
On Testing the Observable Actions of Processes

William Ferreira

Abstract. We present and investigate two testing preorders for a value-passing version of CCS, [Mil89] which

distinguish processes by their observable actions. We develop an operational theory for the preorders, and compare

and contrast them to must testing [NH84, Hen88, Ing94, HI93]. In doing so we prove an expressivity result that relates

one of them to must testing under a mild assumption. Finally we show that both preorders are fully abstract with

respect to variations of the value-passing acceptance tree model, AT

v

, introduced in [HI93].

Keywords:

Concurrency, operational semantics, testing, non-determinism, process algebra.

1 Introduction

The process calculus CCS [Mil80, Mil89] is a well established abstraction for specifying concurrent,

communicating systems, using a small set of well-de�ned operators. The semantics of CCS terms

can be desribed using a transition system, captured from the operational rules [Plo81b] which de�ne

the actions a CCS term can perform. In addition, the theory of bisimulation [Par81, Mil89] which

is de�ned in terms of the transition system of a term, is a well-established theory of equivalence for

CCS processes. Essentially, two processes are deemed bisimilar if each can match the other's initial

actions, in such a way that the states resulting from the performance of the actions are also bisimilar.

Bisimulation and its myriad of variations has been used to develop rich theories of equivalence for a

number of process calculi.

The theory of testing introduced in [NH84, Hen88] de�nes a behavioural theory of equivalence

for a variation of the process calculus CCS, called � -less CCS. In this theory CCS terms are dis-

tinguished by their ability to react to independent observers (also called tests), whose behaviour is

also de�ned using a transition system. Very basically, an observer interacts with a process, resulting

in a computation. A computation is deemed successful if during the computation, the process can

provoke the observer into a passing through a pre-de�ned success state. If Comp(O;P) denotes the

set of all computations that may result from the interaction of an observer O and process P , two

natural equivalences between processes can be derived, based on the quanti�cation of success over

the set of computations Comp(O;P). The �rst, called may testing, states that two processes P and

Q are equivalent if for all observers O, whenever there exists a successful computation of O and P

then there exists a successful computation of O and Q, and vice-versa. This equivalence is some-

times called trace equivalence, and takes no account of the possible non-determinism a process may

exhibit. By demanding success for all computations, one arrives at must testing, which is sensitive

to non-determinism, and �ner than may testing. The may and must equivalences are de�ned as the

kernels of preorders

@

�

MY

and

@

�

MT

, which are given by:

� P

@

�

MY

Q if for all observers O, if there exists a successful computation in Comp(O;P) then

there exists a successful computation in Comp(O;Q),

� P

@

�

MT

Q if for all observers O, whenever all computations in Comp(O;P) are successful then

so are all computations in Comp(O;Q).

As an example of the testing power of

@

�

MY

and

@

�

MT

, consider the two � -less CCS processes P and

Q de�ned by:

P = a:0+ b:0 and Q = a:0� b:0

where � is the internal choice operator: it can resolve to either of its operands without interaction

with the environment. We have P

@

�

MY

Q, but P

6@

�

MT

Q because for the observer O = a:! we

have that Comp(O;P) is successful in all computations; there is only one:

a:! k P

�

�! ! k 0

Copyright
c

 1997 William Ferreira

2 William Ferreira

where k is the parallel operator, � is the action resulting from an internal computation or commu-

nication, and ! is an observer success state. However we have that:

a:! kQ

�

�! a:! k b:0

which is stuck, because a:! is not a success state: it cannot perform the success action !; P and Q

are related by

@

�

MY

because the computation:

a:! kQ

�

�! a:! k a:0

�

�! ! k 0

ensures there is at least one successful computation in Comp(O;Q).

In [Mor68] a behavioural theory is developed for the �-calculus. In this case a basic property of

�-expressions is chosen - the ability of an expression to converge to head normal form - and this is

used to construct a precongruence on expressions by closing up under all contexts. For example, if

P + denotes that P converges to head normal form, then de�ning P

@

�

Q if for all program contexts

C, C[P] + implies C[Q] +. If we compare this form of testing to must testing we can see that the

context C plays the rôle of the observer, and that success is convergence. By de�nition,

@

�

is a

congruence i.e. whenever two � terms are related by

@

�

we can place them in any context C and they

will still be related. The limited context in which processes in must testing are placed i.e. in parallel

with an observer process, means that one needs to prove a separate result showing that

@

�

MT

(and

indeed

@

�

MY

) is a congruence.

The testing power of an observer, and the context in which it is placed with a process, will both

a�ect the derived testing preorder: the more limited the context the less discriminating the preorder.

One can argue that a potential observer should be any context of the language. In [San92] Sangiorgi

investigates a behavioural equivalence for CCS called barbed congruence which is de�ned by closing

up an obervability predicate, called a barb, under all contexts of the language. He then shows

how barbed congruence is equivalent to bisimulation [Mil89, Par81], which is de�ned independently

of contexts. We are interested not in bisimulation, but testing, and in this report we contruct

a behavioural theory for value-passing CCS based on the form of contextual testing developed in

[Mor68] for the �-calculus, by de�ning a basic notion of observability for processes, which can then

be closed up under all contexts to obtain a pre-order.

A direct adapation of the de�nition of

@

�

to CCS is not very interesting. The nearest equivalent

in CCS to a �-calculus term in head normal form is a process with no further internal computation;

but such a process may still be able to o�er communication actions to its environment. For example

if P + denotes that the CCS process P has no further internal computation, then we might de�ne

P

@

�

Q if for all contexts C, C[P] + implies C[Q] +. Returning to the two processes P and Q de�ned

above, we see that this preorder is quite coarse: there is no context C such that C[P] + and C[Q] 6+;

what is needed is an observability predicate which is sensitive to the states a process may reach, and

they actions it may perform there.

In this report we de�ne two behavioural preorders, called guarantee and strong guarantee testing,

in terms of more primitive predicates on processes. The �rst predicate, called can guarantee, says

that P can guarantee a if in all states that P can reach through internal computation, an a action

can be performed. The strongly guarantee preorder is de�ned in terms of a stricter predicate called

can strongly guarantee, which demands not only that a process can guarantee an action, but that it

is convergent on that action, i.e. whenever the action is performed, the resulting state of the process

is convergent. More formally, letting P

"

=) P

0

denote that P can evolve to P

0

through a sequence

of internal transitions, and P

a

=) denote that P can perform an a action, possibly interspersed with

zero or more internal transitions, we have:

� P can guarantee a if P converges, and P

"

=) P

0

implies P

0

a

=), and

� P can strongly guarantee a if P converges, and P

"

=) P

0

implies P

0

a

=) and P

0

converges on a.

By closing up these predicates under all contexts of the language, we derive the guarantee and strong

guarantee testing preorders, which we denote by

@

�

G

and

@

�

SG

respectively.

The remainder of this report is devoted to investigating

@

�

G

and

@

�

SG

when de�ned for VPL,

the value-passing variant of � -less CCS introduced in [HI93]. In section 3 we present formally

the guarantee and strongly guarantee testing preorders for VPL, and derive equivalent alternative

On Testing the Observable Actions of Processes 3

characterisations for them, de�ned independently of contexts. In section 4 we review must testing

for VPL, and then compare must testing to guarantee and strongly guarantee testing. We prove an

expressivity result relating must and guarantee testing under an assumption about the operational

semantics of the conditional expression if � then � else �. In section 5 we construct two denotational

models for the language, based on variations of value-passing acceptance trees [HI93], and in section 6

we prove that these models are fully abstract for their respective preorders.

2 Operational Semantics

In this section we present the syntax and operational semantics of VPL, the value-passing version

of � -less CCS introduced in [HI93]. Let:

� v; v

1

; v

2

; : : : 2 Val be a set of values,

� x; x

1

; x

2

; : : : 2 Var a set of expression variables,

� op 2 Op a set of functions or operator symbols,

� X;Y; Z 2 VRec a set of process variables, and

� n; n

1

; n

2

; : : : 2 Chan a prede�ned set of channel names.

The abstract syntax of our language is given by the following grammar:

e; e

1

; : : : 2 Exp := 0 j �:e j if l then e else e j e
2
e j enn j e[R] j �X:e j X j

2
2 BinOp := � j + j k

�; �

1

; �

2

; : : : 2 Pre := n?x j n!l

l; l

1

; l

2

; : : : 2 SExp := true j false j op(

~

l

i

) j v j x

The set Val could be any
at domain of values such as the integers, in which Op would consist of

the familiar operations of addition, subtraction etc.; we also assume that Op includes the Boolean

operators. We ignore types, and assume that for any expression if l then e

1

else e

2

that l is a Boolean-

valued expression, and that the use of the operator symbols op is type-respecting. We use the

standard de�nition of free and bound variables for expressions, and use free(e) to denote the set of

free expression variables in e. We use ef~v

i

=~x

i

g for the simultaneous substitution of values ~v

i

for free

expression variables ~x

i

in e, while e[~e

i

=

~

X

i

] denotes the simultaneous substitution of terms ~e

i

for free

process variables

~

X

i

in e. We use VPL to denote the set of closed expressions in Exp , which we refer

to as processes. The constructs of VPL have the following informal meaning:

� if l then e

1

else e

2

{ a process that behaves like e

1

if l evaluates to true, and like e

2

otherwise,

� �:e { a process that performs the communication action speci�ed by � and then behaves like e,

� e

1

� e

2

{ a process that can evolve to either e

1

or e

2

without interaction with the environment,

� e

1

+ e

2

{ a process that behaves like e

1

or e

2

depending on the behaviour of the environment,

� e

1

k e

2

{ a process that allows the interleaving of the behaviours of e

1

and e

2

, or communication

between them,

� enn { a process that behaves like e except that it cannot o�er communications actions on channel

n to the environment,

� 0 { the inactive process,

� �X:e { the recursive process,

� e[R] { a process that behaves like e except that the channel names of actions performed by e are

renamed according to the renaming function R and,

�
 { the unde�ned or divergent process

We now present the operational semantics for processes, and to make things simpler we ignore the

evaluation of Boolean expressions. That is we assume that for each closed Boolean simple expression

l there is a corresponding truth value [[l]] and more generally for any Boolean simple expression l

4 William Ferreira

(Bot)

�

�!

(Fix) �X:e

�

�! e[�X:e=X] (Com)

e

1

a

�! e

0

1

; e

2

a

�! e

0

2

e

1

k e

2

�

�! e

0

1

k e

0

2

(IntL) e

1

� e

2

�

�! e

1

(IntR) e

1

� e

2

�

�! e

2

(Hide�)

e

�

�! e

0

enn

�

�! e

0

nn

(ExCL�)

e

1

�

�! e

0

1

e

1

+ e

2

�

�! e

0

1

+ e

2

(ExCR�)

e

2

�

�! e

0

2

e

1

+ e

2

�

�! e

1

+ e

0

2

(Ren�)

e

�

�! e

0

e[R]

�

�! e

0

[R]

Figure 1. Operational rules for reduction

(In) n?x:e

n?v

��! efv=xg 8v 2 Val (Out) n!v:e

n!v

�! e

(IfT)

e

1

�

�! e

0

1

; [[l]] = true

if l then e

1

else e

2

�

�! e

0

1

(ParL)

e

1

�

�! e

0

1

e

1

k e

2

�

�! e

0

1

k e

2

(ExCL)

e

1

a

�! e

0

1

e

1

+ e

2

a

�! e

0

1

(IfF)

e

2

�

�! e

0

2

; [[l]] = false

if l then e

1

else e

2

�

�! e

0

2

(ParR)

e

2

�

�! e

0

2

e

1

k e

2

�

�! e

1

k e

0

2

(ExCR)

e

2

a

�! e

0

2

e

1

+ e

2

a

�! e

0

2

(RenAct)

e

a

�! e

0

e[R]

R(a)

��! e

0

[R]

(Hide)

e

a

�! e

0

enn

a

�! e

0

nn

chan(a) 6= n

Figure 2. Operational rules for contexts.

and mapping � from expression variables to values, there is a Boolean value [[l]]�. We also assume

for each operator symbol op 2 Op, that we have an associated function [[op]] over the set of values

Val of the appropriate type and arity. The operational semantics of VPL is de�ned in terms of the

three transition relations:

e

�

�! e

0

� a single step evaluation from e to e

0

e

n?v

��! e

0

� the receipt of a value v along channel n by expression e

e

n!v

�! e

0

� the output of a value v along channel n by expression e

which are de�ned to be the least relations satisfying the rules in Figures 1 and 2, where:

a; a

1

; a

2

: : : 2 Act

def

= fn?v j n 2 Chan ; v 2 Valg [fn!v j n 2 Chan ; v 2 Valg

�; �

1

; �

2

; : : : 2 Act

�

def

= Act [f�g

and for any action a 2 Act we de�ne its complement a by:

n?v

def

= n!v

n!v

def

= n?v

�

def

= �

and we use chan(a) to denote the channel of a, e.g. chan(n!v) = n.

3 Guarantee and Strong Guarantee Testing

In this section we two predicates on processes, and use them to construct two preorders. The �rst

predicate, which we call can guarantee, demands that each state of a process reachable by internal

transitions can eventually perform a given pre�x. Let Pref be the set of action pre�xes de�ned by:

�; �

0

; : : : 2 Pref

def

=fn?; n! j n 2 Chang

with InPref the restriction of Pref to input pre�xes, and likewise OutPref its restriction to output

pre�xes, and let e

�

=) denote that for some v; e

�v

=) e

0

, we have:

On Testing the Observable Actions of Processes 5

Definition 3.1. [Can Guarantee] e can guarantee �, written e #

G

�, if:

e + and e

"

=) e

0

implies e

0 �

=)

2

For example:

n!v:0 #

G

n!

but:

n!v:0� 0 6#

G

n!

since:

n!v:0� 0

"

=) 0

The second predicate, called can strongly guarantee, is similar to can guarantee but demands in

addition that whenever a given pre�x can be performed, it can do so without leading to a divergent

state. The de�nition of when a pre�x leads to a divergent state di�ers depending on whether it is

an input pre�x or an output pre�x. Let � be de�ned on Pref by:

e � n? if 9v; 8e

0

: e

n?v

==) e

0

; e

0

+

e � n! if e

n!v

=) e

0

implies e

0

+

If e � n? then this amounts to a guarantee to the environment that there is at least one value v

which can sent to e along n, such that any continuation of e after inputting v along n will converge.

For example e

1

� n? where:

e

1

def

= n?x:if x = 1 then0 else

but e

2

6� n? where:

e

2

def

=(n?x:if even(x) then 0 else
)� (n?x:if odd (x) then 0 else
)

since for all integers i there exists an e

0

such that e

n?i

=) e

0

and e

0

*.

If e � n! then we can interact with e along n and be sure that whatever value v we receive, the

continuation of e after outputting v along n will converge. For example we have that e

3

� n! where:

e

3

def

= n!v

1

:0� n!v

2

:0

but e

4

6� n! where:

e

4

def

= n!v

1

:0� n!v

2

:

We can now present the strongly guarantee predicate.

Definition 3.2. [Can Strongly Guarantee] e can strongly guarantee �, written e #

SG

�, if:

e + and e

"

=) e

0

implies e

0 �

=) and e

0

� �

2

Let C denote a context, i.e. a term e with one free process variable X, which we write as [], and

C [e

0

] be the replacement of X in e by the closed term e

0

. We have:

Definition 3.3. [Guarantee Testing] For e

1

; e

2

2 VPL we de�ne e

1

@

�

G

e

2

if for all contexts C and

pre�xes �:

C [e

1

] #

G

� implies C [e

2

] #

G

�

2

and:

Definition 3.4. [Strong Guarantee Testing] For e

1

; e

2

2 VPL we de�ne e

1

@

�

SG

e

2

if for all contexts

C and pre�xes �:

C [e

1

] #

SG

� implies C [e

2

] #

SG

�

2

6 William Ferreira

For both preorders, we de�ne their kernels �

G

and �

SG

as

@

�

G

\

@

�

G

�1

and

@

�

SG

\

@

�

SG

�1

respectively.

The universal quanti�cation over contexts in the de�nitions of the guarantee and strong guar-

antee preorders makes them unsuitable as a tractable theory of process behaviour. We now derive

alternative characterisations of these preorders, which are de�ned independently of contexts. We

begin with a brief review of must testing for VPL [Ing94], and its alternative characterisation.

We de�ne the set of observers O;O

0

; : : : 2 O to be the set of all closed terms formed from Exp by

extending Pre with the action !:

Pre := : : : j !

Let k � (O � VPL) be the least relation satisfying the rules:

O

�

�! O

0

implies O k e

�

�! O

0

k e

e

�

�! e

0

implies O k e

�

�! O k e

0

O

a

�! O

0

and e

a

�! e

0

implies O k e

�

�! O

0

k e

0

A computation of O k e is any maximal �nite or in�nite sequence of � transitions of the form:

O k e = O

0

k e

0

�

�! O

1

k e

1

�

�! � � �

and we use Comp(O; e) to denote the set of all such computations for O and e. If c is a computation

of Comp(O; e) then we use c

i

to denote the ith component of c, which is of the form O

i

k e

i

. We say

that emust O if for all computations c 2 Comp(O; e) we have O

i

!

�! for some component c

i

of c.

Definition 3.5. [Must Testing] For e

1

; e

2

2 VPL de�ne e

1

@

�

MT

e

2

if for all O 2 O:

e

1

must O implies e

2

must O

2

To present the alternative characterisation of must testing we require some auxiliary relations on the

transition system induced by the operational semantics. Firstly we extend the transition relation

�! to a relation =) on sequences of actions, in the following way:

e

"

=) e

0

if e

�

�!

�

e

0

e

a

=) e

0

if e

�

�!

�

�

a

�! �

�

�!

�

e

0

e

a:s

=) e

0

if e

a

=) �

s

=) e

0

We also extend the function chan(�) to �nite sequences of actions in an obvious way. We say that

a closed term e diverges, written e * or e 6+, if there exists an in�nite sequence of transitions of the

form:

e = e

0

�

�! e

1

�

�! e

2

�

�! � � �

We say e converges, written e +, if e does not diverge, and we extend convergence to sequences of

actions in Act

�

by:

e + " if e +

e + n?v:s if e + and e

n?v

==) e

0

implies e

0

+ s

e + n!v:s if e + and e

n!v

=) e

0

implies e

0

+ s

We have:

S(e)

def

= f� 2 Pref j 9v : e

�v

=)g � the successors of e after s

A(e; s)

def

= fS(e

0

) j e

s

=) e

0

�

�6�!g � the acceptances of e after s

The acceptances of a process can be ordered in the following way:

A� B if X 2 A implies Y � X for some Y 2 B

We can now de�ne the alternative characterisation of

@

�

MT

:

Definition 3.6. For e

1

; e

2

2 VPL and s 2 Act

�

de�ne e

1

�

MT

e

2

if e

1

+ s implies:

1. e

2

+ s and,

On Testing the Observable Actions of Processes 7

2. A(e

2

; s)�A(e

1

; s).

2

Theorem 3.7. For e

1

; e

2

2 VPL:

e

1

@

�

MT

e

2

if and only if e

1

�

MT

e

2

Proof. See [Ing94], theorem 3.2.6 p. 53. 2

We now present alternative characterisations of

@

�

G

and

@

�

SG

. To do this we need another relation

over closed terms and sequences of actions called guaranteed convergence, denoted by � +

G

�, and

de�ned by:

e +

G

" if e +

e +

G

n?v:s if e + and e

n?v

==) e

0

implies e

0

+

G

s

e +

G

n!v:s if e + and e

n!v

=) e

0

implies e

0

+

G

s and e � n!

Note that the de�ning clause for convergence on an output action requires that the expression

converges for all values output on the given channel. For example:

n!v

1

:0+ n!v

2

:0 +

G

n!v

1

but n!v

1

:0+ n!v

2

:
 6+

G

n!v

1

Definition 3.8. For all e

1

; e

2

2 VPL and s 2 Act

�

de�ne e

1

�

G

e

2

if e

1

+

G

s implies:

1. e

2

+

G

s and,

2. A(e

2

; s)�A(e

1

; s).

2

To de�ne the alternative characterisation of

@

�

SG

we need to isolate certain actions that an expression

may perform and that always lead to a divergent state:

D(e; s)

def

= fn? j 8v; 9e

0

: e

s:n?v

===) e

0

; e

0

*g [fn! j 9v; e

0

: e

s:n!v

===) e

0

; e

0

*g

A

S

(e; s)

def

= fA n D(e; s) j A 2 A(e; s)g

We call D(e; s) the divergences of e after s, and A

S

(e; s) the strong acceptances of e after s. We

sometimes write A

S

(e; s) as A(e; s) n D(e; s), or more generally for any A a �nite set of �nite sets:

A nX

def

=fA nX j A 2 Ag

Using these constructs we can now de�ne the alternative characterisation of

@

�

SG

:

Definition 3.9. For e

1

; e

2

2 VPL; e

1

�

SG

e

2

if e

1

+

G

s implies:

1. e

2

+

G

s and,

2. A

S

(e

2

; s)�A

S

(e

1

; s).

2

The motivation for the de�nition of A

S

(e; s) and thus of �

SG

, is that the divergences of a process

represent actions about which nothing can be strongly guaranteed; therefore they can be removed

from the acceptances of the process. For example consider the following two processes:

e

1

def

=(n?x:
+m!v:0)�m

0

!v

0

:0 and e

2

def

= m!v:0 �m

0

!v

0

:0

We have:

A(e

1

; ") = ffn?;m!g; fm

0

!gg

8 William Ferreira

6= ffm!g; fm

0

!gg

= A(e

2

; ")

but:

A

S

(e

1

; ") = ffm!g; fm

0

!gg

= A(e

2

; ")

The only di�erence between e

1

and e

2

is that e

1

can perform an input at n; but any input will leave

it in a divergent state which removes the possibility of the testing context from strongly guaranteeing

anything. There is a close connection between the divergences � +

G

�, � #

SG

� and the divergences of

a process, which is embodied in the following lemma:

Lemma 3.10.

1. For s 2 Act

�

, if e

1

+

G

s and e

2

+

G

s then D(e

2

; s) � D(e

1

; s) and,

2. If � 2 D(e; ") then e 6#

SG

�.

Proof. We prove each part separately:

1. Suppose the hypotheses of the lemma are true, then e

2

+

G

s. If � 2 D(e

2

; s) we want to show

that � 2 D(e

1

; s) and there are two cases to the proof, depending on the form of �:

� � = n! for some n { since n! 2 D(e

2

; s), then for some v; e

0

2

we have that e

2

s:n!v

===) e

0

2

and

e

0

2

*, i.e. e

2

* s:n!v. Now e

1

+

G

s and by the de�nition of�

G

it must be that for some v

0

; e

0

1

that e

1

s:n!v

0

===) e

0

1

and e

0

1

*, i.e. � 2 D(e

1

; s).

� � = n? for some n { since � 2 D(e

2

; s) then for all v there exists some e

v

2

such that e

2

s:n?v

===) e

v

2

and e

v

2

*, i.e. for all v; e

2

* s:n?v and this in turn implies e

1

* s:n?v for all v. Since e

1

+

G

s

then for all v there exists e

v

1

such that e

1

s:n?v

===) e

v

1

and e

v

1

*, i.e. � 2 D(e

1

; s).

2. Suppose � 2 D(e; "), there are two cases to the proof, depending on the form of �:

� � = n! for some n { then for some v and e

0

we have e

n!v

=) e

0

and e

0

*; therefore e

"

=) e and

e 6� n! i.e. e 6#

SG

n!,

� � = n? for some n { then for all v there exists some e

v

such that e

"

=) e

v

and e

v

*; therefore

e

"

=) e and e 6� n? i.e. e 6#

SG

n?

2

We now show that

@

�

G

coincides with�

G

, and that

@

�

SG

coincides with�

SG

, and we begin with

an outline of the proof strategy. First we show that �

G

and �

SG

preserve all �nite contexts of the

language, i.e. contexts which do not use the recursion operator �X:�.

Proposition 3.11. For all e

1

; e

2

2 VPL and �nite closed contexts C we have:

1. e

1

�

G

e

2

implies C [e

1

]�

G

C [e

2

] and,

2. e

2

�

SG

e

2

implies C [e

1

]�

SG

C [e

2

].

Proof. It is su�cient to show for each context C = []� e; [] + e; [] k e; [][R]; []nn and �:[] that:

1. e

1

�

G

e

2

implies C [e

1

]�

G

C [e

2

] and,

2. e

2

�

SG

e

2

implies C [e

1

]�

SG

C [e

2

].

The proof is by a detailed examination of the transitions of a process in each context above, and we

omit it. 2

To prove the general case of proposition 3.11 i.e. for arbitrary contexts, is far from straightforward.

Firstly, we would need to lift the de�nitions of

@

�

G

and

@

�

SG

terms with free process variables.

On Testing the Observable Actions of Processes 9

Secondly, given two terms e

1

and e

2

with free process variable X we would need to show that

whenever e

1

@

�

G

e

2

(resp. e

1

@

�

SG

e

2

) then �X:e

1

@

�

G

�X:e

2

(resp. �X:e

1

@

�

SG

�X:e

2

). However

the operational rule (Fix) in Figure 1 ensures that whenever a term of the form �X:e performs a

sequence of actions �X:e

s

=) e

0

then e

0

may contain �X:e as a sub-term; this breaks the structural

induction on syntax used in the proof of the proposition. In section 5 we will use the connection of

the preorders with the denotational models we construct to lift this proposition to all contexts.

We then show how�

G

and�

SG

characterise the underlying de�nitions of

@

�

G

and

@

�

SG

respectively:

Proposition 3.12. For e

1

; e

2

2 VPL we have:

1. e

1

�

G

e

2

and e

1

#

G

� implies e

2

#

G

� and,

2. e

1

�

SG

e

2

and e

1

#

SG

� implies e

2

#

SG

�

Proof. We prove each part separately:

1. If e

1

�

G

e

2

and e

1

#

G

� then e

2

+ by de�nition of�

G

. We must show that whenever e

2

"

=) e

0

2

�

�6�!

then e

0

2

�

�!. We know that A(e

2

; ") � A(e

1

; ") so there exists some X 2 A(e

1

; ") such that

X � S(e

0

2

), but X = S(e

0

1

) where e

1

"

=) e

0

1

�

�6�! in which case � 2 X therefore e

0

2

�

�! as well,

2. First note that � =2 D(e

2

; ") otherwise by lemma 3.10 and the de�nition of �

SG

we would have:

� 2 D(e

2

; ") implies � 2 D(e

1

; ")

implies e

1

6#

SG

�

which is a contradiction; from this it is straightforward to show that e

2

"

=) e

0

2

implies e

0

2

� �. It

remains only to show that e

2

"

=) e

0

2

implies e

0

2

�

=). Suppose e

2

"

=) e

0

2

, since e

2

+ we can extend

e

0

2

to a stable state e

00

2

, and S(e

00

2

) � S(e

0

2

). Furthermore by the de�nition of �

SG

we have that

X 2 A

S

(e

2

; ") where X = S(e

00

2

) n D(e

2

; "). Since � =2 D(e

2

; ") � D(e

1

; ") we have that Y � X

for some Y = S(e

0

1

) n D(e

1

; ") with e

1

"

=) e

0

1

�

�6�!. Furthermore since e

1

#

SG

� we know that

� 2 Y which implies � 2 S(e

0

2

) implies e

0

2

�

=), as required.

2

Let

@

�

f

G

and

@

�

f

SG

denote the closure of � #

G

� and � #

SG

� respectively, under all �nite contexts. We

have as a corollary of propositions 3.11 and 3.12:

Corollary 3.13 (of propositions 3.11 and 3.12). For e

1

; e

2

2 VPL we have:

1. e

1

�

G

e

2

implies e

1

@

�

f

G

e

2

and,

2. e

1

�

SG

e

2

implies e

1

@

�

f

SG

e

2

2

It remains to show that

@

�

G

��

G

and

@

�

SG

��

SG

. To do this we show that the de�ning properties

�

G

and �

SG

can be characterised in

@

�

G

and

@

�

SG

respectively by particular classes of contexts.

The �rst class of contexts we require enables us to test when a process can guaranteed converge on

a sequence of actions in Act

�

. For each s 2 Act

�

let N

s

be de�ned by:

N

s

def

=[] k con(s)

where:

con(")

def

= 0

con(n

1

?v:s)

def

= n

1

!v:con(s)

con(n

1

!v:s)

def

= n?x:if x = v then con(s) else 0

We have the following property for the context N

s

:

Proposition 3.14. For e 2 VPL and s 2 Act

�

we have:

N

s

[e] + if and only if e +

G

s

10 William Ferreira

Proof. For the if case we prove the contra-positive, so suppose that e 6+

G

s. If s = " then we have

e * in which case N

s

[e] * as well; otherwise for some s

1

; s

2

with s = s

1

s

2

we have either:

� e

s

1

=) e

0

; e

0

* { in this case we can show that N

s

[e]

"

=) e

1

with either:

e

1

= e

0

k if true then con(s

2

) else 0

or,

e

1

= e

0

k con(s

0

)

and therefore N

s

[e] * or,

� s

1

= s

0

1

:n!v and e

s

0

1

:n!v

0

====) e

0

with e

0

* { in this case we can show that:

N

s

[e]

"

=) e

0

k if false then con(s

00

) else 0

and therefore N

s

[e] *.

The only if case is proved by induction on s. If s = " then N

s

[e] = e k 0 and therefore N

s

[e] +

implies e + trivially. If s = n?v:s

0

and e

n?v

==) e

0

we have:

N

s

[e]

"

=) e

0

k con(s

0

)

= N

s

0

[e

0

]

and N

s

[e] + implies N

s

0

[e

0

] + implies e

0

+ s

0

by induction. If s = n!v:s

0

and e

n!v

0

==) e

0

we have either:

N

s

[e]

"

=) e

0

k if false then con(s

0

) else 0

= e

0

k 0

and N

s

[e] + implies e

0

k 0 + implies e

0

+, or e

n!v

=) e

0

and:

N

s

[e]

"

=) e

0

k if true then con(s

0

) else 0

= e

0

k con(s

0

)

= N

s

0

[e

0

]

and N

s

[e] + implies N

s

0

[e

0

] implies e

0

+ s

0

by induction. 2

The next class of contexts characterises the sequences of actions a process can perform. Let R

n

s;a

be de�ned by:

R

n

s;a

def

=[] k rej (s; a; n)

where:

rej ("; n

1

?v; n)

def

= n

1

!v:0+ n!w

rej ("; n

1

!v; n)

def

= n

1

?x:if x = v then 0 else n!w+ n!w

rej (n

1

?v:s; a; n)

def

= n

1

!v:rej (s; a; n) + n!w

rej (n

1

!v:s; a; n)

def

= n

1

?x:if x = v then rej (s; a; n) else n!w+ n!w

Let L(e) denote the language of e, de�ned by:

L(e)

def

=fs j e

s

=) e

0

g

We have the following property for the context R

n

s;a

:

Proposition 3.15. For e 2 VPL; a 2 Act; s 2 Act

�

and n 2 Chan a fresh channel, we have:

e +

G

sa implies sa =2 L(e) if and only if R

n

s;a

[e] #

G

n!

Proof. Suppose e +

G

sa, for the if case we prove the contra-positive by showing that whenever

sa 2 L(e), i.e. e

sa

=) e

0

that:

R

n

s;a

[e]

"

=) e

1

On Testing the Observable Actions of Processes 11

where either e

1

= 0 or e

1

= if true then 0 elsen!, in which case R

n

s;a

[e] 6#

G

n!.

For the only if case we show by induction on s that whenever R

n

s;a

[e]

"

=) e

0

�

�6�! then e

0

n!

=) which

is possible, because if e +

G

s then all computations from R

n

s;a

[e] are �nite. 2

By the structure of R

n

s;a

we have as a corollary the following:

Corollary 3.16 (of proposition 3.15). For e 2 VPL; a 2 Act ; s 2 Act

�

and n 2 Chan a fresh

channel, we have:

e +

G

sa implies sa =2 L(e) if and only if R

n

s;a

[e] #

SG

n!

2

We now present two classes of context of a particular form; the �rst characterises the acceptances

of a process while the second characterises the strong acceptances. We begin with the characterisation

of the acceptances of a process. If s 2 Act

�

and f : Chan �! Chan we de�ne f(s) by:

f(")

def

= "

f(n?v:s)

def

= f(n)?v:f(s) and,

f(n!v:s)

def

= f(n)!v:f(s)

Let A

n

s

;T

n;f

s;A

and G

n;f

s;A

be de�ned by:

A

n

s

def

= [] k acc(s; n)

T

n;f

s;A

def

= ([] k trans(s; f))[R

A

n

]

G

n;f

s;A

def

= A

n

f (s)

[T

n;f

s;A

]

where:

acc("; n)

def

= 0

acc(n

1

?v:s; n)

def

= n

1

!v:acc(s; n) + n!

acc(n

1

!v:s; n)

def

= n

1

?x:if x = v then acc(s; n) elsen! + n!

and:

trans("; f)

def

= 0

trans(n?v:s; f)

def

= f(n)?x:n!x:trans(s; f)

trans(n!v:s; f)

def

= n?x:f(n)!x:trans(s; f)

and R

A

n

is the renaming function de�ned by:

R

A

n

(a)

def

=

�

n if a 2 A

a otherwise

We have the following property of the context G

n;f

s;A

:

Proposition 3.17. Let e 2 VPL; s 2 Act

�

and A a �nite subset of Pref , and choose N;n and f

such that:

� N [fng is a �nite subset of Chan with N \ fng = ;,

� N and n are completely fresh,

� jN j = jchan(s)j and,

� f : chan(s) ! N is a bijection

then e +

G

s implies:

G

n;f

s;A

[e] #

G

n! if and only if for all B 2 A(e; s); A \B 6= ;

12 William Ferreira

Proof. Assume the hypotheses of the proposition are true; �rstly we show that:

e

e

=) e

0

if and only if T

n;f

s;A

[e]

f(s)

==)T

n;f

";A

[e

0

]

by induction on s. For the only if part of the proposition we prove the contra-positive, so suppose

there exists B 2 A(e; s) such that A\B = ;. Therefore e

s

=) e

0

�

�6�! and B = S(e

0

) for some e

0

. By

examination of the transitions from T

n;f

s;A

[e] we can show that:

T

n;f

s;A

[e]

f(s)

==) (e

0

k 0)[R

A

n

]

and therefore:

G

n;f

s;A

[e]

"

=) (e

0

k 0)[R

A

n

] k 0

Since e

0

a

�6�! for any a 2 A we have that G

n;f

s;A

[e] 6#

G

n!. For the only if case the proof is by induction

on s. 2

The class of contexts needed to characterise strong acceptances is similar to that for the accep-

tances, except we need to record some additional information in the context about the set of pre�xes

A. Let In(A) denote the elements of A which are input pre�xes, i.e. of the form n? for some n, and

f

A

a �nite partial function from In(A) to Val . We de�ne the context S

n;f

s;A

by:

S

n;f

s;A

def

=[] k strong(s; A; f; n)

where:

strong("; A; f; n)

def

= strong(A; f; n)

strong(n?v:s; A; f; n)

def

= n!v:strong(s; A; f; n) + n!

strong(n!v:s; A; f; n)

def

= n?x:if x = v then strong(s; A; f; n) elsen! + n!

and:

strong(A; f; n)

def

=

X

fstrong(�; f) j � 2 Ag

strong(n?; f)

def

= n!f(n?):n!

strong(n!; f)

def

= n?x:n!

The set of pre�xes A in the context S

n;f

s;A

represent pre�xes drawn from the strong acceptances of

a process e after some sequence of actions s has been performed. In this case, by the de�nition of

strong acceptances, we know that whenever n? 2 A then for some v 2 Val we have that e

sn?v

==) e

0

implies e

0

+. The function f in the context S

n;f

s;A

records for any n? 2 A a value satisfying this

property. Note that this is not required for output pre�xes n! 2 A, since we know they converge

after any value output.

Proposition 3.18. If e 2 VPL; s 2 Act

�

; A is a �nite subset of Pref and f : In(A) ! Val such

that:

� n! 2 A implies n! =2 D(e; s) and,

� n? 2 A implies for all e

0

such that e

sn?f(n?)

=====) e

0

: e

0

+

then e +

G

s implies:

S

n;f

s;A

[e] #

SG

n! if and only if for all B 2 A

S

(e; s); A \B 6= ;

Proof. Similar to the proof of proposition 3.17. 2

The next two theorems show that we are a short step away from showing that�

G

is an alternative

characterisation of

@

�

G

, and �

SG

is an alternative characterisation of

@

�

SG

.

On Testing the Observable Actions of Processes 13

Theorem 3.19. For e

1

; e

2

2 VPL we have:

e

1

@

�

G

e

2

implies e

1

�

G

e

2

Proof. We prove the contra-positive; suppose that e

1

@

�

G

e

2

and e

1

6�

G

e

2

. If e

1

+

G

s and

e

2

6+

G

s then by proposition 3.14 we have that N

s

[e

1

] k n! #

G

n! and N

s

[e

2

] k n! 6#

G

n! for some

fresh n which contradicts the hypothesis of the theorem, so we assume that e

1

+

G

s and e

2

+

G

s.

Suppose that s 2 L(e

2

); if s = " then s 2 L(e

1

) trivially, so assume s = s

0

a for some a 2 Act.

By proposition 3.15 for some fresh n we have that R

n

s;a

[e

1

] #

G

n! and R

n

s;a

[e

2

] 6#

G

n! which again

contradicts the hypothesis of the theorem, so we assume that s 2 L(e

1

). Finally suppose that

A(e

2

; s) 6� A(e

1

; s). Then for some Y 2 A(e

2

; s) we have that X 6� Y for all X 2 A(e

1

; s), i.e. for

each X 2 A(e

1

; s) there is some �

X

2 X such that �

X

=2 Y . Let A be the set of all �

X

for each

X 2 A(e

2

; s) satisfying this property, and pick N;n and f such that they ful�ll the hypotheses of

proposition 3.17. Then we have G

n;f

s;A

[e

1

] #

G

n! but G

n;f

s;A

[e

2

] 6#

G

n! which again contradicts the

hypothesis of the theorem, and so we assert that e

1

�

G

e

2

. 2

Theorem 3.20. For e

1

; e

2

2 VPL we have:

e

1

@

�

SG

e

2

implies e

1

�

SG

e

2

Proof. The proof di�ers from that of theorem 3.19 only in the treatment of the strong accep-

tances. Suppose than that e

1

+

G

s; e

2

+

G

s and s 2 L(e

1

) \ L(e

2

). If A

S

(e

2

; s) 6� A

S

(e

1

; s) then

for some Y 2 A

S

(e

2

; s) we have that X 6� Y for all X 2 A

S

(e

1

; s), i.e. for all A 2 A

S

(e

1

; s) there

exists �

X

2 X such that �

X

=2 Y . Furthermore since each X is of the form A(e

1

; s) n D(e

1

; s) we

know that �

X

=2 D(e

1

; s) and that whenever �

X

= n? for some n, then for some v we have that

e

sn?v

==) e

0

implies e

0

+. Let A be the set of all �

X

satisfying this property and construct a function

f : In(A) *

�n

Val according to the hypothesis of proposition 3.18. Then S

n;f

s;A

[e

1

] #

SG

n! and

S

n;f

s;A

[e

2

] 6#

SG

n! which contradicts the hypothesis of the theorem; therefore we assert that e

1

�

SG

e

2

.

2

From corollary 3.13 we know that the converses of theorems 3.19 and 3.20 hold for the �nite

preorders

@

�

f

G

and

@

�

f

SG

respectively. We will use the full abstraction result in section 6 to lift the

results of this corollary to the full preorders

@

�

G

and

@

�

SG

.

4 Comparing Guarantee, Strong Guarantee and Must Testing

In this section we compare

@

�

G

and

@

�

SG

to each other and to

@

�

MT

, and prove some expressivity

results about VPL with respect to these preorders. Our �rst result shows that

@

�

G

and

@

�

SG

are both

coarser than

@

�

MT

.

Proposition 4.1. We have:

@

�

MT

�

@

�

G

�

@

�

SG

Proof. It is su�cient to prove that:

1. e

1

@

�

MT

e

2

and e

1

#

G

� implies e

2

#

G

�, and

2. e

1

@

�

G

e

2

and e

1

#

SG

� implies e

2

#

SG

�

since for all contexts C we have:

e

1

@

�

MT

e

2

implies C [e

1

]

@

�

MT

C [e

2

]

and:

e

1

@

�

G

e

2

implies C [e

1

]

@

�

G

C [e

2

]

14 William Ferreira

Therefore if e

1

@

�

MT

e

2

and C [e

1

] #

G

� then:

e

1

@

�

MT

e

2

implies C [e

1

]

@

�

MT

C [e

2

]

implies C [e

2

] #

G

� by (1) above

as required. A similar argument can be used to prove

@

�

G

�

@

�

SG

.

Suppose then that e

1

@

�

MT

e

2

and e

1

#

G

�, then e

1

�

MT

e

2

and e

1

+ implies e

2

+. Furthermore

A(e

2

; s) � A(e

1

; s) by theorem 3.7 so if e

2

"

=) e

0

2

�

�6�! then for some X 2 A(e

1

; s) we have

X � S(e

0

2

) and � 2 X because e

1

#

G

�; therefore e

0

2

�

=) and so e

1

@

�

G

e

2

.

Suppose e

1

@

�

G

e

2

and e

1

#

SG

�. By the de�nition of � #

SG

� and � #

G

� we have that:

e

1

#

SG

� implies e

1

#

G

�

implies e

2

#

G

�

so to prove e

2

#

SG

� it is su�cient to show that e

2

� �. If this is not the case then, either � = n!

and for some v we have e

2

n!v

=) e

0

2

and e

0

2

* in which case e

2

6+

G

n!v, which implies e

1

6+

G

n!v which

implies e

1

6#

SG

n! which is a contradiction, or � = n? and for all v there exists some e

v

2

such that

e

2

n?v

==) e

v

2

and e

v

2

*; again we can show that e

1

6#

SG

n? which is a contradiction, so we may assume

e

2

� � as required. 2

The following examples show that these inclusions are strict:

n!v

1

:
+ n!v

2

:0

6@

�

MT

n!v

2

:

n!v

1

:
+ n!v

2

:0

@

�

G

n!v

2

:

n?x:

6@

�

G

0

n?x:

@

�

SG

0

We now show that under a slight modi�cation of the operational rules for if � then � else �,

@

�

MT

coincides with

@

�

G

. We replace the conditional expression of VPL with if

+

� then � else � �, which

has the following behaviour:

[[l]] = true

if

+

l then e

1

else e

2

�

�

�! e

1

[[l]] = false

if

+

l then e

1

else e

2

�

�

�! e

2

We refer to this version of the language and operational semantics as VPL

+

. Furthermore we denote

by

@

�

+

MT

and

@

�

+

G

the obvious de�nition of the preorders for this new language, and the extension of

the observers of VPL by O

+

. Replacing if by if

+

in VPL weakens the testing power of the language

with respect to

@

�

MT

. For example we have:

n!v

1

:
+ n!v

2

:0

@

�

+

MT

n!v

2

:

To attempt to distinguish between these processes, one requires an observer which tests for conver-

gence after an output of v

1

on channel n; such an observer would need to be insensitive to the fact

that the left-hand term diverges when outputting v

2

on the same channel. For

@

�

MT

and VPL, an

appropriate observer might take the form:

O

def

= n?x:if x = v

1

then (!:0� !:0) else!:0

and the operational rules for if ensure that success is assured even if the value v

2

is received, because

we can infer:

!:0

!

�! 0; [[v

2

= v

1

]] = false

if v

2

= v

1

then !:0� !:0 else!:0

!

�! 0

i.e. if v

2

= v

1

then !:0�!:0 else !:0 is a success state, even in the presence of
. However this is not

the case for if

+

since we can only infer:

[[v

2

= v

1

]] = false

if

+

v

2

= v

1

then !:0� !:0 else !:0 �

�

�! !:0

We have the following lemma:

On Testing the Observable Actions of Processes 15

Lemma 4.2. Let O 2 O

+

be an open term with free variables ~x, and � a substitution with ~x

i

�

dom(�), then:

O�

!

�! implies O�

0 !

�!

for all substitutions with ~x

i

� dom(�

0

).

Proof. The proof is by induction on the structure of O. 2

The import of this lemma is that there are many more observers in O

+

which are capable of

performing the success action !. This is precisely what makes

@

�

+

MT

no more discriminating than

@

�

+

G

for VPL

+

.

Theorem 4.3. For e

1

; e

2

2 VPL

+

we have:

e

1

@

�

+

MT

e

2

if and only if e

1

@

�

+

G

e

2

Proof. The proof of the only if case uses the fact that for observers:

O

?

def

= n!v:! � n!v:! and,

O

!

def

= n?x:!� n?x:!

O

?

k e is successful in the must sense precisely when e #

G

n? and, O

!

k e is successful in the must

sense precisely when e #

G

n!. Therefore for any context C we have:

C [e

1

] #

G

n! implies O

!

k C [e

1

]

implies O

!

k C [e

2

]

implies C [e

2

] #

G

n!

as required, and similarly for n? using O

?

.

For the if case suppose that e

@

�

+

G

f; emust O and c is a computation of the form:

O k f = O

0

k f

0

�

�! O

1

k f

1

�

�! � � �

we must show that O

i

!

�!. By deconstructing c we have O

s

=) and f

s

=), and there are two cases:

� e +

G

s { in this case we can show that e

s

=) follows from e

@

�

+

G

f and so we may construct a

computation c

0

of the form:

O k e = O

0

k e

0

�

�! O

1

k e

1

�

�! � � �

and since emust O we have that O

i

!

�! as required.

� e 6+

G

s { there are two sub-cases:

{ there exists some pre�x s

0

of s such that e

s

0

=) e

0

and e

0

* { as in the previous case we may

construct a computation of the form:

O k e = O

0

k e

0

�

�! O

1

k e

1

�

�! � � �O

k

k e

0 �

�! � � �

and therefore O

i

!

�! for o � i � k, as required.

{ there exists some pre�x s

00

:n!v of s and e

s

00

:n!v

0

====) e

0

with e

0

* { therefore e

s

00

=) e

00

n!v

0

��! e

0

for

some e

00

and we can construct a computation of the form:

O k e = O

0

k e

0

�

�! O

1

k e

1

�

�! � � �e

00

kO

k

�

�! e

0

kO

k+1

Suppose O

i

!

�6�! for all i � k, (if this is not the case then for some i � k we have O

i

!

�! which

is enough to make c a successful computation), then since e

0

* we must have that O

k+1

!

�!

because emust O. Consider O

k+1

which must be of the formO

0

[v

0

=x] where O

k

n?v

0

��! O

0

[v

0

=x].

By lemma 4.2 we have that O

0

[v=x]

!

�! and therefore c is successful.

2

16 William Ferreira

Another interesting property of

@

�

G

is that its discriminatory power is dependent on the presence of

the renaming operator; this is implicit in the proof of proposition 3.17. For example suppose that

the operator [R] is removed from the language, then we have no way of distinguishing between the

two terms:

e

1

def

= n

1

!v:((n

2

!v:
+ n

3

!v:
)� (n

4

!v:
+ n

5

!v:
)) and: e

2

def

= n

1

!v:(n

3

!v:
� n

5

!v:
)

First note that we cannot use any of the pre�xes n

2

: : :n

5

to distinguish between e

1

and e

2

because

there is no context C and n

i

! for 2 � i � 5 such that C [e

1

] #

G

n

i

!. If we try to utilise some fresh

pre�x �, then we run into problems because any context that tries to communicate with sub-terms

(n

2

!v:
+ n

3

!v:
) or (n

4

!v:
+ n

5

!v:
) of e

1

to guarantee �, will leave e

1

in a divergent state. The

renaming operator allows the context to avoid making any communication, by renaming the actions

of the process that we wish to communicate with to some fresh action. Note that e

1

and e

2

are

distinguished in

@

�

G

by the context:

C

def

=([] k n?x:0)[R]

where:

R(n

i

) =

�

n

0

if i = 2; 4

n

i

otherwise

where n

0

is a fresh channel name, since C [e

1

] #

G

n

0

! and C [e

2

] 6#

G

n

0

!.

To recapture the testing power of

@

�

G

without the renaming operator we need to strengthen the

predicate � #

G

� to sets of pre�xes, i.e. we need to de�ne � #

G

� as:

e #

G

A if e + and e

"

=) e

0

implies e

0 �

=) for some � 2 A

Let

@

�

be the preorder derived from the above de�nition of � #

G

� by closing up under all contexts.

Then we have e

1

6@

�

e

2

since C [e

1

] #

G

fn

1

!; n

3

!g and C [e

2

] 6#

G

fn

1

!; n

3

!g where:

C

def

=([] k n?x:0)

We have the following result:

Proposition 4.4. For e

1

; e

2

2 VPL we have:

e

1

@

�

G

e

2

if and only if e

1

@

�

e

2

Proof. The if case is immediate from the de�nition of

@

�

and � #

G

�. The only if case follows from

the fact that for fresh n:

F

A

[e] #

G

n! if and only if e #

G

A

where:

F

A

def

=[][R

A

n

]

and:

R

A

n

(a)

def

=

�

n if a 2 A

a otherwise

2

From the above example for the sub-language of VPL without the renaming operator, we have that

@

�

�

@

�

G

.

The strong guarantee preorder

@

�

SG

is not a�ected by the removal of the renaming operator from

the language. This is because whenever e #

SG

� we know that e will converge after it performs � in

any stable state.

5 Denotational Semantics

In this section we construct two denotational modelsG and SG in which we can interpret VPL. The

models are constructed to re
ect the testing power of the equivalences

@

�

G

and

@

�

SG

respectively, and

On Testing the Observable Actions of Processes 17

are derived from the value passing acceptance tree model, AT

v

, presented in [Ing94]. We begin by

reviewing some concepts from domain theory; the reader is invited to consult [Gun92, Plo81a, Pie91]

for further details. We then give an overview of AT

v

and discuss the modi�cations necessary to

arrive at G and SG.

An !-algebraic pointed complete partial order (!pcpo, or just cpo) is an ordered set hD;�

D

i

where:

� �

D

is re
exive, anti-symmetric and transitive relation on D,

� there is an element ?

D

2 D such that ?

D

�

D

d for all d 2 D,

� every directed subset X of D has a least upper bound in D, written

F

X,

� there is a subset of the elements of D called the compact elements, written K(D), satisfying for

all k 2 K(D) and directed set X:

k �

D

G

X implies k �

D

d for some d 2 X and;

� for each d 2 D:

fk �

D

d j k 2 K(D)g is directed, and d =

G

fk �

D

d j k 2 K(D)g

We refer to a set D satisfying these properties except that it may not contain a least element as

a pre-cpo. We can construct a cpo from any pre-cpo D by adding a least element ?

D

to D in a

straightforward way. We denote by up(D) the pre-cpo D augmented in this fashion. We will also

write up(f) : up(D) �! up(E) to denote the strict extension of the function f : D �! E de�ned

by:

up(f)(d)

def

=

�

?

E

if d = ?

D

f(d) otherwise

and which we extend to functions of the form f : D

n

�! E in a pointwise manner. If D and E are

cpos, then we say the function f : D �! E is continuous if for any directed set X � D, f(X) is

directed and:

G

f(X) = f(

G

X)

We will use the term domain to refer to !-pcpos, and pre-domain to !-pre-cpos.

The modelAT

v

is derived as the initial �xed point of a domain equation in the category !CPO

E

of !-algebraic complete partial orders with embeddings [Gun92, Plo81a, Pie91]. The domain equa-

tion is constructed from the bi-functor F where:

F (I;O) = up(hA; (f

in

: InPref *

�n

I)] (f

out

: OutPref *

�n

O)i)

and:

� A is a �nite set of �nite sets of Pref called an acceptance set,

� I is a domain describing sequels to input pre�xes in jAj,

� O is a domain describing sequels to output pre�xes in jAj,

� dom(f

in

) [dom(f

out

) = jAj and,

�] is the disjoint union of sets.

Processes in VPL can input arbitrary values along channels which are then substituted for free

variables in open terms. Accordingly the domain I describing the sequels to input pre�xes is given

by (Val �! D) the set of all total functions from the set of values Val to domain D, ordered

pointwise. In contrast processes can only output a �nite number of distinct values on a channel in

any given state. Therefore the domain O is given by (Val *

�n

D), the set of all �nite and partial

functions from Val to domain D, ordered by:

f � g if dom(g) � dom(f) and for all v 2 dom(g); g(v) �

D

f(v)

In fact O under this ordering is a pre-domain as it lacks a least element. The domainAT

v

is de�ned

to be the initial �xed point in !CPO

E

of the domain equation:

G(D) = F (Val �! D;Val *

�n

D)

18 William Ferreira

An interpretation of VPL in a domain D is given by a semantic function D[[]] with type:

D[[]] : Exp �! [Env

V

�! [Env

D

�! D]]

where Env

V

denotes the set of Val environments: mappings from the set of variables Var to the set

of values Val , and Env

D

is the set of D environments: mappings from the set of process variables

VRec to the model D. The function D[[]] is de�ned by structural induction on expressions as:

D[[x]]�� = �(x)

D[[0]]�� = 0

D

D[[
]]�� = ?

D[[e[R]]]�� = rename

D

R [[e]]��

D[[op(

~

l

i

)]]�� = [[op]](�(

~

l

i

)) for each op 2 Op

D[[2(~e

i

)]]�� = 2

D

(D[[~e

i

]]��) for 2 2 f�;+; kg

D[[�X:e]]�� = �x(�d:D[[e]]��[X 7! d])

D[[if l then e

1

else e

2

]]�� =

�

D[[e

1

]]� if [[l]]�� = true

D[[e

2

]]� otherwise

D[[n?x:e]]�� = in

D

n �v:D[[e]]�[x 7! v]�

D[[n!l:e]]�� =

�

out

D

n �(l) D[[e]]�� if l 2 Var

out

D

n l D[[e]]�� otherwise

where each of the functions 2

D

; rename

D

are continuous on D, and the functions in

D

and out

D

have type:

in

D

: Chan �! ((Val �! D) �! D)

out

D

: Chan �! (Val �! (D �! D))

where in

D

is continuous in its second argument and out

D

is continuous in its third argument, and

�x is the least �xed point operator. In [Ing94] an interpretation for VPL is given in domain AT

v

.

The goal of the next section is to show how models G and SG are fully abstract with respect to

the preorders

@

�

G

and

@

�

SG

, i.e. that for terms e

1

; e

2

2 VPL we have:

e

1

@

�

G

e

2

if and only if G[[e

1

]] �

G

G[[e

2

]] and,

e

1

@

�

SG

e

2

if and only if SG[[e

1

]] �

SG

SG[[e

2

]]

To see that the model AT

v

is not fully abstract for

@

�

G

under the interpretation in [Ing94], consider

the term:

e

def

= n!v

1

:0� n!v

2

:

We have:

AT

v

[[e]] = (out

AT

v

n v

1

0

AT

v

)�

AT

v

(out

AT

v

n v

2

?

AT

v

)

= hffn!gg; fn! 7! fv

1

7! ?; v

2

7! 0

AT

v

ggi

but:

AT

v

[[n!v

2

:
]] = out

AT

v

n v

2

?

AT

v

= hffn!gg; fn! 7! fv

2

7! 0

AT

v

ggi

and we know from section 3 that e �

G

n!v

2

:
. Clearly the de�nition of out n v

2

d is a special case

when d = ?. We must choose an interpretation which ensures for all v

1

; v

2

and d that:

(out n v

1

?)� (out n v

2

d) = (out n v

1

d)� (out n v

2

?)

= out n v

1

?

= out n v

2

?

We do this by de�ning a domain (Val
D) whose components consist of �nite subsets of (Val �D)

such that:

(v

1

 ?)� (v

2

 d) = (v

1

 d)� (v

2

?)

On Testing the Observable Actions of Processes 19

= v

1

?

= v

2

?

= ?

and using (Val
 D) as the domain for modelling the sequels to output pre�xes. Suppose D is a

domain and �

D

is a continuous function on D satisfying for all elements d

1

; d

2

2 D:

d

1

�

D

d

2

� d

1

(1)

d

1

�

D

d

2

= d

2

�

D

d

1

(2)

d�

D

d = d (3)

then the pair hD;�

D

i is called a continuous upper semi-lattice [Gun92, Hen94]. We will use the

function �

D

as the interpretation of the internal choice operator � of VPL. We sometimes write

hD;�

D

i for the domain D with a continuous function �

D

satisfying (1) { (3) above.

Suppose hD;�

D

i and hE;�

E

i are domains:

� f : Val �D �! Val �E is right-linear if for elements d

1

; d

2

2 D:

f(v; d

1

)�

E

f(v; d

2

) = f(v; d

1

�

D

d

2

)

� f : D �! E is linear if for d

1

; d

2

2 D:

g(d

1

�

D

d

2

) = g(d

1

)�

E

g(d

2

) and,

� f : Val �D �! E is right-strict if:

f(v;?

D

) = ?

E

For domain hD;�

D

i let (Val
D) be the set characterised by the following universal property:

1. there is a right-linear, right-strict function { : Val �D �! Val
D and,

2. if hE;�

E

i is a domain and f : Val�D �! E a right-linear, right-strict function then there exists

a unique strict linear function g

f

: Val
D �! E such that the following diagram commutes:

Val �D

@

@

@

@

@

f

R

Val
D

{

?

g

f

-

E

The universal property above gives an axiomatic de�nition of the domain (Val
D). We now give

a concrete presentation of such a domain. To do this we need only consider its compact elements.

These are de�ned to be the least set satisfying the rules:

?

K

2 K

V

f

�

�n

Val ;K

f

�

�n

(K(D) n f?

D

g)

f(v; k

i

1

�

D

: : :�

D

k

i

j

) j v 2 V

f

; fk

i

1

; : : : ; k

i

j

g � K

f

g 2 K

where �

�n

denotes a �nite subset. We de�ne a preorder

@

�

]

on K by:

?

K

@

�

]

S for all S 2 K

S

1

@

�

]

S

2

if (v; k

0

) 2 S

2

implies k �

D

k

0

for some (v; k) 2 S

1

Let Val
 D be de�ned to be the completion by ideals [Gun92] of hK;

@

�

]

i, which has compact

elements of the form # (S) for each S 2 K where:

(S)

def

=fS

0

j S

0

@

�

]

Sg

The semi-lattice function �

D

can be extended to Val
D by the strict extension of �

Val
D

where:

X �

Val
D

Y

def

= G(X [Y)

20 William Ferreira

where:

G

def

= �x(�F:�Z:(Z [F (f(v; k

1

�

D

k

2

) j f(v; k

2

); (v; k

2

)g 2 Zg)))

We will write �

to refer to �

Val
D

.

Proposition 5.1. hVal
D;�

i satis�es the universal property given above.

Proof. Let { be de�ned on elements (v; k) of K(Val �D) by:

{(v; k)

def

=

�

?

K

if k = ?

D

f(v; k)g otherwise

If f : Val �D �! E is right-linear and right-strict, we de�ne g

f

: Val
D �! E on elements of K

by:

g

f

(S)

def

=

�

?

E

if S = ?

K

f(v

1

; k

1

)�

E

: : :�

E

f(v

m

; k

m

) otherwise

We have:

g

f

({(v; k)) = g

f

f(v; k)g

= f(v; k)

as required. Furthermore suppose h : Val
 D ! E is a strict linear function satisfying {;h = f ,

then for any S = f(v

1

; k

1

); : : : ; (v

m

; k

m

)g 2 K we have:

h(S) = h(f(v

1

; k

1

; : : : ; (v

m

; k

m

))g)

= h({(v

1

; k

1

)

�

� � �

�

{(v

m

; k

m

)) de�nition of

�

= h({(v

1

; k

1

))

E

� � �

E

h({(v

m

; k

m

)) h is linear

= f(v

1

; k

1

) �

E

� � � �

E

f(v

m

; k

m

) property of h

= g

f

(S)

as required. 2

Proposition 5.2. If hD;�

D

i is a domain then so is hVal
D;

�

i. 2

Before we present the construction of domainG we need to review the concept of an acceptance

set [Hen88]. Let A;B; : : : 2 A(Pref) denote the set of all �nite subsets of �nite subsets of Pref . A

set A 2 A(Pref) is an acceptance set if it satis�es the following rules:

A

1

; A

2

2 A implies A

1

[A

2

2 A

A

1

; A

2

2 A and A

1

� A � A

2

implies A 2 A

The closure operator c on acceptance sets is de�ned to be the least function satisfying the following

rules:

A 2 A

A 2 c(A)

A;B 2 c(A)

A [B 2 c(A)

A

1

� A � A

2

; A

1

; A

2

2 c(A)

A 2 c(A)

The set c(A) is the least acceptance set containing A. We have the following lemma which connects

acceptance sets to the acceptances of a process de�ned section 3.

Lemma 5.3. If jAj = jBj then A� B if and only if c(A) � c(B).

Proof. See [Hen88] p. 88. 2

On Testing the Observable Actions of Processes 21

Let F

G

be the function on domains de�ned by:

F

G

(I;O)

def

= up(fhA; f

in

] f

out

i j f

in

: InPref *

�n

I;

f

out

: OutPref *

�n

O;

A is an acceptance set,

dom(f

in

) [dom(f

out

) = jAjg)

and let �

F

G

be the strict extension of the following function:

hA; fi �

F

G

hB; gi

def

= hc(A [B); (f

in

�

I

g

in

)] (f

out

�

O

g

out

)i

where for f; g 2 (X *

�n

D) we use f �

D

g to denote the function (f �

D

g) de�ned by:

(f �

D

g)(x) =

8

<

:

f(x) �

D

g(x) if x 2 dom(f) \ dom(g)

f(x) if x 2 dom(f) n dom(g)

g(x) if x 2 dom(g) n dom(f)

The ordering on elements of F

G

(I;O) is given by:

hA; f

in

] f

out

i � hB; g

in

] g

out

i if:

B � A,

f

in

� g

in

and,

f

out

� g

out

Proposition 5.4. If hD;�

D

i and hE;�

E

i are domains, then so is hF

G

(D;E);�

F

G

i. 2

The domain constructors (Val �! �); (Val
 �) and F

G

(�; �) can be lifted to continuous functors

[Plo81a, Pie91] on !CPO

E

in a straightforward way, in which case we can de�ne the model G as

the initial �xed point in !CPO

E

of the domain equation:

G(D) = F

G

(Val �! D;Val
D)

It remains only to provide an interpretation of VPL in G. The interpretations of the operators,

�+ �; �nn and �k� are the same as the interpretation of their counterparts in [Ing94]; the interpretation

of rename

G

is given in the appendix. The functions in

G

and out

G

are given by:

in

G

n f

def

= hffn?gg; fn? 7! fgi and,

out

G

n v d

def

= hffn!gg; fn! 7! v
 dgi

We have:

out

G

n v

1

? = out

G

n v

2

?

= hffn!gg; fn! 7! ?gi

and:

(out

G

n v

1

?)�

G

(out

G

n v

2

d) = (out

G

n v

1

d)�

G

(out

G

n v

2

?)

= hffn!gg; fn! 7! ((v

1

 d)�

(v

2

?))gi

= hffn!gg; fn! 7! ?gi

The requirements for the construction of domain SG are very similar to those for G, however

we need to capture the strong acceptances of a process in the model, and this requires an extra

component. To do this we need to de�ne a generalisation of acceptance sets. If A 2 A(Pref) and

X � jAj, then A is an X-acceptance set if it satis�es the following rules:

A 2 A implies A [X 2 A

A 2 A implies A nX 2 A

A

1

; A

2

2 A implies A

1

[A

2

2 A

A

1

� A � A

2

and A

1

; A

2

2 A implies A 2 A

22 William Ferreira

For a given A and X � jAj we de�ne c

X

(A) as the least set satisfy the rules:

A 2 A

A [X 2 c

X

(A)

A 2 A

A nX 2 c

X

(A)

A

1

; A

2

2 c

X

(A)

A

1

[A

2

2 c

X

(A)

A

1

� A � A

2

; A

1

; A

2

2 c

X

(A)

A 2 c

X

(A)

We leave the proof of the following result to the reader:

Proposition 5.5. c

X

(A) is the least X-acceptance set containing A. 2

Informally elements of SG are triples hA; X; fi where:

� X is a subset of jAj,

� A is an X-acceptance set and,

� f is a function recording the sequels to input and output pre�xes, with domain dom(f) = jAjnX.

The set A represents the strong acceptances of a process in the same way that the acceptance set of

an element hA; fi ofG represents the acceptances of a process. The set X represents the divergences

of a process; the connection between the strong acceptances, divergences and X-acceptances is given

by the following lemma, which is a generalisation of lemma 5.3:

Lemma 5.6. If X � Y; X � jAj; Y � jBj and jAj � jBj then:

A nX � B n Y if and only if c

X

(A) � c

Y

(B)

Proof. For the only if case suppose that the hypotheses of the lemmahold and that AnX � BnY ;

we show by induction on the proof of the statement A 2 c

X

(A) that A 2 c

Y

(B), and there are four

cases:

� A = A

1

nX with A

1

2 A. Then A 2 A nX in which case, for some B 2 B n Y; B � A. Now

A � jAj which implies A � jBj, and jBj 2 c

Y

(B). Therefore we have that:

B � A � jAj

which implies A 2 cY B, as required.

� A = A

1

[X with A

1

2 A. In this case we have:

A

1

2 A) A

1

nX 2 A nX

) B � A

1

nX for some B 2 B n Y

) B � A

1

nX � jAj � jBj

) A

1

nX 2 c

Y

(B)

Furthermore X � Y implies:

B � A

1

nX � A

1

[X � (A

1

nX) [Y

and therefore A

1

[X 2 c

Y

(B), as required.

The remaining cases A = A

1

[A

2

or A

1

� A � A

2

with A

1

; A

2

2 c

X

(A) follow by induction.

For the if case we �rst show that if Y � jBj then:

A 2 c

Y

(B) implies B � A for some B 2 B n Y (4)

by induction on the proof of the statement A 2 c

Y

(B). Suppose that the hypotheses of the lemma

are true and A 2 A nX. Since AnX � c

X

(A), if A 2 A nX we have A 2 c

Y

(B), and by (4) B � A

for some B 2 B n Y . 2

On Testing the Observable Actions of Processes 23

Let F

SG

be the function on domains de�ned by:

F

SG

(I;O)

def

= up(fhA; X; f

in

] f

out

i j X � jAj;

f

in

: InPref *

�n

I;

f

out

: OutPref *

�n

O;

A is an X-acceptance set;

dom(f

in

) [dom(f

out

) = jAj nXg)

Let
 : (Pref *

�n

D � Pref *

�n

D) �! Pref be the function de�ned by:

(f; g)

def

=fn? j 8v 2 Val ; f(n?)(v) = ? or g(n?)(v) = ?g [fn! j f(n!) = ? or g(n!) = ?g

and let �

F

SG

be the strict extension of the following function:

hA; X; fi �

F

SG

hB; Y; gi

def

= hc

Z

(A[B); Z; (f

in

�

I

g

in

)dC] (f

out

�

O

g

out

)dCi

where:

C

def

= (jAj [jBj) n Z and,

Z

def

= X [Y [
(f; g)

and fdX denote the function f with domain restricted to the elements of X. The ordering on elements

of F

SG

(D;E) is given by:

hA; X; f

in

] f

out

i � hB; Y; g

in

] g

out

i if:

B � A,

f

in

� g

in

,

f

out

� g

out

and,

Y � X

Proposition 5.7. If hD;�

D

i and hE;�

E

i are domains, then so is hF

SG

(D;E);�

F

SG

i.

Proof.

2

We can lift F

SG

(�; �) to a continuous functor on !CPO

E

, and we de�ne SG to be the initial �xed

point of the domain equation:

D = F

SG

((Val �! D); (Val
D))

All that remains is to provide interpretations of VPL in SG. The interpretations of 0 and the

functions in and out are de�ned below:

0

SG

def

= hf;g; ;; ;i

in

SG

n f

def

=

�

hffn?gg; ;; fn? 7! fgi if f 6= ?

Val�!SG

hffn?g; ;g; fn?g;;i otherwise

out

SG

n v d

def

=

�

hffn!gg; ;; fn! 7! v
 dgi if d 6= ?

hffn!g; ;g; fn!g;;i otherwise

The interpretations of k

SG

; �n and �[R] are the same as for G; the interpretation for �+ � is given in

the appendix.

The de�nition of �

F

SG

deserves some explanation. Recall that �

SG

provides the interpretation

of the internal choice operator � of VPL; consider the two VPL processes:

e

1

def

= n?x:if even(x) then 0 else
 and: e

2

def

= n?x:if even(x) then
 else0

where even(x) is true if x is divisible by two and false otherwise. We have:

e

i

6@

�

SG

0 for i = 1; 2

24 William Ferreira

by taking the contexts:

C

1

def

= [] k n!2:m!:0 and,

C

2

def

= [] k n!1:m!:0

since C

1

[e

1

] #

SG

m!; C

2

[e

2

] #

SG

m! and obviously C

i

[0] 6#

SG

m!. When e

1

and e

2

are combined using

� the pre�x n? becomes a divergence of the process e

1

� e

2

, although it is not a divergence of either

e

1

or e

2

. Let f

even

and f

odd

be the functions which converge for even and odd values respectively,

and diverge otherwise. From the de�nition of �

SG

we have:

SG[[e

1

� e

2

]] = hffn?gg; ;; fn? 7! f

even

gi �

SG

hffn?gg; ;; fn? 7! f

odd

gi

= hffn?g; ;g; fn?g; ;i

� hf;g; ;; ;i

= SG[[0]]

6 Full Abstraction

This section of the report is devoted to showing that

@

�

G

is fully abstract for G and

@

�

SG

is fully

abstract for SG i.e. that for terms e

1

; e

2

2 VPL we have:

e

1

@

�

G

e

2

if and only if G[[e

1

]] �

G

G[[e

2

]] and,

e

1

@

�

SG

e

2

if and only if SG[[e

1

]] �

SG

SG[[e

2

]]

We begin by outlining the proof technique used in [Ing94] to show that AT

v

is fully abstract for

@

�

MT

. Firstly a new ordering �

AT

v

is de�ned on elements of AT

v

, using concepts similar to those

which provide the alternative characterisations for must testing. Secondly it is shown that �

AT

v

is

internally fully abstract with respect to AT

v

, i.e. for all d

1

; d

2

2 AT

v

:

d

1

�

AT

v

d

2

if and only if d

1

�

AT

v

d

2

The goal is then to show that for all e

2

; e

2

2 VPL:

e

1

�

MT

e

2

if and only if AT

v

[[e

1

]]�

AT

v

AT

v

[[e

2

]]

This is achieved by:

1. de�ning an equational proof systems P

AT

v

on expressions, with judgements of the form ` e

1

=

M

e

2

, which is sound for AT

v

with respect to

@

�

MT

and �

AT

v

, i.e:

` e

1

=

M

e

2

) e

1

@

�

MT

e

2

and AT

v

[[e

1

]] �

AT

v

AT

v

[[e

2

]];

2. de�ning a class of closed expressions of a particular form, called head normal forms, and showing

that for each e 2 VPL there exists a term hnf (e) in head normal form, such that ` e =

M

hnf (e)

and,

3. showing that for terms hnf (e

1

) and hnf (e

2

) in head normal form:

hnf (e

1

)�

MT

hnf (e

2

) if and only if AT

v

[[hnf (e

1

)]]�

AT

v

AT

v

[[hnf (e

2

)]]:

Using these results it is straightforward to prove full abstraction. For all e

1

; e

2

2 VPL we have:

e

1

@

�

MT

e

2

if and only if hnf (e

1

)

@

�

MT

hnf (e

2

) by 1 and 2 above

if and only if hnf (e

1

)�

MT

hnf (e

2

) by the alternative characterisation

if and only if AT

v

[[hnf (e

1

)]]�

AT

v

AT

v

[[hnf (e

2

)]] by 3 above

if and only if AT

v

[[e

1

]]�

AT

v

AT

v

[[e

2

]] by 1 and 2 above

if and only if AT

v

[[e

1

]] �

AT

v

AT

v

[[e

2

]] by internal full abstraction

The head normal forms de�ned in [Ing94] re
ect the structure of elements of AT

v

directly in the

syntax of VPL. Suppose A 2 A(Pref) is non-empty and for each a 2 jAj there is an expression e

a

satisfying:

1. If a = n? then e

a

has the form n?x:e

0

2. If a = n! then e

a

has the form

P

fn!v:f(v) j v 2 dom(f)g where f 2 (Val *

�n

VPL).

On Testing the Observable Actions of Processes 25

Then the term:

M

fe

A

j A 2 Ag

is in head normal form if each e

A

is the simple sum form:

X

fe

a

j a 2 Ag

where

M

denotes the application of the operator � to a non-empty, �nite set of expressions, and

P

the application of + to a �nite set of expressions, where by convention if the set is �nite then the

expression denotes 0. Let �

a

�!

AT

v

� be the least in�x partial function on elements of AT

v

satisfying

the following rules:

d = hA; fi; f(n!)(v) = d

0

d

n!v

�!

AT

v

d

0

d = hA; fi; f(n?)(v) = d

0

d

n?v

��!

AT

v

d

0

The relationship between terms in head normal form and their denotations in AT

v

is embodied in

the following lemma, and forms the crux of the full abstraction proof for AT

v

and

@

�

MT

in [Ing94]:

Lemma 6.1. For e 2 VPL we have:

hnf (e)

"

=)

a

�! e

0

if and only if AT

v

[[hnf (e)]]

a

�!

AT

v

AT

v

[[e

0

]]

2

The close relationship between

@

�

MT

;

@

�

G

and

@

�

SG

, and the models AT

v

;G and SG will enable

us to take advantage of the full abstraction proof for

@

�

MT

and AT

v

. By proposition 4.1 we have

that:

` e

1

=

M

e

2

implies e

1

@

�

G

e

2

and e

1

@

�

SG

e

2

and it is also straightforward to show that:

` e

1

=

M

e

2

implies G[[e

1

]] �

G

G[[e

2

]] and SG[[e

1

]] �

SG

SG[[e

2

]]

i.e. that the proof system de�ned for

@

�

MT

in [Ing94] is sound for G and SG. In particular this

means that for each convergent term e there is a head normal form hnf (e) such that e �

G

hnf (e)

and e �

SG

hnf (e), and also G[[e]] = G[[hnf (e)]] and SG[[e]] = SG[[hnf (e)]].

Let �

a

�!

G

� be the least in�x partial function on elements of AT

v

satisfying the following rules:

d = hA; fi; f(n!) = ?

d

n!v

�!

G

d

0

d = hA; fi; f(n?)(v) = d

0

d

n?v

��!

G

d

0

d = hA; fi; f(v; d

0

)g � f(n!)

d

n!v

�!

G

d

0

We can use

a

�!

G

to de�ne an alternative characterisation of �

G

on G. Let � + � be the least relation

on elements of G and Act

�

satisfying:

d + " if d 6= ?

d + a:s if d + and d

a

�!

G

d

0

implies d

0

+ s

Let A(d; s), the acceptances of d after s be de�ned by:

A(d; ")

def

=

�

A if d = hA; fi

; otherwise

A(d; a:s)

def

=

�

A(d

0

; s) if d = hA; fi and d

a

�!

G

d

0

; otherwise

We can now present the alternative characterisation of �

G

on G:

Definition 6.2. For d

1

; d

2

2G and s 2 Act

�

let d

1

�

G

d

2

if d

1

+ s implies:

� d

2

+ s and,

� A(d

2

; s) � A(d

1

; s).

2

26 William Ferreira

Theorem 6.3. For d

1

; d

2

2 G we have:

d

1

�

G

d

2

if and only if d

1

�

G

d

2

Proof. For the only if case we �rst prove a sub-result showing that whenever d

1

�

G

d

2

and d

1

+ a

then d

2

a

�!

G

d

0

2

implies d

1

a

�!

G

d

0

1

for some d

0

1

with d

0

1

�

G

d

0

2

. We then show using this result

that whenever d

1

�

G

d

2

and d

1

+ s then d

2

+ s and A(d

2

; s) � A(d

1

; s), by induction on s.

For the if case we show that d

1

�

G

d

2

implies d

n

1

�

G

d

2

for each n � 0 where d

k

denotes the

kth �nite approximation to d 2G and where:

d =

G

k

fd

k

g

2

Unfortunately the property of head normal forms embodied in lemma 6.1 does not hold for G.

For example consider the head normal form e

def

= n!v

1

:
� n!v

2

:0. We have:

e

n!v

2

��! 0

but:

G[[e]]

n!v

2

��!

G

? 6= G[[0]]

however we do have the following result:

Lemma 6.4.

� hnf (e)

"

=)

n?v

��! e

0

if and only if G[[hnf (e)]]

n?v

��!

G

G[[e

0

]],

� G[[hnf (e)]]

n!v

�!

G

d 6= ? implies hnf (e)

"

=)

n!v

�! e

0

and G[[e

0

]] = d,

� G[[hnf (e)]]

n!v

�!

G

? if and only if 9v

0

: hnf (e)

"

=)

n!v

0

��! e

0

and e

0

*,

� hnf (e) +

G

n!v and hnf (e)

"

=)

n!v

�! e

0

implies G[[hnf (e)]]

n!v

�!

G

G[[e

0

]].

Proof. By examination of the structure of head normal forms, and the interpretation of the

operators of VPL in G. 2

The full abstraction result for

@

�

G

and G is a consequence of the following two lemmas:

Lemma 6.5. For e 2 VPL we have:

e +

G

s if and only if G[[e]] + s

Proof. The proof is by induction on s.

� s = " { For the only if case, we have e + implies e �

G

hnf (e) and by the structure of head normal

forms we have G[[e]] =G[[hnf (e)]] 6= ?. For the if case we de�ne �nite approximations e

k

; k � 0

to e such that e

k

�

G

e and G[[e]] =

F

fG[[e

k

]] j k � 0g. In this case if G[[e]] 6= ? then G[[e

k

]] 6= ?

for some k, and we can show that this implies e

k

+ in which case by the de�nition of �

G

then

e + as well.

� s = n!v:s

0

{ For the only if case suppose that e +

G

s, then e �

G

hnf (e) and G[[e]] =G[[hnf (e)]]. If

G(hnf (e))

n!v

�!

G

d = ? then by lemma 6.4 we have that hnf (e) 6+

G

n!v which is a contradiction;

therefore d 6= ? in which case by lemma 6.4, we have that hnf (e)

"

=)

n!v

�! e

0

and G[[e

0

]] = d.

Furthermore e

0

+

G

s

0

and therefore by induction we have that d + s

0

as required.

For the if case suppose that G[[e]] + s, then by the base case we have that e + which in

turn implies that e �

G

hnf (e) and G[[e]] = G[[hnf (e)]]. Suppose hnf (e)

"

=)

n!v

0

��! e

0

and e

0

*,

then by lemma 6.4 we have that G[[hnf (e)]]

n!v

�!

G

? which contradicts the fact that G[[e]] + s,

so we may assume that hnf (e) +

G

n!v. If hnf (e)

"

=)

n!v

�! e

0

then by lemma 6.4 we have that

G[[hnf (e)]]

n!v

�!

G

G[[e

0

]] and G[[e

0

]] + s

0

by de�nition. Therefore by induction we may assume that

e

0

+

G

s.

On Testing the Observable Actions of Processes 27

� s = n?v:s

0

{ this case is simpler than the case s = n!v:s

0

.

2

Lemma 6.6. For all e 2 VPL and s 2 Act

�

, e +

G

s implies:

A(G[[e]]; s) = c(A(e; s))

Proof. If e +

G

s then e �

G

hnf (e) and G[[e]] = G[[hnf (e)]], so it is su�cient to show that:

A(G[[hnf (e)]]; s) = c(A(hnf (e); s))

which follows by examination of the structure of head normal forms, the closure operator c and the

interpretation of the operators �; extch and �: in G. 2

Theorem 6.7. For e

1

; e

2

2 VPL we have:

e

1

@

�

G

e

2

if and only if G[[e

1

]] �

G

G[[e

2

]]

Proof. First show that:

e

1

�

G

e

2

if and only if G[[e

1

]]�

G

G[[e

2

]] (5)

using lemmas 6.5 and 6.6. By (5) and theorems 6.3 and 3.19 we have that:

e

1

@

�

G

e

2

implies e

1

�

G

e

2

implies G[[e

1

]] �

G

G[[e

2

]] (6)

By (5), corollary 3.13 and theorem 6.3 we have that:

G[[e

1

]] �

G

G[[e

2

]] implies e

1

@

�

f

G

e

2

(7)

so suppose that C is some arbitrary context; to complete the proof of the theorem we must show

that:

G[[e

1

]] �

G

G[[e

2

]] implies C [e

1

]

@

�

f

G

C [e

2

]

therefore:

G[[C [e

1

]]] = C

G

[G[[e

1

]]] by compositionality of G

�

G

C

G

[G[[e

2

]]]

= G[[C [e

2

]]]

implies:

C [e

1

]

@

�

f

G

C [e

2

]

by (7), as required. 2

The proof of full abstraction for

@

�

SG

and SG is very similar to that for G and

@

�

G

. Firstly we

de�ne an alternative characterisation of �

SG

on G. Let �

a

�!

SG

� be the least in�x partial function

on elements of AT

v

satisfying the following rules:

d = hA; X; fi; � 2 X

d

�v

�!

SG

?

d = hA; X; fi; f(n?)(v) = d

0

d

n?v

��!

SG

d

0

d = hA; X; fi; f(v; d

0

)g � f(n!)

d

n!v

�!

SG

d

0

For each d 2 SG and s 2 Act

�

let D(d; s) be de�ned by:

D(d; ")

def

=

�

X if d = hA; X; fi

; otherwise

D(d; a:s

0

)

def

=

�

D(d

0

; s

0

) if d = hA; X; fi and

; otherwise

28 William Ferreira

and for each d 2 SG and s 2 Act

�

let A

S

(d; s) denote the obvious extension of the acceptances of

d after s to elements of SG.

Definition 6.8. For d

1

; d

2

2 SG and s 2 Act

�

let d

1

�

SG

d

2

if d

1

+ s implies:

� d

2

+ s,

� D(d

2

; s) � D(d

1

; s) and,

� A

S

(d

2

; s) � A

S

(d

1

; s).

2

We have the following result which is the analogue for SG of theorem 6.3:

Theorem 6.9. For d

1

; d

2

2 SG we have:

d

1

�

SG

d

2

if and only if d

1

�

SG

d

2

Proof. Similar to the proof of theorem 6.3. 2

We now prove an analogous result to lemma 6.4 which links the behaviour of head normal forms

in the operational semantics and SG.

Lemma 6.10.

� SG[[hnf (e)]]

n!v

�!

SG

d 6= ? implies hnf (e)

"

=)

n!v

�! e

0

and SG[[e

0

]] = d,

� SG[[hnf (e)]]

n!v

�!

SG

? if and only if 9v

0

: hnf (e)

"

=)

n!v

0

��! e

0

and e

0

*,

� hnf (e) +

G

n!v and hnf (e)

"

=)

n!v

�! e

0

implies SG[[hnf (e)]]

n!v

�!

SG

SG[[e

0

]],

� SG[[hnf (e)]]

n?v

��!

SG

? if and only if 8v; 9e

0

: hnf (e)

"

=)

n?v

��! e

0

and e

0

*,

� SG[[hnf (e)]]

n?v

��!

SG

d 6= ? implies hnf (e)

"

=)

n?v

��! e

0

and SG[[e

0

]] = d and,

� hnf (e)

"

=)

n?v

��! e

0

implies SG[[hnf (e)]]

n?v

��!

SG

SG[[e

0

]].

Proof. Similar to the proof of lemma 6.4. 2

Full abstraction for

@

�

SG

and SG is a consequence of the following three lemmas:

Lemma 6.11. For e 2 VPL we have:

e +

G

s if and only if SG[[e]] + s

Proof. The proof is virtually identical to that of lemma 6.5 and uses lemma 6.10. 2

Lemma 6.12. If e 2 VPL and e +

G

s then:

D(e; s) = D(SG[[e]]; s)

Proof. If e +

G

s then we have e �

G

hnf (e) and SG[[e]] = SG[[hnf (e)]], so it is su�cient to show

that:

D(hnf (e); s) = D(SG[[hnf (e)]]; s)

The proof is by induction on s, and uses lemma 6.10. 2

Lemma 6.13. If e 2 VPL and e +

G

s then:

c

D(e;s)

(A

S

(e; s)) = A

S

(SG[[e]]; s)

On Testing the Observable Actions of Processes 29

Proof. Since e +

G

s we have e �

G

hnf (e) and SG[[e]] = SG[[hnf (e)]], so it is su�cient to show

that:

c

D(hnf (e);s)

(A

S

(hnf (e); s)) = A

S

(SG[[hnf (e)]]; s)

The proof is by induction on s, and follows from lemma 6.10, the structure of head normal forms

and the interpretations of the operators �;+ and �: in SG. 2

We can now present our �nal result:

Theorem 6.14. For e

1

; e

2

2 VPL we have:

e

1

@

�

SG

e

2

if and only if SG[[e

1

]] �

SG

SG[[e

2

]]

Proof. The proof is similar to the proof of theorem 6.7, and di�ers only in the proof of:

e

1

�

SG

e

2

if and only if SG[[e

1

]]�

SG

SG[[e

2

]]

For the only if case suppose SG[[e

1

]] + s, we have:

SG[[e

1

]] + s implies e

1

+

G

s by lemma 6.11

implies e

2

+

G

s hypothesis

implies SG[[e

2

]] + s by lemma 6.11

furthermore:

e

1

�

SG

e

2

implies A

S

(e

2

; s)�A

S

(e

1

; s) by de�nition

and D(e

2

; s) � D(e

1

; s) by lemma 3.10

and:

D(e

2

; s) � D(e

1

; s) implies D(SG[[e

2

]]; s) � D(SG[[e

1

]]; s) by lemma 6.12

Therefore:

e

1

�

SG

e

2

if and only if A(e

2

; s) n D(e

2

; s)� A(e

1

; s) n D(e

1

; s) by de�nition

implies c

D(e

2

;s)

(A(e

2

; s)) � c

D(e

1

;s)

(A(e

1

; s)) by lemma 5.6

implies c

D(e

2

;s)

(A

S

(e

2

; s)) � c

D(e

1

;s)

(A

S

(e

1

; s)) since c

X

(A) = c

X

(A nX)

implies A

S

(SG[[e

2

]]; s) � A

S

(SG[[e

1

]]; s) by lemma 6.13

as required. The if case of the theorem is the same except we apply the relevant results in the reverse

order. 2

7 Conclusion

Our goal was to investigate the behavioural preorders obtained, by closing up basic notions of

observability for a (version of) a value-passing process algebra, under all contexts of the language.

The two notions of observability we considered, can guarantee and can strongly guarantee, and their

respective preorders, guarantee testing and strong guarantee testing, provide complementary accounts

to must testing as a behavioural and denotational theory for the value-passing process algebra VPL.

However this work is not the �rst to attempt such an investigation. In [Foc95] Focardi introduces

two behavioural preorders de�ned contextually from basic obervable properties, for CCS [Mil89].

The �rst preorder, denoted �

nr#

, corresponds to our guarantee testing preorder, while the second

preorder, �

smust

, corresponds to our strong guarantee preorder. Focardi compares these preorders

to each other, and to must testing, and also shows how �

smust

corresponds to a re-formulation of

must testing, for a slightly modi�ed notion of success for a computation. No algebraic theory or

models are developed for these preorders.

In [Fer96] and [FH97] a language very similar to VPL called PAVP (for Process Algebra with

Value Production) is studied, where elements of PAVP may be viewed either as processes in the

sense of VPL, or expressions of a �rst-order language which may evaluate to a canonical set of

values. The production of a value is signalled by a transition of the form e

p

v

�! e

0

where e

0

is a

possibly non-trivial side-e�ect associated with the evaluation. Two contextual preorders are de�ned

30 William Ferreira

for PAVP using the production of a value as the basic unit of observability. The �rst preorder is

the analogous version of must testing for this language, while the second preorder, called guarantee

testing, is de�nitionally equivalent to definition 3.3, except that instead of the predicate e #

G

n, a

predicate e # v used where:

e # v if e + and e

"

=) e

0 �

�6�! implies e

0

p

v

�!

However the operational semantics of PAVP is such that whenever e + and e

p

v

�! e

0

then e

0

+ as

well, so in e�ect guarantee testing in PAVP has the same testing power as strong guarantee testing

in VPL. The work in this present report can be viewed as an extension of the work on PAVP to

the more general setting of VPL. In particular in [Fer96] the model de�ned for guarantee testing

is derived as a retract of the model for must testing, whereas the models in this report have been

constructed from �rst principles.

Independently, Boreale, De Nicola and Pugliese [BNP97] have investigated testing preorders

induced by observability predicates on processes, for the pure version of � -less CCS [NH84, Hen88].

Using combinations of the predicates !`; # and # ` de�ned by:

� P !` if P

"

=) P

0

implies P

0

`

=),

� P # if P converges and,

� P # ` if P

"

=) P

0

implies P

0

`

=) P

00

and P

00

#.

they construct �ve contextual preorders. The preorder obtained by closing up the conjunction of #

and !` under all contexts, is the analogous version of

@

�

G

for pure � -less CCS. In addition, the authors

show that their version of

@

�

G

coincides with must testing, which proves a conjecture in [Fer96]; we

have seen that

@

�

G

and

@

�

MT

only coincide in the value-passing case (theorem 4.3) under a mild

assumption about the operational semantics of the conditional expression. The preorder in [BNP97]

de�ned from the conjunction of # ` and #, and denoted safe-must testing, corresponds to our strong

guarantee preorder

@

�

SG

, although we need to treat the convergence of an action di�erently in the

value-passing case.

References

[BNP97] M. Boreale, R. De Nicola, and R. Pugliese. Basic observables for processes. In Proceedings of ICALP.

Springer-Verlag, 1997. To appear.

[Fer96] W. Ferreira. Semantic Theories for Concurrent ML. D.Phil thesis, University of Sussex, Department of

Cognitive and Computing Sciences, February 1996.

[FH97] W. Ferreira and M. Hennessy. Testing value production in concurrent ML. Theoretical Computer Science,

1997. To appear.

[Foc95] Filippo Focardi. Equivalenza e Giustizia nelle Algebre di Processo. Tesi di Laurea, Facolta' di Scienze

Matematiche Fisiche e Naturali, Universita' degli Studi di Roma La Sapienza, 1995. (In Italian).

[Gun92] Carl A. Gunter. Semantics of Programming Languages. MIT Press, Cambridge Massachusetts, 1992.

[Hen88] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[Hen94] M. Hennessy. Higher-order processes and their models. In Serge Abiteboul and Eli Shamir, editors, Pro-

ceedings ICALP, volume 820 of Lecture Notes in Computer Science, pages 286{303. Springer-Verlag, 1994.

[HI93] M. Hennessy and A. Ing�olfsd�ottir. A theory of communicating processes with value passing. Information

and Computation, 107:202{236, 1993.

[Ing94] A. Ing�olfsd�ottir. Semantic Models for Communicating Processes with Value Passing. D.Phil thesis, Uni-

versity of Sussex, Department of Cognitive and Computing Sciences, 1994.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science.

Springer-Verlag, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cli�s, 1989.

[Mor68] J. H. Morris. Lambda Calculus Models of Programming Languages. Ph.D. thesis, M.I.T., 1968.

[NH84] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical Computer Science, 24(0):83{

113, 1984.

[Par81] D. M. R. Park. Concurrency and Automata on In�nite Sequences, volume 104 of Lecture Notes in Computer

Science, pages 167{183. Springer-Verlag, 1981.

[Pie91] BenjaminC. Pierce. Basic Category Theory for Computer Scientists. MIT Press, Cambridge,Massachusetts,

1991.

[Plo81a] Gordon D. Plotkin. Lecture notes in domain theory, 1981.

On Testing the Observable Actions of Processes 31

[Plo81b] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI-FN-19,

Computer Science Dept, Aarhus University, Denmark, 1981.

[San92] Davide Sangiorgi. Expresing Mobility in Process Algebras: First Order and Higher-Order Paradigms. Ph.D.

thesis, LFCS, Edinburgh University, 1992.

32 William Ferreira

A Interpretation of the remaining operators of VPL in G and SG.

Let rename

G

be de�ned by rename

G

def

= �R: �x(�F:up(�

R

F)) where:

�

R

F hA; fi

def

=

M

G

f

X

G

T

A

j A 2 Ag

and:

T

A

def

=fin

G

R(n) �v:F (f(n?)(v)) j n? 2 Ag [fout

G

R(n) v F (d) j n! 2 A; f(v; d)g � f(n!)g

and where we have used

L

G

and

P

G

to denote the application of �

G

and +

G

to �nite subsets of

G.

Let +

SG

be the strict extension of the following function:

hA; X; fi +

SG

hB; Y; gi

def

= hc

Z

(A_ B); Z; (f

in

�

SG

g

in

)dC] (f

out

�

SG

g

out

)dCi

where:

C

def

= (jAj [jBj) n Z;

Z

def

= X [Y [
(f; g) and,

A _ B

def

= fA [B j A 2 A; B 2 Bg

