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Abstract

A �rst{order modal logic is given for describing properties of processes

which may send and receive values or messages along communication ports.

We give two methods for proving that a process enjoys such a property. The

�rst is the construction, for each process P and formula F , of a characteristic

formula P satF such that P enjoys the property F if and only if the formula

P satF is logically equivalent to tt. The second is a sound and complete

proof system whose judgements take the form B ` P :F , meaning: under the

assumption B the process P enjoys the property F .

The notion of symbolic operational semantics plays a crucial role in the

design of both the characteristic formulae and the proof system.

1 Introduction

Modal logics have long been used to represent properties of concurrent systems,

[Sti87, Lar88, GS86, SI91], and veri�cation tools have been developed to support

their application [CPS88, GLZ89]. The fact that a process P satis�es a property

F , where F is a property expressed in a modal logic, is represented as a satisfaction

relation between processes and properties, P j= F . In papers such as [Sti87] proof

systems are described for deducing judgements of the form P j= F and a major

concern is compositionality; the proof rules depend on the syntactic structure of

the process P . In [Lar88] similar proof systems are described but in this case the

proof rules do not use the structure of P but its operational semantics; the proof

system is based on the behaviour of processes. Another approach, also justi�ed

behaviourally, is adopted in [GS86, SI91]. In this approach, for any process P a
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formula �

P

is de�ned with the property that for any formula F , P j= F if and only

if �

P

! F is a valid formula. Thus deciding whether or not a process satis�es a

property is reduced to testing for the validity of a formula in the underlying modal

logic.

Much of this work is carried out within the framework of pure process algebras,

where processes are determined by their ability to perform atomic or uninterpreted

actions and the modal formula describe certain aspects of their behaviour vis. a vis.

these actions. Thus satisfying the modal property [a](hbitt_ [c]�) means that every

time a process performs the atomic action a either it can subsequently perform the

action b or it can not perform the action c. The aim of this paper is to extend this

work to what we call message passing process algebras, i.e. process descriptions in

which these actions have a certain interpretation; the reception and transmission

of data along conceptual channels. Thus, for example,

P (= c?x:if x = 0 then c!x:P else d!(x+ 1):P

describes a process which can input a value on the channel c and output its successor

on the channel d unless it is zero in which case it is output on the original channel.

Properties of such processes depend, of course, on properties of the underlying

message{space and thus proof systems for inferring such properties will also have to

derive theorems valid in this message{space. Here we take the approach advocated

in [Hen91]; we factor out as much as possible all this auxiliary reasoning. In the

extended modal logic we can express assertions of the underlying message{space but

in the accompanying proof systems theorems involving such assertions are obtained

for \free"; i.e. we assume the existence of an oracle which will determine the truth

or otherwise of these assertions. In reality, in any implementation, we would call on

an auxiliary proof system to establish such assertions. In this paper we will allow

any �rst order formula as an assertion about the underlying message{space.

Nevertheless we do have to generalise the modal operators hai and [a] to the

setting of message{passing on channels. For output actions this generalisation

is straightforward. For each channel name c and data{variable x we have two

modalities hc!xi and [c!x]. Intuitively a process P satis�es hc!xiF if it is possible

for it to output on the channel c a message v and in doing so evolve to a state

P

0

such that P

0

satis�es the formula F [v=x]; the interpretation of [c!x] is similar.

However input actions are somewhat more complicated and the form of the modal

logic depends on the operational semantics of the process language. There are two

natural generalisations of the standard operational semantics of pure processes,

called early and late in [HL92, MPW92]. Here we use the late operational semantics

which expresses the ability of processes to perform abstract actions of the form

P

c?

�! (x)A where (x)A is an abstraction which describes what will happen when a

value is received on the channel c. Thus we have two further simple modalities hc?i

and [c?] associated with input actions but now these must be followed by formulae

expressing properties of abstractions; these take the form of quanti�ed assertions,

of the form 9xF and 8xF . The end result is a very powerful language for describing

properties of message{passing systems. For example

[c?]8x[d!y](y = x+ 1)
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asserts that whenever a value is input on the channel c and whenever a value is

subsequently output on d the value output is the successor of the value input.

There are two main results in this paper. The �rst concerns characteristic

formulae. For every message{passing process P and for every property formula

F , a formula from the �rst-order modal language described above, we de�ne the

characteristic formula P satF which has the property that P enjoys the property

F if and only if P satF is logically equivalent to tt. Thus checking whether or

not P satis�es F is reduced to checking the validity of P satF . Note that this

characteristic formula depends on F as well as P , thus it does not correspond to

�

P

as in [GS86, SI91]. Rather it corresponds to �

P

) F . The second result is the

soundness and completeness of a proof system for deriving assertions of the form:

process P satis�es property F . The actual judgements of the proof system are a

little more general:

B ` P : F

and may be read \if the formula B is true then the process P satis�es the property

F".

The proof of the results relie heavily on the development of symbolic operational

semantics as in [HL92]. Recall that the standard operational semantics of processes

is only de�ned for closed terms, i.e. terms which contain no free occurrences of data-

variables. But the proof system is necessarily concerned with open terms; whether

or not the process c?x:T enjoys a particular property depends on whether the open

term T enjoys a related property. Thus we are inevitably led into investigations of

open terms and we do so using symbolic operational semantics. One consequence

of this approach is that our results, such as the completeness of the proof system,

apply not only to closed terms but to arbitrary terms.

We end this introduction with a brief outline of the remainder of the paper.

The next section contains a description of the message{passing process algebra we

consider and the �rst{order modal language used to describe its properties. This is

followed, in Section 3, by the �rst result on characteristic formulae; its de�nition is

based on the symbolic operational semantics alluded to above. The proof system,

together with its soundness and completeness is given in Section 4 and the paper

ends with a short conclusion.

2 Message Passing Processes and Their Modal

Properties

We �rst present a language for message passing process, de�ne its concrete opera-

tional semantics and the notion of (late) bisimulation equivalence. We then present

a modal logic for expressing properties of these processes.

The syntax and semantics of message passing processes presented here is a

simpli�ed version of that presented in [IT92]. It presupposes a language for message

or value expressions ranged over by e. This contains at least a set of values V

ranged over by v; : : :, and a set of value variables X, ranged over by x; y; : : :. We
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assume that substitutions, mappings fromX to expressions, act in the standard way

on expressions; we use e[�] to denote the expression which results from applying

the substitution � to the expression e. An evaluation � is a particular type of

substitution; it maps variables to values and we assume that for every expression

e; e[�] always evaluates to a value. Moreover we assume that this evaluation

depends only on the variables occurring in e; if we let fv(e) to denote the variables

which occur in e then e[�] = e[�

0

] whenever � and �

0

agree on fv(e). If e contains

no variables then e[�] is independent of � and we denote this value by [[e]]. In a

similar manner we assume a language for boolean expressions, ranged over by b,

and substitutions and evaluations act on boolean expressions in a similar manner.

The syntax of process expression is de�ned by the following BN-form:

T ::= 0 j �:T j c?x:T j c!e:T j T + T

0

j if b then T else T

0

j T jT

0

j TnL j T [f ] j C(e

1

; : : : ; e

n

)

We will �rst brie
y explain these process constructions. Later a formal semantics

will be given. The term 0 represents a process which does nothing while �:P will

do an internal action � and then behave like the process P . The process c?x:T

will receive a value v on channel c and then behaves like the process T [v=x], where

we use the standard notation T [v=x] to describe the substitution of v for all free

occurrences of the variable x in T . Thus in c?x:T the pre�x c?x is a binding operator

for the value variable x and this leads to the standard de�nition of free and bound

occurrences of variables in terms. The application of a substitution or evaluation,

de�ned above on value expressions, is generalised to terms; thus for example T [�]

denotes the result of substituting in T all free occurrences of x by �(x). We will

also take for granted the de�nition of �-conversion, �

�

, on terms. Returning to

our informal explanation of the language c!e:P will send the value of the expression

e on channel c and subsequently behave like P . The operator + represent choice:

P +P

0

will either proceed like P or P

0

. The process if b then P else P

0

will behave

like P if the value of the boolean expression b is true and otherwise will behave

like P

0

. Parallel composition is represented by P jP

0

which also allows values to be

exchanged between P and P

0

. We also have standard restriction and relabelling

operators; if L is a set of channel names then in PnL external communication by

the process P is restricted to those channels not in L while P [f ] acts exactly like

the process P except that the channels are relabelled by f , a renaming function

over the set of channel names. Finally, C(x

1

; : : : ; x

n

) is a process constant of arity

n. Each process constant C(x

1

; : : : ; x

n

) has associated with it a de�nition, written

as C(x

1

; : : : ; x

n

) ( T , where all free variables of T are in fx

1

; : : : ; x

n

g. Thus

C(x

1

; : : : ; x

n

) is a process which behaves as T ; the term T is referred to as the

body of the de�nition.

The above informal description of process behaviour can be made precise by a

formal operational semantics. This describes what actions a process can perform

and the consequence of performing such actions. It is only de�ned over closed
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terms, i.e. terms which contain no occurrences of free variables; we use P;Q; : : :

to range over these processes. Such an operational semantics is given in Figure

1. It presupposes that each process constant has associated with it a de�nition

as explained above and moreover we assume that the body of each such de�nition

is guarded, i.e. every occurrence of a process constant is within a pre�x subterm,

[Mil89].

There are three kinds of actions: internal action � , input action on a channel

c?, and output action on a channel c!. The result of an internal action is another

process. The result of an input action on a channel c is an abstraction which is a

function from values to processes while the result of an output action on a channel

c is a pair consisting of the output value and the residual process after the output

action. Abstractions and pairs have no transitions of their own. Their interaction

is seen in a communication event between two processes P and Q (rule Com). If

process P can output v on channel c then behave as process P

0

, that is P

c!

�! (v; P

0

)

in terms of the transition relation, and process Q can input on channel c and its

resulting behaviour is represented by the abstraction (x)Q

0

, that is Q

c?

�! (x)Q

0

in

terms of transition relation, then P jQ can do an internal communication in which

v is transmitted to Q

0

; this is described by P jQ

�

�! P

0

jQ

0

[v=x].

The rules given in Figure 1 are straightforward; they correspond to the late

(concrete) operational semantics of [HL92, MPW92]. The conventions used in the

rules Rest, Ren should be obvious ; for any action � name(�) refers to the channel

name used in the action while f(�) renames the channel according to the renaming

function f .

The notion of (late) bisimulation can be de�ned based on the operational se-

mantics.

De�nition 2.1 A bisimulation relation B is a symmetric binary relation on pro-

cesses such that whenever (P;Q) 2 B then:

1. Whenever P

�

�! P

0

then Q

�

�! Q

0

for some Q

0

such that (P

0

; Q

0

) 2 B,

2. whenever P

c!

�! (v; P

0

) then Q

c!

�! (v;Q

0

) for someQ

0

such that (P

0

; Q

0

) 2 B,

3. whenever P

c?

�! (x)T then Q

c?

�! (y)U for some (y)U such that for all v 2 V ,

(T [v=x]; U [v=y]) 2 B.

Two processes P and Q are said to be bisimulation equivalent, written as P � Q,

if (P;Q) is included in some bisimulation relation B.

To describe properties of these processes, we present a modal logic shown in

Figure 2. This logic resembles the one in [MPW92] for the �{calculus in many ways.

In particular, our logic here characterizes the late bisimulation equivalence between

message passing processes just like the modal logic in [MPW92] characterizes the

late bisimulation equivalence between processes of the �{calculus.

This de�nition presupposes a class of �rst-order formulae ranged over by B.

Just as the process language is parameterised on a language for expressions this
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Act

�:P

�

�! P

c!e:P

c!

�! ([[e]]; P ) c?x:T

c?

�! (x)T

Sum

P

�

�! A

P +Q

�

�! A

Q

�

�! A

P + Q

�

�! A

Cond

P

�

�! A

if b then P else Q

�

�! A

[[b]] = tt

Q

�

�! A

if b then P else Q

�

�! A

[[b]] = �

Par

P

�

�! P

0

P jQ

�

�! P

0

jQ

P

c!

�! (v; P

0

)

P jQ

c!

�! (v; P

0

jQ)

P

c?

�! (x)T

P jQ

c?

�! (x)(T jQ)

Com

P

c!

�! (v; P

0

) Q

c?

�! (x)T

P jQ

�

�! P

0

jT [v=x]

Rest

P

�

�! A

PnL

�

�! AnL

name(�) \ L = ;

Ren

P

�

�! A

P [f ]

f(�)

�! A[f ]

Rec

T [v

1

=x

1

; : : : ; v

n

=x

n

]

�

�! A

C(v

1

; : : : ; v

n

)

�

�! A

C(x

1

; : : : ; x

n

) (= T

(Symmetric cases for Par and Com are omitted)

Figure 1: The Transition Rules for Processes
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F ::= B j F

1

_ F

2

j F

1

^ F

2

j h� iF j [� ]F j

hc!xiF j [c!x]F j hc?iG j [c?]G

G ::= 9xF j 8xF

Figure 2: Syntax of the modal logic

P j= B : [[B]] = tt

P j= F

1

_ F

2

: P j= F

1

or P j= F

2

P j= F

1

^ F

2

: P j= F

1

and P j= F

2

P j= h� iF : for some P

0

, P

�

�! P

0

and P

0

j= F

P j= [� ]F : whenever P

�

�! P

0

then P

0

j= F

P j= hc!xiF : for some P

0

and v, P

c!

�! (v; P

0

); P

0

j= F [v=x]

P j= [c!x]F : whenever P

c!

�! (v; P

0

) then P

0

j= F [v=x]

P j= hc?iG : for some (y)T , P

c?

�! (y)T; (y)T j= G

P j= [c?]G : whenever P

c?

�! (y)T; then (y)T j= G

(y)T j= 9xF : for some value v 2 V , T [v=y] j= F [v=x]

(y)T j= 8xF : for all value v 2 V , T [v=y] j= F [v=x]

Figure 3: Semantic clauses

property language is also parameterised on this set of formulae; we only assume

that such B are formula which can be interpreted over the same set of values V ;

if B is closed, i.e. contains no free occurrences of variables, then its interpretation

will be denoted by [[B]] and this is always be either tt or �. There are two syntactic

classes of formulae. The �rst is ranged over by F and these are designed to describe

properties of processes. while the second, ranged over by G, apply to abstractions.

As usual 8x and 9x are binding operators but the two modal operators hc!xi and

[c!x] also bind variables. We take for granted the resulting de�nitions of substitution

on formulae, �-conversion etc. .

The satisfaction relation j=, between processes and closed formulae, is de�ned

by structural induction over closed formula in Figure 3. This determines when

a process satis�es a process formula F and when an abstraction satis�es an ab-

straction formula G. The two modalities, h�i and [�], correspond to existential
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and universal quanti�cation over transitions. That is, in order to satisfy a formula

h�iF , a process must possess some �{transition leading to a con�guration (a pro-

cess or an abstraction) satisfying F . Dually, for a process to satisfy a formula [�]F ,

any �{transition must lead to con�gurations satisfying F .

The logic characterizes the (late) bisimulation equivalence between message

passing processes as the following theorem claims.

Theorem 2.2 (Modal characterization)P � Q if and only if for all (closed)

modal formula F , P j= F , Q j= F .

Proof: ): Suppose P � Q and P j= F , we can show that Q j= F by induction on

the structure of F . It is easy when F has the forms B;F

1

^F

2

; F

1

_F

2

; h� iF

0

; [� ]F

0

.

If F is hc!xiF

0

, then there exists P

c!

�! (v; P

0

) such that P

0

j= F [v=x]. Because

P � Q, so Q

c!

�! (v;Q

0

) for some Q

0

with P

0

� Q

0

, and by induction hypothesis

Q

0

j= F [v=x]. Thus Q j= hc!xiF

0

. Similarly we can prove the case when F is [c!x]F

0

.

If F is hc?iG, then there exists P

c?

�! (x)T such that (x)T j= G. Because P � Q, so

Q

c?

�! (y)U for some (y)U with T [v=x]� U [v=y] for all v 2 V . Now we prove that

for this (y)U , (y)U j= G and thus Q j= hc?iG. Note that G is either 8zF

0

or 9zF

0

,

we will show that in both cases (y)U j= G. When G is 8zF

0

, (x)T j= G implies

T [v=x] j= F

0

[v=z] for all v 2 V and by induction hypothesis U [v=y] j= F

0

[v=z] for

all v 2 V hence (y)U j= G. When G is 9zF

0

, (x)T j= G implies T [v=x] j= F

0

[v=z]

for some v and, since T [v=x] � U [v=y], by induction hypothesis U [v=y] j= F

0

[v=z]

hence also (y)U j= G. Similarly we can prove the case when F is [c?]G.

(: Let B = f(P;Q)j8F:P j= F , Q j= Fg. We will prove that B is a bisimulation.

Suppose (P;Q) 2 B, we can show the following:

1. Whenever P

�

�! P

0

then Q

�

�! Q

0

for some Q

0

with (P

0

; Q

0

) 2 B,

2. Whenever P

c!

�! (v; P

0

) then Q

c!

�! (v;Q

0

) for some Q

0

with (P

0

; Q

0

) 2 B,

3. Whenever P

c?

�! (x)T then Q

c?

�! (y)U for some (y)U such that for all

v 2 V , (T [v=x]; U [v=y]) 2 B.

Here we only show the last case, the other two are simpler. Assume otherwise, that

is there exists P

c?

�! (x)T such that whenever Q

c?

�! (y)U then (T [v=x]; U [v=y]) 62

B for some v. More speci�cally and without loss of generality, there exists P

c?

�!

(x)T such that whenever Q

c?

�! (y)U then there exists v 2 V and F

0

such that

T [v=x] j= F

0

and U [v=y]) 6j= F

0

. Because we assume that all de�nitions are guarded

the operational semantics is �nite-branching, so there are �nitely these (y)U 's and

we can list these (v; F

0

)'s in (v

1

; F

1

); : : : ; (v

n

; F

n

). Now

F � hc?i8x

^

1�i�n

(x = v

i

! F

i

)

is a formula such that P j= F but Q 6j= F , a controdiction. 2
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3 Proving Properties of Message Passing Pro-

cesses

In this section, we will look at how to reason about whether a process satis�es a

modal property. From the de�nition of the satisfaction relation j= it seems quite

natural to express whether P j= F holds as a �rst order formula R

P;F

, such that

[[R

P;F

]] = tt just in case P j= F holds. This idea is attractive because if we can do

this for any process P and modal formula F , and assume that we have a �rst order

theory about the domain V at our disposal, then the problem of whether P j= F

holds is reduced to the problem of whether we can establish R

P;F

in the �rst order

theory. We will call such R

P;F

the characteristic formula of P satisfying F and

write it as P satF in the rest of the paper.

Now let us see how to construct P satF for a given process P and formula

F . Naturally the construction should be done inductively on the structure of F .

Take the case F

1

^ F

2

as an example; assuming we have constructed P satF

1

and

P satF

2

, according to the de�nition of j=, it is reasonable to de�ne P satF

1

^ F

2

as P satF

1

^P satF

2

. Take h� iF as another example; it is not di�cult to see that

P sat h� iF should be

W

P

�

�!P

0

P

0

satF assuming that we have already constructed

P

0

satF for all P

0

such that P

�

�! P

0

. This construction relies on the �nite

branching of the operational semantics. It also uses the operational semantics of P

in constructing P sat h� iF , and this is �ne as long as we are working with a process

P , i.e. a closed term, and a closed formula F . This inductive approach works until

we come to consider abstractions and abstraction formulae, (y)P sat9xF . From

the de�nition of j= it seems that (y)P sat9xF should be 9zP [z=y] satF [z=x].

The problem here is that P [z=y]; F [z=x] are not closed any more, and we cannot

use the induction hypothesis to assume that P [z=y] satF [z=x] has already been

constructed. So we have to generalize the construction to suit open terms and open

formulae even if we are only interested in the construction for closed terms. A major

obstacle in such a generalization is that the operational semantics for processes is

not adequate in the case of open terms. So, in order to generalize the construction,

we �rst need a suitable operational semantics for open terms.

In [HL92], an abstract structure of symbolic transition graph is introduced to

describe the operational semantics of open terms. Here we will describe directly on

open terms a symbolic operational semantics, as a symbolic transition graph whose

nodes are the open process terms themselves. This is in contrast to the concrete

operational semantics de�ned for processes in Figure 1.

Such an operational semantics is given in Figure 4. Here transitions are labelled

not only by the action which takes place, but also by a boolean expression which is

the condition of that action. For example �:T can perform � in all circumstances,

so the transition is labelled by the boolean tt. If T can perform � under condition

b, then if b

0

then T else U can perform � under condition b ^ b

0

. If process T can

output on channel c under condition b, that is T

b;c!

�! (e; T

0

), and process U can

input on channel c under condition b

0

, that is U

b

0

;c?

�! (x)U

0

, then T jU can do an

internal communication under condition b ^ b

0

, described by T jU

b^b

0

;�

�! T

0

jU

0

[e=x].
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Act

�:T

tt;�

�! T

c!e:T

tt;c!

�! (e; T ) c?x:T

tt;c?

�! (x)T

Sum

T

b;�

�! A

T + U

b;�

�! A

U

b;�

�! A

T + U

b;�

�! A

Cond

T

b;�

�! A

if b

0

then T else U

b^b

0

;�

�! A

U

b;�

�! A

if b

0

then T else U

b^:b

0

;�

�! A

Par

T

b;�

�! T

0

T jU

b;�

�! T

0

jU

T

b;c!

�! (e; T

0

)

T jU

b;c!

�! (e; T

0

jU)

T

b;c?

�! (x)T

0

T jU

b;c?

�! (y)(T

0

[y=x]jU)

y = new(fv(T jU))

Com

T

b;c!

�! (e; T

0

) U

b

0

;c?

�! (x)U

0

T jU

b^b

0

;�

�! T

0

jU

0

[e=x]

Rest

T

b;�

�! A

TnL

b;�

�! AnL

name(�) \ L = ;

Ren

T

b;�

�! A

T [f ]

b;f(�)

�! A[f ]

Rec

T [e

1

=x

1

; : : : ; e

n

=x

n

]

b;�

�! A

C(e

1

; : : : ; e

n

)

b;�

�! A

C(x

1

; : : : ; x

n

)(= T

Figure 4: The Transition Rules for Terms
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Now look at the third Par rule, it is possible that the bound variable x in (x)T

0

also

appears free in U . Obviously these two appearances of x should not be confused.

In order to avoid such confusion, we assume a function new which takes a set of

variables X as argument and produce a new variable which is not in X, and use

new to change the bound variable.

The �rst lemma shows that this operational semantics for open terms is in fact

a generalization of the operational semantics for processes in Figure 1.

Lemma 3.1 For any process P , P

�

�! A if and only if P

b;�

�! A for some (closed)

b with [[b]] = tt.

Proof: The statement of the lemma assumes that a closed value expression e is

identi�ed with its value [[e]]. The proof consists of two routine inductions, one on

the rules in Figure 1, and the other on those of Figure 4. 2

The next result states that in some sense the symbolic operational semantics is

preserved under substitutions.

Lemma 3.2 For any term T and substitution �, T [�]

b

0

;�

�! A

0

if and only if T

b;�

�! A

for some b;A such that b

0

� b[�]; A

0

�

�

A[�].

Proof: Each direction is proved by induction on the rules in Figure 4.

2

With these symbolic actions we can now give the construction of T satF , the

characteristic formulae of T satisfying F for any open term T and formula F . The

construction is inductive on the structure of F and is shown in Figure 5.

Because the construction now is for terms and formulae which may contain free

variables, we need a more general interpretation than [[P satF ]] = tt , P j= F . In

the following we will prove that the correct interpretation here is [[(T satF )[�]]] =

tt , T [�] j= F [�] for any evaluation �. For this we need the following two results:

Proposition 3.3 For any process P and closed process formula F , any closed

abstraction term (y)T and closed abstraction formula G, the following equivalences

hold:

[[P satF ]] = tt , P j= F

[[(y)T satG]] = tt , (y)T j= G

Proof: They are proved by induction on the stucture of F and G with the help of

Lemma 3.1. We give four example cases.

11



P satB � B

P satF

1

_ F

2

� P satF

1

_ P satF

2

P satF

1

^ F

2

� P satF

1

^ P satF

2

P sat h� iF �

_

P

b;�

�!P

0

b ^ P

0

satF

P sat [� ]F �

^

P

b;�

�!P

0

b! P

0

satF

P sat hc!xiF �

_

P

b;c!

�!(e;P

0

)

b ^ P

0

satF [e=x]

P sat [c!x]F �

^

P

b;c!

�!(e;P

0

)

b! P

0

satF [e=x]

P sat hc?iG �

_

P

b;c?

�!(y)P

0

b ^ (y)P

0

satG

P sat [c?]G �

^

P

b;c?

�!(y)P

0

b! (y)P

0

satG

(y)P sat8xF � 8zP [z=y] satF [z=x]

(y)P sat9xF � 9zP [z=y] satF [z=x]

where z does not occur free in (y)P and 9xF (8xF )

Figure 5: Construction of P satF

The case h� iF :

[[P sat h� iF ]] = tt

, [[

W

P

b;�

�!P

0

b ^ P

0

satF ]] = tt def. of sat

, for some P

0

; P

b;�

�! P

0

with [[b]] = tt

and [[P

0

satF ]] = tt

, for some P

0

; P

�

�! P

0

with [[P

0

satF ]] = tt Lemma 3.1

, for some P

0

; P

�

�! P

0

with P

0

j= F ind. hyp.

, P j= h� iF def. of j=

12



The case hc!xiF :

[[P sat hc!xiF ]] = tt

, [[

W

P

b;c!

�!(e;P

0

)

b ^ P

0

satF [e=x]]] = tt def. of sat

, for some e; P

0

; P

b;c!

�! (e; P

0

) with [[b]] = tt

and [[P

0

satF [e=x]]] = tt

, for some e; P

0

; P

c!

�! ([[e]]; P

0

) and [[P

0

satF [[[e]]=x]]] = tt Lemma 3.1

, for some e; P

0

; P

c!

�! ([[e]]; P

0

) with P

0

j= F [[[e]]=x] ind. hyp.

, P j= hc!xiF def. of j=

The case [c?]G:

[[P sat [c?]G]] = tt

, [[

V

P

b;c!

�!(y)T

b! (y)T satF ]] = tt def. of sat

, whenever P

b;c?

�! (y)T with [[b]] = tt

then [[(y)T satG]] = tt

, whenever P

c?

�! (y)T then [[(y)T satG]] = tt Lemma 3.1

, whenever P

c?

�! (y)T then (y)T j= G ind. hyp.

, P j= [c?]G def. of j=

The case 8xF :

[[(y)T sat8xF ]] = tt

, [[8zT [z=y] satF [z=x]]] = tt def. of sat

, for all v 2 V; [[T [v=y]satF [v=x]]] = tt

, for all v 2 V; T [v=y] j= F [v=x] ind. hyp.

, (y)T j= 8xF def. of j=

2

Proposition 3.4 For any substitution �, the following logical equivalences hold:

(T satF )[�] � T [�] satF [�]

((y)T satG)[�] � ((y)T )[�] satG[�]

Proof: By induction on the stucture of F , using Lemma 3.2. We give four example

cases.

13



The case [� ]F :

(T sat [� ]F )[�]

� (

V

T

b;�

�!T

0

b! T

0

satF )[�] def. of sat

�

V

T

b;�

�!T

0

b[�]! (T

0

satF )[�]

�

V

T [�]

b[�];�

�! T

0

[�]

b[�]! (T

0

satF )[�] Lemma 3.2

�

V

T [�]

b[�];�

�! T

0

[�]

b[�]! T

0

[�] satF [�] ind. hyp.

� T [�] sat [� ](F [�]) def. of sat

� T [�] sat ([� ]F )[�]

The case [c!x]F :

Because x is a bound variable in [c!x]F , we can use �-conversion and assume that

it is not changed under �.

(T sat [c!x]F )[�]

� (

V

T

b;c!

�!(e;T

0

)

b! T

0

satF [e=x])[�] def. of sat

�

V

T

b;c!

�!(e;T

0

)

b[�]! (T

0

satF [e=x])[�]

�

V

T [�]

b[�];c!

�! (e[�];T

0

[�])

b[�]! (T

0

satF [e=x])[�] Lemma 3.2

�

V

T [�]

b[�];c!

�! (e[�];T

0

[�])

b[�]! T

0

[�] sat (F [e=x])[�] ind. hyp.

�

V

T [�]

b[�];c!

�! (e[�];T

0

[�])

b[�]! T

0

[�] satF [�][e[�]=x]

� T [�] sat [c!x](F [�]) def. of sat

� T [�] sat ([c!x]F )[�]

The case hc?iG:

(T sat hc?iG)[�]

� (

W

T

b;c?

�!(y)T

0

b ^ (y)T

0

satG)[�] def. of sat

�

W

T

b;c?

�!(y)T

0

b[�]^ ((y)T

0

satG)[�]

�

W

T [�]

b[�];c?

�! (y)T

0

[�]

b[�]^ ((y)T

0

satG)[�] Lemma 3.2

�

W

T [�]

b[�];c?

�! (y)T

0

[�]

b[�]^ (y)T

0

[�] satG[�] ind. hyp.

� T [�] sathc?i(G[�]) def. of sat

� T [�] sat(hc?iG)[�]

The case 9xF :

Again we can use �-conversion to ensure that � leaves unchanged all bound variables

14



in the process and formulae.

((y)T sat9xF )[�]

� (9zT [z=y] satF [z=x])[�] def. of sat

� 9z((T [z=y] satF [z=x])[�])

� 9z(T [z=y][�] satF [z=x][�]) ind. hyp.

� 9z(T [�][z=y] satF [�][z=x])

� (y)(T [�]) sat9x(F [�]) def. of sat

� ((y)T )[�] sat(9xF )[�]

2

Now we can prove the main result about characteristic formulae:

Theorem 3.5 (Characteristic formulae)For any process term T and formula F ,

T satF characterizes the satisfaction relation in the sense that for any evaluation

�

[[(T satF )[�]]] = tt , T [�] j= F [�]

Proof: Follows directly from the above two results.

2

Note that P [�] is simply P for any process P and similarly for closed property

formulae. So as a corollary to this theorem we have that for any process P and any

closed formula F [[(P satF )]] = tt , P j= F .

4 A Modal Proof System

The result of characteristic formulae provides a way of verifying whether a process

T satis�es certain modal property F . In this section, we will present a proof system

which provides an alternative way of doing such veri�cation. This proof system is

very similar to that in [Lar88] for proving properties of \pure processes" but we

replace the use of the concrete operational semantics with the symbolic version.

The judgements of the proof system have the form B ` T :F , where B is a

�rst order formula over V , which is to be read as \if B is true then T satis�es F".

More precisely, it is to be interpreted as for any evaluation � if [[B[�]]] = tt then

T [�] j= F [�].

Figure 6 shows the set of proof rules which should be self{explanatory. The

only new notation occurs in rule Cons where B

2

) B

1

is used to mean: for every

evaluation � [[B

2

[�]]] = tt implies [[B

1

[�]]] = tt. We could also have used logical

implication B

2

! B

1

except for completeness we need to ensure that all such

implications are derivable. We also should point out the special case of rule Cut

when n = 0, which is � ` T :F for any T and F .
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Id

B ` T :B

Cut

B

1

` T :F : : : : : :B

n

` T :F

W

1�i�n

B

i

` T :F

n � 0

Cons

B

1

` T :F

B

2

` T :F

B

2

) B

1

Ex

B ` T :F

9xB ` T :F

x does not occur free in T; F

_

B ` T :F

1

B ` T :F

1

_ F

2

B ` T :F

2

B ` T :F

1

_ F

2

^

B ` T :F

1

B ` T :F

2

B ` T :F

1

^ F

2

h�i

B ` T

0

:F

B ^ b ` T : h�iF

T

b;�

�! T

0

[� ]

B ^ b

1

` T

1

:F; : : :: : : ; B ^ b

n

` T

n

:F

B ` T : [� ]F

f(b

1

; T

1

); : : : ; (b

n

; T

n

)g = f(b; T

0

) j T

b;�

�! T

0

g

hc!i

B ` T

0

:F [e=x]

B ^ b ` T : hc!xiF

T

b;c!

�! (e; T

0

)

[c!]

B ^ b

1

` T

1

:F [e

1

=x]; : : : : : : ; B ^ b

n

` T

n

:F [e

n

=x]

B ` T : [c!x]F

where f(b

1

; T

1

; e

1

); : : : ; (b

n

; T

n

; e

n

)g = f(b; T

0

; e) j T

b;c!

�! (e; T

0

)g

hc?i

B ` (y)T

0

:G

B ^ b ` T : hc?iG

T

b;c?

�! (y)T

0

[c?]

B ^ b

1

` (y

1

)T

1

:G; : : :: : : ; B ^ b

n

` (y

n

)T

n

:G

B ` T : [c?]G

where f(b

1

; (y

1

)T

1

); : : : ; (b

n

; (y

n

)T

n

)g = f(b; T

0

) j T

b;c?

�! (y)T

0

g

8

B ` T :F

B ` (x)T : 8xF

x does not occur free in B

9

B ` T [e=x]:F [e=x]

B ` (x)T : 9xF

�

B ` T

0

:F

0

B ` T :F

T

0

�

�

T; F

0

�

�

F

Figure 6: The Proof Rules

16



Theorem 4.1 (Soundness) If B ` T :F then, for any evaluation �, [[B[�]]] = tt

implies T [�] j= F [�].

Proof: First note that T [�] j= F [�], for any such substitution �, if and only if

[[(T satF )[�]]] = tt by Theorem 3.5. So it is su�cient to prove B ` T :F implies

B ) T satF . Therefore we only need to show that the rules of the proof system

preserve soundness in this sense. Each case follows from simple identities involving

) and the logical operators. For example the soundness of the [c?] rule relies on

the following facts:

1. B ^ b) F if and only if B ) (b! F ),

2. B )

V

i2S

F

i

if and only if B ) F

i

for all i 2 S.

To prove the soundness of 8 rule, we have to show that if B ) T satF and

x does not occur free in B then B ) (x)T sat8xF . Notice that (x)T sat8xF �

8xT satF . The result now follows since if x does not occur free in B then B )

T satF implies B ) 8xT satF .

To prove the soundness of 9 rule, we have to show that if B ) T [e=x] satF [e=x]

thenB ) (x)T sat9xF . Here T [e=x] satF [e=x] is logically equivalent to (T satF )[e=x]

which in turn implies 9xT satF .

2

The completeness of the system depends on the following result:

Lemma 4.2 For any term T and formula F , T satF ` T :F .

Proof: By induction on the size of F . We give four cases.

In the case hc!xiF , because of the construction of T sat hc!xiF , we have to show

that

W

T

b;c!

�!(e;T

0

)

b^ T

0

satF [e=v] ` T : hc!xiF . By the induction hypothesis, for all T

b;c!

�!

(e; T

0

), T

0

satF [e=x] ` T

0

:F [e=x], so b ^ T

0

satF [e=x] ` T : hc!xiF by rule hc!i. So

W

T

b;c!

�!(e;T

0

)

b ^ T

0

satF [e=x] ` T : hc!xiF by rule Cut.

When it is [c?]G, by the de�nition of T sat [c?]G, we have to show that

V

T

b;c?

�!(y)T

0

b ! (y)T

0

satG ` T : [c?]G. By the induction hypothesis, for all R such

that T

b

R

;c?

�! (y)R; (y)R satG ` (y)R:G, then (

V

T

b;c?

�!(y)T

0

b ! (y)T

0

satG) ^ b

R

`

(y)R:G by rule Cons because (

V

T

b;c?

�!(y)T

0

b! (y)T

0

satG)^b

R

) (y)R satG. Then

by rule [c?],

V

T

b;c?

�!(y)T

0

b! (y)T

0

satG ` T : [c?]G.

When it is 8xF , by the de�nition of (y)T sat8xF , we have to show that

8z:T [z=y]satF [z=x] ` (y)T :8xF . By the induction hypothesis,

T [z=y] satF [z=x] ` T [z=y]:F [z=x]

Because 8z:T [z=y] satF [z=x]) T [z=y] satF [z=x], by rule Cons we have

8z:T [z=y] satF [z=x] ` T [z=y]:F [z=x]

17



Then apply rule 8 we have 8z:T [z=y] satF [z=x] ` (z)T [z=y]:8zF [z=x]. Now

(z)T [z=y]:8zF [z=x] can be � converted into (y)T :8xF .

When it is 9xF , by the de�nition of (y)T sat9xF , we have to show that

9z:T [z=y] satF [z=x] ` (y)T :9xF . By the induction hypothesis,

T [z=y] satF [z=x] ` T [z=y]:F [z=x]

Applying rule 9 with e and x equal to z we have T [z=y] satF [z=x] ` (z)T [z=y]:9zF [z=x].

Applying rule Ex we have 9z:T [z=y] satF [z=x] ` (z)T [z=y]:9zF [z=x], then by rule

� 9z:T [z=y] satF [z=x] ` (y)T :9xF .

2

The completeness of the proof system follows immediately from this lemma.

Theorem 4.3 (Completeness) If [[B[�]]] = tt implies T [�] j= F [�] for any evalu-

ation � then B ` T :F .

Proof: From Theorem 3.5 we know that for any evaluation T [�] j= F [�] if and only

if [[(T satF )[�]]] = tt. So, if [[B[�]]] = tt implies T [�] j= F [�] for any evaluation �

then B ) T satF . By Lemma 4.2, we have T satF ` T :F and then B ` T :F

follows from rule Cons. 2

In [HL92], the notion of symbolic bisimulation equivalence is introduced for

process terms with free value variables. This completeness result enables us to show

that the modal logic together with the proof system gives a natural characterization

of the symbolic bisimulation equivalence. For convenience we de�ne this equivalence

by its key characterization instead of giving the original de�nition; the reader is

referred to [HL92] for motivation and details.

De�nition 4.4 For terms T;U and boolean expression B, T is said to be symbolic

bisimulation equivalent to U under B, written as T �

B

U , if for every evaluation

�, [[B[�]]] = tt implies T [�] � U [�].

Lemma 4.5 Let T;U be two process terms, B be a boolean expression. If T �

B

U

then for every model formulae F , B ` T :F , B ` U :F .

Proof: We assume T �

B

U and B ` T :F for some F , and we will show that

B ` U :F . By the completeness of the proof system it is su�cient to show that for

any evaluation if [[B[�]]] = tt then U [�] j= F [�] From B ` T :F and the soundness

of the proof system, we have T [�] j= F [�]. Because T �

B

U and [[B[�]]] = tt it

follows that T [�] � U [�], and by Theorem 2.2 T [�] � U [�] and T [�] j= F [�] implies

U [�] j= F [�]. 2

The property that B ` T :F , B ` U :F , for every modal formula F , alone

is not su�cient to characterize T �

B

U . Let us de�ne T �

B

U to be for every

model formula F B ` T :F , B ` U :F . Then if this characterisation were true

then �

B

should coinside with �

B

. But in general it is not true that �

B

��

B

0

for any B

0

) B. So �

B

is not �

B

simply because it does not have an obvious

property enjoyed by �

B

. However a slight generalization of �

B

does provide a

characterisation:
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Theorem 4.6 Let T;U be any two process and B be a boolean expression. Then

T �

B

U if and only if for every modal formula F; B

0

` T :F , B

0

` U :F for any

B

0

such that B

0

) B.

Proof:

One direction follows immediately from the above Lemma since if B

0

) B and

T �

B

U then T �

B

0

U . To prove the converse suppose B

0

` T :F , B

0

` U :F

for any modal formula F for any B

0

such that B

0

) B. We will show that T �

B

U . For that we only need to show that if [[B[�]]] = tt for any evaluation � then

T [�] � U [�], and by Theorem 2.2 we only need to show that for any closed F ,

T [�] j= F , U [�] j= F .

So suppose [[B[�]]] = tt T [�] j= F ; we will show that U [�] j= F . Because

T satF ` T :F by Lemma 4.2 and B ^T satF ) B, so B ^T satF ` T :F . Thus

B^T satF ` U :F . Now because T [�] j= F [�] so [[(T satF )[�]]] = [[T [�] satF [�]]] =

tt, and moreover [[B]] = tt, so [[(B^T satF )[�]]] = tt, so U [�] j= F by the soundness

of the proof system. 2

5 Conclusion

In this paper we have suggested a �rst{order modal logic for de�ning properties of

message passing processes and shown how at least some of the techniques which ap-

ply to the use of propositional modal logic and pure process algebras, [Lar88, Sti87]

can be extended to this setting. The �rst result is the de�nition of a characteris-

tic formula for each process and property a formula in the �rst{order modal logic,

which is logically equivalent to tt if and only if the process enjoys the property. The

second is a sound and complete proof system for proving that a speci�c process en-

joys a speci�c property. Of course this does not make the task of proving such a

statement trivial. Moreover the proof system is modulo the underlying �rst{order

theory of the messages being transmitted and thus any implementation of our proof

system will require access to a proof system for this underlying theory. However

most interesting properties of message passing systems will depend on properties of

the underlying message domain and thus reasoning about the messages can not be

avoided. Our approach merely provides a convenient and powerful framework for

organising the interaction between that part of the proof concerned with processes

and that concerned with properties of the messages. But it is conceived so that

any implementation of the proof system can take advantage of a range of di�erent

theorem provers for the message domain. Indeed it is reasonable to assume that dif-

ferent application areas will have a range of di�erent message domains and each of

these could have a specialised theorem prover associated with it. Our proof system

could be tailored to all of these application areas simply by using the associated

theorem prover for the underlying message domain.

Much work remains to be done. First our results should be extended to recursive

formulae as in [Lar88]. We do not envisage any major problems but the details have

yet to be worked out. Secondly we should develop a prototype implementation of

the proof system. The proof system relies heavily on symbolic transitions but
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luckily these have already been implemented for a language very similar to ours in

[Lin93]. Consequently using this groundwork a prototype implementation should

be straightforward.
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