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Abstract

The paper considers the problem of averaging expert opinion when
opinions are expressed quantitatively by belief functions in the sense
of Glenn Shafer. Practical experience shows that experts usually differ
in their exact quantitative assessments and some method of averaging
is necessary. A natural requirement of consistency demands that the
operations of averaging and combination, in the sense of Dempster’s
rule, should commute. Experience also shows that symmetric belief
functions are difficult to distinguish in practice. By forming a quotient
of the monoid of belief functions modulo the ideal of symmetric be-
lief functions, we are left with an Abelian group with a natural scalar
multiplication making it a real vector space. The elements of this quo-
tient space correspond to what we call “regular” belief functions. This
solves the averaging problem with arbitrary weights. The existence of
additive inverses for regular belief functions means that contrary evi-
dence can be treated without assuming the existence of complements.
Opinions expressed by conditional judgements can be incorporated by
lifting suitable measures from a quotient space to a numerator. The
appendix describes a computer program for implementing these ideas
in practice.

∗Preparation of this paper was supported by SERC grant GR/E 05360. The ADRIAN
project was sponsored by ICI Pharmaceuticals. Thanks are due to both organisations.
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1 Introduction

Our starting point is the theory of belief functions of Shafer [11]. This is
presented in Section 2 as the theory of probability measures on semilattices.
The presentation there presupposes no prior knowledge of the theory. The
following introductory remarks, on the other hand, are addressed principally
to those with a working knowledge of the theory. Others may nonetheless
find them helpful if they understand a belief function to be a certain sort of
probability measure on a lattice.

1.1 Averaging

The immediate stimulus for the present theory was an attempt to apply the
theory of belief functions to the problem of analysing possible adverse drug
reactions.1 A panel of over 40 experts in the field of adverse drug reaction
reporting was invited to assess what would be the quantitative impact of
various items of evidence on the issue of possible drug involvement, assuming
these items of evidence applied in a specific case. Although experts usually
agreed on the direction in which each item would point, there was inevitably
some disagreement on the extent to which an item of evidence would weigh
in favour of or against a given hypothesis. Since the opinion of each expert
was represented by a belief function, this led to the problem of finding a
suitable way of averaging belief functions.

Belief functions cannot be averaged by combining them in the sense of
Dempster’s rule. Any average of N copies of the same quantity must be
that same quantity whereas Dempster’s rule is clearly not idempotent. A
candidate for the averaging process which satisfies this requirement is the
point-wise arithmetic mean. This always produces a belief function, with
or without equal weights. But it fails to satisfy a necessary requirement of
consistency.

Suppose that M independent items of evidence are to be assessed for their
impact on the hypotheses in some domain. Let the j’th expert’s assessment
of the impact of the i’th item of evidence be expressed by the belief function
Bel(i, j). This gives an array of belief functions. Since the items of evidence
are independent, suppose their joint impact to be expressed by Dempster’s
rule of combination. For each expert j = 1, . . . , N let Bel(−, j) denote the
combination of the Bel(i, j) over items of evidence i = 1, . . . ,M . Bel(−, j)
represents the j’th experts opinion of the impact of the combined evidence.
For each item of evidence i = 1, . . . ,M let Bel(i,−) denote the average of
the Bel(i, j) over experts j = 1, . . . , N . Bel(i,−) represents the average over
experts of the impact of the i’th item of evidence. We now have two ways of
obtaining the final result. We may either average the Bel(−, j) over experts
or combine the Bel(i,−) over items of evidence. Consistency demands that

1The results are reported in Castle et al [3].
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we obtain the same result in either case. In other words the operations of
averaging and combining should commute.

One reason for insisting on this is that too great a strain is otherwise
put on the concepts of the identity of an expert or the identity of an item
of evidence. Many individual opinions can be considered to be really an
average over time or a simultaneous average over different points of view.
Each expert is, as it were, an average of experts. Equally an individual
item of evidence can often be considered to be in principle a combination of
simpler independent items.

It is not difficult to see that the process of averaging by the arithmetic
mean, whether with equal weights or not, fails to commute with combination.
Reflection shows that a more promising line of attack is to consider the
geometric mean of “commonality” functions rather than the arithmetic mean
of belief functions. The only obstacle is that the set of commonality functions
is not closed under the formation of geometric means, even setting aside the
renormalisation associated with Dempster’s rule. Nonetheless if there is to
be a solution, this appears to be the only way forward. If there is no solution
it is difficult to see how to apply the theory of belief functions in practice.

1.2 Symmetric Belief Functions

In the theory of additive probability measures over finite Boolean algebras
the notions of a symmetric measure and a measure with uniform density
coincide. Let X be a non-empty finite set with |X| = n and let B = PX be
the power set of X considered as a Boolean algebra. A probability measure
on B is invariant under all automorphisms of B if and only if its density
is invariant under all permutations of X. This means that the density of a
symmetric measure must be constant, or uniform, with the value 1/n at each
point.

In the theory of belief functions, on the other hand, there are infinitely
many symmetric measures over a power set with at least two elements. If
X = {a, b}, for example, any belief function whose basic probability assign-
ment satisfies m(a) = m(b) is symmetric. The question arises whether these
various symmetric measures can be distinguished in practice.

We can connect this question with the previous one as follows. Suppose
that X = {a, b} and that we ask two experts to assess the impact of a
given item of evidence on the propositions in PX = {{a, b}, {a}, {b}, {}}.
Suppose that one expert considers it to support {a} to degree 0.1 and the
other considers it to support {b} to the same degree 0.1. What is the average
of their opinions? It must be some symmetric measure. But which one?

Here is an example. Suppose we are concerned with the question whether
or not a drug administered to a patient was the cause of a certain adverse
event. One factor amongst many which might be relevant is the frequency
with which a physician sees patients with this complaint in any case dur-
ing the course of general practice. Experts agree that if patients present
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with these symptoms roughly once a day on average, this counts as evidence
against the hypothesis of drug involvement. If patients present with these
symptoms only very infrequently, say once every five years, this would count
as evidence in favour of drug involvement. But there are cases between these
extremes of ‘once a day’ and ‘once every five years’. Consider the case of
‘once every six months’. One can imagine two experts disagreeing on their
assessment of this frequency. One thinks it on the common side of normal
and the other thinks it on the uncommon side of normal. Suppose that one
expert thinks it supports the hypothesis of drug involvement to degree 0.1
whilst the other thinks it goes against the drug hypothesis to the same degree
of 0.1. How should we represent their average opinion?

Now we can imagine one and the same expert similarly being in two
minds as it were. One thing, however, is clear to our expert. On balance
the evidence is neutral. Its impact must be expressed by a symmetric belief
function. But which one? We can put the point in a practical way by
considering the problem of the “knowledge engineer” in eliciting an opinion.
What could be said to help the expert choose one out of these infinitely many
symmetric belief functions? The suggestion which emerges in this paper is
that there is no practical significance to this question. The only clear fact
in such a case is that the opinion is symmetric between the two alternatives.
There is room, therefore, for essentially only one symmetric belief function
with practical significance and it may as well be the vacuous one.

This line of thought will lead us to identify all symmetric belief functions.
But this has far reaching implications. It means we must identify any two
belief functions which “differ” only by a symmetric belief function. In short
we shall form a quotient of the commutative monoid of belief functions (the
monoid operation corresponding to Dempster’s rule) by factoring out the
ideal of symmetric belief functions. Fortunately each equivalence class con-
tains one and only one “regular” measure so that we always have a concrete
representative to deal with. The quotient monoid turns out to be an Abelian
group with a natural scalar multiplication making it a real vector space. The
vector space structure leads immediately to a solution of the averaging prob-
lem. The existence of additive inverses allows us to treat the problem of
contrary evidence without assuming the existence of complements.

1.3 Contrary Evidence

We commonly speak of an item of evidence as being either favourable or
unfavourable to a hypothesis. In the theory of belief functions, unfavourable
or contrary evidence is treated as a derivative concept, as it is in the ordinary
additive theory. Evidence against a proposition is considered to be equivalent
to evidence in favour of its formal negation. There appear to be a number
of grounds for questioning this assumption.

In the first place it accords poorly with our intuitive ways of thinking.
Here is an example. An important factor in assessing possible adverse drug
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reactions is the time lapse between administration of a drug and onset of
symptoms. If the time to onset is too great, this goes against the hypothesis
of drug involvement. Intuitively it does so directly and not by virtue of
being evidence in favour of some alternative hypothesis about the cause of
the symptoms. To take a more homely example, if your friend considers that
her present indigestion may have been caused by some prawns she has eaten,
discovery that the prawns were eaten three weeks ago may lead you to count
this as evidence against her hypothesis. If the prawns were going to give
her an upset stomach, they would have done so long before now. The form
of reasoning is clear. If the hypothesis were true, something else would be
expected to follow. That consequence has failed to materialise (in the time
expected). Hence the evidence goes directly against the hypothesis. It would
be unnatural and should be unnecessary to interpolate the formal negation
of the hypothesis into the argument.

A second reason for questioning the assumption is more technical. Sup-
pose we have two independent items of evidence relating to a given hypothe-
sis. One weighs in favour of the hypothesis to a certain degree and the other
weighs against it to the same degree. These two items of evidence ought to
cancel out. They point in opposite directions and to the same extent. At
least they should combine to form a symmetric belief function. Yet this never
happens if we follow the approach of the theory of belief functions, except in
the single case of a two-element power set.

In the theory to be presented below, the idea of contrary evidence is based
on the intuition of the preceding paragraph, supported by the existence of
additive inverses in the quotient monoid of regular belief functions. If we
can agree on a regular belief function to express the impact of evidence
favourable to a given hypothesis to a certain degree, evidence unfavourable
to that hypothesis to the same absolute numerical degree will be represented
by the additive inverse of the first belief function. By definition the two will
cancel out when combined.

None of this is to deny that we may sometimes have evidence directly in
favour of each of two complementary hypotheses or directly against each of
two complementary hypotheses. But neither situation is the same as having
evidence directly in favour and directly against just one.

2 Probability Measures on Inflattices

In [11] and most later expositions belief functions are defined on power sets.
A central tenet of this paper is that the way to view the theory of belief
functions is as part of an autonomous theory of probability measures on
semilattices, even when they happen to be Boolean algebras, rather than
as a competitor to the orthodox theory of additive probability measures.
Further discussion of this point will be found in Section 4. We begin with an
outline of the necessary lattice-theoretic background. For more details see,
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for example, [8, Ch.I].

2.1 Distributive Lattices

A partially ordered set is a set A with a binary relation ≤ satisfying

a ≤ a

a ≤ b and b ≤ a imply a = b

a ≤ b and b ≤ c imply a ≤ c

for all a, b, c in A. A subset S of a partially ordered set A is said to be an
upper set if it is closed above, i.e. if a ∈ S and a ≤ b imply that b ∈ S. Dually
a lower set is any set which is closed below. We write ↑(a) = {b ∈ A|a ≤ b}
for the smallest upper set containing a and ↓(a) = {b ∈ A|b ≤ a} for the
smallest lower set containing a.

A lattice is a partially ordered set in which every finite subset has both
a greatest lower bound, called its meet, and a least upper bound, called its
join. We write

∧

S and
∨

S for the meet and join of the set S when they
exist. When S is a two element set we write a∧ b instead of

∧

{a, b} and a∨ b
instead of

∨

{a, b}. Thus a ∨ b and a ∧ b are determined when they exist by
the conditions

a ∨ b ≤ c iff a ≤ c and b ≤ c

c ≤ a ∧ b iff c ≤ a and c ≤ b

for all c ∈ A. Since the empty set is certainly finite it follows that a lattice
has both top and bottom elements providing a meet and a join, respectively,
for the empty set. We refer to these as 1 and 0. Equivalently, a lattice is
a partially ordered set with binary meets and binary joins and a top and
bottom element.

An element a of a lattice L is complemented when there is an element b
of L such that

a ∧ b = 0 and a ∨ b = 1.

In that case b is said to be a complement of a. In general an element of
a lattice may have many complements. For an important class of lattices,
however, a given element can have at most one.

A lattice L is distributive if it satisfies either of the equivalent conditions

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (∀a, b, c ∈ L)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (∀a, b, c ∈ L).

Complements in a distributive lattice are unique whenever they exist.
A Boolean algebra is a distributive lattice in which every element has

a complement. Since complements are defined through meets and joins, a
morphism of distributive lattices which happen to be Boolean algebras is
necessarily a Boolean homomorphism.
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2.2 Probability Measures on Distributive Lattices

A probability measure on a distributive lattice D is any real unit-interval
valued function p:D → [0, 1] satisfying

p(a ∨ b) + p(a ∧ b) = p(a) + p(b)(1)

a ≤ b implies p(a) ≤ p(b)(2)

p(0) = 0 and p(1) = 1.(3)

When D is a Boolean algebra this agrees with the usual definition of a prob-
ability measure on a Boolean algebra. More generally we have the following:

Proposition 1 Every probability measure on a distributive lattice D has a
unique extension to a probability measure on the Boolean algebra freely gen-
erated by D.

The meaning of this is as follows. The Boolean algebra freely generated by
a distributive lattice D is a Boolean algebra BD together with a morphism
η:D → BD of distributive lattices which is universal amongst morphisms
with this property.2 Thus if B is any Boolean algebra and f :D → B is a
morphism of distributive lattices, there exists a unique Boolean homomor-
phism f :BD → B such that the diagram

D BD

B

η

f
f

✲
❩

❩
❩

❩
❩

❩
❩❩⑦ ❄

commutes. To say that a probability measure p on BD is an extension
of a probability measure p on D is to say that p restricts to p along the
canonical insertion η. We can interpret this as confirming the correctness of
the definition of a probability measure on a distributive lattice, relative to
the concept of a probability measure on a Boolean algebra.

As is well known (1) can be extended to the meet or join of several
elements. Thus reformulating (1) as

p(a ∨ b) = p(a) + p(b) − p(a ∧ b)

2If D is already presented as a sub-distributive lattice of a Boolean algebra B, the
power set algebra B = PX for example, then BD is just the sub-Boolean algebra of B

generated by D. The construction of BD in general is more intricate: see for example [8,
II.4.5] or [9, page 25].
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leads to

p(a ∨ b ∨ c) =

p(a) + p(b) + p(c) − p(a ∧ b) − p(a ∧ c) − p(b ∧ c) + p(a ∧ b ∧ c).

In general, if S is any finite subset of a distributive lattice D and p is a
probability measure on D, then

p(
∨

S) = 1 −
∑

R⊆S

(−1)|R|p(
∧

R)

where |R| is the number of elements in R and summation over the empty set
is included. This means that the probability of the join of a set of elements
is uniquely determined by the probabilities of the meets of all its subsets.
Distributivity is essential for deriving this result.

2.3 Semilattices

Lattices are required to have both finite meets and finite joins. If we only
require finite limits of one sort, we are dealing with a semilattice. Clearly
there are two sorts of semilattice from the order-theoretic point of view. A
meet semilattice is a partially ordered set in which every finite subset has a
meet. A join semilattice is a partially ordered set in which every finite subset
has a join. A meet semilattice necessarily has a distinguished top element, 1
say, while a join semilattice has a distinguished bottom element 0.

A morphism of meet semilattices is a map which preserves finite meets
while a morphism of join semilattices is a map which preserves finite joins.
Such maps necessarily preserve order. Notice that morphisms of semilattices
must preserve the empty meet or the empty join. Thus a morphism of meet
semilattices must preserve the top element but need not preserve the bottom
element while a morphism of join semilattices must preserve the bottom
element but need not preserve the top element. In general a meet semilattice
may well have finite or even arbitrary joins. (It always will if the semilattice
is finite or, more generally, complete.) But these need not be preserved
by morphisms of meet semilattices. A corresponding remark holds for join
semilattices.

A semilattice can also be considered to be a special sort of commutative
monoid. The operations of binary join and taking the bottom element of a
join semilattice, for example, satisfy the following equations:

a ∨ (b ∨ c) = (a ∨ b) ∨ c(4)

a ∨ b = b ∨ a(5)

a ∨ 0 = a(6)

a ∨ a = a.(7)
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The first three define a commutative monoid—a commutative semigroup (4,
5) with unit (6)—in which every element is idempotent (7). The order rela-
tion can be recovered by the definition

a ≤ b iff a ∨ b = b.

A meet semilattice satisfies the same equations if ∧ replaces ∨ and 1 replaces
0. In that case the order relation must be recovered in the opposite sense:

a ≤ b iff a ∧ b = a.

From the algebraic point of view there is no difference between a meet semi-
lattice and a join semilattice. It is a matter of terminology corresponding to
the distinction between an additive and a multiplicative group. The distinc-
tion only arises when we choose one of the two senses for the ordering.

A meet semilattice is said to be complete if every subset has a meet. Every
finite meet semilattice is complete. Dually a join semilattice is complete if
every subset has a join. The categories of complete join and complete meet
semilattices are particularly rich in structure. Following Joyal and Tierney [9]
we call them the categories of suplattices and inflattices respectively. Their
richness arises principally from the fact that each is isomorphic to its opposite
as follows.

Let A be a suplattice (complete join semilattice). Then A necessarily has
arbitrary meets as well as arbitrary joins. The meet of any subset S is just
the join of its lower bounds:

∧

S =
∨

{a ∈ A|S ⊆ ↑(a)}.

Dually an inflattice has arbitrary joins.3 This means that whenever A is a
suplattice—a partially ordered set with arbitrary joins—the same set with
the opposite partial order, Ao say, is also a suplattice. The joins of Ao are
just the meets of A. Dually the opposite of an inflattice is an inflattice. Now
let A and B be suplattices and let f :A→ B be a morphism of suplattices,
so that f preserves arbitrary joins. Then there is a unique morphism of
partially ordered sets f∗:B → A satisfying the condition

f(a) ≤ b iff a ≤ f∗(b)

for all a ∈ A and b ∈ B. Explicitly f∗ is given by

f∗(b) =
∨

{a ∈ A|f(a) ≤ b}.

f∗ preserves arbitrary meets since A has arbitrary joins and f preserves them.
In general if f :A→ B and g:B → A are order-preserving maps between
partially ordered sets and

f(a) ≤ b iff a ≤ g(b)
3Thus, as an object, a complete semilattice or either sort is in fact a complete lattice.

However, since a morphism of suplattices need not preserve meets, nor a morphism of
inflattices joins, the categories of complete semilattices and complete lattices have signifi-
cantly different categorical properties.
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for all a ∈ A and b ∈ B, we refer to f as the left adjoint of g and g as
the right adjoint of f . The left adjoint preserves joins and the right adjoint
preserves meets. Either uniquely determines the other by the condition

f(a) =
∧

{b ∈ B|a ≤ g(b)}

g(b) =
∨

{a ∈ A|f(a) ≤ b}.

Now meets in A are precisely the joins of Ao so that f∗ can equally be consid-
ered as a morphism of suplattices f o:Bo → Ao. This establishes a bijection
between the suplattice morphisms from A to B and the suplattice morphisms
from Bo to Ao. In fact the functor which sends a suplattice to its opposite
and a morphism to its right adjoint establishes an isomorphism between the
category of suplattices and its opposite. Dually the functor which sends an
inflattice to its opposite and a morphism to its left adjoint establishes an
isomorphism between the category of inflattices and its opposite.

From an algebraic point of view our concern in this paper is with proba-
bility measures on complete semilattices in general. Our immediate practical
concern, however, is with probability measures on finite semilattices. To
avoid complications, we shall therefore restrict attention to the full subcate-
gories of finite suplattices and finite inflattices.

2.4 Probability Measures on Inflattices

Definition 1 A probability measure on a finite inflattice A is a real unit-
interval valued function p:A→ [0, 1] satisfying

p(
∨

S) +
∑

R⊆S

(−1)|R|p(
∧

R) ≥ 1

for every (finite) subset S ⊆ A.

Lemma 2 Let f :A→ B be a morphism of finite inflattices and let q be a
probability measure on B. Define p:A→ [0, 1] by

p(a) = q(f(a))

for all a ∈ A. Then p is a probability measure on A, which we denote by the
functional composition q ◦ f .

This follows from the definition and a relatively simple though not trivial
combinatorial argument. Our aim now is to show that the definition of a
probability measure on a meet semilattice is justified by the relation between
probability measures on meet semilattices and probability measures on the
distributive lattices which they freely generate.

The distributive lattice freely generated by a finite inflattice A is the
lattice DA of all lower sets of A ordered by inclusion. The insertion of
generators is the down-segment map ↓:A→ DA which sends an element
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a of A to ↓(a). DA is a distributive lattice since it is a sublattice of the
power set lattice of A which is evidently distributive. The down-segment
map preserves meets since

a ≤ b ∧ c iff a ≤ b and a ≤ c

and ↓(1) = A. Moreover it is universal with this property. If B is any (finite)
distributive lattice and f :A→ B preserves finite meets, there is a unique
morphism of distributive lattices f :DA→ B such that f = f ◦ ↓.

Now let p be a probability measure on DA for some finite inflattice A.
Evidently p is a probability measure on DA considered as an inflattice. Since
↓:A→ DA is a morphism of inflattices the function p defined by p(a) =
p(↓(a)) is a probability measure on A by Lemma 2. We say then that p
is the restriction of p and p is an extension of p along the map ↓. The
fundamental result on probability measures on inflattices says that every
probability measure can be had uniquely in this way.

Proposition 3 Every probability measure on a finite inflattice A has a unique
extension to a probability measure on the distributive lattice freely generated
by A.

The proposition contains two parts: the existence of the extension and its
uniqueness. Uniqueness is straightforward. If p is an extension of p then p
is already determined on all principal lower sets of the form ↓(a) as a ranges
over A. Every element of DA is a finite union of such sets. But we already
know that the probability of the join (union) of a finite set of elements of a
distributive lattice is uniquely determined by the probabilities of the meets
(intersections) of all its subsets, and if R is any finite subset of the meet
semilattice A, then

⋂

a∈R

↓(a) = ↓(
∧

R).

Thus the extension, if it exists, must be given uniquely by

p(
⋃

a∈S

↓(a)) = 1 −
∑

R⊆S

(−1)|R|p(↓(
∧

R))

for every finite subset S ⊆ A. The proof of existence is less immediate. It
must be verified that p is well-defined and that it is a probability measure on
the distributive lattice DA. This follows from combinatorial results of Revuz
[10] inspired by Choquet [4]. (See also [7].)

The preceding proposition allows us to introduce the idea of a dual prob-
ability measure on the opposite inflattice. This corresponds to the “com-
monality function” of the theory of belief functions.

Proposition 4 Suppose p is a probability measure on a finite inflattice A
and that p is its unique extension to the distributive lattice DA. Define po

for all a in A by

po(a) = 1 − p(↑(a)c)
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where ↑(a)c is the set-theoretic complement of ↑(a) as a subset of A. Then po

is a probability measure on the inflattice Ao and moreover the correspondence
p 7→ po is bijective.

Proof For every upper set S of A define

q(S) = 1 − p(Sc).

Since the complement of an upper set is a lower set, q is a well-defined func-
tion on the collection UA of upper sets of A. The latter form a distributive
lattice and it is easy to verify that q is a probability measure on UA and
that po is the restriction of q to A along the map ↑:A→ UA. But this map
preserves the joins of A and hence the meets of Ao. Thus po is a probabil-
ity measure on the inflattice Ao by Lemma 2. To establish bijectivity, note
that the upper sets of A are precisely the lower sets of Ao, in other words
UA = D(Ao). Hence po has a unique extension po to a probability measure
on D(Ao). But q is an extension of po to a probability measure on the dis-
tributive lattice D(Ao), since po is by definition the restriction of q. So q
must be this unique extension, in other words po = q, from which it follows4

that poo = p. ✷

Proposition 3 provides a useful representation of probability measures on
finite semilattices. We know that every probability measure on an inflattice
A extends uniquely to a probability measure on the distributive lattice DA
of lower sets of A. This in turn extends uniquely to a probability measure
on the Boolean algebra BDA freely generated by DA. But when A is finite,
the Boolean algebra BDA freely generated by DA is just the the power set
algebra PA of all subsets of A. This is because DA is a sub-distributive
lattice of the Boolean algebra PA and every upper set of A occurs in BDA
as the complement of a lower set and hence every singleton {a} occurs in
BDA as the intersection of the upper set ↑(a) and the lower set ↓(a). Finally
every subset of A occurs in BDA as a (finite) union of singletons. This
means that, for every probability measure p on a finite inflattice, there is a
unique probability measure on the Boolean algebra PA which restricts via
the down-segment mapping to p. But every probability measure on a finite
power set algebra is uniquely determined by its values on singletons, or in
other words by its density. Putting these observations together we have the
following:

Proposition 5 A real-valued function p on a finite inflattice A is a prob-
ability measure on A if and only if there exists a real unit-interval valued
function m:A→ [0, 1] with

∑

a∈Am(a) = 1 such that

p(a) =
∑

{m(b)|b ≤ a}

4In the general case this correspondence between probability measures on an inflattice
and probability measures on its dual is bijective only if probability measures satisfy an
additional continuity condition. Compare the condition of “condensability” of [13]. In
that case Proposition 3 has to concern itself with extensions to probability measures on
the frame freely generated by the inflattice: see [8, pages 39–41].
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for all a ∈ A. Moreover this function, called the density of p, is unique when
it exists.

It is easy to see that a probability measure p and its dual po have the same
density. Thus if m is the density of p then po is given by

po(a) =
∑

{m(b)|a ≤ b}.

Using the representation in terms of densities it is easy in the finite case
to establish an important result concerning measures on direct sums of inf-
lattices. Let A and B be inflattices. Denote by A ⊕ B the set of all pairs
(a, b) with a ∈ A and b ∈ B. Then A ⊕ B is an inflattice under the coordi-
natewise partial order. It is in fact the biproduct of A and B in the category
of inflattices under the obvious injections and projections.

Proposition 6 If p and q are probability measures on the finite inflattices
A and B respectively, then the function p× q defined for all a ∈ A and b ∈ B
by

(p× q)(a, b) = p(a)q(b)

is a probability measure on A⊕B.

Proof The density m of p × q is just the pointwise real product of the
densities of p and q. Thus m(a, b) = mp(a)mq(b) where mp is the density of
p and mq is the density of q. ✷

Corollary 7 If p and q are probability measures on an inflattice A then the
function p · q defined for all a ∈ A by

(p · q)(a) = p(a)q(a)

is also a probability measure on A.

Proof Let ∆:A→ A⊕ A be the diagonal morphism sending a to (a, a).
Then p · q = (p× q) ◦ ∆ which is a probability measure on A by Lemma 2.
✷

Corollary 7 allows us to introduce a binary operation on probability mea-
sures on an inflattice which forms the basis of Dempster’s rule of combination
in the theory of belief functions. Let Pr(A) denote the set of probability mea-
sures on an inflattice A and let the binary operation ⋆ be defined by

p ⋆ q = (po · qo)o

for all p, q ∈ Pr(A).

Proposition 8 Pr(A) is a commutative monoid under ⋆.
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Proof Associativity follows from associativity of real multiplication and the
fact that poo = p and commutativity is obvious. The unit of the monoid is
the measure whose dual has the constant value 1. ✷

The unit v of Pr(A), which we call the vacuous measure on A, is given
explicitly by

v(a) =

{

1 if a = 1
0 otherwise.

It is easy to show that if p has density mp and q has density mq then p ⋆ q
has density5

m(a) =
∑

{mp(b)mq(c)|a = b ∧ c}.

Now let f :A→ B be an inflattice morphism and let f o denote its left
adjoint as a morphism of the opposites Bo and Ao considered as inflattices.
Then we define Pr(f): Pr(A) → Pr(B) by

Pr(f)(p) = (po ◦ f o)o

for all p ∈ Pr(A).

Proposition 9 Pr is a (covariant) functor from the category of finite inf-
lattices to the category of commutative monoids.

Proof If p ∈ Pr(A) and f :A→ B is an inflattice morphism, it follows
that f o:Bo → Ao is also an inflattice morphism and hence by Lemma 2 that
po ◦ f o ∈ Pr(Bo) since po ∈ Pr(Ao). Thus (po ◦ f o)o = Pr(f)(p) ∈ Pr(B).
Now suppose that p, q ∈ Pr(A). Then

Pr(f)(p ⋆ q) = ((p ⋆ q)o ◦ f o)o

= ((po · qo) ◦ f o)o

= ((po ◦ f o) · (qo ◦ f o))o

= (po ◦ f o)o ⋆ (qo ◦ f o)o

= Pr(f)(p) ⋆ Pr(f)(q)

and Pr(f) evidently preserves the unit of Pr(A). Thus Pr(f) is a monoid
homomorphism. To see that Pr(g ◦ f) = Pr(g) ◦ Pr(f) for any inflattice
morphisms f :A→ B and g:B → C we only need observe that (g ◦ f)o =
f o ◦ go and Pr evidently preserves identities. ✷

The probability functor Pr has a simple description in terms of densities.
If p is a probability measure on A with density m and f :A→ B is a morphism
of inflattices then the density mf of Pr(f)(p) is given for all b ∈ B by

mf (b) =
∑

{m(a)|f(a) = b}.

5This means that ⋆ is the restriction to the densities on A of the multiplication in the
Möbius algebra of A. See, for example, [15] and [5].



16 3 REGULAR MEASURES ON INFLATTICES

To see this, let pf be the measure on B with density mf . Then

(pf)
o(b) =

∑

{mf(c)|b ≤ c}

=
∑

{m(a)|b ≤ f(a)}

=
∑

{m(a)|f o(b) ≤ a}

= po(f o(b)).

Hence (pf)
o = po ◦ f o and therefore pf = Pr(f)(p) from which the result fol-

lows by the bijective correspondence between measures and their densities.

3 Regular Measures on Inflattices

Having defined probability measures in general on finite inflattices, our task
in line with the thoughts of the introduction is to determine the uniform
measures on an inflattice and to examine the structure of the quotient monoid
obtained by factoring them out. This turns out to be an Abelian group, each
element of which contains a distinguished representative which we call a
“regular” measure.

3.1 Uniform Measures

We first introduce a restriction on the monoid of probability measures on an
inflattice. We say that a probability measure p on an inflattice A is proper if
and only if it assigns the maximum value of 1 to the top element alone: thus
if

p(a) = 1 implies a = 1.

This is equivalent to saying that po is strictly positive, from which it follows
that the proper probability measures on an inflattice form a submonoid.
Correspondingly if f :A→ B is any inflattice morphism then the image under
Pr(f) of a proper probability measure is proper. Accordingly from now on
Pr(A) will denote just the proper probability measures on A and Pr(f) will
denote the corresponding restriction. The significance of this restriction is
that the monoid Pr(A) of proper probability measures on A now satisfies the
cancellation law:

p ⋆ q = p ⋆ r implies q = r.

We say that two elements a and b of a finite inflattice A have the same
rank if and only if they have the same number of elements above them: thus if
|↑(a)| = |↑(b)|. It is clear that this relation partitions the underlying set of A
and that the equivalence classes are linearly ordered by the cardinal numbers
associated with them, i.e. by the number of elements in ↑(a) for any a in
a given equivalence class. Then the equivalence class of lowest rank is just
the singleton consisting of the top element alone. The class of highest rank
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contains just the bottom element. Since the exact number of elements in ↑(a)
is not important we shall count the ranks from top to bottom by the integers
0, 1, . . . and call this numerical assignment the rank function. For a power
set inflattice (PX)o ordered by opposite inclusion and with S a subset of X
where |X| = n, rank(S) is just the cardinality of S with rank(X) = n and
rank(∅) = 0. One can think of the rank function as a measure for inflattices
of the depth of an element below the top. Since the top element is the unit
of an inflattice considered as a monoid, this is the same as a measure of the
distance from the unit.

Definition 2 We define a proper probability measure p on A to be uniform
if its dual measure po is constant across ranks. Thus p is uniform iff

rank(a) = rank(b) implies po(a) = po(b).

Evidently a probability measure on a free semilattice (a power set or its
opposite) is uniform if and only if it is symmetric, i.e. invariant under all
order-preserving automorphisms. We denote by Un(A) the uniform proba-
bility measures on an inflattice A. The unit of the monoid Pr(A) is always
uniform since its dual measure has the constant value 1 everywhere. Another
uniform measure on a finite inflattice A is the measure whose density is given
for all a ∈ A by m(a) = 1/n where n = |A|.

For the next lemma we recall that a subset I of a commutative monoid
M = (M, ⋆, 0) is an ideal of M if and only if

I is a sub-monoid of M(1)

a ∈ I and a ⋆ b ∈ I imply b ∈ I.(2)

Lemma 10 Un(A) is an ideal of Pr(A).

The proof is straightforward. The restriction to proper measures is needed
to verify (2).

A subset of a commutative monoid is the kernel of a monoid epimorphism
iff it is an ideal. Accordingly we can form the quotient monoid Pr(A)/Un(A)
and the kernel of the canonical quotient map is then exactly the ideal Un(A)
of uniform measures. Explicitly we say that p is equivalent to q, written
p ≡ q, iff

p ⋆ u = q ⋆ v for some u, v ∈ Un(A).

This is a congruence relation since Un(A) is a submonoid and the canonical
projection sending each proper probability measure p to its congruence class
[p] is a monoid homomorphism. From condition (2) it follows that the unit
of the quotient monoid, which is the congruence class determined by the unit
of Pr(A), is exactly the set Un(A) of uniform measures. Thus [0] = Un(A).

Our next task is to show that the quotient monoid Pr(A)/Un(A) is in
fact a group. Using the symbol + to denote the monoid operation in the
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quotient, this means that for each measure p ∈ Pr(A) there is a measure
q ∈ Pr(A) such that [p] + [q] = [0] or in other words such that p ⋆ q is
uniform. Since (p ⋆ q)o = po · qo this means that values of qo across ranks
must be proportional to the reciprocals of the values of po. Thus we need
to be able to construct a probability measure with any preassigned ratios of
po-values across ranks. The following result constitutes the basic lemma of
the present theory.

Lemma 11 Let f be any real-valued function on a finite inflattice A with
n + 1 ranks. Then there exists a proper probability measure p on A and a
sequence of positive real number K0, . . . , Kn such that for each i = 0, . . . , n

po(a) = Ki exp f(a)

whenever rank(a) = i.

Proof Assume first that f(0) = 0. Define a sequence of functions (mi)i≤n

where each function mi is defined on {a ∈ A|rank(a) ≤ i} as follows:

m0(1) = exp f(1)

mi(a) =

{

kimi−1(a) if rank(a) < i
exp f(a) − kigi(a) if rank(a) = i

where

gi(a) =
∑

{mi−1(b)|a < b}

ki = inf
exp f(a)

gi(a)

with the infimum taken over {a ∈ A|rank(a) = i}. It follows by induction
that each constant ki is finite and strictly positive and that each function mi

is non-negative. In particular mn is non-negative. Let m = mn. Then from
the definition we have

∑

{mi(b)|a ≤ b} = exp f(a)(1)

whenever rank(a) = i, since a < b and rank(a) = i imply rank(b) < i. Thus
∑

a∈Am(a) =
∑

0≤bmn(b) = exp f(0) = 1 and so m is a density. Now let

Ki =
∏

i<j≤n

kj

with Kn = 1 so that from the definition

m(a) = Kimi(a)(2)

whenever rank(a) = i. In particular

m(1) = K0m0(1) = k1 . . . kn exp f(1) > 0
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so that the measure p based on the density m is a proper probability measure.
Moreover it follows from (1) and (2) that whenever rank(a) = i we have

po(a) =
∑

{m(b)|a ≤ b} =
∑

{Kimi(b)|a ≤ b} = Ki exp f(a)

which was the original assertion. If f(0) 6= 0, apply the above construction
to the function f ′(a) = f(a) − f(0) and absorb exp−f(0) into each of the
factors Ki. ✷

Definition 3 If f is any real-valued function on a finite inflattice A we de-
note by reg f the proper probability measure defined by the above construction.

Proposition 12 Pr(A)/Un(A) is an Abelian group.

Proof Suppose p belongs to Pr(A). Let q = reg (− log po). Then by
Lemma 11 we have qo proportional to exp (− log po) = 1/po across ranks.
Hence (p ⋆ q)o = po ·qo is constant across ranks and therefore p⋆q is uniform.
Thus [p] + [q] = [p ⋆ q] = [0]. ✷

Our aim now is to show that Pr(A)/Un(A) is isomorphic to the additive
group of a vector space quotient of the real vector space of all real-valued
functions on A. This will allow us to equip Pr(A)/Un(A) with a scalar
multiplication making it into a real vector space.

If A is a finite inflattice let L(A) denote the free real vector space on
the underlying set of A, i.e. the space of all real-valued functions on A. Let
N(A) denote the subset of L(A) of all functions that are constant across
ranks. Thus f ∈ N(A) iff

rank(a) = rank(b) implies f(a) = f(b)

for all a, b ∈ A. It is clear that N(A) is a vector subspace of L(A). If f, g ∈
L(A) we write f ≃ g to mean that f−g belongs toN(A), we denote by [f ] the
equivalence class determined by f , and by L(A)/N(A) the quotient vector
space of all such equivalence classes. Our aim is to show that Pr(A)/Un(A) is
isomorphic to the additive group of L(A)/N(A). We need first the following
results:

Lemma 13

If p ≡ q then log po ≃ log qo(1)

If f ≃ g then reg f = reg g(2)

p ∈ Un(A) iff log po ∈ N(A)(3)

f ≃ log (reg f)o(4)
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Proof If p ≡ q there are uniform measures u and v such that p ⋆ u = q ⋆ v.
Hence log po−log qo = log vo−log uo, which belongs to N(A), and (1) follows.
The proof of (2) is by induction on rank following the steps of the definition of
the function reg in Lemma 11. We leave the details to the interested reader.
(3) is a restatement of the definition of uniformity and (4) is a restatement
of Lemma 11. ✷

Proposition 14

Pr(A)/Un(A) is isomorphic to the additive group of L(A)/N(A).

Proof Define φ: Pr(A)/Un(A) → L(A)/N(A) by

φ([p]) = [log po]

and ψ:L(A)/N(A) → Pr(A)/Un(A) by

ψ([f ]) = [reg f ].

These are well-defined in view of (1) and (2) above. Now (3) implies that
φ([p]) = [0] iff [p] = [0] and

φ([p] + [q]) = φ([p ⋆ q])

= [log (p ⋆ q)o]

= [log po + log qo]

= [log po] + [log qo]

= φ([p]) + φ([q]).

Thus φ is a group homomorphism and moreover injective as a function. Now
suppose that f belongs to L(A). Then

φ(ψ([f ]) = φ([reg f ]) = [log (reg f)o] = [f ]

by (4). Hence φ ◦ ψ is the identity on L(A)/N(A). Since φ is injective
it follows that ψ ◦ φ is the identity on Pr(A)/Un(A). Since φ is a group
homomorphism it follows that ψ is also a group homomorphism and we are
through. ✷

3.2 Regular Measures

For practical purposes it is inconvenient to deal with equivalence classes of
measures. We show next that each equivalence class contains a distinguished
element which will serve as a canonical representative.

Definition 4 Let ρ: Pr(A) → Pr(A) be defined by

ρ(p) = reg (log po).

We say that a proper measure p is regular if and only if ρ(p) = p and we
denote by Reg(A) the set of regular measures on a finite inflattice A.
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We now show that each element of Pr(A)/Un(A) contains exactly one regular
measure.

Lemma 15 ρ is idempotent: ρ ◦ ρ = ρ. Hence ρ(p) is regular for all p ∈
Pr(A).

Proof Substitute f = log po in (4) above and apply (2). ✷

Proposition 16 Each element of Pr(A)/Un(A) contains one and only one
regular measure.

Proof Suppose [p] belongs to Pr(A)/Un(A). Then φ(ψ([p])) = [p] implies
that [reg (log po)] = [p] or in other words [ρ(p)] = [p]. But ρ(p) is regular
by Lemma 15. Hence every element of Pr(A)/Un(A) contains at least one
regular measure. Now suppose that p ≡ q. Then ρ(p) = ρ(q) by (1) and (2)
of Lemma 13. So if p and q are both regular we have p = ρ(p) = ρ(q) = q.
Thus each equivalence class in Pr(A)/Un(A) contains at most one regular
measure. ✷

This result means that Reg(A) is likewise an Abelian group under the
obvious definition of addition. Since it is isomorphic to the additive group
of L(A)/N(A) we can equip it with a scalar multiplication borrowed from
L(A)/N(A). This latter space however is more conveniently represented as
a direct summand of L(A) as follows.

Let M(A) denote the subset of L(A) of functions satisfying

∑

{f(a)|rank(a) = i} = 0

for each rank i = 0, . . . , n. It is easy to verify that M(A) is a subspace of
L(A) and that L(A) is the direct sum

L(A) = M(A) +N(A)

so that M(A) is isomorphic to L(A)/N(A) in the usual way. For future
use let µA:L(A) → M(A) denote the projection on M(A) along N(A). The
vector space operations on Reg(A) are defined explicitly by:

p+ q = reg (log po + log qo)

k p = reg (k log po)

for all p, q ∈ Reg(A) and all real numbers k. Then we have all that is needed
to prove the following:

Proposition 17 Reg(A) is a real vector space with respect to the above op-
erations and the restricted map reg :M(A) → Reg(A) is an isomorphism of
vector spaces.
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This shows us incidentally how to calculate the dimension of Reg(A). Since
L is the direct sum of M and N we have

dimL = dimM + dimN.

But dimL = |A| whilst the dimension of N is just the number of ranks. Thus
if A has m elements and ranks 0, . . . , n then

dimReg(A) = m− (n+ 1).

We lose a dimension for each rank.

3.3 Belief Functions

In order to compare the theory of regular probability measures with the the-
ory of belief functions we give an alternative description of regular measures
in terms of their densities. The regular measures are those whose densities
vanish on some element of every rank except the lowest, that is to say except
on the top element.

Proposition 18 Let A be a finite inflattice with n + 1 ranks and let p be
a proper probability measure on A with density m. Then p is regular if and
only if for each i = 1, . . . , n there exists an element a ∈ A of rank i such that
m(a) = 0.

The proof in one direction follows immediately from the construction of reg f
in the proof of Lemma 11. The proof in the other direction is by induction
on the sequence of functions (mi)i≤n. Again we leave details to the reader.

For ease of comparison we restrict attention to belief functions that are
proper in our sense, i.e. belief functions whose density on the top element
is non-zero. Thus a belief function is a proper probability measure whose
density satisfies m(0) = 0. We denote by Blf (A) the set of belief functions
on a finite inflattice A. Now the density of a regular probability measure
must vanish at some point of every rank except the lowest, i.e. on the top
element. Since the bottom element always occurs in a rank of its own it
follows that every regular probability measure is a belief function.6 Thus we
have the inclusions

Reg(A) ⊆ Blf (A) ⊆ Pr(A).

The binary operations of combination for Blf (A) and Reg(A) are both based
on the monoid operation in Pr(A). But neither Blf (A) nor Reg(A) is closed
under this operation. Some form of “renormalization” is needed in either
case. Define the function β: Pr(A) → Blf (A) by

β(p)(a) =
p(a) − p(0)

p(1) − p(0)
6We ignore the case of a free semilattice on the empty set.
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for all a ∈ A. Then the binary operation on Blf (A), which is called Demp-
ster’s rule of combination, is defined by

p+ q = β(p ⋆ q)

and β: Pr(A) → Blf (A) is a morphism of commutative monoids.
For the theory of regular probability measures on the other hand we have

ρ: Pr(A) → Reg(A) defined by

ρ(p) = reg (log po).

The binary operation on Reg(A) is given by

p+ q = ρ(p ⋆ q)

and ρ: Pr(A) → Reg(A) is a morphism of commutative monoids. In fact both
β and ρ are quotient maps and ρ factors uniquely through β.

3.4 Covariant Transformations

In an earlier section we defined the covariant probability functor Pr. If
f :A→ B is any morphism of finite inflattices and p is any proper probability
measure on A then Pr(f)(p) = (po ◦ f o)o is a proper probability measure on
B and Pr(f) is a morphism of commutative monoids, but it does not follow
that Pr(f)(p) is regular whenever p is regular.

An obvious way of transforming Pr(f)(p) into a regular measure is to
apply the quotient map ρ on Pr(B) which we refer to as ρB. This leads to
the definition Reg(f) = ρB ◦ Pr(f). But this is not in general functorial. It
does not follow that Reg(g ◦ f) = Reg(g) ◦ Reg(f) whenever g:B → C. We
need to restrict to a special subclass of morphisms. What is needed is that
Pr(f) should map uniform measures on A to uniform measures on B. Then
we can define Reg(f) to be the unique morphism which makes the diagram

Pr(B)

Pr(A)

Reg(B)

Reg(A)

B

A

Pr(f)

ρA

ρB

Reg(f) f

✲

✲

❄ ❄ ❄

commute in the category of monoids. Such a morphism exists because the
kernel of ρB ◦Pr(f) then includes the kernel of ρA and uniqueness is obvious.
Explicitly Reg(f) is given by

Reg(f)(p) = regB log(po ◦ f o).

We postpone for the moment the proof that Reg is then functorial.
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As an aside let us note the corresponding requirement for the theory of
belief functions. Guided by the same idea that the above diagram should
commute when we replace Reg by Blf and ρ by β, it is easily seen that
an inflattice morphism f must then satisfy the additional requirement that
f(0) = 0. Every inflattice epimorphism satisfies this condition but in gen-
eral there are inflattice morphisms with f(0) = 0 for which Pr(f) does not
preserve uniformity, nor does the converse implication hold.

Now the general condition for Pr(f) to preserve uniformity of measures is
that f o preserves equality of rank. Accordingly we restrict attention to such
morphisms in the sequel. Let us denote by rILf the category whose objects
are finite inflattices and whose morphisms are inflattice morphisms whose
left adjoints preserve equality of rank. Composition is just composition of
inflattice morphisms. This is a subcategory of the category of finite inflattices
since the left adjoint of g ◦ f is f o ◦ go and preservation of equality of rank
is preserved under composition of left adjoints. We shall not attempt any
investigation of the properties of this category beyond those that we need for
immediate purposes.

We now give some examples of epimorphisms in this category.

Example 1 Let A be a finite inflattice and let (PA)o be the power set of A
ordered by opposite inclusion. This is the free inflattice on the underlying
set of A. Then the map

∧

: (PA)o → A which sends a subset S of A to its
meet

∧

S preserves infima. (Since A is finite and the ordering is by opposite
inclusion we need only verify that

∧

(S∪T ) = (
∧

S)∧(
∧

T ) and that
∧

∅ = 1.)
In fact

∧

is the map which exhibits an inflattice A as a canonical quotient
of a free inflattice. Its left adjoint is the up-segment map which sends each
a ∈ A to ↑(a) and by definition this preserves equality of rank.

Example 2 Let S be any upper set of a finite inflattice A and let B = S∪{0}
be the union of S with the bottom element of A. Define f :A→ B by

f(a) =

{

a if a ∈ S
0 otherwise.

This is right adjoint to the inclusion of B in A so that f preserves infima and
its left adjoint, the inclusion, preserves equality of rank. This is because S
is an upper set so that the number of elements in B above a given element
b ∈ B is the same as the number of element above b in A, except possibly
for the bottom element and this always occurs in a rank of its own. Thus B
corresponds to a quotient of A in the category rILf.

Example 3 Suppose X is a finite set and that A is the free inflattice on X.
Thus A = (PX)o is the power set of X ordered by opposite inclusion. Let
Y be a subset of X and let B = {S ⊆ X|Y ⊆ S} be the collection of all
supersets of Y . Then the map (−) ∪ Y :A→ B which sends a subset S of
X to its union with Y is an inflattice morphism whose left adjoint preserves
equality of rank. This is because the left adjoint is again the inclusion of
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subsets and the condition for equality of rank for sets in the quotient B is
evidently (but not trivially) the same as it is for sets in the numerator A,
namely equality of size.

More generally let b be some fixed element of a finite inflattice A and let
B = ↓(b). Then the more general situation corresponding to Example 3 is
that of the quotient map (−) ∧ b:A→ B which sends an element a ∈ A to
a∧ b ∈ B. It must be pointed out, however, that ↓(b) need not in general be
a quotient object of A in the category rILf since the inclusion of ↓(b) in A
need not preserve equality of rank. Besides power sets (or their opposites),
however, there is another significant case where this always occurs, namely
when A is tree-like. We say that a finite inflattice A is tree-like if ↑(b) is
linearly ordered for all b ∈ A except possibly b = 0. Then the inclusion of
↓(b) in A always preserves equality of rank.

Examples 2 and 3 are related to the idea of conditionalisation in Boolean
probability theory. First consider Example 3 in the case where ↓(b) is indeed a
quotient object of A. Applying Reg to the morphism (−) ∧ b:A→ B yields
a linear transformation from Reg(A) to Reg(B) corresponding to positive
conditionalisation for inflattices. It tells us how to modify a regular measure
on A if we discover that the proposition corresponding to the element b is
true. The reason for this interpretation is that b, and anything which it
entails, is mapped to the top element of the quotient inflattice B.

Example 2 relates similarly to negative conditionalisation, that is to say
conditionalising on the information that one or more of the propositions
represented in the the inflattice is false. This distinction between positive
and negative conditionalisation is not needed in orthodox probability theory
because of the assumed underlying Boolean structure. In general let A be
a finite inflattice and suppose that we learn that each of the propositions in
a subset R of A is false. Then we must identify all propositions, including
the bottom element, which entail any of the (false) propositions in R. This
amounts to forming a quotient of A in which each of the elements of R is
mapped to the bottom element of the quotient. This is just the case of
Example 2 when S is the complement of the downward closure of R.

Turning to monomorphisms we can restrict attention without loss of gen-
erality to inclusions. Then if B is a finite inflattice and A is a subset of B
closed under infima, so that it is a sub-inflattice of B, the left adjoint to the
inclusion of A in B preserves equality of rank only if A satisfies the following
condition:

a ∈ A and rank(a) = rank(b) imply b ∈ A.

In other words if A includes any element of B of a given rank it must include
all elements of that rank. In the power set case B = PX this is satisfied
if A includes X and all subsets of X of less than a given size. Then the
left adjoint to the inclusion sends every subset in A to itself and every other
subset to X and this preserves equality of rank.
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Our next task is to show that Reg is functorial. To see this we make
use of the isomorphism between M(A) and Reg(A). Recall that M(A) is
the subspace of L(A) consisting of all real-valued functions on A whose sums
across ranks separately vanish or, more significantly, whose arithmetic means
across each rank separately vanish. Now let f :A→ B be a morphism of
finite inflattices whose left adjoint preserves equality of rank. First define
L(f):L(A) → L(B) by

L(f)(w)(b) = w(f o(b))

for all w ∈ L(A) and b ∈ B. Then L is a functor from the category rILf to
the category R-VECf of finite dimensional real vector spaces. Now define
M(f):M(A) → M(B) to be the unique linear transformation which makes
the diagram

L(B)

L(A)

M(B)

M(A)

B

A

L(f)

µA

µB

M(f) f

✲

✲

❄ ❄ ❄

commute. Again it exists because the null space of µB ◦ L(f) includes the
null space of µA and uniqueness is obvious. Now we must show that M is
indeed a functor from rILf to R-VECf. All we need show in effect is that
M(g ◦ f) = M(g) ◦M(f) whenever f :A→ B and g:B → C are morphisms
of rILf and the details we leave to the reader. Essentially the reason is
because if w belongs to M(A) then the differences between the values of
M(g ◦ f)(w) on any two elements of C of a given rank are the differences
between the values of w(f o(go(c))) for elements c ∈ C belonging to that
rank. The condition that the arithmetic means across ranks should vanish
then determines the actual function M(g ◦ f)(w) uniquely on each rank in
terms of these differences. It is the same whether we pass via an intermediate
relocation in L(B) or whether we leave the entire relocation until we reach
L(C).

We now claim that for any morphism f :A→ B of rILf the diagram

M(B)

M(A)

Reg(B)

Reg(A)

B

A

M(f)

regA

regB

Reg(f) f

✲

✲

❄ ❄ ❄
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commutes. Again this is an exercise we leave to the reader. This fact together
with a previous result establishes the following:

Proposition 19 Reg is a functor from rILf to R-VECf and the linear
transformations regA form the components of a natural isomorphism from
M to Reg.

3.5 Contravariant Transformations

The functor Reg is covariant, that is to say it transforms regular probability
measures in the direction in which infima are preserved. Thus in the case of
quotient maps it projects a regular measure on the numerator to a regular
measure on the quotient. It is reasonable to ask whether there may also a
well-behaved way of transforming regular measures in the opposite direction.
In the case of quotient maps this would provide a way of lifting a regular
measure to the numerator.

There is a practical reason for seeking such transformations which con-
cerns the representation of conditional judgements. Suppose that a patient,
who has been prescribed two drugs, is suffering some adverse condition and
the question at issue is whether this is a case of an adverse drug reaction or
whether there is some other explanation. An expert offers the following opin-
ion on the basis of some particular item of evidence. “This tells me nothing
directly about whether or not the condition is due to a drug. But it does
suggest that if a drug is involved, it is more likely to be drug A than drug
B.”

Assuming that we can elicit a numerical expression of this opinion, we
are being invited to represent it initially by a measure on the space whose
top element corresponds to ‘drug involvement’. The question is whether we
can lift this measure on the quotient space to the whole space. There seems
to be a need to do this. Another item of evidence may point directly and
unconditionally to drug B, for example, while another may suggest, again
unconditionally, that the patient was already predisposed to the condition
for independent reasons. If we are to be able to combine together all these
items of evidence it must be in a single space. Unless we can lift our first
measure to the numerator, the evidence on which it was based will have to
be disregarded even though it may discriminate strongly between the two
drugs.

Exactly similar remarks hold in the case of judgements expressed condi-
tionally on a certain proposition, or set of propositions, of the domain being
false. The only difference lies in the type of quotient we have to consider.

There is an obvious way of mapping probability measures on an inflattice
in a contravariant direction. If f :A→ B is an inflattice morphism and p is a
probability measure on B then Lemma 2 tells us that functional composition
of p with f yields a probability measure on A. This was how we defined the
covariant probability functor by composition of duals po ◦ f o. But whereas
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Pr(f) preserves the monoid operation, because we have taken duals before
and after composing, direct composition with f does not. To see this we
need only consider the quotient map (−) ∧ b when b 6= 1. Composing with
this will lift the unit of Pr(↓(b)) not to the unit of Pr(A) but to a measure
concentrated on b (and therefore in fact an improper one). Clearly this is
unsatisfactory for the purposes mentioned, and nothing can be done to rectify
it. Suppose our expert were to say: “This tells me nothing directly about
whether or not the condition is due to a drug. But it does suggest that if a
drug is involved, it may as well be drug A as drug B.” The only plausible
representation of this judgement is by the vacuous measure, whether on the
quotient or the numerator.

The way in which we propose to deal with this question is based on the
following fact:

Proposition 20 If f is an epimorphism in rILf then Reg(f) is a retraction
in R-VECf.

Proof Suppose f :A→ B is an epimorphism. Define Reg(f)∗ for all q ∈
Reg(B) by

Reg(f)∗(q) = regA (µB(log qo) ◦ f).

It must be verified that this is a linear transformation and that Reg(f) ◦
Reg(f)∗ is the identity on Reg(B). For both purposes we use the natural
isomorphism between M and Reg. Then it is sufficient to prove that the map
M(f)∗ defined for all w ∈M(B) by

M(f)∗(w) = µA(w ◦ f),

which is evidently a linear transformation from M(B) to M(A), is a right
inverse for M(f). To see this we observe that the differences between the
values of M(f)(M(f)∗(w)) on any two elements of B of a given rank will be
just the differences between the values of w((f ◦ f o)(b)) for elements b ∈ B
belonging to that rank with the final determination made uniquely by the
condition of having vanishing arithmetic means across ranks. But if f is an
epimorphism then f ◦ f o is the identity on B and the original function w
already satisfied that condition. Hence M(f)(M(f)∗(w)) = w. The result
now follows from the natural isomorphism between M and Reg. ✷

The proposal we adopt in the section on elicitation of opinions is that
when an opinion is expressed conditionally on a quotient, it may be lifted
to the numerator by Reg(f)∗ where f is the quotient map. This is a linear
transformation so that, in particular, the vacuous measure on the quotient is
lifted to the vacuous measure on the numerator and, furthermore, if any such
lifted measure were then “conditionalised” back to the quotient we should
have neither gained nor lost information.

It is interesting to note that, for certain classes of morphisms, Reg∗ defined
by Reg∗(f) = Reg(f)∗ is in fact functorial. This would be an important
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phenomenon to investigate in any development of these ideas. For the present
we shall merely make practical use of the fact established without attempting
a deeper understanding.

4 Some Philosophy

We have now developed to a certain extent the theory of regular probability
measures on inflattices. Before turning to the parallel theory for suplattices,
it will be useful to survey some of the ways suplattices and inflattices can
arise in practice.

It is part of the underlying approach of this paper to consider each suitable
algebraic structure as having its own peculiar concept of probability. The
structures we have in mind are all partially ordered sets. So, for example,
there is a separate notion of probability for Boolean algebras, distributive
lattices, orthomodular lattices, semilattices etc. A given algebraic structure,
however, often belongs, as an object, to a number of different categories.
It is more correct therefore to say that each suitable category of algebraic
structures has its own peculiar concept of probability. Every Boolean algebra,
for example, is a semilattice and every free semilattice is a Boolean algebra.
The concept of probability appropriate to such an object, when we use it to
model a practical situation, depends on a prior assessment of the essential
logical structure of the domain it is intended to model. We should not ask,
for example, whether probabilities are additive in general, but whether it
makes best sense to use a Boolean algebra (or distributive lattice) to model
the logical relations between the propositions of that particular domain. If
so, we must use additive measures. If not, we are entitled to employ another
algebraic model with its own distinctive notion of probability.

Complete semilattices are particularly puzzling in this respect since every
complete meet semilattice is also a complete join semilattice. Yet each has
its own notion of probability just as each has its own concept of morphism.
We must decide at the beginning, by considering the underlying logic of the
domain, how we wish to view the object and that will simultaneously decide
which is the appropriate concept of probability.

Consider the case of finite free semilattices. The free suplattice on a finite
set X is the power set PX ordered by inclusion with the generators inserted
by the singleton7 map {−}:X → PX. Suppose, for example, we are consid-
ering whom Paris will judge to be the fairest. The free suplattice generated
by the set {Juno, Minerva, Venus} is shown in Figure 1. The element {Juno,
Minerva} has the meaning of ‘Juno or Minerva’ and similarly for the other
sets. We may believe the top element to be reasonably certain, i.e. that Paris
will present the apple to one or other of them, but this representation does
not oblige us to regard it as necessary.

7This means that if f : X → A is any function from X into the underlying set of a
suplattice A there is a unique suplattice morphism f : PX → A such that f({x}) = f(x).
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{Juno} {Minerva} {Venus}

{Juno, Minerva} {Juno, Venus} {Minerva, Venus}

{Juno, Minerva, Venus}

Figure 1: The free suplattice generated
by the set {Juno, Minerva, Venus}.

The free inflattice on a finite set X, on the other hand, is again the power
set of X with generators inserted as singletons, but this time the power
set is ordered by opposite inclusion. Since a power set is isomorphic to its
opposite via complements, we could take the free inflattice to be PX ordered
by ordinary inclusion with the generators inserted as the complements of
singletons, but little is gained by the inversion. In either case the insertion
of generators map is universal up to isomorphism amongst functions from X
into the underlying set of an inflattice.

Suppose I am considering why my car fails to start. I list the possible
reasons in general as {fuel, ignition, mechanics}. The free inflattice generated
by this set is shown in Figure 2. The element {fuel, ignition} now has
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{fuel, ignition, mechanics}

{fuel, ignition} {fuel, mechanics} {ignition, mechanics}

{fuel} {ignition} {mechanics}

{}

Figure 2: The free inflattice generated
by the set {fuel, ignition, mechanics}.

the meaning of ‘fuel and ignition’ and similarly for the other sets. The



31

bottom element ‘fuel and ignition and mechanics’ is unlikely, perhaps, but
not impossible.

We see from this why it is intuitively as well as algebraically natural to
use the ordering by opposite inclusion for the free inflattice. Whereas the free
suplattice is generated as the joins of atoms, the free inflattice is generated
as the meets of co-atoms. The sets involved, in either case, are just the sets
of atoms or co-atoms making up the join or meet. The dual meanings of ‘or’
and ‘and’ provide the appropriate differences in meaning.

Whilst this helps to some extent to understand the differences between
suplattices and inflattices, there are cases that it leaves unresolved. Suppose
we are dealing with the free semilattice generated by just two elements. In
that case the two elements that are neither top nor bottom are simultaneously
atoms and co-atoms. Here is an example. Suppose that a patient is suffering
from an adverse clinical condition and we are concerned whether this was
caused by a specific drug the patient has been taking (the subject drug) or
whether it has some other cause. We can represent the relation of entailment
between these hypotheses by the partially ordered set of Figure 3 where a

❅
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❅❅

�
�

��

�
�

��

❅
❅

❅❅

⊥

{subject drug} {something else}

⊤

Figure 3: A simple alternative.

neutral notation has been used for the top and bottom elements so as not to
prejudge the following question. Should we consider this to be an inflattice or
a suplattice, or even a Boolean algebra? This will determine the appropriate
notion of probability.

Setting aside the Boolean possibility for the moment, assume that this
partially ordered set is to have a semilattice structure. Then the question
hinges on which of two senses of cause we have in mind: whether we mean
by cause a necessary condition or a sufficient condition. Here are two rough
explications of the idea that the drug caused the event:

1. The event would not have occurred if the patient had not taken the
subject drug.

2. The event only occurred because the patient took the subject drug.

In the first case taking the drug is viewed as a necessary condition for the
event. But it is not said to be the only necessary condition. It might equally
be true that the event would not have occurred if the patient’s past medical
history had not predisposed to the event, or if the patient had not been taking
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another drug at the same time (a drug interaction), etc. What we mean by
(1) in simple terms is that “the drug had something to do with it”, or that
the drug was a partial cause. In the second case taking the drug is held to
be a sufficient condition for the event. This would mean, literally, that all
that was needed to cause the event was the taking of the drug. This seems
puzzling unless it means elliptically that no other “abnormal” condition was
necessary. But this unqualified way of speaking is used when we say “the
whole cause of the trouble was the drug.” And most would agree, to take an
extreme example, that cyanide is a cause of death in just this sense.

The same dual interpretations must then be given to the alternative hy-
pothesis that something else caused the event. In the first case it means that
some other condition was a partial cause of the event. In the second case it
means that some other condition was the whole cause of the event.

It is now clear which of these interpretations corresponds to the inflat-
tice and which corresponds to the suplattice interpretation of the partially
ordered set. If we are considering causation in the sense of a necessary con-
dition we are dealing with an inflattice and if we are considering causation
in the sense of a sufficient condition we are dealing with a suplattice. On
the first interpretation the bottom element means that taking the drug was
necessary and, at the same time, that something else was necessary, which
is a meaningful contingent assertion—both may be true. In the second case
it is the top element that corresponds to a meaningful contingent assertion,
namely that either the drug was the whole cause or that something else
was—both may be false.

It is up to the user to decide which of these two interpretations is suitable
for a given enquiry. But if our concern is to monitor possible adverse effects
of drugs, it seems that the necessary condition conception of causality is the
appropriate one. To justify raising doubts about the safety of a drug, we need
to establish with a sufficient degree of certainty that the adverse event would
not have occurred if the drug had not been taken.8 The situation appears to
be different if we are considering the beneficial effects of drugs. For a wide
range of drugs, few manufacturers would claim that the patient would not
have improved if the drug had not been taken. The claim, rather, is that if
the drug is taken an improvement will follow. The drug is recommended as a
sufficient not a necessary condition for improvement—though even this may
be more than a cautious manufacturer would be willing to claim.

Let us now consider whether, instead of either of these approaches, we
should consider the previous partially ordered set to be a Boolean algebra. In
that case the appropriate notion of probability will be the familiar additive
concept, which in the present context we shall call the Boolean concept of
probability, though in a common way of speaking it could equally be called
the Bayesian concept of probability. A full discussion of this question lies
beyond our present scope. We include a few remarks to indicate where the

8This is the position adopted in [3].
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issues lie.

The classic domain in which additive probabilities over finite Boolean
algebras is applied is that of games of chance terminating after a fixed finite
time or number of moves. If we throw a die there are six specific outcomes.
We can consider this as a space with six points. The classic duality between
the category of finite sets and the category of finite Boolean algebras leads to
the familiar correspondence between densities on the space and measures on
the algebra. The general measure-theoretic approach to probability theory is
ultimately only an attempt to extend this correspondence as far as possible
consistently with the practical needs of the theory.9 The essence of the
approach, in either the discrete or continuous case, is to assume that the
analysis begins with a space of points or most specific descriptions of possible
outcomes.

We shall refer to this picture, based on a space of points, as the classical
model. It has its roots in such simple phenomena as the throw of a die.
It has been immensely successful for a wide range of phenomena. Classical
statistical mechanics is perhaps its best known application. Here we assume
that the system of interest is at any time in one and only one of a definite
set of possible states. In principle we might be interested in the probability
that the state of the system at any given time lies in an arbitrary subset
of the state space. For technical reasons, however, it is fortunate that we
can restrict attention to a subcollection of the set of all subsets of the state
space. Ideally it should be enough to restrict ourselves to subsets definable
in macroscopic terms such as pressure or volume, for example. The crucial
point is that we assume that these subsets, or the propositions to which
they correspond, have the structure of a Boolean algebra or sigma-algebra.
And this assumption seems to be based in turn on the original idea that
ultimately we are dealing with a space of points corresponding to the most
specific possible descriptions of the state of the system. Were it not for
technical difficulties, we should be willing in principle to attach a probability
to any subset of this space and the corresponding algebra would be just the
power set lattice considered as a Boolean algebra.

It is now clear that, despite its familiarity, this model is of limited ap-
plicability. Quantum mechanics has shown us that the classical picture is
neither a necessity of thought, nor does it lead to correct experimental pre-
dictions. The propositions of orthodox quantum mechanics do not have the
structure of a distributive lattice and the appropriate concept of probability
is correspondingly different. It is now reasonable to conclude that no theory
based on the model of a classical state space and a corresponding Boolean

9If the space is countable we can endow it with the discrete topology and the gener-
alization is immediate if we assume countable additivity. If the space is not countable,
a coarser topology is needed. It is usual then to take the associated algebra to be the
algebra of clopen sets of the topology but there is no mathematical or practical necessity
for doing so.
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algebra could yield predictions consistent with experimental findings.10

What has this to do with our problem? It is not being suggested that
the question of adverse drug reactions, for example, should be modeled by
the projection lattice of a Hilbert space. The point is only that the Boolean
model is not a necessity of thought. If we begin with a partial order rep-
resenting an entailment relation between the propositions in some domain,
any additional structure we assume needs to be justified positively on the
basis of the specific empirical situation. In many cases it may be reasonable
to impose this additional structure. It may be reasonable, for example, to
picture a biological organism as similar to a classical physical system to the
extent that at any time it is in one of a definite set of possible states. We
may classify some of these states as “diseased” or as being diseased in some
specific way. We may then be interested in the probability that the system
is in one of these diseased states. In that case it may well be reasonable to
suppose that we are dealing with a Boolean algebra of propositions whose
corresponding concept of probability is the familiar Bayesian concept. On
the other hand it may be an artificial assumption based only on a familiar
pattern of thought and one we should do better without.

In summary, the use of Boolean probability theory carries with it an
assumption about the “logic” appropriate to the underlying model. When
we are dealing with causality, as in the example of adverse drug reactions,
the Boolean assumption is not obviously the most appropriate. We have
seen that the semilattice models permit a distinction between two senses of
causality that appears to correspond to a distinction we are ready to make in
practice. Until we have a more specific model of causality for such a domain,
which may then not be a Boolean model, we could well do better to make
only weak assumptions about the underlying logic of the domain.

We return now to the principal purpose of this paper which is to inves-
tigate the concept of probability under these weaker assumptions. We have
dealt with the case of meet semilattices or inflattices. We turn now to the
case of probability measures on join semilattices or suplattices.

5 Probability Measures on Suplattices

Definition 5 A probability measure on a finite suplattice A is a real unit-
interval valued function p:A→ [0, 1] satisfying

p(
∧

S) +
∑

R⊆S

(−1)|R|p(
∨

R) ≤ 0

for every (finite) subset S ⊆ A.

Readers familiar with the theory of belief functions will recognise probability
measures on suplattices as having the same mathematical structure as “upper
probability” or “plausibility” functions.

10See [1] and [2].
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Proposition 21 Every probability measure on a finite suplattice A has a
unique extension to a probability measure on the distributive lattice freely
generated by A.

The distributive lattice freely generated by a finite suplattice A is the lattice
(UA)o of all upper sets of A ordered by opposite inclusion. The insertion of
generators is the up-segment mapping ↑:A→ (UA)o which sends an element
a ∈ A to ↑(a). To say a probability measure p on (UA)o is an extension of a
probability measure p on A is to say that p restricts to p along the map ↑.
Thus p(a) = p(↑(a)).

From here we could develop the theory of probability measures on sup-
lattices in parallel with the previous treatment of probability measures on
inflattices— but independently. Such an approach would have the advantage
of emphasizing that neither type of probability measure has any priority over
the other. For the sake of economy, however, we shall make use of previous
results together with the following relationship between probability measures
on the two types of semilattice.

If A is a suplattice we denote by A∼ the opposite partially ordered set
considered as an inflattice. (Ao would mean the opposite partially ordered
set considered as a suplattice.) The meets of A∼ are just the joins of A. Now
if p is any unit-interval valued function on A define p∼ by

p∼(a) = 1 − p(a)

for all a ∈ A.

Lemma 22 p is a probability measure on the suplattice A if and only if p∼

is a probability measure on the inflattice A∼. Moreover the correspondence
p 7→ p∼ is bijective.

Proof Apart from the definitions we need only the identity

∑

R⊆S

(−1)|R| =
∑

r≤n

(

n
r

)

(−1)r = (1 − 1)n = 0

where n = |S|. ✷

We now digress briefly to discuss an interpretation of the relationship
between a semilattice and its opposite which this result suggests. The ele-
ments of these semilattices are usually considered to be the same. All that
changes is the ordering. Equally we can consider the change to occur in the
mode of assertion. If an element a of a semilattice A is interpreted to mean
‘it is true that P’ for some proposition P, then the same element a of A∼

means ‘it is false that P’. This does not mean, however, that there is any
algebraic priority to A or its opposite. It is an external question which of the
two modalities we consider applying to the elements of A and which to the
elements of A∼.
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This idea is made somewhat difficult to express by the fact that a propo-
sition is normally considered to be an assertion rather than a denial. Another
way of looking at the matter would be to consider the bare elements of the
underlying set of a semilattice A as “states of affairs”. From a certain point
of view the order structure is the same for A as for A∼. All that has to be
decided is the sense of the order and this corresponds to a decision whether
the elements of the semilattice, now considered as propositions through their
incorporation in the partial order, are to be taken in the mode of assertion
or denial. Even this idea is difficult to express, however, on account of it
being hard to conceive of states of affairs without the mediation of a propo-
sitional language. This then leads us back to the difficulty that propositions
are normally considered to be assertions. Perhaps a better analogy would be
the language of goals. It is easier to think of a goal as one that one might
either aim to achieve or to avoid. With respect to the goal of checkmating
my opponent in chess, I aim to achieve it and you aim to avoid it. Dually,
my being checkmated is a goal I aim to avoid and you aim to achieve. Our
goals are the same but our aims are opposite.

The purpose of this digression is to emphasise that the present theory
incorporates the idea that since one should be able to consider any propo-
sition as being either true or false, it should be possible to consider both
the probability that the proposition is true as well as the probability that it
is false. It is not necessary for that purpose, however, to assume the exis-
tence of complements, i.e. that for any proposition in a given domain there
is another proposition in the same domain which is true if and only if the
first proposition is false, and vice versa. In the present theory, if p(a) is the
probability that a is true then 1 − p(a) is the probability that a is false.
Dually if p(a) is the probability that a is false then 1−p(a) is the probability
that a is true. But the propositions to which a probability is being attached
cannot be regarded as belonging to the same domain. If one is considered to
be an element of a suplattice, the other must be considered to be an element
of the opposite inflattice and vice versa. Furthermore the formal structure
of the corresponding probability measures is different in the two cases. But
there is no internal way of telling which is the suplattice and which is the
inflattice. That is an external decision which the user must make along the
lines sketched in the preceding section.

We can now use Lemma 22 to transfer previous results to the case of
probability measures on finite suplattices. The basic monoid operation is
defined as follows. If p and q are probability measures on the finite suplattice
A then

p ⋆ q = (p∼ ⋆ q∼)∼.

The binary operation on the right hand side is the previously defined monoid
operation for inflattice probability measures. It is clear then that the prob-
ability measures on a suplattice A form a commutative monoid under this
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new operation whose unit is the measure

v(a) =

{

0 if a = 0
1 otherwise.

We can consider this as a default measure corresponding to a state of zero
information or uninformative evidence. Thus contingent propositions in a
suplattice have a default probability value of 1 whereas contingent proposi-
tions in an inflattice have a default probability value of 0. Propositions in a
suplattice are assumed to be innocent, as it were, until proved guilty.

The covariant probability functor Pr is now defined as follows. (We use
the same notation as for inflattices: the context will make it clear which func-
tor is intended.) If A is a finite suplattice, let Pr(A) denote the commutative
monoid of probability measures on A. If f :A→ B is a morphism of finite
suplattices, let f∼:A∼ → B∼ denote the corresponding inflattice morphism
between the opposite inflattices. Note that f∼ is the same as f as a function.
Now define

Pr(f)(p) = Pr(f∼)(p∼)∼

where the functor Pr on the right is the inflattice functor. Then evidently
we have:

Proposition 23 Pr is a (covariant) functor from the category of finite sup-
lattices to the category of commutative monoids.

Just as in the case of inflattices we have a representation for probability
measures on a finite suplattice in terms of their densities. This is just a
restatment of Proposition 5.

Proposition 24 A real-valued function p on a finite suplattice A is a prob-
ability measure on A if and only if there exists a real unit-interval valued
function m:A→ [0, 1] with

∑

a∈Am(a) = 1 such that

p(a) = 1 −
∑

{m(b)|a ≤ b} =
∑

{m(b)|a 6≤ b}

for all a ∈ A. Moreover such a function, called the density of p, is unique
when it exists.

The monoid operation has again a simple description in terms of this
representation. If p has density m and q has density m then the density m
of p ⋆ q is given by

m(a) =
∑

{mp(b)mq(c)|a = b ∨ c}.

The probability functor has the same simple description in terms of densities
as before. If f :A→ B is a morphism of finite suplattices and p is a prob-
ability measure with density m, then the density mf of Pr(f)(p) is given
by

mf (b) =
∑

{m(a)|f(a) = b}.
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6 Regular Measures on Suplattices

Our task here is to rework for suplattices our previous treatment of uniform
measures on inflattices. We shall do this as rapidly as possible.

6.1 Uniform Measures

First we restrict attention to the submonoid of Pr(A) of proper measures on
a finite suplattice A. These are the measures for which

p(a) = 0 implies a = 0

or in other words for which only the bottom element is assigned the minimum
value of 0.

Evidently p is a proper probability measure on the suplattice A if and
only if p∼ is a proper probability measure on the inflattice A∼. Again we
shall change our terminology so that Pr(A) now denotes just this submonoid
which similarly satisfies the cancellation law. If p is a proper probability
measure on A and f :A→ B is a morphism of suplattices then Pr(f)(p) is
a proper probability measure on B. Thus Pr now denotes a functor from
the category of finite suplattices to the category of commutative monoids
satisfying the cancellation law.

We now define a proper probability measure p on a finite suplattice A
to be uniform if and only if p∼ is uniform on A∼ and denote by Un(A) the
uniform probability measures on an suplattice A. The unit of the monoid
Pr(A) is always uniform as, for example, is the measure whose density is
constant. Again this notion could be given an autonomous definition. The
following proposition is now just a restatement of previous results.

Proposition 25 If A is a finite suplattice then Un(A) is an ideal in the
commutative monoid Pr(A) of all proper probability measures on A and
Pr(A)/Un(A) is an Abelian group.

Again each equivalence class of Pr(A)/Un(A) contains a distinguished rep-
resentative. We introduce this concept by way of the corresponding inflattice
concept.

Definition 6 A proper measure on a finite suplattice A is regular if and
only if p∼ is regular on the inflattice A∼.

Evidently each element of Pr(A)/Un(A) contains exactly one regular mea-
sure. Let Reg(A) denote the regular measures on a finite suplattice A. We
treat the vector space structure of Reg(A) as follows.

For a finite suplattice A we say that two elements a, b ∈ A have the same
rank if and only if they have the same number of elements below them: thus
if |↓(a)| = |↓(b)|. We now count the ranks from bottom to top by the integers
0,1, . . . and call this numerical assignment the rank function. For a finite
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power set suplattice PX, for example, with S a subset of X and |X| = n,
rank(S) is just the cardinality of S with rank(X) = n and rank(∅) = 0. In
general one can think of the rank function on a finite suplattice as a measure
of the height of an element above the bottom, i.e. again a measure of the
distance from the unit.

Now letM(A) be the set of all real-valued functions f on a finite suplattice
A satisfying

∑

{f(a)|rank(a) = i} = 0

for each rank i = 0, . . . , n. Evidently M(A) is a real vector space under the
pointwise operations.

We endow Reg(A) with a vector space structure by using previous work
for inflattices. Thus we define

p+ q = (reg (log p∼o + log q∼o))∼

k p = (reg (k log p∼o))∼

for all p, q ∈ Reg(A) and all real k. Then we have the following:

Proposition 26 Reg(A) is a real vector space with respect to the above op-
erations which is isomorphic to M(A).

The isomorphism is given by the function which sends an element f of M(A)
to the element (reg f)∼ of Reg(A).

6.2 Covariant Transformations

We saw previously that regular measures on finite inflattices are well behaved
under transformations between their domains only if we restrict attention to
a certain subcategory of the category of finite inflattices, specifically to mor-
phisms whose left adjoints preserve equality of rank. A similar phenomenon
occurs for regular measures on finite suplattices. The development of this
part of the theory is now obvious. In line with the approach above we shall
merely rely on the correspondence between p and p∼ and our previous results
for regular measures on finite inflattices.

Let rSLf denote the category whose objects are finite suplattices and
whose morphisms are suplattice morphisms whose right adjoints preserve
equality of rank. Recall that two elements a and b of a suplattice A have
the same rank if |↓(a)| = |↓(b)|. Again composition is just composition of
suplattice morphisms. Now let f :A→ B be a morphism in the category
rSLf. Then for all p ∈ Reg(A) we define Reg(f): Reg(A) → Reg(B) by

Reg(f)(p) = (Reg(f∼)(p∼))∼

where the functor Reg on the right is the previously defined inflattice functor.
Thus Reg is clearly a functor from rSLf to the category of finite dimensional
real vector spaces.

We have the following examples of epimorphisms in rSLf paralleling those
of Section 3.4.
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Example 1 Let A be a finite suplattice. Then
∨

:PA→ A, which exhibits
A as a quotient of a free suplattice, is an epimorphism in rSLf. Its right
adjoint is the down-segment mapping.

Example 2 Let S be any lower set of a finite suplattice A and letB = S∪{1}
be the union of S with the top element of A. Then f :A→ B defined by

f(a) =

{

a if a ∈ S
1 otherwise.

is a quotient map in rSLf. Its right adjoint is the inclusion.

Example 3 Suppose that A = PX is a finite power set suplattice, ordered
by inclusion, and that Y is some subset of X. Let B = {S ⊆ X|Y ⊆ S} be
the collection of all supersets of Y . B is closed under intersections, namely
the meets of A, and therefore corresponds to a quotient suplattice. The
quotient map is (−) ∪ Y :A→ B which sends a subset S ⊆ X to its union
with Y . Its right adjoint is again the inclusion of subsets and this preserves
equality of rank since two supersets of S include the same number of sub-
supersets of S if and only if they are of the same size. If we apply the functor
Reg to this quotient map we obtain a linear transformation from Reg(A) to
Reg(B) which corresponds to negative conditionalisation for suplattices. It
tells us how to modify a regular measures on A = PX if we discover that the
proposition corresponding to a certain subset S is false. This is because S,
and anything which entails it, becomes the bottom element of the quotient
suplattice.
For a general suplattice A the corresponding picture is that of projecting
Reg(A) onto Reg(↑(b)), for some element b ∈ A, along the quotient map
which sends an element a ∈ A to a ∨ b. But again it must be pointed out
that in general ↑(b) need not be a quotient object of A in rSLf.

For suplattices it is Example 2 that corresponds to positive conditional-
isation, that is to say conditionalising on the information that one or more
of the propositions represented in the suplattice is true. In general let A be
a finite suplattice and suppose that we learn that each of the propositions
in a subset R ⊆ A is true. Then we must identify all propositions, including
the top element, which are entailed by any of the (true) propositions in R.
This amounts to forming a quotient of A in which each of the elements of
R is mapped to the top element of the quotient. This is just the case of
Example 2 when S is the complement of the upward closure of R.

Turning to monomorphisms, let A be a sub-suplattice of B. In other
words let A be a subset of B which is closed under the suprema of B. Then
the right adjoint to the inclusion of A in B preserves equality of suplattice
rank only if A satisfies the closure condition:

a ∈ A and rank(a) = rank(b) implies b ∈ A.

In the power set case B = PX this means that A must include the empty
set and all subsets of X of greater than a given size. Then the right adjoint
to the inclusion sends every subset in A to itself and every other subset to
the empty set. Clearly this preserves equality of rank.
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6.3 Contravariant Transformations

Our discussion here parallels exactly the discussion of contravariant transfor-
mations for probability measures on inflattices. Again we see the immediate
practical use of such transformations in expressing the effect of conditional
opinions. Consider again whether Paris is likely to choose Juno, Minerva
or Venus. We can imagine an acquaintance expressing the following opinion
based on knowledge of a certain trait of Paris’s character. “This tells me
nothing directly about which of the three Paris is likely to choose. But it
does suggest that if he is not going to choose Venus, he is more likely to
choose Minerva11 than Juno.” This is a negative conditional judgement, ex-
pressed conditionally on a certain proposition being false. Given a numerical
expression of this opinion, we can represent it by a measure on the quotient
space whose bottom element is ‘Venus’. It must then be lifted to a mea-
sure on the whole space. The other situation is one of a positive conditional
judgement. Our informant might have said: “This tells me nothing directly
about which of the three Paris is likely to choose. But it does suggest that
if he is going to choose either Juno or Minerva he is more likely to choose
Minerva.” Again we must lift this conditional judgement to the numerator.
The only difference lies in the type of quotient on which the measure is first
defined.

Our solution to this question is again based on the following:

Proposition 27 If f is an epimorphism in rSLf then Reg(f) is a retraction
in R-VECf.

Reg is of course the suplattice probability functor and the proposition is just a
restatement of the corresponding inflattice result. The right inverse Reg(f)∗
of Reg(f) that we shall use for the purpose of lifting a quotient measure to the
numerator is defined as follows. Suppose f :A→ B is a suplattice morphism
whose right adjoint preserves (suplattice) rank and that q ∈ Reg(B). Then
explicitly

Reg(f)∗(q) = (regA∼(µB∼(log q∼o) ◦ f∼))∼.

Again the significance of this being a right inverse for Reg(f) is that any
measure lifted by this map to a numerator and then conditionalised back to
the quotient is the same measure on the quotient as we began with.

7 Independence

Before making practical proposals for constructing regular measures in the
next section, we must say something about the concept of independence.
Following the original insight of Shafer [11], we intend to interpret addition

11Recall that Minerva was offering glory and Juno riches.
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of regular measures as the mathematical operation corresponding to combi-
nation of independent items of evidence. If we have two items of evidence
and regular measures p and q expressing the quantitative impact of each
separately, the impact of the combined evidence is to be expressed by the
(vector) sum p + q provided they are independent. But what does it mean
to say that two items of evidence are independent?

Suppose two witnesses both identify Jones as the person seen running
away from the scene of the crime. Does their combined testimony provide
more support for Jones being the culprit than either would on its own? It
depends on whether or not they are independent. If our two witnesses are Mrs
Archer, who lives opposite, and a passing cyclist who is unacquainted with
Mrs Archer, we might be willing to accept their testimonies as independent.
Their combined testimonies will count more than either on its own. But if
our second witness is Mrs Archer’s nextdoor neighbour Mrs Baker, and we
know they have discussed little else since the incident, we might be inclined
to rate their combined testimony as worth little more than the average of
the two. Or again, suppose we are concerned with the voltage across a car
battery. If two separate voltmeters both show a satisfactory voltage, this is
more reassuring than a satisfactory reading from a single voltmeter, or even
than two measurements from the same instrument.

It is important to emphasise that this intuitive concept of independence is
prior to any reconstruction of it in a formal theory. The idea of independent
testimony, for instance, must be as old as jurisprudence itself. Different
theories can only be more or less successful at explicating it.

In the additive theory of probability on Boolean algebras, an event A
is said to be “independent” of an event B if the conditional probability
P (A|B) coincides with the unconditional probability P (A). Learning that
B had occurred would have no effect on the probability of A. Independence
is therefore a relation between events, rather than bodies of evidence, and
in fact a symmetric one since the condition for independence of A and B is
equivalent to the symmetric product rule

P (A&B) = P (A)P (B).

Applying the product rule interpretation to the independence of evidence
requires some care. One possibility, in the case of measuring instruments
for example, is to say that the readings of two measuring instruments form
independent items of evidence if the reliability of either instrument is inde-
pendent, in the sense of the product rule, of the reliability of the other. On
this interpretation the product rule is being applied to propositions about
the reliability of the instruments, at a higher level as it were, and not to
propositions at the base level about the state of affairs with respect to the
battery itself. Attempting to use the product rule at the base level to ex-
plicate this notion of independence usually leads to unhelpful or irrelevant
complications.
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It is common, in the additive theory, to speak as though the independence
of events were a factual question. This is true if the probability measure is
given. But is the question which probability measure is appropriate to a given
situation itself a factual one? Possibly so, if we all agree that probabilities are
to be determined by counting frequencies and if we agree on what the relevant
frequencies are. But we are not always so fortunate. Generally speaking
there is no algorithm for determining the correct probability measure and
there is therefore no algorithm for deciding whether or not two events are
independent. We normally proceed by first making an intuitive judgement
whether certain events are independent and, if so, we use the theoretical
explication of the idea of independence as a tool to extend the domain over
which probabilities are defined. Until there are reasons for rejecting it we are
content to use this extension as a provisional measure.

The same applies to the theory of probability measures on semilattices.
We say that two items of evidence are independent—in the judgement of some
individual—if their joint impact is satisfactorily expressed for that individual
by p + q, where p and q relate to the two items separately. This appears
to involve a circularity. At the beginning we said that the impact of two
items of evidence is expressed by p+ q if they are independent. Now we are
saying that they are independent if p + q expresses their joint impact. The
solution is the same as before. If two items of evidence are judged to be
intuitively independent, there becomes a presumption in favour of p + q as
the correct expression for their joint impact. Only if there is a positive reason
for rejecting it should we look for another measure, either by analysing the
problem further into simpler components or by direct assessment of the joint
impact of the two items. In this way we have, if nothing else, at least a
default measure to fall back on until another method presents itself.

This procedure relies heavily on the intuitive notion of independence. We
need to develop ways of thinking that will help us sharpen the concept. We
are helped to some extent by the fact that evidence does not always, or even
often, present itself unsolicited. We need to ask relevant questions. Our task
will then be made easier if we can analyse the problem into independent
factors. As an example consider the problem of assessing possible adverse
drug reactions. An examination by Castle et al [3] identified the following
factors as relevant to the question whether an adverse clinical manifestation
in a particular patient should be interpreted as a case of an adverse drug
reaction:

1. When the event occurs in clinical practice, how usual it is that it is
drug induced.

2. Whether or not there was a positive rechallenge, i.e. whether the prob-
lem recurred when the drug was reintroduced.

3. Whether the site of drug administration was compatible with the event.
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4. Whether the time to onset of the event in the particular patient was
compatible with a drug related effect.

5. Whether any of the diseases which the patient has can in themselves
lead to the event.

6. Whether there is a pharmacological reason why the suspect drug might
cause the particular event.

7. The frequency of occurrence of the event in normal practice indepen-
dent of the particular patient.

8. Whether or not there was a positive dechallenge, i.e. whether the prob-
lem resolved when the drug was stopped.

9. Whether the particular patient has had the particular event previously
in his or her life.

10. Whether the particular event was a recognized adverse reaction of any
of the other drugs taken by the patient, as acknowledged by the different
manufacturers.

11. Whether in fact the time to onset of the event is appropriate to any of
the other drugs being taken by the particular patient.

12. Whether the manufacturer acknowledges that the event may be an
adverse reaction to the suspect drug.

13. Whether the dose of the suspect drug was appropriate for the particular
patient.

14. Whether the patient has any other characteristics which could predis-
pose to the event, e.g. smoking, obesity, contraceptive method, age,
etc.

It is not easy to assess whether these factors are independent though
there is a reasonable presumption that many pairs are. However there is
one error we must guard against. Suppose, for example, there is a known
pharmacological reason why the subject drug might cause the adverse event
and also that the time to onset of the event after the subject drug was
introduced was almost exactly what one would expect if it were due to the
drug. On one interpretation these are certainly not independent. If there
is a pharmacological reason why the drug might cause the event, there is
presumably also a pharmacological reason why it would cause the event more
or less when we would expect if it were due to the drug. But this is not the
question at issue. The question is rather whether, if we knew both that the
pharmacology was right and that the time to onset was right, would we then
have more evidence for drug involvement than if we only knew either on its
own? On the face of it, yes. The question is only, by how much? Is it like
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Mrs Archer and the passing cyclist, or is it like Mrs Archer and her neighbour
Mrs Baker, or is it somewhere in between?

There is no easy way to settle these questions. The points to make are

• that the intuitive concept of independence of evidence is a primitive
part of our common inductive intuition

• that there is so far no algorithm to substitute for individual judgment
in deciding when two bodies of evidence are independent

• that the present theory is in no worse a position in this respect than
the Bayesian theory.

The reader will find somewhat similar views expressed in [14].

8 Elicitation

In a given practical situation, how can we construct a regular measure that
expresses the impact of a given body of evidence? We consider first the case
of inflattices.

In the theory of belief functions a special role is played by the “simple
support functions”. Besides the vacuous measure, these are belief functions
on a finite power set PX whose densities are given, for some fixed non-empty
proper subset A of X and some number s in the real unit interval, by

m(B) =











1 − s if B = X
s if B = A
0 otherwise.

These are understood to express evidence that points precisely and unam-
biguously to a single non-empty subset A of X ([11, p.75]).

In the case of power sets, in particular, these measures will play a similar
basic role in the present theory. Each such simple support function is a
regular measure and in fact every regular measure can be expressed as a
linear combination of such measures. We adopt the proposal that when we
are dealing with a free inflattice A, an item of evidence that weighs precisely
in favour of a single element a ∈ A, to a given degree s in the open unit
interval, is to be represented by the measure

p(b) =











1 if b = 1
s if a ≤ b 6= 1
0 otherwise

where is it is assumed that a is neither 0 nor 1. Now suppose that an item
of evidence weighs precisely against a certain non-zero element a ∈ A to
a given degree. We have already discussed the way this is viewed in the
theory of belief functions and reasons for taking another approach. Our
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view is based on the idea that two items of evidence, one of which weighs
precisely in favour of a proposition to a given degree and the other of which
weighs precisely against that proposition to the same degree, should cancel
out when combined. This forces us to deal with contrary evidence as follows.
If an item of evidence weighs precisely against an element a to degree s, its
effect is expressed by the additive inverse in the group of regular measures
of the simple measure that would express the opposite situation in which
the evidence weighs precisely in favour of a to the same absolute numerical
degree.

Consider again the example of why the car fails to start. Suppose we
have an item of evidence that weighs to degree 0.4 precisely in favour of
there being a fault in the ignition system. This leads to the measure of
Table 1. If the evidence had weighed precisely against there being a fault in

(‘’, 1)
(‘fuel’, 0)
(‘ignition’, 0.4)
(‘mechanics’, 0)
(‘fuel and ignition’, 0)
(‘fuel and mechanics’, 0)
(‘ignition and mechanics’, 0)
(‘fuel and ignition and mechanics’, 0)

Table 1: Evidence in favour of ‘ignition’.

the ignition system to the same numerical degree 0.4 then, according to our
proposal, this would lead to the additive inverse of the preceding measure
which is given in Table 2.

(‘’, 1)
(‘fuel’, 0.4)
(‘ignition’, 0)
(‘mechanics’, 0.4)
(‘fuel and ignition’, 0)
(‘fuel and mechanics’, 0.16)
(‘ignition and mechanics’, 0)
(‘fuel and ignition and mechanics’, 0)

Table 2: Evidence against ‘ignition’.

If we thought that something else might also be wrong, evidence to degree
0.4 against ‘ignition’ would lead to the measure of Table 3 which shows the
general pattern for the effect of evidence weighing against a generator of a
free inflattice.

We observe that the free semilattice on three generators is in fact a
Boolean algebra and the complement of ‘ignition’ in this lattice is ‘fuel and
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(‘’, 1)
(‘fuel’, 0.4)
(‘ignition’, 0)
(‘mechanics’, 0.4)
(‘something else’, 0.4)
(‘fuel and ignition’, 0)
(‘fuel and mechanics’, 0.16)
(‘fuel and something else’, 0.16)
(‘ignition and mechanics’, 0)
(‘ignition and something else’, 0)
(‘mechanics and something else’, 0.16)
(‘fuel and ignition and mechanics’, 0)
(‘fuel and ignition and something else’, 0)
(‘fuel and mechanics and something else’, 0.064)
(‘ignition and mechanics and something else’, 0)
(‘fuel and ignition and mechanics and something else’, 0)

Table 3: Evidence against ‘ignition’.

mechanics’. If we assumed that evidence against ‘ignition’ is equivalent to
evidence of the same strength in favour of its complement, this would lead
to the measure of Table 4. This seems less satisfactory insofar as evidence

(‘’, 1)
(‘fuel’, 0.4)
(‘ignition’, 0)
(‘mechanics’, 0.4)
(‘fuel and ignition’, 0)
(‘fuel and mechanics’, 0.4)
(‘ignition and mechanics’, 0)
(‘fuel and ignition and mechanics’, 0)

Table 4: Evidence in favour of ‘fuel and mechanics’.

against there being a fault in the ignition system ought not to support the
assertion that there is a fault in both of the other two systems as strongly as
it supports either of the two weaker assertions.

Consider now the dual case of a suplattice. The simplest situation is one
in which we have evidence that weighs precisely against a given proposition
to a specified degree. Suppose we are dealing with a free suplattice A (a
power set) and that the evidence weighs precisely against an element a ∈ A
to degree s. Then we propose to represent such an item of evidence by the
measure

p(b) =











0 if b = 0
1 − s if 0 6= b ≤ a
1 otherwise
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where again it is assumed that a is neither 0 nor 1.
Now suppose that an item of evidence weighs precisely in favour of an

element a to a given degree s. This will be represented by the additive inverse
in the group of regular (suplattice) measures of the measure corresponding
to evidence against a to the same degree.

Here are some examples. Suppose again we are considering the judgement
of Paris and that there is evidence of strength 0.4 against his choosing Venus.
This leads to Table 5. On the other hand evidence in favour of ‘Venus’ to the

(‘Juno or Minerva or Venus’, 1)
(‘Juno or Minerva’, 1)
(‘Juno or Venus’, 1)
(‘Minerva or Venus’, 1)
(‘Juno’, 1)
(‘Minerva’, 1)
(‘Venus’, 0.6)
(‘’, 0)

Table 5: Evidence against ‘Venus’.

same numerical degree of 0.4 leads to its additive inverse which is given in
Table 6. Any proposition including ‘Venus’ as a disjunct has probability 1.

(‘Juno or Minerva or Venus’, 1)
(‘Juno or Minerva’, 0.84)
(‘Juno or Venus’, 1)
(‘Minerva or Venus’, 1)
(‘Juno’, 0.6)
(‘Minerva’, 0.6)
(‘Venus’, 1)
(‘’, 0)

Table 6: Evidence in favour of ‘Venus’.

This is as it should be. Every proposition, except for the bottom element, has
a default probability value of 1. The impact of evidence in favour of ‘Venus’
can only be expressed by a reduction in the probability of alternatives.

Now consider conditional judgements. The general theory was discussed
in Sections 3.5 and 6.3. We pointed out that the relevant quotient algebras
differ according to whether the conditional judgement is made positively or
negatively, and the distinction goes in different directions for suplattices and
inflattices. For illustration we restrict ourselves to suplattices. Suppose, to
provide more scope for the example, that Discord has offered Paris the ad-
ditional choice of awarding the apple to Diana and that there is evidence of
strength 0.4 in favour of his choosing either Juno or Minerva conditional on
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his not choosing Diana. Then according to our proposal this determines in
the first place a measure on the quotient space with bottom element ‘Diana’,
which is then lifted to the numerator. The resulting measure is that of Ta-
ble 7. ‘Juno’ and ‘Minerva’ become individually more probable than ‘Diana’

(‘Diana or Juno or Minerva or Venus’, 1)
(‘Diana or Juno or Minerva’, 1)
(‘Diana or Juno or Venus’, 0.8884)
(‘Diana or Minerva or Venus’, 0.8884)
(‘Juno or Minerva or Venus’, 0.9560)
(‘Diana or Juno’, 0.8046)
(‘Diana or Minerva’, 0.8046)
(‘Diana or Venus’, 0.6930)
(‘Juno or Minerva’, 0.9560)
(‘Juno or Venus’, 0.7068)
(‘Minerva or Venus’, 0.7068)
(‘Diana’, 0.5255)
(‘Juno’, 0.6231)
(‘Minerva’, 0.6231)
(‘Venus’, 0.3738)
(‘’, 0)

Table 7: Evidence in favour of ‘Juno or Minerva’
conditional on ‘Diana’ being false.

whilst ‘Venus’ becomes less probable.
It may seem surprising that a judgement made only conditionally on Paris

not choosing Diana, and therefore apparently neutral as to whether he will
or will not, should lead to a measure assigning a specific intermediate value
of 0.5255 to this outcome. But this probability ought not to be 0, since it is
not asserted that Paris will not choose Diana, nor should it be 1 since such
a measure would unable to discriminate between any two propositions which
included ‘Diana’ as a disjunct, since both would have probability 1. Since
there is no intermediate value which intuition alone suggests we may as well
be guided, at least provisionally, by the theory.

Now consider the case of a positive conditional judgement. Suppose we
had evidence of the same numerical strength 0.4 in favour of Paris choosing
either Juno or Minerva, conditional on his choosing either Juno or Minerva or
Venus. This would lead to the measure of Table 8. The positive assumption
that Paris will choose Juno or Minerva or Venus has a greater impact than
the negative assumption that he will not choose Diana.

In dealing with this case we first form a measure on the appropriate
quotient and then lift it to the numerator. The quotient suplattice here cor-
responds to the subset of the power set lattice from which ‘Juno or Minerva
or Venus’ has been removed. It has been mapped to the top element. Since
this is no longer a free suplattice, our earlier remarks about how to deal with
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(‘Diana or Juno or Minerva or Venus’, 1)
(‘Diana or Juno or Minerva’, 1)
(‘Diana or Juno or Venus’, 0.8741)
(‘Diana or Minerva or Venus’, 0.8741)
(‘Juno or Minerva or Venus’, 0.8659)
(‘Diana or Juno’, 0.7796)
(‘Diana or Minerva’, 0.7796)
(‘Diana or Venus’, 0.6537)
(‘Juno or Minerva’, 0.8659)
(‘Juno or Venus’, 0.6455)
(‘Minerva or Venus’, 0.6455)
(‘Diana’, 0.4647)
(‘Juno’, 0.5510)
(‘Minerva’, 0.5510)
(‘Venus’, 0.3306)
(‘’, 0)

Table 8: Evidence in favour of ‘Juno or Minerva’ conditional
on ‘Juno or Minerva or Venus’ being true.

simple unconditional judgements, which were restricted to free semilattices,
are incomplete. There is nonetheless an obvious way of extending the idea
of a simple regular measure to deal with this situation and it has been em-
ployed here. It has also been implemented in the program to be found in the
Appendix. Also discernible there are points of contacts with the concept of
“the weight of evidence” of [11, Ch.5]. There is not sufficient space here to
deal fully with these ideas. We leave them at present to be investigated by
the interested reader.

9 Further Developments

An obvious omission from our discussion of general probability measures on
inflattices and suplattices is a treatment of measures on tensor products. The
free suplattices, for example, on sets X and Y are the power sets PX and
PY and their suplattice tensor product is the power set of their cartesian
product, namely P (X×Y ), with the universal bimorphism sending (S, T ) to
S×T . A dual result holds for inflattices. It is clearly important to investigate
how probability measures on these various semilattices are related. (Compare
[12].)

Closely related is the question of probability measures on Homset semi-
lattices. If A and B are suplattices, the set Hom(A, B) of all suplattice
homomorphisms from A to B is itself a suplattice under the obvious coordi-
natewise partial ordering, and similarly for inflattices. Probability measures
on these Homsets can be thought of as “random homomorphisms” of the ap-
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propriate type from A to B. This is essentially the same topic as the previous
one in view of the natural isomorphisms12

Hom(A, B) ∼= (Ao ⊗ B)o

A⊗ B ∼= Hom(A, Bo)o

Turning to the theory of regular measures, we need to know more about
the categories rILf and rSLf. For example, should we in general be dealing
with certain subcategories of these categories to have a really smooth running
theory in the finite case? And what happens when we relax the condition
of finiteness? Is the idea of ‘preservation of rank’ necessarily a discrete com-
binatorial idea or is there a suitable generalisation? It seems significant in
this connection (1) that what we have described as ‘uniform’ measures are
just the symmetric measures in the case of free semilattices, i.e. those that
are invariant under all automorphisms, and (2) that in the finite case the
morphism which exhibits a semilattice as a canonical quotient of a free semi-
lattice (of the appropriate type) has an adjoint (left or right) which preserves
equality of rank.

Apart from these technical questions, the most urgent need is for a deci-
sion theory to direct the practical application of these ideas.

Appendix

The appendix describes a program implementing the proposals of the paper.
It is written in the functional programming language Standard ML which is
described in the second section.

The Program

The purpose of the program is to define operations of vector addition and
scalar multiplication for regular measures on semilattices. It also defines
functions supcon and infcon which take a semilattice and a set of data
and return the regular measure on the semilattice constructed from the data
in accordance with the proposals of Section 8.

The visible part of a measure is represented by a list of pairs of the form
(a, x), where a is an element of the lattice and x is a number in the real unit-
interval, the value of the measure on that element. There are many ways
in which the elements of a lattice and the order relation between them can
be represented. For simplicity we have chosen to represent the elements as
elements of a power set or its opposite. The order relation between elements
is then to a large extent already encoded in the representation of the elements
themselves. In general it is assumed that the semilattice is presented either

12See [9, pages 5,6].
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as a sub-suplattice of a power set ordered by inclusion or, equivalently, as a
sub-inflattice of a power set ordered by opposite inclusion.

Sets are represented by lists of booleans. Thus the subset {x, z} of the
base set {x, y, z} is represented by [true,false,true]. In the programming
language used below this will be an object of type: bool list . The infix
operators C and U defined in the program then correspond to the relation
of inclusion and the operation of union respectively. But the reader should
always bear in mind that the ordering is by opposite inclusion for inflattices so
that a C b then means that the object denoted by b is below that denoted
by a.

It is assumed that the semilattice comes already ranked in the sense
appropriate to either suplattices or inflattices. For free semilattices this will
just be ranking according to size. The free semilattice on three generators is
then given by

[[[true,true,true]],

[[true,true,false],[true,false,true],[false,true,true]],

[[true,false,false],[false,true,false],[false,false,true]],

[[false,false,false]]]

of type: bool list list list. It is assumed that the rank containing just
the top element comes first in the case of suplattices, and the rank con-
taining just the bottom element comes first for inflattices. This means that
[[true,true,true]] comes first in either case for the semilattice generated
by a 3-element set. The ranks are then presented in order of decreasing rank
according to the appropriate definition of rank. The order of presentation of
elements within a given rank is unimportant.

Measures are constructed in response to data inputs of the type discussed
in the text. A datum is a pair ((b, (pos, neg)), s) where b is an element of the
semilattice, pos and neg are lists of elements of the semilattice and s is a real
number in the open interval (−1,+1). A datum corresponds to the judgement
that an item of evidence bears precisely on b to degree s conditional on the
propositions in the list pos being true and the propositions in the list neg
being false. Positive values of s correspond to items of evidence weighing
in favour of b and negative values correspond to items of evidence weighing
against b. In the present representation a datum has type:

(bool list * (bool list list * bool list list)) * real.

A list of data is converted by an operation called profile into a function
on the semilattice whose values across ranks sum to zero. This is an element
of the space M(A) in the notation of Sections 3.2 and 6.1. The operation
regularise is then applied in the sense appropriate to the type of semi-
lattice to yield the corresponding regular measure. The correspondence is
given by the natural isomorphism of Proposition 19 or by the corresponding
isomorphism for suplattices.
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Since the vector space operations on regular measures correspond to the
more directly computed vector space operations on their profiles, it would
be wasteful to throw away the profile of a regular measure once it has been
computed. We therefore define an abstract data type MEASURE whose objects
include both elements. A measure now consists of this pair together with an
indicator of type SENSE to show whether it is a supmeasure or an infmeasure.
The profile of a measure is hidden from view within the abstract data type.
The regular measure itself can be recovered by the operation find .

The operations supcon and infcon assume that the input data corre-
spond to independent items of evidence. If they correspond to assessments
of the same item of evidence by N different experts, the averaged measure
for this item is obtained by applying supcon or infcon followed by a scalar
multiplication by the factor 1/N , assuming the opinions are to be given equal
weight.

The operation of vector addition ++ is defined as a binary infix operation.
But if we wanted to combine three or more regular measures it would be
more efficient to add their profiles first before applying the operation reg.
It is simple to define such an operation of addition for any finite number of
arguments so that reg is only applied once. A similar observation applies
to the operation of scalar multiplication ** for forming averages, especially
with unequal weights.

Although some attention has been paid to questions of efficiency, greater
attention has been paid to clarity of mathematical content. The operation
profile in particular could be made more efficient. In general it is clear
that for a single vector addition, for example, it is the operation reg which
consumes the bulk of the time. For a free semilattice on n generators this
increases exponentially with n, assuming sequential processing, with the base
of the exponential lying between 3 and 4 depending on the efficiency of
the test for the order relation between elements relative to the efficiency of
real addition. For larger values of n approximation techniques are needed.
Occurrences in the present code of the conditions x = 0.0 and z = 0.0

show where such techniques can be applied.
Whatever the computational merits of representing a lattice as an ob-

ject of type: bool list list list , some other representation is certainly
more convenient for intelligible input and output of data. Another way of
representing a free semilattice has been indicated in Section 8. More ex-
tended programs involving alternative representations and making use of the
modules facility of ML are available from the author on request.

The Language

The language chosen for the following program is Standard ML.13 Some com-
ments may assist readers to whom it is unfamiliar. For more information see
[6] and [16].

13ML stands for ‘metalanguage’.
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SML is a strongly typed functional programming language. Each legal
expression has a type which is determined automatically by the compiler.
The basic types employed in the present program are booleans and reals.
More complex types are obtained by forming lists of objects of a given type
(list types), n-tuples of objects of given types (product types) or functions
between objects of given types (function types).

Declarations

A program in SML consists of a sequence of declarations. Value bindings are
introduced by the word val . Thus

val x = 2;

binds the identifier x to an object of type: int . Function declarations
involving variables are introduced by the word fun as in

fun successor x = x + 1;

binding the identifier successor to a function of type: int -> int . Func-
tions may also be defined with pairs or n-tuples as arguments. Thus

fun mult(x,y) = x * y: int;

defines a function of type: (int * int) -> int .14 Functions may also be
defined in “curried” form as in

fun add x y = x + y: int;

which defines a function of type: int -> (int -> int) . When it is given
two integers add returns their sum. When it is given a single integer add

returns a function from integers to integers. Thus the declaration

val successor = add 1;

is an equivalent way of defining the successor function. Functions may also
be defined explicitly in the form

val successor = fn x => x + 1;

In this form the curried version of integer addition can be written

val add = fn x => fn y => x + y: int;

14The compiler needs to be told whether multiplication is for integers or reals since they
have different types.
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Lists

A list in SML is an ordered sequence of objects of a given type. Thus [5,4,7]
is an object of type: int list . Lists are constructed from the empty list,
denoted by [] or nil , by inserting a new element at the head. The double
colon :: is used to denote this operation. Thus

[5,4,7] = 5 :: [4,7]

= 5 :: (4 :: [7])

= 5 :: (4 :: (7 :: nil))).

Since every list either matches the pattern nil or the pattern a::l , where
a denotes the first element of the list, functions on lists may be defined by
structural induction. Thus the sum of a list of integers is defined recursively
by

fun sum nil = 0

| sum (a::l) = a + sum l;

giving a function of type: int list -> int . The more general form of this
pattern of declaration is given by the function iter defined by

fun iter f u nil = u

| iter f u (a::l) = f a (iter f u l);

Replacing f by add and u by 0 , the declaration

val sum = iter add 0;

defines the same sum function on integer lists. (The function iter is more
often called foldr or reduce .)

Two general list handling functions definable in this way, namely map

and filter , are worth mentioning. If l denotes a list [a1, . . . , an] of objects
of type: ’a and f is bound to a function f of type: ’a -> ’b , then the
value of map f l is the corresponding list [f(a1), . . . , f(an)] of objects of
type: ’b . (The symbols ’a and ’b are used as type variables.) Thus map

is a function of type: (’a -> ’b) -> (’a list -> ’b list) . Again if p

denotes a property of objects of type: ’a , then filter p l is the sublist of
l of all elements possessing the property in question. Hence filter is a
function of type: (’a -> bool) -> (’a list -> ’a list) .

The composition g o f of two functions has the obvious meaning. The
operator o has type: (’b -> ’c) * (’a -> ’b) -> ’a -> ’c .

We note lastly that a file of SML code could be thought of as written on a
single line. All extra spaces, tabs, newlines and indents are ignored. Layout
is therefore a matter of style or convenience.
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The Code

(***********************************************************

* Title: Moebius *

* LastEdit: 1 June 1987 *

* Author: Peter M Williams *

* University of Sussex *

***********************************************************)

datatype SENSE = Inf | Sup;

type LATTICE = bool list list list;

type DATUM =

(bool list * (bool list list * bool list list)) * real;

exception hd;

fun hd nil = raise hd

| hd (a::l) = a;

fun cons a l = a::l;

fun iter f u nil = u

| iter f u (a::l) = f a (iter f u l);

fun append l m = iter cons m l;

val flat = iter append nil;

fun map f = iter (cons o f) nil;

fun filter p =

iter (fn a => fn l => if p a then a::l else l) nil;

val sum’r = iter (fn x => fn y => x + y) 0.0;

val inf’r =

iter (fn x => fn y => if x < y then x else y) (1.0/0.0);
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infix C;

fun (a::l) C (b::m) = (b orelse not a) andalso l C m

| _ C _ = true;

infix U;

fun (a::l) U (b::m) = (a orelse b) :: (l U m)

| _ U _ = nil;

val union = iter (fn l => fn m => l U m);

val integrate =

let fun f (a,x) l = if x = 0.0 then (a,x)::l else

(a,x)::map (fn(b,y) => if b C a then (b,x+y) else (b,y)) l

in iter f nil end;

val invert = map (fn(a,x) => (a,1.0 - x));

val reg =

let fun f l m =

if m = nil then map (fn(a,w) => (a,exp w)) l else

let fun g (b,z) n = if z = 0.0 then n else

map(fn(a,x,y)=> if b C a then (a,x,y+z) else (a,x,y)) n

val r = iter g (map (fn(a,w) => (a,exp w,0.0)) l) m

val s = map (fn(a,x,y) => x/y) r

val k = inf’r s

val u = map (fn(a,x,y) => (a,x - k*y)) r

val v = map (fn(a,y) => (a,k*y)) m

in append u v end

in

integrate o (iter f nil)

end;

fun regularise Inf = reg

| regularise Sup = invert o reg;

fun abs x = if x < 0.0 then ~x else x;

fun sgn x =

if x < 0.0 then ~1.0 else if x > 0.0 then 1.0 else 0.0;

fun length’r nil = 0.0

| length’r (a::l) = 1.0 + length’r l;

exception mean;

fun mean nil = raise mean
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| mean l = sum’r l/length’r l;

fun center nil = nil

| center l =

let val m = mean(map (fn(a,x) => x) l)

in map (fn(a,x) => (a,x - m)) l end;

fun lookup (a:bool list) nil = 0.0

| lookup a ((b,x)::l) = if a = b then x else lookup a l;

fun combine f (a::l) (b::m) = f a b :: combine f l m

| combine f _ _ = nil;

val zero = (map o map) (fn a => (a,0.0));

val add =

(combine o combine) (fn(a,x) => fn(_,y) => (a,x+y:real));

fun mult k = (map o map) (fn(a,x) => (a,k*x:real));

fun profile sense lattice =

let fun insert (datum as ((b,(pos,neg)),s)) =

let val x = sgn(s) * ~(ln(1.0 - abs s))

val w = if sense = Sup then ~x else x

val (S,T) =

if sense = Sup then (neg,pos) else (pos,neg)

val unit = (hd o hd o rev) lattice

val c = union unit S

val l = map (filter (fn a => (c C a))) lattice

val m =

iter (fn t => map (filter (fn a => not(t C a)))) l T

val n =

(map o map)(fn a => if b C a then (a,w) else (a,0.0)) m

val q = (flat o map center) n

fun f(a) = let val ac = a U c in (a,lookup ac q) end

in (map o map) f lattice end

in

iter (add o insert) (zero lattice)

end;
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abstype MEASURE = Measure of SENSE *

((bool list * real) list list * (bool list * real) list)

with

local

fun construct sense (lattice: LATTICE) (data: DATUM list) =

let val profile = profile sense lattice data

val measure = regularise sense profile

in Measure(sense,(profile,measure)) end

in

val infcon = construct Inf

val supcon = construct Sup

exception sense

infix ++

fun (Measure(s1,(q1,p1))) ++ (Measure(s2,(q2,p2))) =

if s1 <> s2 then raise sense else

let val s = s1

val q = add q1 q2

in Measure(s,(q, regularise s q)) end

infix **

fun (Measure(s,(q,p))) ** k =

let val kq = mult k q

in Measure(s,(kq, regularise s kq)) end

fun find(Measure(s,(q,p))) = p

end

end;

(***********************************************************

The exported functions have types:

val infcon = fn : LATTICE -> DATUM list -> MEASURE

val supcon = fn : LATTICE -> DATUM list -> MEASURE

val ++ = fn : MEASURE * MEASURE -> MEASURE

val ** = fn : MEASURE * real -> MEASURE

val find = fn : MEASURE -> (bool list * real) list

************************************************************)
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