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A. Bigraphs are emerging as an interesting model for concurrent calculi, like CCS, am-
bients,π-calculus, and Petri nets. Bigraphs are built orthogonally on two structures: a hierarchical
place graph for locations and a link (hyper-)graph for connections. Aiming at describing bigraph-
ical structures, we introduce a general framework, BiLog, whose semantics is given by arrows in
monoidal categories. We then instantiate the framework to bigraphical structures and we obtain a
logic that is a natural composition of a place graph logic and a link graph logic. We explore the
concepts of separation and sharing in these logics and we prove that they generalise the well known
spatial logics for trees, graphs and tree contexts. The framework can be extended by introducing the
dynamics in the model and a temporal modality in the logic in the usual way. However, in some
interesting cases, temporal modalities can be already expressed in the static framework. To testify
this, we show how to encode a minimal spatial logic for CCS in the instance of BiLog describing
bigraphs.
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1 Introduction

To describe and reason about structured, distributed, and dynamic resources is
one of the main goals of global computing research. Recently, manyspatial
logics have been studied to fulfill this aim. The term ‘spatial,’ as opposed to
‘temporal,’ refers to the use of modal operators inspecting the structure of the
terms in the considered model, rather than their temporal behaviour. Spatial
logics are usually equipped with a separation/composition binary operator that
splitsa term into two parts, to ‘talk’ about them separately. Looking closely, we
observe that the notion ofseparationis interpreted differently in different logics.
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• In ‘separation’ logics [23], it is used to reason about dynamic update of heap-
like structures, and it isstrongin that it forces names of resources in separated
components to be disjoint. As a consequence, term composition is usually
partially defined.

• In static spatial logics (e.g. for trees [3], graphs [5] or trees with hidden
names [6]), the separation/composition does not require any constraint on
terms, and names are usually shared between separated parts.

• Also in dynamic spatial logics (e.g. for ambients [7] orπ-calculus [1]) the
separation is intended only for locations in space.

Context tree logic, introduced in [4], integrates the first approach above with a
spatial logic for trees. The result is a logic able to express properties of tree-
shaped structures (and contexts) with pointers, and it is used as an assertion
language for Hoare-style program specifications in a tree memory model. Es-
sentially Spatial Logic uses the structure of the model to give semantics.

Bigraphs [16, 18] are an emerging model for structures in global comput-
ing, that can be instantiated to model several well-known examples, including
λ-calculus [21], CCS [22],π-calculus [16], ambients [17] and Petri nets [20].
Bigraphs consist essentially of two graphs sharing the same nodes. The first
graph, theplace graph, is tree structured and expresses a hierarchical relation-
ship on nodes (viz. locality in space and nesting of locations). The second graph,
the link graph, is an hyper-graph and expresses a generic“many-to-many”rela-
tionship among nodes (e.g. data link, sharing of a channel). The two structures
are orthogonal, so links between nodes can cross locality boundaries. Thus, bi-
graphs make clear the difference between structural separation (i.e., separation
in the place graph) and name separation (i.e., separation on the link graph).

In this paper we introduce a spatial logic for bigraphs as a natural composi-
tion of a place graph logic, for tree contexts, and a link graph logic, for name
linkings. The main point is that a resource has a spatial structure as well as a link
structure associated to it. Suppose for instance to be describing a tree-shaped
distribution of resources in locations. We may use an atomic formula likePC(A)
to describe a resource of ‘type’PC (e.g. a personal computer) whose contents
satisfyA, and a formula likePCx(A) to describe the same resource at the loca-
tion x. Note that the location type is orthogonal to the name. We can then write
PC(T) ⊗ PC(T) to characterise terms with two unnamedPC resources whose
contents satisfy the tautological formula (i.e., with anything inside). Named loca-
tions, as e.g. inPCa(T) ⊗ PCb(T), can express name separation, i.e., that names
a andb are different. Furthermore, link expressions can force name-sharing be-
tween resources with formulae like

PCa(inc ⊗ T)
c
⊗ PCb(outc ⊗ T).
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This describes twoPC with different names,a andb, sharing a link on a distinct
namec, which models, e.g. a communication channel. Namec is used as input
(in) for the firstPC and as an output (out) for the secondPC. No other names
are shared andc cannot be used elsewhere inside thePCs.

A bigraphical structure is, in general, a context with several holes and open
links that can be filled by composition. Thus the logic describes contexts for
resources at no additional cost. We can then express formulae like

PCa(T ⊗ HD(id1))

that describes a modular computerPC, whereid1 represents a ‘pluggable’ hole
in the hard discHD. Contextual resources have many important applications.
In particular, the contextual nature of bigraphs is useful to characterise their dy-
namics, but it can also be used as a general mechanism to describe contexts of
bigraphical data structures (cf. [12, 14]).

As bigraphs are establishing themselves as a truly general (meta)model of
global systems, and appear to encompass several existing calculi and models
(cf. [16, 17, 20, 22]), our bigraph logic,BiLog, aims at achieving the same gen-
erality as a description language: as bigraphs specialise to particular models,
we expect BiLog to specialise to powerful logics on these. In this sense, the
contribution of this paper is to propose BiLog as a unifying language for the de-
scription of global resources. We will explore this path in future work, fortified
by the positive preliminary results obtained for CCS (cf. §6) and semistructured
data [12].

The paper is organised as follows: §2 provides a crash course on bigraphs; §3
introduces the general framework and model theory of BiLog; §4 shows how to
derive some interesting connectives, such as a temporal modality and assertions
constraining the “type” of terms; §5 instantiates the framework and obtains in-
teresting logics for place, link and bi-graphs; §6 studies how the framework can
deal with dynamic models. An abridged version of this work appears in a confer-
ence paper [13]. Here we add to our main technical results (the embeddings of
the static spatial logics of [3], [5] and [4] in BiLog instances) a new embedding
result for the dynamic logics for CCS of [2]. This embedding is based on an in-
teresting way of expressing the ‘next-step’ modality making use of composition
adjuncts and bigraphical contexts. Moreover we show examples and properties
with more details.

2 An informal introduction to Bigraphs

Bigraphs formalise distributed systems by focusing on two of their main char-
acteristics: locality and interconnections. A bigraph consists of a set ofnodes,
which may be nested in a hierarchical tree structure, the so-calledplace graph,
and have ports that may be connected to each other bylinks, the so-calledlink
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graph. Place graphs express locality, that is the physical arrangement of the
nodes. Link graphs are hyper-graphs and formalise connections among nodes.
The orthogonality of the two structures dictates that nestings impose no constrain
upon interconnections.

The bigraphG of Fig. 1 represents a system where people and things inter-
act. We imagine two offices with employees logged onPCs. Every entity is
represented by a node, shown with bold outlines, and every node is associated
with acontrol (eitherPC, U, R1, R2). Controls represent the kinds of nodes, and
have fixedarities that determine their number of ports. ControlPC marks nodes
representing personal computers, and its arity is 3: in clockwise order, the ports
represent a keyboard interacting with an employeeU, a LAN connection inter-
acting with anotherPC and open to the outside network, and the mains plug of
the officeR. The employeeU may communicate with another one via the upper
port in the picture. The nesting of nodes (place graph) is shown by the inclusion
of nodes into each other; the connections (link graph) are drawn as lines.

At the top level of the nesting structure sit theregions. In Fig. 1 there is one
sole region (the dotted box). Inside nodes there may be ‘context’holes, drawn as
shaded boxes, which are uniquely identified by ordinals. The hole marked by 1
represents the possibility for another userU to get into officeR1 and sit in front
of a PC. The hole marked by 2 represents the possibility to plug a subsystem
inside officeR2.

Place graphs can be seen asarrows over a symmetric monoidal category
whose objects are finite ordinals. We writeP : m→ n to indicate a place graph
P with m holes andn regions. In Fig. 1, the place graph ofG is of type 2→ 1.
Given the place graphsP1, P2, their compositionP1 ◦ P2 is defined only if the
holes ofP1 are as many as the regions ofP2, and amounts tofilling holes with
regions, according to the number each carries. The tensor productP1 ⊗ P2 is not
commutative, as it lays the two place graphs one next to the other (in order), thus
obtaining a graph with more regions and holes, and it ‘renumbers’ regions and
holes ‘from left to right’.

Link graphs are arrows of a partial monoidal category whose objects are
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(finite) sets of names. In particular, we assume a denumerable setΛ of names. A
link graph is an arrowX→ Y, with X,Y finite subsets ofΛ. The setX represents
the inner names (drawn at the bottom of the bigraph) andY represents the set
of outer names (drawn on the top). The link graph connects ports to names or
to edges(represented in Fig. 1 by a line between nodes), in any finite number.
A link to a name isopen, i.e., it may be connected to other nodes as an effect
of composition. A link to an edge isclosed, as it cannot be further connected
to ports. Thus, edges areprivate, or hidden, connections. The composition
of link graphsW ◦ W′ corresponds tolinking the inner names ofW with the
corresponding outer names ofW′ and forgetting about their identities. As a
consequence, the outer names ofW′ (resp. inner names ofW) are not necessarily
inner (resp. outer) names ofW ◦ W′. Thus link graphs can perform substitution
and renaming, so the outer names inW′ can disappear in the outer names of this
means that either names may be renamed or edges may be added to the structure.
As in [16], the tensor product of link graphs is defined in the obvious way only
if their inner (resp. outer) names are disjoint.

By combining ordinals with names we obtaininterfaces, i.e., couples〈m,X〉
wherem is an ordinal andX is a finite set of names. By combining the notion of
place graph and link graphs on the same nodes we obtain the notion of bigraphs,
i.e., arrowsG : 〈m,X〉 → 〈n,Y〉.

Figure 2 represents a more complex situation. Its top left-hand side reports
the system of Fig. 1, in its bottom left-hand sideF1 represents a userU ready to
interact with aPC or with some other users,F2 represents a user logged on its
laptop, ready to communicate with other users. The system withF1 andF2 rep-
resents the tensor productF = F1 ⊗ F2. The right-hand side of Fig. 2 represents
the compositionG ◦ F. The idea is to insertF into the contextG. The operation
is partially defined, since it requires the inner names and the number of holes of
G to match the outer names and the number of regions ofF, respectively. Shared
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names create the new links between the two structures. Intuitively, composition
first places every region ofF in the proper hole ofG (place composition) and
thenjoins equal inner names ofG and outer names ofF (link composition). In
the example, as a consequence of the composition the userU in the first region
of F is logged onPC, the userU in the second region ofF is in roomR2. More-
over note the edge connecting the inner namesy andz in G, its presence produces
a link between the two users ofF after the composition, imagine a phone call
between the two users.

3 BiLog: syntax and semantics

The final aim of the paper is to define a logic able to describe bigraphs and their
substructures. As bigraphs, place graphs, and link graphs are arrows of a (partial)
monoidal category, we first introduce a meta-logical framework having monoidal
categories as models; then we adapt it to model the orthogonal structures of place
and link graphs. Finally, we specialise the logic to model the whole structure of
(abstract) bigraphs.

Following the approach of spatial logics, we introduce connectives that re-
flect the structure of the model. In this case models are monoidal categories and
the logic describes spatially the structure of theirarrows.1

The meta-logical framework we propose is inspired by the bigraph axioma-
tisation presented in [19]. The model of the logic is composed bytermsof a
general language withhorizontalandvertical compositions and a set of unary
constructors. Terms are related by astructural congruencethat satisfies the ax-
ioms of monoidal categories, at least. The corresponding model theory is pa-
rameterised on basic constructors and structural congruence. To be as free as
possible in choosing the level of intensionality, the logic is defined on atrans-
parencypredicate whose purpose is to identify the terms that allow inspection of
their content, thetransparentterms and the ones that do not, theopaqueterms.
We inspect the logical equivalence induced by the logic and we observe that
it corresponds to the structural congruence when the transparency predicate is
always verified and it is less discriminating whenopaque termsare present.

3.1 Terms
To evaluate formulae, we consider the terms freely generated from a set of con-
structorsΘ, ranged over byΩ, by using the (partial) operators: composition (◦)
and tensor (⊗). BiLog terms are defined in Tab. 3.1. When defined, these two op-
erations have to satisfy thebifunctoriality propertyof monoidal categories, thus
we refer to these terms also asbifunctorial terms.

1The logic can be seen as a logic for categories, but we describe the arrows of the category, rather
than the objects, as usual for categorical logics, e.g. linear logic.
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Table 3.1.BiLog terms

G,G′ ::= Ω constructor (for Ω ∈ Θ)
G ◦ G′ vertical composition
G ⊗ G′ horizontal composition

Table 3.2.Typing rules

type(Ω) = I → J
Ω : I → J

G : I ′ → J F : I → I ′

G ◦ F : I → J

G : I1→ J1 F : I2→ J2 I = I1 ⊗ I2 J = J1 ⊗ J2

G ⊗ F : I → J

Terms represent structures built on a (partial) monoid (M,⊗, ε) whose ele-
ments are dubbedinterfacesand denoted byI , J. To model nominal resources,
such as heaps or link graphs, we allow the monoid to be partial.

Intuitively, terms represent typed structures with a source and a target inter-
face (G : I → J). Structures can be placed one near to the other (horizontal
composition) or one inside the other (vertical composition). EachΩ in Θ has a
fixed typetype(Ω) = I → J. For each interfaceI , we assume a distinguished
constructidI : I → I . The types of constructors, together with the rules in
Tab. 3.2, determine the type of each term. Terms of typeε → J are called
ground.

Notice that the term obtained by tensor is well typed when both correspond-
ing tensors on source and target interface are defined, namely they are separated
structures. On the other hand, composition is defined only when the two involved
termssharea common interface. In the following, we consider only well typed
terms.

Terms are defined up to the structural congruence≡ described in Tab. 3.3.
It subsumes the axioms of the monoidal categories. All axioms are required to
hold whenever both the sides are well typed. Throughout the paper, when using
≡we imply that both sides are defined and we write (G)↓ to say thatG is defined.
Later on, the congruence will be refined to model specialised structures, such as
place graphs, link graphs or bigraphs.

Notice that the axioms correspond to those for (partial) monoidal categories.
In particular we constrain the structural congruence to satisfy the bifunctoriality
property between product and composition. Thus, we can interpret our terms as
arrows of the free monoidal category on (M,⊗, ε) generated byΘ. In this case
the term congruence corresponds to the equality of the corresponding arrows.

The parametric logical framework we will define characterises bifunctorial
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Table 3.3.Axioms

Congruence Axioms:
G ≡ G Reflexivity
G ≡ G′ implies G′ ≡ G Symmetry
G ≡ G′ and G′ ≡ G′′ implies G ≡ G′′ Transitivity
G ≡ G′ and F ≡ F′ implies G ◦ F ≡ G′ ◦ F′ Congruence ◦
G ≡ G′ and F ≡ F′ implies G ⊗ F ≡ G′ ⊗ F′ Congruence ⊗

Monoidal Category Axioms:
G ◦ idI ≡ G ≡ idJ ◦ G Identity
(G1 ◦ G2) ◦ G3 ≡ G1 ◦ (G2 ◦ G3) Associativity
G ⊗ idε ≡ G ≡ idε ⊗ G Monoid Identity
(G1 ⊗ G2) ⊗ G3 ≡ G1 ⊗ (G2 ⊗ G3) Monoid Associativity
idI ⊗ idJ ≡ idI⊗J Interface Identity
(G1 ⊗ F1) ◦ (G2 ⊗ F2) ≡ (G1 ◦ G2) ⊗ (F1 ◦ F2) Bifunctoriality

terms in general. When the framework is instantiated, terms specialise to rep-
resent particular structures and the logic specialises to describe such a particu-
lar structures as well. The semantics of a BiLog formula corresponds to a sets
of terms. The logic will feature spatial connectives in the sense Spatial Log-
ics [1, 7].

3.2 Transparency

In general not every structure of the model corresponds to an observable struc-
ture in a spatial logic. A classical example is ambient logic. Some mobile ambi-
ent constructors have their logical equivalent, e.g. ambients, and other ones are
not directly mapped in the logic, e.g. thein andout prefixes. In this case the
observability of the structure is distinguished from the observability of the com-
putational terms: some terms are used to express behaviour and other to express
structure. Moreover there are terms representing both structure and possible be-
haviour, since ambients can be opened.

The structure may be used not only to represent the distribution or the shape
of resources but also to encode their behaviour. We may want to avoid a direct
representation of some structures at logical level of BiLog. A natural solution is
to define a notion oftransparencyover the structure. In such a way, entities re-
ally representing the structure aretransparent, while entities encoding behaviour
areopaqueand cannot be distinguished by the logical spatial connectives. As
bifunctorial terms are interpreted as arrows, transparent terms allow the logic to
see their entire structure till the source interface, while opaque terms block the
inspection at some middle point. A notion of transparency can also appear in
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models without temporal behaviour. In fact, consider a model with an access
control policy defined on the structure. The policy may be variable and defined
on constructors by the administrator. Thus, some terms may be transparent or
opaque, depending on the current policy, and the visibility in the logic, or in the
query language, will be influenced by this.

When the model is dynamic, the reacting contexts, namely those with a pos-
sible temporal evolution, are specified with an activeness predicate. We may be
tempted to identify transparency as the activeness of terms. Although these con-
cepts coincide in some case, in general they are completely orthogonal. There
may be transparent terms that are active, such as a public location/directory;
opaque terms that are active, such as an agent that hides its content; passive
transparent terms, such as a script code; and passive opaque terms, such as con-
trols encoding synchronisation. Indeed, the transparency isorthogonalto the
concept of activeness.

More generally the transparency predicate avoids that every single term in
the structure is mapped to its logical equivalent. Models can have additional
structure not observable. Consider, as another example, an XML document. We
may want to consider the content a restricted set of nodes; for example we could
ignore data values as their addition in the logic could increase complexity, or
because we are interested only in the structure. On the other hand a different
logic could be focused on values, but not on node attributes.

Transparency, as well as opaqueness, is essentially a way to restrict the obser-
vational power of the logic in the current state, that is in the static logic. Notice
that in general a restriction of the observational power in the static logic does not
hinder a restriction of the observational power in the dynamic counterpart. In
fact, a next step modality may allow a ‘re-intensionalisation’ of the controls by
observing how the model evolves, as shown in [2] and [25].

3.3 Formulae

BiLog internalises the constructors of bifunctorial terms in the style of the am-
bient logic [7]. Constructors appear in the logic as constant formulae, while
tensor product and composition are expressed by connectives. Thus the logic
presents two binary spatial operators. This contrasts with other spatial logics,
with a single one: Spatial and Ambient Logics [1, 7], with parallel composition
A | B, Separation Logic [23], with separating conjunctionA ∗ B, and Context
Tree Logic [4], with applicationK(P). Both the operators inherit the monoidal
structure and non-commutativity properties from the model.

The logic is parameterised by the transparency predicateτ( ), reflecting that
not every term can be directly observed in the logic: as explained in the previous
section, some terms are opaque and do not allow inspection of their contents.
We say that a termG is transparent, or observable, ifτ(G) is verified. We will
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Table 3.4.BiLog(M,⊗, ε,Θ,≡, τ)

Ω ::= id I | . . . a constant formula for every Ω s.t. τ(Ω)

A, B ::= F false A⇒ B implication
id identity Ω constant constructor
A ⊗ B tensor product A ◦ B composition
A� B left comp. adjunct A( B right comp. adjunct
A ⊗− B left prod. adjunct A −⊗ B right prod. adjunct

G |= F iff never
G |= A⇒ B iff G |= A implies G |= B
G |= Ω iff G ≡ Ω
G |= id iff exists I s.t. G ≡ idI

G |= A ⊗ B iff exists G1,G2 s.t. G ≡ G1 ⊗ G2, with G1 |= A and G2 |= B
G |= A ◦ B iff exists G1,G2. s.t. G ≡ G1 ◦ G2,

with τ(G1) and G1 |= A and G2 |= B
G |= A� B iff for all G′, the fact that G′ |= A and τ(G′) and (G′ ◦ G)↓

implies G′ ◦ G |= B
G |= A( B iff τ(G) implies that for all G′,

if G′ |= A and (G ◦ G′)↓ then G ◦ G′ |= B
G |= A ⊗− B iff for all G′, the fact that G′ |= A and (G′ ⊗ G)↓

implies G′ ⊗ G |= B
G |= A −⊗ B iff for all G′, the fact that G′ |= A and (G ⊗ G′)↓

implies G ⊗ G′ |= B

see that when all terms are observable the logical equivalence corresponds to
≡. Otherwise, it can be less discriminating. We assume thatidI and ground
terms are always transparent, andτ preserves≡, hence⊗ and◦, in particular.
The choice of transparency is motivated by the possibility of having a complex
structure not always completely visible at the logical level.

Given the monoid (M,⊗, ε), the set of simple termsΘ, the transparency pred-
icateτ and the structural congruence relation≡, the logic BiLog(M,⊗, ε,Θ,≡, τ)
is formally defined in Tab. 3.4. The satisfaction relation|= gives the semantics of
formulae.

The logic features a constantΩ for each transparent constructΩ. In particular
it has the identityid I for each interfaceI .

The satisfaction of logical constants is simply the congruence to the corre-
sponding constructor. Thehorizontal decompositionformula A ⊗ B is satisfied
by a term that can be decomposed as the tensor product of two terms satisfying
A and B respectively. The degree of separation enforced by⊗ between terms
plays a fundamental role in the various instances of the logic, notably link graph



BiLog: Spatial Logics for Bigraphs 11

and place graph. Thevertical decompositionformulaA ◦ B is satisfied by terms
that can be the composition of terms satisfyingA and B. We shall see that in
some cases both the connectives correspond to well known spatial connectives.
We define theleft andright adjunctsfor composition and tensor to express ex-
tensional properties. The left adjunctA� B expresses the property of a term to
satisfyB whenever inserted in a context satisfyingA. Similarly, the right adjunct
A ( B expresses the property of a context to satisfyB whenever filled with a
term satisfyingA. A similar description for⊗− and−⊗, the adjoints of⊗. They
collapse if the tensor is commutative in the model.

3.4 Properties
Here we show some basic results about BiLog. In particular, we observe that,
in presence of trivial transparency, the induced logical equivalence coincides
with the structural congruence of the terms. Such a property is fundamental
to describe, query and reason about bigraphical data structures, as e.g. XML
(cf. [12]). In other terms, BiLog isintensionalin the sense of [25], namely it can
observe internal structures, as opposed to the extensional logics used to observe
the behaviour of dynamic system. Inspired by [15], it would be possible to study
a fragment of BiLog without the intensional operators⊗, ◦, and constants.

The lemma below states that the relation|= respects the congruence.

Lemma 1 (Congruence preservation).For every couple of term G and G′:

if G |= A and G≡ G′ then G′ |= A.

Proof. Induction on the structure of the formula, by recalling that the congruence
is required to preserve the typing and the transparency. In detail

C F. Nothing to prove.

C Ω. By hypothesisG |= Ω andG ≡ G′. By definition G ≡ Ω and by
transitivityG′ ≡ Ω, thusG′ |= Ω.

C id. By hypothesisG |= id andG ≡ G′. Hence there exists anI such that
G′ ≡ G ≡ idI and soG′ |= id.

C A⇒ B. By hypothesisG |= A⇒ B andG ≡ G′. This means that ifG |= A
thenG |= B. By induction ifG′ |= A thenG |= A. Thus ifG′ |= A thenG |= B
and again by inductionG′ |= B.

C A ⊗ B. By hypothesisG |= A ⊗ B andG ≡ G′. Thus there existG1, G2

such thatG′ ≡ G ≡ G1 ⊗ G2 andG1 |= A andG2 |= B. HenceG′ |= A ⊗ B.

C A ◦ B. By hypothesisG |= A ◦ B andG ≡ G′. Thus there existG1, G2

such thatG′ ≡ G ≡ G1 ◦ G2 andτ(G1) andG1 |= A andG2 |= B. Hence
G′ |= A ◦ B.
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C A� B. By hypothesisG |= A� B andG ≡ G′. Thus for everyG′′ such
thatG′′ |= A andτ(G′′) and (G′′ ◦ G)↓ it holdsG′′ ◦ G |= B. Now G ≡ G′

impliesG′′ ◦ G ≡ G′′ ◦ G′; moreover the congruence preserves typing, so
(G′′ ◦ G′)↓ . By inductionG′′ ◦ G′ |= B, then concludeG′ |= A� B.

C A( B. If τ(G′) is not verified, thenG′ |= A( B trivially holds. Suppose
τ(G′) to be verified. AsG ≡ G′ and transparency preserves congruence,
τ(G) is verified as well. By hypothesis for eachG′′ satisfyingA such that
(G ◦ G′′)↓ it holdsG ◦ G′′ |= B, and by inductionG′ ◦ G′′ |= B, asG ≡ G′

and (G ◦ G′′)↓ implies (G′ ◦ G′′)↓ andG ◦ G′′ ≡ G′ ◦ G′′. This proves
G′ |= A( B.

C A ⊗− B (and symmetricallyA −⊗ B). By hypothesisG |= A ⊗− B andG ≡
G′. Thus for eachG′′ such thatG′′ |= A and (G′′ ⊗ G)↓ thenG′′ ⊗ G |= B.
Now G ≡ G′ implies G′′ ⊗ G ≡ G′′ ⊗ G′, again the congruence must
preserve typing so (G′′ ⊗ G′)↓ . Thus by inductionG′′ ⊗ G′ |= B. The
generality ofG′′ impliesG′ |= A ⊗− B.

�

BiLog induces a logical equivalence=L on terms in the usual sense. We say
thatG1 =L G2 if for every formulaA, G1 |= A impliesG2 |= A and vice versa.
It is easy to prove that the logical equivalence corresponds to the congruence in
the model if the transparency predicate is totally verified.

Theorem 1 (Logical equivalence and congruence).If the transparency predi-
cate is verified on every term, then for every term G, G′ it holds G=L G′ if and
only if G≡ G′.

Proof. The forward direction is proved by defining the characteristic formula
for terms, as every term can be expressed as a formula. In fact, the transparency
predicate is total, hence every constant term corresponds to a constant formula.
The converse is a direct consequence of Lemma 1. �

The logical equivalence is less discriminating when opaque constructors are
present. For instance, the logic is not able to distinguish two opaque constructors
with the same type.

The particular characterisation of the logical equivalence as the congruence
in the case of trivial transparency can be generalised to a congruence ‘up-to-
transparency’. That means we can find an equivalence relation between trees that
is ‘tuned’ byτ: moreτ covers, less the equivalence distinguishes. This relation
will be better understood when we instantiate the logic to particular terms. A
possible definition of transparency will be provided in §5.6.
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4 BiLog: derived operators

Table 4.1 outlines some interesting operators that can be derived in BiLog. The
classical operators and those constraining the interfaces are self-explanatory. The
‘dual’ operators need a few explanations. The formulaA	B is satisfied by terms
G such that for every possible decompositionG ≡ G1 ⊗ G2 eitherG1 |= A
or G2 |= B. For instance,A 	 A describes terms whereA is true in, at least,
one part of each⊗-decomposition. The formulaF 	 (T→I ⇒ A) 	 F describes
those terms where every component with outerfaceI satisfiesA. Similarly, the
compositionA•B expresses structural properties universally quantified on every
◦-decomposition. Both these connectives are useful to specify security properties
or types.

The adjunct dualA � B describes terms that can be inserted into a partic-
ular context satisfyingA to obtain a term satisfyingB, it is a sort of existential
quantification on contexts. For instance (Ω1 ∨Ω2) � A describes the union be-
tween the class of two-region bigraphs (with no names in the outerface) whose
merging satisfiesA, and terms that can be inserted either inΩ1 or Ω2 resulting
in a term satisfyingA. Similarly the dual adjunctA � B describes contextual
termsG such that there exists a term satisfyingA that inserted inG gives a term
satisfyingB.

The formulaeA∃⊗, A∀⊗, A∃◦, and A∀◦ correspond to quantifications on the
horizontal/vertical structure of terms. For instanceΩ∀◦ describes terms that are
a finite (possibly empty) composition of simple termsΩ. The two last spatial
modalities are discussed in the next section.

A first property involving the derived connectives is stated in the following
lemma, proving that the interfaces for transparent terms can be observed.

Lemma 2 (Type observation). For every term G, it holds: G|= AI→J if and
only if G : I → J and G|= A andτ(G).

Proof. For the forward direction, assume thatG |= AI→J, thenG ≡ idJ ◦ G′ ◦ idI

with G′ |= A andτ(G′). Now, idJ ◦ G′ ◦ idI : I → J. By Lemma 1:G : I → J
andG |= A andτ(G). The converse is a direct consequence of the semantics
definition. �

Thanks to the derived operators involving interfaces, the equality between
interfaces,I = J, is easily derivable by⊗ and⊗−, as

I = J iff T ⊗ (idε ∧ idI ⊗− idJ).

4.1 Somewhere modality
The idea ofsublocation, v defined in [8], is extended to the bigraphical terms. A
sublocation corresponds to a subterm and it is formally defined on ground terms
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Table 4.1.Derived Operators

T, ∧, ∨, ⇔, ⇐, ¬ Classical operators
AI

def
= A ◦ id I Constraining the source to be I

A→J
def
= idJ ◦ A Constraining the target to be J

AI→J
def
= (AI )→J Constraining the type to be I → J

A ◦I B def
= A ◦ id I ◦ B Composition with interface I

A�J B def
= A→J � B Contexts with J as target guarantee

A(I B def
= AI ( B Composing with terms having I as source

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A� B def
= ¬(¬A� ¬B) Dual of composition left adjunct

A� B def
= ¬(¬A( ¬B) Dual of composition right adjunct

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal term satisfies A

A∀⊗ def
= F 	 A	 F Every horizontal term satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical term satisfies A

A∀◦ def
= F • A • F Every vertical term satisfies A

◊ A def
= (T ◦ A)ε Somewhere modality (on ground terms)

◊ A def
= ¬ ◊¬A Anywhere modality (on ground terms)

as follows. The definition of sublocation makes sense only for ground terms. in
fact, the structure of ‘open’ terms (i.e., with holes) is not know a priori. Formally
it is defined as follows.

Definition 1 (Sublocation). Given two terms G: ε → J and G′ : ε → J′, term
G′ is defined to be a sublocation for G, and write G′ v G, inductively by:

• G′ v G, if G′ ≡ G

• G′ v G, if G ≡ G1 ⊗ G2, with G′ v G1 or G′ v G2

• G′ v G, if G ≡ G1 ◦ G2, with τ(G1) and G′ v G2

This relation, introduce a“somewhere”modality in the logic. Intuitively,
a term satisfies“somewhere”A whenever one of its sublocations satisfiesA.
Rephrasing the semantics given in [8], a termG : ε → J satisfies the formula
“somewhere”A if and only if

there exists G′ v G such that G′ |= A.

Quite surprisingly, such a modality is expressible in the logic. In fact, in case of
terms typed byε → J, the previous requirement is the semantics of the derived
connective ◊, defined in Tab. 4.1.
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Proposition 1. For every term G of typeε → J, it is the case that

G |= ◊A if and only if there exists G′ v G such that G′ |= A.

Proof. First prove a supporting property characterising the relation between a
term and its sublocations.

Property1. For every term G: ε → J and G′ : ε → J′, we have: G′ v G if and
only if there exists a term C such thatτ(C) and G≡ C ◦ G′.

The direction from right to left is a simple application of Definition 1. The
direction from left to right is proved by induction on Definition 1. For thebasic
step, the implication clearly holds ifG′ v G in caseG′ ≡ G. In the inductive
stepwe distinguish two cases.

1. SupposeG′ v G is due to the fact thatG ≡ G1 ⊗ G2, with G′ v G1 or G′ v
G2. Without loss of generality, assumeG′ v G1. The induction says that
there existsC such thatτ(C) andG1 ≡ C ◦ G′. Hence,G ≡ (C ◦ G′) ⊗ G2.
Now the typing is:

C : IC → JC G′ : ε → IC G2 : ε → J2 G : ε ⊗ ε → JC ⊗ J2,

soG ≡ (C ◦ G′) ⊗ (G2 ◦ idε). As the interfaceε is the neutral element for
the tensor product between interfaces, compose

C ⊗ G2 : IC ⊗ ε → JC ⊗ J2 G′ ⊗ idε : ε ⊗ ε → IC ⊗ ε

and hence the term (C ⊗ G2) ◦ (G′ ⊗ idε) is defined. Note thatτ(C ⊗ G2)
is verified, in fact,τ(G2) is verified asG2 : ε → J2 andτ(C) is verified by
induction. Hence, by bifunctoriality property, concludeG ≡ (C ⊗ G2) ◦ G′,
with τ(C ⊗ G2), as aimed.

2. SupposeG′ v G is due to the fact thatG ≡ G1 ◦ G2, with τ(G1) andG′ v G2.
The induction says that there existsC such thatτ(C) andG2 ≡ C ◦ G′.
Hence,G ≡ G1 ◦ (C ◦ G′). ConcludeG ≡ (G1 ◦ C) ◦ G′, with τ(G1 ◦ C).

Suppose now thatG |= ◊A, this means thatG |= (T ◦ A)ε . According to
Tab. 3.4, this means that there existC andG′ such thatG′ |= A andτ(C), and
G ≡ C ◦ G′. Finally, by Property 1, this meansG′ v G andG′ |= A. �

Theeverywheremodality (◊) is dual to ◊. A term satisfies the formula◊ A
if each of its sublocations satisfiesA.

4.2 Logical properties deriving form categorical axioms
For every axiom of the model, the logic proves a corresponding property. In
particular, the bifunctoriality property is expressed by formulae

(AI ◦ B→I ) ⊗ (A′J ◦ B′→J)⇔ (AI ⊗ A′J) ◦ (B→I ⊗ B′→J)
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valid when (I ⊗ J)↓ .
In general, given two formulaeA, B we say thatA yields B, and we write

A ` B, if for every termG it is the case thatG |= A impliesG |= B. Moreover, we
write A a` B to say bothA ` B andB ` A.

Assume thatI andJ are two interfaces such that their tensor productI ⊗ J is
defined. Then, the bifuctoriality property in the logic is expressed by

(AI ◦ B→I ) ⊗ (A′J ◦ B′→J) a` (AI ⊗ A′J) ◦ (B→I ⊗ B′→J). (1)

In fact, we prove the following

Proposition 2. Whenever(I ⊗ J)↓ , the equation (1) holds in the logic.

Proof. Prove separately the two way of the satisfaction. First prove

(AI ◦ B→I ) ⊗ (A′J ◦ B′→J) ` (AI ⊗ A′J) ◦ (B→I ⊗ B′→J)

Assume thatG |= (AI ◦ B→I ) ⊗ (A′J ◦ B′
→J). This means that there exist

G′ : I ′ → I ′′, G′′ : J′ → J′′ such thatI ′ ⊗ J′ and I ′′ ⊗ J′′ are defined, and
G ≡ G′ ⊗ G′′, with G′ |= AI ◦ B→I andG′′ |= A′J ◦ B′

→J. Now, G′ |= AI ◦ B→I

means that there existG1 andG2 such thatG′ ≡ G1 ◦ G2 and

• G1 : I → J′, with τ(G1) andG1 |= A

• G2 : I ′ → I , with G2 |= B

Similarly, G′′ |= A′J ◦ B′
→J meansG′′ ≡ G′1 ◦ G′2 and

• G′1 : J→ J′′, with τ(G′1) andG′1 |= A′

• G′2 : I ′′ → J, with G2 |= B′

In particular, concludeG ≡ (G1 ◦ G2) ⊗ (G′1 ◦ G′2). As I ⊗ J is defined,
(G1 ⊗ G′1) ◦ (G2 ⊗ G′2) is an admissible composition. The bifunctoriality
property impliesG ≡ (G1 ⊗ G′1) ◦ (G2 ⊗ G′2). Moreoverτ(G1 ⊗ G′1), asτ(G1)
andτ(G′1). Hence conclude thatG |= (AI ⊗ A′J) ◦ (B→I ⊗ B′

→J), as required.
For the converse, prove

(AI ⊗ A′J) ◦ (B→I ⊗ B′→J) ` (AI ◦ B→I ) ⊗ (A′J ◦ B′→J).

Assume thatG |= (AI ⊗ A′J) ◦ (B→I ⊗ B′
→J). By following the same lines as

before, deduce thatG ≡ (G1 ⊗ G′1) ◦ (G2 ⊗ G′2), where

• τ(G1 ⊗ G′1)

• G1 : I → J′ such thatG1 |= A

• G′1 : J→ J′′ such thatG′1 |= A′

• G2 : I ′ → I such thatG2 |= B

• G′2 : I ′′ → J such thatG2 |= B′
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Also in this case, we the tensor product of the required interfaces can be per-
formed. Hence compose (G1 ◦ G2) ⊗ (G′1 ◦ G′2). Again, the bifunctoriality
property impliesG ≡ (G1 ◦ G2) ⊗ (G′1 ◦ G′2). Finally, by observing that
τ(G1 ⊗ G′1) implies τ(G1) and τ(G′1), deduceG1 ◦ G2 |= (AI ◦ B→I ) and
(G′1 ◦ G′2) |= (A′J ◦ B′

→J). Then concludeG |= (AI ◦ B→I ) ⊗ (A′J ◦ B′
→J). �

5 BiLog: instances and encodings

In this section BiLog is instantiated to describe place graphs, link graphs and
bigraphs. A spatial logic for bigraphs is a natural composition of a place graph
logic, for tree contexts, and a link graph logic, for name linkings. Each instance
admits an embedding of a well known spatial logic.

5.1 Place Graph Logic

Place graphs are essentially ordered lists of regions hosting unordered labelled
trees with holes, namely contexts for trees. Tree labels correspond to controls
K belonging to a fixed signatureK . The monoid of interfaces is the monoid
(ω,+,0) of finite ordinalsm,n. Ordinals represent the number of holes and re-
gions of place graphs. Place graph terms are generated from the set

Θ = {1 : 0→ 1, idn : n→ n, join : 2→ 1,

γm,n : m+ n→ n+m,K : 1→ 1 for K ∈ K}.

The only structured terms are the controlsK, representing regions containing a
single node with a hole inside. All the other constructors areplacingsand repre-
sent treesm→ n with no nodes: the place identityidn is neutral for composition;
the constructor 1 represents a barren region;join is a mapping of two regions into
one;γm,n is a permutation that interchanges the firstm regions with the following
n. The structural congruence≡ for place graph terms is refined, in Tab. 5.1, by
the usual axioms for symmetry ofγm,n and by the place axioms that essentially
turn the operationjoin ◦ ( ⊗ ) in a commutative monoid with 1 as neutral ele-
ment. In particular, the places generated by composition and tensor product from
γm,n arepermutations. A place graph isprime if it has typeI → 1, namely it has
a single region.

Example 1. The term

G def
= (service◦ (join ◦ (name⊗ description))) ⊗ (push◦ 1)

is a place graph of type 2→ 2, on the signature containing{service, name,
description, push}. It represents an ordered pair of trees. The first tree is labelled
serviceand hasnameanddescriptionas (unordered) children, both children are
actually contexts with a single hole. The second tree is ground as it has a single
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Table 5.1.Additional Axioms for Place Graphs Structural Congruence

Symmetric Category Axioms:
γm,0 ≡ idm Symmetry Id
γm,n ◦ γn,m ≡ idm⊗n Symmetry Composition
γm′,n′ ◦ (G ⊗ F) ≡ (F ⊗ G) ◦ γm,n Symmetry Monoid

Place Axioms:
join ◦ (1 ⊗ id1) ≡ id1 Unit
join ◦ (join ⊗ id1) ≡ join ◦ (id1 ⊗ join) Associativity
join ◦ γ1,1 ≡ join Commutativity

node without children. The termG is congruent to

(service⊗ push) ◦ (join ⊗ 1) ◦ (description⊗ name).

Such a contextual pair of trees can be interpreted as semi-structured partially
completed data (e.g. an XML message, a web service descriptor) that can be
filled by means of composition. Notice that, even if the order between children
of the same node is not modelled, the order is still important for composition of
contexts with several holes. For instance (K1 ⊗ K2) ◦ (K3 ⊗ 1) is different from
(K1 ⊗ K2) ◦ (1 ⊗ K3), as nodeK3 goes insideK1 in the first case, and insideK2

in the second one.

Fixed the transparency predicateτ on each control inK , the Place Graph
Logic PGL(K , τ) is BiLog(ω,+,0,≡,K∪{1, join, γm,n}, τ). We assume the trans-
parency predicateτ to be verified forjoin andγm,n. Theorem 1 can be extended
to PGL, thus such a logic can describe place graphs precisely. The logic resem-
bles a propositional spatial tree logic, in the style of [3]. The main differences
are that PGL models contexts of trees and that the tensor product is not commu-
tative, unlike the parallel composition in [3], and it enables the modelling of the
order among regions. The logic can express a commutative separation by using
join and the tensor product, namely theparallel compositionoperator

A | B def
= join ◦ (A→1 ⊗ B→1).

At the term level, this separation, which is purely structural, corresponds tojoin ◦
(P1 ⊗ P2), that is a total operation on all prime place graphs. More precisely, the
semantics says thatP |= A | B means that there existP1 : I1→ 1 andP2 : I2→ 1
such that:P ≡ join ◦ (P1 ⊗ P2) andP1 |= A andP2 |= B.

5.2 Encoding STL
Not surprisingly, prime ground place graphs are isomorphic to the unordered
trees modelling the static fragment of ambient logic. Here we show that, when
the transparency predicate is always verified, BiLog restricted to prime ground
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Table 5.2.Information tree Terms (overΛ) and congruence

T,T′::= 0 empty tree consisting of a single root node
a[T] single edge tree labelled l ∈ Λ leading to the subtree T
T | T′ tree obtained by merging the roots of the trees T and T′

T | 0 ≡ T neutral element
T | T′ ≡ T′ | T commutativity
(T | T′) | T′′ ≡ T | (T′ | T′′) associativity

Table 5.3.Propositional Spatial Tree Logic

A, B ::= F anything a[A] location
0 empty tree A@a location adjunct
A⇒ B implication A | B composition

A . B composition adjunct

T |= F iff never
T |= 0 iff F ≡ 0
T |= A⇒ B iff T |= A implies T |= B
T |= a[A] iff there exists T′ s.t. T ≡ a[F′] and T′ |= A
T |= A@a iff a[T] |= A
T |= A | B iff there exists T1,T2 s.t.

T ≡ T1 | T2 and T1 |= A and T2 |= B
T |= A . B iff for every T′: if T′ |= A implies T | T′ |= B

place graphs is equivalent to the propositional Spatial Tree Logic of [3] (STL in
the following). The logic STL expresses properties of unordered labelled trees
T constructed from the empty tree 0, the labelled node containing a treea[T],
and the parallel composition of treesT1 | T2, as detailed in Tab. 5.2. Labelsa
are elements of a denumerable setΛ. STL is a static fragment of the ambient
logic [7] and it is characterised by the usual classical propositional connectives,
the spatial connectives 0,a[A], A | B, and their adjunctsA@a, A . B. The
language of the logic and its semantics is outlined in Tab. 5.3.

Table 5.4 encodes the tree model of STL into prime ground place graphs,
and STL operators into PGL operators. We assume a bijective encoding between
labels and controls, and we associate every labela with a distinct controlK(a) of
arity 0. As already said, we assume the transparency predicate to be verified on
every control. The monoidal properties of parallel composition are guaranteed by
the symmetry and unit axioms ofjoin. The equations are self-explanatory once
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Table 5.4.Encoding STL in PGL over prime ground place graphs

Trees into Prime Ground Place Graphs
[[ 0 ]] def

= 1 [[ a[T] ]] def
= K(a) ◦ [[ T ]] [[ T1 | T2 ]] def

= join ◦ ([[ T1 ]] ⊗ [[ T2 ]])

STL formulae into PGL formulae
[[ 0 ]] def

= 1 [[ a[A] ]] def
= K(a) ◦1 [[ A ]]

[[ F ]] def
= F [[ A@a ]] def

= K(a)�1 [[ A ]]
[[ A⇒ B ]] def

= [[ A ]] ⇒ [[ B ]] [[ A | B ]] def
= [[ A ]] | [[ B ]]

[[ A . B ]] def
= ([[ A ]] | id1)�1 [[ B ]]

we remark that:(i) the parallel composition of STL is the structural commuta-
tive separation of PGL;(ii) tree labels can be represented by the corresponding
controls of the place graph;(iii) location and composition adjuncts of STL are
encoded by the left composition adjunct, as they add logically expressible con-
texts to the tree. This encoding is actually a bijection tree to prime ground place
graphs. In fact, there is aninverse encoding([ ]) for prime ground place graphs
in trees defined on the normal forms of [19].

The theorem of discrete normal form in [19] implies that every ground place
graphg : 0→ 1 may be expressed as

g = joinn ◦ (M0 ⊗ . . . ⊗ Mn−1) (2)

where everyM j is a molecular prime ground place graph of the form

M = K(a) ◦ g,

with ar(K(a)) = 0. As an auxiliary notation,joinn is inductively defined as

join0
def
= 1

joinn+1
def
= join ◦ (id1 ⊗ joinn)

The theorem in [19] says that the normal form defined in (2) is unique, modulo
permutations.

For every prime ground place graph, the inverse encoding ([ ]) considers its
discrete normal form and it is inductively defined as follows

([ join0 ]) def
= 0

([ K(a) ◦ q ]) def
= a[ ([ q ]) ]

([ joins ◦ (M0 ⊗ . . . ⊗ Ms−1) ]) def
= ([ M0 ]) | . . . | ([ Ms−1 ])

By noticing that the bifunctoriality property implies

joinn ◦ (M0 ⊗ . . . ⊗ Mn−1) ≡

≡ join ◦ (M0 ⊗ (join ◦ (M1 ⊗ (join ◦ (. . . ⊗ (join ◦ (Mn−2 ⊗ Mn−1))))))),
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it is easy to see that the encodings [[ ]] and ([ ]) are one the inverse of the other,
hence they give a bijection from trees to prime ground place graphs, fundamental
in the proof of the following theorem.

Theorem 2 (Encoding STL). For each tree T and formula A of STL:

T |= A if and only if [[ T ]] |= [[ A ]] .

Proof. The theorem is proved by structural induction on STL formulae. The
transparency predicate is not considered here, as it is verified on every control.
The basic step deals with the constantsF and0. CaseF follows by definition.
For the case0, [[ T ]] |= [[ 0 ]] means [[T ]] |= 1, that by definition is [[T ]] ≡ 1 and
soT ≡ ([ [[ T ]] ]) ≡ ([ 1 ]) def

= 0, namelyT |= 0.
The inductive steps deal with connectives and modalities.

C A⇒ B. Assuming [[T ]] |= [[ A ⇒ B ]] means [[T ]] |= [[ A ]] ⇒ [[ B ]]; by
definition this says that [[T ]] |= [[ A ]] implies [[ T ]] |= [[ B ]]. By induction
hypothesis, this is equivalent to say thatT |= A impliesT |= B, namely
T |= A⇒ B.

C a[A]. Assuming [[T ]] |= [[ a[A] ]] means [[T ]] |= K(a) ◦1 ([[ A ]]). This
amount to say that there existG : 1→ 1 andg : 0→ 1 such that [[T ]] ≡ G ◦
g andG |= K(a) andg |= [[ A ]], that is [[T ]] ≡ K(a) ◦ g with g |= [[ A ]]. Since
the encoding is bijective, this is equivalent toT ≡ ([ K(a) ◦ g ]) def

= a[([ g ])] with
g |= [[ A ]]. Sinceg : 0 → 1, the induction hypothesis says that ([g ]) |= A.
Hence it is the case thatT |= a[A].

C A@a. Assuming [[T ]] |= [[ A@a ]] means [[T ]] |= K(a) �1 A. This is
equivalent to say that for everyG such thatG |= K(a), if (G ◦ [[ T ]])↓ then
G ◦ [[ T ]] |= [[ A ]]. According to the definitions, this isK(a) ◦ [[ T ]] |= [[ A ]],
and so [[a[T] ]] |= [[ A ]]. By induction hypothesis, this isa[T] |= A. Hence
T |= A@a by definition.

C A | B. Assuming that [[T ]] |= [[ A | B ]] means [[T ]] |= [[ A ]] | [[ B ]]. This is
equivalent to say that [[T ]] |= join ◦ ([[ A ]]→1 ⊗ [[ B ]]→1), namely there exist
g1,g2 : 0 → 1 such that [[T ]] ≡ join ◦ (g1 ⊗ g2) andg1 |= [[ A ]] and g2 |=

[[ B ]]. As the encoding is bijective this means thatT ≡ ([ g1 ]) | ([ g2 ]), and the
induction hypothesis says that ([g1 ]) |= A and ([g2 ]) |= B. By definition this
is T |= A | B.

C A . B. Assuming that [[T ]] |= [[ A . B ]] means

[[ T ]] |= join ([[ A ]] ⊗ id1))�1 [[ B ]]

namely, for everyG : 1 → 1 such thatG |= join ([[ A ]] ⊗ id1) it holdsG ◦
[[ T ]] |= [[ B ]]. Now, G : 1→ 1 andG |= join ([[ A ]] ⊗ id1) means that there
existsg : 0 → 1 such thatg |= [[ A ]] and G ≡ join(g ⊗ id1). Hence it is the
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case that for everyg : 0 → 1 such thatg |= [[ A ]] it holds join(g ⊗ id1) ◦
[[ T ]] |= [[ B ]], that is join(g ⊗ [[ T ]]) |= [[ B ]] by bifunctoriality property.
Since the encoding is a bijection, this is equivalent to say that for every tree
T′ such that [[T′ ]] |= [[ A ]] it holds join([[ T′ ]] ⊗ [[ T ]]) |= [[ B ]], that is [[T′ |
T ]] |= [[ B ]]. By induction hypothesis, for everyT′ such thatT′ |= A it
holdsT′ | T |= B, that is the semantics ofT |= A . B.

�

Differently from STL, PGL can also describe structures with several holes
and regions. In [12] we show how PGL describes contexts of tree-shaped semi-
structured data. In particular the multi-contexts are useful to specify properties
of web-services. Consider, for instance, a function taking two trees and returning
the tree obtained by merging their roots. Such a function is represented by the
term join, which solely satisfies the formulajoin . Similarly, the function that
takes a tree and encapsulates it inside a nodelabelledby K, is represented by the
termK and captured by the formulaK. Moreover, the formulajoin ◦ (K ⊗ (T ◦
id1)) expresses all contexts of form 2→ 1 that place their first argument inside a
K node and their second one as a sibling of such node.

5.3 Link Graph Logic (LGL).

Fixed a denumerable set of namesΛ, we consider the monoid (Pfin(Λ),], ∅),
wherePfin( ) is the finite powerset operator and] is the subset disjoint union.
Link graphs are the structures arising from such a monoid. They can describe
nominal resources, common in many areas: object identifiers, location names in
memory structures, channel names, and ID attributes in XML documents. The
fact that names cannot be implicitly shared does not mean that we can refer
to them or link them explicitly (e.g. object references, location pointers, fusion
in fusion calculi, and IDREF in XML files). Link graphs describe connections
between resources performed by means of names, that arereferences.

Wiring terms are a structured way to map a set of inner namesX into a
set of outer namesY. They are generated by the constructors:/a : {a} → ∅
and a/X : X → a. The closure/a hides the inner namea in the outer face.
The substitutiona/X associates all the names in the setX to the namea. We
denote wirings byω, substitutions byσ, τ, and bijective substitutions, dubbed
renamings, byα, β. Substitution can be specialised in:

a def
=

a/∅; a← b def
=

a/{b}; a⇔ b def
=

a/{a,b}.

The constructora represents the introduction of namea, the terma← b corre-
sponds to renameb to a, anda⇔ b links, or fuses,a andb to namea.

Given a signatureK of controlsK with arity functionar(K) we generate link
graphs from wirings and the constructorK~a : ∅ → ~a with ~a = a1, . . . ,ak, K ∈ K ,
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Table 5.5.Additional Axioms for Link Graph Structural Congruence

Link Axioms:
a/a ≡ ida Link Identity
/a ◦ a/b ≡ /b Closing renaming
/a ◦ a ≡ idε Idle edge
b/(Y]a) ◦ (idY ⊗

a/X) ≡ b/Y]X Composing substitutions

Link Node Axiom:
α ◦ K~a ≡ Kα(~a) Renaming

andk = ar(K). The controlK~a represents a resource of kindK with named ports
~a. Any ports may be connected to other node ports via wiring compositions.

In this case, the structural congruence≡ is refined as outlined in Tab. 5.5
with obvious axioms for links, modellingα-conversion and extrusion of closed
names. We assume the transparency predicateτ verified for wiring constructors.

Fixed the transparency predicateτ for each control inK , the Link Graph
Logic LGL(K , τ) is BiLog(Pfin(Λ),], ∅,≡,K ∪ {/a, a/X}, τ). Theorem 1 extends
up to LGL, hence the logic describes the link graphs precisely. The logic ex-
presses structural spatiality for resources and strong spatiality (separation) for
names, and it can therefore be viewed as a generalisation of Separation Logic
for contexts and multi-ports locations. On the other side, the logic can describe
resources with local (hidden or private) names between resources, and in this
sense the logic is a generalisation of Spatial Graph Logic [5]: it is sufficient to
consider the edges as resources.

Moreover, if we consider identity as a constructor, it is possible to define

a← b def
= (a⇔ b) ◦ (a ⊗ idb).

In LGL the formulaA ⊗ B describes a decomposition into twoseparatelink
graphs, sharing neither resources, nor names, nor connections, that satisfyA and
B respectively. Since it is defined only on link graphs with disjoint inner/outer
sets of names, the tensor product makes is a kind aspatial/separationoperator,
in the sense that it separates the model into two distinct parts that cannot share
names.

Observe that in this case, horizontal decomposition inherits the commutativ-
ity property from the monoidal tensor product. If we want a namea to be shared
between separated resources, we need to make the sharing explicit, and the sole
way to do that is through the link operation. We therefore need a way to first
separate the names occurring in two wirings as to apply the tensor, and then link
them back together.

As a shorthand, ifW : X → Y andW′ : X′ → Y′ with Y ⊂ X′, we write
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[W′]W for (W′ ⊗ idX′\Y) ◦ W and if~a = a1, . . . ,an and~b = b1, . . . ,bn, we write
~a ← ~b for a1 ← b1 ⊗ . . . ⊗ an ← bn, similarly for ~a ⇔ ~b. From the tensor
product it is possible to derive a product with sharing on~a. GivenG : X → Y
andG′ : X′ → Y′ with X ∩ X′ = ∅, we choose a list~b (with the same length as
~a) of fresh names. The composition with sharing~a is

G
~a
⊗ G′ def

= [~a⇔ ~b](([~b← ~a] ◦ G) ⊗ G′).

In this case, the tensor product is well defined since all the common names~a in
W are renamed to fresh names, while the sharing is re-established afterwards by
linking the~a names with the~b names.

By extending this sharing to all names we define the parallel compositionG |
G′ as a total operation. However, such an operator does not behave ‘well’ with
respect to the composition, as shown in [19]. In addition a direct inclusion of a
corresponding connective in the logic would impact the satisfaction relation by
expanding the finite horizontal decompositions to the boundless possible name-
sharing decompositions. (This may be the main reason why logics describing
models with name closure and parallel composition are undecidable [11].) This
is due to the fact that the set of names shared by a parallel composition is not
known in advance, and therefore parallel composition can only be defined by
using an existential quantification over the entire set of shared names.

Names can be internalised and effectively made private to a bigraph by the
closure operator/a. The effect of composition with/a is to add a new edge with
no public name, and therefore to makea to disappear from the outerface, and
hence be completely hidden to the outside. Separation is still expressed by the
tensor connective, which not only separates places with an ideal line, but also
makes sure that no edge – whether visible or hidden – crosses the line.

As a matter of fact, without name quantification it is not possible to build for-
mulae that explore a link, since the latter has the effect of hiding names. For this
task, we employ the name variablesx1, ..., xn and the fresh name quantification

N. in the style of Nominal Logic [24]. The semantics is defined as

G |= Nx1 . . . xn.A iff there exist a1 . . . an < fn(G) ∪ fn(A)

such that G|= A{x1 . . . xn← a1 . . . an},

whereA{x1 . . . xn← a1 . . . an} is the usual variable substitution.
By fresh name quantification we define a notion of~a-linked name quantifi-

cation for fresh names, whose purpose is to identify names linked to~a, as

~aL ~x.A def
= N~x. ((~a⇔ ~x) ⊗ id) ◦ A.

The formula above expresses that the variables in~x denote inA names that are
linked in the term to~a, and the role of (~a⇔ ~x) is to link the fresh names~x with
~a, while id deals with names not in~a. We also define aseparation-up-toas the
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decomposition in two terms that are separated apart from the link on the specific
names in~a, which crosses the separation line.

A
~a
⊗ B def
= ~aL ~x. (((~x← ~a) ⊗ id) ◦ A) ⊗ B.

The idea of the formula above is that the shared names~a are renamed in fresh
names~x, so that the product can be performed and finally~x is linked to~a to
actually have the sharing.

The following lemma states that the two definition are consistent.

Lemma 3 (Separation-up-to). If g |= A
~x
⊗ B with g : ε → X, and~x is the vector

of the elements in X, then there exist g1 : ε → X and g2 : ε → X such that

g ≡ g1
~x
⊗ g2 and g1 |= A and g2 |= B.

Proof. Simply apply the definitions and observe that the identities must be nec-
essarilyidε , as the outer face ofg is restricted to beX. �

The corresponding parallel composition operator is not directly definable by
using the separation-up-to. In fact, in arbitrary decompositions the name shared
are not all known a priori, hence we would not know the vector~x in the oper-

ator sharing/separation operator
~x
⊗. However, next section shows that a careful

encoding is possible for the parallel composition of spatial logics with nominal
resources.

5.4 Encoding SGL
We show that LGL can be seen as a contextual (multi-edge) version of Spatial
Graph Logic (SGL) [5]. The logic SGL expresses properties of directed graphs
G with labelled edges. The notationa(x, y) represents an edge from the nodex to
y and labelled bya. The graphsG are built from the empty graphnil and the edge
a(x, y) by using the parallel compositionG1 | G2 and the binding for local names
of nodes (νx)G. The syntax and the structural congruence for spatial graphs are
outlined in Tab. 5.6.

The graph logic combines standard propositional logic with the structural
connectives: composition and basic edge. Even if here we focus on its proposi-
tional fragment, the logics of [5] also includes edge label quantifier and recur-
sion. In [5] SGL is used as a pattern matching mechanism of a query language
for graphs. In addition, the logic is integrated withtransducersto allow graph
transformations. There are several applications for SGL, including description
and manipulation of semistructured data. Table 5.7 depicts the syntax and the
semantics of the fragment we consider.

We consider a signatureK with controls of arity 2, we assume a bijective
function associating every labela to a distinct controlK(a). The ports of the
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Table 5.6.Spatial graph Terms (with local names) and congruence

G,G′::= nil empty graph
a(x, y) single edge graph labelled a∈ Λ connecting the nodes x, y
G | G′ composing the graphs G,G′, with sharing of nodes
(νx)G the node x is local in G

G | nil ≡ G neutral element
G | G′ ≡ G′ | G commutativity
(G | G′) | G′′ ≡ G | (G′ | G′′) associativity
y < f n(G) implies (νx)G ≡ (νy)G{x← y} renaming
(νx)nil ≡ nil extrusion Zero
x < f n(G) implies G | (νx)G′ ≡ (νx)(G | G′) extrusion composition
x , y, z implies (νx)a(y, z) ≡ a(y, z) extrusion edge
(νx)(νy)G ≡ (νy)(νx)G extrusion restriction

controls represent the starting and arrival node of the associated edge. The trans-
parency predicate is defined to be verified on every control. The resulting link
graphs are interpreted as contextual graphs with labelled edges, whereas the re-
sulting class of ground link graphs is isomorphic to the graph model of SGL.

Table 5.8 encodes the graphs modelling SGL into ground link graphs and
SGL formulae into LGL formulae. The encoding is parametric on a finite setX
of names containing the free names of the graph under consideration. Observe
that when we force the outer face of the graphs to be a fixed finite setX, the
encoding of parallel composition is simply the separation-up-to~x, where~x is a
list of all the elements inX. Notice also how local names are encoded into name
closures. Thanks to the Connected Normal Form provided in [19], it is easy
to prove that ground link graphs featuring controls with exactly two ports are
isomorphic to spatial graph models. As we impose a bijection between arrows
labels and controls, the signature and the label set must have the same cardinality.

Lemma 4 (Isomorphism for spatial graphs). There exists a mapping([ ]) , in-
verse to[[ ]] , such that:

1. For every ground link graph g with outer face X in the signature featuring a
countable set of controlsK, all with arity 2, it holds

f n(([ g ])) = X and [[ ([ g ]) ]] X ≡ g.

2. For every spatial graph G with f n(G) = X it holds

[[ G ]] X : ε → X and ([ [[ G ]] X ]) ≡ G.

Proof. The idea is to interpret link graphs as bigraphs without nested nodes and
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Table 5.7.Propositional Spatial Graph Logic (SGL)

ϕ, ψ ::= F false a(x, y) an edge from x to y
nil empty graph ϕ | ψ composition
ϕ⇒ ψ implication

G |= F iff never
G |= nil iff G ≡ nil
G |= ϕ⇒ ψ iff G |= ϕ implies G |= ψ
G |= a(x, y) iff G ≡ a(x, y)
G |= ϕ | ψ iff there exists G1,G2 s.t.

G ≡ G1 | G2 and G1 |= ϕ and G2 |= ψ

Table 5.8.Encoding Propositional SGL in LGL over ground link graphs

Spatial Graphs into Two-ported Ground Link Graphs
[[ nil ]] X

def
= X

[[ a(x, y) ]] X
def
= K(a)x,y ⊗ X \ {x, y}

[[ (νx)G ]] X
def
= ((/x ⊗ idX\{x}) ◦ [[ G ]] {x}∪X)) ⊗ ({x} ∩ X)

[[ G | G′ ]] X
def
= [[ G ]] X

~x
⊗ [[ G′ ]] X

SGL formulae into LGL formulae
[[ nil ]] X

def
= X [[ a(x, y) ]] X

def
= K(a)x,y ⊗ (X \ {x, y})

[[ F ]] X
def
= F [[ ϕ⇒ ψ ]] X

def
= [[ ϕ ]] X ⇒ [[ ψ ]] X

[[ ϕ | ψ ]] X
def
= [[ ϕ ]] X

~x
⊗ [[ ψ ]] X

typeε → 〈1,X〉. The results in [19] say that a bigraph without nested nodes and
〈1,X〉 as outerface have the following normal form (whereY ⊆ X):

G ::= (/Z | id〈1,X〉) ◦ (X | M0 | . . . | Mk−1)

M ::= Kx,y(a) ◦ 1

The inverse encoding is based on such a normal form:

([ (/Z | id〈1,X〉) ◦ (X | M0 | . . . | Mk−1) ]) def
= (νZ) (nil | ([ M0 ]) | . . . | ([ Mk−1 ]))

([ Kx,y(a) ◦ 1 ]) def
= a(x, y)

Notice that the extrusion properties of local names correspond to node and link
axioms. The encodings [[ ]] and ([ ]) provide a bijection, up to congruence, be-
tween graphs of SGL and ground link graphs with outer faceX and built by
controls of arity 2. �
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The previous lemma is fundamental in proving that the soundness of the
encoding forSGLin BiLog, stated in the following theorem.

Theorem 3 (Encoding SGL). For every graph G, every finite set X containing
fn(G), and every formulaϕ of the propositional fragment of SGL:

G |= ϕ if and only if [[ G ]] X |= [[ ϕ ]] X.

Proof. By induction on formulae of SGL. The transparency predicate is not con-
sidered here, as it is verified on every control. The basic step deals with the
constantsF, nil and a(x, y). CaseF follows by definition. For the casenil ,
[[ G ]] X |= [[ nil ]] X means [[G ]] X |= X, that by definition is [[G ]] X ≡ X and
so G ≡ ([ [[ G ]] X ]) ≡ ([ X ]) def

= nil, namelyG |= nil . For the casea(x, y),
to assume [[G ]] X |= [[ a(x, y) ]] X means [[G ]] X |= K(a)x,y ⊗ X \ {x, y}. So
G ≡ ([ [[ G ]] X ]) ≡ ([ K(a)x,y ⊗ X \ {x, y} ]) ≡ a(x, y), that isG |= a(x, y).

The inductive steps deal with connectives.

C ϕ⇒ ψ. To assume [[G ]] X |= [[ ϕ⇒ ψ ]] X means [[G ]] X |= [[ ϕ ]] X ⇒ [[ ψ ]] X;
by definition this says that [[G ]] X |= [[ ϕ ]] X implies [[G ]] X |= [[ ψ ]] X. By
induction hypothesis, this is equivalent to say thatG |= ϕ impliesG |= ψ,
namelyG |= ϕ⇒ ψ.

C ϕ | ψ. To assume [[G ]] X |= [[ ϕ | ψ ]] X means [[G ]] X |= [[ ϕ ]] X
~x
⊗ [[ ψ ]] X. By

Lemma 3 there existsg1, g2 such that [[G ]] X ≡ g1
~x
⊗ g2 andg1 |= [[ ϕ ]] X and

g2 |= [[ ψ ]] X. Let G1 = ([ g1 ]) andG2 = ([ g2 ]), Lemma 4 says that [[G1 ]] X ≡

g1 and [[G2 ]] X ≡ g2, and by conservation of congruence, [[G1 ]] X |= [[ ϕ ]] X

and [[G2 ]] X |= [[ ψ ]] X. Hence the induction hypothesis says thatG1 |= ϕ

andG2 |= ψ. In addition [[G1 | G2 ]] X ≡ [[ G1 ]] X
~x
⊗ [[ G2 ]] X ≡ g1

~x
⊗

g2 ≡ [[ G ]] X. Conclude thatG admits a parallel decomposition with parts
satisfyingA andB, thusG |= ϕ | ψ.

�

In LGL it could be also possible to encode the Separation Logics on heaps:
names used as identifiers of location will be forcibly separated by tensor product,
while names used for pointers will be shared/linked. However we don’t encode it
explicitly since in the following we will encode a more general logic: the Context
Tree Logic [4].

5.5 Pure bigraph Logic

By combining the structures of link graphs and place graphs we generate all
the (abstract pure) bigraphsof [16]. In this case the underlying monoid is the
product of link and place interfaces, namely (ω × Pfin(Λ),⊗, ε) where〈m,X〉 ⊗
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Table 5.9.Additional axioms for Bigraph Structural Congruence

Symmetric Category Axioms:
γI ,ε ≡ idI Symmetry Id
γI ,J ◦ γJ,I ≡ idI⊗J Symmetry Composition
γI ′,J′ ◦ (G ⊗ F) ≡ (F ⊗ G) ◦ γI ,J Symmetry Monoid

Place Axioms:
join ◦ (1 ⊗ id1) ≡ id1 Unit
join ◦ (join ⊗ id1) ≡ join ◦ (id1 ⊗ join) Associativity
join ◦ γ1,1 ≡ join Commutativity

Link Axioms:
a/a ≡ ida Link Identity
/a ◦ a/b ≡ /b Closing renaming
/a ◦ a ≡ idε Idle edge
b/(Y]a) ◦ (idY ⊗

a/X) ≡ b/Y]X Composing substitutions

Node Axiom:
(id1 ⊗ α) ◦ K~a ≡ Kα(~a) Renaming

〈n,X〉 def
= 〈m+ n,X ] Y〉 andε def

= 〈0, ∅〉. As a short notation, we useX for 〈0,X〉
andn for 〈n, ∅〉.

A set of constructors for bigraphical terms is obtained as the union of place
and link graph constructors, except the controlsK : 1→ 1 andK~a : ∅ → ~a, which
are replaced by the newdiscrete ionconstructors, denoted byK~a : 1→

〈
1, ~a
〉
. It

represents a prime bigraph containing a single node with ports named~a and an
hole inside. Bigraphical terms are thus defined in relation to a control signature
K and a set of namesΛ, as detailed in [19].

The structural congruence for bigraphs corresponds to the sound and com-
plete bigraph axiomatisation of [19]. The additional axioms are reported in
Tab. 5.10: they are essentially a combination of the axioms for link and place
graphs, with slight differences due to the interfaces monoid. In detail, we define
the symmetry asγI ,J

def
= γm,n ⊗ idX]Y whereI = 〈m,X〉 andJ = 〈n,Y〉, and we

restate the node axiom by taking care of the places.
PGL excels at expressing properties ofunnamedresources, that are resources

accessible only by following the structure of the term. On the other hand, LGL
characterises names and their links to resources, but it has no notion of locality.
A combination of them ought to be useful to model nominal spatial structures,
either private or public.

BiLog promises to be a good (contextual) spatial logic for (semi-structured)
resources with nominal links, thanks to bigraphs’ orthogonal treatment of local-
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ity and connectivity. To testify this, §5.7 shows how recently proposed Context
Logic for Trees (CTL) [4] can be encoded into bigraphs. The idea of the encod-
ing is to extend the encoding of STL with (single-hole) contexts and identified
nodes. First, §5.6 gives some details on the transparency predicate.

5.6 Transparency on bigraphs
In the logical framework we gave the minimal restrictions on the transparency
predicate to prove our results. Here we show a way to define a transparency
predicate. The most natural way is to make the transparent terms a sub-category
of the more general category of terms. This essentially means to impose the
product and the composition of two transparent terms to be transparent.

Thus transparency on all terms is derived from a transparency policyτΘ( )
defined only on the constructors. Note that the transparency definition depends
also on the congruence. In the following definition we show how to derive the
transparency from a transparency policy.

Definition 2 (Transparency). Given the monoid of interfaces(M,⊗, ε), the set
of constructorsΘ, the congruence≡ and a transparency policy predicateτΘ
defined on the constructors inΘ we define the transparency on terms as follows:

G ≡ idI

τ(G)
∃I .G : ε → I

τ(G)
G ≡ Ω τΘ(Ω)

τ(G)
G ≡ G1 ⊗ G2 τ(G1) τ(G2)

τ(G)
G ≡ G1 ◦ G2 τ(G1) τ(G2)

τ(G)

Next lemma proves that the condition we posed on the transparency predicate
holds for this particular definition.

Lemma 5 (Transparency properties). If G is ground or G is an identity then
τ(G) is verified. Moreover, if G≡ G′ thenτ(G) is equivalent toτ(G′).

Proof. The former statement is verified by definition. The latter is proved by
induction on the derivations. �

We assume every bigraphical constructor, that is not a control, to be trans-
parent and the transparency policy to be defined only on the controls. The trans-
parency the policy can be defined. for instance, for security reasons.

5.7 Encoding CTL
Paper [4] presents a spatial context logic to describe programs manipulating a
tree structured memory. The model of the logic is the set of unordered labelled
treesT andlinear contexts C, which are trees with a unique hole. Every node has
a name, so to identify memory locations. From the model, the logic is dubbed
Context Tree Logic, CTL in the following. Given a denumerable set of labels
and a denumerable set of identifiers, trees and contexts are defined in Tab. 5.10:
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Table 5.10.Trees with pointers and Tree Contexts

T,T′ ::= 0 empty tree
ax[T] a tree labelled a with identifier x and subtree T
T | T′ partial parallel composition

C ::= − an hole (the identity context)
ax[C] a tree context labelled a with identifier x and subtree C
T | C context right parallel composition
C | T context left parallel composition

a represents a label andx an identifier. The insertion of a treeT in a context
C, denoted byC(T), is defined in the standard way, and corresponds to fill the
unique hole ofC with the treeT. A well formed treeor contextis one where the
node identifiers are unique. The model of the logic is composed by trees and con-
texts that are well formed. In particular, composition, node formation and tree
insertion arepartial as they are restricted to well-formed trees. The structural
congruence between trees is the smallest congruence that makes the parallel op-
erator to be commutative, associative and with the empty tree as neutral element.
Such a congruence is naturally extended to contexts.

The logic exhibits two kinds of formulae:P, describing trees, andK, de-
scribing tree contexts. It has two spatial constants, the empty tree forP and the
hole forK, and four spatial operators: the node formationax[K], the application
K(P), and its two adjunctsK . P andP1 / P2. The formulaax[K] describes a
context with a single root labelled bya and identified byx, whose content satis-
fiesK. The formulaK . P represents a tree that satisfiesP whenever inserted in
a context satisfyingK. Dually, P1 / P2 represents contexts that composed with a
tree satisfyingP1 produce a tree satisfyingP2. The complete syntax of the logic
is outlined in Tab. 5.11, the semantics in 5.12.

CTL can be naturally embedded in an instance of BiLog. The complete
structure of the Context Tree Logic has also link values, but for simplicity here
we restrict our attention to the fragment without them. As already said, the terms
giving a semantics to CTL are constrained not to share identifiers: two nodes
cannot have the same identifier, as it represents a precise location in the memory.
This is easily obtained with bigraph terms by encoding the identifiers as names
and the composition as tensor product, that separates them. We encode such a
structure in BiLog by lifting the application to a particular kind of composition,
and similarly for the two adjuncts.

The tensor product on bigraphs is both a spatial separation, like in the models
for STL, and a partially-defined separation on names, like pointer composition
for separation logic. Since we deal with both names and places, we define a
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Table 5.11.Context Tree Logic (CTL)

P,P′ ::= false
0 empty tree formula
K(P) context application
K / P context application adjunct
P⇒ P′ implication

K,K′::= false
− identity context formula
ax[K] node context formula
P . P′ context application adjunct
P | K parallel context formula
K ⇒ K′ implication

Table 5.12.Semantics for CTL

T |=T false iff never
T |=T 0 iff T ≡ 0
T |=T K(P) iff there exist C,T′ s.t. C(T′) well-formed, and T ≡ C(T′)

and C |=K K and T′ |=T P
T |=T K / P iff for every C: C |=K K and C(T) well-formed

implies C(T) |=T P
T |=T P⇒ P′ iff T |=T P implies T |=T P′

C |=K false iff never
C |=K − iff C ≡ −
C |=K ax[K] iff there exists C′ s.t. ax[C′] well-formed, and

C ≡ ax[C′] and C′ |=K K
C |=K P . P′ iff for every T: T |=T P and C(T) well-formed

implies C(T) |=T P′

C |=K P | K iff there exist C′,T s.t. T | C′ well-formed, and
C ≡ T | C′ and T |=T P and C′ |=K K

C |=K K ⇒ K′ iff C |=K K implies T |=T K′
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formula id〈m, 〉 to represent identities on places by constraining the place part of
the interface to be fixed and leaving the name part to be free:

id〈m, 〉 def
= idm ⊗ (id ∧ ¬(id∃⊗1 )).

It is easy to see thatG |= id〈m,−〉 means that there exits a set of namesX such that
G ≡ idm ⊗ idX. By using such an identity formula we define the corresponding
typed composition◦〈m, 〉 and the typed adjuncts�〈m, 〉, (〈m, 〉:

A ◦〈m, 〉 B def
= A ◦ id〈m, 〉 ◦ B

A�〈m, 〉 B def
= (id〈m, 〉 ◦ A)� B

A(〈m, 〉 B def
= (A ◦ id〈m, 〉)� B

We then define the operator∗ for the parallel composition with separation oper-
ator∗ as both a term constructor and a logical connective:

D ∗ E def
= [join](D ⊗ E) for D andE prime bigraphs

A ∗ B def
= (join ⊗ id〈0, 〉) ◦ (A→〈1, 〉 ⊗ B→〈1, 〉) for A andB formulae

The operator∗ enables the encoding of trees and contexts to bigraphs. In
particular, we consider a signature with controls of arity 1 and we define the
transparency predicate to be verified on every control. Moreover we assume a
bijective function from tags to controls

ax 7−→ K(a)x.

The details are outlined in Tab. 5.13. The encodings of trees turn out to beground
prime discrete bigraphs: bigraphs with open links and type 0→ 〈1,X〉. The
result in [19] says that the normal form, up to permutations, for ground prime
discrete bigraphs is:

g = (joink ⊗ idX) ◦ (M1 ⊗ . . . ⊗ Mk),

whereMi are discrete ground molecules of the form

M = (K(a)x ⊗ idY)g.

We can now define the reverse encoding ([ ]) of [[ ]], from ground prime discrete
bigraphs to trees, involving such a normal form:

([ join0 ]) def
= 0

([ (K(a)x ⊗ idY) ◦ g ]) def
= ax[ ([ g ]) ]

([ (joink ⊗ idY) ◦ (M1 ⊗ . . . ⊗ Mk) ]) def
= ([ M1 ]) ∗ . . . ∗ ([ Mk ])

Moreover, the encodings of linear contexts turn out to beunary discrete bi-
graphs G: bigraphs with open links and type〈1,X〉 → 〈1,Y〉. Again, the result in
[19] implies that the normal form, up to permutations, for unary discrete bigraphs
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Table 5.13.Encoding CTL in BiLog over prime discrete ground bigraphs

Trees into prime ground Contexts into unary discrete bigraphs
discrete bigraphs [[ − ]]C

def
= id1

[[ 0 ]] def
= 1 [[ ax[C] ]] C

def
= (K(a)x ⊗ f n(C)) ◦ [[ C ]]C

[[ ax[T] ]] def
= (K(a)x ⊗ f n(T)) ◦ [[ T ]] [[ T | C ]]C

def
= [[ T ]] ∗ [[ C ]]C

[[ T1 | T2 ]] def
= [[ T1 ]] ∗ [[ T2 ]] [[ C | T ]]C

def
= [[ C ]]C ∗ [[ T ]]

TL formulae into PGL formulae CTL formulae into PGL formulae
[[ false]] P

def
= F [[ false]] K

def
= F

[[ 0 ]] P
def
= 1 [[ − ]] K

def
= id1

[[ K(P) ]] P
def
= [[ K ]] K ◦〈1, 〉 [[ P ]] P [[ P . P′ ]] K

def
= [[ P ]] P(〈1, 〉 [[ P′ ]] P

[[ K / P ]] P
def
= [[ K ]] K �〈1, 〉 [[ P ]] P [[ ax[K] ]] K

def
= ((K(a)x) ⊗ id〈0, 〉) ◦ [[ K ]] K

[[ P⇒ P′ ]] P
def
= [[ P ]] P⇒ [[ P′ ]] P [[ P | K ]] K

def
= [[ P ]] P ∗ [[ K ]] K

[[ K ⇒ K′ ]] K
def
= [[ K ]] K ⇒ [[ K′ ]] K

is:

G = (joink ⊗ idY) ◦ (R⊗ M1 ⊗ . . . ⊗ Mk−1)

whereMi are discrete ground molecules andR can be eitherid1 or (K~a ⊗ idY) ◦
Q, i.e., a molecule with one hole inside. Again, we can define the reverse encod-
ing ([ ]) of [[ ]], from unary discrete bigraphs to linear contexts, involving such a
normal form:

([ id1 ]) def
= −

([ (K(a)x ⊗ idY) ◦ Q ]) def
= ax[([ Q ])]

([ (joink ⊗ idY) ◦ (R⊗ M1 ⊗ . . . ⊗ Mk−1) ]) def
= ([ R]) | ([ M1 ]) | . . . | ([ Mk−1 ])

As the bigraphical model is specialised to context trees, so BiLog logic is
specialised to the Context Tree Logic. The encodings of the connectives and the
constants are in Tab. 5.13, and their soundness is shown in the next lemma.

Theorem 4 (Encoding Context Tree Logic).For each tree T and formula P of
CTL It holds T |=T P if and only if[[ T ]] |= [[ P ]] P. Also, for each context C and
formula K of CTL it holds C|=K K if and only if[[ C ]]C |= [[ K ]] K .

Proof. Follow the lines of Theorem 2 and 3, by structural induction on CTL
formulae and by exploiting the fact that the encoding of contexts trees in unary
discrete bigraphs is bijective. �

The encoding shows that the models introduced in [4] are a particular kind
of discrete bigraphs with one port for each node and a number of holes and
roots limited to one. Hence, this shows how BiLog for discrete bigraphs is a
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generalisation of Context Tree Logic to contexts with several holes and regions.
On the other hand, since STL is more general than separation logic, cf. [4], and it
is used to characterise programs that manipulate tree structured memory model,
BiLog can express separation logic as well.

6 Towards dynamics

The main aim of this paper is to introduce BiLog and its expressive power in
describing static structures. BiLog is however able to deal with the dynamic be-
haviour of the model, as well. Essentially, this happens thanks to the contextual
nature of the logic, suitable to characterise structural parametric reaction rules,
expressing dynamics.

A main feature of a distributed system is mobility, or dynamics in general.
In dealing with communicating and nomadic processes, the interest is not only
to describe their internal structure, but also their behaviour. So far, it has been
shown how BiLog can describe structures, this section is intended to study how
to express evolving systems with BiLog. The usual way to express dynamics
with a logic is to introduce anext stepmodality (♦), that hints how the system
may evolve in the future. In general, a process satisfies the formula♦A if it may
evolve into a process satisfyingA.

In process algebras the dynamics is often presented byreaction(or rewriting)
rules of the formr —. r ′, meaning thatr (the redex) is replaced by tor ′ (the
reactum) in suitablecontexts, namedactive. The ‘activeness’ is defined on the
structure of contexts by a predicateδ, closed for composition.

In general, abigraphical reactive systemis a bigraphical system provided
with a set of parametric reaction rules, namely a setS of pairs2 (R,R′ : I → J),
whereR and R′ are the redex and the reactum of a parametric reaction. We
consider only ground bigraphs, as they identifies the processes, contrary to non-
ground bigraphs that are open and identifies contexts. The active bigraphs are
identified by the predicateδ, closed for compositions andids. We say that a
ground bigraphg reacts tog′ (and we writeg —. g′) if there is a couple (R,R′) ∈
S, a set of namesY, a bigraphD (usually not ground) withδ(D) true, and a
ground bigraphd, such that:

g ≡ D ◦ (R⊗ idY) ◦ d and g′ ≡ D ◦ (R′ ⊗ idY) ◦ d.

When the model is enriched with a dynamical framework, the usual way to
introduce the modality♦ is to extend the relation|= by defining

g |= ♦A iff g —. g′ and g′ |= A.

2Note that this is a simplification in order to capture the case of CCS. In the general theory of
bigraphs,R andR′ are not required to have the same inner face.
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According to the formulation of the reduction given above, we obtain

g |= ♦A iff there exist(R,R′) ∈ S, idY, D active, and d ground; such that

g ≡ D ◦ (R⊗ idY) ◦ d , g′ ≡ D ◦ (R′ ⊗ idY) ◦ d and g′ |= A. (3)

One may wonder whether the modality♦ is the only way to express a temporal
evolution in BiLog. It turns out that BiLog has a built in notion of dynamics. In
several cases, BiLog itself is sufficient to express the computation. One of them
is the encoding of CCS, shown in the following.

We focus on the fairly small fragment of CCS considered in [2], consisting
of prefix and parallel composition only;P,Q will range overprocesses, anda,a
over actions, chosen in the enumerable setActs. The syntax of the calculus is
defined by the following grammar.

P ::== 0 | λ.P | P | P
λ ::== a | a

Note that the operatorν is not included, hence all the names appearing in a pro-
cess are free, this fact yields the encoding to produce bigraphs with open links.
Thestructural congruenceis defined as the least congruence≡ on processes such
that P | 0 ≡ P, P | Q ≡ Q | P andP | (Q | R) ≡ (P | Q) | R. Moreover, the
dynamics is given by the usualreduction operational semantics:

a.P | a.Q→ P | Q
P→ Q

P | R→ Q | R
P ≡ P′ P′ → Q′ Q′ ≡ Q

P→ Q (4)

The bigraphs we consider for the encoding are built with two controls with
arity 1: act andcoact for action and coaction. The corresponding constructors
are of the formacta andcoacta, for every actiona of the CCS calculus. Intu-
itively, cf. [22], the reactions are expressed as

acta21 | coacta22 —. a | 21 | 22. (5)

The rules are parametric, in the sense that the two holes (21 and22) can be
filled up by any process, and the linka is introduced to maintain the same in-
terface between redex and reactum. By definition, redex can be replaced by the
reactum in any bigraphical active context. As the active contexts are identified
by the predicateδ, in this particular case, such a predicate has to project CCS’s
active contexts into bigraphs. The rules in (4) implies that active contexts in CCS
have the formP | 2, hence the corresponding bigraphical context has the form
[[ P ]] | 2, where [[P ]] is the encoding of the processP into a bigraph. Since the
encoding introduced in this section involves ground single-rooted bigraphs with
open links, the formal definition for an active context is

g | (id1 ⊗ idY) (6)

for g : ε → 〈1,Z〉 ground with a single root and open links. Moreover Y has to be
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a finite set of names, viz., the outer names of the term that can fill the context. In
particular, the controlsact andcoact are declared to bepassive, i.e., no reaction
can occur inside them.

As already said, we consider bigraphs built on the controlsacta, coacta. The
encoding [[ ]]X is parameterised by afinite subsetX ⊆ Acts. In particular, the
encoding yields ground bigraphs with outer face〈1,X〉 and open links. The
translation for processes is formally defined as

[[ 0 ]] X
def
= 1 ⊗ X

[[ a.P ]] X
def
= (acta

a
⊗ idX) ◦ [[ P ]] X

[[ ā.P ]] X
def
= (coacta

a
⊗ idX) ◦ [[ P ]] X

[[ P | Q ]] X
def
= join ◦ ([[ P ]] X

X
⊗ [[ Q ]] X)

Wherea ∈ X, and, with abuse of notation, the sharing/separation operator
X
⊗

stands for
~a
⊗ where~a is any array of all the elements inX. Note, in particular,

that the sharing tensor “
a
⊗ idX” allows the process filling the hole inacta

(andcoacta) to perform other actionsa. Moreoverjoin makes the tensor to be
commutative in the encoding of parallel, in fact there is a straight correspondence
between the parallel operators in the two calculi, as [[P | Q ]] X corresponds to
[[ P ]] X | [[ Q ]] X, that is the parallel operator on bigraphs. The result stated in
Lemma 7 says that the encoding is bijective on prime ground bigraphs with open
links. First we need a general result on bigraphs and parallel composition.

Lemma 6 (Adding Names).If x appears in the outer names of P, then P| x ≡ P.

Proof. Express the parallel in terms of renamings, linkings and tensor product,
and use the axioms of [19]. Assume thatP : 〈m,X〉 → 〈n, {x} ∪ Y〉, andy < {x} ∪
Y. ThenP | x corresponds to (id〈n,Y〉 ⊗ (x⇔ y)) ◦ (P ⊗ ((y← x) ◦ x)), that is
(id〈n,Y〉 ⊗ (x⇔ y)) ◦ (P ⊗ y) by the third link axiom. By bifunctoriality property,
it is congruent to (id〈n,Y〉 ⊗ (x⇔ y)) ◦ (id〈n,Y〉 ⊗ idx ⊗ y) ◦ (P ⊗ idε), and again
to ((id〈n,Y〉 ◦ id〈n,Y〉) ⊗ ((x ⇔ y) ◦ (idx ⊗ y))) ◦ P. The latter is congruent to
(id〈n,Y〉 ⊗ idx) ◦ P, by the second link axiom. Since (id〈n,Y〉 ⊗ idx) ◦ P ≡ P,
conclude the thesis. �

Then we prove that the encoding is bijective on ground bigraphs with open
links.

Lemma 7 (Bijective Translation). For every finite subset X⊆ Acts it holds

1. The translation[[ · ]] X is surjective on prime ground bigraphs with outerface
〈1,X〉 and open links.
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2. For every couple of processes P,Q and for every finite subset X⊆ Acts in-
cluding the free names of P,Q it holds: P≡ Q if and only if[[ P ]] X ≡ [[ Q ]] X.

Proof. Prove point (1) by showing that every prime ground bigraph with outer-
face〈1,X〉 has at least one pre-image for the translation [[· ]] X. Proceed by induc-
tion on the number of nodes in the bigraphs. First we recall the connected normal
form for bigraphs. The paper [19] proves that every prime ground bigraphG with
outerface〈1,X〉 and open links has the following Connected Normal Form:

G ::= X | F
F ::= M1 | . . . | Mk

M ::= (Ka | idY) ◦ F (for Ka ∈ {acta, coacta})

The base of induction is the bigraphX, and clearly [[0 ]] X = X. For the
inductive step, consider a bigraphG with at least one node. This meansG =
X | ((Ka | idY) ◦ F) | G′. Without losing generality, assumeKa = acta, so by
Proposition 6:

G = (acta | idX) ◦ (X | F) | (X | G′).

Now, the induction says that there exist P and Q such that [[P ]] X = X | F and
[[ Q ]] X = X | G′, hence conclude [[a.P | Q ]] X = G.

The forward implication of point (2) is proved by showing that the translation
is sound with respect to the rules of congruence in CCS. This has been already
proved in [19], where the parallel operator| between bigraphs is shown to be
commutative and associative, and to have 1 as a unit. Moreover, by Proposition 6,
the bigraph 1⊗ X is the unit for the parallel operator on prime ground bigraphs
with outerface〈1,X〉.

The following claim, stated in [22], is the crucial step in proving the reverse
implication of point (2). Its proof considers the discrete normal for bigraphs.

Claim. If Gi (i = 1 . . .m) andF j ( j = 1 . . . n) are ground molecules andG1 | . . . |
Gm ≡ F1 | . . . | Fn, thenm= n andGi ≡ Fπ(i) for some permutationπ onm.

The proof of the reverse implication of point (2) proceeds by induction on
the structure ofP. The base of induction isP = 0, in this case the statement
is verified since to assume [[Q ]] X ≡ [[ 0 ]] X = X implies Q ≡ 0 | . . . | 0. For
the inductive step letP ≡ a1.P1 | . . . | am.Pm for any m ≥ 1, and assume
[[ Q ]] ≡ [[ P ]]. Furthermore we haveQ ≡ b1.Q1 | . . . | bn.Qn, then

[[ P ]] X = (acta1

a1
⊗ idX) ◦ [[ P1 ]] X | . . . | (actam

am
⊗ idX) ◦ [[ Pm ]] X

[[ Q ]] X = (actb1

b1
⊗ idX) ◦ [[ Q1 ]] X | . . . | (actbm

bm
⊗ idX) ◦ [[ Qm ]] X

Since the two translations are both a parallel compositions of ground molecules,
the previous claim says thatm = n, and there exists a permutationπ on m such
thatai ≡ aπ(i) and [[Qi ]] ≡ [[ Pπ(i) ]]. By inductionQi ≡ Pπ(i), henceQ ≡ P. �
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In [22] it is proved that the translation preserves and reflects the reactions,
that is:P —. P′ if and only if [[ P ]] —. [[ P′ ]].

The reaction rules are defined as

(acta | idY1) | (coacta | idY2) —. a | id〈1,Y1〉 | id〈1,Y2〉.

This can be mildly sugared to obtain the rule introduced in (5)
Moreover, the active contexts introduced in (6) can be rephrased as

g | 2

whereg is a single-rooted ground bigraph with open links. It is easy to conclude
that the most general context ready to react has the form

20 | acta21 | coacta22 |—. 20 | 21 | 22

the hole20 has to be filled in by single-rooted ground bigraphs with open links,
whereas the holes21 and22 by ground bigraphs. Note that such a reduction is
compositional with the parallel operator. In case of the CCS translation, the a
reacting bigraphs are further characterised as shown in Lemma 8. In particular,
the lemma shows that every reacting [[P ]] X can be decomposed into a redex and
a bigraph with a well defined structure, that is composed with a reactum to obtain
the result of the reaction. The Redex and the Reactum are formally outlined in
Tab. 6.1. They will be the key point to express the next step modality in BiLog.
Note thaty1 andy2 of the definition in Tab. 6.1 have to be disjoint withX, Y1 and
Y2. They are useful for join the action with the corresponding coaction.

Table 6.1.Reacting Contexts for CCS

Bigraphs:
Redexy1,y2,Y1,Y2

a
def
=W ◦ (idY ⊗ join) ◦ (idY ⊗ join ⊗ id1) ◦ {((y1← a) ⊗ id1) ◦
◦ acta ⊗ idY1 ⊗ ((y2← a) ⊗ id1) ◦ coacta ⊗ idY2 ⊗ id〈1,X〉}

ReactY1,Y2
a

def
=W′ ◦ (idY′ ⊗ join) ◦ (idY′ ⊗ join ⊗ id1)

Wirings:
W def
= ((X⇔ Y1) ⊗ id1) ◦ (idY1 ⊗ (X⇔ Y2) ⊗ id1) ◦ (idY1 ⊗ idY2 ⊗ idX\{a} ⊗

⊗ (a⇔ y1) ⊗ id1) ◦ (idY1 ⊗ idY2 ⊗ idX\{a} ⊗ id{y1} ⊗ (a⇔ y2) ⊗ id1)
W′ def
= ((X⇔ Y1) ⊗ id1) ◦ (idY1 ⊗ (X⇔ Y2) ⊗ id1)

Supporting Sets:
Y def
= {y1, y2} ∪ Y1 ∪ Y2 ∪ X

Y′ def
= Y1 ∪ Y2 ∪ X

Lemma 8 (Reducibility). For every CCS process P, the following are equiva-
lent.

1. The translation[[ P ]] X can perform the reduction[[ P ]] X —. G.
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2. There exist the bigraphs G1,G2,G3 : ε → 〈1,X〉 and the name a∈ X, such
that

[[ P ]] X ≡ ((acta | idX) ◦ G1) | ((coacta | idX) ◦ G2) | G3

and G≡ G1 | G2 | G3.

3. There exist the actions a∈ X and y1, y2 < X, and two mutually disjoint sub-
sets Y1,Y2 ⊆ Acts with the same cardinality as X, but disjoint with X, y1, y2,
and there exist the bigraphs H1 : ε → 〈1,Y1〉, H2 : ε → 〈1,Y2〉, and
H3 : ε → 〈1,X〉 with open links, such that

[[ P ]] X ≡ Redexy1,y2,Y1,Y2
a ◦ (H1 ⊗ H2 ⊗ H3)

and

G ≡ ReactY1,Y2
a ◦ (H1 ⊗ H2 ⊗ H3),

where Redexy1,y2,Y1,Y2
a , ReactY1,Y2

a are defined in Tab. 6.1.

Proof. First prove that points (1) and (2) are equivalent. Assume that the bigraph
[[ P ]] X can perform a reaction. This means that [[P ]] X ≡ ((acta | idY1) ◦ G′1) |
((coacta | idY2) ◦ G′2) | G′3 and thatG ≡ a | G′1 | G′2 | G′3 for some suitable
ground bigraphsG′1, G′2 andG′3 and an actiona ∈ X. Since the type of both
[[ P ]] X andG is ε → 〈1,X〉, by Proposition 6G ≡ (X | G′1) | (X | G′2) | (X | G′3)
and [[P ]] X ≡ ((acta | idX) ◦ (X | G′1)) | ((coacta | idX) ◦ (X | G′2)) | (X | G′3).
Then defineGi to beX | G′i for i = 1,2,3, and conclude thatG ≡ G1 | G2 | G3

and [[P ]] X ≡ ((acta | idX) ◦ G1) | ((coacta | idX) ◦ G2) | G3.
Then prove that point (2) implies point (3). Assume that [[P ]] X ≡ ((acta |

idX) ◦ G1) | ((coacta | idX) ◦ G2) | G3 andG ≡ G1 | G2 | G3, with G1,G2,G3 :
ε → 〈1,X〉. According to the definition of the parallel operator, we chose two
actionsy1, y2 < X and the mutually disjoint subsetsY1,Y2 ⊆ Actsthat have the
same cardinality asX, but are disjoint withX, y1, y2, thus

[[ P ]] X ≡W ◦ (idY ⊗ join) ◦ (idY ⊗ join ⊗ id1) ◦ {((y1← a) ⊗

⊗ id〈1,Y1〉) ◦ (acta ⊗ idY1) ◦ ((Y1← X) ⊗ id〈1,Y2〉) ◦ G1 ⊗ ((y2← a) ⊗

⊗ id1) ◦ (coacta ⊗ idY2) ◦ ((Y2← X) ⊗ id1) ◦ G2 ⊗ G3}

and

G ≡W′ ◦ (idY′ ⊗ join) ◦ (idY′ ⊗ join ⊗ id1) ◦

◦ {((Y1← X) ⊗ id〈1,Y2〉) ◦ G1 ⊗ ((Y2← X) ⊗ id1) ◦ G2 ⊗ G3}

whereY = {y1}∪Y1∪{y2}∪Y2∪X andY′ = Y1∪Y2∪X. The bigraphsW andW′

are defined in Tab. 6.1, they both link the subsetsY1 andY2 with X, and moreover
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W links y1 andy2 with a. By bifunctoriality property, [[P ]] X is rewritten as

W ◦ (idY ⊗ join) ◦ (idY ⊗ join ⊗ id1) ◦ {((y1← a) ⊗ id1) ◦

◦ acta ⊗ idY1 ⊗ ((y2← a) ⊗ id1) ◦ coacta ⊗ idY2 ⊗ G3 } ◦

◦ { ((Y1← X) ⊗ id1) ◦ G1 ⊗ ((Y2← X) ⊗ id1) ◦ G2 },

and, again by bifunctoriality property, as

W ◦ (idY ⊗ join) ◦ (idY ⊗ join ⊗ id1) ◦ {((y1← a) ⊗ id1) ◦

◦ acta ⊗ idY1 ⊗ ((y2← a) ⊗ id1) ◦ coacta ⊗ idY2 ⊗ id〈1,X〉 } ◦

◦ { ((Y1← X) ⊗ id1) ◦ G1 ⊗ ((Y2← X) ⊗ id1) ◦ G2 ⊗ G3 }.

Point (3) follows by definingH′i = ((Yi ← X) ⊗ id1) ◦ Gi for i = 1,2, and
H3 = G3 . Note that the three bigraphsGi andHi have open links as so does
[[ P ]] X. Finally, we point (3) implies point (2), since the previous reasoning can
be inverted. �

By following the ideas of [22] it is easy to demonstrate that there is an ex-
act match between reaction relations generated in CCS and in the bigraphical
system, as stated in the following lemma.

Proposition 3 (Matching Reactions).For every finite set of names X it holds

P→ Q if and only if [[ P ]] X —. [[ Q ]] X

for every CCS process P and Q such that Act(P),Act(Q) ⊆ X.

Proof. For the forward direction, proceed by induction on the number of the
rules applied in the derivation forP → Q in CCS. The base of the induction is
the only rule without premixes, that meansP is a.P1 | a.P2 andQ is P1 | P2. The
translation is sound as regards this rule, since the reactive system says

((acta | idX) ◦ [[ P1 ]] X) | ((coacta | idX) ◦ [[ P2 ]] X) —. X | [[ P1 ]] X | [[ P2 ]] X.

The induction step considers two cases. First, assume thatP → Q is derived
from P′ → Q′, whereP is P′ | R and Q is Q′ | R. Then the induction says
that [[P′ ]] X —. [[ Q′ ]] X, hence [[P′ ]] X | [[ R]] X —. [[ Q′ ]] X | [[ R]] X. Conclude
[[ P ]] X —. [[ Q ]] X, as [[P ]] X is [[ P′ ]] X | [[ R]] X and [[Q ]] X is [[ Q′ ]] X | [[ R]] X.
Second, assume thatP→ Q is derived from the congruencesP ≡ P′ andQ′ ≡ Q,
and from the transitionP′ → Q′. By Lemma 7 [[P ]] X ≡ [[ P′ ]] X and [[Q′ ]] X ≡

[[ Q ]] X , and by induction hypothesis [[P′ ]] X —. [[ Q′ ]] X. Conclude [[P ]] X —.
[[ Q ]] X, since the reduction is defined up to congruence.

For the reverse implication, assume [[P ]] X —. [[ Q ]] X. Then Lemma 8 says
that there exist the bigraphsG1,G2,G3 : ε → 〈1,X〉 and the namea ∈ X such
that [[P ]] X ≡ ((acta | idX) ◦ G1) | ((coacta | idX) ◦ G1) | G3 andG ≡ G1 ⊗ G2 ⊗

G3. Now, Lemma 7 says that for everyi = 1,2,3 there exists a CCS process
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Table 6.2.Semantics of formulaeLspat in CCS

P |=spat 0 if P ≡ 0
P |=spat ¬A if not P |=spat A
P |=spat A∧ B if P |=spat A and P |=spat B
P |=spat A | B if there exist R,Q, s.t. P ≡ R | Q, R |=spat A and Q |= Bspat

P |=spat A . B if for every Q, Q |=spat A implies P | Q |=spat B
P |=spat ♦A if there exist P′ s.t. P —. P′ and P′ |=spat A

Pi such that [[Pi ]] corresponds toGi , hence [[P ]] ≡ [[ a.P1 | a.P2 | P3 ]] and
[[ Q ]] ≡ [[ P1 | P2 | P3 ]]. Again, Lemma 7 says thatP ≡ a.P1 | a.P2 | P3 and
Q ≡ P1 | P2 | P3, thenR→ Q. �

It can be proved an even stronger result: if a CCS translation reacts to a
bigraph, then such a bigraph is a CCS translation as well, as formalised in the
lemma below.

Proposition 4 (Conservative Reaction).For every CCS process P such that
[[ P ]] X —. G, there exists a CCS process Q such that[[ Q ]] X = G and P→ Q.

Proof. Assume that [[P ]] X —. G, then the point (2) of Lemma 8 says that
G has typeε → 〈1,X〉 and open links, since so does [[P ]] X. This means, by
Lemma 7, that there exists a process Q such that [[Q ]] X ≡ G. ConcludeP→ Q
by Lemma 3. �

The work [2] introduces the spatial logicLspat suitable to describe the struc-
ture and the behaviour of CCS processes. The language of the logic is

A, B ::= 0 | A∧ B | A | B | ¬A | A . B | ♦A.

It includes the basic spatial operators: the void constant 0, the composition op-
erator|, and its adjunct operator.. It presents also a temporal operator, the next
step modality♦, to capture the dynamics of the processes. The paper [2] defines
a semantics toLspat in term of CCS processes, as outlined in Tab. 6.2. In partic-
ular, the parallel connective describes processes that are produced by the parallel
between two processes that satisfies the corresponding formula. A process satis-
fies the formulaA / B if it satisfied the formulaB whenever put in parallel with
a process satisfyingA. Finally the next step♦A is satisfied by a process that can
evolve into a process satisfyingA.

The logicLspat can be encoded in a suitable instantiation of BiLog, with-
out using the modality defined in (3). It is sufficient to instantiate the logic
BiLog(M,⊗, ε,Θ,≡, τ) to obtain the bigraphical encoding of CCS. We define
Θ to be composed by the standard constructor for a bigraphical system with
K = {act, coact}, and the transparency predicateτ to be always true. The fact
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thatτ is verified on every term is determinant for the soundness of the encoding
we are describing.

Rephrasing Lemma 8 informally, we say that the set of reactions in CCS
are determined by couples of the form (Redexa,Reactuma) for everya ∈ X, and
every reacting process is characterised by

[[ P ]] X —. [[ Q ]] X iff there exists a bigraph g and a∈ X such that

[[ P ]] X ≡ Redexa ◦ g and[[ Q ]] X ≡ Reactuma ◦ g.

Since in this caseτ is always true, BiLog logic can fully describe the structure
of a term. In particular, it is possible to define a characteristic formula for every
redex and reactum, simply by rewriting every bigraphical constructor and oper-
ator with the correspondent logical constant in their bigraphical encodings. For
the new namesy1, y2, and the new subsetsY1,Y2, we denote withRedexy1,y2,Y1,Y2

a

andReactY1,Y2
a the characteristic formulae ofRedexy1,y2,Y1,Y2

a andReactY1,Y2
a , re-

spectively. Clearly,G |= Redexy1,y2,Y1,Y2
a if and only if G ≡ Redexy1,y2,Y1,Y2

a , and
the same for the reactum. This has a prominent role in defining the encoding of
the temporal modality in BiLog.

Table 6.3.Encoding ofLspat into BiLog

Encodings:
[[ 0 ]] X

def
= X ⊗ 1

[[ ¬A ]] X
def
= ¬ [[ A ]] X

[[ A∧ B ]] X
def
= [[ A ]] X ∧ [[ B ]] X

[[ A | B ]] X
def
= join ◦ ([[ A ]] X

X
⊗ [[ B ]] X)

[[ A . B ]] X
def
= NY. (((Y← X) ⊗ id1) ◦ AX) −⊗ (join ◦ ((X⇔ Y) ⊗ id1)� [[ B ]] X)

[[ ♦A ]] X
def
=
∨

a∈X Ny1.y2.Y1.Y2. Redexy1,y2,Y1,Y2
a ◦ [(ReactY1,Y2

a � [[ A ]] X) ∧ Triple ]
Supporting Formulae:
Open def

= ¬ Nx. ◊(/x ◦ T)
AX

def
= [[ A ]] X ∧ Tε→〈1,Y2〉 ∧Open

Triple def
= Tε→〈1,Y1〉 ⊗ Tε→〈1,Y2〉 ⊗ Tε→〈1,X〉

The encoding is formally defined as described in Tab. 6.3. The encodings
for the logical connectives and the spatial composition are self-explanatory, in
particular note that the spatial composition requires the sharing of the names in
X. It corresponds to a logical parallel operator, in the case that the set of names
of bigraphs is fixed and finite. In the encoding for. we introduce an auxiliary
notation. Intuitively, the formulaAX is defined to constrain a bigraph to be the
encoding of a CCS process and to satisfy [[A ]] X. In fact,G |= AX means thatG
satisfies [[A ]] X, it has typeε → 〈1,X〉 and its links are open. In fact, a bigraph
satisfiesOpen only if no closure appears in any of its decompositions. Note
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the power of the somewhere operator. We will show that a bigraph satisfies
[[ P ]] X |= [[ A . B ]] X if it satisfies [[B ]] X whenever connected in parallel with any
encoding of a CCS process satisfying [[A ]] X.

On the other side, in the encoding for the temporal modality♦ the supporting
formulaTriple is satisfied by processes that are the composition of three single-
rooted ground bigraphs whose outerfaces have the same number of names asX.
We will show that a process satisfies [[♦A ]] X if and only if it is the combination
of a particular redex with a bigraph that satisfies the requirement of Lemma 8,
and moreover that the corresponding reactum satisfies [[A ]] X.

The main result of this section is formalised in Proposition 5. It expresses
the semantical equivalence betweenLspat and its encoding in BiLog. Note in
particular the requirement for a finite set of actions performable by the CCS
processes. Such a limitation is not due to the presence of the next step operator.
Indeed, looking carefully at the proof, one can see that the induction step for
the temporal operator still holds in the case of a not-finite set of actions. On the
contrary, the limitation is due to the adjoint operator.. In fact we need to bound
the number of names that is shared between the processes. This happens because
of the different choice for the logical product operator in BiLog. On one hand,
the spatial logic had the parallel operator built in. This means that the logic does
not care about the names that are actually shared between the processes. On
the other hand, BiLog has a strong control on the names shared between two
processes, and one needs to know them with accuracy.

Proposition 5. If the set of actions Acts is bounded to be a finite set X, then

P |=spat A if and only if [[ P ]] X |= [[ A ]] X.

for every process P with actions in X.

Proof. The proposition is proved by induction on the structure of formulae. The
base of induction is the formula 0. To assume that [[P ]] X |= [[ 0 ]] X means
[[ P ]] X ≡ X ⊗ 1, that correspond toP ≡ 0, namelyP |=spat 0.

The inductive step deals with the connectives. The treatments of¬, ∧ and |
are similar, so we focus on the case of the parallel operator.

Case A| B. To say [[P ]] X |= [[ A | B ]] X means that there exist two bigraphs
g1,g2, with g1 |= [[ A ]] X andg1 |= [[ B ]] X, such that

[[ P ]] X ≡ join ◦ (g1
X
⊗ g2)

Note thatg1,g2 must have typeε → 〈1,X〉 and open links, as so does [[P ]] X. By
Lemma 7, there exist two processesQ1 andQ2 such that [[Q1 ]] and [[ Q2 ]] are
g1 andg2, respectively. Then conclude

[[ P ]] X ≡ join ◦ ([[ Q1 ]] X
X
⊗ [[ Q2 ]] X)
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that meansP ≡ Q1 | Q2, again by Lemma 7. Moreover, the induction hypothesis
says thatQ1 |= A andQ2 |= B, henceP |=spat A | B.

Case A. B. Assume [[P ]] X |= [[ A . B ]] X, then by definition there exists a
fresh setY of actions such that for everyG satisfying (((Y← X) ⊗ id1) ◦ AX) it
holds

[[ P ]] X ⊗ G |= join ◦ ((X⇔ Y) ⊗ id1)� [[ B ]] X

that is

join ◦ ((X⇔ Y) ⊗ id1) ◦ ([[ P ]] X ⊗ G) |= [[ B ]] X (7)

Now G |= (((Y ← X) ⊗ id1) ◦ AX) means that there isg |= AX such that
G ≡ ((Y ← X) ⊗ id1) ◦ g. As previously discussed (cf. the introduction to the
current proposition)g |= AX says thatg |= [[ A ]] X and thatg is a bigraph with
open link and typeε → 〈1,X〉. By Lemma 7,g is [[ Q ]] X for some CCS process
Q whose actions are inX.

Hence, as the set of actionsActscorresponds toX, we can rephrase (7) by
saying that foreveryCCS processQ such that [[Q ]] X |= [[ A ]] X it holds

join ◦ ((X⇔ Y) ⊗ id1) ◦ ([[ P ]] X ⊗ ((Y← X) ⊗ id1) ◦ [[ Q ]] X) |= [[ B ]] X

that is [[P | Q ]] X |= [[ B ]] X. Then, the induction hypothesis says that for everyQ,
if Q |=spat A thenP | Q |=spat B, namelyP |=spat A . B.

Case♦A. to assume [[P ]] X |= [[ ♦A ]] X signifies that there exists an action
a ∈ X such that

[[ P ]] X ≡ Redexy1,y2,Y1,Y2 ◦ H (8)

wherey1, y2 are fresh names,Y1,Y2 are fresh subsets with the same cardinality
asX, andH is a bigraph satisfying

H |= (ReactY1,Y2
a � [[ A ]] X) ∧ Triple .

In particular, Property (6) amounts to assert the two following points.

1. It holdsH |= ReactY1,Y2
a � [[ A ]] X, that is

ReactY1,Y2
a ◦ H |= [[ A ]] X. (9)

2. It holdsH |= Tε→〈1,Y1〉 ⊗ Tε→〈1,Y2〉 ⊗ Tε→〈1,X〉, that is

H ≡ H1 ⊗ H2 ⊗ H3 (10)

with Hi : ε → 〈1,Yi〉, for i = 1,2, andH3 : ε → 〈1,X〉.

Now, by (8) and (10), we have [[P ]] X ≡ Redexy1,y2,Y1,Y2 ◦ (H1 ⊗ H2 ⊗ H3), that
means [[P ]] X —. ReactY1,Y2

a ◦ (H1 ⊗ H2 ⊗ H3) by Lemma 8. Furthermore, the
bigraphsH1,H2,H3 have open links, as so does [[P ]] X. Hence Lemma 7 says
that there exists the CCS processQ such that [[Q ]] X corresponds toReactY1,Y2

a ◦

(H1 ⊗ H2 ⊗ H3), henceP→ Q by Proposition 3. Finally, (9) says that [[Q ]] X |=
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[[ A ]] X, and this meansQ |=spat A by induction hypothesis. We conclude that
[[ P ]] X |= [[ ♦A ]] X is equivalent toP→ Q with Q |=spat A, namelyP |=spat ♦A. �

7 Conclusions and future work

This paper moves a first step towards describing global resources by focusing on
bigraphs. Our final objective is to design a general dynamic logic able to cope
uniformly with all the models bigraphs have been proved useful for, as of today
these includeλ-calculus [21], Petri-nets [20], CCS [22], pi-calculus [16] and
ambient calculus [17]. We introduced BiLog, a logic for bigraphs with two main
spatial connectives: composition and tensor product. Our main technical results
are the embedding and comparison with other spatial logics previously studied.
Moreover, we have shown that BiLog is expressive enough to internalise the
somewhere modality.

In particular we have seen how the ‘separation’ plays in various fragments
of the logic. For instance, in the case ofPlace Graph Logic, where models are
bigraphs without names, the separation is purely structural and coincides with the
notion of parallel composition in Spatial Tree Logic. Dually, as the models for
Link Graph Logicare bigraphs with no locations, the separation in such a logic
is disjointness of nominal resources. Finally, forBigraph Logic, where nodes
of the model are associated with names, the separation is not only structural,
but also nominal, since the constraints on composition force port identifiers to
be disjoint. In this sense, it can be seen as the separation in memory structures
with pointers, like the heap structure of Separation Logic [23], or the trees with
pointers of [4], or the trees with hidden names [6].

§6 shows how BiLog can deal with dynamics. A natural solution is adding
a temporal modality basically describing bigraphs that can compute according
to a Bigraphical Reactive System [16]. When the transparency predicate en-
ables the inspection of ‘dynamic’ controls, BiLog is ‘intensional’ in the sense
of [25], namely it can observe internal structures. In the observed case, notably
the bigraphical system describing CCS [22], BiLog can be so intensional that a
temporal modality is expressed directly by using the static fragment of BiLog. A
transparency predicate specifies which structures can be directly observed by the
logic, while a temporal modality, along with the spatial connectives, allows to
deduce the structure by observing the behaviour. It would be interesting to iso-
late some fragments of the dynamic logic and investigate how the transparency
predicate influences their expressivity and intensionality, as in [15].

The existential/universal quantifiers are omitted as they imply an undecidable
satisfaction relation (cf. [10]), while we aim at a decidable logic. As a matter of
fact, the decidability of BiLog logics is an open question. We are working on
extending the result of [3], and we are isolating decidable fragments of BiLog.
We introduced the freshness quantifier as it is useful to express hiding and it
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preserves decidability in spatial logics [11].
We have not addressed a logic for tree with hidden names. As a matter of fact,

we have such a logic. More precisely we can encode abstract trees into bigraphs
with an unique controlamb with arity one. The name assigned to this control
will actually be the name of the ambient. The extrusion properties and renaming
of abstract trees have their correspondence in bigraphical terms by means of
substitution and closure properties combined with properties of identity.

BiLog can express properties of trees with names. At the logical level we
may encode operators of tree logic with hidden names as follows:

©a def
= ((a← a) ⊗ id) ◦ T

Cx.A def
= Nx. (/x ⊗ id) ◦ A

a® A def
= (¬©a∧ A) ∨ (/a ⊗ id) ◦ A

Hx.A def
= Nx. x® A

The operator©a says that the namea appears in the outer face of the bigraphs.
The new quantifierCx.A expresses the fact that in a process satisfyingA a name
has been closed. The revelation® is a binary operator asserting the possibility
of revealing a restricted name asa to assertA, note that the name may be hidden
in the model as it has either be closed with an edge or it does not appear in the
model. The hiding quantificationH may be derived as in [9]. We are currently
working on the expressivity and decidability of this logical framework.

To obtain a robust logical setting, we are developing a proof theory, and
a sequent calculus in particular, that will be useful for comparing BiLog with
other spatial logics, not only with respect to the model theory, but also from a
proof theoretical point of view.

Several important questions remain: as bigraphs have an interesting dynam-
ics, specified using reactions rules, we plan to extend BiLog to such a framework.
Building on the encodings of the ambient and theπ calculi into bigraphical re-
active systems, we expect a dynamic BiLog to be able to express both ambient
logic [7] and spatial logics forπ-calculus [1].
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