Temporal Logic and Categories of Petri Nets

Carolyn Brown* and Doug Gurr ${ }^{\dagger}$
School of Cognitive and Computing Sciences
University of Sussex, Falmer, Brighton, BN1 9QH
Abstract. We present a novel method for proving temporal properties of the be-
haviour a Petri net. Unlike existing methods, which involve an exhaustive examination haviour a Petri net. Unlike existing methods, which involve an exhaustive examination
of the transition system representing all behaviours of the net, our approach uses morphisms dependent only on the static structure of the net. These morphisms corresp ond to simulations. We restrict the analysis of dynamic behaviours to particularly simple nets (test nets), and establish temporal properties of a complex net by considering mor
hhisms between it and various test nets. This approach is computationally efficient, phisms between it and various test nets. This approach is computationally efficien
and the construction of test nets is facilitated by the graphical representation of nets. and the construction of test nets is faciitated by the graphical representation of nets,
The use of category theory permits a natural modular approach to proving properties of nets.
Our main result is the syntactic characterisation of two expressive classes of form lae: those w
is reflected.

1 Introduction

Proving properties of the operational behaviour of Petri nets is computa ionally expensive, as most existing techniques [1] involve an exhaustive examination of the labelled transition system representing all possible markings and behaviours of the net. In this paper we describe a novel echnique for proving properties of the behaviour of a Petri net by con sidering only the static structure of the net. Our approach exploits the simplicity of the graphical presentation of a net: it is sufficiently powerful to prove a wide range of properties but has complexity which is linear in the size of the net.

Our technique builds on our existing results concerning categories of Petri nets. In $[2,3,4,5]$ we studied a category Net whose objects are inmarked Petri nets. We proved in [5] that whenever there is a morphism from N to N^{\prime} in Net then subject to a natural condition on the initial markings of the nets, N^{\prime} can simulate any evolution of N. This result gives rise to a methodology for proving properties of the dynamic behaviour of a net by exhibiting morphisms in Net: such morphisms depend only on the static structure of the nets. The method involves constructing a numbe of simple "test" nets whose behavioural properties can either be inferred
by inspection or proved using existing model-checking techniques. Thes lest nets should be small enough that their properties can be established quickly and easily. We then establish properties of a more complex net by exhibiting morphisms between it and the test nets, and using the fac that the image net can always simulate the behaviour of the source net.

Some examples of this technique were given in [3], including proofs of eness properties and of mutual exclusion properties. It is natural to ask what range of properties our technique can be used to demonstrate. In this paper we prove that our technique is powerful enough to establis properties which cover the full spectrum of Manna and Pnueli's hierarchy of temporal properties [8]. The main advantage of a technique based on the static structure of the net is that the complexity of model-checking is mear in the size of the An additional advantage is that the graphical presentation of a simple test net is a great aid to envisaging propertie of its behaviour. The advantage of using category theory is that it gives rise to a compositional, modular proof system: this permits a structured approach to proving properties of large nets.

In [15], Winskel considered a category of nets which is essentially a subcategory of $\mathbf{M N e t}^{+}$. He suggested that, informally, morphisms in his category of nets appeared to preserve liveness properties and to reflect safety properties. This judgement was based on the usual description of a safety property as expressing the fact that "something bad never happens" and a liveness property expressing the fact that "something desirable is guaranteed to happen." Our results show that the situation is more complex than this: we give a syntactic characterisations of formulae which are preserved, reflected or respected in a different sense by morphisms Human insight is needed both in choosing morphisms and in designing suitable, efficient test nets, while checking that we have a morphism and that a test net satisfies a formula can be readily and efficiently automated In Section 2 we recall the elementary definitions of Petri net theory nd give examples of [4, proof technique. In Section 3 we generalise 1 he relevant results from $[4,5]$ and illustrate our approach with some examples Section 4 we define a temporal logic τ for deserving nel behaviours and define a notion of satisfaction of a formula by a marked net, and insection 5 we give a symach character presult sho ribsers The check that a pair of functions $\langle f F\rangle$ is a morphism from N to N^{\prime} i The check that a pair of fors N technique is relatively efficient.

2 Definitions concerning Petri Net

We recall some elementary definitions of Petri net theory: details may be found in [13].

Definition 1 A Petri net, denoted N, is a 4-tuple $\langle E, B$, pre, post where E and B are sets, and pre and post are functions from $E \times B$ to \mathbb{N} which are zero on all but a finite subset of $E \times B$.
We shall call elements of E events and elements of B conditions. We shal call pre and post the pre- and post-condition relations of N respectively With each of the multirelations pre and post we associate a function of th same name from E to B^{\oplus} (the free abelian monoid on B, with unit th empty multiset \emptyset) defined by

$$
\operatorname{pre}(e)=\sum_{b \in B} \operatorname{pre}(e, b) b \quad \text { and } \quad \operatorname{pos} t(e)=\sum_{b \in B} \operatorname{pos} t(e, b) b .
$$

We call pre(e) the pre-condition set and post (e) the post-condition set of e. A loop arises if the pre- and post-condition sets of an event intersect e. A loop arises if the pre- and post-condition sets of an event intersect
non-trivially. A 1 -loop is a loop such that for every $b \in$ pred $e) n$ post e non-trivially. A 1 -loop is a loop such that for every $b \in$ pre $(e) \cap$ post (e)
we have we have pre $(e, b)=$ post $(e, b)=1$. All loops which are not 1 -loops are which we call Petri

The state of a net is described by a finite multiset over B (that is, multiset which is zero on all but finitely many $b \in B$), called a mark ing, which indicates which conditions hold, and in what multiplicities. marked net is a pair $\langle M, N\rangle$, where N is a net and M is a marking of N The occurrence of an event, called a firing, transforms the state of the et by consuming its pre-condition set and producing its post-conditio set. We say $\langle M, N\rangle$ enables $\sum n_{i} e_{i}$ if the marking M contains the multise $\Sigma n_{i} p r e\left(e_{i}\right)$. The multiset $\Sigma n_{i} e_{i}$ of events, called a step, can then fire concurrently. We denote this firing $M \xrightarrow{\Sigma n_{i} e_{i}} M-\Sigma n_{i} \operatorname{pre}\left(e_{i}\right)+\Sigma n_{i} \operatorname{post}\left(e_{i}\right)$ We permit identity steps which leave the marking of a net unchanged, but require that a net never fire infinitely many identity steps when a nonempty step is enabled (this requirement may be seen either as a progress assumption or as a fairness assumption). A step sequence or computation is a possibly infinite sequence of steps $M \xrightarrow{\sigma_{0}} M_{0} \xrightarrow{\sigma_{1}} \ldots$, sometimes written $\sigma_{0} ; \sigma_{1} ; \ldots$. Since we can extend any finite computation to an infinite one by repeating a trivial identity step indefinitely, we shall restric ur attention to infinite computations. The set of computations of a ne $\langle M, N\rangle$ is denoted by C^{M}. If σ is a computation then $\bar{\sigma}_{k+1}$ denotes
the computation whose i th step is the $(k+i)$ th step of σ : thus $\bar{\sigma}_{k+1}=$ $\sigma_{k+1} ; \sigma_{k+2} ;$

The finiteness condition on pre and post ensures that at every point in the evolution of the net, finitely many events are enabled and finitely many conditions are marked. It therefore ensures that the net describes a finitely-branching process

3 Categories of Nets: extending existing result

In the past [2, 3, 4, 5] we have considered primarily unmarked nets, struc tural properties of nets and modular specification using categorical contructions on nets. We derived results about a net's behaviour for all initia markings or for those markings meeting a given condition. It is clear that the behavioural properties of a net depend crucially on its initial marking for example, in the net

with marking $2 b_{0}$, some event is always enabled and in the course of any step sequence, e_{0} is enabled infinitely often. However, the net $\left\langle b_{0}, N\right.$ possesses neither of these properties. In this paper we therefore wor with explicit markings, modifying our earlier definitions and results ac cordingly. (In the notation of Section 4, if $\theta\left(\alpha_{i}\right)=e_{i}$ for $i=0,1$ then $\left\langle 2 b_{0}, N\right\rangle \models_{\theta} \square \exists x . E(x)$ and $\left\langle 2 b_{0}, N\right\rangle \models_{\theta} \square \diamond E\left(\alpha_{0}\right)$ but it is not the case that $\left.\left\langle b_{0}, N\right\rangle \models{ }_{\theta} \square \exists x . E(x) \vee \square \diamond E\left(\alpha_{0}\right)\right)$.

It is our intention to prove properties of a net N by exhibiting mor phisms between N and various test nets T_{i}. This approach is most efficient if our test nets are small. We can use smaller test nets if, rather than in sisting that a morphism from N to N^{\prime} map events of N to events of N^{\prime} (as in our earlier work), we allow an event of N to be mapped to a finite computation of N^{\prime} (as will be done in proving absence of starvation in Section 3.2). With this aim, we now generalise the results of $[3,5]$: such a generalisation is somewhat in the spirit of $[9]$.
3.1 A Category of Nets for proving Temporal Properties

Intuitively, a computation is either an event (possibly idle) or the parallel or sequential composition of two computations. The parallel composition
 sequential composition of c and d written $c \cdot d$ occurs when can fire to reach a marking in which d is enabled we extend the pre ad post-
condition relations of a net from events to computations in the evident way. For parallel composition,we define
$\operatorname{pre}\left(c_{0}+c_{1}\right)=\operatorname{pre}\left(c_{0}\right)+\operatorname{pre}\left(c_{1}\right)$ and $\operatorname{post}\left(c_{0}+c_{1}\right)=\operatorname{post}\left(c_{0}\right)+\operatorname{post}\left(c_{1}\right)$
Defining pre and postcondition relations for sequential composition requires a little care. Note that sequential composition is associative, even though its definition implicitly involves truncated subtraction ${ }^{1} \ominus$ which is not in general associative.

$$
\operatorname{pre}\left(c_{0} ; c_{1}, b\right)= \begin{cases}\operatorname{pre}\left(c_{0}, b\right)+\operatorname{pre}\left(c_{1}, b\right)-\operatorname{post}\left(c_{0}, b\right) & \text { if } \operatorname{pos} t\left(c_{0}, b\right) \leq \operatorname{pre}\left(c_{1}, b\right) \\ \operatorname{pre}\left(c_{0}, b\right) & \text { otherwise }\end{cases}
$$

and

$\operatorname{post}\left(c_{0} ; c_{1}, b\right)=\left\{\begin{array}{l}\operatorname{post}\left(c_{1}, b\right)+\operatorname{post}\left(c_{0}, b\right)-\operatorname{pre}\left(c_{0}, b\right) \text { if } \operatorname{pre}\left(c_{0}, b\right) \leq \operatorname{post}\left(c_{1}, b\right) \\ \operatorname{post}\left(c_{1}, b\right)\end{array}\right.$
Suppose we have a function $F: B^{\prime} \rightarrow B$ which maps the conditions in a simulating net N^{s} to the conditions in the original net N which they mplement. Let M be a marking of N and M^{\prime} a marking of N^{\prime}. Whenever M^{\prime} contains enough resources to implement all the resources marked in M, we expect the simulating net $\left\langle M^{\prime}, N^{\prime}\right\rangle$ to be able to simulate any computation of $\langle M, N\rangle$. This relationship between markings is formalised in the following definition.

Definition 2 Let F be a function from a set B^{\prime} to a set B. The relation $F^{+} \subset B^{\oplus} \times B^{\prime \oplus}$ is qiven $b y$

$$
\left\langle M, M^{\prime}\right\rangle \in F^{+} \quad \text { if and only if } \quad M F \leq M^{\prime},
$$

that is, if and only if for each $b^{\prime} \in B^{\prime}$ we have $M\left(F b^{\prime}\right) \leq M^{\prime}\left(b^{\prime}\right)$.
Expressing this definition succinctly as a diagram in Set, we have $\left\langle M, M^{\prime}\right\rangle \in$ F^{+}if and only if

where we extend the usual ordering \geq on \mathbb{N} pointwise to functions into \mathbb{N}

We now define a category of marked nets in which morphisms from $\langle M, N\rangle$ to $\left\langle M^{\prime}, N^{\prime}\right\rangle$ map events of a N to computations of N^{\prime}.

Definition 3 The category MNet^{+}is defined by the following data:

- objects are marked nets $\langle M, N\rangle$ where N is an element of Petri
- a morphism from $\langle M, E, B$, pre, post \rangle to $\left\langle M^{\prime}, E^{\prime}, B^{\prime}\right.$, pré, post' \rangle is pair of functions $\langle f, F\rangle$ with $f: E \rightarrow E^{\prime+}$ and $F: B^{\prime} \xrightarrow{\prime} B$ such that $\left\langle M, M^{\prime}\right\rangle \in F^{+}$and in Set we have

that is, for each $e \in E$ and each $b^{\prime} \in B^{t}$

$$
\operatorname{pre}\left(e, F b^{\prime}\right) \geq \operatorname{pre}^{\prime}\left(f e, b^{\prime}\right) \quad \text { and } \quad \text { post }\left(e, F b^{\prime}\right) \leq \operatorname{post}^{\prime}\left(f e, b^{\prime}\right),
$$

- and composition is function composition in each component.

Remark 1 It follows immediately from the above defnition that if $\langle f, F\rangle$ $\langle M, N\rangle \longrightarrow\left\langle M^{1}, N^{\prime}\right\rangle$ is a morphism in MNet ${ }^{+}$and $\left\langle M_{1}, M_{1}\right\rangle \in F^{+}$the $\langle f, F\rangle$ is a morphism from $\left\langle M_{1}, N\right\rangle$ to $\left\langle M_{1}^{\prime}, N^{\prime}\right\rangle$ in MNet^{+}

Morphisms in MNet ${ }^{+}$are defined on the purely static structure of nets, but capture precisely a notion of simulation between the dynamic behaviours of nets, as the following results show

Proposition 2 Let $\langle f, F\rangle$ be a morphism from $\left\langle M_{0}, N\right\rangle$ to $\left\langle M_{0}^{\prime}, N^{\prime}\right\rangle$ in MNet^{+}. Then for all $e \in E$, if $M_{0} \xrightarrow{e} M_{1}$ in N then $M_{0}^{f} \xrightarrow{\mathrm{t}^{e}} M_{1}$ in N^{\prime} and $\left\langle M_{1}, M_{1}^{3}\right\rangle \in F^{+}$. Furthermore, $\langle f, F\rangle$ is a morphism from $\left\langle M_{1}, N\right\rangle$ to $\left\langle M_{1}^{\prime}, N^{\prime}\right\rangle$ in MNet ${ }^{+}$
Proof: For each $b^{\prime} \in B^{\prime}$ we have $M_{0}^{\prime}\left(b^{\prime}\right)>M_{0}\left(F b^{\prime}\right)$ as $\left\langle M_{0}, M_{0}^{\prime}\right\rangle \in F^{+}$ $\geq \operatorname{pre}\left(e, F b^{\prime}\right)$ as M_{0} enables $\geq p r e^{i}\left(f e, b^{\prime}\right)$ by definition
and so M_{0}^{\prime} enables $f e$. Further, for each $b^{\prime} \in B^{\prime}$

$$
\begin{aligned}
M_{1}^{\prime}\left(b^{\prime}\right) & =M_{0}^{\prime}\left(b^{\prime}\right)-\operatorname{pre}^{\prime}\left(f e, b^{\prime}\right)+\operatorname{post} t^{\prime}\left(f e, b^{\prime}\right) \\
& \geq M_{0}\left(F b^{\prime}\right)-\operatorname{pre}\left(e, F b^{\prime}\right)+\operatorname{post}\left(e, F b^{\prime}\right)
\end{aligned}
$$

$$
=M_{1}\left(F b^{\prime}\right)
$$

and so $\left\langle M_{1}, M_{1}\right\rangle \in F^{+}$. That $\langle f, F\rangle:\left\langle M_{1}, N\right\rangle \rightarrow\left\langle M_{1}, N\right\rangle$ in MNet ${ }^{+}$ follows immediately from Remark 1

Corollary 3 Let $\langle f, F\rangle$ be a morphism from $\left\langle M_{0}, N\right\rangle$ to $\left\langle M_{0}^{\prime}, N^{\prime}\right\rangle$ in $\mathbf{M N e t}^{+}$. For $i \in\{0, \ldots, n\}$ let $\sigma_{i}=\sum_{1}^{k_{i}} n_{j} e_{j}$ be a multiset of events of N Extend f to multisets of events by putting $f(t+s)=f(t)+f(s)$.If $\left\langle M_{0}, N\right\rangle$ enables the computation $M_{0} \xrightarrow{\sigma_{0}} M_{1} \xrightarrow{\sigma_{1}} \cdots M_{n}$ then $\left\langle M_{0}^{\prime}, N^{v}\right\rangle$ enables the computation $M_{0}^{\prime} \xrightarrow{f \sigma_{0}} M_{1}^{\prime} \xrightarrow{f \sigma_{1}} \cdots M_{n}^{\prime}$.

Proof: Suppose the result does not hold. Let n be the smallest integer such that $\left\langle M_{0}, N\right\rangle$ enables $\sigma_{0} ; \sigma_{1} ; \ldots \sigma_{n}$ and $\left\langle M_{0}^{\prime}, N^{\prime}\right\rangle$ does not enable $f \sigma_{0} ; f \sigma_{1} ; \ldots f \sigma_{n}$. Now in N we have $M_{0} \xrightarrow{\sigma_{0}} M_{1} \xrightarrow{\boldsymbol{\sigma}_{1}} ; \ldots \xrightarrow{\sigma_{n-1}} M_{n}$, and it follows by minimality of n that in N^{\prime} we have $M_{0}^{\prime} \xrightarrow{f \sigma_{0}} M_{1}^{\prime} ; \xrightarrow{f \sigma_{n}}$;
$\xrightarrow{f \sigma_{n-1}} M_{n}^{\prime}$. Applying Proposition $2 n$ times, we see that $\left\langle M_{n}, M_{n}^{j}\right\rangle \in$ F^{+}and $\langle f, F\rangle$ is a morphism from $\left\langle M_{n}, N\right\rangle\left\langle\left\langle M_{n}, N\right\rangle\right.$. Since $\left\langle M_{n}, N\right\rangle$
 $f \sigma_{\text {n }}$ The result follows. $f \sigma_{n}$. The result follows.
Proposition 2 shows that if a pair of markings $\left\langle M, M^{\prime}\right\rangle$ is in F^{+}, then the net $\left\langle M^{\prime}, N^{\prime}\right\rangle$ can simulate any one-step computation of $\langle M, N\rangle$, in the sense that whenever $\langle M, N\rangle$ enables an event $e,\left\langle M^{\prime}, N^{\prime}\right\rangle$ enables the computation $f e$. Corollary 3 shows that N^{\prime} can simulate any computatio of N. We say that N^{\prime} simulates N

Definition 4 Let $\langle M, N\rangle$ and $\left\langle M^{\prime}, N^{\prime}\right\rangle$ be nets and let $f: E \rightarrow E^{++}$and $F: B^{\prime} \rightarrow B$ be functions. Then $\left\langle M^{\prime}, N^{\prime}\right\rangle$ simulates $\langle M, N\rangle$ (and $\langle f, F\rangle$ is a simulation, if and only if $\left\langle M, M^{i}\right\rangle \in F^{+}$and for all pairs of markings $\left\langle M_{0}, M_{0}^{u}\right\rangle \in F^{+}$,

$$
\text { if } M_{0} \xrightarrow{e} M_{1} \text { then } M_{0}^{\prime} \xrightarrow{f e} M_{1}^{\prime} \text { and }\left\langle M_{1}, M_{1}^{3}\right\rangle \in F^{+}
$$

By Corollary 3, every morphism in $\mathbf{M N e t}^{+}$is a simulation. The convers also holds:

Proposition 4 Let N and N^{\prime} be elements of Petri and let $\langle f, F\rangle$ be a simulation from $\langle M, N\rangle$ to $\left\langle M^{\prime}, N^{\prime}\right\rangle$ which preserves 1 -loops, that is
if pre $\left(e, F b^{\prime}\right)=\operatorname{post}\left(e, F b^{\prime}\right)=1$ then $\operatorname{pre}^{\prime}\left(f e, b^{\prime}\right)=\operatorname{post}^{\prime}\left(f e, b^{\prime}\right)=1$
Then $\langle f, F\rangle:\langle M, N\rangle \longrightarrow\left\langle M^{\prime}, N^{\prime}\right\rangle$ in MNet $^{+}$

Proof: Let $M_{0}=\operatorname{pro(e)}$ and $M_{0}^{r}=M_{0} F$. Then $\left\langle M_{0}, M_{0}^{\prime}\right\rangle \in F^{+}$. Since M_{0} enables e and $\langle f, F\rangle$ is a simulation, M_{0} enables $f(e)$. Hence for each $b^{\prime}, \operatorname{pre}^{\prime}\left(f e, b^{\prime}\right) \leq M^{\prime}\left(b^{\prime}\right)=M\left(F\left(b^{\prime}\right)\right)=\operatorname{pre}\left(e, F b^{b}\right.$
We now show that for each $b \in B^{\prime}$, post $\left(e, F b^{\prime}\right) \leq \operatorname{post}^{\prime}\left(f e, b^{\prime}\right)$. Putting $M_{1}=\operatorname{post}_{(e)}$ and $M_{1}^{\prime}=M_{0} F-\operatorname{pre}^{\prime}(f e)+\operatorname{post}^{\prime}(f e)$, we have $M_{0} \xrightarrow{e} M_{1}$ and $M_{0}^{\prime} \xrightarrow{f e} M_{1}^{\prime}$. For each $b^{\prime} \in B^{\prime}, M_{1}\left(F b^{\prime}\right)=p o s t\left(e, F b^{\prime}\right) \leq \operatorname{pre}\left(e, F b^{\prime}\right)-$ $\operatorname{pre}^{\prime}\left(f e, b^{\prime}\right)+\operatorname{post}^{\prime}\left(f e, b^{\prime}\right)$
Now, if post $\left(e, F b^{\prime}\right)=0$ then post $\left(e, F b^{\prime}\right) \leq \operatorname{post}^{\prime}\left(f e, b^{\prime}\right)$ and we are done Otherwise, as N has no multiloops, either $\operatorname{pre}\left(e, F b^{\prime}\right)=\operatorname{post}\left(e, F b^{\prime}\right)=$ $\operatorname{pre}^{\prime}\left(f e, b^{\prime}\right)=\operatorname{post}^{t}\left(f e, b^{\prime}\right)=1$ (since $\langle f, F\rangle$ preserves 1 -loops) and we are done, or pre($\left(, F b^{\prime}\right)=0$. In the latter case $\operatorname{pre}^{\prime}\left(f e, b^{\prime}\right)=0$ since pre $e^{\prime}\left(f e, b^{\prime}\right)<\operatorname{pret}\left(e, F b^{\prime}\right)$, whence post $\left(e, F b^{\prime}\right)<0-0+\operatorname{post}^{\prime}\left(f e, b^{\prime}\right)$ as required
Since $\langle f, F\rangle$ is a simulation, $\left\langle M, M^{\prime}\right\rangle \in F^{+}$: it follows that $\langle f, F\rangle$ is morphism from $\langle M, N\rangle$ to $\left\langle M^{\prime}, N^{\prime}\right\rangle$ in MNet^{+}

The revis thents of this section are important because they show that, not only there morphisms in MNet ${ }^{+}$
3.2 An Example: proving a safety and a liveness property

We illustrate a proof of a safety property and a liveness property, using an example taken from [11]. Olderog presents the nets N_{1} and N_{2} below, and wishes to examine the relationship between them. As he says, "Intuitively, N_{2} is obtained from N_{1} by abstracting from the actions $N C r_{i}, R_{i} q_{i}$ and Out $, i=1,2$, in N_{1}, i.e. by transforming them into internal actions τ and then forgetting about the τ 's'. We shall give a morphism which effects such an abstraction. For simplicity, in the net N_{1} (depicted in Figure 1) we have only named those conditions which will be in the image of our morphisms or in the initial marking of N_{1}
Given marking C, the net N_{2} below forces a choice between the evolutions $B e g_{1} ; E n d_{1}$ and $B e g_{2} ; E n d_{2}$

The net N_{2}

Figure 1. The net N_{1} : mutual exclusion
It is readily proved that every behaviour of the net $\left\langle C_{1} N_{2}\right\rangle$ is a sequence of form $B e g_{a} ; E n d_{a} ;$ Beg $_{b} ; E n d_{b} ; B e g_{c} ; E n d_{c} ; \ldots$ where a, b and c range over $\{1,2\}$. We shall add to the net N_{2} a trivial event $*$, which has empty preand post-condition set. The resultant net $\left\langle C, N_{2}+\perp\right\rangle$ is the coproduct in MNet of N_{2} with the marked net $\perp=\{Q,\{*\},\{*\}, 0,0)$ (where denotes the empty multirelation). There is a morphism $\langle f, F\rangle$ in MNet ${ }^{+}$ from $\left\langle M_{1}+M_{2}+S, N_{1}\right\rangle$ to $\left\langle C, N_{2}+1\right\rangle$ given by

$$
\begin{array}{ll}
f\left(\text { Req }_{i}\right)=\operatorname{Beg}_{i} & f\left(\text { Out }_{i}\right)=E n \\
F(C)=S & F\left(C_{i}\right)=S_{i}
\end{array}
$$

By Corollary 3, the existence of this morphism shows that the net $\left\langle C, N_{2}+\perp\right\rangle$ can simulate any behaviour of the net $\left\langle M_{1}+M_{2}+S, N_{1}\right\rangle$. Since the behaviour of the image net is so restricted (indeed, $\langle, S, F\rangle$ minimal in the sense of Defnition 11), his proves an important feature he matked net $M_{1}+M_{2}+S, N_{1}$, hai wich $R e q_{2}$ can occur ir $R e q_{1}$ has occurred and $O u_{1}$ has not. This, oge her rrves on This example is particularly simple. Note however, for any net 〈M N This exarl is par fom $\langle M, N\rangle$, $\langle C, N$ + 1\rangle cal be wed to demonstrate that $\langle M, N\rangle$ (Mon $)$ (${ }^{2}+1$
The net $\left\langle C, N_{2}\right\rangle$ describ
The net $\left\langle C, N_{2}\right\rangle$ describes the behaviour of the shared resource, abstracting away from the competing processes. A different abstraction is
given in the net $\left\langle m_{1}+m_{2}+s, N_{3}\right\rangle$ below, which describes only the possible states of the processes (critical, requesting entry to the critical region or neither of these) and how these interact. There is a morphism $\langle g, G\rangle$ in MNet ${ }^{+}$from $\left\langle m_{1}+m_{2}+s, N_{3}\right\rangle$ to $\left\langle M_{1}+M_{2}+S, N_{1}\right\rangle$ given by:

$$
\begin{array}{lll}
g\left(n c r_{i}\right)=N c r_{i} & g\left(r e q_{i}\right)=\operatorname{Req} q_{i} & g\left(c r_{i}\right)=I n_{i} ; C r_{i} ; I n_{i} \\
G\left(M_{i}\right)=m_{i} & G\left(Q_{i}\right)=q_{i} & G\left(R_{i}\right)=G\left(S_{i}\right)=r_{i} \\
G(S)=s & G(b)=* \text { for all other conditions bof } N_{1}
\end{array}
$$

The marked net $\left\langle m_{1}+m_{2}+s, N_{3}\right\rangle$
We shall assume strong fairness in the sense that if any event of N_{3} is enabled infinitely often, it occurs infinitely often. Note that $\langle g, G\rangle$ is minimal in the sense of Definition 11 and so preserves strong fairness (see Example 2). Clearly, if q_{1} is marked in N_{3} but requever occurs, then q_{1} is always marked. Also, s is marked infinitely often. Hence re q_{1} is enabled infinitely often and by strong fairness must occur infinitely of ten, contradicting the assumption that req never occurs. We deduce that $\left\langle m_{1}+m_{2}+s, N_{3}\right\rangle$ satisfies a liveness property which might be called "ab sence of starvation, stating that if a process requests entry to its critical region, it eventually enters it. This property is preserved by $\langle g, G\rangle$ and hus $\left\langle M_{1}+M_{2}+S, N_{1}\right\rangle$ also salisfles absence of starvation. This small anple remple llaped ing in lapsed to In Sonds in $n_{1}, \mathrm{Cr}_{1} ; \mathrm{Out}_{1}$
In Section 4, we develop a means of expressing such proofs formally. We define temporal and modal logics which express properties of nets a emporal logic formulae. A net satisfies a formula if its behaviour has ce perylact of oth formula is reftect Suppose that $\langle f, F\rangle\left\langle\langle M, N\rangle=\left\langle M^{1}, N^{1}\right)\right.$ MNet ${ }^{+}$. If $\langle M, N\rangle$ has the property described by ϕ and satisfaction of ϕ
is preserved by morphisms then $\left\langle M^{\prime}, N^{\prime}\right\rangle$ also has the property described by ϕ. If $\left\langle M^{\prime}, N^{\prime}\right\rangle$ has the property described by ψ and satisfaction of ψ is reflected by morphisms then $\langle M, N\rangle$ also has the property described by ψ.

In Section 5.1 we reprove the results of this section in our formal seting. We do this by expressing mutual exclusion and absence of starvation as temporal logic formulae and showing that the existence of the morphisms $\langle f, F\rangle$ and $\langle g, G\rangle$ can be used to prove that $\left\langle M_{1}+M_{2}+S, N_{1}\right\rangle$ satisfies both properties, without explicitly considering the set of possible behaviours of $\left\langle M_{1}+M_{2}+S, N_{1}\right\rangle$.

4 A Temporal Logic for Enablement

The main purpose of modal and temporal logics is the specification of complex concurrent systems. A specification is the conjunction of formulae each describing a property required of a system: our technique facilitates the proof that a net satisfies each conjunct in its specification. Classifying properties helps to prevent underspecification: we know, for example, that a full specification must describe both safety and liveness properties. The categorical approach offers a basis for successive refinements (since we can compose morphisms) and for a compositional proof system exploiting structure in our category of processes.

The examples of Section 3.2 gave simple test nets possessing properties of mutual exclusion and absence of starvation, and used morphisms to demonstrate that a more complex net also had these properties. A key point is that we proved properties of the complex net without reference to its dynamic behaviour. We now prove that this technique applies to a large class of properties, which we characterise syntactically in Section 5 . In this section we develop a simple modal language \mathcal{M} and temporal language I for discussing net behaviours. We give interpretations of \mathcal{M} and I in any marked net, define a notion of satisfaction and demonstrate the expressiveness of our logics. This section formalises the arguments of ection 3.2, and which our technique can be applied
Modal logics use modalities to express the effects of events firing. For each step s, the operator $[s]$ means "after every s-step", while its dual $\neg[s] \neg$, abbreviated $\langle s\rangle$, means "after some s-step". We assume disjoint over by $\alpha, \alpha_{0}, \alpha_{1}$) A term of \mathcal{M} is either a variable, a constant, multiset of constants or a sequence of two terms. \mathcal{M} is the modal language
given by:
$\phi::=\mathrm{tt}|\neg \phi| \phi \wedge \phi|\langle t\rangle \phi| \forall x . \phi$ for t a closed term and x a variable.
We define formulae $\mathrm{f}, \phi \vee \psi, \phi \rightarrow \psi, \exists x . \phi,[t] \phi$ and $\phi \leftrightarrow \psi$ (logical equivalence) in the usual, classical way. The quantifiers \forall and \exists bind equivalence) in the usual, classical way. The quantifiers \forall and \exists bind variables, and a formula is closed if it has no free variables. Closed terms are ranged over by t. We write $\phi[\varepsilon / x]$ to stand for ϕ with e substituted for
all free occurrences of x, subject to the usual renaming of bound variables. all free occurrences of x, subject to the usual renaming of bound variables,
We define an interpretation of an \mathcal{M} formula ϕ in a marked net inductively We define an interpretation of an \mathcal{M} formula ϕ in a marked net inductively
in terms of an interpretation of the constants α_{i} which occur in ϕ as in terms of an interpretation of the constants α_{i} which occur in ϕ as
computations of the net. An interpretation of \mathcal{M} in a marked net $\langle M, N\rangle$ computations of the net. An interpretation of \mathcal{M} in a marked net $\langle M, N\rangle$
is a partial function θ from the constants α_{i} of \mathcal{M} to the computations E^{+}of N dom (θ) denotes the set of constants on which θ is defined. We extend θ homomorphically to closed terms.

Definition 5 The satisfaction relation \vDash_{θ} between marked nets and closed
Dermulae of M relative to an interpretation θ of M in $\langle M, N\rangle$ is defined as follows:
$1\langle M, N\rangle \models_{\theta}$ t
$2\langle M, N\rangle \models_{\theta} \rightarrow \phi \quad$ iff it is not the case that $\langle M, N\rangle \vDash_{\theta} \phi$
$3\langle M, N\rangle \models_{\theta} \phi \wedge \psi$ iff $\langle M, N\rangle \vDash_{\theta} \phi$ and $\langle M, N\rangle \vDash_{\theta} \psi$
$4\langle M, N\rangle \vDash_{\theta} \forall x . \phi$ iff for all $\alpha \in \operatorname{dom}(\theta)$ we have $\langle M, N\rangle \vDash_{\theta} \phi[\alpha / x]$
$5\langle M, N\rangle \models_{\theta}[t] \phi \quad$ iff whenever $M \xrightarrow{\theta t} M^{\prime}$ we have $\left\langle M^{\prime}, N\right\rangle \models_{\theta} \phi$.
The satisfaction relation is then determined for the derived operators. For example, we have
$\langle M, N\rangle \vDash_{\theta} \phi \vee \psi$ iff $\langle M, N\rangle \vDash_{\theta} \phi$ or $\langle M, N\rangle \vDash_{\theta} \psi$
$\langle M, N\rangle \models_{\theta} \phi \rightarrow \psi$ iff whenever $\langle M, N\rangle \models_{\theta} \phi$ then $\langle M, N\rangle \models_{\theta} \psi$
$\langle M, N\rangle \models_{\theta} \exists x . \phi$ iff $\exists \alpha \in \operatorname{dom}(\theta)$ such that $\langle M, N\rangle \vDash_{\theta} \phi[\alpha / x]$
$\langle M, N\rangle \vDash_{\theta}\langle t\rangle \phi \quad$ iff $\exists M^{\prime}$ such that $M \xrightarrow{\theta t} M^{\prime}$ and $\left\langle M^{\prime}, N\right\rangle \models_{\theta} \phi$. Rules 1 to 4 give satisfaction a standard meaning in the style of Tarski: in particular, they reflect the fact that our logic is classical. The interesting rule is 5 , which expresses the interaction of the modal operators with evolution of the net. Thus $\langle M, N\rangle=_{\theta}\langle\alpha\rangle \phi$ if M can evolve under $\theta(\alpha)$ to a marking in which ϕ is satisfied. similarly, $\langle M, N\rangle=_{\theta} \exists x,\langle x\rangle \phi$ if 1
is
$M, N\rangle \vDash$, (t) exactly when the computation in $\langle M, N\rangle$ which inter prets ${ }^{2}$
that $\langle M, N\rangle \models_{\theta} \neg E(t)$ if and only if $\langle M, N\rangle \models_{\theta}\langle t\rangle$ f, that is, precisely when the computation interpreting t is not enabled. Observe that if α is interpreted by the identity step $i d_{x b}$ then $\langle M, N\rangle=_{\theta} E(\alpha)$ whenever the condition b is marked in $\langle M, N\rangle$ with at least n tokens. In general such properties as mutual exclusion or freedom from deadlock can be expressed in terms of the enabling of events. For example, the fact that two events e_{0} and e_{1} cannot occur concurrently is expressed by the formula $\neg E\left(\alpha_{0}+\alpha_{1}\right)$, where α_{i} is interpreted in $\langle M, N\rangle$ by e_{i}
We wish to specify and reason about both the overall behaviour of a net and individual enabled steps: we therefore turn our attention from steps to step sequences, and extend \mathcal{M} to the temporal $\operatorname{logic} \mathcal{T}$ by considering the modal formulae which hold on computation paths rather than at individual states. \mathcal{T} is given by:

$$
\phi::=\mathrm{tt}|\neg \phi| \phi \wedge \phi|\forall x \cdot \phi|[t] \phi \mid \square \phi \quad \text { for } t \text { a closed term. }
$$

Definition 5 The interpretation of a closed formula ϕ of \mathcal{T} relative to an interpretation θ of \mathcal{T} in a marked net $\langle M, N\rangle$ is a set of step sequences $\sigma=\sigma_{0} ; \sigma_{1} ; \ldots$ given as follows:
$\sigma \in \llbracket \mathrm{t} \rrbracket_{\theta} \quad$ for any σ
$\sigma \in \llbracket-\phi \rrbracket_{\theta}$ iff it is not the case that $\sigma \in\left[\phi \rrbracket_{\theta}\right.$
$\sigma \in \llbracket \phi \wedge \psi \rrbracket_{\theta}$ iff $\sigma \in \llbracket \phi \rrbracket_{\theta} \cap \llbracket \psi \rrbracket_{\theta}$
$\begin{array}{ll}\sigma \in \llbracket \forall x, \phi]_{\theta} & \text { iff for all } \alpha \in \operatorname{dom}(\theta) \text { we have } \sigma \in[\phi[\alpha / x]]_{\theta} \\ \sigma \in \llbracket[t] \phi]_{\theta} & \text { iff whenever there exists } k \text { such that } \sigma_{0} ; \sigma_{1} ; \ldots ; \sigma_{k}=\theta(t)\end{array}$
$\sigma \in \llbracket \square \phi]_{\theta} \quad$ iff for each i we have $\sigma_{i} ; \sigma_{i+1} ; \ldots \in\left[\phi \rrbracket_{\theta}\right.$
The satisfaction relation \vDash between marked nets and closed formulae of τ relative to θ is given by $\langle M, N\rangle \models_{\theta} \phi$ iff every computation of $\langle M, N\rangle$ is an element of $\llbracket \phi \rrbracket_{\theta}$.

This interpretation gives the usual meaning to the derived operators. Thus $\langle M, N\rangle \models_{\theta} \diamond \phi$ precisely when every computation of $\langle M, N\rangle$ eventually satisfies ϕ, while $\langle M, N\rangle \models_{\theta}\langle t\rangle \phi$ precisely when $\langle M, N\rangle$ can evolve under $\theta(t)$ to $\left\langle M^{r}, N\right\rangle$ and $\left\langle M^{R}, N\right\rangle=_{\theta} \phi$. We could define F_{θ} relative to certain fairness or liveness assumptions, considering, for example, only those step sequences which are weakly or strongly fair [7]. In his temporal logic for occurrence nets [14], Reisig restricts attention
The lase τ interesting presties Titive (what can be enabled) and negative (what cannt be enabled).

For example, mutual exclusion of events interpreting α_{0} and α_{1} is expressed by satisfaction of the formula $\square \neg E\left(\alpha_{0}+\alpha_{1}\right)$ while freedom from deadlock is expressed by satisfaction of the formula $\square \exists x . E(x)$

In practice, the graphical representation of nets facilitates the creative process of constructing test nets. It appears difficult to find an algorithm which constructs an efficient test net corresponding to a given formula (especially in the case of negation). Each test net can be used to establish a property for many different complex nets, however, which justifies considerable effort in constructing test nets. An efficient (smaller) test net offers savings each time it is used.

This paper aims to demonstrate by means of modal and temporal logic the wide range of properties which our technique can be used to prove The principal rôle of the logics \mathcal{M} and \mathcal{T} lies in providing a sufficiently powerful language to express the properties which concern us. We do not here explore proof systems, beyond observing that, in addition to the usual proof rules for modal logic [6] and temporal logic [7], the net model satisfies proof rules corresponding to properties of nets, including the evident rules reflecting the following facts

- $\langle M+\operatorname{pre}(\theta(t)), N\rangle \vDash_{\theta} E(t)$ for any marking M of N,
- if $\langle M, N\rangle \vDash_{\theta} E\left(t_{0} ; t_{1}\right)$ then $\langle M, N\rangle \models_{\theta} E\left(t_{0}\right)$ and $\langle M, N\rangle \models_{\theta}$ $\diamond E\left(t_{1}\right)$ and
- if $\langle M, N\rangle \vDash_{\theta} E\left(t_{0}+t_{1}\right)$ then $\langle M, N\rangle \models_{\theta} E\left(t_{0}\right) \wedge E\left(t_{1}\right)$.

Further rules reflect the interaction between satisfaction and structure in the category MNet ${ }^{+}$

5 The Interaction of the Logics with the Categorical

 FrameworkIn this section, we show more precisely how the satisfaction of modal and temporal logic formulae interacts with morphisms and structure in $\mathbf{M N e t}^{+}$. This is necessary for compositional and modular reasoning about the properties satisfied by net behaviours.

We first express the properties we require a net $\langle M, N\rangle$ to satisfy as temporal logic formulae. In general these formulae are either preserved or reflected by morphisms in MNet ${ }^{+}$. For each formula ϕ whose satisfaction is preserved, we seek a test net T which is readily shown to satisfy and wound suitable T and $\langle f F\rangle$ we conclude that $\langle M, N\rangle$ saticfies ϕ Similarly for each formula whose satisfaction is reflected we seet a tes similarly, for each formula ψ whose satisfaction is reflected, we seek a tes net T^{\prime} and a morphism $\langle g, G\rangle$ from $\langle M, N\rangle$ to T^{\prime}.

Let \mathcal{L} be the sublanguage of the modal language \mathcal{M} without negation or quantification, given by:

$$
\phi:=\mathrm{t}|\mathrm{f}|\langle t\rangle \phi|[t] \phi| \phi \wedge \phi \mid \phi \vee \phi \text { for } t \text { a closed term. }
$$

The language \mathcal{L} is of particular interest because, if t is restricted to constant terms, \mathcal{L} characterises strong bisimulation of processes in CCS in the sense that two finitely branching processes are strongly bisimilar if and only if they satisfy the same formulae of \mathcal{L}

Definition 6 Satasfaction of a formula ϕ of T as preserved by a morphasm $\langle f, F\rangle:\langle M, N\rangle \longrightarrow\left\langle M^{\prime}, N^{\top}\right\rangle$ of MNet^{+}if, for any interpretation θ of T in $\langle M, N\rangle$,

$$
\text { if }\langle M, N\rangle \vDash_{\theta} \phi \text { then }\left\langle M^{\prime}, N^{\prime}\right\rangle \models_{f \theta} \phi .
$$

Satisfaction of ϕ is reflected $b y\langle f, F\rangle$ if, for any interpretation θ,

$$
\text { if }\left\langle M^{\prime}, N^{\prime}\right\rangle \models_{t \theta} \phi \text { then }\langle M, N\rangle \models_{\theta} \phi .
$$

We omit mention of the morphism $\langle f, F\rangle$ where a result holds for any morphism in MNet ${ }^{+}$, for example, if any morphism preserves ϕ then we say that ϕ is preserved

Proposition 6 If ϕ is a formula of \mathcal{L} containing no instance of $[t]$ then ϕ is preserved.

Proof: We use induction on the structure of ϕ. The base cases are trivial since every marked net satisfies the formula $t t$ and none satisfies f. The cases of conjunction and disjunction are straightforward: for example, if $\left\langle M_{0}, N\right\rangle \vDash_{\theta} \phi_{0} \vee \phi_{1}$ then $\left\langle M_{0}, N\right\rangle \vDash_{\theta} \phi_{i}$ for $i=0$ or $i=1$, by definition. By inductive hypothesis, $\left\langle M_{0}^{1}, N\right\rangle={ }_{\theta} \phi_{i}$ and hence $\left\langle M_{0}^{1}, N\right\rangle=_{\theta} \phi_{0} \vee \phi_{1}$ Now suppose that $\left\langle M_{0}, N\right\rangle \models_{\theta}\langle t\rangle \phi$. There exists M_{1} such that $M_{0} \xrightarrow{\Delta(t)} M_{1}$ and $\left\langle M_{1}, N\right\rangle \models_{\theta} \phi$. But $\langle f, F\rangle$ is a morphism from $\left\langle M_{0}, N\right\rangle$ to $\left\langle M_{0}^{\prime}, N^{\prime}\right\rangle$ in MNet ${ }^{+}$, so $M_{0}^{\prime} \xrightarrow{f(\theta(t))} M_{1}^{\prime}$ and since (using Proposition 2), $\langle f F\rangle$ is also a morphism in MNet^{+}from $\left\langle M_{1}, N\right\rangle$ to $\left\langle M_{1}^{i}, N^{\prime}\right\rangle$, by induc $\langle f, F\rangle$ is also a morphism N^{\prime} \square
Note that $[t] \phi$ is not preserved: for the net N of Section 3, we have $\langle i d, i d\rangle:\langle\emptyset, N\rangle \rightarrow\left\langle 2 b_{0}, N\right\rangle$ in MNe^{+}. If $\theta(\alpha)=e_{0}$ then $\langle\emptyset, N\rangle \vDash_{\theta}$ $[\alpha] E(\alpha)$ (since e_{0} is not enabled), but $\left\langle 2 b_{0}, N\right\rangle \not \forall_{\theta}[\alpha] E(\alpha)$

Proposition 7 If ϕ is a formula of \mathcal{L} containing no instance of $\langle t\rangle$ then ϕ is reflected.

Proof: Again, we use induction on the structure of ϕ. The interesting case is when $\left\langle M_{0}^{\prime}, N^{\prime}\right\rangle \vDash_{f t}[t] \phi$. Whenever $M_{0} \xrightarrow{\theta(f)} M_{1}$ in N, we know that $M_{0}^{\prime} \xrightarrow{f(\theta(t))} M_{1}^{\prime}$ in N^{\prime}, and so $\left\langle M_{1}^{\prime}, N^{\prime}\right\rangle \vDash_{f \theta} \phi$, by assumption. Now $\langle f, F\rangle:\left\langle M_{1}, N\right\rangle \longrightarrow M_{1}\left\langle M_{1}^{1}, N^{\prime}\right\rangle$ in $\mathbf{M N e t}^{+}$, and so, by inductive hypothesis, $\left\langle M_{1}, N\right\rangle \vDash_{\theta} \phi$. Hence, by definition, $\left\langle M_{0}, N\right\rangle \vDash_{\theta}[t] \phi$.
The above results state that certain safety properties expressible as for mulae of \mathcal{L} are preserved by morphisms in MNet ${ }^{+}$, while certain liveness properties are reflected. It is important to note that we code up the change of interpretation by replacing θ by $f \theta$. Since the formula ϕ does no change, a single test net satisfying ϕ witnesses the fact that both $\langle M, N\rangle$ and $\left\langle M^{\prime}, N^{N}\right\rangle$ satisfy the property described by ϕ. We now generalise these results to our temporal language \mathcal{T}.

Definition 8 Let $\langle f, F\rangle:\langle M, N\rangle \rightarrow\left\langle M^{\prime}, N^{\prime}\right\rangle$ be a morphism in MNet^{+} We say that ϕ-computations are preserved by $\langle f, F\rangle$ iff

$$
\text { if } \sigma \in \llbracket \phi]_{\theta} \text { then } f \sigma \in[\phi]_{f \theta}
$$

We say that ϕ-computations are reflected by $\langle f, F\rangle$ iff

$$
\text { if } \left.f \sigma \in[\phi]_{f \theta} \text { then } \sigma \in \llbracket \phi\right]_{\theta}
$$

Thus $\langle f, F\rangle$ preserves ϕ-computations iff $f[\phi]_{\theta} \subseteq[\phi]_{f \theta}$ and $\langle f, F\rangle$ reflects ϕ-computations iff $f^{-1} \llbracket \phi \rrbracket_{f \theta} \subseteq[\phi]_{\theta}$. In this paper we consider preservation and reflection at three levels, illustrated by the cases where
(1) a morphism $\langle f, F\rangle$ preserves (or reflects) ϕ-computations,
(2) a morphism $\langle f, F\rangle$ preserves (or reflects) satisfaction of ϕ and
(3) any morphism of MNet^{+}preserves (or reflects) ϕ-computations or ϕ.
In general, we prove results at levels (1) and (2) for an arbitrary morphism $\langle f, F\rangle$, which enables us to deduce that the results hold at level (3) Results at level (2) are weaker than those at level (1). Propositions 9, 10 and 13 below relate the different notions of preservation and reflection

Proposition 9ϕ-computations are reflected iff $\neg \phi$ computations are pre served.
Proof: Suppose ϕ-computations are preserved and $\langle f, F\rangle$ is a morphism with $f \sigma \in[\neg \phi]_{t \theta}$. Then $f \sigma \notin[\phi]_{t \theta}$ and, since ϕ computations are with $\sigma \in[\neg \phi] H^{\theta}$. Then $\sigma \notin[\phi] f^{\theta}$ and, since ϕ-com

Now suppose that ϕ-computations are reflected and that $\sigma \in[\neg \phi]$ Then $\sigma \notin[\phi]_{\theta}$ and, since ϕ-computations are reflected, $\sigma \notin[\phi]_{f \theta}$. Thu $\neg \phi$-computations are preserved
\square
In the propositions which follow, it is to be understood that $\langle f, F\rangle$: $M, N\rangle \longrightarrow\left\langle M^{\prime}, N^{\prime}\right\rangle$.

Proposition 10 If $\langle f, F\rangle$ reflects ϕ-computations then $\langle f, F\rangle$ reflects ϕ. Proof: If $\left\langle M^{\prime}, N^{\prime}\right\rangle \models_{f \theta} \phi$ and σ^{\prime} is a step sequence of $\left\langle M^{\prime}, N^{\prime}\right\rangle$ then $\sigma^{\prime} \in$ $\llbracket \phi \rrbracket_{j \theta}$. In particular, for every step sequence σ of $\langle M, N\rangle, f \sigma \in\left[\phi \rrbracket_{f \theta}\right.$. Since $\langle f, F\rangle$ reflects ϕ-computations, $\sigma \in \llbracket \phi \rrbracket_{\theta}$ for every step sequence σ of $\langle M, N\rangle$ and so $\langle M, N\rangle \vdash_{\theta} \phi$. $\langle M, N\rangle$, and so $\langle M, N\rangle=_{\theta} \phi$.
-
Note that it is not the case that if ϕ-computations are preserved by
$f, F\rangle$ then ϕ is preserved by $\langle f, F\rangle$, as $\left\langle M^{\prime}, N^{\prime}\right\rangle$ may enable step se$\langle f, F\rangle$ then ϕ is preserved by $\langle f, F\rangle$, as $\left\langle M^{i}, N^{\prime}\right\rangle$ may enable step se following slightly weaker notion of preservation of a formula ϕ and ϕ computations:

Definition 11 Let $\langle f, F\rangle:\langle M, N\rangle \rightarrow\left\langle M^{\prime}, N^{\prime}\right\rangle$ in MNet^{+}. We say that $\langle f, F\rangle$ is minimal if every step sequence of $\left\langle M^{\prime}, N^{\prime}\right\rangle$ is the image under f of some step sequence of $\langle M, N\rangle$, that is, if $C_{N^{\prime}}^{\prime \prime} \subseteq f\left(C_{N}^{M}\right)$.

Definition 12 A formula ϕ of \mathcal{T} is minimally preserved if any minimal morphism $\langle f, F\rangle:\langle M, N\rangle \xrightarrow{\rightarrow}\left\langle M^{1}, N^{3}\right\rangle$ in MNet ${ }^{+}$preserves ϕ. Similarly, ϕ is minimally reflected if any minimal morphism $\langle f, F\rangle$ reflects ularl
ϕ.

Although the definition of a minimal morphism may appear restrictive, in practice it is a natural property to require of an efficient test net, expressing the fact that the test net should contain no redundant behaviour Note that a morphism $\langle f, F\rangle:\langle M, N\rangle \longrightarrow\left\langle M^{\prime}, N^{\prime}\right\rangle$ is minimal if every event $e^{\prime} \in E^{\prime}$ is the image of some event in E. It is evident that if ϕ is preserved (reflected) then ϕ is minimally preserved (reflected).

Proposition 13 If $\langle f, F\rangle$ preserves ϕ-computations and is minimal then $\langle f, F\rangle$ preserves ϕ.
Proof: If $\langle M, N\rangle \models_{\theta} \phi$ then $C_{N}^{M} \subseteq[\phi]_{\theta}$. Since $\langle f, F\rangle$ preserves ϕ computations, $f\left(C_{N}^{M}\right) \subseteq[\phi]_{f \theta}$. Since f is minimal, $C_{N^{\prime}}^{M^{\prime}} \subseteq f C_{N}^{M}$ and so $\left\langle M^{\prime}, N^{\prime}\right\rangle \vDash_{j \theta} \phi$.

Corollary 14 If ϕ-computations are preserved by every manimal mor phasm of MNet^{+}then ϕ is minimally preserved

We shall show that the preservation and reflection properties of various compound formulae are determined by the preservation and reflection properties of their component formulae. The following lemma, together with Lemmas 21 and 23, provides a starting point for the inductive definition of the set of formulae whose preservation and reflection properties we can readily establish.

Lemma 15 t -computations are preserved and reflected, while t is preserved and reflected.
$E(t)$-computations are preserved and $E(t)$ is preserved. Furthermore $\neg E(t)$ is reflected.

Proof: Preservation and reflection of tt are immediate. Now suppose $\langle f, F\rangle:\langle M, N\rangle \rightarrow\left\langle M^{\prime}, N^{\nu}\right\rangle$ in MNet^{+}. Then
$f\left(\llbracket \mathrm{H} \rrbracket_{\theta}\right)=f\left(C_{N}^{M}\right)$
$\subseteq C_{N^{\prime}}^{M} \quad$ by Proposition 2
$=[\mathrm{H}]_{f \theta}$
and thus tt-computations are preserved. Similarly, स-computations ar reflected since $f^{-1}\left(C_{N^{\prime}}^{M^{\prime}}\right) \subseteq C_{N}^{M}$

In the case of preservation of $E(t)$ and reflection of $\neg E(t)$ we appeal to Proposition 2.

We extend the notion of preservation and reflection of ϕ-computation to open formulae in the usual way: thus for example, $\forall x . \phi$-computation are preserved by $\langle f, F\rangle$ if for every $\alpha \in \operatorname{dom}(\theta)$ it is the case that $\langle f, F\rangle$ preserves $\phi[\alpha / x]$-computations.

Proposition 16 If $\langle f, F\rangle$ preserves ϕ - and ψ-computations then $\langle f, F\rangle$ preserves

$$
\begin{aligned}
& -\phi \wedge \psi \text {-computations and } \\
& -\forall \wedge \phi \text {-computations. }
\end{aligned}
$$

Proof:

- Suppose $\sigma \in \llbracket \phi \wedge \psi \rrbracket_{\theta}=\llbracket \phi \rrbracket_{\theta} \cap\left[\psi \rrbracket_{\theta}\right.$. Then $\sigma \in[\phi]_{\theta}$ and $\sigma \in$
$[\psi]_{\theta}$ and since $\langle f, F\rangle^{2}$ preserves both ϕ and ψ-computations, $f \sigma \in$
$\left[\psi \rrbracket_{\theta}\right.$ and since $\langle f, F\rangle$ preserves both ϕ - and ψ-computations, $f \sigma \in$
$[\phi]_{\ell \theta}$ and $\left.f \sigma \in \llbracket \psi\right]_{\theta \theta}$, whence $f \sigma \in[\phi \wedge \psi]_{t \theta}$. Hence $\left.f \llbracket \phi \wedge \psi\right]_{\theta} \subseteq$
$[\phi]_{f \theta}$ and $\left.f \sigma \in \llbracket \psi\right]_{f}$, whence $f \sigma \in[\phi \wedge \psi]_{f \theta}$. Henct
$[\phi \wedge \psi]_{f \theta}$ and $\langle f, F\rangle_{\text {preserves } \phi \wedge \psi \text {-computations. }}$
- Suppose $\sigma \in[\forall x . \phi]_{\theta}$. Then for each $\alpha \in \operatorname{dom}(\theta)$ we have σ $[\phi[\alpha / x]]_{\theta}$ and, since $\operatorname{dom}(f \theta)=\operatorname{dom}(\theta)$ and ϕ-computations are pre served, $f \sigma \in[\phi[\alpha / x]]_{t \theta}$ for each $\alpha \in \operatorname{dom}(f \theta)$. Hence $\left.f \sigma \in \llbracket \forall x . \phi\right]$ and $\forall x . \phi$-computations are preserved.

Proposition 17 If $\langle f, F\rangle$ reflects ϕ - and ψ-computations then $\langle f, F\rangle$ re flects
$-\phi \wedge \psi$-computations,
$-[t] \phi-$ computations,
$-\square \phi$-computations and
$\forall x \phi$-computations.
Proof:

- Suppose $f \sigma \in[\phi \wedge \psi]_{f \theta}=[\phi]_{f \theta} \cap\left[\psi \rrbracket_{f \theta} \text {. Then } f \sigma \in \llbracket \phi\right]_{f \theta}$ and $f \sigma \in[\psi]_{f \theta}$ and since both ϕ - and ψ-computations are reflected, $\sigma \in$ $[\phi]_{\theta}$ and $\sigma \in[\psi]_{\theta}$, whence $\sigma \in[\phi \wedge \psi]_{\theta}$. Thus $f^{-1}\left([\phi \wedge \psi]_{f \theta}\right) \subseteq$ $\left\lceil\phi \wedge \psi \rrbracket_{\theta}\right.$ and $\langle f, F\rangle$ reflects $\phi \wedge \psi$-computations.
- Suppose $f \sigma \in \llbracket[t] \phi]_{f \theta}$ and $\sigma_{0} ; \sigma_{1} \ldots \sigma_{k}=\theta(t)$. Then putting $\sigma^{\prime}=f \sigma$ we can find l such that $f\left(\sigma_{0} ; \sigma_{1} \ldots \sigma_{k}\right)=\sigma_{0}^{\prime} ; \sigma_{1}^{\prime} ; \ldots \sigma_{l}^{\prime}=f \theta(t)$ and $f\left(\bar{\sigma}_{k+1}\right)=\bar{\sigma}_{l+1}^{\prime}$. Since $\left.\sigma^{\prime}=f \sigma \in \llbracket[t] \phi\right]_{f^{\theta}}$ we have $\bar{\sigma}_{+1}^{\prime} \in\left[\phi \rrbracket_{f^{\theta}}\right.$ Since ϕ-computations are reflected, $\bar{\sigma}_{k+1} \in f^{-1}\left(\bar{\sigma}_{l+1}^{\prime}\right) \subseteq[\phi]_{\theta}$. Hence $\sigma \in[[t] \phi]_{\theta}$ and $\langle f, F\rangle$ reflects $[t] \phi$-computations.
- Suppose $\sigma^{\prime}=f \sigma \in[\square \phi]_{f \theta}$. Now for each k we can find l such that $f\left(\bar{\sigma}_{k}\right)=\bar{\sigma}_{l}^{\prime}$ and so $f\left(\bar{\sigma}_{k}\right) \in\left[\phi \rrbracket_{f^{\theta}}\right.$. But ϕ-computations are reflected and so $\bar{\sigma}_{k} \in[\phi]_{\theta}$. This holds for each k and so $\sigma \in[\square \phi]_{\theta}$ and $\square \phi$-computations are reflected
- Suppose $f \sigma \in \llbracket \forall x, \phi \rrbracket_{f \theta}$. Then for each $\alpha \in \operatorname{dom}(f \theta), f \sigma \in \llbracket \phi[\alpha / x] \rrbracket_{f \theta}$ Since ϕ computations are reflected and $\operatorname{dom}(\theta)=\operatorname{dom}(f \theta)$, for each $\alpha \in \operatorname{dom}(\theta), \sigma \in\left[\phi[\alpha / x] \rrbracket_{\theta}\right.$ and so $\sigma \in \llbracket \forall x . \phi \rrbracket_{\theta}$. Hence $f^{-1}\left[\forall x . \phi \rrbracket_{t \theta} \subseteq\right.$ $[\forall x . \phi]_{A}$ as required
\square
Corollary 18 If $\langle f, F\rangle$ preserves ϕ - and ψ-computations then $\langle f, F\rangle$ preserves
$-\phi \vee \psi$-computations,
$-\langle t\rangle \phi$-computations,
$-\diamond \phi$-computations and
- $\exists x \phi$-computations.

If $\langle f, F\rangle$ reflects ϕ and ψ-computations then $\langle f, F\rangle$ reflects

$$
\begin{aligned}
& \text { - } \phi \vee \psi \text {-computations and } \\
& \text { - } \exists x . \phi \text {-computations. }
\end{aligned}
$$

Proof: By Proposition 9, $\langle f, F\rangle$ reflects $\neg \phi$ and $\neg \psi$-computations, and so by Proposition 17, $\langle f, F\rangle$ reflects $(\neg \phi) \wedge(\neg \psi)$-computations. Henc $\langle f, F\rangle$ reflects $\neg(\phi \vee \psi)$-computations. By Proposition 9, $\langle f, F\rangle$ preserves $\phi \vee \psi$-computations.

The other cases are proved analogously.

Lemma 19
If $\langle f, F\rangle$ preserves ϕ-computations and f is injective then $\langle f, F\rangle$ preserves $[t]$-computations
If $\langle f, F\rangle$ is minimal and preserves ϕ-computations then $\langle f, F\rangle$ preserves $[t] \phi$.

Proof: Suppose $\langle f, F\rangle:\langle M, N\rangle \longrightarrow\left\langle M^{\prime}, N^{\prime}\right\rangle$ and $\sigma \in[[t] \phi]_{\theta}$. If $\sigma_{0} ; \ldots \sigma_{k}=\theta t$ it follows that $\bar{\sigma}_{k+1} \in \llbracket \phi \rrbracket_{j \theta}$. Now suppose that $f \sigma_{0} ;$ $\ldots f \sigma_{k}=f \theta t$. Since f is injective, $\sigma_{0} ; \ldots \sigma_{k}=\theta t$ and so $\bar{\sigma}_{k+1} \in \llbracket \phi \rrbracket$ and, since $\langle f, F\rangle$ preserves ϕ-computations, $f\left(\bar{\sigma}_{k+1}\right) \in[\phi]_{f \theta}$. Hence $f \sigma \in \llbracket[t] \phi]_{f^{\theta}}$.

Suppose now that $\langle f, F\rangle:\langle M, N\rangle \longrightarrow\left\langle M^{\prime}, N^{\prime}\right\rangle$ is minimal and preserves ϕ-computations, and that $\langle M, N\rangle \models_{\theta}[t] \phi$. Suppose $\sigma_{0}^{\prime} ; \ldots \sigma_{l}^{\prime}=$ $f \theta t$. It suffices to show that $\bar{\sigma}_{l+1}^{\prime} \in \llbracket \phi \rrbracket_{j \theta}$. By minimality, $\sigma^{\prime}=f \sigma$ for some $\sigma \in C_{N}^{N}$. Hence for some $k, f \sigma_{0} ; \ldots \sigma_{k}=f \theta t$. It follows that $\sigma^{\prime}=(f \theta t) ; f \bar{\sigma}_{k+1}$. Now (θt) ; $\bar{\sigma}_{k+1} \in C_{N}^{M} \subseteq \llbracket[t] \phi \rrbracket_{A}$, and so $\bar{\sigma}_{k+1} \in \llbracket \phi \rrbracket_{\partial}$. Since $\langle f, F\rangle$ preserves ϕ-computations, $f\left(\bar{\sigma}_{k+1}\right) \in \llbracket \phi \rrbracket_{f \theta}$ and so $\bar{\sigma}_{l+1}^{\prime} \in \llbracket \phi \rrbracket_{, ~}$, as required.

Corollary 20

If $\langle f, F\rangle$ reflects ϕ-computations and f is injective then $\langle f, F\rangle$ reflects <t \rangle-computations.
If ϕ is minimally preserved then $[t] \phi$ is minimally preserved.
If ϕ is minimally reflected then $\langle t\rangle \phi$ is minimally reflected.

Example 1 The following formulae are preserved:
$\begin{array}{ll}E(t) & \theta(t) \text { is enabled } \\ \exists x . E(x) & \text { some } \theta(\alpha) \text { is enab }\end{array}$
$\exists x \cdot E(x) \quad$ some $\theta(\alpha)$ is enabled
$E(t) \vee E\left(t^{\prime}\right)$ either $\theta(t)$ or $\theta\left(t^{\prime}\right)$ is
$E(t) \vee E\left(t^{\prime}\right)$ either $\theta(t)$ or $\theta\left(t^{\prime}\right)$ is enabled
The following formulae are reflected:
$\neg E(t) \quad \theta(t)$ is not enabled
$\diamond \neg E(t)$ eventually $\theta(t)$ is disabled
$\square \neg E(t) \quad \theta(t)$ is never enabled
$\forall x . \neg E(x)$ no $\theta(\alpha)$ is enabled (relative deadlock)
$\square \diamond \neg E(t)$ a marking is always reachable in which $\theta(t)$ is disabled
The following formulae are minimally preserved:

$$
\begin{array}{ll}
\diamond E(t) & \theta(t) \text { is eventually enabled } \\
\diamond \neg E(t) & \theta(t) \text { is eventually disabled } \\
\neg E(t) & \theta(t) \text { is not enabled } \\
\diamond \exists x . E(x) \text { eventually some } \theta(\alpha) \text { is enabled } \\
\forall x . \neg E(x) \text { no } \theta(\alpha) \text { is enabled (relative deadlock) } \\
\square \exists x . E(x) \text { some } \theta(t) \text { is aluays enabled. }
\end{array}
$$

The following formulae are minimally reflected:

$$
\begin{aligned}
& E(t) \quad \theta(t) \text { is enabled } \\
& \exists x . E(x) \quad \text { some } \theta(\alpha) \text { is enabled } \\
& \square \exists x . E(x) \text { some } \theta(t) \text { is always enabled. }
\end{aligned}
$$

There are many more examples of formulae whose properties we can deduce from the results presented above. A selection is given in Example 2 A common situation is illustrated by the following lemma

Lemma 21 Let I index the set $\left\{t_{i} \mid f \theta\left(t_{i}\right)=f \theta(t)\right.$. If $f \sigma \in[E(t)]_{t a}$ then $\left.\sigma \in \bigcup \backslash E\left(t_{i}\right)\right]_{\theta}$ and whenever $\left\langle M^{\prime}, N^{\prime}\right\rangle \models_{f \theta} E(t)$ it is the case that $\langle M, N\rangle \stackrel{i \in I}{\vDash_{\theta}} \bigvee E\left(t_{i}\right)$.

Proof: Straightforward
\square

Remark 22 It is an immediate consequence of the previous lemma that if $f \theta t=f \theta t^{\prime}$ implies that $\theta t=\theta t^{\prime}$ (and in particular, if f is injective) then $E(t)$-computations are minimally reflected and so $E(t)$ is minimally reflected.

It is not in general the case that $\square \phi$ is preserved or that $\square \phi$-computation are preserved, even by a minimal morphism. For example, returning to the net N illustrated at the start of Section 3, the identity morphism $\langle i d, i d\rangle$ maps $\left\langle b_{0}, N\right\rangle$ to $\left\langle 2 b_{0}, N\right\rangle$ but $\left\langle b_{0}, N\right\rangle \models_{\theta} \square \neg E\left(\alpha_{0}\right)$ and $\left\langle 2 b_{0}, N\right\rangle \not \forall_{\mathrm{id} \theta} \square \neg E\left(\alpha_{0}\right)$. The following lemma establishes a special case in which we can infer properties of a formula $\square \phi$ from properties of ϕ.

Lemma 23

$\square \diamond E(t)$-computations are preserved and $\square \diamond E(t)$ is minimally preserved. If $f \theta(t)=f \theta\left(t^{\prime}\right)$ implies that $\theta(t)=\theta\left(t^{\prime}\right)$ and $\langle f, F\rangle$ is minimal then $\langle f, F\rangle$ reflects $\square \diamond E(t)$-computations.
Proof: Suppose $\sigma \in \llbracket \square \diamond E(t) \rrbracket_{\theta}$. Then for every i there exists j such that $\bar{\sigma}_{i+j} \in[E(t)]_{\theta}$. Suppose that $f \sigma \notin[\square \diamond E(t)]_{f \theta}$. Then there exists some k such that for all $l, \overline{f \sigma}_{k+l} \notin[E(t)]_{f \theta}$. It follows that there exists $m \geq k$ such that for all $l, f\left(\bar{\sigma}_{m+l}\right) \notin \llbracket E(t) \rrbracket_{f \theta}$. Since $E(t)$-computations ar preserved, this would imply that we could find some m such that for all $\left.\bar{\sigma}_{m+l} \notin \llbracket E(t)\right]_{\theta}$, which contradicts our assumption that $\sigma \in[\square \diamond E(t)]_{\partial}$. Hence $f \sigma \in[E(t)]_{f \theta}$
follows that $\square \diamond E(t)$ is minimally preserved, by Proposition 13.
We now show that $\square \diamond E(t)$-computations are minimally reflected. Suppose $f \sigma \in \llbracket \square \diamond E(t) \rrbracket_{f \theta}$. Then for all i there exists j such that $f \sigma_{i+j} \epsilon$ $\llbracket E(t) \rrbracket_{f \theta}$. It follows that for all i there exists $k \geq j$ such that $f\left(\bar{\sigma}_{i+k}\right) \in$
 $\llbracket E(t)]_{\theta}$

Remark 24 Observe that the proof above still goes through if we replace Remark 24 Observe that the proof above stall goes through of we replace
$E(t)$ by any formula ϕ which is preserved and minimally reflected. We can prove the usual dual results for formulae of the form $\diamond \square \phi$.

If we extend \mathcal{T} with arbitrary disjunctions then we can prove the following proposition:

Proposition 25 If $\langle f, F\rangle:\langle M, N\rangle \rightarrow\left\langle M^{\prime}, N^{\prime}\right\rangle$ is minimal and I indexes $\left.t_{i} \mid f \theta\left(t_{i}\right)=f \theta(t)\right\}$, then

$$
\text { if }\left\langle M^{i}, N^{\prime}\right\rangle \models_{t \theta} \square E(t) \text { then }\langle M, N\rangle \models_{\theta} \square \bigvee E\left(t_{i}\right) \text {, }
$$

$$
\text { if }\left\langle M^{\prime}, N^{\prime}\right\rangle \models_{f \theta} \square \diamond E(t) \text { then }\langle M, N\rangle \vDash_{\theta} \stackrel{I}{\square} \diamond V E\left(t_{i}\right) \text { and }
$$

$$
\text { if }\left\langle M^{\prime}, N^{\prime}\right\rangle \models_{f_{\theta}} \diamond E(t) \text { then }\langle M, N\rangle \models_{\theta} \diamond V E\left(t_{i}\right) .
$$

Proof: Suppose for example that $\left\langle M^{\prime}, N^{\prime}\right\rangle \vDash_{j \theta} \square E(t)$. We show that $\langle M, N\rangle \vDash_{\theta} \square \bigvee E\left(t_{i}\right)$. In every computation of $\left\langle M^{\prime}, N^{\prime}\right\rangle$ the computation $\theta(t)$ is continuously enabled. By minimality, in every computation of $\langle M, N\rangle$, there is always a computation enabled whose image under f equals $f(\theta t)$. Let I index the set $\left\{t_{i} \mid f \theta\left(t_{i}\right)=f \theta(t)\right\}$. Then $\langle M, N\rangle \models_{\Delta} \square \bigvee E\left(t_{i}\right)$.
Note that, as in the case of Lemma 21, if $f \theta\left(t^{\prime}\right)=f \theta(t)$ implies that $t^{\prime}=t$ and $\langle f, F\rangle:\langle M, N\rangle \longrightarrow\left\langle M^{\prime}, N^{\prime}\right\rangle$ is minimal with $\left\langle M^{\prime}, N^{\prime}\right\rangle \vDash_{j \theta} \square E(t)$ then $\langle M, N\rangle \models_{\theta} \square E(t)$.

Proposition 26 If $\langle f, F\rangle:\langle M, N\rangle \rightarrow\left\langle M^{\prime}, N^{\prime}\right\rangle$ is minimal and I indexes $\left\{t_{i} \mid f \theta\left(t_{i}\right)=f \theta(t)\right\}$, then

$$
\begin{aligned}
& \left.\left.t_{i}\right\rangle=f \theta(t)\right\} \text {, then } \\
& \text { if }\langle M, N\rangle \vDash_{\theta} \square \diamond \wedge \neg E\left(t_{i}\right) \text { then }\left\langle M^{\prime}, N^{\prime}\right\rangle \vDash_{t \theta} \square \diamond \neg E(t) \text { and } \\
& \text { if }\langle M, N\rangle \vDash_{\theta} \diamond \wedge_{I} \neg E\left(t_{i}\right) \text { then }\left\langle M^{\prime}, N^{\prime}\right\rangle \vDash_{f \theta} \diamond \neg E(t) \text {. }
\end{aligned}
$$

Proof: Analogous to that of Proposition 25
The results of this section together with the proof rules for temporal and modal logic determine a relatively large and expressive class of formulae which are either preserved or reflected by morphisms in MNet ${ }^{+}$ These formulae occur at all levels of Manna and Pnueli's hierarchy [7, 8]

Example 2 The state formulae of \mathcal{T} are those given by $\mathrm{\#}|E(t)| \phi \wedge \phi \mid$ $\neg \phi$. If ϕ and ψ are state formulae then:
$\square \phi$ describes a safety property. Many such formulae, including mutual exclusion $\left.\square \neg E\left(t_{0}+t_{1}\right)\right)$, are reflected.
$\diamond \phi$ describes a termination property, guaranteeing a one-time goal. An example is $\diamond E(\alpha)$, which is both minimally preserved and minimally reflected.
$\square \diamond \phi$ describes a recurrence property or response property. An example is $\square\left(E\left(t_{0}\right) \rightarrow \diamond E\left(t_{1}\right)\right)$, which is minimally preserved and minimally reflected.
\diamond ф describes a persistence property. As an example, $\diamond \square E(t)$ is manmally reflected.
$\diamond \square \phi \vee \square \diamond \psi$ describes a progress property. An example is $\square\left(\square \diamond E\left(t_{0}\right)-\right.$ $\square \diamond E\left(t_{1}\right)$) (strong fairness) which is minimally preserved, and furthermore is reflected by minimal morphisms $\langle f, F\rangle$ such that f is injective.
5.1 Proving Properties of Net

We now outline the formal proofs that the net $\left\langle M_{1}+M_{2}+S, N_{1}\right\rangle$ of Sec tion 3.2 preserves mutual exclusion and satisfies absence of starvation These proofs follow our previous reasoning closely. For absence of starvation, we shall assume an invertible interpretation θ in $\left\langle m_{1}+m_{2}+s, N_{3}\right\rangle$ with inverse η. The fact that s is marked infinitely often is expressed as $\left\langle m_{1}+m_{2}+s, N_{3}\right\rangle \models_{\theta} \square \diamond E\left(\eta i d_{s}\right)$. The fact that if q_{1} is marked and $c r_{1}$ $\left(E\left(\eta i d_{q_{1}}\right) \wedge \neg \checkmark \diamond E\left(\eta c r_{1}\right)\right) \rightarrow \square E\left(\eta i d_{q_{1}}\right)$, and similarly for q_{2}. The assumption of strong fairness implies that $\left\langle m_{1}+m_{2}+s, N_{3}\right\rangle \models_{\theta} \square \diamond E\left(\eta r e q_{i}\right) \rightarrow$ $\square \diamond E\left(\eta c r_{i}\right)$. We deduce that $\left\langle m_{1}+m_{2}+s, N_{3}\right\rangle==_{\theta} E\left(\eta r e q_{i}\right\rangle \rightarrow \diamond E\left(\eta n c r_{i}\right)$ by applying the proof rules of temporal logic. Thus $\left\langle m_{1}+m_{2}+s, N_{3}\right\rangle$ satisfies absence of starvation. By minimality and injectivity of g, satisfac tion of $\neg E(\alpha)$ is preserved and satisfaction of $\diamond E(\alpha)$ is preserved. Hence satisfaction of $\left(E\left(\eta r e q_{i}\right) \rightarrow \diamond E\left(\eta n c r_{i}\right)\right) \equiv\left(\neg E\left(\eta r e q_{i}\right) \vee \diamond E\left(\eta n c r_{i}\right)\right)$ is preserved and the net $\left\langle M_{1}+M_{2}+S, N_{1}\right\rangle$ satisfies absence of starvation.

For mutual exclusion, putting $\theta(\alpha)=O u t_{1}+O u t_{2}$ and $\theta(\beta)=C r_{1}+C r_{2}$ we have $\left\langle C, N_{2}\right\rangle \vDash_{f \theta} \quad \square \neg E(\alpha)$. By Propositions 15 and 17 , $\left\langle S+M_{1}+M_{2}, N_{1}\right\rangle \vDash_{\theta} \square \neg E(\alpha)$. Now if $\left\langle S+M_{1}+M_{2}, N_{1}\right\rangle$ were to fire $\mathrm{Cr} r_{1}$ and $\mathrm{Cr} r_{2}$ simultaneously, $\mathrm{Out}+\mathrm{Out}_{2}$ would become enabled: that is, $\left\langle S+M_{1}+M_{2}, N_{1}\right\rangle \vDash_{\theta}\{\beta] E(\alpha)$. We deduce that $\left\langle S+M_{1}+M_{2}, N_{1}\right\rangle$ can never enable $\theta(\beta)$, that is, $\left\langle S+M_{1}+M_{2}, N_{1}\right\rangle$ never enables $C r_{1}$ and $C r_{2}$ simultaneously. Thus entry to the critical regions $C r_{1}$ and $C r_{2}$ is mutually exclusive.

6 Future Work

This paper sketches an approach and presents some preliminary results concerning the applicability of that approach. It remains to establish suitable proof system for our logic and to consider a logical characterisa tion of the simulation preorder. An important aspect of future research is the use of structure in our category to modularise proofs. MNet ${ }^{+}$has coproducts (representing choice) and products of a kind (representing par-
allel composition of processes). There is certainly a relationship between the formulae satisfied by a compound net and the formulae satisfied by its components, which we would like to make precise (compare [15]). Future work will consider the use of relations rather than functions, thus approaching still more closely the simulations of process algebra [10, 12].

References

[1] H. R. Andersen and G. Winskel. Comp ositional checking of satisfaction. In K. G. arsen and A. Skou, edirs, Foceedings of hhe omputer Aided Verification, July 1991, Aalborg, volume 575 of $L N C S, 1992$.
[2] C. T. Brown. Linear Logic and Petri Nets: Categories, Algebra and Proof. PhD thesis, University of Edinburgh, 1990. Technical Report ECS-LFCS-91-128.
[3] C. T. Brown and D. J. Gurr. Refinement and simulation of nets - a categorical haracterisation. In K. Jensen, editor, Proc. 13th International Conference on
[4] C. T. Brown and D. J. Gurr. Timing petri nets categorically. In W. Kuich, editer,
44] C. . Brown and D. J. Gurr. Timing petrinets
Proc. ICALP. Springer-Verlag, 1992. LNCS 62
[5] C. T. Brown, D. J. Gurr, and V. C. V. de Paiva. A linear specification language for petri nets. Technical Report DAIMI PB - 363, DAIMI, Århus University, 1991. to appear in Mathematical Structures in Computer Science.
[6] D. Kozen. Results on the propositional μ-calculus. Theoretical Computer Science J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proc. Worksho on Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, pages 201-284. LNCS 354, 1988
[8] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proc. ACM Symposium on Principles of Distributed Computing, Quebec, 1990.
[9] J. Meseguer and U. Montanari. Petri nets are monoids: A new algebraic foundation for net theory. In Proc LICS, 1988.
11] E. R. Olderog. Nets, terms and Formulas. CUP, 1991
112] D. M. R. Park. Concurrency and automata on infinite sequences. 1980. LNCS 104, Springer-Verlag.
[13] W. Reisig. Petri Nets: an Introduction. EATCS Monographs on Theoretical Springer-Verlag, 1985.
Weisig. Towards a temporal logic for causality and choice in distributed sys.
tems. In J.W. de Bakker, W.-F. de Roever, and G. Rozenberg, editors, Proc. Work shop on Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, pages 603-627. LNCS 354, 1988
[15] G. Winskel. A category of labelled petri nets and compositional proof system. In Proc LICS, 1988.

