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safeDpi: a language for ontrolling mobile

ode

Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Abstrat. safeDpi is a distributed version of the Pialulus, in whih proesses

are loated at dynamially reated sites. Parametrised ode may be sent between

sites using so-alled ports, whih are essentially higher-order versions of Pialulus

ommuniation hannels. A host loation may protet itself by only aepting ode

whih onforms to a given type assoiated to the inoming port.

We de�ne a sophistiated stati type system for these ports, whih restrit the

apabilities and aess rights of any proesses launhed by inoming ode. Depen-

dent and existential types are used to add exibility, allowing the behaviour of these

launhed proesses, enoded as proess types, to depend on the host's instantiation of

the inoming ode.

We also show that a natural ontextually de�ned behavioural equivalene an be

haraterised oindutively, using bisimulations based on typed ations. The hara-

terisation is based on the idea of knowledge aquisition by a testing environment and

makes expliit some of the subtleties of determining equivalene in this language of

highly onstrained distributed ode.

1 Introdution

In this paper we elaborate a theory of distributed systems whih inorpo-

rates resoure poliies. Our main results are:

� a language for distributed systems in whih aess to hosts by mobile

ode is ontrolled using apability-based types

� a �ne-grained type system using novel forms of dependent and exis-

tential types whih gives hosts onsiderable exibility in determining

the allowed behaviour of inoming ode

� a oindutive haraterisation of a natural ontextual equivalene, based

on the notion of typed ations.

This is developed in terms of an extension of the language Dpi, [10, 8,

20, 14℄, a version of the Pialulus, [21℄, in whih proesses may migrate

between between loations, whih in turn an be dynamially reated. In

Dpi a typial system takes the form

lJP K j (new e : E)(kJQK j lJRK)

where there are two threads P and R running at l and one, Q, running

at k. The threads Q and R share the private name e at type E. The
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threads P ;Q; R are similar to proesses in the Pialulus in that they

an reeive and send values on loal hannels; the types of these hannels

indiate the kind of values whih may be transmitted. Loations may be

dynamially reated. For example in

lJ(newlo k : K)withC in xpt

1

!hki j xpt

2

!hkiK

a new loation k is reated at type K, the ode C is installed at k and

the name of the new loation is exported via the hannels xpt

i

. Loation

types are similar to reord types, their form being

lo[

1

: C

1

; : : : 

n

: C

n

℄

This indiates that the hannels, or resoures, 

i

at types C

i

are available

at the loation. So for example K above ould be

lo[ping : rwhPi; �ng : rwhFi℄

indiating that the servies ping and �ng(er) are supported at k; r indiates

the permission to read from a hannel, while w indiates the permission

to write to the hannel. However the types at whih k beomes known

depends on the types of the exporting hannels. Suppose for example

these had the types

xpt

1

: whlo[ping : whPi℄i

xpt

2

: whlo[�ng : whFi℄i

Then proesses reeiving the name k from the soure xpt

1

would only be

able to write to the ping servie at k, i.e. send messages to that servie,

while the soure xpt

2

only allows similar restrited aess to the �nger

servie. It is in this way, by seletively distributing names at partiular

subtypes, that resoure aess poliies are implemented in Dpi.

In this paper we make two extensions to Dpi. The �rst allows more

ontrol to loations over ode whih wishes to aess their omputation

spae. In Dpi the migration rule is given by

kJgoto l:P K �! lJP K;

any thread is allowed to migrate to the site l. In safeDpi, the language

of this paper, migration is represented by

kJgoto

p

l:F K �! lJp!hF iK

A thread must designate a port p at l in order to migrate. It then redues

to the system lJp!hF iK, whih a priori represents a thread running at lo-

ation l. However this thread will have no e�et until the site l makes

available a orresponding thread of the form lJp?(x)QK; using standard

ommuniation this will now allow the e�etive entry of F . In this manner,
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by programming the presene or absene of ports, the site l an ontrol

the immigration of ode.

E�etively we have replaed unonstrained spawning of proesses at

arbitrary sites by higher-order ommuniation. Moreover these ports,

higher-order hannels, have types assoiated with them. The types on

ports are the seond major extension to the language. In general we allow

sripts, parameterised ode, to be sent via ports. These take the form

�(~x :

~

T)P

where eah x

i

an be mathed by arbitrary transmittable values ; it is the

types T

i

whih determine the nature of the abstration. But when suh a

sript is transmitted it may be instantiated at the reeiving site by values

of the appropriate type. This gives added seurity to sites by ontrolling

the type at whih sripts will be aepted. This of ourse depends on the

granularity of the type struture for sripts.

The most straightforward form of type for sripts is

(~x :

~

T)! pro

stating that, whenever a sript of this type is instantiated with appropriate

parameters, the result is guaranteed to be a well-typed proess. But a

priori there is no onstraint on the resoures it an use. To limit the

aess of inoming ode to resoures we introdue �ne-grained proess

types, [25℄. These ditate the apabilities, on both loal and third-party

hannels, whih the ode is allowed to aess, and take the form of a

reord:

pr[

1

: C

1

�k

1

; : : : ; 

n

: C

n

�k

n

℄

A proess of this type an use at most the set of hannels 

i

, loated

respetively at the loations k

i

, with the apabilities C

i

; in these proess

types the use of a loal hannel  is indiated by an entry of the form

 : C�here.

When these proess types are inorporated into sript types a host

loation an have muh more e�etive ontrol over the behaviour of in-

oming ode, partiularly when we use a form of dependent funtion type.

For example suppose a port only aepts sripts at the type

Fdep(x : rhTi! pr[x : rhTi�here; reply : whTi�k℄)

Then an inoming sript an only be instantiated by a loal hannel, with

read apability at type T. Moreover the resulting running ode is now

only allowed to read from this loal hannel and write to the third-party

hannel alled reply loated at the spei� loation k. With a port with
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the type

Fdep(y : whTi�k! pr[info : rhTi�here; y : whTi�k℄)

the host an instantiate the inoming sript with some hannel loated

at the site k, on whih it has write permission, and the running ode is

restrited to writing there, and reading from a loal hannel alled info.

Note that in both these examples the loation k is built into the sript

types. Thus a server with an aess port at this type would only allow

entry to sripts whih guarantee to write only at k. However dependent

types an be used to allow this target site to be parameterised. Consider

the simple example

Tdep(z : L) Fdep(y : whTi�z! pr[info : rhTi�here; y : whTi�z℄)

where the sript type is now parameterised by loations of some type L.

This allows the server to aepts sripts whih an write the information

at sites determined by the lient.

Although these dependent types add onsiderable exibility to the in-

teration between lients and servers, they have potential drawbaks; as

we will see the lient has to send with the sript the atual objets on

whih their type is parameterised. In priniple this opens up the possibil-

ity of (rogue) servers abusing this extra information. However existential

types provide extra protetion to lients, beause, as we will see, this extra

information is not required as part of the ommuniation.

The language safeDpi is formally de�ned in Setion 2, together with

a redution semantis. In Setion 3 we de�ne the set of types and the type

inferene system; the formal development relies heavily on the type sys-

tems already given in [8, 19℄. In Setion 4 we develop a series of example

systems. These are designed on the one hand, to explain the intriaies of

the the type inferene rules, and on the other to demonstrate the power

and exibility of the types. This is followed by a setion devoted to es-

tablishing the expeted properties of type system, in partiular Subjet

Redution.

We now turn to the seond topi of the paper, typed behavioural equiv-

alenes. In untyped languages, these are normally de�ned oindutively,

as the largest equivalenes over proesses whih preserve, in some sense,

ations of the form

M

�

�!M

0

(1)

Typially these ations desribe the possible forms of interations between

a proess and its environment. In a typed setting many of these ations

will not be possible, beause the environment will not have the power to
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partiipate in them. As a simple example onsider the system

lJ(new  : C) (xpt!hi j ?(x)Q)K

in an environment in whih the export hannel xpt an only send hannels

with the read apability. The environment will reeive  along xpt but will

not be able to transmit on . Consequently the potential input ations on

 by the proess above will not be possible.

Following [9, 8℄ we replae the untyped ations in (1) with typed ations

of the form

I �M

�

�! I

0

�M

0

where M is the system being observed while I is a onstraint on the ob-

serving environment representing its knowledge of the system M . Ations

hange both the proesses and the environment in whih they are being

observed. This will lead, in the standard manner, to a oindutively de-

�ned, bisimulation-based, relation between systems, whih we denote by

I j= M �

bis

N

In our seond main result of the paper, we prove that this oindutive rela-

tion oinides with a naturally de�ned ontextual equivalene. One of the

features of our approah is the expliit representation of the information

whih the environment an obtain from systems through testing with on-

texts. In suh a highly onstrained setting as this, this beomes a genuine

aid in understanding the equivalene. This is the topi of Setion 6.

This report ends, in Setion 7, with some onlusions and a brief survey

of related work.

2 The language safeDpi

Syntax: The syntax, given in Figure 1, is a slight extension of that of

Dpi from [8℄. It is expliitly typed, but for expository purposes we defer

the desription of types until Setion 3. The syntax also presupposes a

general set of hannel names Names, ranged over by n;m, and a set

of variables Vars ranged over by x; y. Identi�ers, ranged over by u;w,

may ome from either of these sets. Names is partitioned into two sets,

Los ranged over by k; l; : : : for loations, and Chans ranged over by

a; b; ; : : : for hannels. There is also a distinguished subset of hannels

alled ports, and ranged over by p; q; : : : , whih are used to handle higher-

order values. Similarly we will sometimes use �; �

0

for variables whih will

be instantiated by higher-order values.

The syntax for systems, ranged over by M;N;O, is the same as in

Dpi, allowing the parallel omposition of loated proesses lJP K, whih

may share de�ned names, using the onstrut (new e : E)�.
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M;N ::= Systems

lJP K Loated Proess

M jN Composition

(new e : E)M Name Creation

0 Termination

P;Q ::= Proesses

u!hV i Output

u?(X : T)P Input

goto

u

v:P Migration

if u

1

= u

2

then P else Q Mathing

(new  : C) P Channel reation

(newreg n : N) P Global name reation

(newlo k : K)withQ in P Loation reation

P jQ Composition

F (~v) Appliation

�P Iteration

stop Termination

U; V;W ::= Values

(~v) tuples

v ::= Value omponents

(�~x :

~

T)P Sripts

u identi�ers

Figure 1. Syntax of safeDpi

The syntax for proesses, ranged over by P; Q is an extension of the

Pialulus, [21℄, with primitives for migration between loations. Par-

allelism is allowed, we have the terminated proess stop, and we also allow

mathing and mismathing, with the onstrut if u

1

= u

2

then P else Q,

and a form of iteration �P .

In the input onstrut u?(X : T)P we take X to be a pattern whih is

used to deonstrut inoming values; this is a value whih only ontains

distint ourrenes of variables. In our somewhat restrited format for

values this means that X has the form (~x), with eah x

i

being distint.

The output onstrut is asynhronous, u!hV i. Here V is a tuple onsisting

of either identi�ers or higher-order values. The latter an take the form

of sripts, � (~x :

~

T): P , where P is an arbitrary proess term; we will
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often use F to indiate an arbitrary sript, whereas v will be reserved for

the individual omponents in a tuple V ; thus it will represent either an

identi�er or a sript. Of partiular interest to us will be tuples of the form

(~v; F ) whih will be interpreted as dependent values ; intuitively the sript

F depends on the values ~v.

At the risk of being verbose, the syntax has expliit notations for the

various forms of names whih an be delared. In (new  : C) P a new

loal hannel named  is delared, while (newregn : N) P represents the

generation of a new globally registered name n for hannels; see [8℄ for mo-

tivation. When a new loation is delared, in (newlo k : K)withQ in P ,

its delaration type K an only involve hannel names whih have been

registered. This onstrut generates the new loation k, sets the ode Q

running there, and in parallel ontinues with the exeution of P . This

spei� onstrut for new loations is required sine ode may only be

exeuted at a loation one entry has been be gained via a port; so here

Q represents the ode with whih the loation is initialised.

The main novelty in safeDpi, over Dpi, is the onstrut

goto

p

k:F

Intuitively this means: migrate to loation k via the port p with the ode

F . Our type system will ensure that F is in fat a sript with a type

appropriate to the port p; moreover entry will only be gained if at the

loation k the port p is urrently ative.

The various binding strutures, for names and variables, gives rise

to the standard notions of free and bound ourrenes of identi�ers, �-

onversion, and (apture-avoiding) substitution of values for identi�ers

in terms, Pfj

v

=ujg; this is extended to patterns, Pfj

V

=Xjg in the standard

manner. We omit the details but three points are worth emphasising.

The �rst is that many suh substitutions may give rise to badly formed

proess terms but our typing system will ensure that this will never our

in well-typed terms. The seond is that identi�ers may our in our types

and therefore we require a notion of substitution into types; this will be

explained in Setion 3. Finally terms will be identi�ed up to �-equivalene,

and bound identi�ers will always be hosen to be distint, and di�erent

from any free identi�ers.

In the sequel we use system to refer to a losed system term, that is

a system term whih ontain no free ourrenes of variables; similarly a

proess means a losed proess term.
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Redution Semantis: This is given in terms of a binary relation be-

tween systems

M �! N

and is a mild generalisation of that given in [8, 10℄ for Dpi.

Definition 2.1 (Contextual relations). A relation R over systems

is said to be ontextual if it preserves all the system onstrutors of the

language; that is M RN implies

� M jORN jO and O jM RO jN

� (new e : E)M R (new e : E)N . �

The redution relation is de�ned to be the least ontextual relation whih

satis�es the axioms and rule in Figure 2. The rule (r-str) merely says that

we are working up to a strutural equivalene, �, whih abstrats from

inessential details in the terms representing systems. Formally strutural

equivalene is de�ned to be the least ontextual relation between (losed)

systems whih satis�es the axioms whih are given in Figure 3; these are

the natural adaptations of the usual axioms for strutural equivalene in

the Pialulus.

The main redution involves loal ommuniation, governed by the rule

(r-omm), taken diretly from Dpi. However here the value V may be a

sript; in other words this rule enompasses higher-order ommuniation.

Higher-order output ommands are generated by (r-move), whih has

already been explained in the introdution.

Migration to a site l must designate a port p at whih the migrating

ode is to be reeived. The rule

kJgoto

p

l:F K �! lJp!hF iK

then translates the migration ommand into the system lJp!hF iK, whih a

priori represents a thread running at the target loation l. However this

will have no e�et until the site l makes available a orresponding thread

of the form lJp?(�)QK; using the rule (r-omm) this will now allow the

e�etive entry of F . In this manner the site l an ontrol the immigration

of ode.

The rule (r-:reate) exports the new hannel name  generated by

a proess at k to the system level, where it is tagged with the delaration

type C�k; this reords the loation of the new hannel. There is a or-

responding rule for registered names, (r-n:reate); but suh names are

global and therefore there is no need to reord where they were delared.

The generation of new loations is governed by (r-l:reate):

kJ(newlo l : L)withC in P K �! (new l : L)(kJP K j lJCK)
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(r-omm)

kJ!hV iK j kJ?(X : T)P K �! kJPfj

V

=XjgK

(r-split)

kJP jQK �! kJP K j kJQK

(r-n:reate)

kJ(newregn : N) P K �! (new n : N) kJP K

(r-move)

kJgoto

p

l:F K �! lJp!hF iK

(r-l:reate)

kJ(newlo l : L)withC in P K �! (new l : L)(kJP K j lJCK)

(r-:reate)

kJ(new  : C) P K �! (new  : C�k) kJP K

(r-unwind)

kJP K jM �!M

0

kJ�P K jM �! kJ�P K jM

0

(r-eq)

kJif u = u then P else QK �! kJP K

(r-beta)

kJ(� (ex :

e

T
): P )(ev)K �! kJPfj

ev

=exjgK

(r-neq)

kJif u = v then P else QK �! kJQK

u 6= v

(r-str)

M � N; M �!M

0

; M

0

� N

0

N �! N

0

Figure 2. Redution semantis for safeDpi

(s-extr) (new e)(M jN) = M j (new e)N

if

n

(e) 62 fn(M)

(s-om) M jN = N jM

(s-asso) (M jN) jO = M j (N jO)

(s-zero) M j 0 = M

(s-stop) kJstopK = 0

(s-flip) (new n : E) (new n

0

: E

0

)M = (newn

0

: E

0

) (newn : E)M

if n

0

62 E; n 62 E

0

Figure 3. Strutural equivalene for hDpi

The ode C is set to run at the new loation l, and note that this name is

known to the ontinuation thread P running at the initiating loation k.

The remaining axioms are self-explanatory; there is testing of simple

identi�ers in (r-math), �-redution in the rule (r-beta) for instantiating

sripts and a standard rule for iterated proesses.

For examples of redutions see Setion 4.
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Basi types: B ::= int j string j unit j > j pro j : : :

Loal Channels: C;D ::= rhTi j whTi j rwhT;Ui

Loations: L;K ::= lo[u

1

: C

1

; : : : ; u

n

: C

n

℄; n � 0

provided u

i

= u

j

implies i = j

Global resoures: N ::= rhCi

First-order: A := B j C j L j N j C�w

Proesses: � ::= pro j pr[u

1

: C

1

�w

1

; : : : ; u

n

: C

n

�w

n

℄

provided u

i

= u

j

; w

i

= w

j

implies i = j

Sripts: S ::= Fdep(~x :

~

T!�)

Values: T;U ::= A j S j Tdep(~x :

~

T)T j Edep(~x :

~

T)T

Figure 4. Type expressions - informal

3 Typing

In this setion we disuss the types and type inferene for safeDpi. There

are three subsetions. The �rst disusses informally the types used, whih

builds on those in [10, 8, 25℄, while the seond desribes the type environ-

ments required to infer that systems are well-typed. Beause the details

are heavily syntati, on �rst reading it may be better to skip diretly to

the �nal subsetion whih deals with the type inferene rules, referring to

the �rst two setions only on a all-by-need basis.

3.1 The Types

The olletion of types is an extension of those used in [8, 10℄, to whih the

reader is referred for more bakground and motivation. They are desribed

informally in Figure 4 and intuitively they may be lassi�ed as follows:

Base types, ranged over by base: We inlude some prede�ned olletion

of types suh as int; unit; bool, et. for various onstants in the language.

The assoiation of a partiular type with a partiular onstant will be

global, that is not dependent on a partiular loation. We also inlude

pro, to indiate that a proess is well-typed, and a top type >, whih

an be assoiated with any identi�er.

Loal hannel types, ranged over by C;D: These take the form

rwhT

r

;T

w

i

where T

r

; T

w

are transmission or value types ; that is types of values

whih may be transmitted along hannels. If an agent has a name
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at this type then it an transmit values of at most type T

w

along it

and reeive from it values whih have at least type T

r

. In the formal

desription of types there will be a subtyping onstraint, that T

w

must

be a subtype of T

r

, explained in detail in [19℄. When the transmit

and reeive types oinide we abbreviate this type by rwhTi. We also

allow the types whT

w

i and rhT

r

i, whih only allow the transmission,

reeption respetively, of values.

Global resoure name types, ranged over by N: These take the form

rhCi, where C is a hannel type. Intuitively these are the types of

names whih are available to be used in the delaration of new loa-

tions. They allow an individual resoure name, suh as print, to be

used in multiple loations, resulting in a form of dynami typing.

Loation types, ranged over by K; L: The standard form for these is

lo[u

1

: C

1

; : : : ; u

n

: C

n

℄

where C

i

are hannel types, and the identi�ers u

i

are distint. An

agent possessing a loation name k with this type may use the han-

nels/resoures u

i

loated there at the types C

i

; from the point of view

of the agent, k is a site whih o�ers the servies u

1

; : : : u

n

at the orre-

sponding types. In the formal de�nition we will require eah u

i

to be

already delared as a global resoure name. If n is zero then the agent

knows of the existene of k but has no right to use resoures there. We

abbreviate this trivial type from lo[℄ to lo. We also identify loation

types up to re-orderings.

Proess types, ranged over by �. The simplest proess type is pro,

whih an be assigned to any well-typed proess. More �ne-grained

proess types take the form

pr[u

1

: C

1

�w

1

; : : : u

n

: C

n

�w

n

℄

where the pairs (u

i

; w

i

) are assumed to be distint. A proess of this

type an use at most the resoure names u

i

at the loation w

i

with

their spei�ed types C

i

; these types determine the loations at whih

the hannels u

i

may be used.

Sript types, ranged over by S: The general form here is

Fdep(~x :

~

T!�)

Sripts of this type require parameters (~v) of type (

~

T); when these are

supplied the resulting proess will be of type �fj

~v

=~xjg. In other words the

type of the resulting proess may in general depend on the parameters.

In these types we allow � to ontain ourrenes of a speial loation
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onstant here to denote the urrent loation.

These types will be abbreviated to (

~

T!�) whenever the variables (~x)

do not appear in the proess type �, that is when the type of result is

in fat independent of the parameters.

Sript types, a generalisation of those used in [25℄, are one major inno-

vation of the urrent paper; they allow parameterised proesses, or sripts

to be transmitted. Examples of suh types inlude

whTi! pro: the type of a sript whih is parameterised on a loal hannel

name, on whih write permission at type T is needed.

(rhRi;whWi�k)! pro: a value of this type will be applied to a pair, the

�rst element will be a loal hannel with read apability at type R and

the seond a hannel loated at k with write apability at type W.

More importantly by using �ne-grained proess types, aess to re-

soures by inoming ode an be restrited. Here are two examples:

Fdep(x : rhTi! pr[x : rhTi�here; reply : whTi�k℄)

Inoming ode reeived at this type, an be instantiated by any loal

hannel, say  from whih values an be read at type T. The resulting

proess is then only allowed aess to two hannels, namely the loal

hannel , from whih it an read, and a hannel named reply at the

loation k, to whih it an write. This proess will have the type pr[ :

rhTi�here; reply : whTi�k℄. Code at the type

Fdep((x; y; z) : (lo; rhTi�x;whTi)! pr[y : rhTi�x; z : whTi�here℄)

needs to be instantiated by a loation, a hannel at that loation, and

a loal hannel. For example the loation ould be alled soure, the

hannel loated there info, from whih values an be read at the type T,

and the loal hannel reord, at whih values an be written at type T.

The resulting proess will then have type

pr[info : rhTi� soure; reord : whTi�here℄

It an download information from the third-party soure site soure via

the hannel info there.

Finally Transmission or value types ditate the kind of values whih

an be transmitted over hannels. These may be �rst order values, or

sripts. We also allow dependent and existential types to be used. For

example inputting a value of the dependent type Tdep(x : K) S will result in

the reeption of a pair (k; F ), where F is guaranteed to be of type Sfj

k

=xjg; k

is the witness that the sript F has the required type, and is reeived with
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the sript. On the other hand inputting at the orresponding existential

type Edep(x : K) S will only result in the reeption of the value F , although,

as we will see, when the overall system is type heked the witness v must

be produed, to verify that F is indeed well-typed.

Notation 3.1. [Globalising types℄ It is worth noting that there is a ru-

ial distintion between loal hannel types C and, for example loation

types. The former only make sense relative to a spei� loation, whereas

the latter are loation independent, or global types. We an onvert the

loal hannel type C to a global type by appending a loation, C�w; this

is the type of a hannel of type C loated at w. In various ontexts it will

be onvenient to apply this globalisation operation to an arbitrary type,

(T)�w; this will only have an e�et on any omponents of T whih are

loal hannel or sript types. The operation is de�ned by indution on T:

(C)�w = C�w; (S)�w = S

(K)�w = K; (C�w

0

)�w = C�w

0

(Tdep(~x :

~

T)T)�w = Tdep(~x : (

~

T)�w ) (T)�w

(Edep(~x :

~

T)T)�w = Edep(~x : (

~

T)�w ) (T)�w

Note that in the last two lauses we have used the obvious notation (

~

T)�w,

for the list T

1

�w; : : : ;T

n

�w. �

There are numerous onstraints on the formation rules for types, well-

doumented in [10, 8℄. The desription given in Figure 4 should be viewed

as de�ning pre-types ; those whih satisfy the formation onstraints will

then be onsidered to be types. It is best to desribe these onstraints

relative to a type environment.

3.2 Type environments

A type judgement will take the form

� ` M

where � is a type environment, a list of assumptions about the types to be

assoiated with the identi�ers in the system M . These an take the form

� u : lo, meaning that u is a loation

� u : C�w, meaning the hannel u loated at w has type C

� u : rhCi, meaning u is a global resoure name, whih may be installed

at any new loation.

� x : S, meaning x an be instantiated by any sript whih an be inferred

to have type S
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� x : hT with ~y :

~

Ei. This represents a pakage, whih will be used to

handle existential types. Intuitively this de�nes the assoiation x : T

but the type T may depend on the auxiliary assoiations ~y :

~

E.

Lists of assumptions are reated dynamially during typeheking, typ-

ially by augmenting a urrent environment with new assumptions on

bound variables. It is onvenient to introdue a partiular notation for

this operation:

Definition 3.2 (Forming environments). Let fV : Tg be a list of

type assumptions de�ned by

� fv : C�wg = v : C�w

� fx : Sg = x : S

� fv : lo[u

1

: C

1

; : : : u

n

: C

n

℄g = v : lo; u

1

: C

1

�v; : : : u

n

: C

n

�v

� f(~y; x) : Tdep(~y :

~

E)Tg = fy

1

: E

1

g : : : ; fy

n

: E

n

g; fx : Tg

� fx : Edep(~y :

~

E)Tg = x : hT with fy

1

: E

1

g : : : ; fy

n

: E

n

gi �

Of ourse there a lots of other possibilities for V and T but only those

mentioned give rise to lists of assumptions. Moreover even those given

may give rise to lists whih are not onsistent. For example we should

not be able to introdue an assumption u : lo if u is already designated

a hannel, or introdue u : C�w unless w is known to be a loation. Sine

type expressions also use identi�ers, before introduing this assumption

we would need to ensure that C is a properly formed type; for example it

should only use identi�ers whih are already known. In order to desribe

the set of valid environments we introdue judgements of the form

� ` env

The inferene rules are straightforward and onsequently are relegated to

the appendix, in Figure 10. We also relegate to there the de�nition of

subtyping judgements, of the form

� ` T <: U;

given in Figure 11. Again the rules are straightforward, and mostly inher-

ited from [8℄. However it is worth noting that proess types are ordered

di�erently than loation types. For example we have

� ` pr[u

1

: C

1

�k℄ <: pr[u

1

: C

1

�k; u

2

: C

2

�l℄

but

� ` lo[u

1

: C

1

; u

2

: C

2

℄ <: lo[u

1

: C

1

℄
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assuming, of ourse, that the various types used, C

i

;C

j

are well-de�ned

relative to �.

These rules have been formulated so that they an also be used to say

what is a valid type relative to a type expression.

Definition 3.3 (Valid types). We say the type expression T is a valid

type relative to �, written � ` T : ty, whenever we an derive the judge-

ment � ` T <: T. �

Types an be viewed intuitively as sets of apabilities and unioning these

sets orresponds to performing ameet operation with respet to subtyping.

This we now explain. Let (D;�) be a preorder. We say a subset E � D

is lower-bounded by d 2 D if d � e for every e in E. Upper bounds are

de�ned in a similar manner.

Definition 3.4 (partial meets and joins). We say that the preorder

(D;�) has partial meets if every pair of elements in D whih has a lower

bound also has a greatest lower bound. This means that for every pair of

elements d

1

; d

2

in D whih has some lower bound, that is there is some

element in d 2 D suh that d � d

1

; d � d

2

, there is a partiular lower

bound, denoted d

1

u d

2

whih is less then or equal to every lower bound.

The upper bound of pairs of elements, d

1

t d

2

is de�ned in an analogous

manner. �

Let Types

�

denote the set of all type expressions T suh that � ` T : ty.

Theorem 3.5. For every �, the set Types

�

, ordered by <:, has partial

meets and partial joins.

Proof: See Proposition A.2 in Appendix A �

Intuitively the existene of T u U means that T and U are ompatible, in

that they allow ompatible apabilities on values at these types. Moreover

the type TuU may be viewed as a unioning of the apabilities allowed by

the individual types.

It is worth pointing out that with our type expressions set Types

�

turns out to be not only a preorder but also a partial order. However this

would no longer be the ase if we allowed reursive types; nevertheless

with this extension our results would still apply. Note also that beause

of the existene of the top type >, useful in Setion 6, joins of types are

always guaranteed to exist.

3.3 Type Inferene

We are now ready to desribe the type inferene system for ensuring that

systems are well-typed. There are three forms of judgements, for systems,
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(ty-gnew)

�; n : rhCi ` M

� ` (new n : rhCi)M

(ty-new)

�;  : C�k ` M

� ` (new  : C�k)M

(ty-nil)

� ` env

� ` 0

(ty-par)

� ` M

� ` N

� ` M jN

(ty-pro)

� `

k

P : pro

� ` kJP K

(ty-lnew)

�; fk : Kg ` M

�; fk : Kg ` k : K

� ` (new k : K)M

Figure 5. Typing Systems

proesses and values. The type inferene rules for the �rst,

� ` M;

meaning thatM is a well-typed system relative to �, are given in Figure 5.

The intention is that whenever suh a judgement an be inferred it will

follow that � is a well-formed environment.

The main inferene rule is (ty-pro). In order to ensure that kJP K

is a well-typed system we must show that the proess P is well-typed

to run at k; at the system level it is suÆient to be able to assoiate any

proess type with P . The typing of proesses must be relative to a loation

beause it may use loal hannels whih are required to exist at k; it also

turns out that typing of sripts will depend on their loation. There is

also a subtlety in the typing of name reation. First note that in these,

and all subsequent rules, we assume that all bound names in a judgement

must be di�erent than any free names used as part of the judgement.

Thus in (ty-new) we know that  is atually fresh to �. However we

are still not guaranteed that �;  : C�k is a well-de�ned environment even

when � is. From the type environment rules it will only be so when C is

a well-de�ned type expression relative to �, and k is known as a loation.

There is a further ompliation in (ty-lnew), the rule for new loation

reation. Deriving �; fk : Kg ` M will ensure that �; fk : Kg is a well-

de�ned environment, but we must also ensure that all of the hannels used

in the loation type K have already been delared, in �, as global resoure

names. This is enfored by the seond requirement, �; fk : Kg ` k : K.
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(ty-lookup)

�; v : (E)�w;�

0

` env

�; v : (E)�w;�

0

`

w

v : E

(ty-base)

� ` env

� `

w

b : base

b 2 base

(ty-subval)

� `

w

V : T

� ` T <: T

0

� `

w

V : T

0

(ty-meet)

� `

w

u : T

1

� `

w

u : T

2

� `

w

u : T

1

u T

2

(ty-lo)

� `

v

u

i

: C

i

� `

w

u

i

: rhD

i

i

� ` D

i

<: C

i

� `

w

v : lo[u

1

: C

1

; : : : ; u

n

: C

n

℄

(ty-TuDep)

� `

w

v

i

: E

i

fj

~v

=~xjg

� `

w

v : Tfj

~v

=~xjg

� `

w

(ev; v) : Tdep(ex :

e

E
)T

(ty-EDep)

� `

w

v

i

: E

i

fj

~v

=~xjg

� `

w

v : Tfj

~v

=~xjg

� `

w

hev; vi : Edep(ex :

e

E
)T

(ty-Elookup)

�; y : h(T)�w with ~x :

~

Ei;�

0

` env

�; y : hT�w with ex :

e

Ei;�

0

`

w

y : T

(ty-Unpak)

� `

w

h~v; vi : Edep(~x :

~

E)T

� `

w

v : Tfj

ev

=exjg

Figure 6. Typing Values

The typing rules for the judgements on proesses

� `

w

P : �

are given in Figure 7, and are de�ned simultaneously with the judgements

for values, in Figure 6,

� ` V : T

Let us �rst examine those for values. The rule (ty-lookup) simply looks

up the type of the identi�er v relative to w in �, whereas (ty-base) allows

base values to be typed for free. Note that the rule (ty-lo) ensures that

the judgement � `

w

v : K, where K is a loation type, an only be made

when eah hannel used in K is already known to �, at a suitable type,

as a global resoure name. The rule (ty-meet) is required beause in

ertain irumstanes we allow multiple assoiations with identi�ers in

valid environments; of ourse it an only be applied for types T

1

;T

2

for

whih T

1

uT

2

exists. Dependent tuple values are typed with (ty-TuDep).

The value (~v; v) an be assigned the type Tdep(~x :

~

E)T provided eah v

i

an be assigned the type E

i

fj

~v

=~xjg and v the type Tfj

~v

=~xjg. For existential
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types we need to invent a new kind of value h~v; vi; these do not our in

the language safeDpi, and are only used by the type inferene system;

intuitively h~v; vi is a pakage onsisting of the value v together with the

witnesses ~v, whih provide evidene (for the type inferene system) that

v has it's required type. The rule (ty-EDep), whih might also be alled

(ty-Pak), allows us to onstrut suh values. It is similar to the rule for

dependent tuples. The pakage h~v; vi an be assigned the type Edep(~x :

~

E)T

provided we an establish that v

i

an be assigned the type v

i

: E

i

fj

~v

=~xjg

and v the type Tfj

~v

=~xjg. Dependent tuples an be deonstruted and their

omponents aessed in the standard manner; see the fourth lause of

De�nition 3.2. However the orresponding deonstrution for existential

types only allows aess to the �nal omponent, and not the witnesses;

(ty-Unpak) allows the value, rather than the witnesses, to be extrated

at the appropriate type from the pakage. Similarly (ty-Elookup) only

allows knowledge of the value, and not the witnesses, to be dedued from

an existential assumption.

In Figure 7 the rules for name generation, (ty-newhan),(ty-newlo)

and (ty-newreg), are simple adaptations of the orresponding rules at

the system level; note that in (ty-newlo) we are guaranteed that the

new name k does not our in the type �, beause of our onvention on

bound names; similarly for  in (ty-newhan) and n in (ty-newreg).

(ty-stop), (ty-iter) and (ty-par) need no ommentary, (ty-eq) is

adapted from the analogous rule (ty-math) in [10, 8℄ and (ty-abs) and

(ty-beta) are standard rules for abstration and appliation, adapted

to dependent funtion types. But note the use of f~x : (

~

T)�wg in the

premise of the former; the arguments in an abstration are relativised to

the urrent loation w. The rule for migration, (ty-go), is justi�ed by the

redution semantis, although we ould easily have phrased it in terms of

the premises of the output rule.

However the real interest is in the typing of the input and output

proesses. For example to ensure u!hV i has a proess type � relative to �,

(ty-out), we have to ensure that u has the output apability at some type

appropriate to V . Thus we need to �nd some type T suh that � `

w

V : T

and u has the output apability on T. But we must also hek that this

apability is allowed by �. Both of these requirements are enapsulated

in the seond premise of the rule

� ` pr[u : whTi�w℄ <: �

But there is a further ompliation. If the value being sent, V , ontains

hannels, or more preisely apabilities on hannels, then these must also
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(ty-out)

� `

w

V : T

� ` pr[u : whTi�w℄ <: �

� ` pr

h

[V : (T)�w℄ <: �

� `

w

u!hV i : �

(ty-outE)

� `

w

h~v; vi : Edep(~x :

~

E)T

� ` pr[u : whEdep(~x :

~

E)Ti�w℄ <: �

� ` pr

h

[~v : (

~

E)�w℄ <: �

� `

w

u!hvi : �

(ty-in)

� ` pr[u : rhTi�w℄ <: �

�; fX : (T)�wg `

w

P : � t pr

h

[X : (T)�w℄

� `

w

u?(X : T)P : �

(ty-subpro)

� `

w

P : �

� ` � <: �

0

� `

w

P : �

0

(ty-go)

� `

u

v!hF i : �

� `

w

goto

v

u:F : �

v a port

(ty-stop)

� ` � : ty

� `

w

stop : �

(ty-newlo)

�; fk : Kg `

k

C : �

�; fk : Kg `

w

P : �

�; fk : Kg `

w

k : K

� `

w

(newlo k : K)withC in P : �

(ty-newhan)

�;  : C�w `

w

P : � t pr[�w : C℄

� `

w

(new  : C) P : �

(ty-eq)

� `

w

u

1

: T

1

; u

2

: T

2

� `

w

Q : �

�; fu

1

: T

2

g; fu

2

: T

1

g `

w

P : �

� `

w

if u = v then P else Q : �

(ty-newreg)

�; n : N `

w

P : �

� `

w

(newreg n : N) P : �

(ty-abs)

�; f~x : (

~

T)�wg `

w

P : �fj

w

=herejg

� `

w

� (ex :

e

T): P : Fdep(ex :

e

T!�)

(ty-beta)

� `

w

F : Fdep(~x :

~

T!�)

� `

w

v

i

: T

i

� `

w

F (ev) : �fj

ev

=exjgfj

w

=herejg

(ty-iter)

� `

w

P : �

� `

w

�P : �

(ty-par)

� `

w

P : �

� `

w

Q : �

� `

w

P jQ : �

Figure 7. Typing Proesses

be allowed by �. This is the intent of the third premise

� ` pr

h

[V : T�w℄ <: �

whih uses a (partial) funtion whih onstruts a proess type from a

value V and its type; it essentially extrats out any hannels whih may
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be in V . To de�ne this we use t whih is a join operator on types, relative

to <: the subtyping order; when applied to proess types it e�etively takes

the union of the apabilities of the individual types. It is worth noting

that pr

h

[v : T℄ is the trivial proess type pr[℄ when T is a sript type.

pr

h

[v : C�w℄ = pr[v : C�w℄

pr

h

[v : K℄ = pr[

1

: C

1

�v; : : : ; 

n

: C

n

�v℄

where K = lo[

1

: C

1

; : : : ; 

n

: C

n

℄

pr

h

[~v :

~

T℄ = pr

h

[v

1

: T

1

℄ t : : : t pr

h

[v

1

: T

1

℄

pr

h

[(~v; v) : Tdep(~x :

~

E)T℄ = pr

h

[~v :

~

E℄ t pr

h

[v : T℄

pr

h

[h~v; vi : Edep(~x :

~

E)T℄ = pr

h

[~v :

~

E℄ t pr

h

[v : T℄

pr

h

[v : T℄ = pr[℄ otherwise

The rule for transmitting existential values, (ty-outE) is a slight vari-

ation. We must establish a pakage h~v; vi of the orret outgoing type,

but only the (unpaked) value v is atually transmitted. Finally to ensure

u?(X : T)P has the type �, we need to hek that u has the appropriate

read apability, whih also is allowed by �,

� ` pr[u : rhTi�w℄ <: �

and that the apabilities exerised by the residual P are either allowed by

� or inherited by values whih are input and bound to X:

�; fX : (T)�wg `

w

P : � t pr

h

[X : T�w℄

It is worth noting that the typing rules for input and output degener-

ate to the more standard form, for example as in [10℄, when we wish to

establish that the proesses are simply well-typed, that is have the type

pro. For example we have the derived instanes:

(ty-out)

� `

w

V : T

� `

w

u : whTi

� `

w

u!hV i : pro

(ty-in)

� `

w

u : rhTi

�; fX : (T)�wg `

w

P : pro

� `

w

u?(X : T)P : pro

4 Examples

In this setion we demonstrate the usefulness of the type system by a series

of examples of inreasing sophistiation.

To make the examples more readable let us introdue some onvenient

notation. First we will abbreviate the transmission type unit! pro, for
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thunked proesses, simply to thunk. Then we use run as an abbreviation

for the term �� �(), where () is the only value of type unit. So the type

of run is thunk! pro; it takes a thunked proess and runs it. Thunked

proesses, whih we often refer to as thunks, take the form � (): P but

in the ontext of goto p: : : : and port outputs p!h: : : i we will omit the �

abstration; thus goto

in

l:� (): P is abbreviated to goto

in

l:P . Finally we

mimi the notation of proess types for thunks, by letting th[::::℄ denote

the type unit! pr[::::℄.

4.1 Installing and broadasting servies

Suppose there are two globally de�ned hannel names ping and �ng and

a port name in; that is we are working in a type environment � with the

property that

� ` ping : rhD

p

i; �ng : rhD

f

i; in : rhD

i

i (2)

for some types D

p

;D

f

and D

i

. Let L be a loation type suh that

L <: lo[in : C

i

; ping

p

: C

p

; �ng : C

f

℄: (3)

Then in the system

rJ(newlo l : L)withC in P K

the site r generates a new loation l with delaration type L; it evolves to

the new system

(new l : L)(rJP K j lJCK)

To be well-typed with respet to � we need that

� L is a proper delaration type for loations, that is �; fl : Lg ` l : L.

This means that all the resoure names in L should be globally de�ned

in � with a type whih supports their use in L. For example this would

require D

p

<: C

p

; D

f

<: C

f

and D

i

<: C

i

with respet to �.

� the residual P is well-typed to run at r, that is

�; fl : Lg `

r

P : pro

� the installed ode is well-typed to run at the new loation l, that is

�; fl : Lg `

l

C : pro:

The residual P running at r now knows the loation l and its type,

and may make it known to other agents. Suppose P has the form

�dist

1

hli j �dist

2

hli jQ

where dist

i

are distribution hannels at r for broadasting information.

Agents with aess to these hannels an �nd out about l. More impor-



22 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

tantly the type at whih they reeive l depends on the types of dist

i

at the

site r. For example suppose � ontains

dist

1

: whlo[in : whIi; ping : whV

p

i℄i�r;

dist

2

: whlo[in : whIi; �ng : whV

f

i℄i�r

(4)

for some types I;V

p

;V

f

. Then agents �nding out about l from the soure

dist

1

only knows about the resoure ping there (in addition to the port in),

while if the soure of information is dist

2

only �ng may be used. Of ourse

an agent may have aess to both soures. If that is the ase then they

an eventually ome to know l at the type lo[in : whIi; ping : whV

p

i; �ng :

whV

f

i℄, thereby obtaining knowledge of both resoures. Of ourse aess

to l will be governed by ports suh as in and their programming via the

installed ode C.

4.2 Serviing resoures

The installed ode C determines, at least initially, who has aess to the

newly reated site l. A typial example of the installed ode C may take

the form

�in?(� : thunk) (run �) j S

Entry will be allowed to any well-typed thread at the port in, and the

thread an subsequently interat with the serviing ode S. This will only

be well-typed if the original delaration type for the global name in allows

values of type thunk to be reeived at that port. For example it will be

well-typed if � ` in : rhrwhthunkii, that is setting the delaration type D

i

in (2) above to be thunk, and the type I in the typing for the soures at r,

in (4), to be thunk also.

Note that there is some hoie in the type at whih in is delared at

l, in (3) above. If C

i

is set to rwhthunki then the serviing ode S at l an

both read and write at in, but the type rhthunki is suÆient for well-typing,

if S never writes to that port.

Consider a thread running at r suh as

rJdist

1

?(x : L

p

) goto

in

x:ping!hviK (5)

whih gains knowledge of the newly reated loation l via the soure dist

1

.

Here we use L

p

to be an abbreviation for an instane of the type used in

(4) above, lo[in : whthunki; ping : whV

p

i℄. This thread is well-typed,

� ` rJdist

1

?(x : L

p

) goto

in

x:ping!hviK

provided the value v an be assigned the proper type for ping namely V

p

.

This follows from the fat that for suh a � we an establish

� `

r

dist

1

?(x : L

p

) goto

in

x:ping!hvi : pro
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whih in turn follows from

�; fx : L

p

g `

r

goto

in

x:ping!hvi : pro

This is a onsequene of applying the typing rule (ty-go) to the judgement

�; fx : L

p

g `

x

in!hping!hvii : pro (6)

The type environment �; fx : L

p

g takes the form

�; x : lo; in : whthunki�x; ping : whV

p

i�x

Therefore (6) follows from an appliation of the simple form of the output

rule (ty-out), provided we an establish

�; x : lo; in : whthunki�x; ping : whV

p

i�x `

x

� (): ping!hvi : thunk;

that is

�; x : lo; in : whthunki�x; ping : whV

p

i�x `

x

ping!hvi : pro

Finally this requires the judgement

�; x : lo; in : whthunki�x; ping : whV

p

i�x `

x

v : V

p

(7)

Note that this heking of v is arried out relative to the variable

loation x; so the type V

p

needs to be some global type, whose meaning is

independent of the urrent loation. This ould be a base type suh as int,

although we will see more interesting examples, suh as return hannels,

later.

4.3 Site protetion

A simple infrastruture for a typial site ould take the form

hJin?(� : I) � run � j SK

The on-site ode S ould provide various servies for inoming agents,

repeatedly aepted at the input port in. In a relaxed omputing environ-

ment the type I ould simply be thunk indiating that any well-typed ode

will be allowed to immigrate. In the sequel we will always assume that

when the type of the port in is not disussed it has this liberal type.

However onstraints an be imposed on inoming ode by only pub-

liising ports whih have assoiated with them more restritive guardian

types. In suh ases it is important that read apabilities on the these

ports be retained by the host. This point will be ignored in the ensuring

disussion, whih instead onentrates on the forms the guardian types

an take.

Consider a system onsisting of a server and lient, de�ned below,

running in parallel.
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Server: sJreq?(� : S) run � j � news!hsandaliK

Client: Jgoto

req

s:news?(x) goto

in

: report!hxi

j in?(� : R) run � j report?(y) : : :K

(8)

The server is straightforward; it aepts inoming ode at the port req

and runs it. The only servie it provides is some information on a hannel

alled news. The lient, who knows of the req port at the server sends ode

there to ollet the news and report it bak to it's own hannel report; the

type at whih it inputs from news, whih obviously must be string, is

elided. This ode migrates twie, one via the port req from the lient to

the server, and one via the port in, from the server to the lient.

The server protets its site using the guardian type S while the lient

protets its site using R. What should these be? Let us assume that both

sites have the required hannels at appropriate types; suppose in � we

have the entries

news : rwhstringi�s; req : rwhSi�s;

report : rwhstringi�; in : rwhRi�

The �rst possibility is for the lient to be relaxed but the server vigilant:

R : thunk

S : th[news : rhstringi�s; in : whRi�℄

Here the lient allows in any well-typed proess, whereas the server will

only aept at the port req proesses whih use at most the loal hannel

news and the port in at the site ; moreover the loal hannel news an

only be used in read mode.

With these types one an show that the overall system is well-typed.

Typing the server is straightforward but to type the lient we need to

establish, among other requirements,

� `



goto

req

s:news?(x) goto

in

: report!hxi : pro

As usual this follows by an appliation of (ty-go) from

� `

s

req!h news?(x) goto

in

: report!hxi i : pro

whih in turn requires establishing

� `

s

� (): news?(x) goto

in

: report!hxi : S

In other words the inoming ode should math the guardian type of the
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server, S. By dethunking we get the requirement

� `

s

news?(x) goto

in

: report!hxi : pr[news : rhstringi�s; in : whRi�℄

This is established via an appliation of the rule (ty-in). The �rst premise

is immediate sine we assume � `

s

news : rwhstringi. Moreover the seond

amounts to

�; x : string `

s

goto

in

: report!hxi : pr[news : rhstringi�s; in : whRi�℄

beause the value being reeived is a string; that is pr

h

[x : string�s℄ is the

trivial proess type pr[℄.

The signi�ant step in establishing this seond premise is to hek that

the ode returning to the lient satis�es its guardian type R:

�; x : string `



in!h report!hxii : pr[news : rhstringi�s; in : whRi�℄ (9)

However this is straightforward sine R is the liberal guardian thunk. It

follows by an appliation of the output rule (ty-out) in Figure 7. But it

is important to note that in the appliation the third premise is vauous,

as pr

h

[� (): report!hxi : pro℄ is the trivial type pr[℄.

The urrent type R = thunk leaves the lient site open to abuse but it

is easy to hek that the above reasoning is still valid if the guardians are

hanged to

R : th[report : whstringi�℄

S : th[news : rhstringi�s; in : whRi�℄

Here the guardian for the lient only allows in agents whih write to the

loal port report; note that this hange requires that the guardian at the

server site also uses this more restritive type in its annotation for the

port in at .

One an hek that with these new restritive guardians the system is

still well-typed. The only extra work required is in providing a proof for

the judgement (9) above, ensuring that the ode returning to the lient

satis�es the more demanding guardian. By an appliation of (ty-go) and

(ty-out) this redues to the judgement

�; x : string `



� (): report!hxi : th[report : whstringi�℄

whih is a straightforward onsequene of (ty-out).

It might be tempting to de�ne the guardians by

R : th[report : whstringi�℄

S : th[news : rhstringi�s; in : whthunki�℄

Here both server and lient protet their own resoures but the server is

uninterested in what happens at the lient site, by allowing ode with
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arbitrary apabilities on the lient port in. However there is an intuitive

inonsisteny here. The lient has read apability at its port, at the re-

stritive type R, while somehow the server has obtained a more liberal

write apability there, namely thunk.

In fat the system an not be typed with these revised guardians. In

partiular

� 6` sJreq?(� : S) run �K

Any derivation of this judgement would require the judgement

�; � : S `

s

run �

whih in turn would require

� ` S : ty

or more formally

� ` S <: S

But as we will see this an not be inferred; that is S is not a valid type,

relative to �.

To see why let us suppose, for simpliity, that the port in has been

delared at the site  with a type of the form rwhR;Wi for some type W.

One onstraint in the type formation rules, (see (ty-han) in Figure 11)

is that the write apabilities on a hannel are always a subtype the read

apabilities; in our setting this means that � ` W <: R. Our rules also

ensure that � `



in : whT

w

i implies � ` T

w

<: W and onsequently

� ` T

w

<: R.

However the struture of R ensures that �

0

` thunk <: R for no �

0

, from

whih we an onlude that � 6`



in : whthunki�. But this is one of the

requirements, in the formation rules in Figure 11, to establish � ` S : ty.

4.4 Anonymous hannels

Consider the following variation on the server/lient system:

Server: sJreq?(� : S) run � j where?((y; z) : T) goto

in

y:z!hsandaliK

Client: Jgoto

req

s:where!h; reporti j in?(� : R) run � j report?(y) : : :K

(10)

Here the protool is somewhat di�erent; the lient simply supplies to the

server, via the hannel where, the address of a hannel on whih to supply

the news; this onsists of the pair of a loation and a hannel on whih to

report. The server then launhes a thread whih migrates to the relevant

loation, whih is assumed to have an in port, to deliver the news.
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De�ning guardians is straightforward. For example these ould be

R : thunk

S : th[where : whTi�s; in : whthunki�℄

However the diÆulty is in asertaining the required type T for the pair

of values. One possibility is to set

T = (I; whstringi)

where I is the loation type lo[in : whRi℄, allowing the �rst omponent to

be a loation with an in port at the appropriate type and the seond to

be a hannel for sending strings.

Unfortunately the server an not be typed with suh a T. The problem

arises when we try to establish

�; f(y; z) : (T)�sg `

s

goto

in

y:z!hsandali : pro (11)

Unravelling the extended environment this means establishing

�; y : lo; in : whRi�y; z : whstringi `

y

z!hsandali : pro

whih is not possible; the output rule (ty-out) demands that z be a

hannel at the loation y.

So to be able to statially type this example we need to be able to use

the �rst omponent in the pair (y; z) as part of the type of the seond

omponent; we need a dependent type.

Let

T = Tdep(x : I)whstringi�x

Note that (sub-TuDep) from Figure 11 ensures that this is a well-de�ned

type:

� ` T : ty

beause

�; fx : Ig ` whstringi�x : ty

So this type an be safely used as part of a proess. Moreover it is now

easy to establish (11) above as the extended environment �; f(y; z) : Tg

unravels to �; y : lo; in : whRi�y; z : whstringi�y:

These loation dependent types were introdued in [10℄, where they

are shown to be very useful for typing migrating ode, as they allow the

transmission of anonymous hannels between sites. In our example the

server does not need to know, apriori, the name of the report hannel

at the lient site. In the sequel we will borrow the notation used in [10℄

for these dependent types; we use (u�w) to denote any pair of identi�ers
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(u;w) whih is expeted to have a dependent type of the form Tdep(x : I)C:

In a similar vein we abbreviate this type to C�L. Thus we an reformulate

the example (10) above as:

Server sJreq?(� : S) run � j where?((z�y) : whstringi�I) goto

in

y:z!hsandaliK

Client J(new report)

goto

req

s:where!hreport �i j

in?(� : R) run � j report?(y) : : :K

Here, as a form of self-protetion, the lient generates a new return han-

nel, also alled report and whose obvious type is elided, whih it sends

to the server. The lient's self-protetion onsists of reading this hannel

exatly one, whih it knows will be a response to its request to the server.

Note that these loation dependent types are exatly what is required

to type the example (5) above. In the type judgement (7) we need to �nd

an appropriate type V

p

for values transmitted on the hannel ping. We

an now let V

p

be the dependent type whstringi�lo, onsisting of a return

address; that is a loation, and a write apability at some hannel at that

loation.

4.5 Dependent proess types

There remains a major diÆulty with the server in (10) and (8) above. The

guardian type of the server S uses the name of the lient , and therefore

it an only be used by that lient. To overome this diÆulty we need to

allow proess types to depend on loations and hannels. Here the general

form will be

Tdep(~x :

~

E) S

where S is a sript type whih may depend on the variables ~x. A value of

this type takes the form

(~v; v)

where v is some sript. But again to emphasise the ourrene of these

types we will use the more desriptive syntax

v with ~v

An example of the use of suh types is in the following variation of the
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lient server from (8) above:

Server: sJreq?(� with y : S

d

) run � j � news!hsandaliK

Client: J(new report)

goto

req

s:news?(x) goto

in

: report!hxi with  j

in?(� : R) run � j report?(y) : : :K

(12)

with the types

R : thunk

S

d

: Tdep(y : I) th[news : rhstringi�s; in : whRi�y℄

I : lo[in : whRi℄

Here the important point to notie is the server's guardian type at the

port req, S

d

, no longer mentions any lients name; it an be used by any

lient whih satis�es the types requirements. The server aepts a thunk,

of type th[news : rhstringi�s; in : whRi�y℄ whih must be aompanied by

a loation of type I to be used in plae of the variable y in S

d

. A typial

lient  an generate a new reply hannel report and send to the server

� the thunk news?(x) goto

in

: report!hxi

� aompanied by a required loation, in this ase .

Let us now see how the overall system typeheks, assuming as usual

an environment in whih the hannel news and ports req; in, have the

appropriate types, and that the delaration type of report is rwhstringi. At

the server let us onentrate on establishing

� `

s

req?(� with y : S

d

) run � : pro

This follows by an appliation of the simple form of (ty-in) to

�; f(y; �) : (S

d

)�sg `

s

run � : pro

Noting that (S

d

)�s is the same as S

d

, unravelling the extended environ-

ment gives the requirement

�; y : lo; in : whthunki�y; � : th

y

`

s

run �

where th

y

is an abbreviation for the type th[news : rhstringi�s; in : whRi�y℄:

Apriori typing the proess run � should be straightforward with respet to

this environment. But there is a subtlety; at some point in establishing

this judgement we need to apply (ty-base) from Figure 6 to onlude

�; y : lo; in : whthunki�y; � : th

y

`

s

() : unit

and this requires the premise

�; y : lo; in : whthunki�y; � : th

y

` env
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whih in turn requires the premise

�; y : lo; in : whthunki�y ` th

y

: ty (13)

In other words we have to hek that th

y

is a well-de�ned type, relative to

the extended environment. However this is now straightforward using the

rule (sub-pro) from Figure 11, in the presene of the new assoiations

involving y in the extended environment.

Let us now turn our attention to typeheking the lient in (12) above,

where we onentrate on ensuring that the proess sent to the port req

satis�es the type S

d

. We have to ensure

�; report : rwhstringi� `

s

� (): news?(x) goto

in

: report!hxi with () : S

d

The rule (ty-TuDep) in Figure 7 redues this to two premises:

�; report : rwhstringi� `

s

 : I

�; report : rwhstringi� `

s

news?(x) goto

in

: report!hxi :

th[news : rhstringi�s; in : whRi�℄

The �rst is immediate from our assumptions about � and the seond is

essentially the same as a derivation we have already seen on page 25.

Thus using dependent proess types we an de�ne general purpose

servers whih an be used by multiple lients. The example we have just

onsidered, (12), apriori leaves the lients inseure beause of the use

of the liberal type thunk for the lients guardian type R. But it an be

generalised so that this guardian is strengthened, allowing in only threads

whih are going to write to the loally delared reporting hannel. Here

is one possible formulation:

Server: sJreq?(� with (y; z; x) : S

d

) run � j � news!hsandaliK

Client: J(new report)

(new in : rwhRi)

goto

req

s:news?(x) goto

in

: report!hxi with (; report; in) j

in?(� : R) run � j report?(y) : : :K

(14)

Here a lient generates a loal hannel report, whose type rwhstringi we

have elided, and a loal port in whose delaration type is rwhRi, where

R is the more restritive guardian type th[report : whstringi�℄. In other

words in has been speially reated to restrit entry to proesses whih

will only write on the newly reated hannel report. The lient then sends
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the usual proess to the server but now aompanies it with the triple

(; report; in)

The ode for the server is the same exept that aompanying the

inoming thread it expets three values. Its guardian type S

d

however is

hanged to

S

d

: Tdep(y : lo; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

th[news : rhstringi�s; x : whth[z : whstringi�y℄i�y℄

Here, one more, this guardian type does not mention any lient names,

but it allows lients to employ muh more restritive guardian types at

their own sites. We leave the reader to hek that this revised system an

still be typeheked.

4.6 Existential proess types

The use of dependent sript types, as in the previous subsetion, has

ertain disadvantages from the point of view of the lients. For example

in (14) above the lient sends to the server, in addition to the sript to

be exeuted, the triple (; report; in). Although these are not used by the

server we have de�ned other than as part of the reeived sript lients are

in priniple able to use them in any way they seem �t. An alternative

server ould be given by

badServer: sJreq?(� with (y; z; x) : S

d

) goto

x

y:z!hboringiK (15)

This rogue server does not run the inoming sript to obtain the latest

news; instead it uses the inoming aompanying values and sends diretly

to the lient some boring data.

Existential types allow the lient to hide from the server the data whih

aompanies the inoming sripts. Existential sript types take the form

Edep(~x :

~

E) S

where, as with dependent types, the type of the sript S may depend on

the parameters ~x. Intuitively a value of this type is one more a form of

tuple (~v; v), although aess to the aompanying parameters is restrited.

That is reading a value of this type from a port only results in the sript

being obtained, although that sript itself may use these parameters. This

new form of tuple, often alled a pakage, is denoted by

h~v; vi

The important point about suh a pakage is that it only gives aess

to the sript v and not the internal parameters ~v. In our formulation to

send suh a value on a hannel the sender must have the pakage h~v; vi,

although only the sript v is emitted. For this reason we need a speial
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output rule for existential types; see (ty-outE) in Figure 7, whih has

already been explained in Setion 3.3.

Let us now reformulate (14) above using existential types:

Server: sJreq?(� : S

e

) run � j � news!hsandaliK

Client: J(new report)

(new in : rwhRi)

goto

req

s:news?(x) goto

in

: report!hxi j

in?(� : R) run � j report?(y) : : :K

(16)

Here the guardian type S

e

is

Edep(y : lo; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

th[info : rhstringi�s; x : whth[z : whstringi�y℄i�y℄

The server is muh the same as before exept that it does not reeive any

parameters with the inoming sript. Similarly the lient only sends the

sript.

Let us now see that this example typeheks. Establishing that the

server is well-typed is a little more ompliated than with dependent type

S

d

. The interest entres on establishing

�; f� : (S

e

)�sg `

s

run � : pro

and there are two essential steps. Note that, as with S

d

, (S

e

)�s is the

same as S

e

, and so in the sequel we will omit the (�)�s. The �rst step is

deriving

�; f� : S

e

g `

s

() : unit

and proeeds as with the use of S

d

on page 29; unravelling the environment

this amounts to establishing

�; � : hth

y

with y : lo; z : whstringi�y; x : whth[z : whstringi℄i�yi ` env

(17)

where now th

y

represents th[info : rhstringi�s; in : whth[z : whstringi℄i�y℄.

Here the relevant type formation rule is (e-EDep) from Figure 10, whih

requires the premise

�; y : lo; z : whstringi�y; x : whth[z : whstringi℄i�y ` th

y

: ty

However this is easily established from (sub-sript) of the same Figure.

The seond essential step in typeheking the server is

�; f� : S

e

g `

s

� : pro (18)
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This is neessary in order to ensure that run an be applied to �. Here we

use an appliation of (ty-Elookup) from Figure 6 to obtain

�; f� : S

e

g `

s

� : th

y

One an also establish, using the subtyping rules,

�; f� : S

e

g ` th

y

<: pro

and therefore by (ty-subtyping) from Figure 6 we obtain the required

judgement (18) above.

Now let us examine the lient. Here the entral point is to ensure that

the goto

req

s: : : : ommand is well-typed, whih amounts to establishing

the judgement:

�; report : rwhstringi� `

s

req!hnews?(x) goto

in

: report!hxii : pro

Here the relevant rule is (ty-outE) from Figure 7. The seond premise

follows from our assumption about the type of req at s while the third is

vauous as � is instantiated to pro. However the �rst premise requires us

to �nd some ~v suh that

�; report : rwhstringi� `

s

h~v; news?(x) goto

in

: report!hxii : S

e

(19)

In fat the required ~v is obviously going to be (; report; in).

With these values the judgement (19) an be established using the rule

(ty-EDep) from Figure 6. This requires the following four four premises,

where for onveniene we use �

e

as an abbreviation for the extended en-

vironment �; report : rwhstringi�; in : rwhRi: Reall that R is the type

th[report : whstringi℄.

�

e

`

s

 : lo

�

e

`

s

report : whstringi�

�

e

`

s

in : whRi�

�

e

`

s

news?(x) goto

in

: report!hxi

: th[news : rhstringi�s; in : whRi�℄

The �rst three are simple value judgements and we have already seen a

derivation of the last.

This ends our onsideration of the lient/server in (16) above. But let

us reonsider the badServer from (15) above. Using existential types this

example might be written

badServer: sJreq?(� : S

e

) goto

x

y:z!hboringiK

But one an show that this no longer typeheks. The problem arises
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when trying to establish

�; f� : S

e

g `

y

x!hz!hboringii (20)

We have already seen the expanded environment in (17) above, whih is

�; � : hth

y

with y : lo; z : whstringi�y; x : whth[z : whstringi℄i�yi

However the only way to get information from the pakage

� : hth

y

with y : : : : ; z : : : : ; x : : : : i

in this environment is to use the rule (ty-Unpak) from Figure 6. This

will only give information on the variable � whereas the judgement (20)

requires information on the other omponents of the pakage y; z; x whih

are inaessible.

4.7 Sript types

In all of the examples so far servers reat to data furnished diretly from

lients. The general form of sript types,

Fdep(~x :

~

T!�);

allow servers to aept parameterised sripts, whih an be instantiated

by data owned, or trusted, by the server itself. Consider the following

variation on the lient used in (8):

Client: Jgoto

req

s:F j in?(� : R) run � j report?(y) : : :K

F = � y : whstringi: y?(x) goto

in

: report!hxi

It does not know the soure of the news at the server; so it sends the sript

F there, a sript whih uses the pre-existing port and hannel in; report,

but is parameterised on an information hannel loal to the server. The

server inputs the sript and is now free to apply it to whatever information

soure it deems �t. A simple server, with the same funtionality as that

in (8), is given by

Server: sJreq?(� : S

s

) �(news) j � news!hsandaliK

It simply applies the inoming sript to the loal hannel news. However

it ould also dynamially generate the loal news hannel, along the lines

of

ServerDy: sJreq?(� : S

s

) latest?(z) (� z)K

Note that when F is reeived by the server and instantiated, the type

of the resulting proess is dependent on that of the hannel to whih F

is applied. Under the assumptions in plae during the disussion of (8),

and assuming that foo is a loal hannel, one would expet the proess
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(F foo), running at s, to behave in aordane with the type

pr[foo : rhstringi�s; in : whthunki�℄

This is indeed the ase as F an be assigned the parameterised type

Fdep(y : rhstringi! pr[y : rhstringi�here; in : whthunki�℄) (21)

To see this let � be as desribed on 24. Then, using a simple variation on

the inferene desribed there, we an infer

�; y : rhstringi�s `

s

y?(x) goto

in

: report!hxi : pr[y : rhstringi�here; in : whthunki�℄

An appliation of (ty-abs) from Figure 7 gives the required

� `

s

F : Fdep(y : rhstringi! pr[y : rhstringi�here; in : whthunki�℄)

Under the further assumption that � `

s

foo : rhstringi an appliation of

(ty-beta) gives

� `

s

(F foo) : pr[foo : rhstringi�s; in : whthunki�℄

Following this disussion it should be apparent that to ensure that the

overall system is well-typed it is suÆient to use the dependent type (21)

above for the guardian type S

s

. Then it is easy to hek

� ` Client j Server

For example typing the server involves establishing

�; � : S

s

`

s

(� news) : pro (22)

Assuming that � `

s

news : rhstringi, we have already seen that an appli-

ation of (ty-beta) gives

�; � : S

s

`

s

(� news) : pr[news : rhstringi�s; in : whthunki�℄

and the required (22) follows by subtyping.

These parameterised funtional types an be used in onjuntion with

the other onstrutions we have onsidered, dependent and existential

types, to give a very sophistiated language for guardian types whih on

the one hand allows non-trivial interation between types, and on the other

enables sites to protet their loal resoures by implementing powerful

dynami aess poliies. As a �nal example, to indiate the potential

of these types, onsider the the following variation on the lient in (16),
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whih is in turn an elaboration of the example we have just onsidered:

Server: sJreq?(� : S

se

) (� news) j � news!hsandaliK

Client: J(new report)

(new in : rwhRi)

goto

req

s:F j

in?(� : R) run � j report?(y) : : :

F = � y : whstringi: y?(x) goto

in

: report!hxiK

Here the lient does not know the soure of the news at the server, and at

the same time the server is not aware of the reply mehanisms in plae at

the lient; indeed these are generated dynamially by the lient and used

to onstrut the sript F to be sent to the server. One an show that this

system is well-typed if we let the guardian type for the lient an server to

be

R : th[report : whstringi�℄

S

se

Fdep(w : rhstringi! S

w

e

)

respetively, where S

w

e

is the existential type

Edep(y : lo; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

th[w : rhstringi�s; x : whth[z : whstringi�y℄i�y℄

5 Subjet Redution

Many of the expeted properties an be derived for our type inferene

system. To state these suintly it will useful to use

� `

w

J : T

to denote either a value judgement � `

w

v : T or a proess judgement � `

w

P : T. We will on�ne our attention to judgements in whih � ontains no

ourrenes of the speial symbol here; thus they will only our as part

of dependent types Fdep(~x :

~

T!�) and note that in appliations the rule

(ty-abs) from Figure 7 they are eliminated.

Proposition 5.1 (Sanity Cheks).

� � `

w

J : T implies � ` env.

� � `

w

P : � implies � ` � : ty

Proof: The �rst is proved by indution on the inferene of � `

w

J : T

while the seond is on that of the inferene of � `

w

P : �. It is required

by the base ase (ty-stop) while in the ases (ty-out), (ty-outE),
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(ty-in) and (ty-sub) it follows from the orresponding result for subtyp-

ing, Proposition A.1. All other ases follow by indution exept (ty-beta).

There we have � ` F (~v) : �fj

~v

=~xjgfj

w

=herejg beause

(i) � `

w

v

i

: T

i

(ii) � `

w

F : Fdep(~x :

~

T!�)

The latter an only be inferred by (ty-abs) from whih we know that

�; f~x : (

~

T)�wg ` P : �fj

w

=herejg: By the indution hypothesis we have that

�; f~x : (

~

T)�wg ` �fj

w

=herejg : ty. It follows by the substitution result,

Proposition A.5, applied to (i), that � ` �fj

w

=herejgfj

~v

=~xjg : ty: However sine

we know that w is di�erent than eah x

i

this type is �fj

~v

=~xjgfj

w

=herejg. �

In a similar vein we an show that well-typed proesses an only use well-

de�ned types. For example if � `

w

u?(X : T)P : pro then � ` T : ty.

Environments an be ordered by their ability to assign types to iden-

ti�ers: �

1

<: �

2

if for every identi�er u, �

2

`

w

u : T implies �

1

`

w

u : T.

We will write �

1

� �

2

whenever �

1

<: �

2

and �

2

<: �

1

.

Proposition 5.2.

� (Weakening) Suppose �

2

`

w

J : T and �

1

<: �

2

for some �

1

suh that

�

1

` env. Then �

1

`

w

J : T.

� (Strengthening) Suppose �; u : T `

w

J : pro, where u does not our

free in J . Then � `

w

J : pro.

� (Subtyping) Suppose � `

w

J : T. Then � ` T <: T

0

implies � `

w

J : T

0

Proof: The �rst two statements are proved by indution on the infer-

enes. The third follows immediately from (ty-subpro) in Figure 7 and

(ty-subval) in Figure 6. �

Multiple ourrenes of an identi�er is governed by the following result:

Proposition 5.3. � `

w

u : C

1

�w

1

and � `

w

u : C

2

�w

1

implies � `

w

u :

rhDi for some D suh that � ` D <: C

1

; D <: C

2

.

Proof: This property is essentially enfored by the formation rules for

well-de�ned environments. These ensure that if �

1

; u : C

1

�w

1

; : : : ; u :

C

2

�w

2

; : : : is a well-de�ned environment then �

1

must ontain an entry

u : rhDi, where �

1

` D <: C

1

and �

1

; u : C

1

�w

1

; : : : ` D <: C

2

.

The formal proof is by indution on the inferenes of � `

w

u : C

1

�w

1

and � `

w

u : C

2

�w

1

. The base ase, when both are inferred from

(ty-lookup), depends on this property of well-de�ned environments.

�
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An interesting onsequene of this result is that whenever the onditions

of the proposition hold C

1

u C

2

is guaranteed to exist. This is spelled out

in detail in Proposition A.2 in the Appendix.

As usual the proof of Subjet Redution relies on the fat that, in a

suitable sense, type inferene is preserved under substitutions. We require

two suh results, one for standard values, and one for the existential values

used in type inferene.

Lemma 5.4 (Substitution). Suppose � `

w

1

v : T with x not in �.

Then �; x : (T)�w

1

;� `

w

2

J : T implies �;�fj

v

=xjg `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

Proof: First note that the entry x : (T)�w

1

an only take one of three

forms, a hannel registration, x : rhDi, a loation delaration x : lo, a

hannel delaration, x : C�w

0

or a sript delaration x : S. The proof is

by indution on the inferene of �; x : (T)�w

1

;� `

w

2

J : T, whih an

use the rules from Figure 6 or Figure 7. For onveniene we use �

0

to

denote �fj

v

=xjg for the various syntati ategories �. Also we use �

e

as

an abbreviation for the environment �; x : (T)�w

1

;�. First let us look at

some ases from Figure 6.

� Suppose (ty-lookup) is used. So �

e

`

w

2

u : E beause

(i) �

e

` env

(ii) �

e

has the form �

1

; u : (E)�w

2

; : : : .

The substitution result for well-de�ned environments, Proposition A.5

in the appendix, ensures that

(i') �;�

0

` env

To obtain the orresponding

(ii') �;�

0

has the form �

1

; u

0

: (E

0

)�w

0

2

; : : :

we perform a ase analysis on where u : (E)�w

2

ours in �

e

; with

(i') and (ii') an appliation of the rule (ty-lookup) gives the required

� `

w

0

2

u

0

: E

0

.

If it ours in � then (ii') is immediate sine the substitutions have

no e�et. If it ours in � then u

0

: (E

0

)�w

0

2

ours in �

0

and so

(ii') holds. Finally u : (E)�w

2

ould oinide with x : (T)�w

1

. There

are now a number of ases, depending on the form of (T)�w

1

. As

an example suppose it is C�w

1

. Then w

1

and w

2

oinide and x an

not appear in C; w

1

. Therefore the hypothesis � `

w

1

v : C gives the

required result, �;�

0

`

w

2

v : C, by Weakening.

� The ase (ty-Elookup) is very similar, although there are only two
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rather than three possibilities for the ourrene of the assoiation in

�

e

.

� Suppose (ty-lo) is used. So �

e

`

w

2

w : K, where K is the type

lo[u

1

: C

1

; : : : ; u

n

: C

n

℄ beause

(i) �

e

`

w

u

i

: C

i

(ii) �

e

`

w

2

u

i

: rhD

i

i

(iii) �

e

` D

i

<: C

i

Indution, and the substitution result for subtyping, Proposition A.5

in the Appendix, an be applied to these to obtain

(i') �;�

0

`

w

0

u

0

i

: C

0

i

(ii') �;�

0

`

w

0

2

u

i

: rhD

0

i

i

(iii') �;�

0

` D

0

i

<: C

0

i

The interesting ase is when both v and x our in u

1

; : : : u

n

; without

loss of generality suppose these are u

1

; u

2

respetively, in whih ase

u

0

1

= u

0

2

= v. Then we know, by Proposition 5.3, that C

0

1

u C

0

2

exists

and K

0

is lo[u

0

2

: (C

0

1

u C

0

2

); : : : ℄. Applying the rule (ty-meet) to

(i') above gives �;�

0

`

w

0

u

0

2

: (C

0

1

u C

0

2

) and therefore we an apply

(ty-lo) to this, together with (i'), (ii') and (iii') to obtain the required

�;�

0

`

w

0

2

w

0

: K

0

.

The other ases from Figure 6 are similar, mostly following by indution.

Now let us look at some ases from Figure 7.

� Suppose (ty-newlo) is used so �

e

`

w

2

(newlo k : K)withC in P : �

beause

(i) �

e

; fk : Kg `

k

C : �

(ii) �

e

; fk : Kg `

w

2

P : �

(iii) �

e

; fk : Kg `

w

2

k : K

Indution an be applied to eah of these, to obtain

(i') �;�

0

; (fk : Kg)

0

`

k

C : �

(ii') �;�

0

; (fk : Kg)

0

`

w

0

2

P : �

(iii') �;�

0

; (fk : Kg)

0

`

w

0

2

k : K

Unfortunately it is not true in general that �;�

0

; (fk : Kg)

0

is the same

as �;�

0

; (fk : K

0

g). For example if K is lo[x : C

0

1

; v : C

0

2

; : : : ℄ then the

former ontains the entries : : : k : lo; v : C

0

1

�k; v : C

0

2

�k; : : : whereas
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the latter ontains : : : k : lo; v : (C

0

1

u C

0

2

)�k; : : : . Nevertheless it will

always be the ase that

�;�

0

; (fk : Kg)

0

� �;�

0

; (fk : K

0

g)

and therefore by Weakening (i'),(ii') and (iii') apply also to the latter.

So (ty-lo) an be applied to these to obtain the required

�;�

0

`

w

0

2

(newlo k : K

0

)withC

0

in P

0

: �

0

� Suppose (ty-in) is used. So � `

w

2

u?(X : U)P : � beause

(i) �

e

` pr[u : rhUi�w

2

℄ <: �

(ii) �

e

; fX : (U)�w

2

g `

w

2

P : (� t pr

h

[X : (U)�w

2

℄)

Applying the substitution result for subtyping, Proposition A.5 we get

(i') �;�

0

` pr[u

0

: rhU

0

i�w

0

2

℄ <: �

0

sine (pr[u : rhUi�w

2

℄)

0

is pr[u

0

: rhU

0

i�w

0

2

℄. Applying indution to (ii)

gives

(ii') �;�

0

; (fX : (U)�w

2

g)

0

`

w

0

2

P

0

: (� t pr

h

[X : (U)�w

2

℄)

0

Now substitutions distribute over t (see Proposition A.3 in the Ap-

pendix), and also over the hannel extration funtion (See Proposi-

tion A.4). So this may be rewritten

(ii') �;�

0

; (fX : (U)�w

2

g)

0

`

w

0

2

P

0

: (�

0

t pr

h

[X : (U

0

)�w

0

2

℄)

as x is guaranteed not to be in the pattern X. As in the previous ase,

we an show that

�;�

0

; (fX : (U)�w

2

g)

0

� �;�

0

; fX : (U

0

)�w

0

2

g

although beause of loation types they may not be idential. Never-

theless this is suÆient to be able to apply (ty-in) to (i'),(ii') to obtain

the required �;�

0

`

w

0

2

u?(X : U

0

)P

0

: � �

This substitution result an be generalised to arbitrary patterns, but

we only require it in a speial ase:

Corollary 5.5. Let X be a pattern and suppose � `

w

1

V : T where

T is not an existential type. Then �; fX : (T)�w

1

g `

w

2

J : T implies

� `

w

2

fj

V

=Xjg

Jfj

V

=Xjg : Tfj

V

=Xjg

Proof: By indution on the struture of T. The base ases are overed by

the previous lemma. There are two other ases, when T is a loation type

and when it is a dependent type. As an example we onsider the former,

when it has the form K = lo[u

1

: C

1

; : : : u

n

: C

n

℄; in this ase X must be

a variable x and V and identi�er, say v.
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So �; fX : (K)�wg is �; x : lo; u

1

: C

1

�x; : : : ; u

n

: C

n

�x whih an be

written as

�; x : lo; (u

1

: C

1

�x; : : : ; u

n

: C

n

�x)

So applying the previous lemma we obtain

�; u

1

: C

1

�v; : : : u

n

: C

n

�v `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

But � `

w

2

v : K means that � `

v

u

i

: C

i

for eah i. So we see that

� � �; u

1

: C

1

�v; : : : u

n

: C

n

�v from whih the required

� `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

follows. �

The orresponding result for existential types uses di�erent substitu-

tions into proesses and types. The ruial property of existential values

is that the use of their witnesses is very limited:

Proposition 5.6. Suppose �; y : hT with ~x :

~

Ei;�

0

`

w

J : T. Then

x

i

62 fv(J) and x

i

does not our in �

0

; w.

Proof: By indution on the inferene. Intuitively the result follows from

the fat that the only information available, via (ty-Elookup), from the

entry y : hT with ~x :

~

Ei is that y has the type T; no information on x

i

is available. The proof relies on the orresponding result for well-de�ned

environments and subtyping, Proposition A.6 �

This result provides the entral property underlying the substitution result

for existential values.

Lemma 5.7 (ESubstitution). Suppose � `

w

1

h~v; vi : Edep(~x :

~

E)T.

Then �; y : h(T)�w

1

with ~x :

~

Ei;� `

w

2

J : T; w

2

: lo implies �;�fj

v

=yjg `

w

2

fj

v

=yjg

Jfj

v

=yjg : Tfj

~v

=~xjg

Proof: The proof follows the lines of that of Lemma 5.4, with frequent

appliations of the previous proposition, Proposition 5.6, to ensure that

only the substitution of v for x is applied to proess terms and names. As

usual ertain ases depends on the orresponding result for well-typed en-

vironments and subtyping judgements, Proposition A.7 in the Appendix.

�

Theorem 5.8 (Subjet Redution).

Suppose � ` M . Then M �! N implies � ` N:

Proof: It is a question of examining eah of the rules in Figure 2 in

turn. Note that (r-str) requires that typing is preserved by the strutural
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equivalene; we leave the proof of this fat to the reader, as it follows the

standard approah.

Consider the rule (r-omm):

kJ!hV iK j kJ?(X : T)P K �! kJPfj

V

=XjgK

and suppose � ` kJ!hV iK j kJ?(X : T)P K. Beause pro is a top type for

proesses this means that

(i) � `

k

!hV i : pro

(ii) � `

k

kJ?(X : T)P K : pro

We need to show � ` kJPfj

V

=XjgK whih follows easily if we an establish

� `

k

Pfj

V

=Xjg : pro.

From (i),(ii), we an show that � `

k

 : rwhT;Ti and � `

k

V : T. There

are now two ases, depending on the struture of T. First suppose it is

an existential type Edep(~x :

~

E)U, in whih ase the pattern X is a single

variable, say y. Here (i) above an only be inferred by using (ty-outE),

whih means that V is a singleton, say v and there must be some vetor

~v of witnesses suh that � `

k

h~v; vi : Edep(~x :

~

E)U. Deonstruting (ii) we

know that �; y : hU with ~x :

~

Ei `

k

P : pro. We may now apply Lemma 5.7

to obtain the required � `

k

Pfj

v

=yjg.

When T is not an existential type the proof is similar but uses an

appliation of Corollary 5.5 in plae of Lemma 5.7.

We leave the proof for the other rules to the reader.

�

6 The behaviour of safeDpi systems

In this setion we investigate what might be an appropriate notion of

semanti equivalene between safeDpi systems. We �rst propose what

we believe to be a natural notion of ontextual equivalene. Then, in the

following setions, we give a oindutive haraterisation using ations

between on�gurations, onsisting of safeDpi systems together with the

environment's urrent knowledge of the system.

For notational onveniene we limit ourselves to the ase when the only

transmission types allowed are of the form

Tdep(~x :

~

A)A Tdep(~x :

~

A) S Edep(~x :

~

A) S

E�etively this means that the values transmitted must either be of the

form

� (~u), a tuple of �rst-order values, of type Tdep(~x :

~

A)A
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� (~u; F ) a tuple in whih the last value F , a sript, may depend on the

�rst-order values (~u). These have a type of the form Tdep(~x :

~

A) S.

� F a sript, the �nal omponent of an existential value h~u; F i with a

type of the form Edep(~x :

~

A) S.

Simple sripts may be simulated via the empty dependent type Tdep() S,

as an simple �rst-order values, via the type Tdep()A. Our results extend

to the full language, although the proofs require the development of more

ompliated notations.

6.1 A ontextual equivalene

We intend to use a ontext based equivalene in whih systems are asked

to be deemed equivalent in all reasonable safeDpi ontexts. What is

perhaps not so lear here is the notion of reasonable ontext. In previous

work on mobile aluli, [9, 8, 1℄, the equivalene took the form

� j= M �

xt

N

meaning, intuitively, that M and N are indistinguishable in any ontext

typeable by the typing environment �. Although one is primarily inter-

ested in suh judgements in whih � has suÆient knowledge to type M

and N , one is lead to onsider more general judgements where � only

ontains a subset of that knowledge. Suh equivalenes, for Pialulus

and Dpi, an be haraterised indutively using ations of the form

(��M)

�

�! (�

0

�M

0

)

where (��M); (��M

0

) are on�gurations, onsisting of systems M;M

0

and type environments �;�

0

, representing the urrent knowlege of the

testing ontext. In general suh ations hange not only the systems, M

to M

0

but also the urrent knowledge, from � to �

0

, typially by adding

new information.

However, there are further subtleties whih need to be onsidered in

the urrent setting. We disuss this with a motivating example.

Example 6.1.

Consider

M = (new k : lo[b : rwhuniti℄) lJa!hkiK j kJb!hiK

N = (new k : lo[b : rwhuniti℄) lJa!hkiK j kJstopK

and

� = l : lo; b : rhrwhunitii; a : rwhlo[b : rwhuniti℄i�l

These two systems are well-typed with respet to � and should be onsid-

ered equivalent under most reasonable notions of behavioural equivalene;

it is impossible for a testing proess to interat with M on b at k, even
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after the interation on a at l. Indeed, onsider what form a test whih

ould ahieve this must take:

� j lJa?(x) goto

?

x:b?()K

It is lear that there is no port for the testing proess to enter the loation

k on. Moreover, tests annot be plaed diretly at k as k is only disovered

through interation.

To sum up we would expet

� j= M �

xt

N

to hold, for an appropriate formulation of ontextual equivalene for safeDpi.

But a naive labelled transition system of the form disussed above would

not distinguish them. For example a naive system might yield ations

suh as

(��M)

outputs k on a at l

���������������! (�

0

� lJstopK j kJb!hiK)

where �

0

is the environment � updated with the knowledge about the new

loation k : lo[b : rwhuniti℄. However, in suh a system, a subsequent

interation at this newly disovered k would be possible. This interation

would suÆe to distinguish M and N .

In other words we need to onsider more sophistiated notions of a-

tions in order to apture ontextual equivalenes for safeDpi. �

It should be lear from this disussion then that in modelling be-

havioural equivalene in this setting, we must be aware of those loations

at whih we an, and an not, perform tests. And this is not simply a

question of whih loations the environment has immigration rights for,

via some port.

Example 6.2. Consider the following senario:

M = kJ(new b : rwhuniti) a!hbi j b!hiK

N = kJ(new b : rwhuniti) a!hbi j stopK

and

� = k : lo; a : rwhrwhunitii�k

Here the testing environment already knows about k but does not have

any immigration rights there. NeverthelessM and N an be distinguished

by a reasonable test, one whih is typeable by �:

� j kJa?(x) x?hi eureka!hiK

�
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Thus, in representing the environment's knowledge of the system we must

also represent the information about whih loations are available for di-

ret testing. This motivates the following de�nition.

Definition 6.3 (Knowledge strutures). A knowledge struture is

a pair (�; T ), where

� � is a type environment suh that � ` env

� T is a subset of Los suh that if k 2 T then k : lo 2 �

We use I to range over knowledge strutures and write I

�

and I

T

to refer

to the respetive omponents of the struture. We sometimes refer to the

loations in I

T

as those to whih the information struture allows aess

rights. We often abuse notation by writing I;� to mean the knowledge

struture ((I

�

;�); I

T

). �

Definition 6.4 (Configurations). We write I�M for a on�guration

where

� I is a knowledge struture

� there exists some � suh that � ` M , � <: I

�

, and dom(�) =

dom(I

�

). �

Definition 6.5 (Knowledge-indexed relations). We all a family

of binary relations between systems indexed by knowledge strutures a

knowledge-indexed relation over systems. We write I j= M RN to mean

that systems M and N are related by R at index I and moreover, I �M

and I �N are both on�gurations. �

We will use knowledge-indexed relations to propose a notion of be-

havioural equivalene appropriate to this setting. We do this in an estab-

lished manner [11, 6, 9℄ by proposing that we onsider the largest equiva-

lene losed under ertain natural properties listed below.

Redution losure: We say that a knowledge-indexed relation is re-

dution losed if whenever I j= M RN and M �!M

0

there exists some

N

0

suh that N�!

�

N

0

and I j=M

0

RN

0

.

Context losure: We say that a knowledge-indexed relation is on-

textual if

(1) I j= M R N and I

�

; k : lo ` env implies I

0

j= M R N where I

0

is

((I

�

; k : lo); I

T

+ k)

(2) I j=M RN and I

�

;�

0

` env implies I;�

0

j=M RN

(3) I j=M RN and I

�

` kJP K with k 2 I

T

implies

I j= (M j kJP K)R (N j kJP K)
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(4) I; fn : Eg j=M RN implies I j= (new n : E)M R (new n : E)N �

In the �rst ondition we are assured that k is a fresh loation; therefore

this form of weakening allows the environment to reate for itself fresh

loations at whih it may deploy ode. The seond form of weakening,

in (2), allows it to invent new names with whih to program proesses.

Condition (3) allows it to plae well-typed ode at sites to whih it has

aess rights, while (4) is the standard mehanism for handling names

whih are private to the systems being investigated.

Barb Preservation: For any given loation k and any given hannel a

suh that k 2 I

T

and I

�

`

k

a : rwhuniti we write I ` M +

barb

a�k if there

exists some M

0

suh that M�!

�

M

0

j kJa!hiK. We say that a knowledge-

indexed relation is barb preserving if I j= M R N and I ` M +

barb

a�k

implies I ` N +

barb

a�k.

Definition 6.6 (Redution barbed ongruene). We let �

xt

be

the largest knowledge-indexed relation over systems whih is

� pointwise symmetri (that is I j=M �

xt

N implies I j= N �

xt

N)

� redution losed

� ontextual

� barb preserving �

We take redution barbed ongruene to be our touhstone equivalene

for safeDpi as it is based on simple observable behaviour respeted in all

ontexts. The de�nition above is stated relative to hoie of the knowledge

struture I. We should point out however that, for any given systems

M;N and type environment � suh that � ` M and � ` N then there

is a anonial hoie of knowledge struture I, namely, (�; T

�

) where we

let T

�

= f k j k : lo 2 � g. This hoie of knowledge struture gives

rise to what we feel to be a natural and intuitive notion of equivalene for

well-typed safeDpi systems.

Of ourse, the quanti�ation over all ontexts makes reasoning about

the equivalene virtually intratable. However it is ommon pratie, [19,

21, 1, 9, 8℄, to provide some sort of model or alternative haraterisation

in terms of labelled transition systems, whih makes the behaviour of

systems muh more aessible. In partiular if the ations in the labelled

transition system are suÆiently simple this an lead to automati, or

semi-automati veri�ation methods.

In the next setion we show that this ontextual equivalene for safeDpi

an be haraterised in a similar manner, as a bisimulation equivalene

over a suitably de�ned labelled transition system.
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6.2 A bisimulation equivalene

We �rst disuss the labels, or ations, to be used in the labelled transition

system. They are given by the following grammar:

� ::= � j (~n :

~

E)go

p

k:F j (~n :

~

E)( ~m)k:a:�

� ::= V ? j V !

where it is assumed that k; a; p 62 ~n; ~m. These are intended to be read as

follows:

� � represents internal ommuniation in whih no interation with the

environment takes plae

� go

p

k:F represents an attempt by the environment to enter loation k

on port p. The ode to be deployed, if this attempt sueeds, is given

by the sript F .

� k:a:V ! represents a ommuniation between the system and the envi-

ronment in whih the system exports on hannel a at k. The value V

in this ation depends on the type of the hannel. First order values

an be reognised by the environment and so they are reorded in the

ation label. Sripts, on the other hand, an not neessarily be identi-

�ed. So instead the environment provides a suitable reeiving ontext

for a sript. For example suppose the system exports some sript F on

a hannel a of sript type S. To test F the environment an supply any

abstration G of type G : S! pro, with whih F an be investigated;

see rule (m-send� sript) in Figure 8.

� k:a:V ? represents a ommuniation between system and environment

in whih the system imports on hannel a at k. The value V is always

provided by the environment.

� (n)� represents an ation � in whih the new name n has been exported

from the system; it is new in the sense that it has not previously been

enountered by the testing environment. The type of n is not reorded

sine it an be inferred from the type of the hannel on whih it is

exported.

� (n : E)� represents an ation � in whih the fresh name n is being

provided by the environment.
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The following notation is useful in de�ning the labelled transition system.

Firstly, the subjet labels, subj(�) of an ation are given by:

subj(� ) = ;

subj((~n :

~

E)( ~m)k:a:�) = fk; ag

subj((~n :

~

E)go

p

k:V ) = fk; pg

Next, we de�ne the objet labels of an ation. These are divided into both

input and output objet labels using the two funtions obj

?

(�) and obj

!

(�)

in order to identify whether the names returned are being provided by the

environment or exported from the system. We use input objet labels to

identify the former and output objet labels the latter.

obj

?

(� ) = ; obj

!

(� ) = ;

obj

?

(~u!) = ; obj

!

(~u!) = fn(~u)

obj

?

(

~

V ?) = fn(V ) obj

!

(

~

V ?) = ;

obj

?

((~u;G)!) = fn(G) obj

!

((~u;G)!) = fn(~u)

obj

?

((~n :

~

E)go

p

k:V ) = fn(V ) n ~n obj

!

((~n :

~

E)go

p

k:V ) = ;

obj

?

((~n :

~

E)( ~m)k:a:�) = obj

?

(�) n ~n obj

!

((~n :

~

E)( ~m)k:a:�) = obj

!

(�) n ~m

The interesting ase here is � = (~u;G)!, whih represents the export from

the system to the environment a higher-order sript, dependent on the

�rst-order values (~u). This exported sript is not represented in the la-

bel; instead G, whih is supplied by the environment, is applied to it. So

obj

?

(�) is all the free names in G, sine these are supplied by the environ-

ment, while obj

!

(�) are all the iden�ers in ~u, sine these are supplied by

the system.

With this notation we de�ne judgements of the form

(I �M)

�

�! (I �N) (23)

representing the e�et of the system M performing the ation labelled

�, in an environment whose knowlege is I. This ation hanges hanges

the system, from M to N , and the knowledge, from I to I

0

. Typially

this is an inrease in knowledge of the testing environment of the system,

represented as the hange from the type environment, I

�

to I

0

�

.

The axioms for the judgements (23) are given in Figures 8; these are

based on the rules in Figure 10 of [8℄. We make use of the following

notation in the presentation of the rules: For a type environment I

�

we

write

I

r

�

(a; k) = fT j a : rhTi�k 2 I

�

or a : rwhT;Ui�k 2 I

�

g

I

w

�

(a; k) = fU j a : whUi�k 2 I

�

or a : rwhT;Ui�k 2 I

�

g
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(m-reeive)

k 2 I

T

T =

d

I

w

�

(a; k) I

w

�

(a; k) 6= ;

I

�

`

k

V : T

(I � kJa?(X : U)P K)

k:a:V ?

����! (I � kJPfj

V

=XjgK)

(m-deliver)

k 2 I

T

T =

d

I

w

�

(a; k) I

w

�

(a; k) 6= ;

I

�

`

k

V : T

(I �M)

k:a:V ?

����!
(I �M j kJa!hV iK)

(m-send:val)

k 2 I

T

Ta �rst-order type

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

; f~u : (T)�kg ` env

(I � kJa!heuiK)

k:a:eu!

���! (I; feu : (T)�kg� kJstopK)

(m-send:sript)

k 2 I

T

T of the form Edep(~x :

~

T )S

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

`

k

G : T! pro

(I � kJa!hF iK)

k:a:G!

����! (I � kJG (F )K)

(m-send:dep:sript)

k 2 I

T

T of the form Tdep(~x :

~

E) S

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

; f~u : (

~

E)�kg ` env

I

�

`

k

G : T! pro

(I � kJa!h(eu; F )iK)

k:a:(eu;G)!

������! (I; feu :

e

(E)�kg� kJG (eu; F )K)

(m-goto)

k 62 I

T

I

�

`

k

p!hV i : pro

(I �M)

go

p

k:V

����! (I �M j kJp!hV iK)

Figure 8. Labelled Transition System Axioms

The input rule (m-reeive) is a mild generalisation of the orresponding

rule in [8℄, given there as (lts-in). Note that the ation is only possible

if the environment has aess rights to its loation k, that is if k is in I

T

.

Beause safeDpi is asynhronous there are two forms of output ations.

The rule (m-deliver) represents the delivery of a value to a hannel,
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(m-red)

M �!M

0

(I �M)

�

�! (I �M

0

)

(m-par)

(I �M)

�

�! (I

0

�M

0

)

(I �M jN)

�

�! (I

0

�M

0

jN)

(I �N jM)

�

�! (I

0

�N jM

0

)

(m-new)

(I; n : >�M)

�

�! (I

0

; n : >�M

0

)

(I � (newn : E)M)

�

�! (I

0

� (new n : E)M

0

)

n 62

n

(�)

(m-open)

(I;m : >�M)

�

�! (I

0

�M

0

)

(I � (newm : E)M)

(m)�

���! (I

0

�M

0

)

m 62 subj(�);m 2 obj

!

(�)

(m-weak)

(I; fn : Eg�M)

�

�! (I

0

�M

0

)

(I �M)

(n:E)�

����!
(I

0

�M

0

)

n 62 subj(�); n 2 obj

?

(�)

(m-Tweak)

((I

�

; fk : Kg); I

T

+ k)�M)

�

�! (I

0

�M

0

)

(I �M)

(k:K)�

����! (I

0

�M

0

)

k 62 subj(�); k 2 obj

?

(�)

Figure 9. Labelled Transition System Rules

although it may not neesarily be onsumed; note again that aess rights

are required to the hannels' loation.

There are three versions of the seond form of output rule, in whih the

value is onsumed by the hannel; the variation depends on the type of the

hannel, but all require aess rights. The �rst, (m-send:val), for �rst-

order values, is an extension of the orresponding rule, (lts-out), from

[8℄; note that here the environment's knowledge is inreased, by adding

the information ontained in f~u : (T)�kg. Output of sripts is handled

by (m-send:sript), where the environment supplies an appropriate G

for further investigation of the sript F . Dependent sripts, (~u; F ) are

handled by (m-send:dep:sript); here the values (~u) are exported from

the system to the environment, while G, used for further investigation of

F is imported to the system from the environment.

The �nal rule in Figure 8, (m-goto), is novel. It allows the environ-

ment to plae arbitrary (well-typed) ode at a site k, even if it does not

have aess rights there, provided it knows of a port p at k. Of ourse, in

aordane with our operational semantis, k is free to ignore this ode,

by not pro�ering an input at the port p.
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The inferene rules for the ation judgements (23) are given in Fig-

ures 9, and again they are informed by the orresponding rules in Fig-

ure 10 of [8℄. Here we abuse notation a little by writing (m)� to mean

(~n :

~

E)(m; ~m)�

0

whenever � is (~n :

~

E)( ~m)�

0

. Note that, unlike in [8℄, we

have two weakening rules; the new one, (m-Tweak), allows the environ-

ment to invent a new loation k at whih it has aess rights.

As a sanity hek on these judgements we give a preise desription of

the possible forms the ations an take; to aid readability we will use G

to represent a sript furnished by the environment and F to represent one

furnished by the system:

Proposition 6.7. Suppose that I � M is a on�guration from whih

(I �M)

�

�! (I

0

�N), where � is not � . Then � takes one of the following

forms:

First-order: input (~n :

~

E)k:a:(~u)?, where (~n) � (~u), or output ( ~m)k:a:(~u)!,

where ( ~m) � (~u)

Sript: input (~n :

~

E)k:a:F ?, where (~n) � fn(F ), or output (~n :

~

E)k:a:G!

where (~n) � fn(G)

Dependent sript: input (~n :

~

E)k:a:(~u; F )?, where (~n) � (~u) [ fn(F ),

or output (~n :

~

E)( ~m)k:a:(~u;G)!, where (~n) � fn(G) and ( ~m) � (~u)

Aynhronous-goto: (~n :

~

E)go

p

k:F , where (~n) � fn(F ).

Proof: By indution on the inferene of (I �M)

�

�! (I

0

�N): �

Proposition 6.8 (Well-definedness). Suppose I �M is a on�gura-

tion. Then (I �M)

�

�! (I

0

�N) implies I

0

�N is also a on�guration.

Proof: By indution on the inferene of (I �M)

�

�! (I

0

� N), and an

analysis of the last rule used; the details are similar to the orresponding

result, Proposition 4.4 of [8℄; the aess rights omponent of I, I

T

only

plays a role in one rule, (m-Tweak), and even there it is a minor role.

The axiom (m-reeive) requires an appliation of the substitution

results, Corollary 5.5 or Lemma 5.7 depending on the transmission type

involved. The remaining axioms are straightforward, as their premises

ontain suÆient typing information to guarantee that the residual is in-

deed a on�guration.

The proof for the rule (m-red) depends on Subjet Redution, Theo-

rem 5.8, while that for (m-new) relies on Weakening; the remaining rules

follow immediately by indution. �

With this result we now have a labelled transition system for safeDpi,

the nodes being on�gurations and the ations all judgements (23) whih
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an be inferred from Figure 8 and Figure 9. The standard de�nition of

bisimulation therefore gives a o-indutive relation over on�gurations:

Definition 6.9 (Bisimulations). We say the binary relation between

on�gurations R is a typed bisimulation if C RD implies

� C

�

�! C

0

implies D

�̂

=)D

0

for D

0

suh that C

0

RD

0

� D

�

�!D

0

implies C

�̂

=)C

0

for C

0

suh that C

0

RD

0

where

�̂

=) is the standard notation, meaning

�

�!

�

�

�!

�

�!

�

for � not equal

to � and

�

�!

�

otherwise.

We write I j= M �

bis

N whenever there exists some bisimulation R

suh that (I �M)R (I �N). �

With this notation, that is by viewing the knowledge-struture I as a pa-

rameter, we onstrue �

bis

to be a knowledge-indexed relation over systems.

This enables us to ompare it diretly with the touhstone behavioural

equivalene �

xt

. The main tehnial property we require of �

bis

is given

in the following result:

Proposition 6.10. The knowledge-indexed relaton �

bis

is ontextual.

Proof: This follows similar lines to the equivalent statement in [8℄. For

this reason we only show that �

bis

is preserved by parallel omposition

here. Let R be de�ned by

(I � (new ~n :

~

T

1

)M j

Y

i2I

k

i

JP

i

K)R (I � (new ~n :

~

T

2

)N j

Y

i2I

k

i

JP

i

K)

if and only if there exists some I

0

�

, (

~

T) and T

0

suh that

I

0

�

<: I

�

(

~

T

1

) <: (

~

T) and (

~

T

2

) <: (

~

T)

T

0

� ~n

I

0

�

` k

i

JP

i

K and k

i

2 I

T

+ T

0

for eah i 2 I

(I

0

�

; I

T

+ T

0

); f~n : Tg j=M �

bis

N

We aim to show that R is a bisimulation from whih the result follows

immediately. For the purposes of this exposition we will assume that ~n is

empty and that the indexing set I is a singleton. We take any

(I �M j kJP K)R (I �N j kJP K)

so we have some I

0

�

suh that

(I

0

�

; I

T

) j=M �

bis

N (24)

with I

0

�

` kJP K and k 2 I

T

. We suppose that (I�M jkJP K)

�

�! (I

0

�M

0

)

and now must show that there is a orresponding mathing move from
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(I�N jkJP K). In ases in whih � is not � this is easily done by appealing

to (24). For � = � we know that I

0

= I also. By an analogue of the

Deomposition Lemma of [8℄ we an obtain �ve possibilities:

1. (I �M)

�

�! (I �M

00

) suh that M

0

�M

00

j kJP K

2. kJP K �!M

00

suh that M

0

�M jM

00

3. for �rst order T, (I �M)

( ~m)k:a:~v!

������! (I

00

�M

00

) with

� kJP K � kJa?(~x : T)QK

� M

0

� (new ~m : U)M

00

j kJQ[fj

~v

=~xjg℄K

4. for other T, (I �M)

( ~m)k:a:V !

������! (I

00

�M

00

) with

� kJP K � kJa?(~x : T)QK

� V = (~v; � ~x : T: Q)

� (new ~m : U)M

00

�!M

0

derived from (r-beta)

5. (I �M)

(~n:T)k:a:V ?

�������! (I

0

�M

00

) with

� kJP K � kJa!hV iK

� M

0

�M

00

j kJstopK

For eah ase we show that these onditions lead to the desired mathing

transition. We deal with eah of them in turn.

� For (1) we appeal diretly to (24).

� More interesting is ase (2), partiularly when the redution is gener-

ated by use of the rule (r-l:reate) or (r-move). We examine eah

of these: suppose kJP K �!M

00

is derived from a use of (r-l:reate)

so that

P = (newlo l : L)withC in Q

M

00

� (new l : L) lJCK j kJQK

We know by (24) that (I

0

�

; I

T

) j= M �

bis

N and hene, by weakening

to introdue a new testable loation, we have

(I

0

�

; l : lo; I

T

+ l) j= M �

bis

N

and by further weakening we obtain,

(I

0

�

; fl : Lg; I

T

+ l) j= M �

bis

N

Call the knowledge struture above, I

00

. We know, by onstrution of

R, that I

0

�

` kJP K with k 2 I

T

, and therefore, aording to the type

rules (ty-newlo), (ty-subpro) and (ty-pro), we must have

I

00

` lJCK and I

00

` kJQK
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with l; k 2 I

00

T

also. Therefore, by de�nition of R again, we see that

I j= (new l : L)(M j lJCK j kJQK)R (new l : L)(N j lJCK j kJQK) (25)

We know that (I �N j kJP K)

�

�! (I � (new l : L)(N j lJCK j kJQK)) and

that M

0

�M jM

00

� (new l : L)(M j lJCK j kJQK), so by (25), we have

I j= M

0

R (new l : L)(N j lJCK j kJQK)

and our mathing transition as required.

Alternatively, suppose that kJP K �! M

00

is derived from an in-

stane of (r-move). We then have

P = goto p:lF and M

00

� lJp!hF iK

for some p; l; F . It is important to note here that the loation l may

not be ontained in I

T

and this prevents us from immediately using

the de�nition of relation R to laim that

I j= M j lJp!hF iKRN j lJp!hF iK

However, we do know that I

0

�

` kJP K so

(I

0

�

; I

T

)�M

go

p

l:F

����! (I

0

�

; I

T

)�M j lJp!hF iK

is a valid transition. The hypothesis (24) tells us that there is a math-

ing transition

(I

0

�

; I

T

)�N

go

p

l:F

===) (I

0

�

; I

T

)�N

00

suh that (I

0

�

; I

T

) j= M j lJp!hF iK �

bis

N

00

. This tells us that there is

some N

0

suh that

N�!

�

N

0

and N

0

j lJp!hF iK�!

�

N

00

Therefore, it is lear that (I � N j kJP K) =) (I � N

00

) with I j=

M j lJp!F K�

bis

N

00

as required.

� Cases (3) and (4) are similar in nature so we only show the reasoning

for the latter. We have, in this instane, that

(I �M)

( ~m)k:a:( ~m

0

;G)!

���������! (I

00

�M

00

)

where

G = � ~x : T: Q

P = a?(~x : T)Q

M

00

�!M

000

(from (r-beta) suh that M

0

� (new ~m : U

0

)M

000

~m � ~m

0

It is easy to hek (f. Lemma 4.8 of [8℄) that

(I

0

�

; I

T

)�M

( ~m)k:a:( ~m

0

;G)!

���������! (I

0

�

; f ~m

0

: Ug�M

00

); I

T

)�M

00
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where U

0

<: U. Call the target knowledge struture I

000

. This tells us,

by (24) that there exists a mathing transition

(I

0

�

; I

T

)�N

( ~m)k:a:( ~m

0

;G)!

=========) (I

000

�N

00

)

with I

000

j= M

00

�

bis

N

00

. Note that M

00

�! M

000

(derived from

(r-beta)) guarantees, by onuene properties of beta-redution, that

I

000

j= M

000

�

bis

N

00

and we an also assume, without loss of general-

ity that N

00

is stable with respet to ��redutions. By analysing the

above transition we see that there exists some N

000

, ~n : T

0

and V suh

that

N�!

�

(new ~m : U

00

) (new ~n : T

0

)(N

000

j kJa!hV iK)

with

(new ~n : T

0

)(N

000

j kJ� ~x : T: Q(V )K)�!

�

N

00

and U

00

<: U

Therefore we have

N j kJP K �!

�

(new ~m : U

00

) (new ~n : T

0

)(N

000

j kJa!hV iK j kJa?(~x : T)QK)

�!

�

(new ~m : U

00

) (new ~n : T

0

)(N

000

j kJQfj

V

=~xjgK)

�!

�

(new ~m : U

00

)N

00

� N

0

Given that M

0

� (new ~m : U

0

)M

000

, we have enough to onlude that

I j= M

0

RN

0

as required.

� Finally, in ase (5) we follow a similar argument to that in [8℄ with

only a slight modi�ation to aount for the asynhronous nature of

safeDpi. �

6.3 Relating bisimulation and ontextual barbed ongruene

This setion is devoted to showing that these equivalenes, viewed as

knowledge-indexed relations oinide.

Proposition 6.11 (Soundness of �

bis

for �

xt

).

I j= M �

bis

N implies I j= M �

xt

N:

Proof: It is evident that �

bis

forms a symmetri, redution losed and

barb preserving knowledge-indexed relation. Therefore, beause of Propo-

sition 6.10 �

bis

satis�es all the de�ning properties of �

xt

. Sine �

xt

is

the largest suh relation the result follows. �

The fore of this proposition is that any distintions made between

systems by the ontextual ongruene an also be made by the labelled

transition system. This means that we have provided enough labels of

suÆient distinguishing power. We must also hek that we have not
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provided too muh distinguishing power in the labelled transition system.

This is done by relating eah ation de�ned in the labelled transition

system to an atual well-typed safeDpi ontext.

Proposition 6.12 (Definability (f. Prop 4.4 of [9℄)). For eah la-

bel � and eah knowledge struture I there exists a system C

I

�

whih uses

the fresh barb name Æ, port name Æ

in

and loation k

0

and tests for � in

the sense that

� if (I �M)

�

�! (I

0

�M

0

) then I; fk

0

: K

0

g ` C

I

�

and moreover,

C

I

�

jM�!

�

(new ~m :

~

E)(k

0

JÆ

in

!hÆ!hiiK jM

00

) with M

00

�M

0

� if C

I

�

jM�!

�

(new ~m :

~

E)(k

0

JÆ

in

!hÆ!hiiK jM

00

) and I; fk

0

: K

0

g ` C

I

�

where ~m = obj

!

(�) then (I �M)

�

�! (I

0

�M

0

) with M

00

�M

0

.

where

K

0

= lo[Æ

in

: rwhthunki; Æ : rwhuniti; Æ

fail

: rwhuniti; Æ

su

: rwhuniti℄

(the barbs Æ

fail

and Æ

su

are to be used later).

Proof: These systems are, for the most part, straightforward, and readers

familiar with the work in [8, 9℄ will have little trouble reonstruting them.

As an example we show the systems for k:a:(~v;G)! and go

p

l:V ations:

we de�ne

C

I

k:a:(~v;G)!

def

= kJa?(~x; y) if ~x = ~v then G(~x; y) j goto

Æ

in

k

0

:Æ!hi else stopK

and

C

I

go

p

l:V

def

= k

0

JÆ

in

!hÆ!hii j goto

p

l:V K

The interested reader is invited to hek that, for any on�guration suh

that (I �M)

�

�! (I �M

0

) for one of these ations then it is the ase that

I

�

; fk

0

: K

0

g ` C

�

and moreover C

�

jM�!

�

k

0

JÆ

in

!hÆ!hiiK jM

00

where M

00

is struturally equivalent to M

0

up to olletion of terminated garbage

threads lJstopK. �

By providing suh testing systems for eah ation in the lts provided

above we are able to establish our seond main result

Theorem 6.13 (Full abstration of �

bis

for �

xt

).

I j=M �

xt

N if and only if I j=M �

bis

N:

Proof: (Sketh) One diretion is given by Proposition 6.11. The onverse

is shown by building a bisimulation from all pairs of on�gurations suh

that I j= M �

xt

N . Spei�ally, let R be a relation over on�gurations

de�ned by

(I j=M) R (I j= N)
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if I j= M �

xt

N . We outline the proof that R de�nes a bisimulation,

from whih the result follows.

To this end suppose (I � M)

�

�! (I

0

� M

0

), where I j= M R N .

We must �nd a mathing move (I � N)

�

=) (I

0

� N

0

), suh that I

0

j=

M

0

R N

0

. For the purposes of this sketh we assume for simpliity that

I = I

0

. By De�nability, Proposition 6.12. We know that there exists a

system C

I

�

, typeable from I

�

; fk

0

: K

0

g, whih satis�es the onditions of

ontextuality for knowledge-indexed relations and moreover, indues an

interation when plugged with M . In other words,

C

I

�

jM�!

�

k

0

JÆ

in

!hÆ!hiiK jM

00

(26)

for some Æ; Æ

in

at k

0

andM

00

equivalent toM

0

up to struture and garbage

olletion. We make use of this property of C

I

�

as follows: �rst for the barb

names, Æ

fail

and Æ

su

in K

0

let

Flip

def

= k

0

JÆ

fail

!hi j Æ?():Æ

fail

?():Æ

su

!hiK

and let

D

I

�

def

= (k

0

JÆ

in

?(X : thunk)X()K j Flip j C

I

�

j �)

It is easy to hek that I

�

; fk

0

: K

0

g ` D

I

�

whenever I

�

; fk

0

: K

0

g ` C

I

�

.

We should note that the redutions (26) above extend so that (up to

struture and garbage olletion)

D

I

�

[M ℄�!

�

k

0

JÆ

su

!hiK jM

00

The hypothesis I j= M �

xt

N , the fat that I

�

; fk

0

: K

0

g ` C

I

�

and

weakening, ontextuality and barb preserving properties of �

xt

together

allow us to use (I

�

; fk

0

: K

0

g; I

T

+ k

0

) j= D

I

�

[M ℄�

xt

D

I

�

[N ℄ to �nd a

mathing transition

D

I

�

[N ℄�!

�

k

0

JÆ

su

!()K jN

00

with

(I

�

; fk

0

: K

0

g; I

T

+ k

0

) j= kJÆ!hiK jM

00

�

xt

kJÆ!hiK jN

00

:

Note that we an guarantee this form by the absene of the Æ

fail

barb in

k

0

JÆ

su

!hiK jM

00

and the fat that, by symmetry, absene of barbs must

also be preserved. The systems C

I

�

are also built in suh a way as to

guarantee that whenever D

I

�

[N ℄�!

�

k

0

JÆ

su

!hiK j N

00

then we must also

have I�N

�

=)I�N

0

where, again, N

00

is equivalent to N

0

up to strutural

equivalene and garbage olletion. It is easy to show diretly that

(I

�

; fk

0

: K

0

g; I

T

+ k

0

) j= k

0

JÆ

su

!hiK jM

00

�

xt

k

0

JÆ

su

!hiK jN

00

implies I j= M

0

�

xt

N

0

whih is enough to onlude with I j= M

0

RN

0

.

A symmetri argument establishes that R is a bisimulation.
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The ase in whih (I�M)

�

�!(I

0

�M

0

) for I

0

not equal to I is slightly

more ompliated and is dealt with using an Extrusion Lemma similar to

that found in [6, 9, 8℄. �

This provides an alternative haraterisation of redution barbed on-

gruene whih models the nature of knowledge aquisition possible by

testing with highly onstrained mobile ode in an expliit way.

7 Conlusion

We have developed a sophistiated type system for ontrolling the be-

haviour of mobile ode in distributed systems, and demonstrated that,

at least in priniple, oindutive proof priniples an still be applied to

investigate their behaviour.

The use of types in this manner ould be onsidered as a partiular

ase of the general approah of proof-arrying ode, [18℄ and typed assembly

language (TAL) [17℄. Here hosts would publish their safety poliies in

terms of a type or logial proposition and ode wishing to enter would

have to arrive with a proof, whih a typeheker or proofheker an use

to verify that it satis�es the published poliy. Indeed we intend to use

the types of the urrent paper in this manner, by extending the work in

[20℄. The work of [18℄ and [17℄ has inspired muh further researh into

the use of type systems in higher-level languages for resoure aess and

usage monitoring, [23℄, [12℄, for example. However the emphasis in these

papers is on dynamis and ounting of resoure usage rather than using

sophistiated types to speify �ne-grained aess ontrol.

There has been muh work on modelling mobility and loations using

partiular proess aluli. Perhaps the alulus losest to safeDpi is the

Seal Calulus, [5℄. Seals are hierarhially organised omputational sites

in whih inter-seal ommuniation, whih is hannel-based, is only allowed

among siblings or between parents and siblings. Seals may also be om-

muniated, rather like the ommuniation of higher-order proesses along

ports in safeDpi; indeed in some sense it is more general as the seal being

transmitted may be omputationally ative. However the ommuniation

of seals is more ompliated, as it involves agreement between three par-

tiipants, the sender, the reeiver, and the seal being transmitted. Seals

are also typed using interfaes, similar to our �ne-grained proess types,

�. But these only reord the input apabilities a seal o�ers to its parents,

and in order to preserve interfaes under redution the transmission of

input hannel apabilities is forbidden in the language. This is a severe

restrition, at least in general distributed omputing, if not in the more fo-

used appliation area of seals. For example the generation of new servers
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requires the the transmission of input apabilities. We believe that our

dependent and existential types an also be applied to the Seal Calulus,

to obtain a more general notion of interfae, whih will still be preserved

by redution.

The M-alulus, [22℄, a higher-order extension of the distributed join

alulus, is also losely related, at least oneptually, to safeDpi. Here,

not only are loations hierarhially organised, but are programmable, in

the sense that entry and exit poliies for eah loation an be expliitly

programmed. In addition it has an interesting operator, alled passivation,

whih an freeze the ontents of a site into a value. However their type

system is not related to one we have developed for safeDpi; the latter

addresses aess ontrol issues for migrating ode whereas the former is

onerned with uniity of loations; in a higher-order language with a

passivation operator it is important to ensure that eah loality has a

unique name. Thus the type system for the M-Calulus draws on that

presented in [24℄, where uniity of the loation of hannel names was

addressed, rather than that of [25℄, whih developed �ne-grained aess

ontrol types for proesses.

Type systems have also been used to expliitly ontrol mobility in

distributed aluli, most notably in variants of the Ambient alulus of

Cardelli and Gordon [3℄. In partiular, [2℄, [16℄ use subtyping to on-

trol movement of mobile proesses in a hierarhially distributed system

by introduing expliit types to express permission to migrate. A simi-

lar tehnique was used for Dpi in [10℄, [8℄. In ontrast, here we ontrol

mobility only indiretly through types. Code is always permitted to mi-

grate provided it has aess to a suitable port at the target loation. But

by restriting the use of hannels in the types this onsequently restrits

migration. Indeed, we deouple permission to migrate from the loation

name itself, a�ording more exibility in the ontrol of migration.

The oindutive haraterisation presented here makes use of higher-

order ations in the sense that, to interat with a system willing to send

a sript V , the environment must supply a reeiving sript G to whih V

will be applied. A similar approah is used in the haraterisation theo-

rems for various forms of ambients in [7℄ and [15℄. Higher-order ations

are also used in the bisimulation equivalene presented in [4℄ for the Seal

alulus. However, there the three way nature of higher-order ommuni-

ation leads to a proliferation of suh ations, some of whih an not be

simulated by seal ontexts; see Setion 4.4 of [5℄ for examples. As a re-

sult the bisimulation equivalene is more disriminating than the natural

ontextual equivalene for seals.

Suh higher-order bisimulations do not diretly result in automati
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(e-empty)

` env

(e-sript)

� ` S : ty

�; x : S ` env

x 62 �

(e-gres)

� ` C : ty

�; u : rhCi ` env

u 62 �

(e-lo)

� ` env

�; u : lo ` env

u 62 �

(ty-lookup)

�; u : T;�

0

` env

�; u : T;�

0

`

lookup

u : T

(ty-Elookup)

�; h~x :

~

E; y : Ti;�

0

` env

�; hex :

e

E; y : Ti;�

0

`

lookup

y : T

(e-newlhan)

� `

lookup

w : lo

� ` C : ty

�; u : C�w ` env

u 62 �

(e-lhan)

� `

lookup

w : lo

� `

lookup

u : rhDi

� ` D <: C

�; u : C�w ` env

(e-Edep)

�; fx

1

: E

1

g; : : : ; fx

n

: E

n

g ` T : ty

�; y : hT with ex :

e

Ei ` env

x

i

; y 62 �

y 6= x

i

Figure 10. Well-de�ned Environments

veri�ation methods for distributed systems. But they do serve to fous

on the essential features of systems whih determine their behaviour; for

example our results for safeDpi have demonstrated the importane of

the goto moves go

p

k:V . Moreover they serve as a starting point for more

in-depth analyses of the behaviour of safeDpi systems, and more parti-

ularly of interesting sub-languages. For example is it possible to use the

tehnique of [13℄ to �nd a fully-abstrat bisimulation equivalene whih

only uses �rst-order labels? There the reeiving ontexts for higher-order

values are replaed by symboli representatives. Although not diretly ap-

pliable due to the extra ompliation of distribution and mobility ontrol,

it would be of great interest to pursue those ideas in the urrent setting.

Aknowledgements: The �rst two authors would like to aknowledge

the �nanial support of the two EU Global omputing projets, Mikado

and Myths.

A Auxiliary De�nitions and Results

Types and Type Environments: The judgements for well-de�ned en-

vironments, � ` env, and subtyping, � ` T <: U, are de�ned simultane-
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(sub-base)

� ` env

� ` base <: base

(sub-top)

� ` env

� ` T <: >

(sub-protop)

� ` � <: �

� ` � <: pro

(sub-han)

� ` T

r

<: U

r

;U

w

<: T

w

;

T

w

<: T

r

� ` whT

w

i <: whU

w

i;

� ` rhT

r

i <: rhU

r

i

� ` rwhT

r

;T

w

i <: rwhU

r

;U

w

i

� ` T

r

<: U

r

;U

w

<: T

w

T

w

<: T

r

� ` rwhT

r

;T

w

i <: whU

w

i

� ` rwhT

r

;T

w

i <: rhU

r

i

(sub-lo)

� `

lookup

u

i

: rhD

i

i

� ` D

i

<: C

i

; D

j

<: C

0

j

;

� ` C

i

<: C

0

i

;

� ` lo[u

1

: C

1

; : : : ; u

m

: C

m

℄ <: lo[u

1

: C

0

1

; : : : ; u

n

: C

0

n

℄

0 � n � m

(sub-hom)

� ` C <: C

0

� `

lookup

w : lo

� ` C�w <: C

0

�w

� ` rhCi <: rhC

0

i

(sub-sript)

�; fx

1

: (T

1

)�hereg; : : : ; fx

n

: (T

n

)�hereg ` � <: �

0

� ` Fdep(ex :

e

T!�) <: Fdep(ex :

e

T!�

0

)

(sub-pro)

� ` u

i

: C

i

�w

i

; u

j

: C

0

j

�w

j

� ` C

0

i

�w

0

i

<: C

i

�w

i

� ` pr[u

1

: C

1

�w

1

; : : : ; u

m

: C

m

�w

m

℄ <: pr[u

1

: C

0

1

�w

1

; : : : ; u

n

: C

0

n

�w

n

℄

0 � m � n

(sub-TuDep)

�; fx

1

: E

1

g; : : : ; fx

n

: E

n

g ` T <: T

0

� ` Tdep(ex :

e

E
)T <: Tdep(ex :

e

E
)T

0

(sub-EDep)

�; fx

1

: E

1

g; : : : ; fx

n

: E

n

g ` T <: T

0

� ` Edep(ex :

e

E)T <: Edep(ex :

e

E)T

0

Figure 11. Subtyping
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ously, using the rules in Figure 10 and Figure 11. The former are a mild

extension of the orresponding rules in Figure 6 of [8℄ to aommodate

sript and dependent types and rely on a prediate � `

lookup

u : T, whih

simply looks up the type assoiated with u in �. The latter is an extension

of the well-known subtyping rules of types in the Pialulus, [21℄, and

Dpi, [10, 8℄; the rules for proess types are similar to those used in [25℄.

The judgements also hek that the identi�ers used in T; U are atually

delared appropriately in �.

Proposition A.1 (Sanity Cheks).

� � ` T <: U implies � ` env

� � ` T <: U implies � ` T : ty and � ` U : ty

� � ` T <: U, � ` U <: R implies � ` T <: R

� �; u : T ` env implies � ` env and � ` T : ty

Proof: By rule indution. �

Meets and Joins: The partial operators u; t on type expressions are

de�ned by extending the de�nitions used in [10, 8℄ for hannel and loation

types. We take them to be the least reexive and symmetri operators

whih satisfy a series of rules for ombining together various kinds of type

expressions. Those governing hannel expressions are, as in [10℄:

� rhT

1

i u rhT

2

i = rhT

1

u T

2

i, rhT

1

i t rhT

2

i = rhT

1

t T

2

i

� whT

1

i u whT

2

i = whT

1

t T

2

i, whT

1

i t whT

2

i = whT

1

u T

2

i

� rhT

r

i u whT

w

i = rwhT

r

;T

w

i

� rwhT

r

;T

w

i u rhT

0

r

i = rwhT

r

u T

0

r

;T

w

i,

rwhT

r

;T

w

i t rhT

0

r

i = rwhT

r

t T

0

r

;T

w

i,

� rwhT

r

;T

w

i u whT

0

w

i = rwhT

r

;T

w

t T

0

w

i,

rwhT

r

;T

w

i t rhT

0

w

i = rwhT

r

;T

w

u T

0

w

i,

To express the rules for loation types we take advantage of the fat that

the ordering of their omponents is immaterial:

� lo[u

1

: C

0

1

℄u lo[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo[u

1

: (C

0

1

uC

1

); : : : ; u

n

: C

n

℄,

lo[u

1

: C

0

1

℄ t lo[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo[u

1

: (C

0

1

t C

1

)℄

� if u does not our in fu

1

; : : : ; u

n

g then

lo[u : C℄ u lo[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo[u : C; u

1

: C

1

; : : : ; u

n

: C

n

℄,

lo[u : C℄ t lo[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo[℄

� lo[u

1

: C

1

; : : : ; u

n

: C

n

℄ u K = lo[u

1

: C

1

℄ u (: : : (lo[u

n

: C

n

℄ u K) : : : ),

lo[u

1

: C

1

; : : : ; u

n

: C

n

℄tK = (lo[u

1

: C

1

℄tK)u : : :u (lo[u

n

: C

n

℄tK)
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We use a similar approah to de�ning the operations on proess types,

where we use GC as an arbitrary type of the form C�w. However the

proess type onstrutor is ontravariant, whereas the loation onstrutor

is ovariant.

� pr[u

1

: C

0

1

�w

1

℄ u pr[u

1

: C

1

�w

1

; : : : ; u

n

: GC

n

℄ = pr[u

1

: (C

0

1

t C

1

)�w

1

℄,

pr[u

1

: C

0

1

�w

1

℄ t pr[u

1

: C

1

�w

1

; : : : ; u

n

: GC

n

℄ =

pr[u

1

: (C

0

1

u C

1

)�w

1

; : : : ; u

n

: GC

n

℄

� if u�w does not our in fu

1

�w

1

; : : : ; u

n

�w

n

g then

pr[u : C�w℄ u pr[u

1

: C

1

�w; : : : ; u

n

: C

n

�w

n

℄ = pr[℄,

pr[u : C�w℄ t pr[u

1

: C

1

�w

1

; : : : ; u

n

: C

n

�w

n

℄ =

pr[u : C�w; u

1

: C

1

�w

1

: : : ; u

n

: C

n

�w℄

� pr[u

1

: GC

1

; : : : ; u

n

: GC

n

℄ u � =

(pr[u

1

: GC

1

℄ u �) t : : : t (pr[u

n

: GC

n

℄ u �),

pr[u

1

: GC

1

; : : : ; u

n

: GC

n

℄ t � = pr[u

1

: GC

1

℄ t (: : : (u

n

: GC

n

t �) : : : )

� pro u � = �, pro t � = pro

For the various forms of dependent types, the rules are straightforward:

� Fdep(~x :

~

T!�) u Fdep(~x :

~

T!�

0

) = Fdep(~x :

~

T!(� u �

0

)),

Fdep(~x :

~

T!�) t Fdep(~x :

~

T!�

0

) = Tdep(~x :

~

T) (� t �

0

)

� Tdep(~x :

~

T)T u Tdep(~x :

~

T)T

0

= Tdep(~x :

~

T) (T u T

0

),

Tdep(~x :

~

T)T t Tdep(~x :

~

T)T

0

= Tdep(~x :

~

T) (T t T

0

)

� Edep(~x :

~

T)T u Edep(~x :

~

T)T

0

= Edep(~x :

~

T) (T u T

0

),

Edep(~x :

~

T)T t Edep(~x :

~

T)T

0

= Edep(~x :

~

T) (T t T

0

)

For the remaining kinds of type expressions we merely extend the de�ni-

tions homomorphially:

� rhCi u rhC

0

i = rhC u C

0

i, rhCi t rhC

0

i = rhC t C

0

i

� T�w u T

0

�w = (T u T

0

)�w

Proposition A.2.

� If there exists some type expression T suh that � ` T <: T

1

and

� ` T <: T

2

then T

1

u T

2

is well-de�ned

� When T

1

uT

2

is well-de�ned, � ` T

1

uT

2

<: T

i

and � ` T <: T

1

uT

2

,

for any type expression T suh that � ` T <: T

1

and � ` T <: T

2

.

� If there exists some type expression T suh that � ` T

1

<: T and

� ` T

2

<: T then T

1

t T

2

is well-de�ned

� When T

1

tT

2

is well-de�ned, � ` T

i

<: T

1

tT

2

, and � ` T

1

tT

2

<: T,

for any type expression T suh that � ` T

1

<: T and � ` T

2

<: T.
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Proof: The �rst and third statements are proved by indution on the

derivations of � ` T

i

<: T and � ` T <: T

i

respetively. The seond and

fourth are by indution on the onstrution of T

1

uT

2

; T

1

tT

2

respetively.

�

Note that beause of the top type > the premise of the third statement is

always true; so T

1

t T

2

always exists, although in many ases it will be

the uninformative type >.

Substitutions: Free identi�ers may our in type expressions and there-

fore we need to de�ne Tfj

v

=ujg for an arbitrary type expression T; this is

then used as part of the de�nition of substitution into proess terms. The

de�nition of Tfj

v

=ujg is by indution on the struture of T. The only inter-

esting ases are loation and proess types, where the de�nition needs to

ensure that the entries remain unique:

� lo[u

0

: C℄fj

v

=ujg = lo[u

0

fj

v

=ujg : Cfj

v

=ujg℄

� lo[u

1

: C

1

; : : : u

n

: C

n

℄fj

v

=ujg =

(lo[u

1

: C

1

℄fj

v

=ujg) u : : : u (lo[u

n

: C

n

℄fj

v

=ujg)

� pr[u

0

: C℄fj

v

=ujg = pr[u

0

fj

v

=ujg : Cfj

v

=ujg℄

� pr[u

1

: C

1

; : : : u

n

: C

n

℄fj

v

=ujg = (pr[u

1

: C

1

℄fj

v

=ujg)t : : :t (pr[u

n

: C

n

℄fj

v

=ujg)

� All other ases are de�ned homomorphially. For example

{ rwhT

r

;T

w

ifj

v

=ujg = rwhT

r

fj

v

=ujg;T

w

fj

v

=ujgi

{ Tdep(~x :

~

E)Tfj

v

=ujg = Tdep(~x : (

~

Efj

v

=ujg)) (Tfj

v

=ujg), where we assume v

is di�erent from eah x

i

Proposition A.3.

� Suppose T u U is de�ned. Then so is Tfj

v

=ujg u Ufj

v

=ujg and (up to �-

equivalene) is the same as (T u U)fj

v

=ujg

� Similarly for T t U.

Proof: By simultaneous indution on the de�nitions of T uU and T tU.

�

Substitution of identi�ers also ommutes with the hannel extration

funtion.

Proposition A.4. For all identi�ers u; v,

pr

h

[V : T℄fj

v

=ujg = pr

h

[V fj

v

=ujg : Tfj

v

=ujg℄

Proof: By indution on the de�nition of pr

h

[V : T℄. The only non-trivial

ase is when V is an identi�er w and T a loation type, when the proof
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depends on the peuliaries of the appliation of substitutions to loation

and proess types. �

Proposition A.5 (Substitution). Suppose � `

w

v : T and x 62 �.

Then

� �; x : (T)�w;� ` env implies �;�fj

v

=xjg ` env

� �; ; x : (T)�w;� ` T <: U implies �;�fj

v

=xjg ` Tfj

v

=xjg <: Ufj

v

=xjg

Proof: By simulataneous indution on the derivations. Note that there

are only four possibilities for the entry x : (T)�w, namely x : lo, x : rhDi,

x : C�w or x : S. �

The orresponding substitution result for existential values depends on

the following property of existential witnesses.

Proposition A.6. Let �

e

denote �; y : hT with ~x :

~

Ti;�

0

. Then

� �

e

` env implies x

i

does not our in �

0

.

� �

e

` T <: U implies x

i

does not our free in T; U.

Proposition A.7. Suppose � `

w

h~v; vi : Edep(~x :

~

E)T. Let �

e

denote

�; y : h(T)�w with ~x : (

~

E)�wi;�. Then

� �

e

` env implies �;�fj

v

=yjg ` env

� � ` U

1

<: U

2

implies U

1

fj

~v;v

=~x;yjg <: U

2

fj

~v;v

=~x;yjg

Proof: By simultaneous indution on the inferenes. �

Adding knowledge to environments: Here we extend the meet op-

erator u to lists of type assoiations. This is used in Figure 9, in the rules

(m-send:val) and (m-send:dep:sript), for inreasing the knowledge in

a type environment. We �rst de�ne the (partial) operation � u u : E

between an arbitrary assoiation list � and a singleton:

� If E is a loated hannel A�w then � u u : E is �; u : E.

� Otherwise if u has no assoiation in � then � u u : E is also �; u : E.

� Otherwise � u u : E is obtained by replaing the assoiation of u in �,

say u : E

0

, by the new assoiation u : (EuE

0

); in this ase the operation

is only de�ned if (E u E

0

) exists.

The general de�nition of �

1

u �

2

then follows by indution on the size of

�

2

:

� �

1

u � = �

1

� �

1

u (�

0

2

; u : E) = (�

1

u �

0

2

) u u : E
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