
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

TypeSafe Execution of Mobile Agents

in Anonymous Networks

Matthew Hennessy and James Riely

Report 3/98 May 1998

Computer Science

School of Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QH

ISSN 1350–3170

Type-Safe Execution of Mobile Agents in

Anonymous Networks

MATTHEW HENNESSY AND JAMES RIELY

ABSTRACT. We present a partially-typed semantics for Dπ, a distributed π-calculus. The semantics

is designed for open distributed systems in which some sites may harbor malicious agents. Nonethe-

less, the semantics guarantee traditional type-safety properties at “good” locations by using a mixture

of static and dynamic type-checking.

The run-time semantics is built on the model of an anonymous network where the source of

incoming agents is unknowable. To counteract possible misuse of resources all sites keep a record of

local resources against which incoming agents are dynamically typechecked.

1 Introduction

In [7] we presented a type system for controlling the use of resources in a dis-

tributed system. The type system guarantees that resource access is always safe,

in the sense that, for example, integer channels are always used with integers and

boolean channels are always used with booleans. The type system of [7], how-

ever, requires that all agents in the system be well-typed. In open systems, such

as the internet, such global properties are impossible to verify. In this paper, we

present a type system for partially typed networks, where only a subset of agents

are assumed to be well typed.

This notion of partial typing is presented using the language Dπ, from [7]. In

Dπ mobile agents are modeled as threads, using a thread language based on the

π-calculus. Threads are located, carrying out computations at locations or sites.

Located threads, or agents interact using local channels, or resources.

In an open system, not all sites are necessarily benign. Some sites may harbor

malicious agents that do not respect the typing rules laid down for the use of

resources. For example, consider the system

kJ(νc:chanhinti) m :: a!hciK

j mJa?(z[x]) z :: x!htiK

consisting of two sites k and m. The first generates a new local channel c for

transmitting integers and makes it known to the second site m, by sending it

along the channel a local to m. In a benign world k could assume that any mobile

agent that subsequently migrates from m to k would only use this new channel

Research funded by CONFER II and EPSRC project GR/K60701.
Email: fmatthewh,jamesrig@cogs.susx.ac.uk

2 Matthew Hennessy and James Riely

to transmit integers. However in an insecure world m may not play according to

the rules; in our example it sends an agent to k which misuses the new resource

by sending the boolean value t along it.

In this paper we formalize one strategy that sites can use to protect them-

selves from such attacks. The strategy makes no assumptions about the security

of the underlying network. For example, it is not assumed that the source of a

message (or agent) can be reliably determined. We refer to such networks as

anonymous networks.

In the presence of anonymous networks a reasonable strategy for sites is

based on paranoia. Since the source of messages cannot be determined it is

impossible to distinguish messages from potentially “trusted” sites; thus no site

can be trusted. To protect itself, a site must bar entry of any mobile agent that

cannot be proven to use local resources as intended.

The requirement that incoming agents be checked entails that the runtime se-

mantics is of necessity more complicated than that of [7]. Each location must re-

tain information about its local resources against which the incoming agents are

checked. This information is encapsulated as a location type, giving the names

of the resources available locally, together with their types; agent checking then

amounts to a form of local runtime typechecking.

The paper proceeds as follows. In the next section we review the language

Dπ of [7] and recall its standard semantics. While the paper is self contained, we

rely on [7] for examples and motivation for Dπ. This is followed, in Section 3,

by a formal description of the modified run-time semantics, where sites retain

local information against which incoming agents are checked.

In Section 4, we discuss the effectiveness of this runtime strategy; we show

that good sites cannot be harmed by bad sites, in the sense that local resources

can not be misused at good sites, even in systems which may contain malicious

sites. This is formalized in terms of a static typing system, for which we prove

Subject Reduction and Type Safety theorems. The paper ends with a critique of

both the run-time strategy and the typing system.

2 The Language

We present the syntax and standard semantics of Dπ. For a full treatment of the

language, including many examples, see [7]. The language is a simplification

and refinement of that introduced in [12].

2.1 Syntax

The syntax is given in Table 1. We defer the discussion of types, T, to Section 2.3.

The syntax is parameterized with respect to the following syntactic sets, which

we assume to be disjoint:

Type-Safe Execution of Mobile Agents in Anonymous Networks 3

TABLE 1 Syntax

Id: u;v;w ::= e x

Val: U;V ::= i bv u w[u1; ::; un] (U1; ::; Un)

Pat: X;Y ::= x z[x1; ::; xn] (X1; ::; Xn)

Thread: p;q; r ::= nil u!hVip u?(X:T)q �p

u :: p if U = V then p else q

p jq (νe:T)p

System: P;Q;R ::= nil `JpK P jQ (ν
`

e:T)P

� Var, of variables, ranged over by x-z,

� Name, of names, ranged over by a-m,

� Int, of integers, ranged over by i, and

� Bool = ft; fg, of booleans, ranged over by bv.

We use u-w to range over the set of identifiers, Id = Var[Name. We typically

use the names a-d to refer to channels and k-m to refer to locations, although the

distinction is formally imposed by the type system. We use e to refer to names

that might be of either type.

The main syntactic categories of the language are as follows:

� Threads, p-r, are (almost) terms of the ordinary polyadic π-calculus [9].

The thread language includes the static combinators for composition ‘j’ and

typed restriction ‘(νe:T) ’, as well as constructs for movement ‘` ::p’, output

‘u!hVip’, typed input ‘u?(X:T)q’, (mis)matching ‘if U = V then p else q’

and iteration ‘�p’.

� Agents, `JpK, are located threads.

� Systems, P-R, are collections of agents combined using the static combinators

‘j’ and ‘(ν
`

e:T) ’.

The output and input constructs make use of syntactic categories for values,

U-V , and patterns, X-Y , respectively. Values include variables, names, base

values, and tuples of these. A value of the form w[u1; ::; un] includes a location

w and a collection of channels u1; ::; un allocated at w. Patterns, X-Y , provide

destructors for each type. To be well-formed, we require that patterns be linear,

i.e. each variable appear at most once.

As an example of a system, consider the term:

`JpK j (ν
`

a:A) (`JqK j kJrK)

This system contains three agents, `JpK, `JqK and kJrK. The first two agents are

running at location `, the third at location k. Moreover q and r share a private

4 Matthew Hennessy and James Riely

channel a of type A, allocated at ` and unknown to p.

Unlike [4, 6], agents are relatively lightweight in Dπ. They are single-

threaded and can be freely split and merged using structural rules and communi-

cation. As such, they are unnamed.

NOTATION. We adopt several notational conventions, as in [7].

� In the concrete syntax, “move” has greater binding power than composi-

tion. Thus ` :: p j q should be read (` :: p) j q. We adopt several standard

abbreviations. For example, we routinely drop type annotations when they

are not of interest. We omit trailing occurrences of nil and often denote

tuples and other groups using a tilde. For example, we write ea instead

of (a1; ::; an) and (νee:eT)p instead of (νe1:T1) ::(νen:Tn)p. We also write

‘if U = V then p’ instead of ‘if U = V then p else nil’ and ‘if U 6= V then q’

instead of ‘if U = V then nil else q.’

� We assume the standard notion of free and bound occurrences of variables

and names in systems and threads. The variables in the pattern X are bound

by the input construct u?(X)q, the scope is q. The name e is bound by the

restrictions (ν
`

e:T)P and (νe:T)p, the scopes are P and p, respectively. A

term with no free variables is closed. The functions fn(P) and fid(P) return

respectively the sets of free names and free identifiers occurring in P.

� We also assume a standard notion substitution, where Pfju=xjg denotes the

capture-avoiding substitution of u for x in P. The notation PfjV=Xjg gener-

alizes this in an obvious way as a sequence of substitutions. For example,

Pfj`[a]

=z[x]jg= Pfj`=zjgfja=xjg.

� In the sequel we identify terms up to renaming of bound identifiers. �

2.2 Standard Reduction

The standard reduction semantics is given in Table 2. The structural equivalence

(P � Q) and reduction relation (P �! P0) both relate closed system terms. The

structural equivalence is defined to be the least equivalence relation that is closed

under composition and restriction, satisfies the monoid laws for composition,1

and in addition satisfies the axioms given in Table 2.

The structural rules allow for agent splitting `Jp jqK� `JpK j`JqK and garbage

collection `JnilK� nil. Note that when a new name is lifted out of an agent, using

the structural rule (s-new), the system-level restriction records the name of the

location which allocated the name `J(νe:T)pK� (ν
`

e:T)`JpK; these location tags

are used only for static typing.

1The monoid laws are: P jnil� P, P jQ � Q jP, and P j (Q jR)� (P jQ) jR.

Type-Safe Execution of Mobile Agents in Anonymous Networks 5

TABLE 2 Standard Reduction

Structural equivalence:

(s-nil) `JnilK � nil

(s-split) `Jp jqK � `JpK j `JqK

(s-itr) `J�pK � `JpK j `J�pK

(s-new) `J(νe:T)pK � (ν
`

e:T)`JpK

(s-extr) Q j (ν
`

e:T)P � (ν
`

e:T) (Q jP) if e =2 fn(Q)

Reduction:

(r-move) `Jk ::pK �! kJpK

(r-comm) `Ja!hVipK j `Ja?(X)qK �! `JpK j `JqfjV=XjgK

(r-eq
1

) `Jif U = U then p else qK �! `JpK

(r-eq
2

) `Jif U = V then p else qK �! `JqK if U 6= V

(r-new)

P �! P0

(ν
`

e:T)P�! (ν
`

e:T)P0

(r-str)
P �! P0

R jP�! R jP0

P� Q�! Q0

� P0

P �! P0

Most of the rules of the reduction relation are taken directly from the π-

calculus, with a few changes to accommodate the fact that agents are explicitly

located. The main rule of interest here is (r-move),

`Jk ::pK�! kJpK

which states that an agent located at ` can move to k using the move operator

k ::p. This is the only rule that varies significantly between the standard seman-

tics and the semantics for open systems defined later. Note that in (r-comm),

communication is purely local:

`Ja!hVipK j `Ja?(X)qK �! `JpK j `JqfjV=XjgK

As an example, suppose that we wish to write a system of two agents, one at

k and one at `. The agent at k wishes to send a fresh integer channel a, located

at k, to the other agent using the channel b, located at `. This system could be

written:

`Jb?(z[x])qK j kJ(νa) (p j ` :: b!hk[a]i)K

� `Jb?(z[x])qK j (νka)
�

kJpK j kJ` :: b!hk[a]iK
�

(s-new) ; (s-split)

�! `Jb?(z[x])qK j (νka)
�

kJpK j `Jb!hk[a]iK
�

(r-move)

�! (νka)
�

`Jqfjk[a]

=z[x]jgK j kJpK
�

(s-extr) ; (r-comm) ; (s-nil)

6 Matthew Hennessy and James Riely

Beside each reduction, we have written the rules used to infer it, omitting (r-str)

and (r-new), which are almost always used. Note that after arriving at `, the

agent sends the value k[a] rather than simply a. In the type system, this identifies

the resource a as non-local at `. If a simple resource value, such as a, had been

communicated to q, it would have had to have been local to `, rather than k. An

example of a process q that uses the received value z[x] is z :: x!h1i, which after

the communication would become k ::a!h1i. This can move to the location k and

send the integer 1 on the newly received channel a.

2.3 Types and Subtyping

The purpose of the type system is to ensure proper use of base types, channels

and locations. In this paper we use the simple type languages from [7, x4],

extended with base types for integers and booleans. We use uppercase Roman

letters to range over types, whose syntax is as follows:

TChan: A;B;C ::= chanhTi

TLoc: K;L;M ::= locfa1:A1; ::; an:Ang; ai distinct

TVal: S;T ::= bool int A K[B1; ::; Bh]; (T1; ::; Tn)

Types are divided into the following syntactic groups:

� TChan of channel types, which specify the type of values communicated over

a channel, chanhTi.

� TLoc of simple location types, which specify the set of typed channels avail-

able at a location, locfea:eAg.

� TVal of value types, which include types for base values, channels, locations

and tuples.

In value types, location types have the form locfa1:A1; ::; an:Ang[B1; ::; Bh]. The

extended form allows for a certain amount of first-order existential polymor-

phism. Informally, locfea:eAg[eB] may be read “9ex : locfea:eA;ex:eBg”, i.e. the type

of a location which has channels ea of types eA and some (unnamed) channels of

types eB.

Throughout the text, we drop empty braces when clear from context, writing

‘loc’ instead of ‘locfg[]’, ‘K’ instead of ‘K[]’, and ‘u’ instead of ‘u[]’.

Location types are essentially the same as standard record types, and we iden-

tify location types up to reordering of their “fields”. Thus locfa:A; b:Bg[C] =

locfb:B; a:Ag[C]. But reordering is not allowed on “abstract” fields. Thus if B

and C are different, then locfa:Ag[B;C] 6= locfa:Ag[C;B].

The subtyping relation (T � S) is discussed at length in [7]. On base types

and channel types there is no nontrivial subtyping; for example, chanhTi �

chanhT0

i if and only if T = T0. On location types (both simple and “existen-

tial”), the subtyping relation is similar to that traditionally defined for record or

Type-Safe Execution of Mobile Agents in Anonymous Networks 7

object types:

locfea:eA; b:Bg � locfea:eAg

locfea:eA; b:Bg[eC] � locfea:eAg[eC]

On tuples, the definition is by homomorphic extension: eS �

eT if 8i : Si � Ti

2.4 Type Environments

Location types contain the names of the channels known to be defined at a lo-

cation. To present typing systems for the language in later sections, it is useful

to generalize location types to allow the inclusion of variables as well as names.

Variables are allowed at types int and bool, in addition to channel types A. The

resulting types are called open location types, K :

TSimple: H;G ::= int bool A

TOpen: K ;L;M ::= locfeu:eHg; ui distinct

To be well-formed, we require that every name in an open location type be asso-

ciated with a channel type.

The subtyping relation extends directly to open location types:

locfeu:eH; ev:eGg � locfeu:eHg

A type environment, Γ, maps identifiers to open location types. An example

of a type environment is:

Γ =

8

<

:

k : loc fa :chanhinti;x:intg

z : loc
n

a :chanhloc[chanhinti]i

y :chanhloc[chanhbooli]i

o

9

=

;

Here we have two locations, k and z. The first has an integer channel named a

and an integer variable x. The second has two channels: a, which communicates

(potentially remote) integer channels and y which communicates (potentially re-

mote) boolean channels.

If a type environment contains no variables, we say that it is closed. Closed

type environments map names to (closed) location types K.

In the typing system of the next section we need some notation for extending

(open) location types and for convenience we explain this notation here. The

open location L may be extended using ‘L; V :T’, defined by induction on V :

(locfeu:eHg) ; v:G = locfeu:eH;v:Gg if 8i : ui 6= v

L; w[eu]:K[

eA] = L if fw;eug disjoint dom(L)

L; bv:bool = L

L; i:int = L

L;

eU:eT = ((:::(L; U1:T1); :::); Un:Tn)

8 Matthew Hennessy and James Riely

TABLE 3 Reduction for Open Systems

(r-move) ∆ . `Jk ::pK �! kJpK if ∆(k) ` p

(r-comm) ∆ . `Ja!hVipK j `Ja?(X)qK �! `JpK j `JqfjV=XjgK

(r-eq
1

) ∆ . `Jif U = U then p else qK �! `JpK

(r-eq
2

) ∆ . `Jif U = V then p else qK �! `JqK if U 6= V

(r-new)

∆; `:(L; a:A) . P
�!

P0

∆; `:L . (ν
`

a:A)P�! (ν
`

a:A)P0

∆; `:L; k:K . P
�!

P0

∆; `:L . (ν
`

k:K)P�! (ν
`

k:K)P0

(r-str)
∆ . P �! P0

∆ . R jP
�!

R jP0

P � Q ∆ . Q�! Q0 Q0

� P0

∆ . P
�!

P0

Therefore the extension ofL by V :T adds only information about local identifiers

to L. For example:

locfd:Dg; (0;x;z[y]):(int;A; locfc:Cg[B]) = locfd:D; x:Ag

Note also that every location type L is an open location type, and thus this defi-

nition applies to “closed” location types as well.

We use a similar notation for extending type environments: If u is not in the

domain of Γ then Γ;u:L denotes the new type environment, which is similar to Γ
but in addition maps u to the L.

3 Semantics for Open Systems

As we have explained in the introduction, using the standard run-time semantics

local resources may be intentionally misused by malicious sites; in the example

discussed on page 1 we have seen that the local resource a at location k is delib-

erately misused by a mobile agent originating at location m. In this section we

modify the run-time semantics in a manner which offers protection against such

misuse.

We are assuming that agents are working in an anonymous network and the

run-time strategy suggested in the introduction is for every site to keep a record

of local resources against which all incoming agents are checked. In our formula-

tion this distributed information is collected together as closed type environment

and thus reductions of the runtime semantics take the form

∆ . P 7�! P0

where ∆ is a closed type environment and P and P0 are systems.

The reduction semantics is given in Table 3. Most of the rules are simple

adaptations of the corresponding rules in Table 2. For example, the rules for

Type-Safe Execution of Mobile Agents in Anonymous Networks 9

TABLE 4 Typing for Values and Threads

Values:

(t-sit)
L � locfu:Hg

L ` u:H
(t-base)

L ` n:int; bv:bool

(t-loc)
L ` u[v1; ::; vn]:K[A1; ::; An]

(t-tup)
8i : L ` Ui:Ti

L ` (U1; ::; Un):(T1; ::; Tn)

Threads:

(t-move)

L ` u ::p
(t-newl)

L ` p

L ` (νk:K)p

(t-r)
L ` u:chanhTi L; X:T ` q

L ` u?(X:T)q
(t-newc)

L; a:A ` p

L ` (νa:A)p

(t-w)

L ` u:chanhTi; V :T; p

L ` u!hVip
(t-str)

L ` p; q

L ` nil; �p; p jq

(t-eq)
L ` U:T; V :T; p; q

L ` if U = V then p else q

local communication and matching of values are essentially as before, as ∆ is

not consulted for these reductions. There is a minor change in the rule for the

restriction operator, because ∆ must be augmented to reflect the addition of the

new name.

The only significant change from the standard run-time semantics is in the

rule for code movement:

∆ . `Jk ::pK 7�! kJpK if ∆(k) ` p

This says that the agent p can move from location ` to location k only if p is

guaranteed not to misuse the local resources of k, i.e. ∆(k) ` p. Here p is type-

checked dynamically against ∆(k), which gives the names and types of the re-

sources available at k.

3.1 Runtime Typing

The definition of this runtime local type-checking is given in Table 4. This is a

light weight typing in that the incoming code is only checked to the extent of its

10 Matthew Hennessy and James Riely

references to local resources. Thus judgments are of the form

L ` p

indicating that p can safely run at a location that provides resources as defined in

L.

Perhaps the most surprising rule in this light weight type checking is

(t-move), which involves no type checking whatsoever. However this is rea-

sonable as an agent such as ` :: p running at k uses no local resources; it moves

immediately to the site `. As a result of this rule notice that reductions of the

form

∆ . mJk :: ` ::pK 7�! kJ` ::pK

are always allowed, regardless of the information in ∆.

The only significant local checking is carried out by the two rules (t-r), (t-w)

which we examine in some detail. The subtlety in the read rule (t-r) is to some

extent hidden in the rule for updating location types and this is best explained

by example. The rule dictates, for example, that the agent a?(x:chanhTi)q can

migrate to a location with local resources L provided:

� a is a local channel of the appropriate type, in this case a channel for com-

municating values of type chanhTi

� q is locally well-typed with respect to an augmented set of resources,

L;x:chanhTi.

However suppose the channel a communicates non-local information; e.g. when

is a?(z[x]:K[A])q locally well-typed? The rule (t-r) simply demands that, in ad-

dition to a having the appropriate local type, q is well-typed with respect to the

same set of local resources L. Formally this is because according to the defini-

tions given in Section 2.4 L;z[x]:K[A] is simply L. Intuitively this is reasonable

since any non-local information received on a will not be used locally and thus

it may be ignored.

The rule (t-w) states that agent a!hVip is locally well-typed provided

� the continuation p is locally well-typed

� the channel a has an appropriate local type, say chanhTi

� the value to be transmitted V is locally well-typed to be transmitted on a,

L ` V :T; this means that it must be possible to assign to V the local object

type of the channel a, namely T.

Once more there is a subtlety, this time in the local type checking of values. If

the value V to be transmitted is a local resource, say a channel name b, then

according to the rule (t-sit) b must have the local type T. If, on the other hand,

V is a non-local value, say k[b], then locally this is of no interest; according to

(t-loc) k[b] can be assigned any location type which in effect means that when it

Type-Safe Execution of Mobile Agents in Anonymous Networks 11

is transmitted locally on a its validity is not checked.

This ends our discussion of runtime local type checking, and of the runtime

semantics.

3.2 An Example

As an example consider a system of three locations, k, ` and m, with the follow-

ing distributed type environment, ∆.

∆ =

8

<

:

k : locfa :chanhintig

` : locfb :chanhloc[chanhbooli]ig

m : locfd :chanhloc[chanhbooli]ig

9

=

;

Let P be the following system:

kJm :: d!hk[a]iK

j mJd?(z[x]) ` :: b!hz[x]iK

j `Jb?(z[x]) z :: x!htiK

Here k communicates the name of its integer channel a to m, using the channel

d local to m. Then m misinforms ` about the type of a at k: the communication

along b fools ` into believing that a is a boolean channel. Subsequently ` attempts

to send an agent to k that violates the type of local resource a, by sending a

boolean value where an integer is expected.

The reader can check that according to our runtime semantics the first code

movement between k and m is allowed:

∆ . kJm :: d!hk[a]iK 7�! mJd!hk[a]iK

as local type checking of the migrating agent succeeds, ∆(m) ` d!hk[a]i. The

local channel d is used correctly and since the value transmitted, k[a], is non-

local it is essentially not examined (only the number of names is checked, not

their types).

The local communication at m on channel d now occurs and the second code

movement between m and ` is also allowed,

∆ . mJd!hk[a]iK j mJd?(z[x]) ` :: b!hz[x]iK 7�! � 7�! `Jb!hk[a]iK

because the migrating thread, b!hk[a]i, is also successful in its type check against

local resources, ∆(`). The local communication along b now occurs

∆ . `Jb!hk[a]iK j `Jb?(z[x])z :: x!htiK 7�! `Jk :: a!htiK

However the next potential move, the migration of the thread a!hti from ` to k,

is disallowed by the rule (r-move); the thread is locally type checked against

the resources at k, where a is known to be an integer channel, and its potential

misuse is discovered.

12 Matthew Hennessy and James Riely

TABLE 5 Static typing

Values and Threads: As in Table 4

Systems:

(t-rung)
L ` p

Γ; `:L ` `JpK
(t-runb)

` =2 dom(Γ)

Γ ` `JpK

(t-newcg)
Γ; `:(L; a:A) ` P

Γ; `:L ` (ν
`

a:A)P
(t-newcb)

` =2 dom(Γ) Γ ` P

Γ ` (ν
`

a:A)P

(t-newlg)
Γ; `:L; k:K ` P

Γ; `:L ` (ν
`

k:K)P
(t-newlb)

` =2 dom(Γ) Γ ` P

Γ ` (ν
`

k:K)P

(t-str)
Γ ` P; Q

Γ ` nil; P jQ

Configurations:

(t-con�g)
Γ ` P

Γ ` ∆ . P
8` 2 dom(Γ) : Γ(`)� ∆(k)

4 Static typing

In the runtime semantics misuse of local resources can certainly occur, since

there is no requirement that values have the object type specified by the trans-

mitting channel. For example the reduction

∆ . kJa!htiK j kJa?(x)qK 7�! kJnilK j kJqfjt=xjgK

is allowed even if the object type of the channel a at k is int, i.e. ∆(k) �

locfa:chanhintig.

We do not assume that all sites respect the typing constraints on their chan-

nels. For convenience let us call sites that violate the typing constraints bad sites,

as they do not play according to the rules. A typical example is the site m, de-

scribed at the end of the previous section; it receives an integer channel a from k

but then attempts to use a to send a boolean value. In contrast a good site is one

where typing constraints are enforced.

In this section we present a static type system that guarantees that:

good sites cannot be harmed by bad sites.

That is, local resources at a good site cannot be misused despite the existence

Type-Safe Execution of Mobile Agents in Anonymous Networks 13

of, and interaction with, bad sites. We prove Subject Reduction and Type Safety

theorems for the type system. Intuitively, Subject Reduction can be interpreted

as saying that the integrity of good sites is maintained as computation proceeds,

while Type Safety demonstrates that local resources at good sites cannot be mis-

used.

The static typing relation for anonymous networks is defined in Table 5.

Judgments are of the form

Γ ` P

where Γ is a (open) type environment and P a system. The type environment

only records the types of good locations; thus k 2 dom(Γ) is to be read “k is

good” and m =2 dom(Γ) may be read as “m is bad.” If Γ ` P, then those agents in

P that are located at sites in the domain of Γ are guaranteed to be “well behaved”.

For threads and values, the static typing relation is the same as runtime typing

relation given in Table 4. The typing of a located agent `JpK depends on whether

` is good, i.e. ` 2 dom(Γ). If ` is good, then according to (t-rung), to infer

Γ ` `JpK we need to establish that the p is well-typed to run at `, Γ(`) ` p. But if

` is not good, then it doesn’t matter whether p is well-typed; thus (t-runb) says

that if ` =2 dom(Γ), then `JpK is well-typed for any thread p.

The typing of new resources at the systems level also depends on whether

they are introduced at a good site. For example to infer Γ; `:L ` (ν
`

a:A)P,

where because of the notation we know ` is a good site, (t-newcg) says that we

need to establish Γ; `:(L; a:A) `P, i.e. that P is well-typed under the assumption

that there is a new resource a at site `. This is in contrast to the case when ` is

not good, ` =2 dom(Γ), where according to (t-newcb) it is sufficient to establish

that the system P is well-typed relative to the same typing environment. Note

that implicit in these two rules is the assumption that new good sites can only be

generated by good sites.

Intuitively Γ ` P means that in P the good sites, those in the domain of Γ use

their local resources in accordance with Γ, whereas the behavior of bad sites are

unconstrained. As an example consider the configuration ∆ . P from Section 3.2.

If we let Γ be the typing environment defined by:

Γ =

�

k : locfa :chanhintig

` : locfb :chanhloc[chanhbooli]ig

�

Then one can easily check that Γ ` ∆ . P, that is ∆ is consistent with Γ and

Γ ` P. Intuitively here we are saying that k and ` are good sites which use their

local resources correctly whereas no guarantee is made about the local behavior

at m. Note, however, that if one considers static typing under ∆, which includes

m, then ∆ does not type P.

The static typing system satisfies several important properties, such as type

14 Matthew Hennessy and James Riely

TABLE 6 Runtime Error

(e-comm) `Ja!hVipK j `Ja?(X:T)qK err `
��! if V 6� T

(e-eq) `Jif U = V then p else qK err `
��! if U 6� V

(e-new)

P err k
��!

(ν
`

e:E)P err kfj`=ejg
�����!

(e-str)
P err k
��!

P jR err k
��!

P � Q Q err k
��!

P err k
��!

specialization and narrowing, which are stated and proved in Appendix A. These

properties are used to establish the following result, which states that well-typing

at good sites is preserved by reduction.

THEOREM 4.1 (SUBJECT REDUCTION).

If Γ ` ∆ . P and ∆ . P 7�! P0 then Γ ` ∆ . P0.

Proof. See Appendix A. �

We now discuss the extent to which in the type system precludes the misuse

of local resources at good sites. This can be formalized using a notion of runtime

error. In this paper, we confine our attention to runtime errors based on arity mis-

matching. Intuitively, an arity mismatch occurs when the value sent on a channel

does not match the type that the recipient expects, or when two structurally dis-

similar values are compared using the match construct. To formalize this notion,

we define a compatibility relation U � T between (closed) values and types, and

a compatibility relation U � V between (closed) values:

i � int

bv � bool

e � A

e[d1; ::; dn] � K[A1; ::; An]

(V1; ::; Vn) � (T1; ::; Tn)

if 8i : Vi � Ti

i � i0

bv � bv

0

e � e0

e[d1; ::; dn] � e0

[d0

1; ::; d0

n]

(V1; ::; Vn) � (V 0

1; ::; V 0

n)

if 8i : Vi � V 0

i

The definition of runtime error is given in Table 6 as a predicate P err `
��!, in-

dicating that P is capable of a runtime error at location `. Essentially an error

occurs at location ` if either two incompatible values are compared at ` or an

attempt is made to communicate a value along a local channel which is incom-

patible with the type of the channel. The only non-trivial rule is (e-new) which

may effect a change in the name of the location where the error occurs. For ex-

ample it will report an error at ` in (ν
`

k:K)P if there is a runtime error in P at

location k.

We should point out that this definition of run-time error is considerably

weaker than that employed in [7]; in that paper, the notion of run-time error

Type-Safe Execution of Mobile Agents in Anonymous Networks 15

took into account not only to arity mismatches but also access violations.

THEOREM 4.2 (TYPE SAFETY). If Γ ` P and ` 2 dom(∆) then P err `
7�X�!.

Proof. See Appendix A. �

This theorem, together with Subject Reduction, can be interpreted informally

as saying that as reductions proceed local resources cannot be locally misused

at good sites, even in systems where not all sites which are necessarily well-

behaved.

5 Discussion

Here we make three points which demonstrate the limitations of both the runtime

strategy and the typing system.

First the static typing is very weak as it is designed only to eliminate local

misuse of local resources. Let

Γ =

8

<

:

` : loc
n

b:chanhlocfd:chanhbooligi

c:chanhlocfd:chanhintigi

o

k : loc
�

d:chanhinti
	

9

=

;

Then Γ ` `Jc?(z[x])b!(z[x])K although obviously here there is, at least informally,

a misuse of local channels. However formally the values exchanged on c and b

are potentially remote and therefore these values are not considered local. For

example, consider a companion site k which has one local channel d of type

chanhinti. Then no runtime error occurs in the system

Γ .

�

`Jc?(z:locfd:chanhintig)b!hziK

jkJ` :: (c!hkib?(z) z :: d!hti)K

�

although one could argue that at location ` there is a misuse of the channel b.

A runtime error is avoided by the dynamic type-checking; after the communica-

tions on c and b the potential move

`Jk :: d!htiK 7�! kJd!htiK

is blocked because the agent attempting to move to k, d!hti does not type check

against the local resources at k.

To strengthen the static type checking sites must be willing to remember not

only local resources but also information about other sites. However since not

all sites are well-behaved it would be dangerous to rely on arbitrary information.

The second point is that there is an over reliance on dynamic type-checking

to avoid misuse of resources. This can be highlighted by considering another

desirable property of a runtime semantics for open systems:

Movement between good sites should always be allowed, even in the

presence of badly behaved sites.

16 Matthew Hennessy and James Riely

It is obvious from the example discussed in Section 3.2 that our run-time seman-

tics does not satisfy this property. If we use the static environment Γ defined on

page 14 then k and ` are good sites. But as we have seen in Section 3.2 the abuse

by m eventually prevents a movement from k and `.

Finally the requirement to dynamically type-check all incoming threads is

very inefficient. However because of the very weak form of type checking em-

ployed it is essential. A site cannot even trust itself! For example suppose we

revised the reduction rule (r-move) to read as follows:

∆ . `Jk :: pK 7�! ∆ . kJpK if k = ` or ∆(k) ` p

Here the site k trusts itself and therefore does not type check the thread p. How-

ever this rule is not safe; Subject Reduction fails and runtime errors may be

introduced. As an example, consider the following configuration, which uses the

typing environment Γ given at the beginning of this section:

Γ . `Jc?(z)z :: c!htiK j `Jc!h`iK

The configuration can be typed with respect to Γ itself, but after the communica-

tion the result is Γ . `Jc!htiK, which fails to type under Γ. Moreover Γ . `Jc!htiK

induces a runtime error due to the potential misuse of channel c.

In a companion paper we address these issues by introducing a notion of

trust between sites. The dynamic typechecking is strengthened by making a site

record information about trusted sites, which includes itself. While typechecking

in this system is computationally more expensive, not all incoming threads need

be checked; those originating at trusted sites are allowed through unchecked.

The new semantics has two additional desirable properties: movement between

good sites is always allowed (as discussed above), and a stronger notion of Type

Safety can be guaranteed (because the typing relation is stronger).

6 Related Work

In this paper we have outlined a strategy for ensuring that the integrity of well-

behaved sites is not compromised by the presence of potentially malicious mo-

bile agents. Moreover we have formalized the correctness of this strategy in

terms of Subject Reduction and Type Safety theorems for a partial type system.

In this study we used the language Dπ [7], one of a number of distributed

versions of the π-calculus [9]. For other variations see [6, 13]. The languages in

[4, 5] are thematically similar although based on somewhat different principles.

We have taken advantage of a rich type system for Dπ, originally presented in

[7], where not only do channels have the types originally proposed in [11] for

the π-calculus, but locations have types broadly similar to those of objects. An

even richer type system is also proposed in [7] in which types correspond to

capabilities, as in [5], and an interesting topic for future research would be the

Type-Safe Execution of Mobile Agents in Anonymous Networks 17

extension of partial typing to these richer types.

Our research is related to proposals for proof-carrying code outlined in [10]:

code consumers, which in our case are locations, demand of code producers, in

our case incoming threads, that their code is accompanied by a proof of correct-

ness. This proof is checked by the consumer before the code is allowed to exe-

cute. The correctness is expressed in terms of a public safety policy announced

by the consumer and the producer must provide code along with a proof that it

satisfies this policy. In our case this safety policy is determined by the location

type which records the types of the consumer’s resources, and proof checking

corresponds to type checking the incoming code against this record. Our work is

different in that the correctness proof can be reconstructed efficiently, and there-

fore the producer need not supply an explict proof.

For other examples of related work within this framework see [8, 14]. For

example the former contains a number of schemes for typechecking incoming

code for access violations to local private resources. However the language is

very different from ours, namely a sequential higher-order functional language,

and there is no direct formalization of the fact that distributed systems which

employ these schemes are well-behaved.

A very different approach to system security is based on the use of cryp-

tography and signatures. For example [1] presents a π-calculus based language

which contain cryptographic constructs which ensure the exchange of data be-

tween trusted agents, while [3] contains a description of the application of this

approach in a practical setting.

A Proofs

A.1 Properties of the static type system

First we prove two important properties of type systems with subtyping: Type

Specialization and Weakening.

PROPOSITION A.1 (TYPE SPECIALIZATION).

If L ` V :T and T � S then L ` V :S.

Proof. By induction on the judgementL `V :T. If V :T takes the form V :H then S

must coincide with H, since there is no non-trivial subtyping on channel types or

base types. If V :T has the form w[eu]:L[

eA] then the result is trivial, using (t-loc).

Finally, the case for tuples follows by induction. �

PROPOSITION A.2 (WEAKENING).

� If L ` V :T and K � L then K ` V :T

� If L ` p and K � L then K ` p

� If Γ;w:L ` P and K � L then Γ;w:K ` P

18 Matthew Hennessy and James Riely

Proof. In each case the proof is by induction on the type inference. We examine

two examples of proof on threads:

(t-r). HereL ` u?(X:T)q becauseL ` u:chanhTi andL; X:T ` q. We can apply

the first statement in the proposition to the former, to obtain K ` u:chanhTi,

while induction to the latter gives K ; X:T ` q. An application of (t-r) now

gives the required K ` u?(X:T)q.

(t-newc). Here L ` (νa:A)p because L; a:A ` p. By α-conversion we can

choose a so that it does not appear in K and therefore by induction we have

K ; a:A ` p. Now an application of (t-newc) gives the required K ` (νa:A)p.

We present four cases for the proof on systems.

(t-rung). Here Γ;w:L ` mJpK because M ` p, where M
def
= (Γ;w:L)(m). If m

and w are different then we also have M = (Γ;w:K)(m) and therefore an

application of (t-rung) gives the required Γ;w:K ` mJpK. On the other hand

if m is the same as w then M = L. So we can apply the second part of the

proposition to M , obtaining K ` p. Now (t-rung) also gives the required

Γ;w:K ` mJpK.

(t-runb). This case is trivial.

(t-newlg). Here Γ; w:L ` (ν
`

m:M)P because ` 2 dom(Γ; w:L) and Γ; w:L;

m:M ` P. Applying induction we obtain Γ; w:K ; m:M ` P. Now (t-newlg)

can be applied since ` 2 dom(Γ; w:K), to obtain the required Γ; w:K `

(ν
`

m:M)P.

(t-newcb). Here Γ;w:L ` (ν
`

a:A)P because ` =2 dom(Γ;w:L) and Γ;w:L ` P.

However we also have ` =2 dom(Γ;w:K) and therefore (t-newcb) can also be

applied to obtain the required Γ;w:K ` (ν
`

a:A)P. �

The following Restriction Lemma states that if Γ ` P and some identifier u

does not occur free in P then P can also be typed in an environment obtained

from Γ by removing all occurrences of u. For any identifier u let Γnu denote the

result of removing all occurrences of u from Γ. For example (Γ; u:L) nu denotes

Γ while
�

Γ; w:(L;u:A)

�

nu is the same as (Γnu); w:L.

LEMMA A.3 (RESTRICTION).
� If L;v:H ` U:T and v =2 fid(U) then L ` U:T

� If L;v:H ` p and v =2 fid(p) then L ` p

� If Γ ` P and v =2 fid(P) then Γnv ` P.

Proof. By induction on the proof of the typing judgment. �

The following corollary follows by an easy induction on V .

COROLLARY A.4.
� If L;V :S ` U:T and fid(V) disjoint fid(U) then L `U:T

Type-Safe Execution of Mobile Agents in Anonymous Networks 19

� If L;V :S ` p and fid(V) disjoint fid(p) then L ` p �

A.2 Subject Reduction

We first show that typing is preserved by the structural equivalence. The most

complicated case is already covered by the Restriction proposition.

LEMMA A.5 (SCOPE EXTRUSION).

If e =2 fn(Q) then Γ `Q j (ν
`

e:T) if and only if Γ ` (ν
`

e:T) (Q jP)

Proof. There are two cases. If ` =2 dom(Γ), then we can reason as follows:

Γ ` (ν
`

e:T) (Q jP) () Γ ` P and Γ ` Q

() Γ ` P j (ν
`

e:T)Q

In the case that ` 2 dom(Γ), the argument is slightly different depending on

whether e is a channel or a location. As an example we consider the former, and

we assume Γ has the form ∆; `:L.

Γ ` (ν
`

a:A) (Q jP) () ∆; `:(L; a:A) ` (Q jP)

() ∆; `:(L; a:A) ` Q and ∆; `:(L; a:A) ` P

() ∆; `:L ` Q and ∆; `:(L; a:A) ` P by Restriction

() Γ ` Q and Γ ` (ν
`

a:A)P

() Γ ` Q j (ν
`

a:A)P �

PROPOSITION A.6. If P � Q then Γ ` P implies Γ ` Q

Proof. By induction on the proof that P � Q. All of the rules and most of the

axioms are very easy to handle; the most difficult case is (s-extr), which fol-

lows by the previous lemma. As an example, we consider the rule (s-new):

`J(νe:T)pK� (ν
`

e:T)`JpK.

If ` =2 dom(Γ) then it is immediate as both sides trivially type with respect to

Γ. So suppose ` 2 dom(Γ), and, as an example, that e:T is a:A. Let Γ have the

form ∆; `:L. Then Γ ` `J(νa:A)pK if and only if L;a:A ` p while

Γ ` (ν
`

a:A)`JpK () ∆; `:(L;a:A) ` `JpK

() L;a:A ` p �

As is normally the case the proof of Subject Reduction depends on the fact

that, in some sense, typing is preserved by substitution. To prove this fact the

following lemma will be useful:

LEMMA A.7. If L ` V :S and L;X:S ` U:T then L ` UfjV=Xjg:T.

Proof. By induction on the structure of X.

20 Matthew Hennessy and James Riely

Suppose X is a variable, i.e. X = x for some x. We then proceed by induction

on U. If U is a base value or has the form u[ev], then the result is trivial. If U is a

tuple we can apply the inner induction hypothesis. If U is x, then UfjV=xjg=V and,

by the typing rules, S � T; using type specialization, we can therefore conclude

L ` UfjV=xjg:T, as required. If U is an identifier u that is different from x then

x =2 fid(U) and UfjV=xjg= U; therefore by the Restriction Lemma L ` UfjV=xjg:T,

as required.

Suppose X has the form z[ex], so L;X:S = L and fid(X) disjoint dom(L) and

therefore UfjV=Xjg= U. By Corollary A.4, L `U:T.

If X is a tuple, the result follows by induction. �

PROPOSITION A.8 (SUBSTITUTION). If L ` V :T and L;X:T ` p then

L ` pfjV=Xjg.

Proof. For convenience we use p0 to denote pfjV=Xjg (and employ similar notation

for other syntactic categories).

As before, the proof is by induction on the structure of X. The cases for tuples
eY and structured values z[ex] are as before. We present the case where X = x, for

some variable x. In this case we proceed by a second induction on the inference

L;x:T ` p. We present the cases that involve binders.

(t-r). Here L;x:T ` u?(Y:S)q because L;x:T ` u:chanhTi and L;x:T; Y:S `

q. Applying the previous lemma to L;x:T ` u:chanhTi, we obtain L `

u0:chanhTi. In addition, L;x:T; Y:S ` q can be rewritten as L; Y:S;x:T ` q.

By the internal induction, we obtainL; Y:S ` q0. Now (t-r) gives the required

L ` u0?(Y:S)q0.

(t-newc). HereL;x:T ` (νa:A)p becauseL;x:T; a:A ` p. The environment can

be rewritten as L; a:A;x:T, and therefore induction can be applied to obtain

L; a: ` p0. The result follows by an application of (t-newc). �

THEOREM (4.1, SUBJECT REDUCTION).

If Γ ` ∆ . P and ∆ . P 7�! P0 then Γ ` ∆ . P0.

Proof. From the hypothesis Γ ` ∆ . P we know that Γ ` P and Γ(`) � ∆(`) for

every ` in dom(Γ). So it is sufficient to show Γ ` P0, which we do by induction

on the derivation of ∆ . P 7�! P0. We present a number of representative cases.

(r-move). Here we have ∆ . `Jk ::pK�! kJpK and ∆(k) ` p. If k =2 dom(Γ) then

the required Γ ` kJpK follows trivially from (t-runb). If k 2 dom(Γ) then we

know that Γ(k)�∆(k) and therefore, by Weakening, Γ(k) ` p. Now (t-rung)

can be applied to obtain Γ ` kJpK.

(r-comm). Here we have

∆ . `Ja!hVipK j `Ja?(X:T)qK�! `JpK j `JqfjV=XjgK

Type-Safe Execution of Mobile Agents in Anonymous Networks 21

If ` =2 dom(Γ) then the result is trivial from (t-runb). Otherwise ` 2 dom(Γ).

From Γ ` `Ja!hVipK j `Ja?(X)qK we know Γ ` `Ja!hVipK and therefore

Γ(`) ` p. It follows that Γ ` `JpK.

It remains to show that Γ ` `JqfjV=XjgK, that is Γ(`) ` qfjV=Xjg. Again

from the hypothesis we know Γ ` `Ja?(X:T)qK from which we can conclude

that Γ(`) ` u:chanhTi and L; X:T ` q. From Γ ` `Ja!hVipK we know that

Γ(`) ` V :S for some S for which we also have Γ(`) ` u:chanhSi. In our

typing system this must mean that S and T coincide. We may therefore apply

the Substitution lemma to obtain the required Γ(`) ` qfjV=Xjg.

(r-new). We consider the case:

∆; `:L . (ν
`

a:A)P�! (ν
`

a:A)P0 because ∆; `:(L; a:A) . P �! P0

First suppose ` 2 dom(Γ). Since Γ ` ∆; `:L . (ν
`

a:A)P we know Γ can be

written as Γ0

; `:L0, where L0

� L and therefore Γ0

; `:(L0

; a:A) ` P. We can

now apply induction to obtain Γ0

; `:(L0

; a:A) ` P0, to which (t-newcg) can

be applied to obtain the required Γ ` (ν
`

a:A)P0.

If ` =2 dom(Γ) then by (t-newcb) it is sufficient to prove Γ ` P0. In this

case Γ ` ∆; `:L . (ν
`

a:A)P yields Γ ` ∆; `:(L; a:A) . P to which induction

can be applied to give the required Γ ` P0.

(r-str). This case follows using induction and Proposition A.6. �

A.3 Type Safety

We first show that the typing system is “compatible” with the compatibility rela-

tion �.

LEMMA A.9.
� L ` V :T implies V � T

� L ` V :T and L ` U:T implies V � U

Proof. A straightforward inductive argument, in the first case on the derivation

of L ` V :T and in the second on the structure of the type T. �

THEOREM (4.2, TYPE SAFETY). If Γ ` P and ` 2 dom(Γ) then P err `
7�X�!.

Proof. By induction on the proof that P err `
7��!, we show that if ` 2 dom(Γ) and

P err `
7��! then Γ 0 P, which is sufficient to establish the theorem. Let L denote

Γ(`).

(e-comm). In this case we have `Ja!hVipK j `Ja?(X:T)qK err `
7��! because V 6� T.

Now suppose, for a contradiction, that Γ ` `Ja!hVipK j `Ja?(X:T)qK. Be-

cause there is no subtyping on channel types we know L ` chanhTi and

L ` chanhSi implies T = S. From the alleged typing we can therefore con-

clude that L ` V :T. By the first part of Lemma A.9, we have V � T which

contradictions V 6� T.

22 Matthew Hennessy and James Riely

(e-eq). Here we have `Jif U = V then p else qK err `
7��! because U 6� V . If we

assume Γ ` `Jif U = V then p else qK then we must have Γ ` U:T and Γ `

V :T for some T. Now applying the second part of Lemma A.9 we obtain a

contradiction to U 6� V .

(e-new). First suppose that (νke:E)P err `
7��! because P err `

7��! and e 6= `. If

k =2 dom(Γ) then by induction we have Γ 6 ` P and by either (t-newcb) or

(t-newlb) we can conclude Γ 6 ` (νke:E)P.

So suppose k 2 dom(Γ). As an example suppose e:E is a location; the

case when it is a channel is similar. Applying induction we have Γ;e:E 6 ` P

and therefore by (t-newlg) we can conclude Γ 6 ` (νke:E)P.

Finally suppose (ν
`

k:E)P err `
7��! because P err k

7��!. By α-conversion we can

assume that k does not appear in Γ and so we can apply induction to obtain

Γ;k:E 6 ` P. We know that ` 2 dom(Γ) and therefore by (t-newlg) we can

conclude Γ 6 ` (ν
`

k:E)P.

(e-str). Straightforward, using induction and Proposition A.6. �

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. Tech-

nical Report 414, University of Cambridge Computer Laboratory, January 1997.

[2] Conference Record of the ACM Symposium on Principles of Programming Languages, San

Diego, January 1998. ACM Press.

[3] B. Bershad, B. Savage, P. Pardyak, E. Sirer, D. Becker, M. Fiuczynski, C. Chambers, and

S. Eggers. Extensibility, safety and performance in the SPIN operating system. In Symposium

on Operating Systems Principles, pages 267–284, 1997.

[4] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software Science and

Computational Structures, volume 1378 of Lecture Notes in Computer Science, pages 140–

155. Berlin: Springer-Verlag, 1998.

[5] R. DeNicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for access control. Technical

report, Dipartimento di Sistemi e Informatica, Università di Firenze, 1997.

[6] C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A calculus of mobile agents. In

U. Montanari and V. Sassone, editors, CONCUR: Proceedings of the International Conference

on Concurrency Theory, volume 1119 of Lecture Notes in Computer Science, pages 406–421,

Pisa, August 1996. Berlin: Springer-Verlag.

[7] Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.

Technical Report 2/98, University of Sussex, Computer Science, 1998.

[8] Xavier Leroy and Francois Rouaix. Security properties of typed applets. In ACM-POPL [2].

[9] Robin Milner. The polyadic π-calculus: a tutorial. Technical Report ECS-LFCS-91-180, Lab-

oratory for Foundations of Computer Science, Department of Computer Science, University of

Edinburgh, UK, October 1991. Also in Logic and Algebra of Specification, ed. F. L. Bauer, W.

Brauer and H. Schwichtenberg, Springer-Verlag, 1993.

[10] George Necula. Proof-carrying code. In Conference Record of the ACM Symposium on Prin-

ciples of Programming Languages, Paris,France, January 1997. ACM Press.

[11] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Mathe-

matical Structures in Computer Science, 6(5):409–454, 1996. Extended abstract in LICS ’93.

Type-Safe Execution of Mobile Agents in Anonymous Networks 23

[12] James Riely and Matthew Hennessy. A typed language for distributed mobile processes. In

ACM-POPL [2].

[13] Peter Sewell. Global/local subtyping for a distributed π-calculus. Technical Report 435, Com-

puter Laboratory, University of Cambridge, August 1997.

[14] R. Stata and M. Abadi. A type system for java bytecode subroutines. In ACM-POPL [2].

