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ABSTRACT. This paper presents two typed higher-order concurrent functional programming lan-

guages, based on Reppy’s Concurrent ML. The first is a simplified, monomorphic variant of CML,

which allows reduction of terms of any type. The second uses an explicit type constructor for com-

putation, in the style of Moggi’s monadic metalanguage. Each of these languages is given an opera-

tional semantics, which can be used as the basis of bisimulation equivalence. We show how Moggi’s

translation of the call-by-value lambda-calculus into the mondadic metalanguage can be extended to

these concurrent languages, and that this translation is correct up to weak bisimulation.

1 Introduction

Reppy’s (1991, 1992) Concurrent ML is an extension of New Jersey ML with

features for spawning threads, which can communicate by one-to-one synchron-

ous handshake in the style of Milner’s (1989) CCS.

There are (at least) two approaches to giving the operational semantics to

CML. The ‘functional language definition’ tradition (Milner, Tofte, and Harper

1990, for example) is to define unlabelled reductions between entire programs,

and to use this semantics to prove properties such as type-safety. Reppy uses this

approach to give a reduction semantics to CML based on evaluation contexts

E[ ], for example giving the semantics of if-expressions as:

E[iftruethene elsef ] �! E[e ] E[iffalsethene elsef ]�! E[f ]

The ‘concurrency semantics’ tradition (Milner 1989, for example) is to define

labelled reductions between program fragments, and to use this semantics as the

basis of equivalences (such as bisimulation) between program fragments. Fer-

reira, Hennessy and Jeffrey (1995) use this approach to give a labelled transition

system semantics to CML including silent transitions
τ

�! and value transitions

Xv

�!, for example giving the semantics of if-expressions as:

e

Xtrue

���! e

0

ife thenf elseg

τ

�! e

0

kf

e

Xfalse

����! e

0

ife thenf elseg

τ

�! e

0

kg

e

α

�! e

0

ife thenf elseg

α

�! ife

0

thenf elseg

Presented at Higher Order Operational Techniques in Semantics workshop, Newton Institute, Cam-

bridge, October 1995.
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The resulting labelled transition system can be used as the basis of an equational

theory of CML expressions, using bisimulation as equivalence.

Unfortunately, there are some problems with this semantics:

� It is complex, due to having to allow expressions in any evaluation context

to reduce (for example requiring three rules for if-expressions rather than

Reppy’s two axiom schemas).

� It produces very long reductions, due to large numbers of ‘book-keeping’

steps (for example the long reduction in Table 9).

� The resulting equational theory does not have pleasant mathematical proper-

ties (for example neither β- nor η-conversion hold for the language).

In this paper we present a variant of CML using computation types. These pro-

vide an explicit type constructor comp for computation, which means that the

type system can distinguish between expressions which can perform computa-

tion (those of type Acomp) and those which are guaranteed to be in normal

form (anything else). Differentiating by type between expressions which can

and cannot perform reductions makes the operational semantics much simpler,

for example the much shorter reduction in Table 16 and the simpler operational

rules for if-expressions:

if truethen f elseg

τ

�! f if false then f elseg

τ

�! g

Computation types were originally proposed by Moggi (1991) in a denotational

setting to provide models of non-trivial computation (such as CML commu-

nication) without losing pleasant mathematical properties (such as β- and η-

reduction). Moggi provided a translation from the call-by-value λ-calculus into

the language with computation types, which we can adapt for CML and prove to

be correct up to weak bisimulation.

We can also use equational reasoning to transform inefficient programs (such

as the translation of the long reduction in Table 9) into efficient ones (such as the

short reduction in Table 16). We conjecture that such optimizations may make

languages with explicit computation types simpler to optimize.

IN SECTION 2 we present a cut-down version of the operational semantics for

CML presented in (Ferreira, Hennessy, and Jeffrey 1995), including a suitable

definition of bisimulation for CML programs.

IN SECTION 3 we present the variant of CML with explicit computation types,

and show that the resulting equational theory of bisimulation has better mathe-

matical properties than that of CML. This is a variant of the language presented

in (Jeffrey 1995a).
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IN SECTION 4 we provide a translation from the first language into the second,

and show that it is correct up to bisimulation.

2 Concurrent ML

In this section, we introduce a subset of Concurrent ML (CML), and provide a

labelled transition system semantics for it. This provides weak bisimulation as

an equivalence on programs.

This section is based on joint work with Ferreira and Hennessy, and is dis-

cussed in more detail in (Ferreira, Hennessy, and Jeffrey 1995).

2.1 Syntax

Concurrent ML (CML) is an extension to New Jersey ML which allows for

the implementation of concurrent programs. Communication takes place along

channels, and is a one-to-one handshake similar to Milner’s (1989) CCS. For ex-

ample, the process which transmits value v of type A along channel a and then

returns the canonical value () of type unit is:

send

A

(a,v)

In this paper, we are using a simplified notion of channel, where channels are

untyped, and so send

A

has type:

send

A

: (chan*A )-> unit

The process which accepts value v of type A along channel a and returns v is:

accept

A

a

This has type:

accept

A

: chan ->A

The fragment of CML we are considering is monomorphic, which is why send

and accept have to be type-indexed. We shall often elide these indices.

Evaluation proceeds as in ML, with left-to-right call-by-value evaluation, so

a process which accepts values v then w along channel a and returns the pair
(v,w) is:

(accepta,accepta)

We can define the sequential composition of e and f to be a term which evaluates

e , discards the result, then evaluates f to be (for fresh x ):

e ;f = letx =e inf

A thunked process can be forked off for concurrent evaluation using spawn, for

example the concurrent passing of v along a can be given:

spawn(fnx => send(a,v));accepta
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This spawns send(a,v) off for concurrent execution, then evaluates accepta.

These two processes can then communicate. In this paper, we are ignoring

CML’s threads so spawn has type:

spawn : (unit-> A )->unit

CML does not provide a general ‘external choice’ operator such as CCS +. In-

stead, guarded choice is provided, and the type mechanism is used to ensure that

choice is only ever used on guarded computation. The type A event is used as

the type of guarded processes of type A , and CML allows for the creation of

guarded input and output:

transmit

A

: (chan *A )->unitevent receive

A

: chan-> A event

and for guarded sequential computation:

wrap : (A event * (A ->B ))-> B event

For example the guarded process which inputs a value on a and outputs it on b

is given:

wrap(receivea,fnx => send(b,x)) : unitevent

CML provides choice between guarded processes using choose. In CML this is

defined on lists, but for simplicity we shall give it only for pairs:

choose : (A event *A event)->A event

For example the guarded process which chooses between receiving a signal on a

or b is:

choose(receive

A

a,receive

A

b) : A event

Guarded processes can be treated as any other process, using the function sync:

sync : A event ->A

For example, we can execute the above guarded process by saying:

sync(choose(receive

A

a,receive

A

b)) : A

In fact, accept and send are not primitives in CML, and are defined:

accept

A

def

= fnx => sync(receive

A

x)

send

A

def

= fnx => sync(transmit

A

x)

This paper cannot provide a full introduction to CML, and the interested reader

is referred to Reppy’s papers (Reppy 1991; Reppy 1992) for further explanation.

The fragment of CML we will consider here is missing much of CML’s func-

tionality, notably polymorphism, guards and thread identifiers. It is similar to the

fragment of CML considered in (Ferreira, Hennessy, and Jeffrey 1995) except
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� ` e : A

� ` ce : B
[c : A!B ]

� ` e : bool � ` f : A � ` g : A

� ` ife thenf elseg : A

� ` e : A � ` f : B

� ` (e,f) : A *B

� ` e : A �;x : A ` f : B

� ` letx =e inf : B

� ` e : A -> B � ` f : A

� ` ef : B �;x : A ` x : A

� ` x : A

�;y : B ` x : A
[x 6= y ]

� ` true : bool � ` false : bool � ` n : int � ` k : chan

� ` () : unit

�;x : A ->B ;y : A ` e : B

� ` recx =fny =>e : A ->B

TABLE 1. Types for µCML expressions

that for simplicity we do not consider the always command. We will call this

subset ‘core τ-free CML’, or µCML for short.

For simplicity, we will only use unit, bool, int and chan as base types,

although other types such as lists could easily be added.

The integer values are given by the grammar:

n ::= � � � j -1 j 0 j 1 j � � �

The channel values are given by the grammar:
k ::= a j b j � � �

The values are given by the grammar:

v ::= true j false j n j k j () j recx =fnx =>e j x

The expressions are given by the grammar:

e ::= v j ce j ife thene elsee j (e,e) j letx =e ine j ee

Finally, the basic functions are given by the grammar:

c ::= fst j snd j add j mul j leq j transmit

A

j receive

A

j choose j spawn j sync j wrap j never

µCML is a typed language, with a type system given by the grammar:

A ::= unit j bool j int j chan j A *A j A ->A j A event

The type judgements for expressions are given as judgements � ` e : A , where

� ranges over contexts of the form x1 : A1; : : :;xn : An. The type system is in

Tables 1 and 2.

We can define syntactic sugar for µCML definitions, writing fnx =>e for

recy =fnx =>e when y is not free in e , using pattern-matching on pairs as
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fst : A *B!A

snd : A *B!B

add : int *int!int

mul : int *int!int

leq : int *int!bool

transmit

A

: chan *A!unitevent

receive

A

: chan!A event

choose : A event *A event!A event

spawn : unit ->unit!unit

sync : A event!A

wrap : A event * (A ->B )!B event

never : unit!A event

TABLE 2. Types for µCML basic functions

shorthand for projections, and using

def

= as shorthand for recursive function dec-

laration. For example, a one-place buffer can be defined:

cell

A

: chan*chan ->B

cell

A

(x,y)

def

= cell

A

(snd(send

A

(y,accept

A

x),(x,y)))

2.2 Operational semantics

The semantics we will use here is based on the ‘semantics of concurrency’ tra-

dition: we extend the programming language with enough syntactic constructs

that it is possible to give a transition system semantics between program frag-

ments. A comparison of this semantics with Reppy’s (1992) reduction semantics

is given in (Ferreira, Hennessy, and Jeffrey 1995).

The semantics we provide has four transitions: reduction (τ), returning a

value (Xv ), input on a channel (k?x ), and output on a channel (k !v ).

A transition e

τ

�! e

0 represents a single-step reduction, for example1:

iftruethen0else1

τ

�! 0

We will often write e =) e

0 for e

τ

�! �� �

τ

�! e

0, for example:

iftruethen add(1;-1)else1=) 0

1In this example, and in others, we have ‘garbage collected’ some empty processes by treating k as

an associative operation with left unit δ. These equivalences are correct up to strong bisimulation.
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A transition e

Xv

�! e

0 represents a process returning a value v , for example:

0

X0

�! δ

We will often write e

l

=) e

0 for e =)

l

�! e

0, for example:

iftruethen add(1;-1)else1

X0

=) δ

In this case the computation is sequential, so the remaining computation after

returning the value ‘0’ is the empty computation ‘δ’. CML allows processes to

spawn threads which can continue after their parent has terminated, so there are

cases when the remaining computation is non-trivial, such as:

spawn(fn()=> send(a,0))

X()

==) send(a,0) kδ

Here ‘k’ represents the parallel composition of two processes, with the rightmost

process being the main thread of computation, for example:

spawn(fn()=> send(a,0));accepta =) send(a,0) kaccepta

A transition e

k?x

��! e

0 represents an input on channel k , where e

0 has a free

variable x , for example:

accepta

a?x

=) x

Similarly, a transition e
k!v

�! e

0 represents an output of value v on channel k , for

example:
send(a,0)

a!0

=) ()

Input and output transitions can be synchronized to produce reductions, for ex-

ample:

send(a,0) kaccepta=) ()k0

In µCML there are no normal forms for pairs—such a normal form is needed for

the operational semantics, so we will extend the language of values with pairs

hv ;w i. This allows pairs of values to be communicated, for example since:

(1,-1)

Xh1;-1i

====) δ

we have:

send(b,(1,-1))

b!h1;-1i

====) ()

and so we have the communication:

send(b,(1,-1))kadd(acceptb) =) () kaddh-1;1i

So far we have only considered first-order processes, but CML is a higher-order

language which can communicate values of any type, for example since:

send

Xsend

===) δ
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we have:

send(b,send)

b!send

===) ()

and so we have the higher-order communication:

send(b,send)kacceptb(a,0) =) ()ksend(a,0)

CML also allows communications of events, so we need to extend the language

in a similar fashion to Reppy (1992) to include values of event type. These values

are of the form [ge] where ge is a CCS-style guarded sum, for example:

transmit (a,0) =) [a!0]

receivea =) [a?]

choose(transmit(a,0),receivea) =) [a!0�a?]

wrap(receivea,fnx =>e) =) [a?)fnx =>e]

This syntax is based on Reppy’s, and is slightly different from that normally

associated with process calculi, for example:

� we write a!0�a? rather than a!0+a?, and

� we write a?)fnx =>e rather than a?x :e .

By extending the syntax of µCML expressions to include guarded expressions,

we get a particularly simple semantics for sync as just removing the outermost

level of [ ], for example:

send(a,0)

=) sync(transmit(a,0))

=) sync[a!0]

=) a!0

a!0

�! ()

In summary, we give the operational semantics for µCML by first extending it to

µCML+ by adding expressions:

e ::= � � � j e ke j ge

adding values:

v ::= � � � j hv ;v i j [ge]

and adding guarded expressions:

ge ::= k?

A

j k !

A

v j δ j ge �ge j ge)v

The typing for µCML+ extends that of µCML with the rules in Table 3.

The extended language µCML+ has a semantics as a labelled transition sys-

tem with labels:

µ ::= k !

A

v j k?

A

x α ::= τ j µ l ::= α jXv
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� ` e : A � ` f : B

� ` e kf : B � ` δ : A

� ` v : A � ` w : B

� ` hv ;w i : A *B

� ` e : A

� ` [e] : A event

� ` v : chan � ` w : A

� ` v !

A

w : unit

� ` v : chan

� ` v?

A

: A

� ` ge 1 : A � ` ge 2 : A

� ` ge 1�ge 2 : A

� ` ge : A � ` v : A ->B

� ` ge)v : B
TABLE 3. Types for µCML+ expressions

e

α

�! e

0

ce

α

�! ce

0

e

α

�! e

0

ife thenf elseg

α

�! ife

0

thenf elseg

e

α

�! e

0

(e,f)

α

�! (e

0

,f)

e

α
�! e

0

letx =e inf

α

�! letx =e

0

inf

e

α

�! e

0

ef

α

�! e

0

f

e

α

�! e

0

e kf

α
�! e

0

kf

f

l

�! f

0

e kf

l

�! e kf

0

TABLE 4. CML operational semantics: static rules

The operational semantics is given in Tables 4–8.

This operational semantics is very fine-grained, and is designed to mimic

the execution of a CML program very closely. As a result, derivations of fairly

simple computations can be surprisingly long. For example, one reduction of

cell

A

hi ;o i is given in Table 9.

2.3 Bisimulation

As we mentioned above, one reason for choosing a labelled transition system

semantics over a reduction semantics is that we can define bisimulation as an

equivalence on programs. This is discussed at length in (Ferreira, Hennessy,

and Jeffrey 1995), and is summarized here. We will use notation adapted from

Gordon’s (1995) presentation of Howe’s (1989) proof technique.

Let an open type-indexed relation R be a family of relations R

�;A

such that

if e R

�;A

f then Γ ` e : A and Γ ` f : A . We will often elide the subscripts from

relations, for example writing e R f for e R

�;A

f when context makes the type

ge 1
α

�! e

ge 1�ge 2
α

�! e

ge 2
α

�! e

ge 1�ge 2
α

�! e

ge

α

�! e

ge)v

α

�! ve

TABLE 5. CML operational semantics: dynamic rules
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e

Xv

�! e

0

ef

τ

�! e

0

klety =f ing [v=x ]

[v = recx =fny =>g ]

e

Xv

�! e

0

ce

τ

�! e

0

kδ(c ;v )

e

Xtrue

���! e

0

ife thenf elseg

τ

�! e

0

kf

e

Xfalse

����! e

0

ife thenf elseg

τ

�! e

0

kg

e

Xv

�! e

0

(e,f)

τ

�! e

0

kletx =f in hv ;x i

e

Xv

�! e

0

letx =e inf

τ

�! e

0

kf [v=x ]

e

k!

A

v

��! e

0

f

k?

A

x

��! f

0

e kf

τ

�! e

0

kf

0

[v=x ]

e

k?

A

x

��! e

0

f

k!

A

v

��! f

0

e kf

τ

�! e

0

[v=x ]kf

0

TABLE 6. CML operational semantics: silent reductions

v

Xv

�! δ k !

A

v

k!

A

v

��! () k?

A

k?

A

x

��! x

TABLE 7. CML operational semantics: axioms

δ(fst; hv ;w i) = v δ(transmit
A

; hk ;v i) = [k !

A

v]

δ(snd; hv ;w i) = w δ(receive
A

;k ) = [k?

A

]

δ(add; hm ;n i) = m +n δ(choose; h[ge 1];[ge 2]i) = [ge 1�ge 2]

δ(mul; hm ;n i) = m �n δ(wrap; h[ge];v i) = [ge)v]

δ(leq; hm ;n i) = m � n δ(spawn;v ) = v()k()

δ(sync;[ge]) = ge δ(never;()) = [δ]

TABLE 8. CML operational semantics: basic functions
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cell

A

hi ;o i

τ

�! letx = hi ;o iin cell

A

(snd(send

A

(sndx,accept

A

(fstx)),x))

τ

�! cell

A

(snd(send

A

(sndhi ;o i,accept

A

(fst hi ;o i)),hi ;o i))

τ

�! letx =snd(send

A

(sndhi ;o i,accept

A

(fst hi ;o i)),hi ;o i)

in cell

A

x

τ

�! letx =snd(lety =(sndhi ;o i,accept

A

(fst hi ;o i))

in sync(transmit

A

y)

,hi ;o i)

in cell

A

x

τ

�! letx =snd(lety =(o,accept

A

(fsthi ;o i))

in sync(transmit

A

y)

,hi ;o i)

in cell

A

x

τ

�! letx =snd(lety =letz = accept

A

(fsthi ;o i)inho ;z i

in sync(transmit

A

y)

,hi ;o i)

in cell

A

x

τ

�! letx =snd(lety =letz =letx

0

=fsthi ;o iin sync(receive

A

x

0

)in ho ;z i

in sync(transmit

A

y)

,hi ;o i)

in cell

A

x

τ

�! letx =snd(lety =letz =letx

0

=i in sync(receive

A

x

0

)inho ;z i

in sync(transmit

A

y)

,hi ;o i)

in cell

A

x

τ

�! letx =snd(lety =letz = sync(receive

A

i)inho ;z i

in sync(transmit

A

y)

,hi ;o i)

in cell

A

x

τ

�! letx =snd(lety =letz = sync[i?

A

]inho ;z iin sync(transmit

A

y),hi ;o i)

in cell

A

x

τ

�! letx =snd(lety =letz =i?

A

in ho ;z iin sync(transmit

A

y),hi ;o i)

in cell

A

x

i?v

��! letx =snd(lety =letz =v in ho ;z iin sync(transmit

A

y),hi ;o i)

in cell

A

x

τ
�! letx =snd(lety = ho ;v iin sync(transmit

A

y),hi ;o i)

in cell

A

x

τ

�! letx =snd(sync(transmit

A

ho ;v i),hi ;o i)in cell

A

x

τ

�! letx =snd(sync[o !

A

v],hi ;o i)in cell

A

x

τ

�! letx =snd(o !

A

v,hi ;o i)in cell

A

x

o !v

��! letx =snd((),hi ;o i)in cell

A

x

τ

�! letx =snd(lety = hi ;o iin h();y i)in cell

A

x

τ

�! letx =sndh(); hi ;o iiin cell

A

x

τ

�! letx = hi ;o iin cell

A

x

τ

�! cell

A

hi ;o i

TABLE 9. CML operational semantics: example reduction
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obvious.

Let a closed type-indexed relation R be an open type-indexed relation where

� is everywhere the empty context, and can therefore be elided.

For any closed type-indexed relation R , let its open extension R � be defined

as:

e R �

~x :~A ;B
f iff e [~v=~x ] R

B

f [~v=~x ] for all `~v :~A :

A closed type-indexed relation R is structure preserving iff:

� if v R

A

w and A is a base type then v = w ,

� if hv1;v2i R

A1*A2

hw1;w2i then vi R

Ai

wi,

� if [ge 1] R

A event

[ge 2] then ge 1 R

A

ge 2, and

� if v R

A->B

v

0 then for all ` w : A we have vw R

B

v

0

w .

A closed type-indexed relation R is a first-order strong simulation iff it is struc-

ture preserving and the following diagram can be completed:

e1 R e2 e1 R e2

as

e

0

1

l

?

e

0

1

l

?

R �

e

0

2

l

?

Note the use of the open extension R �. This means, for example, that if e1 R e2

we require that the move e1

k?

B

x

��! f1 be matched by a move e2

k?

B

x

��! f2 where

f2 is such that for all values ` v : B we have f1[v=x ] R f2[v=x ]. Thus in the

terminology of (Milner, Parrow, and Walker 1992) our definition corresponds to

the late version of bisimulation.

R is a first-order strong bisimulation iff R and R �1 are first-order strong

simulations. Let �1 be the largest first-order strong bisimulation.

Proposition 1. �

1 is an equivalence.

Proof. Use diagram chases to show that if R is a first-order strong simulation

then so are I and R R . The result follows. 2

Unfortunately, �1 is not a congruence for µCML+, since we have:

add(1,-1)�

1

add(-1,1)

however, sending the thunked expressions on channel a we get:

transmit(a,fnx => add(1,-1)) 6�

1

transmit(a,fnx => add(-1,1))

since the lhs can perform the move:

transmit(a,fnx => add(1,-1))

a!fnx => add(1,-1)

===========) ()
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but this can only be matched by the rhs up to strong bisimulation:

transmit(a,fnx => add(-1,1))

a!fnx => add(-1,1)

===========) ()

The problem is that the definition of strong bisimulation demands that the ac-

tions performed by expressions match up to syntactic identity, rather than up to

strong bisimulation. In fact, it is easy to verify that the only first-order strong

bisimulation which is a congruence for µCML is the identity relation.

To find a satisfactory treatment of bisimulation for µCML, we need to look

to higher-order bisimulation, where the structure of the labels is accounted for.

To this end, given a closed type-indexed relation R , define its extension to labels

R l as:

τ R l

A

τ

v R

A

w

Xv R l

A

Xw k?

B

x R l

A

k?
B

x

v R

B

w

k !

B

v R l

A

k !

B

w

Then R is a higher-order strong simulation iff it is structure preserving and the

following diagram can be completed:

e1 R e2 e1 R e2

as where l1 R l l2

e

0

1

l1

?

e

0

1

l1

?

R �

e

0

2

l2

?

Let �h be the largest higher-order strong bisimulation.

Proposition 2. �h is a congruence.

Proof. Use a similar technique to the proof of Proposition 1 to show that �h is

an equivalence. To show that �h is a congruence, define R as:

R = f(C[e];C[ f ]) j e�h fg

and then show by induction on C that R is a simulation. The result follows. 2

For many purposes, strong bisimulation is too fine an equivalence as it is sensitive

to the number of reductions performed by expressions. This means it will not

even validate elementary properties such as β-reduction. We require the looser

weak bisimulation which allows τ reductions to be ignored.

Let
l̂

=) be =) if l = τ and
l

=) otherwise. Then R is a higher-order weak

simulation iff it is structure preserving and the following diagram can be com-
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pleted:

e1 R e2 e1 R e2

as where l1 R l l2

e

0

1

l1

?

e

0

1

l1

?

R �

e

0

2

l̂2

�
w
w
w
w
w
w
w
w

A higher-order weak bisimulation is a higher-order weak simulation whose in-

verse is also a higher-order weak simulation. Let �h be the largest higher-order

weak bisimulation.

Proposition 3. �

h is a congruence.

Proof. Given in (Ferreira, Hennessy, and Jeffrey 1995), using a variant of Gor-

don’s (1995) presentation Howe’s (1989) proof technique. Note that this proof

relies on the fact that we are considering the subset of µCML without always,

and hence do not have to consider initial τ-actions in summations, which present

the same problems as in the first-order case (Milner 1989). 2

Unfortunately, this equivalence does not have many pleasant mathematical prop-

erties. For example none of the usual equations for products are true:

fst(e,f) 6�

h

e

snd(e,f) 6�

h

f

(fste,snde) 6�

h

e

(For each counter-example consider an expression with side-effects, such as

cell.)

In the next section we shall consider a variant of µCML which uses a restric-

tive type system to provide more pleasant mathematical properties of programs.

We shall then show a translation from µCML into the restricted language, which

is correct up to weak bisimulation.

3 Concurrent monadic ML

In the previous section, we showed how to define an operational semantics for

CML which can be used as the basis of a bisimulation equivalence between

programs. Unfortunately, this equivalence does not have pleasant mathematical

properties. For example β-conversion does not hold:

(fnx =>(x,x))(cell(a,b)) 6�

h

(cell(a,b),cell(a,b))

Because CML computations are non-trivial (CML processes may diverge, and

can have side-effects) we cannot use the standard mathematical models of typed

λ-calculi such as cartesian closed categories (Lambek and Scott 1986).
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In this section, we present a Concurrent Monadic ML (CMML) a variant of

CML with a type system based on Moggi’s (1991) computation types. Such

type systems have proved popular in giving an elegant treatment to functional

languages with non-trivial computation, such as the Haskell I/O system (Gordon

et al. 1994).

CMML can be provided with an operational semantics similar to that given

to CML in the previous section, although the semantics is much simpler, and

has pleasant properties such as forming a category with finite products and a

restricted class of exponentials.

The language presented here (µCMML) is a subset of the language presented

in (Jeffrey 1995a).

3.1 Syntax

The main difference between CMML and CML is that the distinction between

values and expressions is handled by the CMML type system rather than as a

separate syntactic category. For example, in CML we have:

` 0 : int (a value) ` add(-1,1) : int (an expression)

whereas in CMML we have:

` 0 : int (an expression) ` addh�1;1i : intcomp (an expression )

This uses an explicit type constructor Acomp to represent computations which

return results of type A. For example addh�1;1i returns the result 0, so it has

the type intcomp.

Moggi (1991) proposed two syntactic constructions for manipulating com-

putation types:

� the expression [e] which immediately returns e, and

� the expression letx( e in f which evaluates e, binds the result to x and then

evaluates f .

For example (1+1)+(1+1) can be calculated as:

letx( [1]

in lety(addhx ;xi

inaddhy ;y i

Note that expressions written in µCMML tend to be more long-winded than their

µCML equivalents: this is because the flow of execution through a µCMML

program is made explicit by the use of let-expressions. Such an explicit language

may seem overly verbose to functional programmers used to programming in the

SML style, where execution order is implicit in the left-to-right evaluation order.

However, as we shall see, making execution order explicit has the benefit of a

simpler semantics and better equational properties.
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Using an explicit type constructor for computation has the advantage that the

only terms which perform computation are those of type Acomp, and that an

expression of any other type is guaranteed to be in normal form. This gives us

the normal form results (Proposition 4 below):

� the only closed term of type unit is (),

� the only closed terms of type bool are true and false,

� the only closed terms of type int are : : :;�1;0;1; : : :,

� the only closed terms of type chan are a;b; : : :,

� the only closed terms of type A�B are of the form he; f i, and

� the only closed terms of type A!B comp are of the form recx = fny) e.

These results make the operational semantics much simpler to define, for exam-

ple rather than two rules for function application:

e

α

�! e

0

ef

α

�! e

0

f

e

Xv

�! e

0

ef

τ

�! e

0

klety =f ing [v=x ]

[v = recx =fny =>g ]

we only need one simple β-reduction rule:

e f

τ

�! g [f =y ][e=x ]

[e = (recx = fny)g )]

The simplicity of the operational semantics rests on the normal form result de-

scribed above, but this requires a somewhat non-standard treatment of projec-

tions on pairs. In µCML projections are given using fst and snd, for example a

function to swap a pair is:

` fnx =>(sndx,fstx) : A *B -> B *A

If we were to allow fst and snd in CMML we would no longer have the normal

form result described above. However, projections on pairs are useful both prac-

tically and as the categorical basis of products. In CMML we use a restricted

form of projections which maintains the normal form result: we use Pascal-style

record field selection on lvalues rather than ML-style selection functions. If x

is a variable of type A �B then x :l is an expression of type A, and x :r is an

expression of type B . For example a CMML function to swap a pair is:

` fnx) [hx :r;x :li] : A�B! (B �A)comp

Similarly, we need to use a restricted form of function space, since the result of

any function application should be a computation. This means that rather than

the CML function type:

�;x : A ->B ;y : A ` e : B

� ` recx =fny =>e : A ->B

� ` e : A ->B � ` f : A

� ` ef : B
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we have the restricted CMML function type:

�;x : A!B comp;y : A ` e : B comp

� ` recx = fny) e : A!B comp

� ` e : A!B comp � ` f : A

� ` e f : B comp

For example there is no CMML projection function with type A�B!A, instead

we have:

` fnx) [x :l] : A�B!Acomp

The concurrent features of µCMML are similar to those of µCML+, for example

a concurrent communication is given by:

k!0kk?
τ

�! [()]k [0]

We will now give the grammar and type system for µCMML.

Integers and channels are given as for µCML:

n ::= � � � j �1 j 0 j 1 j � � �

k ::= a j b j � � �

Basic functions are given by the grammar:

c ::= add jmul j leq

Expressions are given by the grammar:

e ::= true j false j n j k j () j recx = fnx) e j c e

j if e thene elsee j letx( e ine j e e j lv j [e] j he;ei

j δ j e k e j e2 e j e!

A

e j e?

A

Lvalues are given by the grammar:

lv ::= x j lv :l j lv :r

Types are given by the grammar:
A ::= unit j bool j int j chan j A�A j A!Acomp j Acomp

Typing is given by Tables 10 and 11.

Proposition 4. We have the following normal form results:

1. If � ` e : unit then e is an lvalue or e = ().

2. If � ` e : bool then e is an lvalue or e = true or e = false.

3. If � ` e : int then e is an lvalue or e = n.

4. If � ` e : chan then e is an lvalue or e = k .

5. If � ` e : A�B then e is an lvalue or e = hf ;g i.

6. If � ` e : A!B comp then e is an lvalue or e = (recx = fny) f ).
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� ` true : bool � ` false : bool � ` n : int � ` k : chan � ` () : unit

� ` e : A

� ` c e : B comp

[c : A!B comp]

�;x : A!B comp;y : A ` e : B comp

� ` recx = fny) e : A!B comp

� ` e : bool � ` f : Acomp � ` g : Acomp

� ` if e then f elseg : Acomp

� ` e : Acomp �;x : A ` f : B comp

� ` letx( e in f : B comp

� ` e : A!B comp � ` f : A

� ` e f : B comp

�;x : A ` x : A

� ` x : A

�;y : B ` x : A
[x 6= y ]

� ` lv : A�B

� ` lv :l : A

� ` lv : A�B

� ` lv :r : B

� ` e : A

� ` [e] : Acomp

� ` e : A � ` f : B

� ` he; f i : A�B

� ` δ : Acomp

� ` e : Acomp � ` f : B comp

� ` e k f : B comp

� ` e : Acomp � ` f : Acomp

� ` e2 f : Acomp

� ` e : chan � ` f : A

� ` e!

A

f : unitcomp

� ` e : chan

� ` e?

A

: Acomp

TABLE 10. Types for µCMML expressions

add : int� int! intcomp

mul : int� int! intcomp

leq : int� int!boolcomp

TABLE 11. Types for µCMML basic functions
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Proof. A case analysis on the proof of � ` e : A. 2

When � ` e : A and �;x : A ` f : B , define the substitution � ` f [e=x ] : B as

normal, except that:

lv :l[e=x ] = π(lv [e=x ]) lv :r[e=x ] = π0

(lv [e=x ])

where:

πhe; f i= e πlv = lv :l π0

he; f i = f π0

lv = lv :r

Note that this is well-defined because of Proposition 4.5.

As an example µCMML program, consider a one-place buffer:

cell

A

: chan� chan!B comp

cell

A

hi ;oi

def

= letx( i?

A

in lety(o!

A

x incell

A

hi ;oi

Comparing this definition with its µCML equivalent is instructive, so we shall

repeat the definition here:

cell

A

: chan *chan->B

cell

A

(x,y)

def

= cell

A

(snd(send

A

(y,accept

A

x),(x,y)))

Writing programs in µCMML can be repetitive, because of the number of let-

expressions required. However, the let-expressions are precisely what controls

the flow of execution through a µCMML program, so it is easier to recognize

the behaviour of a µCMML program. In the above example, it requires some

thought to realize that cell
A

(a;b) will input on a before outputting the result on

b, and that the process does not just simply diverge, whereas the execution of the

µCMML equivalent is much more obvious.

In Section 4 we shall see that µCML programs can be translated into µCMML,

and that in particular we can perform some simple equational reasoning to trans-

form cell into cell.

3.2 Operational semantics

The operational semantics for µCMML is given in Tables 12–15. It is similar

to that of µCML, except that it is simpler, due to the normal form results in

Proposition 4. For example, since any closed term of type bool must be either

true or false, the only two rules required for if-statements in µCMML are:

if truethen f elseg

τ

�! f if false then f elseg

τ

�! g

This can be compared with the more complex three rules required for µCML:

e

Xtrue

���! e

0

ife thenf elseg

τ

�! e

0

kf

e

Xfalse

����! e

0

ife thenf elseg

τ

�! e

0

kg

e

α

�! e

0

ife thenf elseg

α

�! ife

0

thenf elseg
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e

α

�! e

0

letx( e in f

α

�! letx( e

0

in f

e

α

�! e

0

e k f

α

�! e

0

k f

f

l

�! f

0

e k f

l

�! e k f

0

e

τ

�! e

0

e2 f

τ

�! e

0

2 f

f

τ

�! f

0

e2 f

τ

�! e2 f

0

TABLE 12. CMML operational semantics: static rules

In the operational semantics of µCML, terms in many contexts can reduce, where-

as there are far fewer reduction contexts in µCMML. In fact, looking at the se-

quential sub-language of µCMML (without k or 2) the only reduction context is

let:

e

α

�! e

0

letx( e in f

α

�! letx( e

0

in f

Many of the operational rules in µCML require spawning off concurrent pro-

cesses, whereas in µCMML the main rule which produces extra concurrent pro-

cesses is β-reduction for let-expressions:

e

Xg

�! e

0

letx( e in f

τ

�! e

0

k f [g=x ]

The other significant difference between the operational semantics for µCML

and µCMML is the treatment of summation. In µCML choice is only allowed

between guarded expressions ge 1�ge 2, whereas in µCMML choice is allowed

between arbitrary expressions e 2 f . In particular, this means we need opera-

tional rules for when processes in a choice can perform silent reductions:

e

τ

�! e

0

e2 f

τ

�! e

0

2 f

f

τ

�! f

0

e2 f

τ

�! e2 f

0

and when processes in a choice can return a value:

e

Xg

�! e

0

e2 f

τ

�! e

0

k [g ]

f

Xg

�! f

0

e2 f

τ

�! f

0

k [g ]

Note that we are using rules for choice based on CSP (Hoare 1985) external

choice rather than CCS (Milner 1989) summation. This is because we will be

using�h as our equivalence on programs, and CCS summation does not preserve

weak bisimulation. We have used slightly different termination rules for choice

from CSP, in order to ensure forward commutativity of the resulting transition

system (see Section 3.3 below for why this is important).

As an example of an µCMML program execution, one possible run of the

one-place buffer is given in Table 16, which can be compared to the equivalent

µCML execution in Table 9. The extra complexity of the µCML execution is

due to the book-keeping work that µCML has to do because an expression of

any type has the capability of computation, so the operational semantics has to
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e

µ

�! e

0

e2 f

µ

�! e

0

f

µ

�! f

0

e2 f

µ

�! f

0

TABLE 13. CMML operational semantics: dynamic rules

e f

τ

�! g [f =y ][e=x ]

[e = (recx = fny)g )]

c e

τ

�! [δ(c ;e)]

if truethen f elseg

τ

�! f if false then f elseg

τ
�! g

e

Xg

�! e

0

letx( e in f

τ

�! e

0

k f [g=x ]

e

k!

A

g

��! e

0

f

k?

A

x

��! f

0

e k f

τ

�! e

0

k f

0

[g=x ]

e

k?
A

x

��! e

0

f

k!

A

g

��! f

0

e k f

τ

�! e

0

[g=x ]k f

0

e

Xg

�! e

0

e2 f

τ

�! e

0

k [g ]

f

Xg

�! f

0

e2 f

τ

�! f

0

k [g ]

TABLE 14. CMML operational semantics: silent reductions

[e]

Xe

�! δ k!

A

e

k!

A

e

��! [()] k?

A

k?

A

x

��! [x ]

TABLE 15. CMML operational semantics: axioms

cellhi ;oi

τ

�! letx( i? in lety(o!x incellhi ;oi

i?e

�! letx( [e] inlety(o!x incellhi ;oi

τ

�! lety(o!e incellhi ;oi

o!e

�! lety( [()] incellhi ;oi

τ

�! cellhi ;oi

TABLE 16. CMML operational semantics: example reduction
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allow computation at any point in evaluation. For example, in the evaluation

of send(e,f), both e and f have to terminate before the communication can

happen, so if e
Xk

=) δ and f

Xv

=) δ then:

send(e,f)

τ

�! letx =(e,f)in sync(transmitx)

=) letx =lety =f in hk ;y iin sync(transmitx)

=) letx = hk ;v iin sync(transmitx)

�! sync(transmithk ;v i)

�! sync[k !v]

�! k !v

k!v

�! ()

whereas the type system for µCMML ensures that e and f do not have to be

evaluated before e!f can communicate.

3.3 Bisimulation

We can define ‘structure-preserving’ and ‘bisimulation’ for µCMML in the same

way as for µCML.

Proposition 5. �h is a congruence for µCMML.

Proof. Similar to the proof of Proposition 3. 2

In comparison to µCML, this equivalence has some pleasant mathematical prop-

erties. In particular we can define a category of µCML terms, where:

� objects are µCML types,

� morphisms from A to B are expressions with one free variable x : A ` e : B

viewed up to higher-order weak bisimulation �h�,

� the identity morphism is x : A ` x : A, and

� morphism composition is substitution: (x : A ` e : B); (y : B ` f : C ) is

x : A ` f [e=y ] : C .

This category has binary products A�B with projections:

x : A�B ` x :l : A x : A�B ` x :r : B

and mediating morphism:

x : A ` e : B x : A ` f : C

x : A ` he; f i : B �C

To verify that these satisfy the defining property for products we have to show

that (whenever � ` g : A�B):

πhe; f i �h

e
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π0

he; f i �

h

f

g �

h

hπg ;π0

g i

The category has an initial object unit with mediating morphism:

x : A ` () : unit

since (whenever � ` e : unit):

e �

h

()

The category has monad given by the comp type constructor with action on

morphisms given by:

x : A ` e : B

y : Acomp ` letx( y in [e] : B comp

and strict monadic structure given by natural transformations:

x : A ` [x] : Acomp

x : Acompcomp ` lety( x iny : Acomp

x : A� (B comp) ` lety( x :r in [hx :l;y i] : (A�B)comp

since (whenever � ` e : Acomp, �;x : A ` f : B comp, �;y : B ` g : C comp and

x ;y 62 �):

letx( [e] in f �

h

f [e=x ]

letx( e in [x ] �

h

e

lety( letx( e in f ing �

h

letx( e in lety( f ing

This category has all comp exponentials given by A!B compwith the currying

adjunction given by:

x : A�B ` e : C comp

y : A ` fnz) letx( [hy ;zi] ine : B!C comp

x : A ` e : B!C comp

y : A�B ` letx( [y :l] ine(y :r) : C

since (whenever �;x : A ` e : B comp, � ` f : A and � ` g : A!B comp):

(fnx) e)f �

h

e[x=f ]

fnx) (g x) �

h

g

The categorical structure of µCMML is based on Moggi’s (1991) general theory

of computation types, and is discussed further in (Jeffrey 1995a; Jeffrey 1995b).

In order to prove the above bisimulations, we need to show some properties

about the labelled transition systems produced by µCMML programs. In partic-
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ular we require the lts to be value deterministic:

e

Xf

-

e

0

if then f = g and e0 = e00

e00

Xg

?

single-valued:

if e

Xf

- e0

l

- e00 then l 6=Xg

forward commutative:

e

Xf

-

e

0

e

Xf

-

e

0

if then

e

00

α

?

e

00

α

?

Xf

�

-

e

000

α

?

and backward commutative:

e

Xf

-

e

0

e

Xf

-

e

0

if then

e

000

α

?

e

00

α

?

Xf

�

-

e

000

α

?

From these properties we can show that:

if e

Xf

- e0 then e �h e0 k [f ]

which is used in proving the above bisimulations.

4 Translating CML to CMML

As we have seen, the operational semantics for µCML is more complex than that

of µCMML, since terms of any type can reduce. However, in this section we

shall show that there is a translation from µCML+ into µCMML, and that the

translation is correct up to weak bisimulation.

4.1 The translation

This translation is based on Moggi’s (1991) translation of the call-by-value λ-

calculus into the computational λ-calculus.
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T [[bool]] = bool

T [[chan]] = chan

T [[int]] = int

T [[unit]] = unit

T [[A *B ]] = T [[A ]]�T [[B ]]

T [[A ->B ]] = T [[A ]]!T [[B ]]comp

T [[A event]] = T [[A ]]comp

TABLE 17. Translation of µCML+ types into µCML

First, we translate each µCML+ type A into an µCMML type T [[A ]]. The only

tricky question is how to translate the function space A ->B . Moggi has proposed

Acomp!B comp for the call-by-name translation (where functions take compu-

tations as arguments) and A!B comp for the call-by-value translation (where

functions take canonical forms as arguments). Since µCML is a call-by-value

language, we shall use the latter translation. This is given in Table 17, and can

be extended to contexts:

T [[x1 : A1; : : :;xn : An]] = x1 : T [[A1]]; : : :;xn : T [[An]]

The trick for translating µCML+ terms into µCMML terms is to provide two

translations:

� translate µCML+ values � ` v : A

into µCMML expressions T [[�]] ` V [[v ]] : T [[A ]], and

� translate µCML+ expressions � ` e : A

into µCMML computations T [[�]] ` E[[e ]] : T [[A ]]comp.

This reflects the intuition that any expression in µCML+ can perform compu-

tation, whereas in µCMML only terms of type Acomp can compute. The two

translations are given in Tables 18 and 19.

Note that most of the µCML+ expressions have the same form, which is to

evaluate their argument in a let-expression before continuing. This corresponds

to the notion that µCML+ is a call-by-value language, where expressions are

evaluated to canonical form before being manipulated.

For example, the translation of cell is given in Table 20, where to save space

we have used the fact that:

E[[send

A

e ]] �

h

letx(E[[e ]] inx :l!x :r

E[[accept

A

e ]] �

h

letx(E[[e ]] inx?

This translation is almost unreadable, and very inefficient, but we can use β-
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V [[true]] = true

V [[false]] = false

V [[n ]] = n

V [[k ]] = k

V [[()]] = ()

V [[hv ;w i]] = hV [[v ]];V [[w ]]i

V [[recx =fny =>e ]] = recx = fny)E[[e ]]

V [[x ]] = x

V [[[ge]]] = E[[ge ]]

TABLE 18. Translation of µCML+ values into µCML

reduction to remove some extraneous lets:

V [[cell]]�

h

recx1 = fnx2)

letx4( letx5( letx6( letx8( letx10( x2:l? in[hx2:r;x10i]

inx8:l!x8:r

in [hx6;x2i]

in [x5:r]

inx1 x4

Then associativity gives:

V [[cell]]�

h

recx1 = fnx2)

letx10( x2:l?

in letx8( [hx2:r;x10i]

in letx6( x8:l!x8:r

in letx5( [hx6;x2i]

in letx4( [x5:r] inx1 x4

So further use of β-reduction gives:

V [[cell]]�

h

recx1 = fnx2)

letx10( x2:l?

in letx6 ( x2:r!x10

inx1 x2

and since (up to α-conversion) this is the definition of cell, we have:

V [[cell]]�

h

cell

This example shows that it is easy to perform syntactic manipulations on

µCMML expressions to drastically reduce them in size, and improve their effi-
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E[[v ]] = [V [[v ]]]

E[[fste ]] = letx(E[[e ]] in [x :l]

E[[snde ]] = letx(E[[e ]] in [x :r]

E[[adde ]] = letx(E[[e ]] inaddx

E[[mule ]] = letx(E[[e ]] inmulx

E[[leqe ]] = letx(E[[e ]] in leqx

E[[transmit

A

e ]] = letx(E[[e ]] in [x :l!T [[A ]]

x :r]

E[[receive

A

e ]] = letx(E[[e ]] in [x?T [[A ]]

]

E[[choosee ]] = letx(E[[e ]] in [x :l2 x :r]

E[[spawne ]] = letx(E[[e ]] inx ()k [()]

E[[synce ]] = letx(E[[e ]] inx

E[[wrape ]] = letx(E[[e ]] in [lety( x :l inx :ry ]

E[[nevere ]] = letx(E[[e ]] in [δ]

E[[ife thenf elseg ]] = letx(E[[e ]] inif x thenE[[f ]]elseE[[g ]]

E[[(e,f)]] = letx(E[[e ]] in lety(E[[f ]] in [hx ;y i]

E[[letx =e inf ]] = letx(E[[e ]] inE[[f ]]

E[[ef ]] = letx(E[[e ]] in lety(E[[f ]] inx y

E[[e kf ]] = E[[e ]]kE[[f ]]

E[[v?

A

]] = V [[v ]]?T [[A ]]

E[[v !

A

w ]] = V [[v ]]!T [[A ]]

V [[w ]]

E[[δ]] = δ
E[[ge 1�ge 2]] = E[[ge 1]]2E[[ge2]]

E[[ge)v ]] = letx(E[[ge ]] inV [[v ]]x

TABLE 19. Translation of µCML+ expressions into µCML
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V [[cell]]�

h

recx1 = fnx2 )

letx3( [x1]

in letx4( letx5( letx6( letx8( letx9( letx11( [x2]

in [x11:r]

in letx10( letx12( letx13( [x2]

in [x13:l]

inx12?

in [hx9;x10i]

inx8:l!x8:r

in letx7( [x2]

in [hx6;x7i]

in [x5:r]

inx3 x4

TABLE 20. Example translation of µCML+ into µCMML

ciency. This suggests that µCMML may be a suitable virtual machine language

for a µCML compiler, where verifiable peephole optimizations can be performed.

4.2 Correctness of the translation

We will now show that the translation of µCML+ into µCMML is correct up to

bisimulation. We will do this by defining an appropriate notion of weak bisimu-

lation between µCML and µCMML programs. This proof uses Milner and San-

giorgi’s (1992) technique of ‘bisimulation up to’.

A closed type-indexed relation between µCML and µCMML is a family of

relations:

R e

A

� f(e ;e) j ` e : A ;` e : T [[A ]]compg

R v

A

� f(v ;e) j ` v : A ;` e : T [[A ]]g

For any closed type-indexed relation R , let its open extension R e� be defined as:

e R e�
~x :~A;B
e iff e [~v=~x ] R e

B

e[V [[~v ]]=~x ] for all `~v :~A :

A closed type-indexed relation R is structure-preserving iff:

� if v R v

A

e and A is a base type then v = e,

� if hv1;v2i R v

A1*A2

he1;e2i then vi R v

Ai

ei,

� if [ge] R v

A event

e then ge R e

A

e, and

� if v R v

A->B

e then for all ` w : A we have vw R e

B

e(V [[w ]]).
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A closed type-indexed relation can be extended to labels as:

τ R l

A

τ

v R v

A

e

Xv R l

A

Xe k?

B

x R l

A

k?T[[B ]]

x

v R v

B

e

k !

B

v R l

A

k!T[[B ]]

e

A closed type-indexed relation between µCML and µCMML is a higher-order

weak bisimulation iff it is structure preserving and we can complete the following

diagrams:

e1 R e

e2 e1 R e

e2

as where l1 R l l2

e

0

1

l1

?

e

0

1

l1

?

R e�

e

0

2

l̂2

�
w
w
w
w
w
w
w
w

and:

e1 R e

e2 e1 R e

e2

as where l1 R l l2

e

0

2

l2

?

e

0

1

l̂1

�
w
w
w
w
w
w
w
w

R e�

e

0

2

l2

?

A closed type-indexed relation between µCML and µCMML is a higher-order

strong bisimulation up to (�;v) iff it is structure preserving and we can com-

plete the following diagrams:

e1 R e

e2 e1 R e

e2

as where l1 R l l2

e

0

1

l1

?

e

0

1

l1

?

�R e�
v e

0

2

l2

?

and:

e1 R e

e2 e1 R e

e2

as where l1 R l l2

e

0

2

l2

?

e

0

1

l1

?

�R e�
v e

0

2

l2

?

An expansion on µCMML (and similarly on µCML) is a weak bisimulation R
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such that the following diagrams can be completed:

e1 R e2 e1 R e2

as where l1 R l l2

e

0

1

l1

?

e

0

1

l1

?

R �

e

0

2

l2

�
w
w
w
w
w
w
w
w

and:

e1 R e2 e1 R e2

as where l1 R l l2

e

0

2

l2

?

e

0

1

l̂1

?

R �

e

0

2

l2

?

Let . be the largest expansion.

Proposition 6. . is a precongruence on µCML and µCMML.

Proof. Similar to Proposition 3. 2

For example, the preorder�β given by β-reducing in all contexts is an expansion:

e f �β g [f =y ][e=x ]

[e = (recx = fny)g )]

letx( [e] in f �β f [e=x ]

if truethen f elseg �β f if false then f elseg �β g

e �β e

e �β f �β g

e �β g

e �β f

C[e]�β C[f ]

Proposition 7. If e �β f then e . f .

Proof. Show that each of the axioms forms an expansion. The result then

follows from Proposition 6. 2

We can use the proof technique of strong bisimulation up to (�;v) to show that

the translation from µCML to µCMML forms a weak bisimulation.

Proposition 8. Any strong bisimulation up to (&;.) is a weak bisimulation.

Proof. An adaptation of the results in (Sangiorgi and Milner 1992). 2

Proposition 9. The translation of µCML+ into µCMML is a strong bisimula-

tion up to (�β;�β).

Proof. Let R be:

R e

A

= f(e ;E[[e ]]) j ` e : Ag R v

A

= f(v ;V [[v ]]) j ` v : Ag
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and let L[[l]] be the extension of the translation to labels:

L[[τ]] = τ L[[Xv ]] = XV [[v ]]

L[[k !

A

v ]] = k!T [[A ]]

V [[v ]] L[[k?

A

x ]] = k?T[[A ]]

x

First show that the translation respects substitution of values, that is:

E[[(e [v=x ])]] = E[[e ]][V [[v ]]=x ]

Next show by induction on ge that if ge

l

�! e then l is an input or output label.

Then show that for any ` e : A , if e l

�! e

0 then E[[e ]]

L[[l]]

��!�β E[[f

0

]] and

e

0

�β f
0. This is an induction on the proof of reduction, for example if:

ge

α

�! e

0

ge)v

α

�! ve

0

where v = recy =fnz =>g then by induction:

E[[ge ]]

L[[α]]

��!�β E[[f

0

]] e

0

�β f
0

and so:

E[[ge)v ]]

= letx(E[[ge ]] inV [[v ]]x

L[[α]]

��!�β letx(E[[f

0

]] inV [[v ]]x

�β letx(E[[f

0

]] inE[[g ]][x=z ][V [[v ]]=y ]

= E[[letz =f

0

ing [v=y ]]]

and:

ve

0

�β vf

0

�β letz =f

0

ing [v=y ]

The other cases are similar.

Then show that for any ` e : A , if E[[e ]]

l2

�! e

0 then e

l1

�!�β e
0, L[[l1]] = l2

and e

0

�β E[[e

0

]]. This is an induction on e , for example if:

E[[ge ]]

α1

�! e

0

E[[ge)v ]]

α2

�! letx( e

0

inV [[v ]]x

where v = recy =fnz =>g then by induction:

ge

α1

�!�β e
0 L[[α1]] = α2 e

0

�β E[[e

0

]]

and so:

ge)v

α1

�!�β ve

0

�β letz =e

0

ing [v=y ]
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and:

letx( e

0

inV [[v ]]x

�β letx(E[[e

0

]] inV [[v ]]x

�β letx(E[[e

0

]] inE[[g ]][x=z ][V [[v ]]=y ]

= E[[letz =e

0

ing [v=y ]]]

The other cases are similar. 2

Proposition 10. e is weakly bisimilar to E[[e ]].

Proof. Follows from Propositions 7, 8 and 9. 2

It follows from this that weak bisimulation for µCMML is at least as fine as weak

bisimulation for µCML+.

Proposition 11. If E[[e ]]�

h E[[f ]] then e �

h

f .

Proof. Follows immediately from Proposition 10. 2

However, note that the translation is not necessarily fully abstract, in that we

have not shown that this implication is an ‘if and only if’. This is because the

bisimulation is higher-order, and the clause for bisimulation between functions

requires the functions to agree on all arguments, not just ones which are the

image of E[[ ]].
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