
Temporal Logic and Categories of Petri Nets

Carolyn Brown

�

and Doug Gurr

y

School of Cognitive and Computing Sciences

University of Sussex, Falmer, Brighton, BN1 9QH

Abstract. We present a novel method for proving temporal properties of the be-

haviour a Petri net. Unlike existing methods, which involve an exhaustive examination

of the transition system representing all behaviours of the net, our approach uses mor-

phisms dependent only on the static structure of the net. These morphisms correspond

to simulations. We restrict the analysis of dynamic behaviours to particularly simple

nets (test nets), and establish temporal properties of a complex net by considering mor-

phisms between it and various test nets. This approach is computationally e�cient,

and the construction of test nets is facilitated by the graphical representation of nets.

The use of category theory permits a natural modular approach to proving properties

of nets.

Our main result is the syntactic characterisation of two expressive classes of formu-

lae: those whose satisfaction is preserved by morphisms and those whose satisfaction

is reected.

1 Introduction

Proving properties of the operational behaviour of Petri nets is computa-

tionally expensive, as most existing techniques [1] involve an exhaustive

examination of the labelled transition system representing all possible

markings and behaviours of the net. In this paper we describe a novel

technique for proving properties of the behaviour of a Petri net by con-

sidering only the static structure of the net. Our approach exploits the

simplicity of the graphical presentation of a net: it is su�ciently powerful

to prove a wide range of properties but has complexity which is linear in

the size of the net.

Our technique builds on our existing results concerning categories of

Petri nets. In [2, 3, 4, 5] we studied a category Net whose objects are

unmarked Petri nets. We proved in [5] that whenever there is a morphism

from N to N

0

in Net then subject to a natural condition on the initial

markings of the nets, N

0

can simulate any evolution ofN . This result gives

rise to a methodology for proving properties of the dynamic behaviour of a

net by exhibiting morphisms in Net: such morphisms depend only on the

static structure of the nets. The method involves constructing a number

of simple \test" nets whose behavioural properties can either be inferred

e-mail: carolynb@cogs.susx.ac.uk

y

UK Department of Transport

by inspection or proved using existing model-checking techniques. These

test nets should be small enough that their properties can be established

quickly and easily. We then establish properties of a more complex net

by exhibiting morphisms between it and the test nets, and using the fact

that the image net can always simulate the behaviour of the source net.

Some examples of this technique were given in [3], including proofs of

liveness properties and of mutual exclusion properties. It is natural to

ask what range of properties our technique can be used to demonstrate.

In this paper we prove that our technique is powerful enough to establish

properties which cover the full spectrum of Manna and Pnueli's hierarchy

of temporal properties [8]. The main advantage of a technique based on

the static structure of the net is that the complexity of model-checking is

linear in the size of the net. An additional advantage is that the graphical

presentation of a simple test net is a great aid to envisaging properties

of its behaviour. The advantage of using category theory is that it gives

rise to a compositional, modular proof system: this permits a structured

approach to proving properties of large nets.

In [15], Winskel considered a category of nets which is essentially a

subcategory of MNet

+

. He suggested that, informally, morphisms in his

category of nets appeared to preserve liveness properties and to reect

safety properties. This judgement was based on the usual description of a

safety property as expressing the fact that \something bad never happens"

and a liveness property expressing the fact that \something desirable is

guaranteed to happen." Our results show that the situation is more com-

plex than this: we give a syntactic characterisations of formulae which

are preserved, reected or respected in a di�erent sense by morphisms.

Human insight is needed both in choosing morphisms and in designing

suitable, e�cient test nets, while checking that we have a morphism and

that a test net satis�es a formula can be readily and e�ciently automated.

In Section 2 we recall the elementary de�nitions of Petri net theory

and give examples of the proof technique. In Section 3 we generalise the

relevant results from [4, 5] and illustrate our approach with some examples.

In Section 4 we de�ne a temporal logic T for describing net behaviours

and de�ne a notion of satisfaction of a T formula by a marked net, and

in Section 5 we give a syntactic characterisation of properties which are

preserved or reected by morphisms in our category. This fundamental

result shows when we can deduce properties of a complex net from the

existence of morphisms between it and test nets satisfying those properties.

The check that a pair of functions hf; F i is a morphism from N to N

0

is

linear in the size of the nets N and N

0

, and so our technique is relatively

e�cient.

2

2 De�nitions concerning Petri Nets

We recall some elementary de�nitions of Petri net theory: details may be

found in [13].

De�nition 1 A Petri net, denoted N , is a 4{tuple hE;B; pre; posti where

E and B are sets, and pre and post are functions from E �B to Nwhich

are zero on all but a �nite subset of E �B.

We shall call elements of E events and elements of B conditions. We shall

call pre and post the pre{ and post{condition relations of N respectively.

With each of the multirelations pre and post we associate a function of the

same name from E to B

�

(the free abelian monoid on B, with unit the

empty multiset ;) de�ned by

pre(e) =

X
b2B

pre(e; b)b and post(e) =

X
b2B

post(e; b)b:

We call pre(e) the pre{condition set and post(e) the post{condition set of

e. A loop arises if the pre- and post-condition sets of an event intersect

non-trivially. A 1-loop is a loop such that for every b 2 pre(e) \ post(e)

we have pre(e; b) = post(e; b) = 1. All loops which are not 1-loops are

multi-loops. We shall only consider the class of nets without multi-loops,

which we call Petri.

The state of a net is described by a �nite multiset over B (that is,

a multiset which is zero on all but �nitely many b 2 B), called a mark-

ing, which indicates which conditions hold, and in what multiplicities. A

marked net is a pair hM;Ni , where N is a net and M is a marking of N .

The occurrence of an event, called a �ring, transforms the state of the

net by consuming its pre{condition set and producing its post{condition

set. We say hM;Ni enables �n

i

e

i

if the markingM contains the multiset

�n

i

pre(e

i

). The multiset �n

i

e

i

of events, called a step, can then �re

concurrently. We denote this �ringM

�n

i

e

i

! M��n

i

pre(e

i

)+�n

i

post(e

i

).

We permit identity steps which leave the marking of a net unchanged, but

require that a net never �re in�nitely many identity steps when a non-

empty step is enabled (this requirement may be seen either as a progress

assumption or as a fairness assumption). A step sequence or computation

is a possibly in�nite sequence of steps M

�

0
! M

0

�

1
! : : :, sometimes

written �

0

; �

1

; : : :. Since we can extend any �nite computation to an

in�nite one by repeating a trivial identity step inde�nitely, we shall restrict

our attention to in�nite computations. The set of computations of a net

hM;Ni is denoted by C

M

N

. If � is a computation then �

k+1

denotes

3

the computation whose ith step is the (k + i)th step of �: thus �

k+1

=

�

k+1

; �

k+2

; : : :.

The �niteness condition on pre and post ensures that at every point

in the evolution of the net, �nitely many events are enabled and �nitely

many conditions are marked. It therefore ensures that the net describes a

�nitely-branching process.

3 Categories of Nets: extending existing results

In the past [2, 3, 4, 5] we have considered primarily unmarked nets, struc-

tural properties of nets and modular speci�cation using categorical con-

structions on nets. We derived results about a net's behaviour for all initial

markings or for those markings meeting a given condition. It is clear that

the behavioural properties of a net depend crucially on its initial marking:

for example, in the net

N = n

b

0

-

2

�
?

e

0

- n

b

1

-

e

1

�
�

2

with marking 2b

0

, some event is always enabled and in the course of any

step sequence, e

0

is enabled in�nitely often. However, the net hb

0

; Ni

possesses neither of these properties. In this paper we therefore work

with explicit markings, modifying our earlier de�nitions and results ac-

cordingly. (In the notation of Section 4, if �(�

i

) = e

i

for i = 0; 1 then

h2b

0

; Ni j=

�

29x:E(x) and h2b

0

; Ni j=

�

23E(�

0

) but it is not the case

that hb

0

; Nij=

�

29x:E(x) _23E(�

0

)).

It is our intention to prove properties of a net N by exhibiting mor-

phisms between N and various test nets T

i

. This approach is most e�cient

if our test nets are small. We can use smaller test nets if, rather than in-

sisting that a morphism from N to N

0

map events of N to events of N

0

(as in our earlier work), we allow an event of N to be mapped to a �nite

computation of N

0

(as will be done in proving absence of starvation in

Section 3.2). With this aim, we now generalise the results of [3, 5]: such

a generalisation is somewhat in the spirit of [9].

3.1 A Category of Nets for proving Temporal Properties

Intuitively, a computation is either an event (possibly idle) or the parallel

or sequential composition of two computations. The parallel composition

of computations c and d, written c+d, occurs when they can �re simulta-

neously, consuming pre(c) + pre(d) and producing post(c) + post(d). The

sequential composition of c and d, written c ; d, occurs when c can �re

to reach a marking in which d is enabled. We extend the pre and post-

4

condition relations of a net from events to computations in the evident

way. For parallel composition,we de�ne

pre(c

0

+ c

1

) = pre(c

0

) + pre(c

1

) and post(c

0

+ c

1

) = post(c

0

) + post(c

1

):

De�ning pre and postcondition relations for sequential composition

requires a little care. Note that sequential composition is associative, even

though its de�nition implicitly involves truncated subtraction

1

	 which is

not in general associative.

pre(c

0

; c

1

; b) =

�

pre(c

0

; b) + pre(c

1

; b) � post(c

0

; b) if post(c

0

; b) � pre(c

1

; b)

pre(c

0

; b) otherwise

and

post(c

0

; c

1

; b) =

�

post(c

1

; b) + post(c

0

; b) � pre(c

0

; b) if pre(c

0

; b) � post(c

1

; b)

post(c

1

; b) otherwise.

Suppose we have a function F :B

0

! B which maps the conditions in

a simulating net N

0

to the conditions in the original net N which they

implement. LetM be a marking of N andM

0

a marking of N

0

. Whenever

M

0

contains enough resources to implement all the resources marked in

M , we expect the simulating net hM

0

; N

0

i to be able to simulate any

computation of hM;Ni : This relationship between markings is formalised

in the following de�nition.

De�nition 2 Let F be a function from a set B

0

to a set B. The relation

F

+

� B

�

�B

0�

is given by

hM;M

0

i 2 F

+

if and only if MF �M

0

;

that is, if and only if for each b

0

2 B

0

we have M(Fb

0

) � M

0

(b

0

).

Expressing this de�nition succinctly as a diagramin Set, we have hM;M

0

i 2

F

+

if and only if

B

0

F

-

B

	�

�

�

�

�

M

N

M

0

?

�

where we extend the usual ordering � onNpointwise to functions into N.

1

de�ned by m 	 n = maxfn �m; 0g

5

We now de�ne a category of marked nets in which morphisms from

hM;Ni to hM

0

; N

0

i map events of a N to computations of N

0

.

De�nition 3 The category MNet

+

is de�ned by the following data:

� objects are marked nets hM;Ni where N is an element of Petri,

� a morphism from hM;E;B; pre; posti to hM

0

; E

0

; B

0

; pre

0

; post

0

i is a

pair of functions hf; F i with f :E ! E

0+

and F :B

0

! B such that

hM;M

0

i 2 F

+

and in Set we have

E �B

0

1� F

-

E �B E � B

0

1 � F

-

E � B

� and �

E

0+

�B

0

f � 1

?

pre

0

-

N

?

pre

E

0+

� B

0

f � 1

?

post

0

-

N;

?

post

that is, for each e 2 E and each b

0

2 B

0

pre(e; Fb

0

) � pre

0

(fe; b

0

) and post(e; Fb

0

) � post

0

(fe; b

0

);

� and composition is function composition in each component.

Remark 1 It follows immediately from the above de�nition that if hf; F i :

hM;Ni �! hM

0

; N

0

i is a morphism in MNet

+

and hM

1

;M

0

1

i 2 F

+

then

hf; F i is a morphism from hM

1

; Ni to hM

0

1

; N

0

i in MNet

+

.

Morphisms in MNet

+

are de�ned on the purely static structure of nets,

but capture precisely a notion of simulation between the dynamic be-

haviours of nets, as the following results show.

Proposition 2 Let hf; F i be a morphism from hM

0

; Ni to hM

0

0

; N

0

i in

MNet

+

. Then for all e 2 E, if M

0

e

!M

1

in N then M

0

0

fe

!M

0

1

in N

0

and hM

1

;M

0

1

i 2 F

+

. Furthermore, hf; F i is a morphism from

hM

1

; Ni to hM

0

1

; N

0

i in MNet

+

.

Proof: For each b

0

2 B

0

we haveM

0

0

(b

0

)� M

0

(Fb

0

) as hM

0

;M

0

0

i 2 F

+

� pre(e; Fb

0

) as M

0

enables e

� pre

0

(fe; b

0

) by de�nition,

and so M

0

0

enables fe. Further, for each b

0

2 B

0

,

M

0

1

(b

0

) =M

0

0

(b

0

) � pre

0

(fe; b

0

) + post

0

(fe; b

0

)

�M

0

(Fb

0

) � pre(e; Fb

0

) + post(e; Fb

0

)

=M

1

(Fb

0

)

6

and so hM

1

;M

0

1

i 2 F

+

. That hf; F i : hM

1

; Ni ! hM

0

1

; N

0

i in MNet

+

follows immediately from Remark 1. ut

Corollary 3 Let hf; F i be a morphism from hM

0

; Ni to hM

0

0

; N

0

i in

MNet

+

. For i 2 f0; : : : ; ng let �

i

=

P

k

i

1

n

j

e

j

be a multiset of events ofN .

Extend f to multisets of events by putting f(t+s) = f(t)+f(s). If hM

0

; Ni

enables the computation M

0

�

0
!M

1

�

1
! � � �M

n

then hM

0

0

; N

0

i enables

the computation M

0

0

f�

0

!M

0

1

f�

1

! � � �M

0

n

.

Proof: Suppose the result does not hold. Let n be the smallest integer

such that hM

0

; Ni enables �

0

; �

1

; : : : �

n

and hM

0

0

; N

0

i does not enable

f�

0

; f�

1

; : : : f�

n

. Now in N we have M

0

�

0
! M

1

�

1
! ; : : :

�

n�1

! M

n

,

and it follows by minimality of n that in N

0

we have M

0

0

f�

0

! M

0

1

;

f�

1

! ;

: : :

f�

n�1

! M

0

n

. Applying Proposition 2 n times, we see that hM

n

;M

0

n

i 2

F

+

and hf; F i is a morphism from hM

n

; Ni to hM

0

n

; N

0

i. Since hM

n

; Ni

enables �

n

, it follows from Proposition 2 that hM

0

n

; N

0

i enables f�

n

. But

this contradicts our assumption that hM

0

0

; N

0

i does not enable f�

0

; f�

1

;

: : : f�

n

. The result follows. ut

Proposition 2 shows that if a pair of markings hM;M

0

i is in F

+

, then

the net hM

0

; N

0

i can simulate any one{step computation of hM;Ni , in

the sense that whenever hM;Ni enables an event e, hM

0

; N

0

i enables the

computation fe. Corollary 3 shows that N

0

can simulate any computation

of N . We say that N

0

simulates N .

De�nition 4 Let hM;Ni and hM

0

; N

0

i be nets and let f :E ! E

0+

and

F :B

0

! B be functions. Then hM

0

; N

0

i simulates hM;Ni (and hf; F i is

a simulation), if and only if hM;M

0

i 2 F

+

and for all pairs of markings

hM

0

;M

0

0

i 2 F

+

,

if M

0

e

! M

1

then M

0

0

fe

! M

0

1

and hM

1

;M

0

1

i 2 F

+

:

By Corollary 3, every morphism inMNet

+

is a simulation. The converse

also holds:

Proposition 4 Let N and N

0

be elements of Petri and let hf; F i be a

simulation from hM;Ni to hM

0

; N

0

i which preserves 1-loops, that is,

if pre(e; Fb

0

) = post(e; Fb

0

) = 1 then pre

0

(fe; b

0

) = post

0

(fe; b

0

) = 1

Then hf; F i: hM;Ni ! hM

0

; N

0

i in MNet

+

.

7

Proof: Let M

0

= pre(e) and M

0

0

= M

0

F . Then hM

0

;M

0

0

i 2 F

+

. Since

M

0

enables e and hf; F i is a simulation,M

0

0

enables f(e). Hence for each

b

0

2 B

0

, pre

0

(fe; b

0

) �M

0

(b

0

) =M(F (b

0

)) = pre(e; Fb

0

).

We now show that for each b

0

2 B

0

, post(e; Fb

0

) � post

0

(fe; b

0

). Putting

M

1

= post(e) andM

0

1

=M

0

F �pre

0

(fe)+post

0

(fe), we have M

0

e

!M

1

andM

0

0

fe

! M

0

1

. For each b

0

2 B

0

,M

1

(Fb

0

) = post(e; Fb

0

) � pre(e; Fb

0

)�

pre

0

(fe; b

0

) + post

0

(fe; b

0

).

Now, if post(e; Fb

0

) = 0 then post(e; Fb

0

) � post

0

(fe; b

0

) and we are done.

Otherwise, as N has no multiloops, either pre(e; Fb

0

) = post(e; Fb

0

) =

pre

0

(fe; b

0

) = post

0

(fe; b

0

) = 1 (since hf; F i preserves 1-loops) and we

are done, or pre(e; Fb

0

) = 0. In the latter case pre

0

(fe; b

0

) = 0 since

pre

0

(fe; b

0

) � pre(e; Fb

0

), whence post(e; Fb

0

) � 0 � 0 + post

0

(fe; b

0

) as

required.

Since hf; F i is a simulation, hM;M

0

i 2 F

+

: it follows that hf; F i is a

morphism from hM;Ni to hM

0

; N

0

i in MNet

+

. ut

The results of this section are important because they show that, not only

do the morphisms of MNet

+

have a meaningful computational interpre-

tation, but further, all simulations between nets without multi-loops are

morphisms in MNet

+

.

3.2 An Example: proving a safety and a liveness property

We illustrate a proof of a safety property and a liveness property, using an

example taken from [11]. Olderog presents the nets N

1

and N

2

below, and

wishes to examine the relationship between them. As he says, \Intuitively,

N

2

is obtained from N

1

by abstracting from the actions NCr

i

; Req

i

and

Out

i

, i = 1; 2; in N

1

, i.e. by transforming them into internal actions � and

then forgetting about the � 's". We shall give a morphism which e�ects

such an abstraction. For simplicity, in the net N

1

(depicted in Figure 1),

we have only named those conditions which will be in the image of our

morphisms or in the initial marking of N

1

.

Given marking C, the net N

2

below forces a choice between the evolutions

Beg

1

; End

1

and Beg

2

; End

2

:

The net N

2

n

C

?
n

C

2

?

?
n

C

1

?

�

��
@

@I

@

@I
�

��

Beg

2

End

2

Beg

1

End

1

8

n

- -

n

- -

n

- -

n

- -

NCr

1

Req

1

In

1

Cr

1

Out

1

n

-

�
	

6

�

'
&

-
-

�

n

S
Q

2

R

2

Q

2

R

2

�

�

�

��

A

A

A

AU

@

@R n

S

1
n

S

2

M

1

M

2

�

��

�
?

?
n

- -

n

- -

n

- -

n

- -

n

-

	

6

NCr

2

Req

2

In

2

Cr

2

Out

2

�

&
'

Figure 1. The net N

1

: mutual exclusion

It is readily proved that every behaviour of the net hC;N

2

i is a sequence

of form Beg

a

;End

a

;Beg

b

;End

b

;Beg

c

;End

c

; : : : where a; b and c range over

f1; 2g. We shall add to the net N

2

a trivial event �, which has empty pre-

and post-condition set. The resultant net hC;N

2

+?i is the coproduct

in MNet

+

of N

2

with the marked net ? = h;; f�g; f�g; 0; 0i (where 0

denotes the empty multirelation). There is a morphism hf; F i in MNet

+

from hM

1

+M

2

+ S;N

1

i to hC;N

2

+ ?i given by:

f(Req

i

) = Beg

i

f(Out

i

) = End

i

f(e) = � for all other events e

F (C) = S F (C

i

) = S

i

By Corollary 3, the existence of this morphism shows that the net

hC;N

2

+?i can simulate any behaviour of the net hM

1

+M

2

+ S;N

1

i.

Since the behaviour of the image net is so restricted (indeed, hf; F i is

minimal in the sense of De�nition 11), this proves an important feature

of the marked net hM

1

+M

2

+ S;N

1

i, that it can never reach a state in

whichReq

2

can occur ifReq

1

has occurred and Out

1

has not. This, together

with the analogous property forReq

2

, ensures that hM

1

+M

2

+ S;N

1

i pre-

serves mutual exclusion of the behaviours In

1

;Cr

1

;Out

1

and In

2

;Cr

2

;Out

2

.

This example is particularly simple. Note, however, for any net hM;Ni

intended as a mutual exclusion algorithm, the existence of a morphism

from hM;Ni to hC;N

2

+?i can be used to demonstrate that hM;Ni

preserves mutual exclusion.

The net hC;N

2

i describes the behaviour of the shared resource, ab-

stracting away from the competing processes. A di�erent abstraction is

9

given in the net hm

1

+m

2

+ s;N

3

i below, which describes only the possi-

ble states of the processes (critical, requesting entry to the critical region,

or neither of these) and how these interact. There is a morphism hg;Gi

in MNet

+

from hm

1

+m

2

+ s;N

3

i to hM

1

+M

2

+ S;N

1

i given by:

g(ncr

i

) = Ncr

i

g(req

i

) = Req

i

g(cr

i

) = In

i

;Cr

i

; In

i

G(M

i

) = m

i

G(Q

i

) = q

i

G(R

i

) = G(S

i

) = r

i

G(S) = s G(b) = � for all other conditions b of N

1

n- - n- -

ncr

1

req

1

cr

1

n-

�

�

�

��

@

@R

�

'
&

-
-

nr

s

q

1

r

1

n

�

q

2

r

2

m

1

r

m

2

r

The marked net hm

1

+m

2

+ s;N

3

i

?
n

- -

n

- -

ncr

2

req

2

cr

2

n

-

	

�

6

'
&

We shall assume strong fairness in the sense that if any event of N

3

is

enabled in�nitely often, it occurs in�nitely often. Note that hg;Gi is min-

imal in the sense of De�nition 11 and so preserves strong fairness (see

Example 2). Clearly, if q

1

is marked in N

3

but req

1

never occurs, then

q

1

is always marked. Also, s is marked in�nitely often. Hence req

1

is

enabled in�nitely often and by strong fairness must occur in�nitely of-

ten, contradicting the assumption that req

1

never occurs. We deduce that

hm

1

+m

2

+ s;N

3

i satis�es a liveness property which might be called \ab-

sence of starvation", stating that if a process requests entry to its critical

region, it eventually enters it. This property is preserved by hg;Gi and

thus hM

1

+M

2

+ S;N

1

i also satis�es absence of starvation. This small

example illustrates two ways in which morphisms reduce the complexity

of model-checking: conditions can be identi�ed and computations can be

collapsed to single events (r

1

corresponds to both S

1

and R

1

while cr

1

corresponds to In

1

;Cr

1

; Out

1

).

In Section 4, we develop a means of expressing such proofs formally.

We de�ne temporal and modal logics which express properties of nets as

temporal logic formulae. A net satis�es a formula if its behaviour has

the property described by that formula. We show that satisfaction of

certain formulae is preserved by morphisms inMNet

+

, while satisfaction

of other formula is reected. Suppose that hf; F i: hM;Ni ! hM

0

; N

0

i in

MNet

+

. If hM;Ni has the property described by � and satisfaction of �

10

is preserved by morphisms then hM

0

; N

0

i also has the property described

by �. If hM

0

; N

0

i has the property described by and satisfaction of is

reected by morphisms then hM;Ni also has the property described by

 .

In Section 5.1 we reprove the results of this section in our formal set-

ting. We do this by expressing mutual exclusion and absence of starvation

as temporal logic formulae and showing that the existence of the mor-

phisms hf; F i and hg;Gi can be used to prove that hM

1

+M

2

+ S;N

1

i

satis�es both properties, without explicitly considering the set of possible

behaviours of hM

1

+M

2

+ S;N

1

i.

4 A Temporal Logic for Enablement

The main purpose of modal and temporal logics is the speci�cation of

complex concurrent systems. A speci�cation is the conjunction of formulae

each describing a property required of a system: our technique facilitates

the proof that a net satis�es each conjunct in its speci�cation. Classifying

properties helps to prevent underspeci�cation: we know, for example, that

a full speci�cation must describe both safety and liveness properties. The

categorical approach o�ers a basis for successive re�nements (since we

can compose morphisms) and for a compositional proof system exploiting

structure in our category of processes.

The examples of Section 3.2 gave simple test nets possessing properties

of mutual exclusion and absence of starvation, and used morphisms to

demonstrate that a more complex net also had these properties. A key

point is that we proved properties of the complex net without reference to

its dynamic behaviour. We now prove that this technique applies to a large

class of properties, which we characterise syntactically in Section 5. In this

section we develop a simple modal language M and temporal language

T for discussing net behaviours. We give interpretations of M and T

in any marked net, de�ne a notion of satisfaction and demonstrate the

expressiveness of our logics. This section formalises the arguments of

Section 3.2, and demonstrates the expressive power of the formulae for

which our technique can be applied.

Modal logics use modalities to express the e�ects of events �ring. For

each step s, the operator [s] means \after every s-step", while its dual

:[s]:, abbreviated hsi, means \after some s-step". We assume disjoint

collections of variables (ranged over by x; x

0

; : : :) and constants (ranged

over by �; �

0

; �

1

; : : :). A term of M is either a variable, a constant, a

multiset of constants or a sequence of two terms. M is the modal language

11

given by:

� ::= tt

�
�
�

:�

�
�
�

� ^ �

�
�
�

hti�

�
�
�

8x:� for t a closed term and x a variable.

We de�ne formulae ff, � _ ; � ! ; 9x:�, [t]� and � $ (logical

equivalence) in the usual, classical way. The quanti�ers 8 and 9 bind

variables, and a formula is closed if it has no free variables. Closed terms

are ranged over by t. We write �[e=x] to stand for � with e substituted for

all free occurrences of x, subject to the usual renaming of bound variables.

We de�ne an interpretation of anM formula � in a marked net inductively

in terms of an interpretation of the constants �

i

which occur in � as

computations of the net. An interpretation of M in a marked net hM;Ni

is a partial function � from the constants �

i

of M to the computations

E

+

of N. dom(�) denotes the set of constants on which � is de�ned. We

extend � homomorphically to closed terms.

De�nition 5 The satisfaction relation j=

�

between marked nets and closed

formulae of M relative to an interpretation � of M in hM;Ni is de�ned

as follows:

1 hM;Ni j=

�

tt

2 hM;Ni j=

�

:� i� it is not the case that hM;Ni j=

�

�

3 hM;Ni j=

�

� ^ i� hM;Ni j=

�

� and hM;Ni j=

�

4 hM;Ni j=

�

8x:� i� for all � 2 dom(�) we have hM;Ni j=

�

�[�=x]

5 hM;Ni j=

�

[t]� i� whenever M

�t
!M

0

we have hM

0

; Ni j=

�

�.

The satisfaction relation is then determined for the derived operators. For

example, we have:

hM;Ni j=

�

� _ i� hM;Ni j=

�

� or hM;Ni j=

�

hM;Ni j=

�

�! i� whenever hM;Ni j=

�

� then hM;Ni j=

�

hM;Ni j=

�

9x:� i� 9� 2 dom(�) such that hM;Ni j=

�

�[�=x]

hM;Ni j=

�

hti� i� 9M

0

such that M

�t
! M

0

and hM

0

; Ni j=

�

�.

Rules 1 to 4 give satisfaction a standard meaning in the style of Tarski: in

particular, they reect the fact that our logic is classical. The interesting

rule is 5, which expresses the interaction of the modal operators with

evolution of the net. Thus hM;Ni j=

�

h�i� if M can evolve under �(�)

to a marking in which � is satis�ed. Similarly, hM;Ni j=

�

9x:hxi� if it

is possible to satisfy � after a computation interpreting some constant.

Let t be a closed term ofM. De�ne E(t) to be the formula htitt. Then

hM;Ni j=

�

E(t) exactly when the computation in hM;Ni which inter-

prets the term t is enabled. It follows from the de�nition of satisfaction

12

that hM;Ni j=

�

:E(t) if and only if hM;Ni j=

�

htiff, that is, precisely

when the computation interpreting t is not enabled. Observe that if �

is interpreted by the identity step id

nb

then hM;Ni j=

�

E(�) whenever

the condition b is marked in hM;Ni with at least n tokens. In general

such properties as mutual exclusion or freedom from deadlock can be ex-

pressed in terms of the enabling of events. For example, the fact that two

events e

0

and e

1

cannot occur concurrently is expressed by the formula

:E(�

0

+ �

1

), where �

i

is interpreted in hM;Ni by e

i

.

We wish to specify and reason about both the overall behaviour of a net

and individual enabled steps: we therefore turn our attention from steps to

step sequences, and extend M to the temporal logic T by considering the

modal formulae which hold on computation paths rather than at individual

states. T is given by:

� ::= tt

�
�
�

:�

�
�
�

� ^ �

�
�
�

8x:�

�
�
�

[t]�

�
�
�

2� for t a closed term.

De�nition 5 The interpretation of a closed formula � of T relative to an

interpretation � of T in a marked net hM;Ni is a set of step sequences

� = �

0

; �

1

; : : : given as follows:

� 2 [[tt]]

�

for any �

� 2 [[:�]]

�

i� it is not the case that � 2 [[�]]

�

� 2 [[� ^]]

�

i� � 2 [[�]]

�

\ [[]]

�

� 2 [[8x:�]]

�

i� for all � 2 dom(�) we have � 2 [[�[�=x]]]

�

� 2 [[[t]�]]

�

i� whenever there exists k such that �

0

; �

1

; : : : ; �

k

= �(t)

then �

k+1

2 [[�]]

�

� 2 [[2�]]

�

i� for each i we have �

i

; �

i+1

; : : : 2 [[�]]

�

:

The satisfaction relation j= between marked nets and closed formulae

of T relative to � is given by hM;Ni j=

�

� i� every computation of

hM;Ni is an element of [[�]]

�

.

This interpretation gives the usual meaning to the derived operators.

Thus hM;Ni j=

�

3� precisely when every computation of hM;Ni

eventually satis�es �, while hM;Ni j=

�

hti� precisely when hM;Ni

can evolve under �(t) to hM

0

; Ni and hM

0

; Ni j=

�

�. We could de�ne

j=

�

relative to certain fairness or liveness assumptions, considering, for

example, only those step sequences which are weakly or strongly fair [7].

In his temporal logic for occurrence nets [14], Reisig restricts attention to

behaviours in which no condition ever contains more than one token.

The language T expresses many interesting properties of nets, both

positive (what can be enabled) and negative (what cannot be enabled).

13

For example, mutual exclusion of events interpreting �

0

and �

1

is ex-

pressed by satisfaction of the formula 2:E(�

0

+ �

1

) while freedom from

deadlock is expressed by satisfaction of the formula 29x:E(x).

In practice, the graphical representation of nets facilitates the creative

process of constructing test nets. It appears di�cult to �nd an algorithm

which constructs an e�cient test net corresponding to a given formula

(especially in the case of negation). Each test net can be used to establish

a property for many di�erent complex nets, however, which justi�es con-

siderable e�ort in constructing test nets. An e�cient (smaller) test net

o�ers savings each time it is used.

This paper aims to demonstrate by means of modal and temporal logic

the wide range of properties which our technique can be used to prove.

The principal r^ole of the logics M and T lies in providing a su�ciently

powerful language to express the properties which concern us. We do not

here explore proof systems, beyond observing that, in addition to the usual

proof rules for modal logic [6] and temporal logic [7], the net model satis�es

proof rules corresponding to properties of nets, including the evident rules

reecting the following facts

� hM + pre(�(t)); Ni j=

�

E(t) for any marking M of N ,

� if hM;Ni j=

�

E(t

0

; t

1

) then hM;Ni j=

�

E(t

0

) and hM;Ni j=

�

3E(t

1

) and

� if hM;Ni j=

�

E(t

0

+ t

1

) then hM;Ni j=

�

E(t

0

) ^ E(t

1

).

Further rules reect the interaction between satisfaction and structure in

the category MNet

+

.

5 The Interaction of the Logics with the Categorical

Framework

In this section, we show more precisely how the satisfaction of modal

and temporal logic formulae interacts with morphisms and structure in

MNet

+

. This is necessary for compositionaland modular reasoning about

the properties satis�ed by net behaviours.

We �rst express the properties we require a net hM;Ni to satisfy as

temporal logic formulae. In general these formulae are either preserved or

reected by morphisms inMNet

+

. For each formula � whose satisfaction

is preserved, we seek a test net T which is readily shown to satisfy �

and which maps to hM;Ni by morphism hf; F i in MNet

+

. When we

have found suitable T and hf; F i, we conclude that hM;Ni satis�es �.

Similarly, for each formula whose satisfaction is reected, we seek a test

net T

0

and a morphism hg;Gi from hM;Ni to T

0

.

14

Let L be the sublanguage of the modal languageM without negation

or quanti�cation, given by:

� ::= tt

�
�
�

ff

�
�
�

hti�

�
�
�

[t]�

�
�
�

� ^ �

�
�
�

� _ � for t a closed term.

The language L is of particular interest because, if t is restricted to con-

stant terms, L characterises strong bisimulation of processes in CCS in

the sense that two �nitely branching processes are strongly bisimilar if

and only if they satisfy the same formulae of L.

De�nition 6 Satisfaction of a formula � of T is preserved by a morphism

hf; F i : hM;Ni ! hM

0

; N

0

i of MNet

+

if, for any interpretation � of

T in hM;Ni ,

if hM;Ni j=

�

� then hM

0

; N

0

i j=

f�

�:

Satisfaction of � is reected by hf; F i if ,for any interpretation �,

if hM

0

; N

0

i j=

f�

� then hM;Ni j=

�

�.

We omit mention of the morphism hf; F i where a result holds for any

morphism in MNet

+

, for example, if any morphism preserves � then we

say that � is preserved.

Proposition 6 If � is a formula of L containing no instance of [t] then

� is preserved.

Proof: We use induction on the structure of �. The base cases are trivial

since every marked net satis�es the formula tt and none satis�es ff. The

cases of conjunction and disjunction are straightforward: for example, if

hM

0

; Ni j=

�

�

0

_ �

1

then hM

0

; Ni j=

�

�

i

for i = 0 or i = 1, by de�nition.

By inductive hypothesis, hM

0

0

; N

0

i j=

�

�

i

and hence hM

0

0

; N

0

i j=

�

�

0

_�

1

.

Now suppose that hM

0

; Ni j=

�

hti�. There exists M

1

such that

M

0

�(t)

!M

1

and hM

1

; Ni j=

�

�. But hf; F i is a morphism from hM

0

; Ni

to hM

0

0

; N

0

i inMNet

+

, soM

0

0

f(�(t))

! M

0

1

and since (using Proposition 2),

hf; F i is also a morphism inMNet

+

from hM

1

; Ni to hM

0

1

; N

0

i, by induc-

tive hypothesis, hM

0

1

; N

0

i j=

f�

�. Hence hM

0

0

; N

0

i j=

f�

hti�, by de�nition.

ut

Note that [t]� is not preserved: for the net N of Section 3, we have

hid; idi: h;; Ni ! h2b

0

; Ni in MNet

+

. If �(�) = e

0

then h;; Ni j=

�

[�]E(�) (since e

0

is not enabled), but h2b

0

; Ni 6j=

�

[�]E(�).

Proposition 7 If � is a formula of L containing no instance of hti then

� is reected.

15

Proof: Again, we use induction on the structure of �. The interesting

case is when hM

0

0

; N

0

i j=

f�

[t]�. Whenever M

0

�(t)

! M

1

in N , we know

that M

0

0

f(�(t))

! M

0

1

in N

0

, and so hM

0

1

; N

0

i j=

f�

�, by assumption. Now

hf; F i: hM

1

; Ni ! hM

0

1

; N

0

i in MNet

+

, and so, by inductive hypothe-

sis, hM

1

; Ni j=

�

�. Hence, by de�nition, hM

0

; Ni j=

�

[t]�. ut

The above results state that certain safety properties expressible as for-

mulae of L are preserved by morphisms in MNet

+

, while certain live-

ness properties are reected. It is important to note that we code up the

change of interpretation by replacing � by f�. Since the formula � does not

change, a single test net satisfying � witnesses the fact that both hM;Ni

and hM

0

; N

0

i satisfy the property described by �. We now generalise these

results to our temporal language T .

De�nition 8 Let hf; F i: hM;Ni ! hM

0

; N

0

i be a morphism in MNet

+

.

We say that �-computations are preserved by hf; F i i�

if � 2 [[�]]

�

then f� 2 [[�]]

f�

:

We say that �-computations are reected by hf; F i i�

if f� 2 [[�]]

f�

then � 2 [[�]]

�

:

Thus hf; F i preserves �-computations i� f [[�]]

�

� [[�]]

f�

and hf; F i re-

ects �-computations i� f

�1

[[�]]

f�

� [[�]]

�

. In this paper we consider

preservation and reection at three levels, illustrated by the cases where

(1) a morphism hf; F i preserves (or reects) �-computations,

(2) a morphism hf; F i preserves (or reects) satisfaction of � and

(3) any morphism of MNet

+

preserves (or reects) �-computations or

�.

In general, we prove results at levels (1) and (2) for an arbitrary morphism

hf; F i , which enables us to deduce that the results hold at level (3).

Results at level (2) are weaker than those at level (1). Propositions 9, 10

and 13 below relate the di�erent notions of preservation and reection.

Proposition 9 �-computations are reected i� :� computations are pre-

served.

Proof: Suppose �-computations are preserved and hf; F i is a morphism

with f� 2 [[:�]]

f�

. Then f� 62 [[�]]

f�

and, since �-computations are

preserved, � 62 [[�]]

�

. Thus :�-computations are reected.

16

Now suppose that �-computations are reected and that � 2 [[:�]]

�

.

Then � 62 [[�]]

�

and, since �-computations are reected, � 62 [[�]]

f�

. Thus

:�-computations are preserved. ut

In the propositions which follow, it is to be understood that hf; F i :

hM;Ni ! hM

0

; N

0

i.

Proposition 10 If hf; F i reects �-computations then hf; F i reects �.

Proof: If hM

0

; N

0

i j=

f�

� and �

0

is a step sequence of hM

0

; N

0

i then �

0

2

[[�]]

f�

. In particular, for every step sequence � of hM;Ni , f� 2 [[�]]

f�

.

Since hf; F i reects �-computations, � 2 [[�]]

�

for every step sequence �

of hM;Ni , and so hM;Ni j=

�

�. ut

Note that it is not the case that if �-computations are preserved by

hf; F i then � is preserved by hf; F i , as hM

0

; N

0

i may enable step se-

quences which are not in the image of f . We therefore introduce the

following slightly weaker notion of preservation of a formula � and �-

computations:

De�nition 11 Let hf; F i : hM;Ni ! hM

0

; N

0

i in MNet

+

. We say

that hf; F i is minimal if every step sequence of hM

0

; N

0

i is the image

under f of some step sequence of hM;Ni ; that is, if C

M

0

N

0

� f(C

M

N

).

De�nition 12 A formula � of T is minimally preserved if any minimal

morphism hf; F i : hM;Ni ! hM

0

; N

0

i in MNet

+

preserves �. Sim-

ilarly, � is minimally reected if any minimal morphism hf; F i reects

�.

Although the de�nition of a minimalmorphismmay appear restrictive,

in practice it is a natural property to require of an e�cient test net, ex-

pressing the fact that the test net should contain no redundant behaviour.

Note that a morphism hf; F i : hM;Ni �! hM

0

; N

0

i is minimal if every

event e

0

2 E

0

is the image of some event in E. It is evident that if � is

preserved (reected) then � is minimally preserved (reected).

Proposition 13 If hf; F i preserves �-computations and is minimal then

hf; F i preserves �.

Proof: If hM;Ni j=

�

� then C

M

N

� [[�]]

�

. Since hf; F i preserves �-

computations, f(C

M

N

) � [[�]]

f�

. Since f is minimal, C

M

0

N

0

� fC

M

N

and so

hM

0

; N

0

i j=

f�

�. ut

17

Corollary 14 If �-computations are preserved by every minimal mor-

phism of MNet

+

then � is minimally preserved. ut

We shall show that the preservation and reection properties of vari-

ous compound formulae are determined by the preservation and reection

properties of their component formulae. The following lemma, together

with Lemmas 21 and 23, provides a starting point for the inductive de�-

nition of the set of formulae whose preservation and reection properties

we can readily establish.

Lemma 15 tt-computations are preserved and reected, while tt is pre-

served and reected.

E(t)-computations are preserved and E(t) is preserved. Furthermore,

:E(t) is reected.

Proof: Preservation and reection of tt are immediate. Now suppose

hf; F i : hM;Ni ! hM

0

; N

0

i in MNet

+

. Then

f([[tt]]

�

) = f(C

M

N

)

� C

M

0

N

0

by Proposition 2

= [[tt]]

f�

and thus tt-computations are preserved. Similarly, tt-computations are

reected since f

�1

(C

M

0

N

0

) � C

M

N

.

In the case of preservation of E(t) and reection of :E(t) we appeal

to Proposition 2. ut

We extend the notion of preservation and reection of �-computations

to open formulae in the usual way: thus for example, 8x:�-computations

are preserved by hf; F i if for every � 2 dom(�) it is the case that

hf; F i preserves �[�=x]-computations.

Proposition 16 If hf; F i preserves �- and -computations then hf; F i pre-

serves

� � ^ -computations and

� 8x:�-computations.

Proof:

� Suppose � 2 [[� ^]]

�

= [[�]]

�

\ [[]]

�

. Then � 2 [[�]]

�

and � 2

[[]]

�

and since hf; F i preserves both �- and -computations, f� 2

[[�]]

f�

and f� 2 [[]]

f�

, whence f� 2 [[� ^]]

f�

. Hence f [[� ^]]

�

�

[[� ^]]

f�

and hf; F i preserves � ^ -computations.

18

� Suppose � 2 [[8x:�]]

�

. Then for each � 2 dom(�) we have � 2

[[�[�=x]]]

�

and, since dom(f�) = dom(�) and �-computations are pre-

served, f� 2 [[�[�=x]]]

f�

for each � 2 dom(f�). Hence f� 2 [[8x:�]]

f�

and 8x:�-computations are preserved.

ut

Proposition 17 If hf; F i reects �- and -computations then hf; F i re-

ects

� � ^ -computations,

� [t]�-computations,

� 2�-computations and

� 8x:�-computations.

Proof:

� Suppose f� 2 [[� ^]]

f�

= [[�]]

f�

\ [[]]

f�

. Then f� 2 [[�]]

f�

and

f� 2 [[]]

f�

and since both �- and -computations are reected, � 2

[[�]]

�

and � 2 [[]]

�

, whence � 2 [[� ^]]

�

. Thus f

�1

([[� ^]]

f�

) �

[[� ^]]

�

and hf; F i reects � ^ -computations.

� Suppose f� 2 [[[t]�]]

f�

and �

0

;�

1

: : : �

k

= �(t). Then putting �

0

= f�

we can �nd l such that f(�

0

; �

1

: : : �

k

) = �

0
0

; �

0
1

; : : : �

0
l

= f�(t) and

f(�

k+1

) = �

0
l+1

. Since �

0

= f� 2 [[[t]�]]

f�

we have �

0
l+1

2 [[�]]

f�

.

Since �-computations are reected, �

k+1

2 f

�1

(�

0
l+1

) � [[�]]

�

. Hence

� 2 [[[t]�]]

�

and hf; F i reects [t]�-computations.

� Suppose �

0

= f� 2 [[2�]]

f�

. Now for each k we can �nd l such that

f(�

k

) = �

0
l

and so f(�

k

) 2 [[�]]

f�

. But �-computations are reected

and so �

k

2 [[�]]

�

. This holds for each k and so � 2 [[2�]]

�

and

2�-computations are reected.

� Suppose f� 2 [[8x:�]]

f�

. Then for each � 2 dom(f�), f� 2 [[�[�=x]]]

f�

.

Since �-computations are reected and dom(�) = dom(f�), for each

� 2 dom(�), � 2 [[�[�=x]]]

�

and so � 2 [[8x:�]]

�

. Hence f

�1

[[8x:�]]

f�

�

[[8x:�]]

�

as required.

ut

Corollary 18 If hf; F i preserves �- and -computations then hf; F i pre-

serves

� � _ -computations,

� hti�-computations,

� 3�-computations and

� 9x:�-computations.

19

If hf; F i reects � and -computations then hf; F i reects

� � _ -computations and

� 9x:�-computations.

Proof: By Proposition 9, hf; F i reects :�- and : -computations, and

so by Proposition 17, hf; F i reects (:�) ^ (:)-computations. Hence

hf; F i reects :(�_)-computations. By Proposition 9, hf; F i preserves

� _ -computations.

The other cases are proved analogously. ut

Lemma 19

If hf; F i preserves �-computations and f is injective then hf; F i preserves

[t]�-computations.

If hf; F i is minimal and preserves �-computations then hf; F i preserves

[t]�.

Proof: Suppose hf; F i : hM;Ni ! hM

0

; N

0

i and � 2 [[[t]�]]

�

. If

�

0

; : : : �

k

= �t it follows that �

k+1

2 [[�]]

f�

. Now suppose that f�

0

;

: : : f�

k

= f�t. Since f is injective, �

0

; : : : �

k

= �t and so �

k+1

2 [[�]]

�

and, since hf; F i preserves �-computations, f(�

k+1

) 2 [[�]]

f�

. Hence

f� 2 [[[t]�]]

f�

.

Suppose now that hf; F i : hM;Ni ! hM

0

; N

0

i is minimal and pre-

serves �-computations, and that hM;Ni j=

�

[t]�. Suppose �

0
0

; : : : �

0
l

=

f�t. It su�ces to show that �

0
l+1

2 [[�]]

f�

. By minimality, �

0

= f�

for some � 2 C

M

N

. Hence for some k, f�

0

; : : : �

k

= f�t. It follows

that �

0

= (f�t) ; f�

k+1

. Now (�t) ; �

k+1

2 C

M

N

� [[[t]�]]

�

, and so

�

k+1

2 [[�]]

�

. Since hf; F i preserves �-computations, f(�

k+1

) 2 [[�]]

f�

and so �

0
l+1

2 [[�]]

f�

, as required. ut

Corollary 20

If hf; F i reects �-computations and f is injective then hf; F i reects

hti�-computations.

If � is minimally preserved then [t]� is minimally preserved.

If � is minimally reected then hti� is minimally reected.

ut

20

Example 1 The following formulae are preserved:

E(t) �(t) is enabled

9x:E(x) some �(�) is enabled

E(t) _E(t

0

) either �(t) or �(t

0

) is enabled.

The following formulae are reected:

:E(t) �(t) is not enabled

3:E(t) eventually �(t) is disabled

2:E(t) �(t) is never enabled

8x::E(x) no �(�) is enabled (relative deadlock).

23:E(t) a marking is always reachable in which �(t) is disabled.

The following formulae are minimally preserved:

3E(t) �(t) is eventually enabled

3:E(t) �(t) is eventually disabled

:E(t) �(t) is not enabled

39x:E(x) eventually some �(�) is enabled

8x::E(x) no �(�) is enabled (relative deadlock)

29x:E(x) some �(t) is always enabled.

The following formulae are minimally reected:

E(t) �(t) is enabled

9x:E(x) some �(�) is enabled

29x:E(x) some �(t) is always enabled.

There are many more examples of formulae whose properties we can

deduce from the results presented above. A selection is given in Example 2.

A common situation is illustrated by the following lemma:

Lemma 21 Let I index the set ft

i

j f�(t

i

) = f�(t). If f� 2 [[E(t)]]

f�

then � 2

S

i2I

[[E(t

i

)]]

�

and whenever hM

0

; N

0

i j=

f�

E(t) it is the case that

hM;Ni j=

�

W

I

E(t

i

).

Proof: Straightforward ut

Remark 22 It is an immediate consequence of the previous lemma that

if f�t = f�t

0

implies that �t = �t

0

(and in particular, if f is injective)

then E(t)-computations are minimally reected and so E(t) is minimally

reected.

21

It is not in general the case that 2� is preserved or that 2�-computations

are preserved, even by a minimal morphism. For example, returning

to the net N illustrated at the start of Section 3, the identity mor-

phism hid,idi maps hb

0

; Ni to h2b

0

; Ni but hb

0

; Ni j=

�

2:E(�

0

) and

h2b

0

; Ni 6j=

id�

2:E(�

0

). The following lemma establishes a special case

in which we can infer properties of a formula 2� from properties of �.

Lemma 23

23E(t)-computations are preserved and 23E(t) is minimally preserved.

If f�(t) = f�(t

0

) implies that �(t) = �(t

0

) and hf; F i is minimal then

hf; F i reects 23E(t)-computations.

Proof: Suppose � 2 [[23E(t)]]

�

. Then for every i there exists j such that

�

i+j

2 [[E(t)]]

�

. Suppose that f� 62 [[23E(t)]]

f�

. Then there exists some

k such that for all l, f�

k+l

62 [[E(t)]]

f�

. It follows that there exists m � k

such that for all l, f(�

m+l

) 62 [[E(t)]]

f�

. Since E(t)-computations are

preserved, this would imply that we could �nd some m such that for all l,

�

m+l

62 [[E(t)]]

�

, which contradicts our assumption that � 2 [[23E(t)]]

�

.

Hence f� 2 [[E(t)]]

f�

.

It follows that 23E(t) is minimally preserved, by Proposition 13.

We now show that 23E(t)-computations are minimally reected. Sup-

pose f� 2 [[23E(t)]]

f�

. Then for all i there exists j such that f�

i+j

2

[[E(t)]]

f�

. It follows that for all i there exists k � j such that f(�

i+k

) 2

[[E(t)]]

f�

. Since hf; F i is minimal, it follows from the proof of Lemma 21

that hf; F i reects E(t). Hence for all i there exists k such that �

i+k

2

[[E(t)]]

�

.

ut

Remark 24 Observe that the proof above still goes through if we replace

E(t) by any formula � which is preserved and minimally reected. We

can prove the usual dual results for formulae of the form 32�.

If we extend T with arbitrary disjunctions then we can prove the fol-

lowing proposition:

Proposition 25 If hf; F i: hM;Ni ! hM

0

; N

0

i is minimal and I indexes

ft

i

j f�(t

i

) = f�(t)g, then

if hM

0

; N

0

i j=

f�

2E(t) then hM;Ni j=

�

2

W

I

E(t

i

),

if hM

0

; N

0

i j=

f�

23E(t) then hM;Ni j=

�

23

W

E(t

i

) and

if hM

0

; N

0

i j=

f�

3E(t) then hM;Ni j=

�

3

W

E(t

i

).

22

Proof: Suppose for example that hM

0

; N

0

i j=

f�

2E(t). We show that

hM;Ni j=

�

2

W

I

E(t

i

). In every computation of hM

0

; N

0

i the computa-

tion �(t) is continuously enabled. By minimality, in every computation

of hM;Ni , there is always a computation enabled whose image un-

der f equals f(�t). Let I index the set ft

i

j f�(t

i

) = f�(t)g. Then

hM;Ni j=

�

2

W

I

E(t

i

). ut

Note that, as in the case of Lemma 21, if f�(t

0

) = f�(t) implies that t

0

= t

and hf; F i : hM;Ni ! hM

0

; N

0

i is minimal with hM

0

; N

0

i j=

f�

2E(t)

then hM;Ni j=

�

2E(t).

Proposition 26 If hf; F i: hM;Ni ! hM

0

; N

0

i is minimal and I indexes

ft

i

j f�(t

i

) = f�(t)g, then

if hM;Ni j=

�

23

V

I

:E(t

i

) then hM

0

; N

0

i j=

f�

23:E(t) and

if hM;Ni j=

�

3

V

I

:E(t

i

) then hM

0

; N

0

i j=

f�

3:E(t).

Proof: Analogous to that of Proposition 25 ut

The results of this section together with the proof rules for temporal

and modal logic determine a relatively large and expressive class of for-

mulae which are either preserved or reected by morphisms in MNet

+

.

These formulae occur at all levels of Manna and Pnueli's hierarchy [7, 8].

Example 2 The state formulae of T are those given by tt j E(t) j � ^ � j

:�. If � and are state formulae then:

2� describes a safety property. Many such formulae, including mutual

exclusion 2:E(t

0

+ t

1

)), are reected.

3� describes a termination property, guaranteeing a one-time goal. An

example is 3E(�), which is both minimally preserved and minimally

reected.

23� describes a recurrence property or response property. An example

is 2(E(t

0

) ! 3E(t

1

)), which is minimally preserved and minimally

reected.

32� describes a persistence property. As an example, 32E(t) is mini-

mally reected.

32�_23 describes a progress property. An example is 2(23E(t

0

) !

23E(t

1

)) (strong fairness) which is minimally preserved, and further-

more is reected by minimal morphisms hf; F i such that f is injective.

23

5.1 Proving Properties of Nets

We now outline the formal proofs that the net hM

1

+M

2

+ S;N

1

i of Sec-

tion 3.2 preserves mutual exclusion and satis�es absence of starvation.

These proofs follow our previous reasoning closely. For absence of starva-

tion, we shall assume an invertible interpretation � in hm

1

+m

2

+ s;N

3

i

with inverse �. The fact that s is marked in�nitely often is expressed as

hm

1

+m

2

+ s;N

3

i j=

�

23E(� id

s

). The fact that if q

1

is marked and cr

1

never occurs then q

1

remainsmarked is expressed as hm

1

+m

2

+ s;N

3

i j=

�

(E(� id

q

1

)^:3E(� cr

1

)) ! 2E(� id

q

1

), and similarly for q

2

. The assump-

tion of strong fairness implies that hm

1

+m

2

+ s;N

3

i j=

�

23E(� req

i

) !

23E(� cr

i

). We deduce that hm

1

+m

2

+ s;N

3

ij=

�

E(� req

i

)! 3E(� ncr

i

)

by applying the proof rules of temporal logic. Thus hm

1

+m

2

+ s;N

3

i sat-

is�es absence of starvation. By minimality and injectivity of g, satisfac-

tion of :E(�) is preserved and satisfaction of 3E(�) is preserved. Hence

satisfaction of (E(� req

i

) ! 3E(� ncr

i

)) � (:E(� req

i

) _ 3E(� ncr

i

)) is

preserved and the net hM

1

+M

2

+ S;N

1

i satis�es absence of starvation.

For mutual exclusion, putting �(�) = Out

1

+Out

2

and �(�) = Cr

1

+Cr

2

we have hC;N

2

i j=

f�

2:E(�). By Propositions 15 and 17,

hS +M

1

+M

2

; N

1

i j=

�

2:E(�). Now if hS +M

1

+M

2

; N

1

i were to �re

Cr

1

and Cr

2

simultaneously, Out

1

+Out

2

would become enabled: that is,

hS +M

1

+M

2

; N

1

i j=

�

[�]E(�). We deduce that hS +M

1

+M

2

; N

1

i can

never enable �(�), that is, hS +M

1

+M

2

; N

1

i never enables Cr

1

and Cr

2

simultaneously. Thus entry to the critical regions Cr

1

and Cr

2

is mutually

exclusive.

6 Future Work

This paper sketches an approach and presents some preliminary results

concerning the applicability of that approach. It remains to establish a

suitable proof system for our logic and to consider a logical characterisa-

tion of the simulation preorder. An important aspect of future research

is the use of structure in our category to modularise proofs. MNet

+

has

coproducts (representing choice) and products of a kind (representing par-

allel composition of processes). There is certainly a relationship between

the formulae satis�ed by a compound net and the formulae satis�ed by

its components, which we would like to make precise (compare [15]). Fu-

ture work will consider the use of relations rather than functions, thus

approaching still more closely the simulations of process algebra [10, 12].

References

[1] H. R. Andersen and G. Winskel. Compositional checking of satisfaction. In K. G.

Larsen and A. Skou, editors, Proceedings of the 3rd Workshop on Computer Aided

Veri�cation, July 1991, Aalborg, volume 575 of LNCS, 1992.

24

[2] C. T. Brown. Linear Logic and Petri Nets: Categories, Algebra and Proof. PhD

thesis, University of Edinburgh, 1990. Technical Report ECS-LFCS-91-128.

[3] C. T. Brown and D. J. Gurr. Re�nement and simulation of nets { a categorical

characterisation. In K. Jensen, editor, Proc. 13th International Conference on

Applications and Theory of Petri Nets. Springer{Verlag, 1992. LNCS 616.

[4] C. T. Brown and D. J. Gurr. Timing petri nets categorically. In W. Kuich, editor,

Proc. ICALP. Springer{Verlag, 1992. LNCS 623.

[5] C. T. Brown, D. J. Gurr, and V. C. V. de Paiva. A linear speci�cation language

for petri nets. Technical Report DAIMI PB { 363, DAIMI,

�
Arhus University, 1991.

to appear in Mathematical Structures in Computer Science.

[6] D. Kozen. Results on the propositional �-calculus. Theoretical Computer Science,

27:333{354, 1983.

[7] Z. Manna and A. Pnueli. The anchored version of the temporal framework. In

J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proc. Workshop

on Linear Time, Branching Time and Partial Order in Logics and Models for

Concurrency, pages 201{284. LNCS 354, 1988.

[8] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proc. ACM

Symposium on Principles of Distributed Computing, Quebec, 1990.

[9] J. Meseguer and U.Montanari. Petri nets are monoids: A new algebraic foundation

for net theory. In Proc LICS, 1988.

[10] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[11] E. R. Olderog. Nets, terms and Formulas. CUP, 1991.

[12] D. M. R. Park. Concurrency and automata on in�nite sequences. 1980. LNCS

104, Springer{Verlag.

[13] W. Reisig. Petri Nets: an Introduction. EATCS Monographs on Theoretical

Computer Science, Springer{Verlag, 1985.

[14] W. Reisig. Towards a temporal logic for causality and choice in distributed sys-

tems. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proc. Work-

shop on Linear Time, Branching Time and Partial Order in Logics and Models for

Concurrency, pages 603{627. LNCS 354, 1988.

[15] G. Winskel. A category of labelled petri nets and compositional proof system. In

Proc LICS, 1988.

25

