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AsstracT.  Bigraphs are emerging as an interesting model for concurrent calculi, like CCS, am-
bients,z-calculus, and Petri nets. Bigraphs are built orthogonally on two structures: a hierarchical
place graph for locations and a link (hyper-)graph for connections. Aiming at describing bigraph-
ical structures, we introduce a general framework, BiLog, whose semantics is given by arrows in
monoidal categories. We then instantiate the framework to bigraphical structures and we obtain a
logic that is a natural composition of a place graph logic and a link graph logic. We explore the
concepts of separation and sharing in these logics and we prove that they generalise the well known
spatial logics for trees, graphs and tree contexts. The framework can be extended by introducing the
dynamics in the model and a temporal modality in the logic in the usual way. However, in some
interesting cases, temporal modalities can be already expressed in the static framework. To testify
this, we show how to encode a minimal spatial logic for CCS in the instance of BiLog describing
bigraphs.

Contents

1 Introduction . . . . . . . . e 1
2 Aninformal introductionto Bigraphs . . . . . . . .. . ... . L o 3
3 BiLog: syntaxandsemantics . . . . . . . ... e e 6
4 BiLog: derived Operators . . . . . . ... e 13
5 BiLog:instancesandencodings . . . . . . ... 17
6 TowardsdynamiCS. . . . . . . . it i e e 35
7 Conclusionsand futurework . . . . . ... L 46

1 Introduction

To describe and reason about structured, distributed, and dynamic resources is
one of the main goals of global computing research. Recently, rapatial

logics have been studied to fulfill this aim. The term ‘spatial,’ as opposed to
‘temporal,’ refers to the use of modal operators inspecting the structure of the
terms in the considered model, rather than their temporal behaviour. Spatial
logics are usually equipped with a separgtimmposition binary operator that
splitsa term into two parts, to ‘talk’ about them separately. Looking closely, we
observe that the notion skparationis interpreted diferently in diferent logics.

Research partially supported hpisCo: Semantic Foundations of Distributed Computation’, EU
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Mobile Distributed Systems’, EU FET-GC project IST-2001-32617.
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e In‘separation’ logics [23], it is used to reason about dynamic update of heaj
like structures, and it istrongin that it forces names of resources in separatec
components to be disjoint. As a consequence, term composition is usua
partially defined.

e In static spatial logics (e.g. for trees [3], graphs [5] or trees with hidder
names [6]), the separatimomposition does not require any constraint on
terms, and names are usually shared between separated parts.

¢ Also in dynamic spatial logics (e.g. for ambients [7]mecalculus [1]) the
separation is intended only for locations in space.

Context tree logic, introduced in [4], integrates the first approach above with
spatial logic for trees. The result is a logic able to express properties of tre
shaped structures (and contexts) with pointers, and it is used as an asser
language for Hoare-style program specifications in a tree memory model. E
sentially Spatial Logic uses the structure of the model to give semantics.
Bigraphs [16, 18] are an emerging model for structures in global comput
ing, that can be instantiated to model several well-known examples, includir
A-calculus [21], CCS [22]r-calculus [16], ambients [17] and Petri nets [20].
Bigraphs consist essentially of two graphs sharing the same nodes. The fi
graph, theplace graph is tree structured and expresses a hierarchical relatior
ship on nodes (viz. locality in space and nesting of locations). The second gray
thelink graph is an hyper-graph and expresses a gerferany-to-many”rela-
tionship among nodes (e.g. data link, sharing of a channel). The two structur
are orthogonal, so links between nodes can cross locality boundaries. Thus,
graphs make clear theftirence between structural separation (i.e., separatio
in the place graph) and name separation (i.e., separation on the link graph).
In this paper we introduce a spatial logic for bigraphs as a natural compos
tion of a place graph logic, for tree contexts, and a link graph logic, for nam
linkings. The main point is that a resource has a spatial structure as well as a i
structure associated to it. Suppose for instance to be describing a tree-sha
distribution of resources in locations. We may use an atomic formuldlikg\)
to describe a resource of ‘typ€C (e.g. a personal computer) whose contents
satisfy A, and a formula likePC(A) to describe the same resource at the loca-
tion x. Note that the location type is orthogonal to the name. We can then writ
PC(T) ® PC(T) to characterise terms with two unname@ resources whose
contents satisfy the tautological formula (i.e., with anything inside). Named locz
tions, as e.g. iPC4(T) ® PCp(T), can express name separation, i.e., that name
a andb are diferent. Furthermore, link expressions can force name-sharing b
tween resources with formulae like

PCa(ine ® T) ® PCh(oute ® T).
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This describes tw®C with different namesa andb, sharing a link on a distinct
namec, which models, e.g. a communication channel. Namgeused as input
(in) for the firstPC and as an outpub(it) for the second®C. No other names
are shared andcannot be used elsewhere inside Bs.

A bigraphical structure is, in general, a context with several holes and open
links that can be filled by composition. Thus the logic describes contexts for
resources at no additional cost. We can then express formulae like

PCa(T ® HD(id1))

that describes a modular compuBRsE, whereid; represents a ‘pluggable’ hole

in the hard distHD. Contextual resources have many important applications.

In particular, the contextual nature of bigraphs is useful to characterise their dy-
namics, but it can also be used as a general mechanism to describe contexts of
bigraphical data structures (cf. [12, 14]).

As bigraphs are establishing themselves as a truly general (meta)model of
global systems, and appear to encompass several existing calculi and models
(cf. [16, 17, 20, 22]), our bigraph logi&iLog, aims at achieving the same gen-
erality as a description language: as bigraphs specialise to particular models,
we expect BiLog to specialise to powerful logics on these. In this sense, the
contribution of this paper is to propose BiLog as a unifying language for the de-
scription of global resources. We will explore this path in future work, fortified
by the positive preliminary results obtained for CCS (cf. §6) and semistructured
data [12].

The paper is organised as follows: 82 provides a crash course on bigraphs; §3
introduces the general framework and model theory of BiLog; 84 shows how to
derive some interesting connectives, such as a temporal modality and assertions
constraining the “type” of terms; 85 instantiates the framework and obtains in-
teresting logics for place, link and bi-graphs; 86 studies how the framework can
deal with dynamic models. An abridged version of this work appears in a confer-
ence paper [13]. Here we add to our main technical results (the embeddings of
the static spatial logics of [3], [5] and [4] in BiLog instances) a new embedding
result for the dynamic logics for CCS of [2]. This embedding is based on an in-
teresting way of expressing the ‘next-step’ modality making use of composition
adjuncts and bigraphical contexts. Moreover we show examples and properties
with more details.

2 Aninformal introduction to Bigraphs

Bigraphs formalise distributed systems by focusing on two of their main char-
acteristics: locality and interconnections. A bigraph consists of a sebadés
which may be nested in a hierarchical tree structure, the so-qalied graph
and have ports that may be connected to each othéinks; the so-calledink
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Ficure 1. A bigraphG : (2, {X, Y,z v,w}) — (1, {X, y}).

graph Place graphs express locality, that is the physical arrangement of t
nodes. Link graphs are hyper-graphs and formalise connections among noc
The orthogonality of the two structures dictates that nestings impose no constr:
upon interconnections.

The bigraphG of Fig. 1 represents a system where people and things intel
act. We imagine two flices with employees logged &¥Cs. Every entity is
represented by a node, shown with bold outlines, and every node is associa
with acontrol (eitherPC, U, R1, R2). Controls represent the kinds of nodes, and
have fixedarities that determine their number of ports. Cont@ marks nodes
representing personal computers, and its arity is 3: in clockwise order, the po
represent a keyboard interacting with an employe@ LAN connection inter-
acting with anothePC and open to the outside network, and the mains plug of
the dficeR. The employed®) may communicate with another one via the upper
port in the picture. The nesting of nodes (place graph) is shown by the inclusic
of nodes into each other; the connections (link graph) are drawn as lines.

At the top level of the nesting structure sit tlegjions In Fig. 1 there is one
sole region (the dotted box). Inside nodes there may be ‘coritelds drawn as
shaded boxes, which are uniquely identified by ordinals. The hole marked by
represents the possibility for another useto get into dficeR1 and sit in front
of aPC. The hole marked by 2 represents the possibility to plug a subsyste
inside dficeR2.

Place graphs can be seenagows over a symmetric monoidal category
whose objects are finite ordinals. We wriRe m — n to indicate a place graph
P with m holes andch regions. In Fig. 1, the place graph Gfis of type 2— 1.
Given the place graphB,, P,, their compositiorP; o P, is defined only if the
holes ofP; are as many as the regions®f, and amounts tdilling holes with
regions, according to the number each carries. The tensor prBded®, is not
commutative, as it lays the two place graphs one next to the other (in order), th
obtaining a graph with more regions and holes, and it ‘renumbers’ regions ar
holes ‘from left to right'.

Link graphs are arrows of a partial monoidal category whose objects al
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Ficure 2. Bigraphical compositiorH = G o (F1 ® F2).

(finite) sets of names. In particular, we assume a denumerabledatames. A

link graph is an arrowX — Y, with X, Y finite subsets ol\. The seX represents

the inner names (drawn at the bottom of the bigraph) ahcepresents the set

of outer names (drawn on the top). The link graph connects ports to names or
to edgeg(represented in Fig. 1 by a line between nodes), in any finite number.
A link to a name isopen i.e., it may be connected to other nodes as féece

of composition. A link to an edge islosed as it cannot be further connected

to ports. Thus, edges apgivate or hidden, connections. The composition
of link graphsW o W’ corresponds tdinking the inner names oV with the
corresponding outer names @ and forgetting about their identities. As a
consequence, the outer name¥\éf(resp. inner names &ft/) are not necessarily
inner (resp. outer) names W o W’. Thus link graphs can perform substitution
and renaming, so the outer namesVWhcan disappear in the outer names of this
means that either names may be renamed or edges may be added to the structure.
As in [16], the tensor product of link graphs is defined in the obvious way only
if their inner (resp. outer) names are disjoint.

By combining ordinals with names we obtairierfacesi.e., couplegm, X)
wheremis an ordinal an is a finite set of names. By combining the notion of
place graph and link graphs on the same nodes we obtain the notion of bigraphs,
i.e., arrowss : (m, X) — (n,Y).

Figure 2 represents a more complex situation. Its top left-hand side reports
the system of Fig. 1, in its bottom left-hand si@erepresents a usérready to
interact with aPC or with some other user§;; represents a user logged on its
laptop, ready to communicate with other users. The systemRyitmdF, rep-
resents the tensor produet= F; ® F,. The right-hand side of Fig. 2 represents
the compositiors o F. The idea is to inseff into the contexG. The operation
is partially defined, since it requires the inner names and the number of holes of
G to match the outer names and the number of regiofs céspectively. Shared
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names create the new links between the two structures. Intuitively, compositit
first places every region df in the proper hole o6 (place composition) and
thenjoins equal inner names @& and outer names df (link composition). In
the example, as a consequence of the composition theluisethe first region

of F is logged orPC, the uselJ in the second region df is in roomR2. More-
over note the edge connecting the inner nayrea®dzin G, its presence produces
a link between the two users &f after the composition, imagine a phone call
between the two users.

3 BilLog: syntax and semantics

The final aim of the paper is to define a logic able to describe bigraphs and the
substructures. As bigraphs, place graphs, and link graphs are arrows of a (part
monoidal category, we first introduce a meta-logical framework having monoids
categories as models; then we adapt it to model the orthogonal structures of pl
and link graphs. Finally, we specialise the logic to model the whole structure c
(abstract) bigraphs.

Following the approach of spatial logics, we introduce connectives that re
flect the structure of the model. In this case models are monoidal categories ¢
the logic describes spatially the structure of traiows?®

The meta-logical framework we propose is inspired by the bigraph axiome
tisation presented in [19]. The model of the logic is composedebysof a
general language withorizontalandvertical compositions and a set of unary
constructors. Terms are related bgtauctural congruencéhat satisfies the ax-
ioms of monoidal categories, at least. The corresponding model theory is p
rameterised on basic constructors and structural congruence. To be as free
possible in choosing the level of intensionality, the logic is defined trarss-
parencypredicate whose purpose is to identify the terms that allow inspection c
their content, théransparentterms and the ones that do not, thgaqueterms.
We inspect the logical equivalence induced by the logic and we observe th
it corresponds to the structural congruence when the transparency predicats
always verified and it is less discriminating whepaque termare present.

3.1 Terms

To evaluate formulae, we consider the terms freely generated from a set of cc
structors®, ranged over by, by using the (partial) operators: compositie (
and tensorg). BiLog terms are defined in Tab. 3.1. When defined, these two of
erations have to satisfy th@functoriality propertyof monoidal categories, thus
we refer to these terms alsoifunctorial terms

1The logic can be seen as a logic for categories, but we describe the arrows of the category, rat
than the objects, as usual for categorical logics, e.qg. linear logic.
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Table 3.1.BiLog terms

I

GG =Q constructor (for Q € ®)
GoG vertical composition
GeG horizontal composition

Table 3.2.Typing rules
I

typgQ) =1-J G:I'-5J F:il>/l
Q:l—>J GoF:l—>1J
Gilih-J Filbod I=hel, J=3Z8J
GeoF:1 -1

Terms represent structures built on a (partial) mondidd, €) whose ele-
ments are dubbeitterfacesand denoted by, J. To model hominal resources,
such as heaps or link graphs, we allow the monoid to be partial.

Intuitively, terms represent typed structures with a source and a target inter-
face G : | — J). Structures can be placed one near to the other (horizontal
composition) or one inside the other (vertical composition). Each © has a
fixed typetypgQ) = | — J. For each interfacé, we assume a distinguished
constructid; : | — |. The types of constructors, together with the rules in
Tab. 3.2, determine the type of each term. Terms of ype J are called
ground

Notice that the term obtained by tensor is well typed when both correspond-
ing tensors on source and target interface are defined, namely they are separated
structures. On the other hand, composition is defined only when the two involved
termssharea common interface. In the following, we consider only well typed
terms.

Terms are defined up to the structural congrueaaescribed in Tab. 3.3.

It subsumes the axioms of the monoidal categories. All axioms are required to

hold whenever both the sides are well typed. Throughout the paper, when using
= we imply that both sides are defined and we wi@|(to say thaG is defined.

Later on, the congruence will be refined to model specialised structures, such as
place graphs, link graphs or bigraphs.

Notice that the axioms correspond to those for (partial) monoidal categories.
In particular we constrain the structural congruence to satisfy the bifunctoriality
property between product and composition. Thus, we can interpret our terms as
arrows of the free monoidal category o¥l,(®, €) generated by. In this case
the term congruence corresponds to the equality of the corresponding arrows.

The parametric logical framework we will define characterises bifunctorial
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Table 3.3.Axioms

I
Congruence Axioms:

G=G Reflexivity
G=CG impliessG' =G Symmetry
G=G and G =G” impliesG =G” Transitivity
G=G and F =F impliesGoF=G" o F’ Congruence o
G=G and F=F implesGeF=G @ F’ Congruence ®
Monoidal Category Axioms:
Goidj=G=id;0G Identity
(G10G3) 0 Gz =G; 0 (G, 0 G3) Associativity
GRid.=G=id.®G Monoid Identity
(GC19G)®G3=061® (G, ® Gg) Monoid Associativity
id ® id; =id|g3 Interface ldentity

(G1®F1) o (G ®F3) =(G10Gy)® (Fp 0 Fp) Bifunctoriality
L

terms in general. When the framework is instantiated, terms specialise to re
resent particular structures and the logic specialises to describe such a parti
lar structures as well. The semantics of a BiLog formula corresponds to a se
of terms. The logic will feature spatial connectives in the sense Spatial Log
ics [1, 7].

3.2 Transparency

In general not every structure of the model corresponds to an observable str
ture in a spatial logic. A classical example is ambient logic. Some mobile amb
ent constructors have their logical equivalent, e.g. ambients, and other ones
not directly mapped in the logic, e.g. tire and out prefixes. In this case the
observability of the structure is distinguished from the observability of the com
putational terms: some terms are used to express behaviour and other to exp
structure. Moreover there are terms representing both structure and possible
haviour, since ambients can be opened.

The structure may be used not only to represent the distribution or the sha
of resources but also to encode their behaviour. We may want to avoid a dire
representation of some structures at logical level of BiLog. A natural solution i
to define a notion ofransparencyover the structure. In such a way, entities re-
ally representing the structure @gransparentwhile entities encoding behaviour
areopaqueand cannot be distinguished by the logical spatial connectives. A
bifunctorial terms are interpreted as arrows, transparent terms allow the logic
see their entire structure till the source interface, while opaque terms block tl
inspection at some middle point. A notion of transparency can also appear
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models without temporal behaviour. In fact, consider a model with an access
control policy defined on the structure. The policy may be variable and defined
on constructors by the administrator. Thus, some terms may be transparent or
opaque, depending on the current policy, and the visibility in the logic, or in the
query language, will be influenced by this.

When the model is dynamic, the reacting contexts, namely those with a pos-
sible temporal evolution, are specified with an activeness predicate. We may be
tempted to identify transparency as the activeness of terms. Although these con-
cepts coincide in some case, in general they are completely orthogonal. There
may be transparent terms that are active, such as a public lochtemtory;
opaque terms that are active, such as an agent that hides its content; passive
transparent terms, such as a script code; and passive opague terms, such as con-
trols encoding synchronisation. Indeed, the transparenoytli®mgonalto the
concept of activeness.

More generally the transparency predicate avoids that every single term in
the structure is mapped to its logical equivalent. Models can have additional
structure not observable. Consider, as another example, an XML document. We
may want to consider the content a restricted set of nodes; for example we could
ignore data values as their addition in the logic could increase complexity, or
because we are interested only in the structure. On the other harfi ki
logic could be focused on values, but not on node attributes.

Transparency, as well as opaqueness, is essentially a way to restrict the obser-
vational power of the logic in the current state, that is in the static logic. Notice
that in general a restriction of the observational power in the static logic does not
hinder a restriction of the observational power in the dynamic counterpart. In
fact, a next step modality may allow a ‘re-intensionalisation’ of the controls by
observing how the model evolves, as shown in [2] and [25].

3.3 Formulae

BiLog internalises the constructors of bifunctorial terms in the style of the am-
bient logic [7]. Constructors appear in the logic as constant formulae, while
tensor product and composition are expressed by connectives. Thus the logic
presents two binary spatial operators. This contrasts with other spatial logics,
with a single one: Spatial and Ambient Logics [1, 7], with parallel composition
A | B, Separation Logic [23], with separating conjunctian: B, and Context
Tree Logic [4], with applicatiorK(P). Both the operators inherit the monoidal
structure and non-commutativity properties from the model.

The logic is parameterised by the transparency prediggteeflecting that
not every term can be directly observed in the logic: as explained in the previous
section, some terms are opaque and do not allow inspection of their contents.
We say that a tern® is transparent, or observabler{fG) is verified. We will
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Table 3.4BiLog(M ®,€,0, =, 7)
I

Q:=1id ... a constant formula for every Q s.t. 7(Q)

AB :=F false A= B implication
id identity Q constant constructor
A® B  tensor product AoB composition

Ao B leftcomp. adjunct A —- B right comp. adjunct
A®- B leftprod. adjunct A -® B right prod. adjunct

GEF iff never

GEA=>B iff GEAimplies GEB
GEQ iff G=Q

GkEid iff exists | s.t. G =id,

GEA®B iff exists G1,Gost. G=G; ® Gy, withG, EAand G, E B

GEAoB iff exists G1,Go.s.t. G=G; 0 Gy,
with 7(G1) and G; E Aand G, £ B

GEA- B iff forallG/,thefactthat G’ = Aand r(G’) and (G’ o G)|
impliesG’ c G B

GEA—-B iff 7(G)impliesthatforall G/,
if G EAand (GoG')] thenGoG EB

GEA® B iff forall G/, thefactthatG’' = Aand (G’ ® G)|
impliesG' @ GE B

GEA—®B iff forallG/,thefactthatG’ = Aand (G® G')|
impliesG® G =B

see that when all terms are observable the logical equivalence corresponds
=. Otherwise, it can be less discriminating. We assume ithaand ground
terms are always transparent, angreservess, hence® ando, in particular.
The choice of transparency is motivated by the possibility of having a comple
structure not always completely visible at the logical level.

Given the monoidl{l, ®, €), the set of simple tern®, the transparency pred-
icater and the structural congruence relatiorthe logic BiLogM, ®, €, 0, =, 1)
is formally defined in Tab. 3.4. The satisfaction relatiogives the semantics of
formulae.

The logic features a constaftfor each transparent constrigt In particular
it has the identityd, for each interfacé.

The satisfaction of logical constants is simply the congruence to the corr
sponding constructor. Theorizontal decompositioformulaA ® B is satisfied
by a term that can be decomposed as the tensor product of two terms satisfy
A and B respectively. The degree of separation enforced®lyetween terms
plays a fundamental role in the various instances of the logic, notably link grag
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and place graph. Theertical decompositioformulaA o B is satisfied by terms
that can be the composition of terms satisfyivgind B. We shall see that in
some cases both the connectives correspond to well known spatial connectives.
We define thdeft andright adjunctsfor composition and tensor to express ex-
tensional properties. The left adjurst— B expresses the property of a term to
satisfyB whenever inserted in a context satisfyidgSimilarly, the right adjunct
A — B expresses the property of a context to satBfywhenever filled with a
term satisfyingA. A similar description fow- and—®, the adjoints of®. They
collapse if the tensor is commutative in the model.

3.4 Properties

Here we show some basic results about BiLog. In particular, we observe that,
in presence of trivial transparency, the induced logical equivalence coincides
with the structural congruence of the terms. Such a property is fundamental
to describe, query and reason about bigraphical data structures, as e.g. XML
(cf. [12]). In other terms, BiLog isntensionalin the sense of [25], namely it can
observe internal structures, as opposed to the extensional logics used to observe
the behaviour of dynamic system. Inspired by [15], it would be possible to study
a fragment of BiLog without the intensional operaters, and constants.

The lemma below states that the relatiomespects the congruence.

Lemma 1 (Congruence preservation).For every couple of term G and’'G
if GEAandG=G' then GEA
Proof. Induction on the structure of the formula, by recalling that the congruence
is required to preserve the typing and the transparency. In detail
Case F. Nothing to prove.

Case Q. By hypothesisG £ Q@ andG = G’. By definitionG = Q and by
transitivity G’ = Q, thusG’ £ Q.

Case id. By hypothesisG E id andG = G’. Hence there exists dnsuch that
G’ =G =id, and soG’ Eid.

Case A = B. By hypothesi$s E A= BandG = G’. This means that i = A
thenG E B. By induction ifG’ = AthenG E A. ThusifG’ E AthenG E B
and again by inductio®’ E B.

Case A® B. By hypothesisG E A ® BandG = G'. Thus there exisB;, Gy
suchthalG’ = G = G; ® G, andG; E AandG; = B. HenceG' E A® B.

Case A o B. By hypothesisG £ A o BandG = G’. Thus there exisG;, G,
such thatG’ = G = G; o G, and7(G;) andG;  AandG; E B. Hence
G EA0B.
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Case A o— B. By hypothesiss £ A — BandG = G’. Thus for everyG” such
thatG” = Aandr(G”) and G” o G)| itholdsG” o G E B. NowG = G’
impliesG” o G = G” o G’; moreover the congruence preserves typing, SC
(G” o G’)] . By inductionG” o G’ | B, then conclud&’ = A o— B.

Case A — B. If 7(G’) is not verified, thers’ = A — B trivially holds. Suppose
7(G’) to be verified. AsG = G’ and transparency preserves congruence
7(G) is verified as well. By hypothesis for ea@{" satisfyingA such that
(G o G”)] itholdsG o G” E B, and by inductiorG’ o G” E B, asG = G’
and G o G”)] implies G’ o G”)| andG o G” = G’ o G”. This proves
G EA—B.

Case A ® B (and symmetricallA —® B). By hypothesiss £ A ®- BandG =
G’. Thus for eacls” such thatG” E Aand G” ® G)| thenG” ® G E B.
Now G = G’ impliesG” ® G = G” ® G’, again the congruence must
preserve typing so@” ® G’)|. Thus by inductiorG” ® G’ E B. The
generality ofG” impliesG’ = A ®- B.

O

BiLog induces a logical equivaleneg on terms in the usual sense. We say
thatG,; = G if for every formulaA, G; E A impliesG, £ A and vice versa.
It is easy to prove that the logical equivalence corresponds to the congruence
the model if the transparency predicate is totally verified.

Theorem 1 (Logical equivalence and congruence)lf the transparency predi-
cate is verified on every term, then for every term Gjt@®olds G=_ G’ if and
onlyifG=G'.

Proof. The forward direction is proved by defining the characteristic formulg
for terms, as every term can be expressed as a formula. In fact, the transpare
predicate is total, hence every constant term corresponds to a constant formt
The converse is a direct consequence of Lemma 1. O

The logical equivalence is less discriminating when opaque constructors a
present. For instance, the logic is not able to distinguish two opaque constructt
with the same type.

The particular characterisation of the logical equivalence as the congruen
in the case of trivial transparency can be generalised to a congruence ‘up-
transparency’. That means we can find an equivalence relation between trees
is ‘tuned’ by t: morer covers, less the equivalence distinguishes. This relatiol
will be better understood when we instantiate the logic to particular terms.
possible definition of transparency will be provided in 8§5.6.
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4 BilLog: derived operators

Table 4.1 outlines some interesting operators that can be derived in BiLog. The
classical operators and those constraining the interfaces are self-explanatory. The
‘dual’ operators need a few explanations. The formAdaB is satisfied by terms

G such that for every possible decompositiGn= G; ® G, eitherG; E A

or G, £ B. For instanceA o A describes terms whem is true in, at least,

one part of eack®y-decomposition. The formula e (T_,, = A) © F describes

those terms where every component with outerflasatisfiesA. Similarly, the
compositionA e B expresses structural properties universally quantified on every
o-decomposition. Both these connectives are useful to specify security properties
or types.

The adjunct duah « B describes terms that can be inserted into a partic-
ular context satisfyind\ to obtain a term satisfyin@, it is a sort of existential
guantification on contexts. For instan€®;(v Q,) « A describes the union be-
tween the class of two-region bigraphs (with no names in the outerface) whose
merging satisfied\, and terms that can be inserted eithefinor Q, resulting
in a term satisfyingA. Similarly the dual adjuncA —e B describes contextual
termsG such that there exists a term satisfyifighat inserted irG gives a term
satisfyingB.

The formulaeA™®, A’® A% and A’ correspond to quantifications on the
horizontalvertical structure of terms. For instan@° describes terms that are
a finite (possibly empty) composition of simple ter2s The two last spatial
modalities are discussed in the next section.

A first property involving the derived connectives is stated in the following
lemma, proving that the interfaces for transparent terms can be observed.

Lemma 2 (Type observation). For every term G, it holds: G= A,_,; if and
onlyifG: 1 — Jand GE A andr(G).

Proof. For the forward direction, assume ti@&at A _ 3, thenG = idj o G’ o id;
with G’ E Aandr(G’). Now,idj o G’ oid; : | - J. ByLemma 1.G: | —» J
andG E A and7(G). The converse is a direct consequence of the semantics
definition. O

Thanks to the derived operators involving interfaces, the equality between
interfaces] = J, is easily derivable bg andg-, as

1= iff To(ideAid - idy).

4.1 Somewhere modality

The idea okublocationC defined in [8], is extended to the bigraphical terms. A
sublocation corresponds to a subterm and it is formally defined on ground terms
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Table 4.1.Derived Operators

I
T, AV, &, -

Classical operators

A e Aoid, Constraining the source to be |

ALy EidjoA Constraining the target to be J

Ass ¥ (A)sy Constraining the type to be | — J
AoyB & Aoid, oB Composition with interface |

A—;BE A,;j-B Contexts with J as target guarantee
Ao BE A -B Composing with terms having | as source
AeB ¥ —(-A® -B) Dual of tensor product

AeB ¥ —(-Aoc-B) Dual of composition

AeB & —(-Ao -B) Dual of composition left adjunct

A—-B £ —(-A-—o-B) Dual of composition right adjunct

A'® ¥ ToOART Some horizontal term satisfies A

A7® & FoAoF Every horizontal term satisfies A

AT © ToAoT Some vertical term satisfies A

A “ FeAeF Every vertical term satisfies A

A E (ToA). Somewhere modality (on ground terms)
A & <-A Anywhere modality (on ground terms)

as follows. The definition of sublocation makes sense only for ground terms.
fact, the structure of ‘open’ terms (i.e., with holes) is not know a priori. Formally
it is defined as follows.

Definition 1 (Sublocation). Giventwo terms Ge — Jand G : ¢ — J', term
G’ is defined to be a sublocation for G, and writé GG, inductively by:

e GLCG,IfG =G

e G'CG,ifG=G;®G,withG CGiorG C G,
e G'CG,ifG=G; oGy, with7(G1) and G C G,

This relation, introduce ésomewhere” modality in the logic. Intuitively,
a term satisfieSssomewhere”Awhenever one of its sublocations satisfies
Rephrasing the semantics given in [8], a teéBm € — J satisfies the formula

“somewher®A if and only if
there exists GC G such that GE A

Quite surprisingly, such a modality is expressible in the logic. In fact, in case ¢
terms typed by — J, the previous requirement is the semantics of the derive
connective>, defined in Tab. 4.1.
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Proposition 1. For every term G of type — J, it is the case that
G E <*Aif and only if there exists G G such that GE A

Proof. First prove a supporting property characterising the relation between a
term and its sublocations.

Propertyl. ForeverytermG e » JandG: e —» J,we have: GC G if and
only if there exists a term C such thgC) and G=C o G'.

The direction from right to left is a simple application of Definition 1. The
direction from left to right is proved by induction on Definition 1. For thessic
step the implication clearly holds i&” C G in caseG’ = G. In theinductive
stepwe distinguish two cases.

1. Suppos&’ C G is due to the fact thab = G; ® Gy, withG’ C Gy orG' C
G,. Without loss of generality, assun@& C G;. The induction says that
there exist< such thatr(C) andG; = C o G’. HenceG = (C o G') ® G..
Now the typing is:

Cilc—> J G/16—>|c Go:ie—> X G:ie®e—> Jc®Jy,

s0G = (C o @) ® (G o id,). As the interface is the neutral element for
the tensor product between interfaces, compose

CeGilc®e—>Jc®d G Ridi:e®e—Ic®e

and hence the ternC(® G,) o (G’ ® id,) is defined. Note that(C ® G,)
is verified, in fact,r(Gy) is verified asG, : € — J, andt(C) is verified by
induction. Hence, by bifunctoriality property, conclu@e= (C ® G;) o G/,
with 7(C ® G,), as aimed.

2. Suppos&’ C Gis due to the fact thab = G; o G, with 7(G;) andG’ C G,.
The induction says that there exisEssuch thatr(C) andG, = C o G'.
HenceG = G; o (C o G'). ConcludeG = (G o C) o G/, with 7(Gy o C).

Suppose now thad = <A, this means tha® = (T o A).. According to
Tab. 3.4, this means that there extsendG’ such thaiG’ £ A and+(C), and
G = C o G'. Finally, by Property 1, this meai® C G andG’ E A. O

Theeverywheranodality (z) is dual to<>. A term satisfies the formula A
if each of its sublocations satisfiés

4.2 Logical properties deriving form categorical axioms
For every axiom of the model, the logic proves a corresponding property. In
particular, the bifunctoriality property is expressed by formulae

(AloBL)® (Ao B, ) e (A®A) o (B, ®B,))
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valid when ( ® J)| .

In general, given two formulad, B we say thatA yields B and we write
A+ B, if for every termG it is the case thab E AimpliesG E B. Moreover, we
write A 4+ Bto say bothA+ BandB + A.

Assume that andJ are two interfaces such that their tensor produgtJ is
defined. Then, the bifuctoriality property in the logic is expressed by

(Al 0o Bj) ® (Ao B ;) 4 (A ® A)) o (B ® B, ). (1)
In fact, we prove the following
Proposition 2. Wheneve(l ® J)| , the equation (1) holds in the logic.
Proof. Prove separately the two way of the satisfaction. First prove
(AroBL)®(AjoBL))F(AI®A)) e (B, ®B,,)

Assume thalG | (A o B,) ® (A} o B',;). This means that there exist
G:I'->1”",G”:J — J' suchthat’ ® J and!|” ® J”’ are defined, and
G=G @G, withG' £ A o B, andG” E A, o B, ;. Now,G’ E A o B,
means that there exi&; andG, such thatG’ = G; o G, and

e Gi: 1 — J,with7(G;) andG; A
e G I' > I, withG; E B
Similarly, G” | A} o B, ; meansG” = G] o G, and
e G} :J— J’, with7(G}) andG] F A’
e G, 1" > J,withG, E B’

In particular, concludé&s = (G1 o Gy) ® (G} o G)). As| ® Jis defined,
(G1 ® G)) o (G2 ® G)) is an admissible composition. The bifunctoriality
property impliesG = (G; ® G)) o (G2 ® G). Moreoverr(G; ® G)), ast(G1)
andr(Gj}). Hence conclude th& | (A ® A)) o (B, ® B, ), as required.

For the converse, prove

(Ar® Aj) o (BLi ® BL;) (A o BLy) ® (A) o BL)).
Assume thaG E (A ® A)) o (B ® B',;). By following the same lines as

—

before, deduce th& = (G1 ® G)) o (G2 ® G)), where
(G ® G))

e G;:| —» JsuchthatG; E A

e G| :J— J’suchthaG| F A

e Gy :I” —» | suchthatG, E B

e G,:1” - JsuchthaG; [ B’
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Also in this case, we the tensor product of the required interfaces can be per-
formed. Hence compos&{ o G;) ® (G; o G)). Again, the bifunctoriality
property impliesG = (G1 o Gz) ® (G] o G)). Finally, by observing that
7(G1 ® G)) implies 7(G;) and 7(G)), deduceG; o G, E (A o B.;) and
(G} 0 G))  (A; o B',;). Then concludé& (A o B_,)) ® (A} o B, ). O

5 BiLog: instances and encodings

In this section BiLog is instantiated to describe place graphs, link graphs and
bigraphs. A spatial logic for bigraphs is a natural composition of a place graph
logic, for tree contexts, and a link graph logic, for name linkings. Each instance
admits an embedding of a well known spatial logic.

5.1 Place Graph Logic

Place graphs are essentially ordered lists of regions hosting unordered labelled
trees with holes, namely contexts for trees. Tree labels correspond to controls
K belonging to a fixed signatur®. The monoid of interfaces is the monoid

(w, +,0) of finite ordinalsm, n. Ordinals represent the number of holes and re-
gions of place graphs. Place graph terms are generated from the set

®={1:0-1idy,:n—>n,join:2—-1,
Ymn:M+n—->n+mK:1- 1forKe K}

The only structured terms are the contrilsrepresenting regions containing a
single node with a hole inside. All the other constructorsaeingsand repre-
sent treesn — nwith no nodes: the place identity, is neutral for composition;
the constructor 1 represents a barren regimin;is a mapping of two regions into
one;ymn IS a permutation that interchanges the fingegions with the following

n. The structural congruencefor place graph terms is refined, in Tab. 5.1, by
the usual axioms for symmetry ¢f,, and by the place axioms that essentially
turn the operatiofoin o (- ® _) in a commutative monoid with 1 as neutral ele-
ment. In particular, the places generated by composition and tensor product from
vmn arepermutationsA place graph iprimeif it has typel — 1, namely it has

a single region.

Example 1. The term
G ¥ (serviceo (join o (name® description)) ® (pusho 1)

is a place graph of type 2» 2, on the signature containingervice name
description push. It represents an ordered pair of trees. The first tree is labelled
serviceand hasnameanddescriptionas (unordered) children, both children are
actually contexts with a single hole. The second tree is ground as it has a single
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Table 5.1.Additional Axioms for Place Graphs Structural Congruence

I
Symmetric Category Axioms:

Ymo = idm Symmetry Id

Ymn © Ynm = idmgn Symmetry Composition

Y 0 (G®F)=(F®G) o ymn Symmetry Monoid
Place Axioms:

join o (l ® |d1) =id, Unit

join o (join ® id;) = join o (id; ® join) Associativity

join o y11 = join Commutativity

node without children. The ter@ is congruent to
(service® push o (join ® 1) o (description® name.

Such a contextual pair of trees can be interpreted as semi-structured partic
completed data (e.g. an XML message, a web service descriptor) that can
filled by means of composition. Notice that, even if the order between childre
of the same node is not modelled, the order is still important for composition c
contexts with several holes. For instankg & K3) o (Ks ® 1) is different from
(K1 ® K2) o (1 ® K3), as nodeK3 goes inside; in the first case, and insid&

in the second one.

Fixed the transparency predicateon each control ik, the Place Graph
Logic PGL(K, 1) is BiLog(w, +, 0, =, K U{1, join, ymn}, 7). We assume the trans-
parency predicate to be verified foljoin andyms. Theorem 1 can be extended
to PGL, thus such a logic can describe place graphs precisely. The logic rese
bles a propositional spatial tree logic, in the style of [3]. The maffeténces
are that PGL models contexts of trees and that the tensor product is not comn
tative, unlike the parallel composition in [3], and it enables the modelling of the
order among regions. The logic can express a commutative separation by us
join and the tensor product, namely tharallel compositioroperator

A| B dZEfJIOin o (A_,]_ ® B_)j_).
At the term level, this separation, which is purely structural, corresporjdsito
(P1 ® Py), that is a total operation on all prime place graphs. More precisely, th

semantics says th&t= A | BmeansthatthereexiBt : Iy » LandPy: |1, —» 1
such thatP = join o (P; ® P,) andP; E AandP;  B.

5.2 Encoding STL

Not surprisingly, prime ground place graphs are isomorphic to the unordere
trees modelling the static fragment of ambient logic. Here we show that, whe
the transparency predicate is always verified, BiLog restricted to prime grour
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Table 5.2.Information tree Terms (ovex) and congruence

I

T,T:=0 empty tree consisting of a single root node
a[T] single edge tree labelled | € A leading to the subtree T
T | T’ tree obtained by merging the roots of the trees T and T’

T|0=T neutral element
T|IT=T1|T commutativity
(TIT)IT”=T|(T'|T”) associativity

L

Table 5.3.Propositional Spatial Tree Logic
I

AB:=F anything alA] location
0 empty tree A@a location adjunct
A= B implication A|B  composition

A>B  composition adjunct

T Een F iff  never
T Ee O iff F=0
TEax A=B iff TEg A impliesT kg, B
T Esn a[A] iff thereexists T’ st. T=a[F’] and T’ kg, A
TEwm A@Qa  iff  a[T] Fa A
TEx AlB iff there exists T1, Ty s.t.
T=T.|To and T1 g A and Ty ¢ B
T kg A>B iff forevery T': if T’ g A implies T | T’ g B
L

place graphs is equivalent to the propositional Spatial Tree Logic of [3] (STL in
the following). The logic STL expresses properties of unordered labelled trees
T constructed from the empty tree 0, the labelled node containing altfde

and the parallel composition of tre@s | T,, as detailed in Tab. 5.2. Labeds

are elements of a denumerable 8etSTL is a static fragment of the ambient
logic [7] and it is characterised by the usual classical propositional connectives,
the spatial connectives @[A], A | B, and their adjunct®\@a, A> B. The
language of the logic and its semantics is outlined in Tab. 5.3.

Table 5.4 encodes the tree model of STL into prime ground place graphs,
and STL operators into PGL operators. We assume a bijective encoding between
labels and controls, and we associate every laléth a distinct controK(a) of
arity 0. As already said, we assume the transparency predicate to be verified on
every control. The monoidal properties of parallel composition are guaranteed by
the symmetry and unit axioms @in. The equations are self-explanatory once
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Table 5.4.Encoding STL in PGL over prime ground place graphs

I
Trees into Prime Ground Place Graphs

[01 =1 [aTIl €K@ o[Tl [TulT2] Zjoino ([Ti] @[ T2])
STL formulae into PGL formulae

[0] =1 [a[Al] £'K(@) o1 [ A]
[FI=F [ A@a] =K(a) -1 [ A]
[A=B] =[A] =[B] [AIBIZ[A]ILB]

[A-B] Z([Allidy) o1 [B]

we remark that{(i) the parallel composition of STL is the structural commuta-
tive separation of PGL(ii) tree labels can be represented by the correspondin
controls of the place grapifiii) location and composition adjuncts of STL are
encoded by the left composition adjunct, as they add logically expressible co
texts to the tree. This encoding is actually a bijection tree to prime ground pla
graphs. In fact, there is @nverse encoding ) for prime ground place graphs
in trees defined on the normal forms of [19].

The theorem of discrete normal form in [19] implies that every ground plact
graphg : 0 — 1 may be expressed as

g=join,o (Mp®...® Mp_1) (2
where everyM; is a molecular prime ground place graph of the form
M =K() o g,
with ar(K(a)) = 0. As an auxiliary notatiorjpin,, is inductively defined as
joing £'1
join,,; £'join o (id; ® join,)

The theorem in [19] says that the normal form defined in (2) is unique, modul
permutations.

For every prime ground place graph, the inverse encoding ( ) considers i
discrete normal form and it is inductively defined as follows

(joing) £'0
(K@-oa) =a[(adl
(joingo (Mg ®...® Mg 1)) E(Mg) | ... (Ms1)
By noticing that the bifunctoriality property implies
joingo (Mg ®...® Mp_1) =
= join o (Mg ® (join o (M ® (join o (... ® (join o (Mn_2 ® M_1))))))),
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it is easy to see that the encodings [ ] and ( ) are one the inverse of the other,

hence they give a bijection from trees to prime ground place graphs, fundamental
in the proof of the following theorem.

Theorem 2 (Encoding STL). For each tree T and formula A of STL:
TEm A ifandonlyif [T] E[A].

Proof. The theorem is proved by structural induction on STL formulae. The
transparency predicate is not considered here, as it is verified on every control.
The basic step deals with the constaRtand0. CaseF follows by definition.
Forthecas®, [ T] E [ 0] means [T] E 1, that by definitionis [T ] = 1 and
soT=([T]) =(1) £0, namelyT = O.

The inductive steps deal with connectives and modalities.

Case A= B. Assuming [T] E[A= B]lmeans[T] £ [A] = [B]; by
definition this says thatT] £ [ A] implies[T] E [ B]. By induction
hypothesis, this is equivalent to say tAHat, AimpliesT kg, B, namely
TEx A= B

Case a[A]. Assuming [T] E [aAl] means [T] E K(@) o1 ([ A]). This
amount to say that there exist: 1 - 1 andg: 0 — 1suchthat[T] =Go
gandG k£ K(a) andg = [ A], thatis [T ] = K(a) o gwith g = [ A]. Since
the encoding is bijective, this is equivalenfita= ( K(a) o g) £'a[( g)] with
g E [ A]. Sinceg : 0 — 1, the induction hypothesis says thagif E A.
Hence it is the case that =, a[A].

Case A@a. Assuming [T] E [A@a] means [T] E K(@) o1 A. Thisis
equivalent to say that for evefy such thaiG E K(a), if (G o [ T])! then
G o [T] E [ A]. According to the definitions, thisik(@) o [ T] E [ Al,
and so [a[T]] E [ A]. By induction hypothesis, this ig[T] s, A. Hence
T Es A@a by definition.

Case A| B. Assumingthat[T] E[A|IBlmeans|[T] E[A]|[BI] Thisis
equivalent to say thatT ] & join o ([ A]-1 ® [ B] 1), namely there exist
01,92 : 0 - 1suchthat [T'] = join o (g1 ® g2) andg; = [A] and g, E
[ B]. As the encoding is bijective this means tAat (g:) | ( g2), and the
induction hypothesis says thag{) = Aand (g.) E B. By definition this
isT s A| B

Case A>B. Assumingthat [T ] E [ A» B] means
[T]Ejoin([A] ®idy)) -1 [ B]

namely, for evenG : 1 — 1 such thats  join([ A] ® idy) it holdsG o
[T] EILB] Now,G:1— 1andG E join([ A] ® id;) means that there
existsg : 0 —» 1 suchthag E [ A] andG = join(g ® id;). Hence it is the
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case that for everg : 0 — 1 such thag [ A] it holds join(g ® id;) o
[T] = [B] thatisjoin(ge [ T]) = [ B] by bifunctoriality property.
Since the encoding is a bijection, this is equivalent to say that for every tre
T’ suchthat[T'] E[A]itholdsjoin([T'] o[ T]) E[B], thatis [T’ |

T] E [ B]. By induction hypothesis, for ever§’ such thafT’ kg, At
holdsT’ | T k4. B, that is the semantics af E,, A B.

(]

Differently from STL, PGL can also describe structures with several hole
and regions. In [12] we show how PGL describes contexts of tree-shaped ser
structured data. In particular the multi-contexts are useful to specify propertie
of web-services. Consider, for instance, a function taking two trees and returni
the tree obtained by merging their roots. Such a function is represented by t
term join, which solely satisfies the formujain. Similarly, the function that
takes a tree and encapsulates it inside a tefolelledby K, is represented by the
termK and captured by the formul& Moreover, the formulgoin o (K ® (T o
id1)) expresses all contexts of form-2 1 that place their first argument inside a
K node and their second one as a sibling of such node.

5.3 Link Graph Logic (LGL).

Fixed a denumerable set of nam&swe consider the monoidPgn(A), W, 0),
where®sn (L) is the finite powerset operator ardis the subset disjoint union.
Link graphs are the structures arising from such a monoid. They can descri
nominal resources, common in many areas: object identifiers, location names
memory structures, channel names, and ID attributes in XML documents. Tl
fact that names cannot be implicitly shared does not mean that we can re
to them or link them explicitly (e.g. object references, location pointers, fusiol
in fusion calculi, and IDREF in XML files). Link graphs describe connections
between resources performed by means of names, thetfarences

Wiring terms are a structured way to map a set of inner nax@so a
set of outer name¥. They are generated by the constructofa:: {a} — 0
and?/x : X — a. The closure/a hides the inner nama in the outer face.
The substitutior?/x associates all the names in the ¥eto the namea. We
denote wirings byw, substitutions byr, 7, and bijective substitutions, dubbed
renamingsby «, 8. Substitution can be specialised in:

azdy;  acbYy;  aEbE Yay,

The constructoa represents the introduction of namagthe terma « b corre-
sponds to renamieto a, anda & b links, or fusesa andb to hamea.

Given a signaturé of controlsk with arity functionar(K) we generate link
graphs from wirings and the constructoy: 0 —» dwithd=ay,...,a, Ke K,
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Table 5.5.Additional Axioms for Link Graph Structural Congruence

I
Link Axioms:

4/a=ida Link Identity

/ao?/y=/b Closing renaming

/aoa=id, Idle edge

P/ vwa © (idy ® 3/x) = ®/vix Composing substitutions
Link Node Axiom:

a o Kz = Kyg) Renaming

andk = ar(K). The controlK; represents a resource of kikdvith named ports
a. Any ports may be connected to other node ports via wiring compositions.

In this case, the structural congrueneas refined as outlined in Tab. 5.5
with obvious axioms for links, modelling-conversion and extrusion of closed
names. We assume the transparency predicegeified for wiring constructors.

Fixed the transparency predicatdor each control ink, the Link Graph
Logic LGL(%, 7) is BiLog(Pfin(A), W, 0, =, K U {/a,2/x}, 7). Theorem 1 extends
up to LGL, hence the logic describes the link graphs precisely. The logic ex-
presses structural spatiality for resources and strong spatiality (separation) for
names, and it can therefore be viewed as a generalisation of Separation Logic
for contexts and multi-ports locations. On the other side, the logic can describe
resources with local (hidden or private) names between resources, and in this
sense the logic is a generalisation of Spatial Graph Logic [5]: itfiscéent to
consider the edges as resources.

Moreover, if we consider identity as a constructor, it is possible to define

ac—b®@eb)o(@®ids).

In LGL the formulaA @ B describes a decomposition into tweparatdink
graphs, sharing neither resources, nor names, nor connections, thatAatisfy
B respectively. Since it is defined only on link graphs with disjoint ipmater
sets of names, the tensor product makes is a kisplagiafseparationoperator,
in the sense that it separates the model into two distinct parts that cannot share
names.

Observe that in this case, horizontal decomposition inherits the commutativ-
ity property from the monoidal tensor product. If we want a nan@be shared
between separated resources, we need to make the sharing explicit, and the sole
way to do that is through the link operation. We therefore need a way to first
separate the names occurring in two wirings as to apply the tensor, and then link
them back together.

As a shorthand, itV : X —» Y andW : X’ — Y with Y c X', we write
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[W]W for (W ® idx\y) o Wand ifd = ay,...,a,andb = by, ..., by, we write
d— bfora; « by ® ... ® a, « by, similarly for & & b. From the tensor
product it is possible to derive a product with sharingéorGivenG : X —» Y
andG’ : X’ - Y’ with X 0 X’ = 0, we choose a lish (with the same length as
d) of fresh names. The composition with sharais

Gé& G “[ae BB —4d 0G)eq)

In this case, the tensor product is well defined since all the common réimes
W are renamed to fresh names, while the sharing is re-established afterwards
linking the & names with thé names.

By extending this sharing to all names we define the parallel compoS&tjon
G’ as a total operation. However, such an operator does not behave ‘well” wi
respect to the composition, as shown in [19]. In addition a direct inclusion of
corresponding connective in the logic would impact the satisfaction relation b
expanding the finite horizontal decompositions to the boundless possible nan
sharing decompositions. (This may be the main reason why logics describil
models with name closure and parallel composition are undecidable [11].) Th
is due to the fact that the set of names shared by a parallel composition is r
known in advance, and therefore parallel composition can only be defined |
using an existential quantification over the entire set of shared names.

Names can be internalised anfileetively made private to a bigraph by the
closure operatofa. The dfect of composition witha is to add a new edge with
no public name, and therefore to makeo disappear from the outerface, and
hence be completely hidden to the outside. Separation is still expressed by |
tensor connective, which not only separates places with an ideal line, but al
makes sure that no edge — whether visible or hidden — crosses the line.

As a matter of fact, without name quantification it is not possible to build for-
mulae that explore a link, since the latter has tiieat of hiding names. For this
task, we employ the name variables..., X, and the fresh name quantification
M. in the style of Nominal Logic [24]. The semantics is defined as

GEWX...xq.A iff thereexista...a, ¢ n(G)uU fn(A)
suchthat G= A{X{... Xy < @1...an},

whereA{X; ... X, < a;...a,} is the usual variable substitution.
By fresh name quantification we define a notiorddinked name quantifi-
cation for fresh names, whose purpose is to identify names linkégda®

ALXAEMX (@R ®id) o A
The formula above expresses that the variablesdenote inA names that are

linked in the term tdg, and the role ofg & X) is to link the fresh nameg with
a, while id deals with names not id. We also define aeparation-up-tas the
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decomposition in two terms that are separated apart from the link on the specific
names ird, which crosses the separation line.

ASBEAL % (R 4) ®id) o A) & B.

The idea of the formula above is that the shared nagne® renamed in fresh
namesx, so that the product can be performed and fin&llig linked tod to
actually have the sharing.

The following lemma states that the two definition are consistent.

%
Lemma 3 (Separation-up-to). If g E A® B with g: e — X, andX is the vector
of the elements in X, then there exist.ge —» X and ¢ : ¢ —» X such that

X
g=i®@andg EAandg E B.

Proof. Simply apply the definitions and observe that the identities must be nec-
essarilyid,, as the outer face afis restricted to be. O

The corresponding parallel composition operator is not directly definable by
using the separation-up-to. In fact, in arbitrary decompositions the name shared
are not all known a priori, hence we would not know the vestan the oper-

. . X .
ator sharingseparation operata. However, next section shows that a careful
encoding is possible for the parallel composition of spatial logics with nominal
resources.

5.4 Encoding SGL

We show that LGL can be seen as a contextual (multi-edge) version of Spatial
Graph Logic (SGL) [5]. The logic SGL expresses properties of directed graphs
G with labelled edges. The notati@a(x, y) represents an edge from the node

y and labelled by. The graph$ are built from the empty graphil and the edge

a(x, y) by using the parallel compositid®; | G, and the binding for local names

of nodes {x)G. The syntax and the structural congruence for spatial graphs are
outlined in Tab. 5.6.

The graph logic combines standard propositional logic with the structural
connectives: composition and basic edge. Even if here we focus on its proposi-
tional fragment, the logics of [5] also includes edge label quantifier and recur-
sion. In [5] SGL is used as a pattern matching mechanism of a query language
for graphs. In addition, the logic is integrated withnsducergo allow graph
transformations. There are several applications for SGL, including description
and manipulation of semistructured data. Table 5.7 depicts the syntax and the
semantics of the fragment we consider.

We consider a signaturg with controls of arity 2, we assume a bijective
function associating every labalto a distinct controK(a). The ports of the
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Table 5.6.Spatial graph Terms (with local names) and congruence

I

G,G"::= nil empty graph
a(x,y) single edge graph labelled a€ A connecting the nodes X,y
G | G’ composing the graphs G, G’, with sharing of nodes
(vX)G the node Xxis local in G

Glnil=G neutral element
GG =G |G commutativity
G1G)|G" =G| (GG associativity

y ¢ fn(G) implies (vX)G = (vy)G{X « v} renaming

(vX)nil = nil extrusion Zero

x ¢ fn(G) implies G| (vX)G' = (vX)(G | G’) extrusion composition
X # Y,z implies (vX)a(y, 2 = a(y, 2 extrusion edge
(»)(vY)G = (y)(vX)G extrusion restriction

|

controls represent the starting and arrival node of the associated edge. The tre
parency predicate is defined to be verified on every control. The resulting lin
graphs are interpreted as contextual graphs with labelled edges, whereas the
sulting class of ground link graphs is isomorphic to the graph model of SGL.
Table 5.8 encodes the graphs modelling SGL into ground link graphs ar
SGL formulae into LGL formulae. The encoding is parametric on a finiteXset
of names containing the free names of the graph under consideration. Obse
that when we force the outer face of the graphs to be a fixed finitX,stte
encoding of parallel composition is simply the separation-ug-twherex is a
list of all the elements ifX. Notice also how local names are encoded into name
closures. Thanks to the Connected Normal Form provided in [19], it is eas
to prove that ground link graphs featuring controls with exactly two ports ar
isomorphic to spatial graph models. As we impose a bijection between arrov
labels and controls, the signature and the label set must have the same cardina

Lemma 4 (Isomorphism for spatial graphs). There exists a mappinf), in-
verse tq ], such that:

1. For every ground link graph g with outer face X in the signature featuring &
countable set of controlk, all with arity 2, it holds

fn((g)) =X and [(9)lx=g
2. For every spatial graph G with {@&) = X it holds

[Glx:e—> X and ([G]x)=0GC.

Proof. The idea is to interpret link graphs as bigraphs without nested nodes al
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Table 5.7 Propositional Spatial Graph Logic (SGL)
I

o, =F false a(x,y) anedgefromxtoy
nil empty graph ¢|y  composition
¢ = ¢ implication

Gk F iff  never
G Eg il iff G =nil
GCErme=>y Iiff Gy ¢ impliesG Eg ¥
GEma(xy) iff G=a(xy)
GEm @y iff there exists G;,G, s.t.
G= C;l | GZ and Gl l:STL (" and GZ ':STL ‘/’

Table 5.8.Encoding Propositional SGL in LGL over ground link graphs

ISpatial Graphs into Two-ported Ground Link Graphs
[nil]x £X
|[ a(x, y)]IX dzef K(a)x,y ® X \ {X, y}
[(»)GTx E((/x® idxx) © [ Glxux)) ® (X} N X)
[GIGIxE[CIx &[G ]x

SGL formulae into LGL formulae
[ nil Ix =X [ a(x y)Ix K@)y ® (X\ {x.})
[FIx=F [e=yIxElelx=[vx

[olvlx©Lelx o [vx

typee — (1, X). The results in [19] say that a bigraph without nested nodes and
(1, X) as outerface have the following normal form (wh&rg X):

Gu=(/Z]idix) o (X[ Mo]...| Mk1)
M i=Kyy(@ol
The inverse encoding is based on such a normal form:
((/Zlidx) o (X[ Mol ... Mga)) E(Z) (il | (Mo] | ... | ( Mk-1])
(Kxy(@ o 1) Z'a(x,y)

Notice that the extrusion properties of local names correspond to node and link
axioms. The encodings [ ] and ( ) provide a bijection, up to congruence, be-
tween graphs of SGL and ground link graphs with outer fAcand built by
controls of arity 2. O
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The previous lemma is fundamental in proving that the soundness of tt
encoding forS GLin BiLog, stated in the following theorem.

Theorem 3 (Encoding SGL). For every graph G, every finite set X containing
fn(G), and every formulg of the propositional fragment of SGL:

Glw ¢ ifandonlyif [GlxkE[elx

Proof. By induction on formulae of SGL. The transparency predicate is not con
sidered here, as it is verified on every control. The basic step deals with tt
constantd, nil anda(x,y). CaseF follows by definition. For the caseil,
[Glx E [nilJx means [G]x E X, that by definition is [G]x = X and
s0G = ([G]x) = (XD & nil, namelyG k. nil. For the casea(x,y),

to assume G]x E [a(xy)]x means [G]x E K(@xy ® X\ {xy}. So
G=([GIx) = (K@xy ® X\ {xy}) = a(x,y), that isG . a(x.y).

The inductive steps deal with connectives.

Casep = y. ToassumeBlx E[¢=v]xmeansGlx E[¢lx = [¥]1x;
by definition this says thatG]x E [¢lx implies [Glx E [¥1x. By
induction hypothesis, this is equivalent to say Bat,. ¢ impliesG g ¥,
namelyG g ¢ = .

Caseg|y. Toassume Blx E[¢ | v ]x means [Glx E [ ¢lx ® [v1x. By

Lemma 3 there existy;, g> such that [G]x = g1 é g2andg; E[¢]x and
02 F [¢]x- LetGy = (g1) andG; = (g2), Lemma 4 says that@; | x =
01 and [G2]x = g2, and by conservation of congruencé3{]x = [ ¢1x
and [G2]x E [ ¥ ]1x- Hence the induction hypothesis says tBatkE, ¢

X X
andG; kg, . Inaddition [G; | Go]x = [G1]lx ® [G2]x = g1 ®
02 = [ G]x. Conclude thatG admits a parallel decomposition with parts
satisfyingA andB, thusG k. ¢ | v.

]

In LGL it could be also possible to encode the Separation Logics on heap
names used as identifiers of location will be forcibly separated by tensor produ
while names used for pointers will be shatiadked. However we don't encode it
explicitly since in the following we will encode a more general logic: the Contex
Tree Logic [4].

5.5 Pure bigraph Logic

By combining the structures of link graphs and place graphs we generate
the (abstract pure) bigraphesf [16]. In this case the underlying monoid is the
product of link and place interfaces, namely X Piin(A), ®, €) where(m, X) ®
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Table 5.9.Additional axioms for Bigraph Structural Congruence

I
Symmetric Category Axioms:

Ve =id) Symmetry Id
vi30yy =idigg Symmetry Composition
vyo(Ge®F)=(F®G)ovy, Symmetry Monoid
Place Axioms:
join o (l ® |d1) =id, Unit
join o (join ® id;) = join o (id; ® join) Associativity
join o y11 = join Commutativity
Link Axioms:
4/a=ida Link Identity
/ao?/p=/b Closing renaming
/aca=id, Idle edge
B/ veay © (idy ® 3/x) = °/yux Composing substitutions
Node Axiom:
(id1 ® @) o Kz = Ky Renaming
L

(N, X) £ {m+n,XwY)ande £ (0,0). As a short notation, we uséfor (0, X)
andn for (n, 0).

A set of constructors for bigraphical terms is obtained as the union of place
and link graph constructors, except the contkotsl — 1 andKz : 0 — &, which
are replaced by the nedliscrete ionconstructors, denoted g : 1 — (1, d). It
represents a prime bigraph containing a single node with ports naraed an
hole inside. Bigraphical terms are thus defined in relation to a control signature
%K and a set of names, as detailed in [19].

The structural congruence for bigraphs corresponds to the sound and com-
plete bigraph axiomatisation of [19]. The additional axioms are reported in
Tab. 5.10: they are essentially a combination of the axioms for link and place
graphs, with slight dferences due to the interfaces monoid. In detail, we define
the symmetry ag, ; £ ymn ® idxwy Wherel = (m, X) andJ = (n,Y), and we
restate the node axiom by taking care of the places.

PGL excels at expressing propertiesiohamedesources, that are resources
accessible only by following the structure of the term. On the other hand, LGL
characterises names and their links to resources, but it has no notion of locality.
A combination of them ought to be useful to model nominal spatial structures,
either private or public.

BiLog promises to be a good (contextual) spatial logic for (semi-structured)
resources with nominal links, thanks to bigraphs’ orthogonal treatment of local-
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ity and connectivity. To testify this, 85.7 shows how recently proposed Conte
Logic for Trees (CTL) [4] can be encoded into bigraphs. The idea of the encor
ing is to extend the encoding of STL with (single-hole) contexts and identifies
nodes. First, §5.6 gives some details on the transparency predicate.

5.6 Transparency on bigraphs

In the logical framework we gave the minimal restrictions on the transparenc
predicate to prove our results. Here we show a way to define a transparer
predicate. The most natural way is to make the transparent terms a sub-categ
of the more general category of terms. This essentially means to impose t
product and the composition of two transparent terms to be transparent.

Thus transparency on all terms is derived from a transparency pedicy
defined only on the constructors. Note that the transparency definition deper
also on the congruence. In the following definition we show how to derive thi
transparency from a transparency policy.

Definition 2 (Transparency). Given the monoid of interfacéM, ®, €), the set
of constructors®, the congruence= and a transparency policy predicate
defined on the constructors hwe define the transparency on terms as follows:

G=id, AG:e— | G=0a 76(Q)
7(G) 7(G) 7(G)
G=G19G;, 1(G) 7(Gy) G=G10Gy 7(G1) 7(Gy)
7(G) 7(G)

Next lemma proves that the condition we posed on the transparency predic
holds for this particular definition.

Lemma 5 (Transparency properties). If G is ground or G is an identity then
7(G) is verified. Moreover, if G G’ thent(G) is equivalent tar(G’).

Proof. The former statement is verified by definition. The latter is proved by
induction on the derivations. O

We assume every bigraphical constructor, that is not a control, to be tran
parent and the transparency policy to be defined only on the controls. The trar
parency the policy can be defined. for instance, for security reasons.

5.7 Encoding CTL

Paper [4] presents a spatial context logic to describe programs manipulating
tree structured memory. The model of the logic is the set of unordered labelle
treesT andlinear contexts Cwhich are trees with a unique hole. Every node has
a name, so to identify memory locations. From the model, the logic is dubbe
Context Tree Logic, CTL in the following. Given a denumerable set of label
and a denumerable set of identifiers, trees and contexts are defined in Tab. 5.
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Table 5.10.Trees with pointers and Tree Contexts

I
T,T7 2= 0 empty tree
a[T] atree labelled a with identifier x and subtree T
T | T’ partial parallel composition
C n= - an hole (the identity context)
a,[C] atree context labelled a with identifier x and subtree C
T |C context right parallel composition
C|T context left parallel composition

a represents a label andan identifier. The insertion of a trék in a context

C, denoted byC(T), is defined in the standard way, and corresponds to fill the
unique hole ofC with the treeT. A well formed treeor contextis one where the

node identifiers are unique. The model of the logic is composed by trees and con-
texts that are well formed. In particular, composition, node formation and tree
insertion arepartial as they are restricted to well-formed trees. The structural
congruence between trees is the smallest congruence that makes the parallel op-
erator to be commutative, associative and with the empty tree as neutral element.
Such a congruence is naturally extended to contexts.

The logic exhibits two kinds of formulaeP, describing trees, anil, de-
scribing tree contexts. It has two spatial constants, the empty tréedod the
hole forK, and four spatial operators: the node formatiQfK], the application
K(P), and its two adjunct& » P andP; <« P,. The formulaa,[K] describes a
context with a single root labelled tayand identified byx, whose content satis-
fiesK. The formulaK » P represents a tree that satisflesvhenever inserted in
a context satisfying<. Dually, P; < P, represents contexts that composed with a
tree satisfying?; produce a tree satisfying,. The complete syntax of the logic
is outlined in Tab. 5.11, the semantics in 5.12.

CTL can be naturally embedded in an instance of BiLog. The complete
structure of the Context Tree Logic has also link values, but for simplicity here
we restrict our attention to the fragment without them. As already said, the terms
giving a semantics to CTL are constrained not to share identifiers: two nodes
cannot have the same identifier, as it represents a precise location in the memory.
This is easily obtained with bigraph terms by encoding the identifiers as names
and the composition as tensor product, that separates them. We encode such a
structure in BiLog by lifting the application to a particular kind of composition,
and similarly for the two adjuncts.

The tensor product on bigraphs is both a spatial separation, like in the models
for STL, and a partially-defined separation on names, like pointer composition
for separation logic. Since we deal with both names and places, we define a
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Table 5.11 Context Tree Logic (CTL)
I

PP .= false
0
K(P)
K<P

P= P

K,K’::

false
ax[K]
Ps>P
P|K

K=K’

empty tree formula
context application

context application adjunct
implication

identity context formula
node context formula
context application adjunct
parallel context formula
implication

Table 5.12 Semantics for CTL

I

T k& false
TEFO

T k7 K(P)
TEs K<«P
TErP=>P
C  false
Ckx -
C|=7(ax[K]
CEkEx P-P
CEx P|K

Ckx K= K’
L

iff
iff
iff

iff

never

T=0

there exist C, T’ s.t. C(T’) well-formed, and T = C(T’)
and CE¢ K and T’ 5 P

for every C: C ¢ K and C(T) well-formed

implies C(T) 7 P

T E+ Pimplies T ¢+ P’

never

there exists C’ s.t. ay[C’] well-formed, and

C=afCland C' Ex K

forevery T: T 4+ P and C(T) well-formed
implies C(T) ks P’

there exist C’, T s.t. T |C’ well-formed, and
C=T|C and TEs P and C' ¢ K

C Ex Kimplies T ¢+ K’
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formulaidny, , to represent identities on places by constraining the place part of
the interface to be fixed and leaving the name part to be free:

id ., &idm ® (id A =(id7®)).

Itis easy to see th& |- id(,m_y means that there exits a set of narXesuch that
G = idy, ® idx. By using such an identity formula we define the corresponding
typed compositior,_y and the typed adjuncts-m_y, —om,_y:

A O(m’) B d__ef A o |d<m’7> o B
Ao-myB £ (idm,yoA) B
A —O(m.) B d:ef (A o id<mﬁ>) —B

We then define the operateffor the parallel composition with separation oper-
ator= as both a term constructor and a logical connective:

D * E &[join](D ® E) for D andE prime bigraphs
Ax B % (join ® id(_) o (AL ® B,y) for AandB formulae

The operator: enables the encoding of trees and contexts to bigraphs. In
particular, we consider a signature with controls of arity 1 and we define the
transparency predicate to be verified on every control. Moreover we assume a
bijective function from tags to controls

ay — K(a)x.

The details are outlined in Tab. 5.13. The encodings of trees turn ougi@bed
prime discrete bigraphsbigraphs with open links and type & (1, X). The
result in [19] says that the normal form, up to permutations, for ground prime
discrete bigraphs is:

g = (join,®idx) o (M1 ® ... ® My),
whereM; are discrete ground molecules of the form
M = (K(a)x ® idvy)g.
We can now define the reverse encoding ( ) of [ ], from ground prime discrete
bigraphs to trees, involving such a normal form:
(joing) £'0
((K@x®idy) o g) =ad(9)]
((oing®idy) o (M1 ®...® M)) (M) =...x ([ M)
Moreover, the encodings of linear contexts turn out taubary discrete bi-

graphs G bigraphs with open links and tygé, X) — (1,Y). Again, the resultin
[19] implies that the normal form, up to permutations, for unary discrete bigraphs
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Table 5.13Encoding CTL in BiLog over prime discrete ground bigraphs

I 1
Trees into prime ground Contexts into unary discrete bigraphs
discrete bigraphs [-1c &'id;

[0] =1 [axCllc £ (K@x® fn(C)) o [Clc
[ax[TIl EK@x® fn(M) o [T] [TICIc=[TI*[Clc

[Tl T2] E[ Tl +[T2] [CITIcE[Clc+[T]

TL formulae into PGL formulae CTL formulae into PGL formulae

[ false]p &'F [ false]x &F

[0]r =1 [-1« Eidy

[KP)Ir E[KIk 0wy [Ple [P>P I« E[Plp—<u, [PIp
[K<Plp €[ Klk —a, [Plr [ ax[K]Tk £ (K@) ®id) o [ K1k
[P=PleE[Plr=1[FP1le [PIKIk E[PIr+[Klk

[K=K]Jk=2[KIk=[K ]«

G = (joing®idy) o (R® M1 ® ... ® My_1)

whereM,; are discrete ground molecules @dan be eitheid; or (Kz ® idy) o

Q, i.e., a molecule with one hole inside. Again, we can define the reverse encc
ing ( D of [ ], from unary discrete bigraphs to linear contexts, involving such a
normal form:

(ids) =~
((K@x®idy) o Q) ='a[( Q)]
((join, ® idy) o (R®M1® ... ® Mic))) £ (R) | (M1) ... [ ( My1)

As the bigraphical model is specialised to context trees, so BiLog logic i
specialised to the Context Tree Logic. The encodings of the connectives and 1
constants are in Tab. 5.13, and their soundness is shown in the next lemma.

Theorem 4 (Encoding Context Tree Logic).For each tree T and formula P of
CTLItholds TEs Pifand only iff T] E [ P]e- Also, for each context C and
formula K of CTL it holds G=« K ifand only if[ C]c E [ K]«-.

Proof. Follow the lines of Theorem 2 and 3, by structural induction on CTL
formulae and by exploiting the fact that the encoding of contexts trees in una
discrete bigraphs is bijective. O

The encoding shows that the models introduced in [4] are a particular kin
of discrete bigraphs with one port for each node and a number of holes al
roots limited to one. Hence, this shows how BiLog for discrete bigraphs is
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generalisation of Context Tree Logic to contexts with several holes and regions.
On the other hand, since STL is more general than separation logic, cf. [4], and it
is used to characterise programs that manipulate tree structured memory model,
BiLog can express separation logic as well.

6 Towards dynamics

The main aim of this paper is to introduce BiLog and its expressive power in
describing static structures. BiLog is however able to deal with the dynamic be-
haviour of the model, as well. Essentially, this happens thanks to the contextual
nature of the logic, suitable to characterise structural parametric reaction rules,
expressing dynamics.

A main feature of a distributed system is mobility, or dynamics in general.
In dealing with communicating and nhomadic processes, the interest is not only
to describe their internal structure, but also their behaviour. So far, it has been
shown how BiLog can describe structures, this section is intended to study how
to express evolving systems with BiLog. The usual way to express dynamics
with a logic is to introduce aext stepmodality (), that hints how the system
may evolve in the future. In general, a process satisfies the foruiit may
evolve into a process satisfyirfg

In process algebras the dynamics is often presenteedayion(or rewriting)
rules of the formr —> r’, meaning that (theredey is replaced by ta”’ (the
reactun) in suitablecontexts, namedctive The ‘activeness’ is defined on the
structure of contexts by a predicafteclosed for composition.

In general, aigraphical reactive systens a bigraphical system provided
with a set of parametric reaction rules, namely asef pairs (R R : | — J),
whereR and R’ are the redex and the reactum of a parametric reaction. We
consider only ground bigraphs, as they identifies the processes, contrary to non-
ground bigraphs that are open and identifies contexts. The active bigraphs are
identified by the predicaté, closed for compositions arids. We say that a
ground bigraply reacts tay (and we writeg —> ') if there is a coupleR, R) €
S, a set of name¥, a bigraphD (usually not ground) with(D) true, and a
ground bigraphd, such that:

g=Do(R®idy)od and g =Do (R ®idy)od.

When the model is enriched with a dynamical framework, the usual way to
introduce the modality is to extend the relatiop by defining

gEOA iff g—gdanddkEA

°Note that this is a simplification in order to capture the case of CCS. In the general theory of
bigraphsR andR’ are not required to have the same inner face.
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According to the formulation of the reduction given above, we obtain

gE oA iff thereexifR R) € S,idy, D active, and d ground; such that
g=Do(R®idy)od,d=Do(Re®idy)odanddEA. (3)

One may wonder whether the modalitys the only way to express a temporal
evolution in BiLog. It turns out that BiLog has a built in notion of dynamics. In
several cases, BiLog itself is@icient to express the computation. One of them
is the encoding of CCS, shown in the following.

We focus on the fairly small fragment of CCS considered in [2], consisting
of prefix and parallel composition onlf, Q will range overprocessesanda, a
over actions, chosen in the enumerable/Aets The syntax of the calculus is
defined by the following grammar.

P == 0] AP | P|P
A === a | a
Note that the operatoris not included, hence all the names appearing in a pro
cess are free, this fact yields the encoding to produce bigraphs with open lin
Thestructural congruences defined as the least congruercen processes such
thatP |0=P,P|Q=Q|PandP | (Q|R) = (P| Q) | R Moreover, the
dynamics is given by the usuedduction operational semantics
P-Q P=P P>Q Q=0Q

aPlaQ-P|Q PIR-Q|R P—-Q 4)

The bigraphs we consider for the encoding are built with two controls witt
arity 1: act andcoact for action and coaction. The corresponding constructors
are of the formact, andcoact,, for every actiora of the CCS calculus. Intu-
itively, cf. [22], the reactions are expressed as

acta04 | coacta00, —> a| Oz | Oo. (5)

The rules are parametric, in the sense that the two halesafd O,) can be
filled up by any process, and the lirkis introduced to maintain the same in-
terface between redex and reactum. By definition, redex can be replaced by
reactum in any bigraphical active context. As the active contexts are identifie
by the predicat@, in this particular case, such a predicate has to project CCS’
active contexts into bigraphs. The rules in (4) implies that active contexts in CC
have the formP | O, hence the corresponding bigraphical context has the forn
[ P1 | O, where [P] is the encoding of the proces$sinto a bigraph. Since the
encoding introduced in this section involves ground single-rooted bigraphs wi
open links, the formal definition for an active context is

gl (id; ® idy) (6)
forg: e — (1, Z) ground with a single root and open links. Moreover Y has to be
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a finite set of names, viz., the outer names of the term that can fill the context. In
particular, the controlact andcoact are declared to bpassivei.e., no reaction
can occur inside them.

As already said, we consider bigraphs built on the contralg coact,. The
encoding [ x is parameterised by fnite subsetX C Acts In particular, the
encoding yields ground bigraphs with outer fadeX) and open links. The
translation for processes is formally defined as

|[O]|x T 1eX

[aPlx & (acta®idy)o[P]x
[2P]x ¥ (coacta®idy) o [PJx
[PIQIx % joino([PIx&[Qlx)

a

a

X
Wherea € X, and, with abuse of notation, the shargegparation operato

4 ) . .
stands for® whered is any array of all the elements X Note, in particular,

that the sharing tensor_*“ §> idy" allows the process filling the hole iact,
(andcoact,) to perform other actiona. Moreoverjoin makes the tensor to be
commutative in the encoding of parallel, in fact there is a straight correspondence
between the parallel operators in the two calculi, #&]|[Q]x corresponds to
[Plx | [ Qlx, that is the parallel operator on bigraphs. The result stated in
Lemma 7 says that the encoding is bijective on prime ground bigraphs with open
links. First we need a general result on bigraphs and parallel composition.

Lemma 6 (Adding Names).If x appears in the outer names of P, thefh = P.

Proof. Express the parallel in terms of renamings, linkings and tensor product,
and use the axioms of [19]. Assume tifat (m, X) — (n, {x} U Y), andy ¢ {x} U

Y. ThenP | x corresponds toid,y, ® (X £ Y)) o (P ® ((y « X) o X)), that is
(idinyy ® (X £Y)) o (P ®Yy) by the third link axiom. By bifunctoriality property,

it is congruent toiflinyy ® (X £Y)) o (idpnyy ® idx ® y) o (P ® id,), and again

to ((i[dnyy © idiyy) ® (X £ y) o (idx ® ¥))) o P. The latter is congruent to
(idnyy ® idy) o P, by the second link axiom. Sinc@{,y, ® idx) o P = P,
conclude the thesis. O

Then we prove that the encoding is bijective on ground bigraphs with open
links.
Lemma 7 (Bijective Translation). For every finite subset X Acts it holds

1. The translatior{ -] x is surjective on prime ground bigraphs with outerface
(1, X) and open links.
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2. For every couple of processes@and for every finite subset X Acts in-
cluding the free names of @ it holds: P= Q ifand only iff P]x = [ Q] x-

Proof. Prove point (1) by showing that every prime ground bigraph with outer-
face(1, X) has at least one pre-image for the translatiofwJ. Proceed by induc-
tion on the number of nodes in the bigraphs. First we recall the connected norn
form for bigraphs. The paper [19] proves that every prime ground bigeapith
outerfacg(l, X) and open links has the following Connected Normal Form:

G . =X|F

F o=Mg|...| Mg

M= (Kylidy) o F (for K, € {acty, coact,})

The base of induction is the bigrapfy and clearly [0]x = X. For the
inductive step, consider a bigra@with at least one node. This mea@s=
X | ((Kq | idy) o F) | G’. Without losing generality, assunkg, = act,, SO by
Proposition 6:

G = (acta | idx) o (X[ F) | (X| G).

Now, the induction says that there exist P and Q such tid,{ = X | F and
[ Qlx = X| G, hence conclude§.P | Q] x = G.

The forward implication of point (2) is proved by showing that the translation
is sound with respect to the rules of congruence in CCS. This has been alree
proved in [19], where the parallel operatdbetween bigraphs is shown to be
commutative and associative, and to have 1 as a unit. Moreover, by Proposition
the bigraph 1® X is the unit for the parallel operator on prime ground bigraphs
with outerfacg(1, X).

The following claim, stated in [22], is the crucial step in proving the reverse
implication of point (2). Its proof considers the discrete normal for bigraphs.

Claim.If G; (i=1...m) andF; (j = 1...n) are ground molecules arg | ... |
Gm=F1]...| Fn thenm=nandG; = F,; for some permutation onm.

The proof of the reverse implication of point (2) proceeds by induction or
the structure of. The base of induction i® = 0, in this case the statement
is verified since to assume(Jx = [0]x = X impliesQ =0] ... | 0. For
the inductive step leP = a;.P; | ... | an.Pm for anym > 1, and assume
[ Q1 =1 P]. Furthermore we hav® = b;.Q; | ... | by.Qp, then

[Plx = (acty, ®idx) o [ Pr]x | ... | (acts, & idx) o [ PmIx

[QTx = (acty, @ idx) o [ Qulx | ... | (acts, & idx) o [ Qmlx

Since the two translations are both a parallel compositions of ground molecule
the previous claim says that = n, and there exists a permutatiaron m such
thata, = a,g and [Qi ] = [ P ]. By inductionQ; = Py, henceQ = P. O
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In [22] it is proved that the translation preserves and reflects the reactions,
thatis:P — P ifand only if [ PT—>[ P'].
The reaction rules are defined as

(acta | idyl) | (coactal idyz) —> a| id<1,Y1> | id(l,yz>.

This can be mildly sugared to obtain the rule introduced in (5)
Moreover, the active contexts introduced in (6) can be rephrased as

g0

whereg is a single-rooted ground bigraph with open links. It is easy to conclude
that the most general context ready to react has the form

Oo | actad1 | coactaOs |—> Op | O1 | O2

the holeg has to be filled in by single-rooted ground bigraphs with open links,
whereas the holes; andd, by ground bigraphs. Note that such a reduction is
compositional with the parallel operator. In case of the CCS translation, the a
reacting bigraphs are further characterised as shown in Lemma 8. In particular,
the lemma shows that every reactinB ] x can be decomposed into a redex and

a bigraph with a well defined structure, that is composed with a reactum to obtain
the result of the reaction. The Redex and the Reactum are formally outlined in
Tab. 6.1. They will be the key point to express the next step modality in BiLog.
Note thaty; andy, of the definition in Tab. 6.1 have to be disjoint with Y; and

Y,. They are useful for join the action with the corresponding coaction.

Table 6.1.Reacting Contexts for CCS

IBigraphs:
Rede¥¥2""2 &'\W o (idy ® join) o (idy ® join ® id1) o {((y1 < @) ® id1) o
oact; ® ile ® ((Y2 — a) ® |d1) o coacty ® idY2 ® id(lyx)}
Reacf*?  &'W o (idy: ® join) o (idy ® join ® idy)
Wirings:
w & ((X = Y]_) ® Id]_) o (ile ® (X = Yz) ® Idl) o (idy1 ® idY2 ® idx\{a} ®
® (@£ y1) ®idy) o (idy, ® idy, ® idx\a ® idyy, ® (@ & ¥2) ® id1)
W E((X & Y1) ®idy) o (idy, ® (X & Y2) ® idy)
Supporting Sets:
Y E{y1,y2l UYL U Y2 U X
Y & YUY U X

Lemma 8 (Reducibility). For every CCS process P, the following are equiva-
lent.

1. The translatiorf P]x can perform the reductiohP]x — G.
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2. There exist the bigraphs;35,,G3 : € — (1, X) and the name & X, such
that

[ PIx = ((acta | idx) o G1) | ((coact, | idx) o G2) | G3
and G=G; | Gy | Gs.

3. There exist the actionsa X and \, Yy, ¢ X, and two mutually disjoint sub-
sets Y, Yo C Acts with the same cardinality as X, but disjoint withyX y»,
and there exist the bigraphsH: € — (1,Y1), H, : € —» (1,Y>), and
Hs : e — (1, X) with open links, such that

[ P1x = Rede¥”>"" o (H; ® H, ® Ha)
and
G = Reacf*" o (Hy ® Hy ® Ha),
where Rede%’>""2 React*"? are defined in Tab. 6.1.

Proof. First prove that points (1) and (2) are equivalent. Assume that the bigray
[ PIx can perform a reaction. This means th&][x = ((acta | idy,) o G)) |
((coacty | idy,) o G}) | G and thatG = a | G} | G, | G} for some suitable
ground bigraphss’, G, andG} and an actiora € X. Since the type of both
[ PIx andGis e — (1,X), by Proposition 65 = (X | G}) | (X | G}) | (X | G})
and [P]x = ((acta | idx) o (X | G) | ((coacts | idx) o (X | Gy)) | (X | Gj).
Then defineG; to beX | G fori = 1,2,3, and conclude thdd = G; | G, | G3
and I[P]IX = ((acta | |dx) o Gl) | ((Coacta | |dx) o Gz) | Ga.

Then prove that point (2) implies point (3). Assume th&][x = ((act, |
Idx) o Gl) | ((coacta | Idx) o Gz) | G3 andG = G1| Gy | Gs, with G1,G,,G3 :
e — (1, X). According to the definition of the parallel operator, we chose two
actionsyi, y, ¢ X and the mutually disjoint subse¥s, Y, C Actsthat have the
same cardinality aX, but are disjoint withX, y;, y», thus

[PIx =W o (idy ®join) o (idy ® join ® id1) o {((y1 « a) ®
®idyy) o (acta ® idy,) o ((Y1 < X) ® id(1v,)) 0 G1 @ ((y2 — @) ®
® idy) o (coacty ® idy,) o ((Y2 « X) ® id;) 0 G2 ® G3}
and
G =W o (idy ®join) o (idy ® join ® idy) o
o {((Y1 « X) ®id(1y,) 0 G1 ® ((Y2 < X) ® id1) 0 G, ® G3}

whereY = {y1}UY1U{y,}UY>U X andY’ = Y,UY,U X. The bigraph&V andW’
are defined in Tab. 6.1, they both link the sub&gtandY, with X, and moreover
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W links y; andy, with a. By bifunctoriality property, [P] x is rewritten as

W o (idy ® join) o (idy ® join ® id1) o {((y1 « @) ®id1) o
o acty ® idy, ® ((y2 « &) ® id;) o coact; ® idy, ® Gz} o
o {((Y1 <« X)®id1) o G1 ® ((Y2 « X) ® id;) 0 G2},
and, again by bifunctoriality property, as

W o (idy ® join) o (idy ® join ® id1) o {((y1 « @) ® id1) o
o act; ® idy1 ® ((yz — a) ® |d1) o coacty ® idyz ® id(l’x> }o
o {((Y1 < X)®id1) o G1 ® ((Y2 « X) ®id1) 0 G2 ® Gz }.

Point (3) follows by definingH! = ((Y; « X) ® id;) o Gj fori = 1,2, and

Hs = Gz . Note that the three bigrapld and H; have open links as so does

[ P1x. Finally, we point (3) implies point (2), since the previous reasoning can
be inverted. O

By following the ideas of [22] it is easy to demonstrate that there is an ex-
act match between reaction relations generated in CCS and in the bigraphical
system, as stated in the following lemma.

Proposition 3 (Matching Reactions). For every finite set of names X it holds
P—-Q ifandonlyif [P]x—[Qlx
for every CCS process P and Q such that(REtACt(Q) C X.

Proof. For the forward direction, proceed by induction on the number of the
rules applied in the derivation f&* — Q in CCS. The base of the induction is
the only rule without premixes, that meaRss a.P; | a.P, andQis Py | P,. The
translation is sound as regards this rule, since the reactive system says

((acta | idx) o [ P1]x) | ((coacty | idx) o [ P2]x) —> X[ P1Ix | [ P21x.

The induction step considers two cases. First, assumePthat Q is derived
from P — @, wherePis P | RandQ is Q' | R Then the induction says
that [P"]x — [ Q' Ix, hence [P'Ix | [RIx — [ Q' Ix | [ RIx. Conclude
[PIx — [Qlx,as [PIxis[P'Ix | [RIx and [Qlx is [Q Ix | [ RIx-
Second, assume that— Qs derived from the congruencBs= P’ andQ’ = Q,
and from the transitio® — Q. By Lemma 7 [P]x =[P’ ]xand [Q']x =

[ Qlx , and by induction hypothesisH Jx — [ @ ]x. Conclude [P]x —

[ Qlx, since the reduction is defined up to congruence.

For the reverse implication, assum@][x — [ Q] x. Then Lemma 8 says
that there exist the bigrapl@;, G, G3 : € — (1, X) and the nama € X such
that |[P]Ix = ((acta | |dx) o G]_) | ((Coacta | |dx) o G]_) | Gs andG = GieG®
Gs3. Now, Lemma 7 says that for every= 1, 2, 3 there exists a CCS process
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Table 6.2.Semantics of formulaésya in CCS

I

P Espat O fP=0

P Espar ~A if not P =gpar A

P Espat AAB  if PEgparAand P Egpar B

P Espat AlB if there exist R, Q, s.t. P=R| Q, REgpat Aand Q | Bgpat
P Espat A>B if for every Q, Q Espat Aimplies P | Q spat B

P Espat 0A if there exist P’ s.t. P— P’ and P’ Egpat A

L

Pi such that [P; ] corresponds td5;, hence [P] = [aP1 | aP2 | P3] and
[Q] =[Pa1| P2l Ps]. Again, Lemma 7 says thd® = aP; | aP, | P; and
Q=P;|Py| P3 thenR— Q. O

It can be proved an even stronger result: if a CCS translation reacts to
bigraph, then such a bigraph is a CCS translation as well, as formalised in t
lemma below.

Proposition 4 (Conservative Reaction).For every CCS process P such that
[ P1x — G, there exists a CCS process Q such h@] x = G and P— Q.

Proof. Assume that P]x —> G, then the point (2) of Lemma 8 says that
G has typee — (1, X) and open links, since so doe®[x. This means, by
Lemma 7, that there exists a process Q such i@} f = G. ConcludeP — Q

by Lemma 3. O

The work [2] introduces the spatial logi€spa: Suitable to describe the struc-
ture and the behaviour of CCS processes. The language of the logic is

AB == 0 | AAB | A[B | -A | A-B | %A

It includes the basic spatial operators: the void constant 0, the composition ¢
erator|, and its adjunct operater It presents also a temporal operator, the next
step modality, to capture the dynamics of the processes. The paper [2] define
a semantics tspa in term of CCS processes, as outlined in Tab. 6.2. In partic-
ular, the parallel connective describes processes that are produced by the par:
between two processes that satisfies the corresponding formula. A process s
fies the formulaA <« B if it satisfied the formulaB whenever put in parallel with
a process satisfying. Finally the next stepA is satisfied by a process that can
evolve into a process satisfyigy

The logic Lspar can be encoded in a suitable instantiation of BiLog, with-
out using the modality defined in (3). It is fligient to instantiate the logic
BiLog(M, ®, €,®, =,7) to obtain the bigraphical encoding of CCS. We define
® to be composed by the standard constructor for a bigraphical system wi
K = {act, coact}, and the transparency predicatéo be always true. The fact
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thatr is verified on every term is determinant for the soundness of the encoding
we are describing.
Rephrasing Lemma 8 informally, we say that the set of reactions in CCS
are determined by couples of the forRegdey, Reactury) for everya € X, and
every reacting process is characterised by

[ P1x — [ Qlx iff there exists a bigraph g andaX such that
[ Plx = Redex o gand[ Q] x = Reacturp o g.

Since in this caseis always true, BiLog logic can fully describe the structure
of aterm. In particular, it is possible to define a characteristic formula for every
redex and reactum, simply by rewriting every bigraphical constructor and oper-
ator with the correspondent logical constant in their bigraphical encodings. For
the new nameg, y», and the new subse¥s, Yz, we denote wittRedexY> "2
and React™"2 the characteristic formulae &tede¥¥>"" andReacf"", re-
spectively. ClearlyG £ Redex*¥*'"2 if and only if G = Rede¥¥>"2, and
the same for the reactum. This has a prominent role in defining the encoding of
the temporal modality in BiLog.

Table 6.3.Encoding ofLsp, into BiLog

IEncodings:

[0Tx Xl

[-Alx £-[Alx

[AABIx £[Alx AL BIx
[AIBIx Zjoin o ([ Alx®[B]x)
[As>B]x ENY.(((Y « X) ®id1) o Ax) =® (join o (X E Y)®id;1) o~ [ B]x)
[ OATx & Vacx NY1Y2.Y1.Ys. Redex> Y2 o [(React™™ o— [ A]x) A Triple]
Supporting Formulae:

Open &£ —Ux. <(/xo T)

Ax & I[ A]I NEA Ts—>(1,Y2> A Open

ITripIe def T5H<1’Y1> ® Tsa(l,Yg) ® TE‘)<1,X>

The encoding is formally defined as described in Tab. 6.3. The encodings
for the logical connectives and the spatial composition are self-explanatory, in
particular note that the spatial composition requires the sharing of the names in
X. It corresponds to a logical parallel operator, in the case that the set of names
of bigraphs is fixed and finite. In the encoding fowe introduce an auxiliary
notation. Intuitively, the formulay is defined to constrain a bigraph to be the
encoding of a CCS process and to satisi]x. In fact,G E Ax means thaG
satisfies [A]x, it has typee — (1, X) and its links are open. In fact, a bigraph
satisfiesOpen only if no closure appears in any of its decompositions. Note



44 Giovanni Conforti, Damiano Macedonio and Vladimiro Sassone

the power of the somewhere operator. We will show that a bigraph satisfie
[ P1x E [ A> B]x if it satisfies [B] x whenever connected in parallel with any
encoding of a CCS process satisfying [ x.

On the other side, in the encoding for the temporal modalitye supporting
formulaTriple is satisfied by processes that are the composition of three singl
rooted ground bigraphs whose outerfaces have the same number of naxnes a
We will show that a process satisfies 4] x if and only if it is the combination
of a particular redex with a bigraph that satisfies the requirement of Lemma
and moreover that the corresponding reactum satisfies(

The main result of this section is formalised in Proposition 5. It expresse
the semantical equivalence betwegg,, and its encoding in BiLog. Note in
particular the requirement for a finite set of actions performable by the CC
processes. Such a limitation is not due to the presence of the next step opera
Indeed, looking carefully at the proof, one can see that the induction step f
the temporal operator still holds in the case of a not-finite set of actions. On tt
contrary, the limitation is due to the adjoint operatoin fact we need to bound
the number of names that is shared between the processes. This happens bec
of the diterent choice for the logical product operator in BiLog. On one hand
the spatial logic had the parallel operator built in. This means that the logic do«
not care about the names that are actually shared between the processes.
the other hand, BiLog has a strong control on the names shared between t
processes, and one needs to know them with accuracy.

Proposition 5. If the set of actions Acts is bounded to be a finite set X, then
PEspat A ifandonlyif [P]x E[A]lx.
for every process P with actions in X.

Proof. The proposition is proved by induction on the structure of formulae. The
base of induction is the formula 0. To assume th&]fk = [0]x means
[ Plx = X® 1, that correspond tB = 0, namelyP [=¢p4; 0.

The inductive step deals with the connectives. The treatmenis afand|
are similar, so we focus on the case of the parallel operator.

Case Al B. Tosay [P]x E [ A| B]x means that there exist two bigraphs
01,92, with g1 E [ Al x andg; E [ B] x, such that

.. X
[ PIx =join o (g1 ® g2)

Note thatg;, g, must have type — (1, X) and open links, as so doe®[] x. By
Lemma 7, there exist two process@s and Q, such that [Q;] and [ Q] are
01 andgy, respectively. Then conclude

[ PIx =join o ([ Qulx & [ Q21x)
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that mean® = Q1 | Q2, again by Lemma 7. Moreover, the induction hypothesis
says thaQ; E AandQ, k= B, henceP Egpa A | B.

Case A B. Assume [P]x E [ A> B]x, then by definition there exists a
fresh sety of actions such that for evefy satisfying (Y « X) ® id;) o Ay) it
holds

[PIx®GEjoin o (X & Y)®id1) - [ B]x
that is
jOinO((Xﬁ:Y)@idl)O(l[P]Ix®G)|=|[B]IX (7)

Now G E (((Y « X) ® id1) o Ax) means that there ig E Ax such that
G = ((Y « X) ® id1) o g. As previously discussed (cf. the introduction to the
current propositiony E Ax says thag E [ A]x and thatg is a bigraph with
open link and type — (1, X). By Lemma 7gis [ Q] x for some CCS process
Q whose actions are iK.

Hence, as the set of actioAstscorresponds tX, we can rephrase (7) by
saying that foreveryCCS proces® such that [Q] x E [ Alx it holds

joino (XE Y)®idy) o ([PIx® (Y « X)®id1) o [ Qlx) E [ Blx

thatis [P | Q] x E [ Blx. Then, the induction hypothesis says that for ev@ry
if Q Espat AthenP | Q Egspar B, namelyP [=gpat A B.

Case¢A. to assume PJx E [ ¢Alx signifies that there exists an action
a € X such that

[ P1x = Rede¥¥>""2 o H (8)

wherey,, ¥, are fresh namesyy, Y, are fresh subsets with the same cardinality
asX, andH is a bigraph satisfying

H E (React™"? o— [ A]x) A Triple.
In particular, Property (6) amounts to assert the two following points.
1. ItholdsH [ Reac{"2 o— [ A]x, that is

Reacf*"2 o H [ A] . 9)
2. ltholdsH E Tesayy ® Tesay ® Teoaxy, that is
H=H; ® H, ® H3 (10)

with Hj : e = (1, Y;), fori = 1,2, andH3 : € — (1, X).

Now, by (8) and (10), we havel]x = Rede¥¥>""2 o (H; ® H, ® H3), that
means [P]x — Reacl*"? o (H; ® H, ® H3) by Lemma 8. Furthermore, the
bigraphsH3, Hz, H3 have open links, as so doe®[[x. Hence Lemma 7 says
that there exists the CCS proce3dsuch that [Q]x corresponds tReacf" o
(H1 ® H, ® H3), henceP — Q by Proposition 3. Finally, (9) says thatd] x E
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[ Alx, and this mean§) Espar A by induction hypothesis. We conclude that
[ P1x E [ 0Alx is equivalent td® — Qwith Q spat A, NamelyP Egpai 0A. O

7 Conclusions and future work

This paper moves a first step towards describing global resources by focusing
bigraphs. Our final objective is to design a general dynamic logic able to cog
uniformly with all the models bigraphs have been proved useful for, as of toda
these includet-calculus [21], Petri-nets [20], CCS [22], pi-calculus [16] and
ambient calculus [17]. We introduced BiLog, a logic for bigraphs with two main
spatial connectives: composition and tensor product. Our main technical resu
are the embedding and comparison with other spatial logics previously studie
Moreover, we have shown that BiLog is expressive enough to internalise t
somewhere modality.

In particular we have seen how the ‘separation’ plays in various fragmen
of the logic. For instance, in the caseRIice Graph Logicwhere models are
bigraphs without names, the separation is purely structural and coincides with t
notion of parallel composition in Spatial Tree Logic. Dually, as the models fo
Link Graph Logicare bigraphs with no locations, the separation in such a logit
is disjointness of nominal resources. Finally, Rigraph Logic where nodes
of the model are associated with names, the separation is not only structur
but also nominal, since the constraints on composition force port identifiers
be disjoint. In this sense, it can be seen as the separation in memory structu
with pointers, like the heap structure of Separation Logic [23], or the trees wit
pointers of [4], or the trees with hidden names [6].

86 shows how BiLog can deal with dynamics. A natural solution is addinc
a temporal modality basically describing bigraphs that can compute accordii
to a Bigraphical Reactive System [16]. When the transparency predicate €
ables the inspection of ‘dynamic’ controls, BiLog istensional in the sense
of [25], namely it can observe internal structures. In the observed case, notal
the bigraphical system describing CCS [22], BiLog can be so intensional that
temporal modality is expressed directly by using the static fragment of BiLog. /
transparency predicate specifies which structures can be directly observed by
logic, while a temporal modality, along with the spatial connectives, allows t
deduce the structure by observing the behaviour. It would be interesting to is
late some fragments of the dynamic logic and investigate how the transparen
predicate influences their expressivity and intensionality, as in [15].

The existentiglniversal quantifiers are omitted as they imply an undecidable
satisfaction relation (cf. [10]), while we aim at a decidable logic. As a matter o
fact, the decidability of BiLog logics is an open question. We are working or
extending the result of [3], and we are isolating decidable fragments of BiLoc
We introduced the freshness quantifier as it is useful to express hiding and
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preserves decidability in spatial logics [11].

We have not addressed a logic for tree with hidden names. As a matter of fact,
we have such a logic. More precisely we can encode abstract trees into bigraphs
with an unique controamb with arity one. The name assigned to this control
will actually be the name of the ambient. The extrusion properties and renaming
of abstract trees have their correspondence in bigraphical terms by means of
substitution and closure properties combined with properties of identity.

BiLog can express properties of trees with names. At the logical level we
may encode operators of tree logic with hidden names as follows:

©a¥((a—a)®id)oT
CxX AZUx (/x®id) o A
Aa®AE(-©anAV(/aid) o A
HXAZUX Xx® A

The operator© a says that the nameappears in the outer face of the bigraphs.
The new quantifie€x. A expresses the fact that in a process satishpimghame

has been closed. The revelati@nis a binary operator asserting the possibility

of revealing a restricted name aso asserA, note that the name may be hidden

in the model as it has either be closed with an edge or it does not appear in the
model. The hiding quantificatiod may be derived as in [9]. We are currently
working on the expressivity and decidability of this logical framework.

To obtain a robust logical setting, we are developing a proof theory, and
a sequent calculus in particular, that will be useful for comparing BiLog with
other spatial logics, not only with respect to the model theory, but also from a
proof theoretical point of view.

Several important questions remain: as bigraphs have an interesting dynam-
ics, specified using reactions rules, we plan to extend BiLog to such a framework.
Building on the encodings of the ambient and thealculi into bigraphical re-
active systems, we expect a dynamic BiLog to be able to express both ambient
logic [7] and spatial logics forr-calculus [1].
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