information ow. In publiations suh as [25, 9℄ it has been

pointed out that proess algebras may be fruitfully used to formalise and

investigate this onept; for example in [8℄ proess algebra based meth-

ods are suggested for investigating seurity protools, essentially using a

formalisation of non-interferene for CCS.

However in these publiations the non-interferene is always de�ned

behaviourally, as a ondition on the possible traes of CCS or CSP pro-

esses; useful surveys of trae based non-interferene may be found in

[9, 26℄. Here, we work with the more expressive �-alulus, whih allows

dynami proess reation and network reon�guration. Our approah to

non-interferene is also more extensional in that it is expressed in terms

of how proesses e�et their environments, relative to a partiular be-

havioural equivalene. However the proof of our main result, Theorem 5.3,

desribes may equivalene in terms of (typed) traes; presumably a trae

based de�nition of non-interferene, similar in style to those in [9, 26℄

ould be extrated from this proof.

More importantly our approah di�ers from muh of the reent proess

alulus based seurity researh in that we develop purely stati methods

for ensuring seurity. Proesses are shown to be seure not by demon-

strating some property of trae sets, using a tool as suh as that in [10℄,

but by type-heking. Types have also been used in this manner in [1℄ for

an extension of the �-alulus alled the spi-alulus. But there the stru-

ture of the types are very straightforward; the type Seret representing a

seret hannel, the type Publi representing a publi one, and Any whih

ould be either. However the main interest is in the type rules for the en-

ryption/deryption primitives of the spi-alulus. The non-interferene

result also has a di�erent formulation to ours; it states that the behaviour

of well-typed proesses is invariant, relative to may testing, under ertain

value-substitutions. Intuitively, it means that the enryption/deryption

primitives preserve values of type Seret from ertain kinds of attakers. It

would be interesting to add these primitives to the our seurity �-alulus

and to try to adapt the assoiated type rules to the set of I-Types.

An extension of the �-alulus is also onsidered in [17℄, where a sophis-
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tiated type system is used to ontrol information ow. The judgements

in their system take the form

� `

s

P . A

where s is a seurity level, P is a proess term, A is a poset of so-alled a-

tion nodes and � is a type environment. Their environments are quite sim-

ilar to ours, essentially assoiating with hannels a version of input/output

types annotated with, among other things, seurity levels. However their

intuition, and muh of the tehnial development, is quite di�erent from

ours. Intuitively the above statement indiates that the proess P will

only a�et hannels at seurity level s or above. The proess language

used is a onsiderable extension to the �-alulus; for example there are

branhing input statements and left/right seletion outputs. In addition

to the standard hannels there are are linear and reursive versions. More

importantly, in ontrast to the present paper, their type system when re-

strited to the original �-alulus allows very little interation between

proesses running at di�erent seurity levels. Instead information ow

is allowed via the linear and reursive hannels and is tightly ontrolled

via the extensive type system. The types are heavily inuened by the

notion of behaviour types from [28℄; in the judgement above the poset

A desribes ausal dependenies between input/output ations ouring

at linear or reursive hannels in P . The individual ation nodes whih

omprise A are similar to our types, exept they arry more annotations.

These annotations, for example, reord whether or not the behaviour is

stateful, i.e. hanges the state of the environment or simply interrogates

it.

In summary it appears that our type system addresses information ow

within the ore �-alulus while the more sophistiated one of [17℄ on-

trols the ow allowed via the extra syntati onstruts of their language.

However a more thorough omparison between the two systems deserves

to be made.
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