UNIVERSITY OF SUSSEX
COMPUTER SCIENCE

UNIVERSITY OF

SUSSEX

AT BRIGHTON

SAFEDPI: a language for controlling
mobile code

Matthew Hennessy
Julian Rathke
Nobuko Yoshida

Report 02/2003 October 2003

Computer Science
Department of Informatics
University of Sussex
Brighton BN1 9QH

ISSN 1350-3170



SAFEDPI: a language for controlling mobile
code

MATTHEW HENNESSY, JULIAN RATHKE and NOBUKO Y OSHIDA

ABSTRACT. SAFEDPI is a distributed version of the PicALCULUS, in which processes
are located at dynamically created sites. Parametrised code may be sent between
sites using so-called ports, which are essentially higher-order versions of PICALCULUS
communication channels. A host location may protect itself by only accepting code
which conforms to a given type associated to the incoming port.

We define a sophisticated static type system for these ports, which restrict the
capabilities and access rights of any processes launched by incoming code. Depen-
dent and existential types are used to add flexibility, allowing the behaviour of these
launched processes, encoded as process types, to depend on the host’s instantiation of
the incoming code.

We also show that a natural contextually defined behavioural equivalence can be
characterised coinductively, using bisimulations based on typed actions. The charac-
terisation is based on the idea of knowledge acquisition by a testing environment and
makes explicit some of the subtleties of determining equivalence in this language of
highly constrained distributed code.

1 Introduction

In this paper we elaborate a theory of distributed systems which incorpo-
rates resource policies. Our main results are:

e a language for distributed systems in which access to hosts by mobile
code is controlled using capability-based types

e a fine-grained type system using novel forms of dependent and exis-
tential types which gives hosts considerable flexibility in determining
the allowed behaviour of incoming code

e a coinductive characterisation of a natural contextual equivalence, based
on the notion of typed actions.

This is developed in terms of an extension of the language DI, [10, 8,
20, 14], a version of the P1cALCULUS, [21], in which processes may migrate
between between locations, which in turn can be dynamically created. In
Drpr1 a typical system takes the form

[[P] ] (newe: E)(K[Q] [ I[R])

where there are two threads P and R running at [ and one, (), running
at k. The threads ) and R share the private name e at type E. The
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threads P , (), R are similar to processes in the PICALCULUS in that they
can receive and send values on local channels; the types of these channels
indicate the kind of values which may be transmitted. Locations may be
dynamically created. For example in

[[(newlock : K)with C' in xpt, (k) | xpty!(k)]

a new location k is created at type K, the code C is installed at k& and
the name of the new location is exported via the channels xpt,;. Location
types are similar to record types, their form being

loc[er : Cq,y..cp 2 Gy

This indicates that the channels, or resources, ¢; at types C; are available
at the location. So for example K above could be

loc[ping : rw(P), fing : rw(F)]

indicating that the services ping and fing(er) are supported at k; r indicates
the permission to read from a channel, while w indicates the permission
to write to the channel. However the types at which k& becomes known
depends on the types of the exporting channels. Suppose for example
these had the types

xpt; : w{loc[ping : w(P)])
xpty @ w(loc[fing : w(F)])

Then processes receiving the name k from the source xpt; would only be
able to write to the ping service at k, i.e. send messages to that service,
while the source xpt, only allows similar restricted access to the finger
service. It is in this way, by selectively distributing names at particular
subtypes, that resource access policies are implemented in DPI.

In this paper we make two extensions to DPI. The first allows more
control to locations over code which wishes to access their computation
space. In DPI the migration rule is given by

k[goto [.P] — I[P];

any thread is allowed to migrate to the site [. In SAFEDPI, the language
of this paper, migration is represented by

k[goto, 1.F] —» I[p!(F)]

A thread must designate a port p at [ in order to migrate. It then reduces
to the system [[p!(F}], which a priori represents a thread running at lo-
cation [. However this thread will have no effect until the site [ makes
available a corresponding thread of the form [[p?(x) Q]; using standard
communication this will now allow the effective entry of F'. In this manner,
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by programming the presence or absence of ports, the site [ can control
the immigration of code.

Effectively we have replaced unconstrained spawning of processes at
arbitrary sites by higher-order communication. Moreover these ports,
higher-order channels, have types associated with them. The types on
ports are the second major extension to the language. In general we allow
scripts, parameterised code, to be sent via ports. These take the form

A& :T)P

where each z; can be matched by arbitrary transmittable values; it is the
types T; which determine the nature of the abstraction. But when such a
script is transmitted it may be instantiated at the receiving site by values
of the appropriate type. This gives added security to sites by controlling
the type at which scripts will be accepted. This of course depends on the
granularity of the type structure for scripts.

The most straightforward form of type for scripts is

(5[5 : T) — proc

stating that, whenever a script of this type is instantiated with appropriate
parameters, the result is guaranteed to be a well-typed process. But a
priori there is no constraint on the resources it can use. To limit the
access of incoming code to resources we introduce fine-grained process
types, [25]. These dictate the capabilities, on both local and third-party
channels, which the code is allowed to access, and take the form of a
record:

prici : Ciaky, ..., cp : Chaky,]

A process of this type can use at most the set of channels ¢;, located
respectively at the locations k;, with the capabilities C;; in these process
types the use of a local channel ¢ is indicated by an entry of the form
¢ : Cahere.

When these process types are incorporated into script types a host
location can have much more effective control over the behaviour of in-
coming code, particularly when we use a form of dependent function type.
For example suppose a port only accepts scripts at the type

Fdep(x : r(T) — pr[z : r(T)ahere, reply : w(T)ak])

Then an incoming script can only be instantiated by a local channel, with
read capability at type T. Moreover the resulting running code is now
only allowed to read from this local channel and write to the third-party
channel called reply located at the specific location k. With a port with
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the type

Fdep(y : W(T)ak — prlinfo : r(T)ahere, y : w(T)ak])

the host can instantiate the incoming script with some channel located
at the site k, on which it has write permission, and the running code is
restricted to writing there, and reading from a local channel called info.

Note that in both these examples the location k is built into the script
types. Thus a server with an access port at this type would only allow
entry to scripts which guarantee to write only at k. However dependent
types can be used to allow this target site to be parameterised. Consider
the simple example

Tdep(2 : L) Fdep(y : w(T)ez — prlinfo : r(T)ehere, y : w(T)az])

where the script type is now parameterised by locations of some type L.
This allows the server to accepts scripts which can write the information
at sites determined by the client.

Although these dependent types add considerable flexibility to the in-
teraction between clients and servers, they have potential drawbacks; as
we will see the client has to send with the script the actual objects on
which their type is parameterised. In principle this opens up the possibil-
ity of (rogue) servers abusing this extra information. However existential
types provide extra protection to clients, because, as we will see, this extra
information is not required as part of the communication.

The language SAFEDPI is formally defined in Section 2, together with
a reduction semantics. In Section 3 we define the set of types and the type
inference system; the formal development relies heavily on the type sys-
tems already given in [8, 19]. In Section 4 we develop a series of example
systems. These are designed on the one hand, to explain the intricacies of
the the type inference rules, and on the other to demonstrate the power
and flexibility of the types. This is followed by a section devoted to es-
tablishing the expected properties of type system, in particular Subject
Reduction.

We now turn to the second topic of the paper, typed behavioural equiv-
alences. In untyped languages, these are normally defined coinductively,
as the largest equivalences over processes which preserve, in some sense,
actions of the form

M i (1)

Typically these actions describe the possible forms of interactions between
a process and its environment. In a typed setting many of these actions
will not be possible, because the environment will not have the power to
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participate in them. As a simple example consider the system

[[(newc e : C) (xptl{c) |c?(x) Q)]
in an environment in which the export channel xpt can only send channels
with the read capability. The environment will receive ¢ along xpt but will
not be able to transmit on ¢. Consequently the potential input actions on
¢ by the process above will not be possible.
Following [9, 8] we replace the untyped actions in (1) with typed actions
of the form

I>M-ET >M

where M is the system being observed while Z is a constraint on the ob-
serving environment representing its knowledge of the system M. Actions
change both the processes and the environment in which they are being
observed. This will lead, in the standard manner, to a coinductively de-
fined, bisimulation-based, relation between systems, which we denote by

I‘: M%bisN

In our second main result of the paper, we prove that this coinductive rela-
tion coincides with a naturally defined contextual equivalence. One of the
features of our approach is the explicit representation of the information
which the environment can obtain from systems through testing with con-
texts. In such a highly constrained setting as this, this becomes a genuine
aid in understanding the equivalence. This is the topic of Section 6.

This report ends, in Section 7, with some conclusions and a brief survey
of related work.

2 The language SAFEDPI

SYNTAX: The syntax, given in Figure 1, is a slight extension of that of
Drr1 from [8]. It is explicitly typed, but for expository purposes we defer
the description of types until Section 3. The syntax also presupposes a
general set of channel names NAMES, ranged over by n,m, and a set
of variables VARS ranged over by z,y. Identifiers, ranged over by u,w,
may come from either of these sets. NAMES is partitioned into two sets,
Locs ranged over by k,I[,... for locations, and CHANS ranged over by
a,b,c,... for channels. There is also a distinguished subset of channels
called ports, and ranged over by p, q, ..., which are used to handle higher-
order values. Similarly we will sometimes use &, £’ for variables which will
be instantiated by higher-order values.

The syntax for systems, ranged over by M, N, O, is the same as in
Dri, allowing the parallel composition of located processes I[P], which
may share defined names, using the construct (newe : E) —.
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M,N := Systems
I[P] Located Process
M| N Composition
(newe : E) M Name Creation
0 Termination
P,Q = Processes
ul(V) Output
u?(X:T)P Input
goto,, v.P Migration
if u1 = ug then P else () Matching
(newcc:C) P Channel creation
(newregn : N) P Global name creation
(newlock : K)with @ in P Location creation
P|Q Composition
F (9) Application
* P Iteration
stop Termination
UV, W .= Values
(D) tuples
von= Value components
(A : T)P Scripts
u identifiers

FIGURE 1. Syntax of SAFEDPI

The syntax for processes, ranged over by P, () is an extension of the
PIrcALCULUS, [21], with primitives for migration between locations. Par-
allelism is allowed, we have the terminated process stop, and we also allow
matching and mismatching, with the construct if u; = uy then P else @),
and a form of iteration % P.

In the input construct u?(X : T) P we take X to be a pattern which is
used to deconstruct incoming values; this is a value which only contains
distinct occurrences of variables. In our somewhat restricted format for
values this means that X has the form (%), with each z; being distinct.
The output construct is asynchronous, u!(V'). Here V is a tuple consisting
of either identifiers or higher-order values. The latter can take the form
of scripts, \ (Z : T) P, where P is an arbitrary process term; we will
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often use F' to indicate an arbitrary script, whereas v will be reserved for
the individual components in a tuple V'; thus it will represent either an
identifier or a script. Of particular interest to us will be tuples of the form
(0, F') which will be interpreted as dependent values; intuitively the script
F'" depends on the values v.

At the risk of being verbose, the syntax has explicit notations for the
various forms of names which can be declared. In (newcc:C) P a new
local channel named ¢ is declared, while (newregn : N) P represents the
generation of a new globally registered name n for channels; see [8] for mo-
tivation. When a new location is declared, in (newlock : K)with @ in P,
its declaration type K can only involve channel names which have been
registered. This construct generates the new location k, sets the code @)
running there, and in parallel continues with the execution of P. This
specific construct for new locations is required since code may only be
executed at a location once entry has been be gained via a port; so here
() represents the code with which the location is initialised.

The main novelty in SAFEDPI, over DPI, is the construct

goto, k. F

Intuitively this means: migrate to location k via the port p with the code
F. Our type system will ensure that F' is in fact a script with a type
appropriate to the port p; moreover entry will only be gained if at the
location k the port p is currently active.

The various binding structures, for names and variables, gives rise
to the standard notions of free and bound occurrences of identifiers, o-
conversion, and (capture-avoiding) substitution of values for identifiers
in terms, P{%/u]}; this is extended to patterns, P{V/x[} in the standard
manner. We omit the details but three points are worth emphasising.
The first is that many such substitutions may give rise to badly formed
process terms but our typing system will ensure that this will never occur
in well-typed terms. The second is that identifiers may occur in our types
and therefore we require a notion of substitution into types; this will be
explained in Section 3. Finally terms will be identified up to a-equivalence,
and bound identifiers will always be chosen to be distinct, and different
from any free identifiers.

In the sequel we use system to refer to a closed system term, that is
a system term which contain no free occurrences of variables; similarly a
process means a closed process term.
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REDUCTION SEMANTICS: This is given in terms of a binary relation be-
tween systems

M — N
and is a mild generalisation of that given in [8, 10] for Dp1.

DEFINITION 2.1 (CONTEXTUAL RELATIONS). A relation R over systems
is said to be contertual if it preserves all the system constructors of the
language; that is M R N implies

e M|ORN|Oand O MRO|N
o (newe:E)M R (newe: E) N. |

The reduction relation is defined to be the least contextual relation which
satisfies the axioms and rule in Figure 2. The rule (R-STR) merely says that
we are working up to a structural equivalence, =, which abstracts from
inessential details in the terms representing systems. Formally structural
equivalence is defined to be the least contextual relation between (closed)
systems which satisfies the axioms which are given in Figure 3; these are
the natural adaptations of the usual axioms for structural equivalence in
the P1cALCULUS.

The main reduction involves local communication, governed by the rule
(R-cOMM), taken directly from DpPI. However here the value V' may be a
script; in other words this rule encompasses higher-order communication.
Higher-order output commands are generated by (R-MOVE), which has
already been explained in the introduction.

Migration to a site [ must designate a port p at which the migrating
code is to be received. The rule

klgoto, I.F| — I[p!(F)]

then translates the migration command into the system [[p!(F)], which a
priori represents a thread running at the target location /. However this
will have no effect until the site [ makes available a corresponding thread
of the form [[p?(&) Q]; using the rule (R-cOMM) this will now allow the
effective entry of F'. In this manner the site [ can control the immigration
of code.

The rule (R-C.CREATE) exports the new channel name ¢ generated by
a process at k to the system level, where it is tagged with the declaration
type Cak; this records the location of the new channel. There is a cor-
responding rule for registered names, (R-N.CREATE); but such names are
global and therefore there is no need to record where they were declared.
The generation of new locations is governed by (R-L.CREATE):

k[(newloc! : L)withC' in P] — (new!: L)(k[P]|I[C])
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(R-COMM) (R-SPLIT)

K[! (V)I [ k[e?(X - T) PT — k[P{V/x}] k[P | Q] — k[P] | K[Q]

(R-N.CREATE) (R-MOVE)

k[(newregn : N) P] — (newn : N) k[P] k[goto, [.F] — I[p/{(F)]

(R-L.CREATE)

k[(newloc! : L) withC' in P] — (new! : L)(K[P] | I[C])
(R-C.CREATE) (R-UNWIND)

k[P | M — M’
k[(newcc: C) P] — (newc: Cak)k[P] k[+«P]| M — k[xP]| M’

(R-EQ) (R-BETA)
E[if u = u then P else Q] — k[P] K[\ (z: T). P)®)] — k[P{%}]
(R-NEQ) (R-STR)

M=N, M — M, M'=N
K[if u=vthen Pelse Q] — *[0] "7 "' N — N’

FIGURE 2. Reduction semantics for SAFEDPI

(S-EXTR) (newe)(M | N) =M | (newe) N
if n(e) & fn(M)
(s-com) M|N=N|M
(s-ASS0OC) (M|N)|O=M]|(N|O)
(S-ZERO) M|0=M
(s-sToP) k[stop] = 0
(s-FLIP) (newn :E)(newn':E') M = (newn’:E’) (newn : E) M

ifn" ZE,n & FE

FI1GURE 3. Structural equivalence for HDPI

The code C'is set to run at the new location [, and note that this name is
known to the continuation thread P running at the initiating location k.
The remaining axioms are self-explanatory; there is testing of simple
identifiers in (R-MATCH), B-reduction in the rule (R-BETA) for instantiating
scripts and a standard rule for iterated processes.
For examples of reductions see Section 4.
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Basic types: B ::=int | string | unit ‘ T | proc | e
Local Channels:  C,D ::=1r(T) | w(T) | rw(T,U)
Locations: L,K :=locuy : Cy,... ,u, : Cp], n >0

provided u; = u; implies: = j
Global resources: N ::= rc(C)
First-order: A:=B | C|L|N| Cow
Processes: 7 2= proc | prluy : Ciews, ... Uy : Chawy,]
provided u; = u;, w; = w; implies¢ = j
Scripts: S ::= Fdep(Z : T — )
Values: T,Uz=A|S | Tdep(Z:T)T | Edep(2:T)T

FIGURE 4. Type expressions - informal

3 Typing

In this section we discuss the types and type inference for SAFEDPI. There
are three subsections. The first discusses informally the types used, which
builds on those in [10, 8, 25], while the second describes the type environ-
ments required to infer that systems are well-typed. Because the details
are heavily syntactic, on first reading it may be better to skip directly to
the final subsection which deals with the type inference rules, referring to
the first two sections only on a call-by-need basis.

3.1 The Types

The collection of types is an extension of those used in [8, 10], to which the
reader is referred for more background and motivation. They are described
informally in Figure 4 and intuitively they may be classified as follows:

BASE TYPES, ranged over by base: We include some predefined collection
of types such as int, unit, bool, etc. for various constants in the language.
The association of a particular type with a particular constant will be
global, that is not dependent on a particular location. We also include
proc, to indicate that a process is well-typed, and a top type T, which
can be associated with any identifier.

LLOCAL CHANNEL TYPES, ranged over by C,D: These take the form
rw(T,, Ty)

where T,, T,, are transmission or value types; that is types of values
which may be transmitted along channels. If an agent has a name
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at this type then it can transmit values of at most type T, along it
and receive from it values which have at least type T,. In the formal
description of types there will be a subtyping constraint, that T,, must
be a subtype of T,, explained in detail in [19]. When the transmit
and receive types coincide we abbreviate this type by rw(T). We also
allow the types w(T,,) and r(T,), which only allow the transmission,
reception respectively, of values.

GLOBAL RESOURCE NAME TYPES, ranged over by N: These take the form
rc(C), where C is a channel type. Intuitively these are the types of
names which are available to be used in the declaration of new loca-
tions. They allow an individual resource name, such as print, to be
used in multiple locations, resulting in a form of dynamic typing.

LocATION TYPES, ranged over by K, L: The standard form for these is
|OC[U1 : C1, cee s Up Cn]

where C; are channel types, and the identifiers u; are distinct. An
agent possessing a location name k with this type may use the chan-
nels/resources u; located there at the types C;; from the point of view
of the agent, k is a site which offers the services u,...u, at the corre-
sponding types. In the formal definition we will require each u; to be
already declared as a global resource name. If n is zero then the agent
knows of the existence of k£ but has no right to use resources there. We
abbreviate this trivial type from loc|| to loc. We also identify location
types up to re-orderings.

PROCESS TYPES, ranged over by m. The simplest process type is proc,
which can be assigned to any well-typed process. More fine-grained
process types take the form

priuy : Crewsy, ... uy, : Chawy,]

where the pairs (u;,w;) are assumed to be distinct. A process of this
type can use at most the resource names u; at the location w; with
their specified types C;; these types determine the locations at which
the channels u; may be used.

SCRIPT TYPES, ranged over by S: The general form here is

Fdep(Z : T — )

Scripts of this type require parameters (0) of type (T); when these are
supplied the resulting process will be of type 7{%z}. In other words the
type of the resulting process may in general depend on the parameters.
In these types we allow 7 to contain occurrences of a special location
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constant here to denote the current location.

These types will be abbreviated to (T — 7) whenever the variables ()
do not appear in the process type 7, that is when the type of result is
in fact independent of the parameters.

Script types, a generalisation of those used in [25], are one major inno-
vation of the current paper; they allow parameterised processes, or scripts
to be transmitted. Examples of such types include

w(T) — proc: the type of a script which is parameterised on a local channel
name, on which write permission at type T is needed.

(r(R),w(W)ak) — proc: a value of this type will be applied to a pair, the
first element will be a local channel with read capability at type R and
the second a channel located at k£ with write capability at type W.

More importantly by using fine-grained process types, access to re-
sources by incoming code can be restricted. Here are two examples:

Fdep(z : r(T) — pr[z : r(T)ahere, reply : w(T)ak])

Incoming code received at this type, can be instantiated by any local
channel, say ¢ from which values can be read at type T. The resulting
process is then only allowed access to two channels, namely the local
channel ¢, from which it can read, and a channel named reply at the
location k, to which it can write. This process will have the type pre :
r(T)ehere, reply : w(T)ek]. Code at the type

Fdep((z,y, 2) : (loc,r(TYex,w(T)) = pr[y : r(T)ex, z : w(T)ehere])

needs to be instantiated by a location, a channel at that location, and
a local channel. For example the location could be called source, the
channel located there info, from which values can be read at the type T,
and the local channel record, at which values can be written at type T.
The resulting process will then have type

pr[info : r(T)a source, record : w(T)ehere]

It can download information from the third-party source site source via
the channel info there.

Finally Transmission or value types dictate the kind of values which
can be transmitted over channels. These may be first order values, or
scripts. We also allow dependent and existential types to be used. For
example inputting a value of the dependent type Tdep(z : K) S will result in
the reception of a pair (k, F'), where F is guaranteed to be of type S{¥z}; k
is the witness that the script F' has the required type, and is received with
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the script. On the other hand inputting at the corresponding existential
type Edep(z : K) S will only result in the reception of the value F', although,
as we will see, when the overall system is type checked the witness v must
be produced, to verify that F' is indeed well-typed.

NoTATION 3.1. [Globalising types] It is worth noting that there is a cru-
cial distinction between local channel types C and, for example location
types. The former only make sense relative to a specific location, whereas
the latter are location independent, or global types. We can convert the
local channel type C to a global type by appending a location, Cew; this
is the type of a channel of type C located at w. In various contexts it will
be convenient to apply this globalisation operation to an arbitrary type,
(T)ew; this will only have an effect on any components of T which are
local channel or script types. The operation is defined by induction on T:

(Clow = Cow, (S)aw =S
(Klaw = K, (Caw’)aw = Caw’
(Tdep(# : T) T)ow = Tdep(Z : (T)ow ) (T)aw
(Edep(Z : T) T)aw = Edep(Z : (T)ow ) (T)ew
Note that in the last two clauses we have used the obvious notation ('T')@w,

for the list Tiaw,..., T,ew. |

There are numerous constraints on the formation rules for types, well-
documented in [10, 8]. The description given in Figure 4 should be viewed
as defining pre-types; those which satisfy the formation constraints will
then be considered to be types. It is best to describe these constraints
relative to a type environment.

3.2 Type environments

A type judgement will take the form
M

where I' is a type environment, a list of assumptions about the types to be
associated with the identifiers in the system M. These can take the form

e u : loc, meaning that u is a location

e v : Cow, meaning the channel u located at w has type C

u : rc(C), meaning u is a global resource name, which may be installed
at any new location.

x : S, meaning x can be instantiated by any script which can be inferred
to have type S
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o z : (T with § : I~E> This represents a package, which will be used to
handle existential types. Intuitively this defines the association = : T
but the type T may depend on the auxiliary associations ¢ : E.

Lists of assumptions are created dynamically during typechecking, typ-
ically by augmenting a current environment with new assumptions on
bound variables. It is convenient to introduce a particular notation for
this operation:

DEFINITION 3.2 (FORMING ENVIRONMENTS). Let {V : T} be a list of
type assumptions defined by

e {v:Cow}=v:Caw

o {vr:S}=x:S

o {v:locuy:Cyq,...u,:Cyl} =v:loc,uy: Ciav,...u, : Chav

o {(§,7) : Tdep(§: E) T} ={y1 : Ex}... ,{yn : En}, {z: T}

o {z:Edep(§:E)T} =2 : (Twith {y1: E1}..., {yn : En}) u

Of course there a lots of other possibilities for V' and T but only those
mentioned give rise to lists of assumptions. Moreover even those given
may give rise to lists which are not consistent. For example we should
not be able to introduce an assumption u : loc if u is already designated
a channel, or introduce v : Cew unless w is known to be a location. Since
type expressions also use identifiers, before introducing this assumption
we would need to ensure that C is a properly formed type; for example it
should only use identifiers which are already known. In order to describe
the set of valid environments we introduce judgements of the form

Fl_env

The inference rules are straightforward and consequently are relegated to
the appendix, in Figure 10. We also relegate to there the definition of
subtyping judgements, of the form

I'-T<:U,

given in Figure 11. Again the rules are straightforward, and mostly inher-
ited from [8]. However it is worth noting that process types are ordered
differently than location types. For example we have

[k prlug : Ciek] <: prlug : Ciek, us : Coal]
but
' |OC[’LL1 : Cl,UQ : CQ] <: |OC[’LL1 : Cl]
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assuming, of course, that the various types used, C;, C; are well-defined
relative to I'.

These rules have been formulated so that they can also be used to say
what is a valid type relative to a type expression.

DEFINITION 3.3 (VALID TYPES). We say the type expression T is a valid

type relative to I', written I' = T : ty, whenever we can derive the judge-
ment ' =T <: T. |

Types can be viewed intuitively as sets of capabilities and unioning these
sets corresponds to performing a meet operation with respect to subtyping.
This we now explain. Let (D, <) be a preorder. We say a subset £ C D
is lower-bounded by d € D if d < e for every e in E. Upper bounds are
defined in a similar manner.

DEFINITION 3.4 (PARTIAL MEETS AND JOINS). We say that the preorder
(D, <) has partial meets if every pair of elements in D which has a lower
bound also has a greatest lower bound. This means that for every pair of
elements dy,ds in D which has some lower bound, that is there is some
element in d € D such that d < dy, d < ds, there is a particular lower
bound, denoted d; ' do which is less then or equal to every lower bound.
The upper bound of pairs of elements, d; LI ds is defined in an analogous
manner. |

Let Typesr denote the set of all type expressions T such that I' = T : ty.

THEOREM 3.5. For every I', the set Typesy, ordered by <:, has partial
meets and partial joins.

Proof: See Proposition A.2 in Appendix A |

Intuitively the existence of T I U means that T and U are compatible, in
that they allow compatible capabilities on values at these types. Moreover
the type TMU may be viewed as a unioning of the capabilities allowed by
the individual types.

It is worth pointing out that with our type expressions set Typesp
turns out to be not only a preorder but also a partial order. However this
would no longer be the case if we allowed recursive types; nevertheless
with this extension our results would still apply. Note also that because
of the existence of the top type T, useful in Section 6, joins of types are
always guaranteed to exist.

3.3 Type Inference

We are now ready to describe the type inference system for ensuring that
systems are well-typed. There are three forms of judgements, for systems,
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(TY-GNEW) (TY-CNEW)

Lyn:rc(C) - M [,c: Cak - M

'k (newn :rc(C)) M T F (newc: Cak) M
(TY-PAR)

(TY-NIL) I'-M

' env I'EN

I'-0 I'FM|N
(TY-LNEW)

(TY-PROC) I, {k : K} = M

Fl_kpiproc F,{kK}"kK

T+ k[P] TF (newk : K) M

FIGURE 5. Typing Systems

processes and values. The type inference rules for the first,
'+ M,

meaning that M is a well-typed system relative to I', are given in Figure 5.
The intention is that whenever such a judgement can be inferred it will
follow that I' is a well-formed environment.

The main inference rule is (TY-PROC). In order to ensure that k[P]
is a well-typed system we must show that the process P is well-typed
to run at k; at the system level it is sufficient to be able to associate any
process type with P. The typing of processes must be relative to a location
because it may use local channels which are required to exist at k; it also
turns out that typing of scripts will depend on their location. There is
also a subtlety in the typing of name creation. First note that in these,
and all subsequent rules, we assume that all bound names in a judgement
must be different than any free names used as part of the judgement.
Thus in (TY-CNEW) we know that ¢ is actually fresh to I'. However we
are still not guaranteed that I', ¢ : Cak is a well-defined environment even
when I' is. From the type environment rules it will only be so when C is
a well-defined type expression relative to I', and & is known as a location.
There is a further complication in (TY-LNEW), the rule for new location
creation. Deriving ', {k : K} = M will ensure that T',{k : K} is a well-
defined environment, but we must also ensure that all of the channels used
in the location type K have already been declared, in I', as global resource
names. This is enforced by the second requirement, I',{k : K} - &k : K.
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(TY-LOOKUP) (TY-BASE)

F,U : (E)@w,F’ F env I' - env beb
Fyv:(E)aw, IV, v: E 'k, b: base e
(TY-SUBVAL) (TY-MEET)

TH, V:T Tk, u:Ty
TFT<:T Tk, u:Ts
r+,v:T 'F,u:T;MTy
(TY-LOC)

r |_v U; - Cz

r |_w U; - FC<DZ'>

I'-D; <: G

[k, v:locluy : Coy.ntyuy i Gyl

(TY-TUDEP) (TY-EDEP)

r |_w V; : Ezﬂﬁ/:il} r |_w V; : Ez{lﬁ/jl}
Tk, v: T{%) Tk, v: T{9)

Tk, (0,0): Tdep(Z : E) T Tk, (0,0): Edep(Z : E) T
(TY-ELOOKUP) (TY-UNPACK)

Ty: (Tewwith & : E), " F env Tk, (§,0) : Edep(# : E) T
Ly : (Tew with%:E},F’ Foy: T T, v T{s|
FI1GURE 6. Typing Values

The typing rules for the judgements on processes
-, P:m

are given in Figure 7, and are defined simultaneously with the judgements
for values, in Figure 6,

rEv:T

Let us first examine those for values. The rule (TY-LOOKUP) simply looks
up the type of the identifier v relative to w in I', whereas (TY-BASE) allows
base values to be typed for free. Note that the rule (TY-LOC) ensures that
the judgement I' -, v : K, where K is a location type, can only be made
when each channel used in K is already known to I', at a suitable type,
as a global resource name. The rule (TY-MEET) is required because in
certain circumstances we allow multiple associations with identifiers in
valid environments; of course it can only be applied for types Tq, T, for
which T1MTy exists. Dependent tuple values are typed with (TY-TUDEP).
The value (9,v) can be assigned the type Tdep(i : E) T provided each v;
can be assigned the type E;{%z} and v the type T{%z}. For existential
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types we need to invent a new kind of value (0, v); these do not occur in
the language SAFEDPI, and are only used by the type inference system:;
intuitively (0,v) is a package consisting of the value v together with the
witnesses ¢, which provide evidence (for the type inference system) that
v has it’s required type. The rule (TY-EDEP), which might also be called
(TY-PACK), allows us to construct such values. It is similar to the rule for
dependent tuples. The package (0, v) can be assigned the type Edep(7 : E) T
provided we can establish that v; can be assigned the type v; : E;{%z}
and v the type T{%z[. Dependent tuples can be deconstructed and their
components accessed in the standard manner; see the fourth clause of
Definition 3.2. However the corresponding deconstruction for existential
types only allows access to the final component, and not the witnesses;
(TY-UNPACK) allows the value, rather than the witnesses, to be extracted
at the appropriate type from the package. Similarly (TY-ELOOKUP) only
allows knowledge of the value, and not the witnesses, to be deduced from
an existential assumption.

In Figure 7 the rules for name generation, (TY-NEWCHAN),(TY-NEWLOC)
and (TY-NEWREG), are simple adaptations of the corresponding rules at
the system level; note that in (TY-NEWLOC) we are guaranteed that the
new name k does not occur in the type 7, because of our convention on
bound names; similarly for ¢ in (TY-NEWCHAN) and 7 in (TY-NEWREG).
(TY-STOP), (TY-ITER) and (TY-PAR) need no commentary, (TY-EQ) is
adapted from the analogous rule (TY-MATCH) in [10, 8] and (TY-ABS) and
(TY-BETA) are standard rules for abstraction and application, adapted
to dependent function types. But note the use of {# : (T)ew} in the
premise of the former; the arguments in an abstraction are relativised to
the current location w. The rule for migration, (TY-GO), is justified by the
reduction semantics, although we could easily have phrased it in terms of
the premises of the output rule.

However the real interest is in the typing of the input and output
processes. For example to ensure u!(V') has a process type 7 relative to I,
(TY-0OUT), we have to ensure that u has the output capability at some type
appropriate to V. Thus we need to find some type T such that I' =, V : T
and u has the output capability on T. But we must also check that this
capability is allowed by mw. Both of these requirements are encapsulated
in the second premise of the rule

['Fpriu:w(T)ew] <: 7w

But there is a further complication. If the value being sent, V', contains
channels, or more precisely capabilities on channels, then these must also
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(Ty-0UT) (TY-OUTE) ~

Tk, V:T 'k, (0,v) :Edep(Z : E) T

['Fpriu: w(T)ew] <: ['F priu : w(Edep(Z : E) TYow] <: 7

I'FprenV i (T)ew] <: I F pre[d : (E)ew] <: 7

L, ul(V):m ', ul{v):m

(TY-1N) (TY-SUBPROC)

I'Fprlu:r(T)ew] <:m ', P:m

[, {X: (Maew} bk, P:oUprep[X : (T)ow] 'k 7w <: 7’

', u?(X:T)P:m L+, P:n

(TY-GO) (TY-STOP)

', ol(F):m ' m:ty

I' -, goto, u.F' : va port ', stop:m

(TY-NEWLOC)

FA{k: K}, C:m

F, {k : K} Fo, P:m (TY-NEWCHAN)

I {k:K}F, k:K Iye:Cewt,, P:7Upricew : C]

['F, (newlock : K)withC in P: 7 I'F, (newcc:C) P:m

(TY-EQ)

I |_w ul - T1,U2 : T2

'k, Q Iy (TY-NEWREG)

Oy{uy : Tot,{ug : T1} b, P I''n:NF, P:m

'k, ifu=wvthen Pelse @ : 'k, (newregn:N) P:
(TY-BETA)

(TY-ABS) ', F: Fdep(f : -T— — 7T)

T, {i:(T)ow} F, P : 7{®here} T, v:T;

Tk, A@:T). P:rdep(Z: T—7) Tk, F (0): n{P%}{“here]
(TY-PAR)

(TY-ITER) -, P:«

', P:nx -, Q:m

'+, *xP:7 '+, P|Q:m

FIGURE 7. Typing Processes

be allowed by 7. This is the intent of the third premise
['Fpran|V : Tew] <: 7

which uses a (partial) function which constructs a process type from a
value V' and its type; it essentially extracts out any channels which may
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be in V. To define this we use LI which is a join operator on types, relative
to <: the subtyping order; when applied to process types it effectively takes
the union of the capabilities of the individual types. It is worth noting
that prep[v : T] is the trivial process type pr[] when T is a script type.

pren[v @ Cew] = prlv : Caw]

pren[v @ K] = prler : Chav, ... ¢, Chav]
where K = loc[e; : Cq,... ycp 1 Gy
pren[d : T) = prenfvr = T1] U ... U prep[vr @ T4
Pren](,v) : Tdep(# : E) T] = pren[d : E] U pren[v : T]
Pren (7, v) : Edep(d : E) T] = pren[d : E] U prep[v : T]
prenfv : T] = pr|] otherwise

The rule for transmitting existential values, (TY-OUTE) is a slight vari-
ation. We must establish a package (0,v) of the correct outgoing type,
but only the (unpacked) value v is actually transmitted. Finally to ensure
u?(X : T) P has the type 7, we need to check that u has the appropriate
read capability, which also is allowed by 7,

I'Fprlu:r(T)ew] <: 7

and that the capabilities exercised by the residual P are either allowed by
7 or inherited by values which are input and bound to X:

L, {X: (Mew}k, P:mUprg[X : Tow]

It is worth noting that the typing rules for input and output degener-
ate to the more standard form, for example as in [10], when we wish to
establish that the processes are simply well-typed, that is have the type
proc. For example we have the derived instances:

(TY-0UT) (TY-IN)
L+, V:T L'k, u:r(T)
Lk, u:w(T) ', {X:(T)ew}k, P:proc

I l_w ’LL'<V> . proc r l_w U7(X . T) P proc

4 Examples

In this section we demonstrate the usefulness of the type system by a series
of examples of increasing sophistication.

To make the examples more readable let us introduce some convenient
notation. First we will abbreviate the transmission type unit — proc, for
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thunked processes, simply to thunk. Then we use run as an abbreviation
for the term A¢ £(), where () is the only value of type unit. So the type
of run is thunk — proc; it takes a thunked process and runs it. Thunked
processes, which we often refer to as thunks, take the form A (). P but
in the context of gotop.... and port outputs pl(...) we will omit the A
abstraction; thus goto;, [.A (). P is abbreviated to goto,, [.P. Finally we
mimic the notation of process types for thunks, by letting th[....] denote
the type unit — prl....].

4.1 Installing and broadcasting services

Suppose there are two globally defined channel names ping and fing and
a port name in; that is we are working in a type environment I' with the
property that

I' F ping : rc(Dy,), fing : rc(Dy),in : re(D;) (2)
for some types D,,Ds and D;. Let L be a location type such that
L <:loc[in : C;, ping,, : Cp, fing : Cy]. (3)
Then in the system
r[(newloc! : L) with C in P]

the site r generates a new location [ with declaration type L; it evolves to
the new system

(new! : L)(r[P] | I[C])
To be well-typed with respect to I' we need that

e L is a proper declaration type for locations, that is I',{l : L} - [ : L.
This means that all the resource names in L should be globally defined
in I' with a type which supports their use in L. For example this would
require D, <: C,, Dy <: C¢ and D; <: C; with respect to I'.

e the residual P is well-typed to run at r, that is
[, {l:L}F, P: proc

e the installed code is well-typed to run at the new location [, that is
I {l:L}F, C: proc.

The residual P running at r now knows the location [ and its type,
and may make it known to other agents. Suppose P has the form

*disty (1) | *dista(l) | Q

where dist; are distribution channels at r for broadcasting information.
Agents with access to these channels can find out about . More impor-
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tantly the type at which they receive [ depends on the types of dist; at the
site r. For example suppose I' contains
dist; : w(loc[in : w(l), ping : w(V,)])ar,

(4)

for some types |,V,, V. Then agents finding out about [ from the source
dist; only knows about the resource ping there (in addition to the port in),
while if the source of information is dists only fing may be used. Of course
an agent may have access to both sources. If that is the case then they
can eventually come to know [ at the type locfin : w(l}, ping : w(V,,), fing :
w(V )], thereby obtaining knowledge of both resources. Of course access
to [ will be governed by ports such as in and their programming via the
installed code C.

disty : w(loc[in : w(l), fing : w(Vy)])ar

4.2 Servicing resources

The installed code C' determines, at least initially, who has access to the
newly created site [. A typical example of the installed code C' may take
the form

*in?(& : thunk) (runé) | S

Entry will be allowed to any well-typed thread at the port in, and the
thread can subsequently interact with the servicing code S. This will only
be well-typed if the original declaration type for the global name in allows
values of type thunk to be received at that port. For example it will be
well-typed if T' F in : rc(rw(thunk)), that is setting the declaration type D,
in (2) above to be thunk, and the type | in the typing for the sources at r,
in (4), to be thunk also.

Note that there is some choice in the type at which in is declared at
[, in (3) above. If C; is set to rw(thunk) then the servicing code S at [ can
both read and write at in, but the type r(thunk) is sufficient for well-typing,
if S never writes to that port.

Consider a thread running at r such as

r[dist;?(x : L) goto,, z.ping!(v)] (5)

which gains knowledge of the newly created location [ via the source dist;.
Here we use L, to be an abbreviation for an instance of the type used in
(4) above, loc[in : w{thunk), ping : w(V,,)]. This thread is well-typed,

I' F r[dist;?(z : Lp) goto,, z.ping!(v)]

provided the value v can be assigned the proper type for ping namely V,,.
This follows from the fact that for such a I' we can establish

I'F, dist;?(x : L,) goto;, z.ping!(v) : proc
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which in turn follows from
[',{z:L,} ., goto,, z.ping!(v) : proc
This is a consequence of applying the typing rule (TY-GO) to the judgement
[ {z: Ly} F, inl(ping!(v)) : proc (6)
The type environment I',{z : L, } takes the form
I', z : loc,in : w(thunk)az, ping : W(V,)ax

Therefore (6) follows from an application of the simple form of the output
rule (TY-OUT), provided we can establish

[,z : loc,in : w(thunk)az, ping : w(Vp)aex F, A (). ping!{v) : thunk,
that is
I,z : loc,in : w(thunk)az, ping : w(V,)ex F, ping!(v) : proc
Finally this requires the judgement
I,z : loc,in : w(thunk)az, ping : w(Vp)ax F, v : V), (7)

Note that this checking of v is carried out relative to the variable
location z; so the type V, needs to be some global type, whose meaning is
independent of the current location. This could be a base type such as int,
although we will see more interesting examples, such as return channels,
later.

4.3 Site protection

A simple infrastructure for a typical site could take the form
hlin?( : 1) xrung | 5]

The on-site code S could provide various services for incoming agents,
repeatedly accepted at the input port in. In a relaxed computing environ-
ment the type | could simply be thunk indicating that any well-typed code
will be allowed to immigrate. In the sequel we will always assume that
when the type of the port in is not discussed it has this liberal type.

However constraints can be imposed on incoming code by only pub-
licising ports which have associated with them more restrictive guardian
types. In such cases it is important that read capabilities on the these
ports be retained by the host. This point will be ignored in the ensuring
discussion, which instead concentrates on the forms the guardian types
can take.

Consider a system consisting of a server and client, defined below,
running in parallel.



24 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Server: s[req?(§ : S)run€ | * news!(scondar)]
Client: c[goto,e, s.news?(z) goto;, c. report!(x) (8)

|in?(& : R)run& |report?(y)...]
The server is straightforward; it accepts incoming code at the port req
and runs it. The only service it provides is some information on a channel
called news. The client, who knows of the req port at the server sends code
there to collect the news and report it back to it’s own channel report; the
type at which it inputs from news, which obviously must be string, is
elided. This code migrates twice, once via the port req from the client to

the server, and once via the port in, from the server to the client.

The server protects its site using the guardian type S while the client
protects its site using R. What should these be? Let us assume that both

sites have the required channels at appropriate types; suppose in I' we
have the entries

news : rw(string)as, req: rw(S)es,

report : rw(string)ac, in: rw(R)ec

The first possibility is for the client to be relaxed but the server vigilant:
R: thunk
S: th[news : r(string)as, in : W(R)ac]

Here the client allows in any well-typed process, whereas the server will
only accept at the port req processes which use at most the local channel
news and the port in at the site ¢; moreover the local channel news can
only be used in read mode.

With these types one can show that the overall system is well-typed.
Typing the server is straightforward but to type the client we need to
establish, among other requirements,

[' -, goto,, s.news?(x) goto;, c. report!(z) : proc
As usual this follows by an application of (TY-GO) from
' -, req!( news?(z) goto;, c. report!(z) ) : proc
which in turn requires establishing
', A (). news?(x) goto,,, c. report!(x) : S
In other words the incoming code should match the guardian type of the
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server, S. By dethunking we get the requirement
I' F, news?(z) goto,, c. report!(z) : pr[news : r(string)as, in : w(R)ac]

This is established via an application of the rule (TY-IN). The first premise
is immediate since we assume I' I, news : rw(string). Moreover the second
amounts to

[,z : string -, goto;, c. report!(x) : pr[news : r(string)as, in : w(R)ac]

because the value being received is a string; that is prep[z : stringas] is the
trivial process type prl].

The significant step in establishing this second premise is to check that
the code returning to the client satisfies its guardian type R:

I,z : string I, inl{ report!(x)) : pr[news : r(string)as, in : W(R)ac]  (9)

However this is straightforward since R is the liberal guardian thunk. It
follows by an application of the output rule (TY-0OUT) in Figure 7. But it
is important to note that in the application the third premise is vacuous,
as pren[A (). report!(z) : proc] is the trivial type pr|].

The current type R = thunk leaves the client site open to abuse but it
is easy to check that the above reasoning is still valid if the guardians are
changed to

R: th[report : w(string)ac]

S: th[news : r(string)as, in : w(R)ac]
Here the guardian for the client only allows in agents which write to the
local port report; note that this change requires that the guardian at the
server site also uses this more restrictive type in its annotation for the
port in at c.

One can check that with these new restrictive guardians the system is
still well-typed. The only extra work required is in providing a proof for
the judgement (9) above, ensuring that the code returning to the client
satisfies the more demanding guardian. By an application of (TY-GO) and
(TY-0UT) this reduces to the judgement

[,z : string =, A (). report!{x) :th[report : w(string)ac]
which is a straightforward consequence of (TY-OUT).
It might be tempting to define the guardians by
R: th[report : w(string)ac]
S: th[news : I’<string>@8, in : W<thunk>@C]
Here both server and client protect their own resources but the server is
uninterested in what happens at the client site, by allowing code with
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arbitrary capabilities on the client port in. However there is an intuitive
inconsistency here. The client has read capability at its port, at the re-
strictive type R, while somehow the server has obtained a more liberal
write capability there, namely thunk.

In fact the system can not be typed with these revised guardians. In
particular

[t/ sfreq?(£ : S) run{]

Any derivation of this judgement would require the judgement

[E:SH, rung
which in turn would require
I'ES:ty
or more formally
'-S<:S

But as we will see this can not be inferred; that is S is not a valid type,
relative to I'.

To see why let us suppose, for simplicity, that the port in has been
declared at the site ¢ with a type of the form rw(R, W) for some type W.
One constraint in the type formation rules, (see (TY-CHAN) in Figure 11)
is that the write capabilities on a channel are always a subtype the read
capabilities; in our setting this means that I' W <: R. Our rules also
ensure that ' F, in : w(T,) implies I' F T,, <: W and consequently
'-T, <:R.

However the structure of R ensures that I'V F thunk <: R for no IV, from
which we can conclude that T" I/, in : w(thunk)ac. But this is one of the
requirements, in the formation rules in Figure 11, to establish ' = S : ty.

4.4 Anonymous channels
Consider the following variation on the server/client system:
Server: s[req?(€ : S)runé | where?((y, z) : T) goto, y.2! (scandar) |
Client: c[goto,e, s. where!(c, report) |in?(£: R)run¢ |report?(y)...]
(10)

Here the protocol is somewhat different; the client simply supplies to the
server, via the channel where, the address of a channel on which to supply
the news; this consists of the pair of a location and a channel on which to
report. The server then launches a thread which migrates to the relevant
location, which is assumed to have an in port, to deliver the news.
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Defining guardians is straightforward. For example these could be

R: thunk
S: th[where : w(T)as, in : w(thunk)ac]

However the difficulty is in ascertaining the required type T for the pair
of values. One possibility is to set

T = (I, w(string))

where | is the location type loc[in : w(R)}], allowing the first component to
be a location with an in port at the appropriate type and the second to
be a channel for sending strings.

Unfortunately the server can not be typed with such a T. The problem
arises when we try to establish

[ {(y,z) : (T)as} F, goto;, y.2z!{scandat) : proc (11)
Unravelling the extended environment this means establishing
F,y : |0C, in: W<R>@y, A W<string> l_y Z!<scandal> . proc

which is not possible; the output rule (TY-OUT) demands that z be a
channel at the location y.

So to be able to statically type this example we need to be able to use
the first component in the pair (y,z) as part of the type of the second
component; we need a dependent type.

Let

T = Tdep(ﬂi‘ : |) W<string>@$

Note that (SUB-TUDEP) from Figure 11 ensures that this is a well-defined
type:
I'ET:ty
because
[, {z : 1} - w(string)oaz : ty

So this type can be safely used as part of a process. Moreover it is now
easy to establish (11) above as the extended environment I, {(y,z) : T}
unravels to I', y : loc, in : w(R)ey, z: w(string)ay.

These location dependent types were introduced in [10], where they
are shown to be very useful for typing migrating code, as they allow the
transmission of anonymous channels between sites. In our example the
server does not need to know, apriori, the name of the report channel
at the client site. In the sequel we will borrow the notation used in [10]
for these dependent types; we use (uew) to denote any pair of identifiers
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(u, w) which is expected to have a dependent type of the form Tdep(x : I) C.
In a similar vein we abbreviate this type to CeL. Thus we can reformulate
the example (10) above as:

Server s[req?(€ : S)run¢ | where?((zey) : w(string)el) goto,, y.2!{scandar) |
Client c[(newc report)

goto,, 5. Where!(report ac) |
in?(£ : R)run¢ | report?(y)...]

Here, as a form of self-protection, the client generates a new return chan-
nel, also called report and whose obvious type is elided, which it sends
to the server. The client’s self-protection consists of reading this channel
exactly once, which it knows will be a response to its request to the server.

Note that these location dependent types are exactly what is required
to type the example (5) above. In the type judgement (7) we need to find
an appropriate type V), for values transmitted on the channel ping. We
can now let V,, be the dependent type w(string)aloc, consisting of a return
address; that is a location, and a write capability at some channel at that
location.

4.5 Dependent process types

There remains a major difficulty with the server in (10) and (8) above. The
guardian type of the server S uses the name of the client ¢, and therefore
it can only be used by that client. To overcome this difficulty we need to
allow process types to depend on locations and channels. Here the general
form will be

Tdep(.’ﬁ : E) S

where S is a script type which may depend on the variables Z. A value of
this type takes the form

(,0)

where v is some script. But again to emphasise the occurrence of these
types we will use the more descriptive syntax

V with U

An example of the use of such types is in the following variation of the
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client server from (8) above:
Server: s[req?(E withy : Sg)run& | * news!(scandar) |
Client: c[(newc report)

12
goto,., 5.news?(z) goto;, c. report!(z) with ¢ | (12)

in?(£: R)run& | report?(y)...]
with the types

R: thunk
Sa: Tdep(y : I) th[news : r(string)as, in : w(R)ay]
| : loc[in : w(R)]

Here the important point to notice is the server’s guardian type at the
port req, Sy, no longer mentions any clients name; it can be used by any
client which satisfies the types requirements. The server accepts a thunk,
of type th[news : r(string)as, in : w(R)ey] which must be accompanied by
a location of type | to be used in place of the variable y in S4. A typical
client ¢ can generate a new reply channel report and send to the server

e the thunk news?(x) goto,,, c. report!(z)
e accompanied by a required location, in this case c.

Let us now see how the overall system typechecks, assuming as usual
an environment in which the channel news and ports req, in, have the
appropriate types, and that the declaration type of report is rw(string). At
the server let us concentrate on establishing

r I_S req?(§ with Y ! Sd) run§ . proc
This follows by an application of the simple form of (TY-IN) to
F, {(y,f) : (Sd)@S} l_s run§ . proc

Noting that (Sg)es is the same as S4, unravelling the extended environ-
ment gives the requirement

[,y : loc, in : w(thunk)ey, & : thy, F, run§

where th, is an abbreviation for the type th[news : r{string)as, in : w(R)ay].
Apriori typing the process run ¢ should be straightforward with respect to
this environment. But there is a subtlety; at some point in establishing
this judgement we need to apply (TY-BASE) from Figure 6 to conclude

[,y : loc, in : w(thunk)ay, & : thy =, () : unit
and this requires the premise

F,y : IOC, in: W<thunk>@y, 6 : thy F env
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which in turn requires the premise
I,y : loc, in : w(thunk)ay - thy, : ty (13)

In other words we have to check that th, is a well-defined type, relative to
the extended environment. However this is now straightforward using the
rule (SUB-PROC) from Figure 11, in the presence of the new associations
involving y in the extended environment.

Let us now turn our attention to typechecking the client in (12) above,
where we concentrate on ensuring that the process sent to the port req
satisfies the type S;. We have to ensure

', report : rw(string)ac =, A (). news?(x) goto,, c. report!(z) with (¢) : Sq

The rule (TY-TUDEP) in Figure 7 reduces this to two premises:

I, report : rw(string)ac k-, c : |
[, report : rw(string)ac |-, news?(z) goto,, c. report!(x) :
th[news : r(string)as, in : w(R)ac]

The first is immediate from our assumptions about I' and the second is
essentially the same as a derivation we have already seen on page 25.

Thus using dependent process types we can define general purpose
servers which can be used by multiple clients. The example we have just
considered, (12), apriori leaves the clients insecure because of the use
of the liberal type thunk for the clients guardian type R. But it can be
generalised so that this guardian is strengthened, allowing in only threads
which are going to write to the locally declared reporting channel. Here
is one possible formulation:

Server: s[req?(& with (y, z,2) : Sg) run& | * news! (scandat)]
Client: c[[(newcreport)
(newcin : rw(R))
goto,., 5.news? () goto;, c. report!(z) with (c, report, in) |

in?(£: R)run¢ | report?(y)...]
(14)

Here a client generates a local channel report, whose type rw(string) we
have elided, and a local port in whose declaration type is rw(R), where
R is the more restrictive guardian type th[report : w(string)ac]. In other
words in has been specially created to restrict entry to processes which
will only write on the newly created channel report. The client then sends
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the usual process to the server but now accompanies it with the triple
(¢, report, in)

The code for the server is the same except that accompanying the
incoming thread it expects three values. Its guardian type S; however is
changed to

Sqg: Tdep(y : loc, z : w(string)ay, = : w(th[z : w(string)ay])ay)
th[news : r<string>@8, €T : W<th[z : W<string>@y]>@y]

Here, once more, this guardian type does not mention any client names,
but it allows clients to employ much more restrictive guardian types at
their own sites. We leave the reader to check that this revised system can
still be typechecked.

4.6 Existential process types

The use of dependent script types, as in the previous subsection, has
certain disadvantages from the point of view of the clients. For example
in (14) above the client sends to the server, in addition to the script to
be executed, the triple (c,report,in). Although these are not used by the
server we have defined other than as part of the received script clients are
in principle able to use them in any way they seem fit. An alternative
server could be given by

badServer: s[req?(& with (y, z,z) : Sq) goto,, y.z!(boring)] (15)

This rogue server does not run the incoming script to obtain the latest
news; instead it uses the incoming accompanying values and sends directly
to the client some boring data.

Existential types allow the client to hide from the server the data which
accompanies the incoming scripts. Existential script types take the form

Edep(Z : E) S

where, as with dependent types, the type of the script S may depend on
the parameters z. Intuitively a value of this type is once more a form of
tuple (0, v), although access to the accompanying parameters is restricted.
That is reading a value of this type from a port only results in the script
being obtained, although that script itself may use these parameters. This
new form of tuple, often called a package, is denoted by

(0, v)
The important point about such a package is that it only gives access
to the script v and not the internal parameters v. In our formulation to
send such a value on a channel the sender must have the package (7, v),
although only the script v is emitted. For this reason we need a special



32 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

output rule for existential types; see (TY-OUTE) in Figure 7, which has
already been explained in Section 3.3.
Let us now reformulate (14) above using existential types:

Server: s[req?(€ : Se) run€ | * news!{scandar) ]
Client: c[(newc report)
(newcin : rw(R)) (16)

goto,., 5.news?(z) gotoy, c. report!(z) |
in?(& : R)run¢ | report?(y)...]
Here the guardian type S, is

Edep(y : loc, z : w(string)ay, = : w(th[z : w(string)ay])ey)
th[info : r<string>@8, €T : W<th[z : W<string>@y]>@y]
The server is much the same as before except that it does not receive any
parameters with the incoming script. Similarly the client only sends the
script.
Let us now see that this example typechecks. Establishing that the

server is well-typed is a little more complicated than with dependent type
Sg4. The interest centres on establishing

F,{f! (Se)@S} l_s runf . proc

and there are two essential steps. Note that, as with Sy, (Se)as is the
same as S, and so in the sequel we will omit the (—)as. The first step is
deriving

F,{f : Se} l_s () ! unit

and proceeds as with the use of S5 on page 29; unravelling the environment
this amounts to establishing

Ié: <thy with ¥ : loc, z : W<string>@y, xT: W<th[2 : W<string>]>@y> F env
(17)

where now th, represents thfinfo : r(string)as, in : w(th[z : w(string)])ay].
Here the relevant type formation rule is (E-EDEP) from Figure 10, which
requires the premise

[,y :loc, z : w(string)ay, = : w(th[z : w(string)])ay - thy : ty

However this is easily established from (SUB-SCRIPT) of the same Figure.
The second essential step in typechecking the server is

F, {f : Se} |_S 6 . proc (18)
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This is necessary in order to ensure that run can be applied to £&. Here we
use an application of (Ty-ELOOKUP) from Figure 6 to obtain

I'{€:Sc} . & thy

One can also establish, using the subtyping rules,
I, {g : Se} + thy <: proc

and therefore by (TY-SUBTYPING) from Figure 6 we obtain the required
judgement (18) above.

Now let us examine the client. Here the central point is to ensure that
the goto,., s.... command is well-typed, which amounts to establishing
the judgement:

[, report : rw(string)ac F, req!(news?(z) goto, . c.report!(z)) : proc

Here the relevant rule is (TY-OUTE) from Figure 7. The second premise
follows from our assumption about the type of req at s while the third is
vacuous as 7 is instantiated to proc. However the first premise requires us
to find some v such that

', report : rw(string)ac b, (0, news?(x) goto,, c. report!(z)) :S.  (19)

In fact the required ¢ is obviously going to be (¢, report,in).

With these values the judgement (19) can be established using the rule
(TY-EDEP) from Figure 6. This requires the following four four premises,
where for convenience we use I', as an abbreviation for the extended en-
vironment [',report : rw(string)ac,in : rw(R). Recall that R is the type
th[report : w(string)].

e, c:loc

, report : W(string)ac

o

@
T T T

. in:w(R)ac

ceee

e F. news?(z) goto,, c. report!(z)

: th[news : r(string)as, in : w(R)ac]
The first three are simple value judgements and we have already seen a
derivation of the last.
This ends our consideration of the client/server in (16) above. But let

us reconsider the badServer from (15) above. Using existential types this
example might be written

badServer: s[req?(& : Se) goto,, y.z!(boring)]

But one can show that this no longer typechecks. The problem arises
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when trying to establish

[, {€:Se} F, z!(z!(boring)) (20)
We have already seen the expanded environment in (17) above, which is
[, € @ (thy with y : loc, z : w(string)ay,  : W(th[z : W(string)])ay)
However the only way to get information from the package

E:(thywithy ...,z ,x:...)

in this environment is to use the rule (TY-UNPACK) from Figure 6. This
will only give information on the variable £ whereas the judgement (20)
requires information on the other components of the package y, z, x which
are inaccessible.

4.7 Script types

In all of the examples so far servers react to data furnished directly from
clients. The general form of script types,

Fdep(Z : T — 1),

allow servers to accept parameterised scripts, which can be instantiated
by data owned, or trusted, by the server itself. Consider the following
variation on the client used in (8):

Client: c[goto,eq s.F' |in?(§: R)runé [report?(y)...]
F = Ay : W(string). y7(x) goto,, c. report!(z)

It does not know the source of the news at the server; so it sends the script
F' there, a script which uses the pre-existing port and channel in, report,
but is parameterised on an information channel local to the server. The
server inputs the script and is now free to apply it to whatever information
source it deems fit. A simple server, with the same functionality as that
in (8), is given by

Server: s[req?(£ : Ss) E(news) | * news!(scondal) ]

It simply applies the incoming script to the local channel news. However

it could also dynamically generate the local news channel, along the lines
of

ServerDy: s[req?(¢ : Ss) latest?(z) (€ 2)]

Note that when F' is received by the server and instantiated, the type
of the resulting process is dependent on that of the channel to which F
is applied. Under the assumptions in place during the discussion of (8),
and assuming that foo is a local channel, one would expect the process
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(F foo), running at s, to behave in accordance with the type
pr[foo : r(string)as, in : w(thunk)ac]
This is indeed the case as F' can be assigned the parameterised type
Fdep(y : r(string) — pr[y : r(string)ohere, in : w(thunk)ac]) (21)

To see this let I' be as described on 24. Then, using a simple variation on
the inference described there, we can infer

[,y : r{string)as -, y?(x) goto,, c. report!(x) : pry : r(string)ahere, in : w(thunk)ac]

An application of (TY-ABS) from Figure 7 gives the required
['F, F : Fdep(y : r(string) — prly : r{string)ehere,in : w{thunk)ac)

Under the further assumption that I' I, foo : r(string) an application of
(TY-BETA) gives

['F, (F foo) : pr[foo : rstring)as,in : w(thunk)ac]

Following this discussion it should be apparent that to ensure that the
overall system is well-typed it is sufficient to use the dependent type (21)
above for the guardian type S;. Then it is easy to check

I' - Client | Server
For example typing the server involves establishing
F,f : SS l_s (f news) . proc (22)

Assuming that I' -, news : r(string), we have already seen that an appli-
cation of (TY-BETA) gives

[',€:Ss bk, (€ news) : pr[news : r(string)as, in : w(thunk)ac]

and the required (22) follows by subtyping.

These parameterised functional types can be used in conjunction with
the other constructions we have considered, dependent and existential
types, to give a very sophisticated language for guardian types which on
the one hand allows non-trivial interaction between types, and on the other
enables sites to protect their local resources by implementing powerful
dynamic access policies. As a final example, to indicate the potential
of these types, consider the the following variation on the client in (16),
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which is in turn an elaboration of the example we have just considered:
Server: s[req?(€ : Sse) (€ news) | * news!{scandar)]

Client: c[(newc report)

(newcin : rw(R))

goto,eq 5. F |
in?(¢ : R)run¢ | report?(y). ..
F = A y : w(string). y?(x) gotoy, c. report!(z)]

Here the client does not know the source of the news at the server, and at
the same time the server is not aware of the reply mechanisms in place at
the client; indeed these are generated dynamically by the client and used
to construct the script F' to be sent to the server. One can show that this

system is well-typed if we let the guardian type for the client an server to
be

R: th[report : w(string)ac]
Sse Fdep(w : r(string) — S¥)
respectively, where S¥ is the existential type
Edep(y : loc, z : w(string)ey, z : w(th[z : w(string)ay])ay)

th{w : r(string)as, = : w(th[z : w(string)ay])ey]

5 Subject Reduction

Many of the expected properties can be derived for our type inference
system. To state these succinctly it will useful to use

', J:T

to denote either a value judgement I' -, v : T or a process judgement I' |-,
P : T. We will confine our attention to judgements in which I' contains no
occurrences of the special symbol here; thus they will only occur as part
of dependent types Fdep(Z : T— 7) and note that in applications the rule
(TY-ABS) from Figure 7 they are eliminated.

PROPOSITION 5.1 (SANITY CHECKS).
o [ I_w J:T implies I' - env.
e ', P:mimpliesI' - 7 : ty

Proof: The first is proved by induction on the inference of I' -, J : T
while the second is on that of the inference of I' -, P : w. It is required
by the base case (TY-STOP) while in the cases (TY-OUT), (TY-OUTE),
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(TY-IN) and (TY-SUB) it follows from the corresponding result for subtyp-
ing, Proposition A.1. All other cases follow by induction except (TY-BETA).
There we have I' = F' (0) : w{%z[}{“/here} because

(1) F I_w V; - Tz
(ii) Tk, F : Fdep(# : T — )

The latter can only be inferred by (TY-ABS) from which we know that
I, {z: ('D@w} = P : m{%here}. By the induction hypothesis we have that
[ {Z : (T)ew} F 7{%here} : ty. It follows by the substitution result,
Proposition A.5, applied to (i), that ' - 7{“here[} {?/z]} : ty. However since
we know that w is different than each z; this type is 7{%z}{%here}. N

In a similar vein we can show that well-typed processes can only use well-
defined types. For example if I' -, u?(X : T) P : proc then ' F T : ty.

Environments can be ordered by their ability to assign types to iden-
tifiers: I'y <: 'y if for every identifier u, I's -, v : T implies I'y F, v : T.
We will write I'y = I's whenever I'] <: T'y and I'y <: I'y.

PROPOSITION 5.2.

e (Weakening) Suppose I's F,, J : T and I'y <: 'y for some 'y such that
Fl - env. Then Fl l_w J:T.

e (Strengthening) Suppose I';u : T &, J : proc, where u does not occur
free in J. Then T’ l_w J: proc.

e (Subtyping) SupposeT'tF, J:T. ThenT't- T <: T' impliesT +, J : T’

Proof: The first two statements are proved by induction on the infer-
ences. The third follows immediately from (TY-SUBPROC) in Figure 7 and
(TY-SUBVAL) in Figure 6. |

Multiple occurrences of an identifier is governed by the following result:

ProprOSITION 5.3. T'F, u: Clawy and I' +, u : Coewy impliesI' F,, u :
rc(D) for some D such that T'+ D <: Cy, D <: Cs.

Proof: This property is essentially enforced by the formation rules for
well-defined environments. These ensure that if I'y,u : Ciewq,... ,u :
Coawy, ... is a well-defined environment then I'y must contain an entry
u :rc(D), where 't F D <: C; and I'1,u : Ciewn, ... F D <: Cs.

The formal proof is by induction on the inferences of I' -, u : Ciewq
and I' +, u : Coew;. The base case, when both are inferred from

(TY-LOOKUP), depends on this property of well-defined environments.
|
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An interesting consequence of this result is that whenever the conditions
of the proposition hold C; M C, is guaranteed to exist. This is spelled out
in detail in Proposition A.2 in the Appendix.

As usual the proof of Subject Reduction relies on the fact that, in a
suitable sense, type inference is preserved under substitutions. We require
two such results, one for standard values, and one for the existential values
used in type inference.

LEMMA 5.4 (SUBSTITUTION). Suppose I' -, v : T with x not in T.
Then ',z : (T)ew,A &, J : T implies I'y A{%%:} & oy J{Yelt : T{Y/z}

Proof: First note that the entry = : (T)ew; can only take one of three
forms, a channel registration, x : rc(D), a location declaration = : loc, a
channel declaration, = : Cew’ or a script declaration x : S. The proof is
by induction on the inference of I';z : (T)eaw;,A F,, J : T, which can
use the rules from Figure 6 or Figure 7. For convenience we use o to
denote a{¥z| for the various syntactic categories a. Also we use I', as
an abbreviation for the environment I', z : (T)ew;, A. First let us look at
some cases from Figure 6.

e Suppose (TY-LOOKUP) is used. So I'c I, u : E because
(1) ' - env
(ii) e has the form 'y, u : (E)ews,. ...

The substitution result for well-defined environments, Proposition A.5
in the appendix, ensures that

(1’) F, A’ F env
To obtain the corresponding
(i) ', A’ has the form Ay, u’ : (E')ew), ...

we perform a case analysis on where u : (E)ews occurs in I'p; with
(i’) and (ii’) an application of the rule (TY-LOOKUP) gives the required
[k, u @ E.

If it occurs in " then (ii’) is immediate since the substitutions have
no effect. If it occurs in A then v’ : (E')ews occurs in A’ and so
(ii”) holds. Finally u : (E)ewy could coincide with z : (T)ew;. There
are now a number of cases, depending on the form of (T)ew;. As
an example suppose it is Caw;. Then w; and wsy coincide and x can
not appear in C,w;. Therefore the hypothesis I' -, v : C gives the
required result, I',y A’ I, v : C, by Weakening.

e The case (TY-ELOOKUP) is very similar, although there are only two
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rather than three possibilities for the occurrence of the association in
I..

e Suppose (TY-LOC) is used. So I'c F,, w : K, where K is the type
loc[ug : Cq,... ,uy : C,] because

(1) Fe I_w U; Cz

(11) Fe I_w2 U; - rc(Di>

(iii) Te F D; <: C;
Induction, and the substitution result for subtyping, Proposition A.5
in the Appendix, can be applied to these to obtain

(i) I,A"F, ul: C

(i) T, A",y u; : re(D3)

(iii’) A"+ D} <: C!
The interesting case is when both v and x occur in w4, ... u,; without
loss of generality suppose these are uq,us respectively, in which case
u}y = uy, = v. Then we know, by Proposition 5.3, that C| M C, exists
and K’ is loc[ul, : (C]; M CY),...]. Applying the rule (TY-MEET) to
(i) above gives I'y A" -, uf : (C} M C,) and therefore we can apply

(TY-LOC) to this, together with (i’), (ii’) and (iii’) to obtain the required
T A by, w K

The other cases from Figure 6 are similar, mostly following by induction.
Now let us look at some cases from Figure 7.

e Suppose (TY-NEWLOC) is used so I'; I-,,, (newlock : K)withC' in P : 7
because

(i) Te,{k: K}, C:m
(ii) Te, {k: K}y, P
(iii) Te,{k: K} F,, k: K
Induction can be applied to each of these, to obtain
i) IA({k: K} F,C:m
(i) T,A, ({k:K}) Fyy P
(iii’) T, A", ({k: K}) =, kK

Unfortunately it is not true in general that I', A’ ({k : K})' is the same
as I', A, ({k : K'}). For example if K is loc[z : C|,v : C},...] then the

former contains the entries ...k : loc,v : Clak,v : Clak,... whereas
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the latter contains ...k : loc,v : (C} M C)ek,.... Nevertheless it will
always be the case that

A ({k: K =T,A, ({k: K'})

and therefore by Weakening (i’),(ii’) and (iii’) apply also to the latter.
So (TY-LOC) can be applied to these to obtain the required

A"+, (newlock : K')withC” in P': 7'
e Suppose (TY-IN) is used. So I' -, u?(X : U) P : m because
(i) Te F prlu: r(U)aws] <:
(ii) Te, {X : (V)ows} b, P: (mUpren[X : (U)ews])
Applying the substitution result for subtyping, Proposition A.5 we get
i) T,A"F pru’ : r{U"Yawh] <: 7’
since (prlu : r{U)ews])’
gives
(i) T, A, ({X : (U)ewsa}) F,p P (U pren[X @ (U)aws])’
Now substitutions distribute over LI (see Proposition A.3 in the Ap-

pendix), and also over the channel extraction function (See Proposi-
tion A.4). So this may be rewritten

(i) T, A", ({X : (U)ews}) s P’ (7' Upren[X : (U)ew))])

as x is guaranteed not to be in the pattern X. As in the previous case,
we can show that

F, Al, ({X : (U)@wg})’ = F, Al, {X : (U,)@’wé}

although because of location types they may not be identical. Never-
theless this is sufficient to be able to apply (TY-IN) to (i’),(ii’) to obtain
the required I', A" I, w?(X : U") P': 7 |

is pr[u’ : r(U)ew}]. Applying induction to (ii)

This substitution result can be generalised to arbitrary patterns, but
we only require it in a special case:

COROLLARY 5.5. Let X be a pattern and suppose I' -,,, V : T where
T is not an existential type. Then I',{X : (T)ew;} F,, J : T implies
T b vy VXD T{Y/x]

Proof: By induction on the structure of T. The base cases are covered by
the previous lemma. There are two other cases, when T is a location type
and when it is a dependent type. As an example we consider the former,

when it has the form K = loc[uy : Cy,...u, : C,]; in this case X must be
a variable x and V and identifier, say v.
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So I'{X : (K)ew} is ',z : loc,u; : Ciez,... ,u, : Cyex which can be

written as
[, z:loc, (uy : Ciez,... ,u, : Char)
So applying the previous lemma we obtain
Tug : Clav, ... up 2 Cpav by oy J{Yelt : T{%]}

But I' -,, v : K means that I' -, u; : C; for each ¢. So we see that
I'=T,uq : Ciav,...u, : C,av from which the required

Loy JAYl - T{]
follows. [ |

The corresponding result for existential types uses different substitu-
tions into processes and types. The crucial property of existential values
is that the use of their witnesses is very limited:

PROPOSITION 5.6. Suppose 'y : (T with & : E),T +, J : T. Then
z; & fv(J) and z; does not occur in T w.

Proof: By induction on the inference. Intuitively the result follows from
the fact that the only information available, via (TY-ELOOKUP), from the
entry y : (T with # : E) is that y has the type T; no information on z;
is available. The proof relies on the corresponding result for well-defined
environments and subtyping, Proposition A.6 |

This result provides the central property underlying the substitution result
for existential values.

LEMMA 5.7 (ESUBSTITUTION). Suppose T' . (5,v) : Edep(Z : E)T.
ThenT,y : ((T)ew; with 7 : E), A F,, J: T, wy : loc implies T’y A%y} Fo. g
Ll - T{¥zl

Proof: The proof follows the lines of that of Lemma 5.4, with frequent
applications of the previous proposition, Proposition 5.6, to ensure that
only the substitution of v for x is applied to process terms and names. As

usual certain cases depends on the corresponding result for well-typed en-

vironments and subtyping judgements, Proposition A.7 in the Appendix.
H

THEOREM 5.8 (SUBJECT REDUCTION).
Suppose I' = M. Then M — N impliesT" = N.

Proof: It is a question of examining each of the rules in Figure 2 in
turn. Note that (R-STR) requires that typing is preserved by the structural



42 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

equivalence; we leave the proof of this fact to the reader, as it follows the
standard approach.
Consider the rule (R-COMM):

k[ | k[e?(X : T) P] — k[P{V/x}]

and suppose I' - k[c!(V)] | k[c?(X : T) P]. Because proc is a top type for
processes this means that

(1) r l_k C'<V> . proc
(11) r l_k k[[C?(X . T) P]] . proc

We need to show T' - k[P{"/x}] which follows easily if we can establish
r l_k P{[V/X]} . proc.

From (i),(ii), we can show that ' -, ¢ : rw(T, T) and I' =, V' : T. There
are now two cases, depending on the structure of T. First suppose it is
an existential type Edep(Z : E) U, in which case the pattern X is a single
variable, say y. Here (i) above can only be inferred by using (TY-OUTE),
which means that V is a singleton, say v and there must be some vector
v of witnesses such that T' =, (,v) : Edep(Z : E) U. Deconstructing (ii) we
know that T,y : (U with Z : E) I, P : proc. We may now apply Lemma 5.7
to obtain the required I' F, P{"/}.

When T is not an existential type the proof is similar but uses an
application of Corollary 5.5 in place of Lemma 5.7.

We leave the proof for the other rules to the reader.

6 The behaviour of SAFEDPI systems

In this section we investigate what might be an appropriate notion of
semantic equivalence between SAFEDPI systems. We first propose what
we believe to be a natural notion of contextual equivalence. Then, in the
following sections, we give a coinductive characterisation using actions
between configurations, consisting of SAFEDPI systems together with the
environment’s current knowledge of the system.

For notational convenience we limit ourselves to the case when the only
transmission types allowed are of the form

Tdep(.’ft : A) A Tdep(f : A) S Edep(.’1~3 : A) S

Effectively this means that the values transmitted must either be of the
form

e (@), a tuple of first-order values, of type Tdep(Z : A) A
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e (u, F) a tuple in which the last value F’, a script, may depend on the
first-order values (). These have a type of the form Tdep(Z : A) S.

e I a script, the final component of an existential value (u, F') with a
type of the form Edep(Z : A)S.

Simple scripts may be simulated via the empty dependent type Tdep() S,
as can simple first-order values, via the type Tdep() A. Our results extend
to the full language, although the proofs require the development of more
complicated notations.

6.1 A contextual equivalence

We intend to use a context based equivalence in which systems are asked
to be deemed equivalent in all reasonable SAFEDPI contexts. What is
perhaps not so clear here is the notion of reasonable context. In previous
work on mobile calculi, [9, 8, 1], the equivalence took the form

FIZM%CMN

meaning, intuitively, that M and N are indistinguishable in any context
typeable by the typing environment I'. Although one is primarily inter-
ested in such judgements in which I' has sufficient knowledge to type M
and N, one is lead to consider more general judgements where I' only
contains a subset of that knowledge. Such equivalences, for PICALCULUS
and DPI, can be characterised inductively using actions of the form

Tr> M) (T > M)

where (I'> M), (I' > M") are configurations, consisting of systems M, M’
and type environments I',I”, representing the current knowlege of the
testing context. In general such actions change not only the systems, M
to M’ but also the current knowledge, from I' to I, typically by adding
new information.

However, there are further subtleties which need to be considered in
the current setting. We discuss this with a motivating example.

EXAMPLE 6.1.
Consider
M = (new k : loc[b : rw(unit)]) [[a!(k)] | K[b!()]
Nd: (new & : loc[b : rw(unit)]) [[a!(k)] | k[stop]
I'=1:loc,b : rc(rw(unit)),a : rw(loc[b : rw(unit)])al

These two systems are well-typed with respect to I' and should be consid-
ered equivalent under most reasonable notions of behavioural equivalence;
it is impossible for a testing process to interact with M on b at k, even
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after the interaction on a at [. Indeed, consider what form a test which
could achieve this must take:

— | I[a?(z) goto, x.b7()]

It is clear that there is no port for the testing process to enter the location
k on. Moreover, tests cannot be placed directly at k as k is only discovered
through interaction.

To sum up we would expect

T ‘: M =~z N

to hold, for an appropriate formulation of contextual equivalence for SAFEDPI.
But a naive labelled transition system of the form discussed above would
not distinguish them. For example a naive system might yield actions
such as

(D> M) Qutputs kona at b (5 yfstop] | k[b!()])

where I is the environment I" updated with the knowledge about the new
location k : loc[b : rw(unit)]. However, in such a system, a subsequent
interaction at this newly discovered k& would be possible. This interaction
would suffice to distinguish M and N.

In other words we need to consider more sophisticated notions of ac-
tions in order to capture contextual equivalences for SAFEDPI. |

It should be clear from this discussion then that in modelling be-
havioural equivalence in this setting, we must be aware of those locations
at which we can, and can not, perform tests. And this is not simply a
question of which locations the environment has immigration rights for,
via some port.

EXAMPLE 6.2. Consider the following scenario:
M = Ek[(newcb : rw(unit)) al(b) | b!(}]
N = k[(newcb : rw(unit)) a!(b) | stop]
and
I' =k :loc,a : rw(rw(unit))ak
Here the testing environment already knows about k& but does not have

any immigration rights there. Nevertheless M and N can be distinguished
by a reasonable test, one which is typeable by I':

| k[a?(z) 2?() eurekal()]
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Thus, in representing the environment’s knowledge of the system we must
also represent the information about which locations are available for di-
rect testing. This motivates the following definition.

DEFINITION 6.3 (KNOWLEDGE STRUCTURES). A knowledge structure is
a pair (I', T), where

e ' is a type environment such that I' F env
e 7 is a subset of LOCS such that if K € 7 then k : loc e "

We use Z to range over knowledge structures and write Zr and Z7 to refer
to the respective components of the structure. We sometimes refer to the
locations in Z7 as those to which the information structure allows access
rights. We often abuse notation by writing Z,I' to mean the knowledge
structure ((Zr,T'),Z7). |

DEFINITION 6.4 (CONFIGURATIONS). We write Zt>M for a configuration
where

e 7 is a knowledge structure

e there exists some A such that A - M, A <: Zp, and dom(A) =
dom(Zr). |

DEFINITION 6.5 (KNOWLEDGE-INDEXED RELATIONS). We call a family
of binary relations between systems indexed by knowledge structures a
knowledge-indezed relation over systems. We write Z = M R N to mean
that systems M and N are related by R at index Z and moreover, Z > M
and Z > N are both configurations. |

We will use knowledge-indexed relations to propose a notion of be-
havioural equivalence appropriate to this setting. We do this in an estab-
lished manner [11, 6, 9] by proposing that we consider the largest equiva-
lence closed under certain natural properties listed below.

REDUCTION CLOSURE: We say that a knowledge-indexed relation is re-
duction closed if whenever Z = M R N and M — M’ there exists some
N’ such that N—*N'" and Z = M' R N'.

CONTEXT CLOSURE: We say that a knowledge-indexed relation is con-
textual if

(1) ZE MR N and Zr,k : loc F env implies 7/ = M R N where 7' is
((Zr, k - loc), Ty + k)

(2) ZE MR N and Zr,T' F env implies Z,I" =M R N

(3) ZE MR N and Zr + k[P] with k € Z7 implies
T=(M[E[P]) R (N[E[P])
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(4) Z,{n: E} E M R N impliesZ = (newn : E) M R (newn:E)N ®H

In the first condition we are assured that £ is a fresh location; therefore
this form of weakening allows the environment to create for itself fresh
locations at which it may deploy code. The second form of weakening,
in (2), allows it to invent new names with which to program processes.
Condition (3) allows it to place well-typed code at sites to which it has
access rights, while (4) is the standard mechanism for handling names
which are private to the systems being investigated.

BARB PRESERVATION: For any given location k£ and any given channel a
such that k € Zr and Zr -, a : rw(unit) we write Z = M {P>® gak if there
exists some M’ such that M—*M' | k[a!(})]. We say that a knowledge-
indexed relation is barb preserving if T = M R N and Z -+ M |*® gk
implies Z - N {|P2® gok.

DEFINITION 6.6 (REDUCTION BARBED CONGRUENCE). We let ~.,; be
the largest knowledge-indexed relation over systems which is

e pointwise symmetric (that is Z = M ~¢; N implies Z = N x.;y N)

e reduction closed

e contextual

e barb preserving |

We take reduction barbed congruence to be our touchstone equivalence
for SAFEDPI as it is based on simple observable behaviour respected in all
contexts. The definition above is stated relative to choice of the knowledge
structure Z. We should point out however that, for any given systems
M, N and type environment I' such that I' - M and I' F N then there
is a canonical choice of knowledge structure Z, namely, (T, 7r) where we
let 70 = {k | k :loc € I'}. This choice of knowledge structure gives
rise to what we feel to be a natural and intuitive notion of equivalence for
well-typed SAFEDPI systems.

Of course, the quantification over all contexts makes reasoning about
the equivalence virtually intractable. However it is common practice, [19,
21, 1, 9, 8], to provide some sort of model or alternative characterisation
in terms of labelled transition systems, which makes the behaviour of
systems much more accessible. In particular if the actions in the labelled
transition system are sufficiently simple this can lead to automatic, or
semi-automatic verification methods.

In the next section we show that this contextual equivalence for SAFEDPI
can be characterised in a similar manner, as a bisimulation equivalence
over a suitably defined labelled transition system.
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6.2 A bisimulation equivalence

We first discuss the labels, or actions, to be used in the labelled transition
system. They are given by the following grammar:

az=rT1|(n: E)gopk.F | (7 : E)(m)k.a.3
pu=V7|V!

where it is assumed that k,a,p &€ n,m. These are intended to be read as
follows:

e T represents internal communication in which no interaction with the
environment takes place

e go,k.F represents an attempt by the environment to enter location k
on port p. The code to be deployed, if this attempt succeeds, is given
by the script F.

e k.a.V! represents a communication between the system and the envi-
ronment in which the system exports on channel a at k. The value V'
in this action depends on the type of the channel. First order values
can be recognised by the environment and so they are recorded in the
action label. Scripts, on the other hand, can not necessarily be identi-
fied. So instead the environment provides a suitable receiving context
for a script. For example suppose the system exports some script F' on
a channel a of script type S. To test F' the environment can supply any
abstraction G of type GG : § — proc, with which F' can be investigated;
see rule (M-SEND — SCRIPT) in Figure 8.

e k.a.V7 represents a communication between system and environment
in which the system imports on channel a at k. The value V' is always
provided by the environment.

e (n)a represents an action « in which the new name n has been exported
from the system; it is new in the sense that it has not previously been
encountered by the testing environment. The type of n is not recorded
since it can be inferred from the type of the channel on which it is
exported.

e (n : E)a represents an action « in which the fresh name n is being
provided by the environment.
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The following notation is useful in defining the labelled transition system.
Firstly, the subject labels, subj(a) of an action are given by:

subj(7) = 0
subj((n : E)(m)k.a.8) = {k,a}
subj((n : E)go,k.V) = {k,p}

Next, we define the object labels of an action. These are divided into both
input and output object labels using the two functions obj?(«) and obj(«)
in order to identify whether the names returned are being provided by the
environment or exported from the system. We use input object labels to
identify the former and output object labels the latter.

obj (1) =0 obji(7) =0

obj (a!) =0 obji(a!) = fn(a)
obj(V?) = fn(V) obji(V?) =0
obj+((@, G)!) = fn(G) obji((@, G)!) = fn(a)

obj2 ((7 : E)gopk.V) =f(V)\n  obj((n: E)gopk.V) =0

obj:((7i : E)(m)k.a.B8) = objs(B) \ 7i obji((7 : E)(1h)k.a.8) = obji(8) \

The interesting case here is 5 = (@, G)!, which represents the export from
the system to the environment a higher-order script, dependent on the
first-order values (@). This exported script is not represented in the la-
bel; instead G, which is supplied by the environment, is applied to it. So
obj» () is all the free names in G, since these are supplied by the environ-
ment, while obji() are all the idenfiers in i, since these are supplied by
the system.
With this notation we define judgements of the form

(Z> M) (Z>N) (23)

representing the effect of the system M performing the action labelled
a, in an environment whose knowlege is Z. This action changes changes
the system, from M to N, and the knowledge, from Z to Z’. Typically
this is an increase in knowledge of the testing environment of the system,
represented as the change from the type environment, Zr to Z7..

The axioms for the judgements (23) are given in Figures 8; these are
based on the rules in Figure 10 of [8]. We make use of the following
notation in the presentation of the rules: For a type environment Zr we
write

Ii(a,k) ={T | a:r(T)ek € Ir or a : rw(T,U)ek € Ir}
Z¥(a, k) ={U | a:w(U)ek € Ir or a : rw(T,U)ek € ZIr}
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(M-RECEIVE)

kelr

T =[1Z¢ (a, k) Ill"u(avk)#w

IrE, VT

(T > k[a?(X : U) P]) 22Y5 (7 > E[P{V/x]}])
(M-DELIVER)

kelr

T=[1Z¥(a,k) T¥ (a, k) # 0

Ir b, VT

(Z> M) E25 (> M | E[al(V)])

(M-SEND.VAL)

kelr Ta first-order type

T =[1Z{(a, k) Ih(a, k) £ 0

Tp, {i: (T)ak} I env

(Z > k[a!(@)]) 2% (Z,{u : (T)ok} > k[stop])
(M-SEND.SCRIPT)

ke lr T of the form Edep(Z : T) S

T =[1Zr(a, k) Ir(a, k) #

Ir l_k G : T — proc

(Z > k[al(F)]) 225 (Z > k[G (F)])
(M-SEND.DEP.SCRIPT)

keZIr T of the form Tdep(Z : E) S

T =[1Z{(a, k) Ih(a, k) # 0

II‘, {INL . (E)@k} F env

Ir l_k G : T — proc

(T > k[a!((T, F))]) L2098 (T {7 : (E)ak} > k[G (@, F)])
(M-GOTO)

kd Tr

IF l_k p'<V> . proc

(Z > M) 825 (T M | k[pl(V)])

FiGURE 8. Labelled Transition System Axioms

The input rule (M-RECEIVE) is a mild generalisation of the corresponding
rule in [8], given there as (LTS-IN). Note that the action is only possible
if the environment has access rights to its location k, that is if k£ is in Z.
Because SAFEDPI is asynchronous there are two forms of output actions.
The rule (M-DELIVER) represents the delivery of a value to a channel,
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(M-RED)

M — M’

Z>M)>(I>M)

(M-PAR)

(Z> M) (Z'> M)
(I>M|N)-=(Z'>M'|N)
(Z>N|M)=(Z'>N| M)
(M-NEW)
Zn:T>M)- (T n:7>M)
(Z> (newn : E) M) =25 (Z' > (newn : E) M)
(M-OPEN)
(Z,m:T>M) -2 (T' > M)

(Z > (newm : E) M) % (77 > M)
(M-WEAK)
(Z,{n:E}> M) (Z'> M)
(Z > M) 2B (T > M)
(M-TWEAK)

(Zr, {k : K}), Zr + k) > M) -2 (T’ > M)
(Z > M) ERS (77 > ©M7

n ¢ n(a)

m & subj(a), m € obj;()

n & subj(a),n € obj2 ()

k & subj(a), k € obj? ()
FIGURE 9. Labelled Transition System Rules

although it may not necesarily be consumed; note again that access rights
are required to the channels’ location.

There are three versions of the second form of output rule, in which the
value is consumed by the channel; the variation depends on the type of the
channel, but all require access rights. The first, (M-SEND.VAL), for first-
order values, is an extension of the corresponding rule, (LTS-OUT), from
[8]; note that here the environment’s knowledge is increased, by adding
the information contained in {@ : (T)ek}. Output of scripts is handled
by (M-SEND.SCRIPT), where the environment supplies an appropriate G
for further investigation of the script F. Dependent scripts, (a,F') are
handled by (M-SEND.DEP.SCRIPT); here the values (%) are exported from
the system to the environment, while G, used for further investigation of
F' is imported to the system from the environment.

The final rule in Figure 8, (M-GOTO), is novel. It allows the environ-
ment to place arbitrary (well-typed) code at a site k, even if it does not
have access rights there, provided it knows of a port p at k. Of course, in
accordance with our operational semantics, k is free to ignore this code,
by not proffering an input at the port p.
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The inference rules for the action judgements (23) are given in Fig-
ures 9, and again they are informed by the corresponding rules in Fig-
ure 10 of [8]. Here we abuse notation a little by writing (m)a to mean
(7 : E)(m,m)o’ whenever « is (72 : E)(m)a’. Note that, unlike in [8], we
have two weakening rules; the new one, (M-7WEAK), allows the environ-
ment to invent a new location £ at which it has access rights.

As a sanity check on these judgements we give a precise description of
the possible forms the actions can take; to aid readability we will use G
to represent a script furnished by the environment and F' to represent one
furnished by the system:

PROPOSITION 6.7. Suppose that Z > M is a configuration from which
(Zt> M) 25 (Z' > N), where « is not 7. Then « takes one of the following
forms:

FIRST-ORDER: input (7 : E)k.a.(@)?, where () C (@), or output (m)k.a.(i)!,
where (m) C (a)

ScrIPT: input (7 : E)k.a.F?, where (i) C fn(F), or output (7 : E)k.a.G!
where (1) C fn(G)

DEPENDENT SCRIPT: input (7 : E)k.a.(i, F)?, where (i) C (@) U fn(F),
or output (7 : E)(m)k.a.(a, G)!, where (n) C fn(G) and () C (a)

AYNCHRONOUS-GOTO: (71 : E)go k.F, where (n) C fn(F).
Proof: By induction on the inference of (Z > M) % (Z' > N). |

PROPOSITION 6.8 (WELL-DEFINEDNESS). Suppose Z > M is a configura-
tion. Then (Z > M) - (Z' > N) implies ' > N is also a configuration.

Proof: By induction on the inference of (Z > M) < (Z' > N), and an
analysis of the last rule used; the details are similar to the corresponding
result, Proposition 4.4 of [8]; the access rights component of Z, Z7 only
plays a role in one rule, (M-TWEAK), and even there it is a minor role.

The axiom (M-RECEIVE) requires an application of the substitution
results, Corollary 5.5 or Lemma 5.7 depending on the transmission type
involved. The remaining axioms are straightforward, as their premises
contain sufficient typing information to guarantee that the residual is in-
deed a configuration.

The proof for the rule (M-RED) depends on Subject Reduction, Theo-
rem 5.8, while that for (M-NEW) relies on Weakening; the remaining rules
follow immediately by induction. |

With this result we now have a labelled transition system for SAFEDPI,
the nodes being configurations and the actions all judgements (23) which
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can be inferred from Figure 8 and Figure 9. The standard definition of
bisimulation therefore gives a co-inductive relation over configurations:

DEFINITION 6.9 (BISIMULATIONS). We say the binary relation between
configurations R is a typed bisimulation if C 'R D implies

e C % (" implies D =% D’ for D’ such that ' R D’
e D -2 D implies C =% C’ for C’ such that ' R D’

where =2 is the standard notation, meaning —=»* % -T3* for a not equal
to 7 and —/—* otherwise.

We write Z = M =p;s N whenever there exists some bisimulation R
such that (Z> M) R (Z> N). |

With this notation, that is by viewing the knowledge-structure Z as a pa-
rameter, we construe ~;; to be a knowledge-indexed relation over systems.
This enables us to compare it directly with the touchstone behavioural
equivalence ~.,;. The main technical property we require of ~;, is given
in the following result:

PROPOSITION 6.10. The knowledge-indexed relaton ~;s is contextual.

Proof: This follows similar lines to the equivalent statement in [8]. For
this reason we only show that ~;; is preserved by parallel composition

here. Let R be defined by
(Z > (newidi: Ty) M| [ &[P]) R(Z > (newdi: To) N | ][ ks[P])

i€l iel
if and only if there exists some Z5., (T) and 7" such that
Iﬁ <:Ir 5 5 3
(T1) <: (T) and (To) <: (T)
T ' Cn

I+ k[ P;] and k; € Zy + T for each i € T
(Ill""IT + T/)’ {ﬁ : T} ‘: M =~pis N

We aim to show that R is a bisimulation from which the result follows
immediately. For the purposes of this exposition we will assume that n is
empty and that the indexing set [ is a singleton. We take any

(Z> M |k[P]) R (Z> N | k[P])
so we have some Z]. such that
(Zr,I7) B M ~pis N (24)
with Z|. - k[ P] and k € Z7. We suppose that (Zt> M |k[P]) = (Z' > M)

and now must show that there is a corresponding matching move from
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(Zt> N |k[P])- In cases in which « is not 7 this is easily done by appealing
to (24). For a = 7 we know that Z’ = Z also. By an analogue of the
Decomposition Lemma of [8] we can obtain five possibilities:

1. (Z> M) (Z> M") such that M’ = M" | k[ P]
2. k[P] — M" such that M’ = M | M"
3. for first order T, (Z > M) (ka8 (77 M) with
o k[P]=k[a?(Z:T)Q]
o M’ = (newsn : U) M” | KQI{7: )]
4. for other T, (T > M) {RkaVh (71 o N7y with
o k[P] =k[a?(z:T)Q]
e V=(0,22:T.Q)
e (newm : U) M" — M’ derived from (R-BETA)
5. (> M) BDkaVE (77 5 V") with
o k[P] = k[al(V)]
o M'= M"| k[stop]
For each case we show that these conditions lead to the desired matching
transition. We deal with each of them in turn.

e For (1) we appeal directly to (24).

e More interesting is case (2), particularly when the reduction is gener-
ated by use of the rule (R-L.CREATE) or (R-MOVE). We examine each
of these: suppose k[P] — M" is derived from a use of (R-L.CREATE)
so that

P = (newloc! : L)withC in Q
M" = (newl : L)I[C] | k[Q]
We know by (24) that (Z},Z7) = M =~4;s N and hence, by weakening
to introduce a new testable location, we have
(Zf, 1 loc, Zyr + 1) = M =25 N
and by further weakening we obtain,
(Zp, {1 : L}, Z7 + 1) E M ~ps N

Call the knowledge structure above, Z"”. We know, by construction of
R, that Z|. + k[P] with k € Zr, and therefore, according to the type
rules (TY-NEWLOC), (TY-SUBPROC) and (TY-PROC), we must have

I"HI[C] and I F k[Q]
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with [, k € Z7 also. Therefore, by definition of R again, we see that

T b (new!: L)(M [I[C] | K[Q]) R (new : L) [1[C] | KIQD) (25)

We know that (Z> N | k[P]) = (Z> (newl: L)(N |I[C] | ¥[Q])) and
that M’ = M | M"” = (new! : L)(M | I[C] | kK[Q]), so by (25), we have

Tl= M R (newl: L)(N|I[C] | k[Q])

and our matching transition as required.
Alternatively, suppose that k[P] — M" is derived from an in-
stance of (R-MOVE). We then have

P =gotoplFF and  M"=I[p(F)]

for some p,[, F'. It is important to note here that the location [ may
not be contained in Z7 and this prevents us from immediately using
the definition of relation R to claim that

T = M[IPKF)] RN [{[pKF)]
However, we do know that Z|. - k[P] so
(Ill"aIT) > M M (Ill"aIT) > M | l[[p'<F>]]

is a valid transition. The hypothesis (24) tells us that there is a match-
ing transition

( ll"aIT) DN%( ll"‘aIT) I>N”

such that (Z{.,Z7) E M | l[p!{F)] ~pis N”'. This tells us that there is
some N’ such that

N—*N'  and  N'|I[pF)]—*N"

Therefore, it is clear that (Z > N | k[P]) = (Z > N") with T =
M | [p!F] ~pis N as required.

Cases (3) and (4) are similar in nature so we only show the reasoning
for the latter. We have, in this instance, that

(I|> M) (m)k.a.(ml,Gﬂ\/ (I” > M/l)

where
G=X2:T.Q
P=a?(z:T)Q
M" — M (from (R-BETA) such that M’ = (newm : U") M""
m Cm/
It is easy to check (¢f. Lemma 4.8 of [8]) that
(T, T7) > M ke (LG (w5 Uy s M), Ir) > M"
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where U’ <: U. Call the target knowledge structure Z"”. This tells us,
by (24) that there exists a matching transition

(If‘,IT) > N (m)k.a.(m' G)! (I/l/ > N//)

with 7" = M" ~p;s N”. Note that M"” — M"" (derived from
(R-BETA)) guarantees, by confluence properties of beta-reduction, that
I" = M" ~p;s N” and we can also assume, without loss of general-
ity that N” is stable with respect to S—reductions. By analysing the
above transition we see that there exists some N/, n : T" and V such
that

N—* (newm : U") (newn : T") (N | k[al{V)])
with
(newn : TY(N" |k[Az: T. Q(V)])—*N" and U’ <: U
Therefore we have
N | k[P] —* (newm : U”) (n
—* (newm : U”) (new
—* (newmn : U") N”
= N’
Given that M’ = (newm : U") M’ we have enough to conclude that
T = M'R N’ as required.

ewd : T')(N" | k[aX(V)] | k[a?(Z : T) Q])
i TN | E[Q{V/E})

e Finally, in case (5) we follow a similar argument to that in [8] with
only a slight modification to account for the asynchronous nature of
SAFEDPI. H

6.3 Relating bisimulation and contextual barbed congruence

This section is devoted to showing that these equivalences, viewed as
knowledge-indexed relations coincide.

PROPOSITION 6.11 (SOUNDNESS OF Rfp;s FOR Ryt ).
T = M =p;s N impliesZ = M ¢yt N.

Proof: It is evident that ~;s forms a symmetric, reduction closed and
barb preserving knowledge-indexed relation. Therefore, because of Propo-
sition 6.10 &% satisfies all the defining properties of ~ ;. Since x4 is
the largest such relation the result follows. |

The force of this proposition is that any distinctions made between
systems by the contextual congruence can also be made by the labelled
transition system. This means that we have provided enough labels of
sufficient distinguishing power. We must also check that we have not
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provided too much distinguishing power in the labelled transition system.
This is done by relating each action defined in the labelled transition
system to an actual well-typed SAFEDPI context.

PROPOSITION 6.12 (DEFINABILITY (cf. Prop 4.4 of [9])). For each la-
bel a and each knowledge structure T there exists a system CZ which uses
the fresh barb name J, port name J;, and location kg and tests for « in
the sense that

o if (> M) - (I' > M') then Z,{ko : Ko} - CZ and moreover,
CL | M—* (newm : E)(ko[6in!(0'))] | M") with M" = M’
o if CT | M—* (newrn : E)(ko[6in!(8!())] | M") and T,{ko : Ko} + CZ
where m = obji(«) then (Z1> M) - (Z' > M') with M" = M'.
where
KO = IOC[5in : rW<thunk>,5 : FW<unit>,5fai| : FW<unit>, 5succ : rW<unit>]
(the barbs 0g and dsycc are to be used later).

Proof: These systems are, for the most part, straightforward, and readers
familiar with the work in [8, 9] will have little trouble reconstructing them.

As an example we show the systems for k.a.(0, G)! and go,[.V actions:
we define

C;fa,(;,,g)! et kla?(Z,y)if £ = o then G(Z,y) | gotos_Fko.0!() else stop]

and

CL, v ko[6n(61() | goto, LV]

The interested reader is invited to check that, for any configuration such
that (Z> M) > (Z1> M") for one of these actions then it is the case that
Ir,{ko : Ko} F C, and moreover C, | M—*ko[0in!(5!())] | M"" where M"
is structurally equivalent to M’ up to collection of terminated garbage
threads [[stop]. |

By providing such testing systems for each action in the lts provided
above we are able to establish our second main result

THEOREM 6.13 (FULL ABSTRACTION OF Rép;s FOR Rcpt).
TE M =y N ifand only if T |= M ~;5 N.

Proof: (Sketch) One direction is given by Proposition 6.11. The converse
is shown by building a bisimulation from all pairs of configurations such
that Z = M ~.,; N. Specifically, let R be a relation over configurations
defined by

(kM) R (ZEN)
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if Z = M =~.;; N. We outline the proof that R defines a bisimulation,
from which the result follows.

To this end suppose (Z > M) = (Z' > M'), where T = M R N.
We must find a matching move (Z > N) =% (Z’ > N’), such that 7' |=
M’ R N'. For the purposes of this sketch we assume for simplicity that
Z = T'. By Definability, Proposition 6.12. We know that there exists a
system CZ, typeable from Zr, {ko : Ky}, which satisfies the conditions of
contextuality for knowledge-indexed relations and moreover, induces an
interaction when plugged with M. In other words,

CI | M—*ko[6in!(81())] | M (26)

for some 6, §;,, at kg and M” equivalent to M’ up to structure and garbage
collection. We make use of this property of CZ as follows: first for the barb
names, 0744 and dgyce in Ko let

Flip def ko0 () | 07().0fai1 7 () -Osucc! )]

and let
DL (ko [6n?(X : thun) X ()] | Flip | CZ | —)
It is easy to check that Zr, {ko : Ko} F DZ whenever I, {ko : Ko} - CZ.
We should note that the reductions (26) above extend so that (up to
structure and garbage collection)
D [M] —"ko[dsucc! ()] | M”

The hypothesis Z | M =~ N, the fact that Zr,{ky : Ko} F CZ and
weakening, contextuality and barb preserving properties of ~.,; together
allow us to use (Zr,{ko : Ko},Zr + ko) E DI[M]~cw DL[N] to find a
matching transition
DIIN] —* ko [aucc! )] | N
with
(Zr,{ko : Ko}, Zr + ko) = K[0'0)] | M ~¢pe k[61()] | N”.

Note that we can guarantee this form by the absence of the ds,; barb in
ko[dsucc! ()] | M" and the fact that, by symmetry, absence of barbs must
also be preserved. The systems CZ are also built in such a way as to
guarantee that whenever DZ[N] —*ko[dsucc!()] | N then we must also

have Zt> N =2%-71> N’ where, again, N” is equivalent to N’ up to structural
equivalence and garbage collection. It is easy to show directly that

(Ip, {kO : KO},IT + kO) IZ kO[[ésucc!O]] | M” Rert kO[[ésucc!O]] | N”

implies Z = M’ ~.,; N' which is enough to conclude with Z = M’ R N’.
A symmetric argument establishes that R is a bisimulation.
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The case in which (Zt> M) -2 (Z't> M') for 7’ not equal to T is slightly
more complicated and is dealt with using an Ezxtrusion Lemma similar to
that found in [6, 9, 8]. |

This provides an alternative characterisation of reduction barbed con-
gruence which models the nature of knowledge acquisition possible by
testing with highly constrained mobile code in an explicit way.

7 Conclusion

We have developed a sophisticated type system for controlling the be-
haviour of mobile code in distributed systems, and demonstrated that,
at least in principle, coinductive proof principles can still be applied to
investigate their behaviour.

The use of types in this manner could be considered as a particular
case of the general approach of proof-carrying code, [18] and typed assembly
language (TAL) [17]. Here hosts would publish their safety policies in
terms of a type or logical proposition and code wishing to enter would
have to arrive with a proof, which a typechecker or proofchecker can use
to verify that it satisfies the published policy. Indeed we intend to use
the types of the current paper in this manner, by extending the work in
[20]. The work of [18] and [17] has inspired much further research into
the use of type systems in higher-level languages for resource access and
usage monitoring, [23], [12], for example. However the emphasis in these
papers is on dynamics and counting of resource usage rather than using
sophisticated types to specify fine-grained access control.

There has been much work on modelling mobility and locations using
particular process calculi. Perhaps the calculus closest to SAFEDPI is the
Seal Calculus, [5]. Seals are hierarchically organised computational sites
in which inter-seal communication, which is channel-based, is only allowed
among siblings or between parents and siblings. Seals may also be com-
municated, rather like the communication of higher-order processes along
ports in SAFEDPI; indeed in some sense it is more general as the seal being
transmitted may be computationally active. However the communication
of seals is more complicated, as it involves agreement between three par-
ticipants, the sender, the receiver, and the seal being transmitted. Seals
are also typed using interfaces, similar to our fine-grained process types,
w. But these only record the input capabilities a seal offers to its parents,
and in order to preserve interfaces under reduction the transmission of
input channel capabilities is forbidden in the language. This is a severe
restriction, at least in general distributed computing, if not in the more fo-
cused application area of seals. For example the generation of new servers
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requires the the transmission of input capabilities. We believe that our
dependent and existential types can also be applied to the Seal Calculus,
to obtain a more general notion of interface, which will still be preserved
by reduction.

The M-calculus, [22], a higher-order extension of the distributed join
calculus, is also closely related, at least conceptually, to SAFEDPI. Here,
not only are locations hierarchically organised, but are programmable, in
the sense that entry and exit policies for each location can be explicitly
programmed. In addition it has an interesting operator, called passivation,
which can freeze the contents of a site into a value. However their type
system is not related to one we have developed for SAFEDPI; the latter
addresses access control issues for migrating code whereas the former is
concerned with unicity of locations; in a higher-order language with a
passivation operator it is important to ensure that each locality has a
unique name. Thus the type system for the M-Calculus draws on that
presented in [24], where unicity of the location of channel names was
addressed, rather than that of [25], which developed fine-grained access
control types for processes.

Type systems have also been used to explicitly control mobility in
distributed calculi, most notably in variants of the Ambient calculus of
Cardelli and Gordon [3]. In particular, [2], [16] use subtyping to con-
trol movement of mobile processes in a hierarchically distributed system
by introducing explicit types to express permission to migrate. A simi-
lar technique was used for Dp1 in [10], [8]. In contrast, here we control
mobility only indirectly through types. Code is always permitted to mi-
grate provided it has access to a suitable port at the target location. But
by restricting the use of channels in the types this consequently restricts
migration. Indeed, we decouple permission to migrate from the location
name itself, affording more flexibility in the control of migration.

The coinductive characterisation presented here makes use of higher-
order actions in the sense that, to interact with a system willing to send
a script V', the environment must supply a receiving script G to which V'
will be applied. A similar approach is used in the characterisation theo-
rems for various forms of ambients in [7] and [15]. Higher-order actions
are also used in the bisimulation equivalence presented in [4] for the Seal
calculus. However, there the three way nature of higher-order communi-
cation leads to a proliferation of such actions, some of which can not be
simulated by seal contexts; see Section 4.4 of [5] for examples. As a re-
sult the bisimulation equivalence is more discriminating than the natural
contextual equivalence for seals.

Such higher-order bisimulations do not directly result in automatic
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(E-EMPTY) (E-SCRIPT)
'+ S Lty
- env F,SU:S"env zgl
(E-GRES) (E-LOC)
'EC:ty I' - env
F,UIFC<C>|‘env ugl F,UIIOC"env ugl
(TY-LOOKUP) (TY-ELOOKUP)
T,u:T,T'F env T, (i:Ey:T),I'F env
Cou:T, Ik u: T I, (z: E,y S D R R TR
(E-LCHAN)
(E-NEWLCHAN) r Flookup w : loc
[ Fiorup w e loc ' Fporup w2 re(D)
I'EC:ty I'ED<:C
F,UIC@’(U"env ugl F,UIC@UJ"env
(E-EDEP)
oz cEid, oo {zn tEn} F Tty 4, y@ T
F,y:<Twith%IE>|_env Yy 7# T

FI1GURE 10. Well-defined Environments

verification methods for distributed systems. But they do serve to focus
on the essential features of systems which determine their behaviour; for
example our results for SAFEDPI have demonstrated the importance of
the goto moves go,k.V. Moreover they serve as a starting point for more
in-depth analyses of the behaviour of SAFEDPI systems, and more partic-
ularly of interesting sub-languages. For example is it possible to use the
technique of [13] to find a fully-abstract bisimulation equivalence which
only uses first-order labels? There the receiving contexts for higher-order
values are replaced by symbolic representatives. Although not directly ap-
plicable due to the extra complication of distribution and mobility control,
it would be of great interest to pursue those ideas in the current setting.
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and Myths.

A Auxiliary Definitions and Results

TYPES AND TYPE ENVIRONMENTS: The judgements for well-defined en-
vironments, I' - env, and subtyping, I' H T <: U, are defined simultane-
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(SUB-BASE)

F"env

(SuB-TOP)

F"env

I' F base <: base 'T<:T

(SUB-CHAN)

I'-T, <:U. Uy <: Ty,

(SUB-PROCTOP)
'-n<:'nm
'knx < proc

'-T, <: U, Uy, <: Ty
Ty <: T,

T, < T,

I'Fw(T w(Uy),
[T <:rUs)
CErw(T,, Ty) <
(SuB-LOC)

r |_look:up U; - rc(Di>
I'-D,; <: C;, Dj<
TG <:C,

w) <:

:rw(U,, Uy)

. /
. Cl,

I rw(T,, Ty) <:w(Uy,)
I'Frw(T,, Ty) <:r(U,)

'+ |OC[U1 : Cl,...
(SuB-HOM)

r-Cc<:

' Forup w : loc

y Um Cm]

' Caw <: C'aw
I' F re(C) <:re(C')
(SUB-SCRIPT)

[, {1 : (T1)ehere},... {z, :

<:locu; : C,...

(T,)ehere} - m <: 7’

['F Fdep(Z : T—7) <: Fdep(Z : T — ')

(SUB-PROC)
I'Fwu;: Cow;,y uj e C;-@wj

'+ Cg@’w; <: Ci@wi

[k prlug :
(suB-TUDEP)
r {:12‘1 El} {

Cl@wl, N

s U ¢ Caw,y,] <: prlug

: Clawy, . ..

Wi E T < T

'+ Tdep(.’L‘ : E) T <: Tdep(?ﬁ : E) T’
(suB-EDEP)
Fa{ml : El}a"' ,{ZE

Wi E T < T

'+ Edep(?ﬁ : E) T <: Edep(’ZE : E) T’

FI1GURE 11. Subtyping
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ously, using the rules in Figure 10 and Figure 11. The former are a mild
extension of the corresponding rules in Figure 6 of [8] to accommodate
script and dependent types and rely on a predicate I' F,,,.., v : T, which
simply looks up the type associated with « in I'. The latter is an extension
of the well-known subtyping rules of types in the PicaLcurus, [21], and
Dri, [10, 8]; the rules for process types are similar to those used in [25].
The judgements also check that the identifiers used in T, U are actually
declared appropriately in I'.

PROPOSITION A.1 (SANITY CHECKS).
e ' T <:U implies I' - env
e 'FT<:UimpliesI'T:ty and '+ U : ¢y
e 'FT<:U, I'FU<:RimpliessI' T <:R
e ''u:TkF envimpliesI' - envand ' T : ty
Proof: By rule induction. |

MEETS AND JOINS: The partial operators ', LI on type expressions are
defined by extending the definitions used in [10, 8] for channel and location
types. We take them to be the least reflexive and symmetric operators
which satisfy a series of rules for combining together various kinds of type
expressions. Those governing channel expressions are, as in [10]:

[ F<T1> [l F<T2> = r<T1 [l T2>, F<T1> LI F<T2> = F<T1 LI T2>
® W<T1> M W<T2> = W<T1 LI T2>, W<T1> LI W<T2> = W<T1 [l T2>
o r(T,)Mw(Ty,)=rw(T,, Ty,)
o rw(T,, T,) (T =m(T,.NT,,T,),
rw(T,, Tp)Ur(T) =rw(T, UT., Ty),
o rw(T,, Ty)Iw(T,)=rw(T,, T,UT.,),
rw(T,., Teu)Ur(T,) =rmw(T,, T, MNT,),

To express the rules for location types we take advantage of the fact that
the ordering of their components is immaterial:

e locluy : Ci]Mlocfuy : Cq,...  u, : Cp] =locfuy : (C{T1CY), ... uy, : Cyl,
loc[uy : Ci]Ulocluy : Cq, ... ,uy, : Cy] = locfuy : (C) U Cy)]
e if u does not occur in {uy,... ,u,} then
locfu : C]Mlocfuy : Cq,y...yuy : Cy] = loclu : Ciug = Cpyen yuy 0 Gyl
loc[u : C]Uloc[uy : Cq, ... ,uy : C,] = loc]]
o locfu; : Cq,... ,u, : Cy] MK =locluy : C1]M (... (loc[u, : C,]TTK)...),
[

loc[ug : Cq,... ,up : Cu]UK = (locfug : C1]UK) M. ..M (locluy, : C,]UK)
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We use a similar approach to defining the operations on process types,
where we use GC as an arbitrary type of the form Cew. However the
process type constructor is contravariant, whereas the location constructor
is covariant.

e priu; : Clew] Mprfu; : Clows,... ,u, : GC,] = prluy : (C] U Cq)ewn],
priuy : Clew ] Uprluy : Ciewn,... ,u, : GC,| =
priuy : (C] M Cy)awy, ... ,uy, : GC,]
e if uaw does not occur in {ujewsy,... ,u,ew,} then
priu : Caw] Mprlu; : Craw,... ,u, : Chew,] = pr[],
priu : Caw] U prluy : Ciewn, ... ,uy : Chow,] =
priu: Caw,uy : Clawsy ... , Uy, : Cpraw)]

e priuy : GCyq, ... ,u, : GC,] M7 =
(pruy : GCy] M) U ... U (prlu, : GCy] M),
prius : GCyq,... ,up, : GClUm = prlu; : GCJU (... (up : GC Um)...)

.pr0c|_|7T:7T, pr0c|_|7T:proc
For the various forms of dependent types, the rules are straightforward:

® Fdep(Z : T—)W)ﬂFdep(ﬁf‘I-:r—)W,) = Fdep(Z : T—)(WHW/)),
Fdep(Z : T— ) LUFdep(Z : T—7') = Tdep(Z : T) (7w U n’)

(Z:T)(TNT),

(z:T)(TUT)

Z:T)T M Tdep(Z : ':I') T' = Tdep
nT

(

(

(z:T

Tdep(Z : T) T L Tdep(Z :
o Edep(7 : T) TMEdep(d : T) T/ = Edep(# : T) (TN T),

Edep(Z : T) T L Edep(Z : T) T/ = Edep(Z : T) (T U T')

For the remaining kinds of type expressions we merely extend the defini-
tions homomorphically:

e rc(CyMrc(C'y =rc(CMC’), rc(Cyrc(C'y =rc(CLIC)
e TawMTew = (TNT)ew
ProproOSITION A.2.

o If there exists some type expression T such that I' H T <: Ty and
I'E T <: Ty then T M Ty is well-defined

e When T{MTy is well-defined, I' - T1M Ty <: T, and ' T <: T1 M Ty,
for any type expression T such that ' =T <: Ty and ' T <: To.

e If there exists some type expression T such that I' F Ty <: T and
' Ty <: T then T U T,y is well-defined

e When T1UTy is well-defined, ' - T, <: T{UTy,and ' T1UTy <: T,
for any type expression T such that ' - Ty <: T and I' - Ty <: T.
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Proof: The first and third statements are proved by induction on the
derivations of ' - T; <: T and I' H T <: T, respectively. The second and

fourth are by induction on the construction of T1MTy, T1UT5 respectively.
|

Note that because of the top type T the premise of the third statement is
always true; so T1 LI To always exists, although in many cases it will be
the uninformative type T.

SUBSTITUTIONS: Free identifiers may occur in type expressions and there-
fore we need to define T{%u} for an arbitrary type expression T; this is
then used as part of the definition of substitution into process terms. The
definition of T{%Au]} is by induction on the structure of T. The only inter-
esting cases are location and process types, where the definition needs to
ensure that the entries remain unique:

locfu’ : Cl{¥ul} = loc[u/ {¥u} = C{¥ul]

loc[ug : Cq,...up : Cul{%%u} =
(locfur : Ci{%kf}) ... 1N (loc[uy, : Cul{%u})

priv/ - Cl{*ul = prluv/{/u] : C{ul]

priu : Ci,...up : Cu{¥%ul = (prlur : Ci{%})U. ..U (prluy, : Cul{%]})
All other cases are defined homomorphically. For example

= W(To, T {%ul = w(To{ul, Tw{/ul)

— Tdep(i : E) T{%u]} = Tdep(& : (E{?ul})) (T{%A}), where we assume v
is different from each x;

PROPOSITION A.3.

e Suppose T MU is defined. Then so is T{%u]} M U{%u} and (up to a-
equivalence) is the same as (T M U){%u}

e Similarly for T LI U.

Proof: By simultaneous induction on the definitions of T U and T L U.
|

Substitution of identifiers also commutes with the channel extraction
function.

PROPOSITION A.4. For all identifiers u, v,
pren(V' s TH ult = pren[V{%ul « T{%ul]

Proof: By induction on the definition of preo[V : T]. The only non-trivial
case is when V is an identifier w and T a location type, when the proof
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depends on the peculiaries of the application of substitutions to location
and process types. |

PROPOSITION A.5 (SUBSTITUTION). Suppose I' -, v : T and = ¢ T.
Then

® F,ZE : (T)@w, A env 1mp11es F, A{Iv/azl} - env
e I',z:(T)ow, A+ T <: U implies T', A{%z} b T{%:} <: U{%|}

Proof: By simulataneous induction on the derivations. Note that there
are only four possibilities for the entry z : (T)ew, namely z : loc, = : rc(D),
x: Caw or x : S. |

The corresponding substitution result for existential values depends on
the following property of existential witnesses.

PROPOSITION A.6. Let I, denote I',y : (T with Z : T),T". Then
e ', - env implies x; does not occur in I'".
e I'. - T <: U implies x; does not ocur free in T, U.

PROPOSITION A.7. Suppose I' -, (0,v) : Edep(Z : E) T. Let I'. denote
Ty : ((T)ew with  : (E)ew), A. Then

® Fe - env 1mp]1es F, A{Iv/yl} - env
e I' Uy <: Uy implies Uy {%V/zy]} <: Uad®¥/s,y]}
Proof: By simultaneous induction on the inferences. |

ADDING KNOWLEDGE TO ENVIRONMENTS: Here we extend the meet op-
erator MM to lists of type associations. This is used in Figure 9, in the rules
(M-SEND.VAL) and (M-SEND.DEP.SCRIPT), for increasing the knowledge in
a type environment. We first define the (partial) operation I' Tu : E
between an arbitrary association list I' and a singleton:

e If E is a located channel Aaw then I'TMu : Eis I',u : E.
e Otherwise if u has no association in I' then I'Mw : E is also I',u : E.

e Otherwise I' M w : E is obtained by replacing the association of u in T,
say u : E’, by the new association u : (EME’); in this case the operation
is only defined if (EME’) exists.

The general definition of I'y 1"y then follows by induction on the size of
FQ:

0F1|_|6:F1
e i M(T5u:E)y=(T1 N5 MNu:E
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