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safeDpi: a language for 
ontrolling mobile


ode

Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Abstra
t. safeDpi is a distributed version of the Pi
al
ulus, in whi
h pro
esses

are lo
ated at dynami
ally 
reated sites. Parametrised 
ode may be sent between

sites using so-
alled ports, whi
h are essentially higher-order versions of Pi
al
ulus


ommuni
ation 
hannels. A host lo
ation may prote
t itself by only a

epting 
ode

whi
h 
onforms to a given type asso
iated to the in
oming port.

We de�ne a sophisti
ated stati
 type system for these ports, whi
h restri
t the


apabilities and a

ess rights of any pro
esses laun
hed by in
oming 
ode. Depen-

dent and existential types are used to add 
exibility, allowing the behaviour of these

laun
hed pro
esses, en
oded as pro
ess types, to depend on the host's instantiation of

the in
oming 
ode.

We also show that a natural 
ontextually de�ned behavioural equivalen
e 
an be


hara
terised 
oindu
tively, using bisimulations based on typed a
tions. The 
hara
-

terisation is based on the idea of knowledge a
quisition by a testing environment and

makes expli
it some of the subtleties of determining equivalen
e in this language of

highly 
onstrained distributed 
ode.

1 Introdu
tion

In this paper we elaborate a theory of distributed systems whi
h in
orpo-

rates resour
e poli
ies. Our main results are:

� a language for distributed systems in whi
h a

ess to hosts by mobile


ode is 
ontrolled using 
apability-based types

� a �ne-grained type system using novel forms of dependent and exis-

tential types whi
h gives hosts 
onsiderable 
exibility in determining

the allowed behaviour of in
oming 
ode

� a 
oindu
tive 
hara
terisation of a natural 
ontextual equivalen
e, based

on the notion of typed a
tions.

This is developed in terms of an extension of the language Dpi, [10, 8,

20, 14℄, a version of the Pi
al
ulus, [21℄, in whi
h pro
esses may migrate

between between lo
ations, whi
h in turn 
an be dynami
ally 
reated. In

Dpi a typi
al system takes the form

lJP K j (new e : E)(kJQK j lJRK)

where there are two threads P and R running at l and one, Q, running

at k. The threads Q and R share the private name e at type E. The
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threads P ;Q; R are similar to pro
esses in the Pi
al
ulus in that they


an re
eive and send values on lo
al 
hannels; the types of these 
hannels

indi
ate the kind of values whi
h may be transmitted. Lo
ations may be

dynami
ally 
reated. For example in

lJ(newlo
 k : K)withC in xpt

1

!hki j xpt

2

!hkiK

a new lo
ation k is 
reated at type K, the 
ode C is installed at k and

the name of the new lo
ation is exported via the 
hannels xpt

i

. Lo
ation

types are similar to re
ord types, their form being

lo
[


1

: C

1

; : : : 


n

: C

n

℄

This indi
ates that the 
hannels, or resour
es, 


i

at types C

i

are available

at the lo
ation. So for example K above 
ould be

lo
[ping : rwhPi; �ng : rwhFi℄

indi
ating that the servi
es ping and �ng(er) are supported at k; r indi
ates

the permission to read from a 
hannel, while w indi
ates the permission

to write to the 
hannel. However the types at whi
h k be
omes known

depends on the types of the exporting 
hannels. Suppose for example

these had the types

xpt

1

: whlo
[ping : whPi℄i

xpt

2

: whlo
[�ng : whFi℄i

Then pro
esses re
eiving the name k from the sour
e xpt

1

would only be

able to write to the ping servi
e at k, i.e. send messages to that servi
e,

while the sour
e xpt

2

only allows similar restri
ted a

ess to the �nger

servi
e. It is in this way, by sele
tively distributing names at parti
ular

subtypes, that resour
e a

ess poli
ies are implemented in Dpi.

In this paper we make two extensions to Dpi. The �rst allows more


ontrol to lo
ations over 
ode whi
h wishes to a

ess their 
omputation

spa
e. In Dpi the migration rule is given by

kJgoto l:P K �! lJP K;

any thread is allowed to migrate to the site l. In safeDpi, the language

of this paper, migration is represented by

kJgoto

p

l:F K �! lJp!hF iK

A thread must designate a port p at l in order to migrate. It then redu
es

to the system lJp!hF iK, whi
h a priori represents a thread running at lo-


ation l. However this thread will have no e�e
t until the site l makes

available a 
orresponding thread of the form lJp?(x)QK; using standard


ommuni
ation this will now allow the e�e
tive entry of F . In this manner,
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by programming the presen
e or absen
e of ports, the site l 
an 
ontrol

the immigration of 
ode.

E�e
tively we have repla
ed un
onstrained spawning of pro
esses at

arbitrary sites by higher-order 
ommuni
ation. Moreover these ports,

higher-order 
hannels, have types asso
iated with them. The types on

ports are the se
ond major extension to the language. In general we allow

s
ripts, parameterised 
ode, to be sent via ports. These take the form

�(~x :

~

T)P

where ea
h x

i


an be mat
hed by arbitrary transmittable values ; it is the

types T

i

whi
h determine the nature of the abstra
tion. But when su
h a

s
ript is transmitted it may be instantiated at the re
eiving site by values

of the appropriate type. This gives added se
urity to sites by 
ontrolling

the type at whi
h s
ripts will be a

epted. This of 
ourse depends on the

granularity of the type stru
ture for s
ripts.

The most straightforward form of type for s
ripts is

(~x :

~

T)! pro


stating that, whenever a s
ript of this type is instantiated with appropriate

parameters, the result is guaranteed to be a well-typed pro
ess. But a

priori there is no 
onstraint on the resour
es it 
an use. To limit the

a

ess of in
oming 
ode to resour
es we introdu
e �ne-grained pro
ess

types, [25℄. These di
tate the 
apabilities, on both lo
al and third-party


hannels, whi
h the 
ode is allowed to a

ess, and take the form of a

re
ord:

pr[


1

: C

1

�k

1

; : : : ; 


n

: C

n

�k

n

℄

A pro
ess of this type 
an use at most the set of 
hannels 


i

, lo
ated

respe
tively at the lo
ations k

i

, with the 
apabilities C

i

; in these pro
ess

types the use of a lo
al 
hannel 
 is indi
ated by an entry of the form


 : C�here.

When these pro
ess types are in
orporated into s
ript types a host

lo
ation 
an have mu
h more e�e
tive 
ontrol over the behaviour of in-


oming 
ode, parti
ularly when we use a form of dependent fun
tion type.

For example suppose a port only a

epts s
ripts at the type

Fdep(x : rhTi! pr[x : rhTi�here; reply : whTi�k℄)

Then an in
oming s
ript 
an only be instantiated by a lo
al 
hannel, with

read 
apability at type T. Moreover the resulting running 
ode is now

only allowed to read from this lo
al 
hannel and write to the third-party


hannel 
alled reply lo
ated at the spe
i�
 lo
ation k. With a port with
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the type

Fdep(y : whTi�k! pr[info : rhTi�here; y : whTi�k℄)

the host 
an instantiate the in
oming s
ript with some 
hannel lo
ated

at the site k, on whi
h it has write permission, and the running 
ode is

restri
ted to writing there, and reading from a lo
al 
hannel 
alled info.

Note that in both these examples the lo
ation k is built into the s
ript

types. Thus a server with an a

ess port at this type would only allow

entry to s
ripts whi
h guarantee to write only at k. However dependent

types 
an be used to allow this target site to be parameterised. Consider

the simple example

Tdep(z : L) Fdep(y : whTi�z! pr[info : rhTi�here; y : whTi�z℄)

where the s
ript type is now parameterised by lo
ations of some type L.

This allows the server to a

epts s
ripts whi
h 
an write the information

at sites determined by the 
lient.

Although these dependent types add 
onsiderable 
exibility to the in-

tera
tion between 
lients and servers, they have potential drawba
ks; as

we will see the 
lient has to send with the s
ript the a
tual obje
ts on

whi
h their type is parameterised. In prin
iple this opens up the possibil-

ity of (rogue) servers abusing this extra information. However existential

types provide extra prote
tion to 
lients, be
ause, as we will see, this extra

information is not required as part of the 
ommuni
ation.

The language safeDpi is formally de�ned in Se
tion 2, together with

a redu
tion semanti
s. In Se
tion 3 we de�ne the set of types and the type

inferen
e system; the formal development relies heavily on the type sys-

tems already given in [8, 19℄. In Se
tion 4 we develop a series of example

systems. These are designed on the one hand, to explain the intri
a
ies of

the the type inferen
e rules, and on the other to demonstrate the power

and 
exibility of the types. This is followed by a se
tion devoted to es-

tablishing the expe
ted properties of type system, in parti
ular Subje
t

Redu
tion.

We now turn to the se
ond topi
 of the paper, typed behavioural equiv-

alen
es. In untyped languages, these are normally de�ned 
oindu
tively,

as the largest equivalen
es over pro
esses whi
h preserve, in some sense,

a
tions of the form

M

�

�!M

0

(1)

Typi
ally these a
tions des
ribe the possible forms of intera
tions between

a pro
ess and its environment. In a typed setting many of these a
tions

will not be possible, be
ause the environment will not have the power to
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parti
ipate in them. As a simple example 
onsider the system

lJ(new
 
 : C) (xpt!h
i j 
?(x)Q)K

in an environment in whi
h the export 
hannel xpt 
an only send 
hannels

with the read 
apability. The environment will re
eive 
 along xpt but will

not be able to transmit on 
. Consequently the potential input a
tions on


 by the pro
ess above will not be possible.

Following [9, 8℄ we repla
e the untyped a
tions in (1) with typed a
tions

of the form

I �M

�

�! I

0

�M

0

where M is the system being observed while I is a 
onstraint on the ob-

serving environment representing its knowledge of the system M . A
tions


hange both the pro
esses and the environment in whi
h they are being

observed. This will lead, in the standard manner, to a 
oindu
tively de-

�ned, bisimulation-based, relation between systems, whi
h we denote by

I j= M �

bis

N

In our se
ond main result of the paper, we prove that this 
oindu
tive rela-

tion 
oin
ides with a naturally de�ned 
ontextual equivalen
e. One of the

features of our approa
h is the expli
it representation of the information

whi
h the environment 
an obtain from systems through testing with 
on-

texts. In su
h a highly 
onstrained setting as this, this be
omes a genuine

aid in understanding the equivalen
e. This is the topi
 of Se
tion 6.

This report ends, in Se
tion 7, with some 
on
lusions and a brief survey

of related work.

2 The language safeDpi

Syntax: The syntax, given in Figure 1, is a slight extension of that of

Dpi from [8℄. It is expli
itly typed, but for expository purposes we defer

the des
ription of types until Se
tion 3. The syntax also presupposes a

general set of 
hannel names Names, ranged over by n;m, and a set

of variables Vars ranged over by x; y. Identi�ers, ranged over by u;w,

may 
ome from either of these sets. Names is partitioned into two sets,

Lo
s ranged over by k; l; : : : for lo
ations, and Chans ranged over by

a; b; 
; : : : for 
hannels. There is also a distinguished subset of 
hannels


alled ports, and ranged over by p; q; : : : , whi
h are used to handle higher-

order values. Similarly we will sometimes use �; �

0

for variables whi
h will

be instantiated by higher-order values.

The syntax for systems, ranged over by M;N;O, is the same as in

Dpi, allowing the parallel 
omposition of lo
ated pro
esses lJP K, whi
h

may share de�ned names, using the 
onstru
t (new e : E)�.
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M;N ::= Systems

lJP K Lo
ated Pro
ess

M jN Composition

(new e : E)M Name Creation

0 Termination

P;Q ::= Pro
esses

u!hV i Output

u?(X : T)P Input

goto

u

v:P Migration

if u

1

= u

2

then P else Q Mat
hing

(new
 
 : C) P Channel 
reation

(newreg n : N) P Global name 
reation

(newlo
 k : K)withQ in P Lo
ation 
reation

P jQ Composition

F (~v) Appli
ation

�P Iteration

stop Termination

U; V;W ::= Values

(~v) tuples

v ::= Value 
omponents

(�~x :

~

T)P S
ripts

u identi�ers

Figure 1. Syntax of safeDpi

The syntax for pro
esses, ranged over by P; Q is an extension of the

Pi
al
ulus, [21℄, with primitives for migration between lo
ations. Par-

allelism is allowed, we have the terminated pro
ess stop, and we also allow

mat
hing and mismat
hing, with the 
onstru
t if u

1

= u

2

then P else Q,

and a form of iteration �P .

In the input 
onstru
t u?(X : T)P we take X to be a pattern whi
h is

used to de
onstru
t in
oming values; this is a value whi
h only 
ontains

distin
t o

urren
es of variables. In our somewhat restri
ted format for

values this means that X has the form (~x), with ea
h x

i

being distin
t.

The output 
onstru
t is asyn
hronous, u!hV i. Here V is a tuple 
onsisting

of either identi�ers or higher-order values. The latter 
an take the form

of s
ripts, � (~x :

~

T): P , where P is an arbitrary pro
ess term; we will
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often use F to indi
ate an arbitrary s
ript, whereas v will be reserved for

the individual 
omponents in a tuple V ; thus it will represent either an

identi�er or a s
ript. Of parti
ular interest to us will be tuples of the form

(~v; F ) whi
h will be interpreted as dependent values ; intuitively the s
ript

F depends on the values ~v.

At the risk of being verbose, the syntax has expli
it notations for the

various forms of names whi
h 
an be de
lared. In (new
 
 : C) P a new

lo
al 
hannel named 
 is de
lared, while (newregn : N) P represents the

generation of a new globally registered name n for 
hannels; see [8℄ for mo-

tivation. When a new lo
ation is de
lared, in (newlo
 k : K)withQ in P ,

its de
laration type K 
an only involve 
hannel names whi
h have been

registered. This 
onstru
t generates the new lo
ation k, sets the 
ode Q

running there, and in parallel 
ontinues with the exe
ution of P . This

spe
i�
 
onstru
t for new lo
ations is required sin
e 
ode may only be

exe
uted at a lo
ation on
e entry has been be gained via a port; so here

Q represents the 
ode with whi
h the lo
ation is initialised.

The main novelty in safeDpi, over Dpi, is the 
onstru
t

goto

p

k:F

Intuitively this means: migrate to lo
ation k via the port p with the 
ode

F . Our type system will ensure that F is in fa
t a s
ript with a type

appropriate to the port p; moreover entry will only be gained if at the

lo
ation k the port p is 
urrently a
tive.

The various binding stru
tures, for names and variables, gives rise

to the standard notions of free and bound o

urren
es of identi�ers, �-


onversion, and (
apture-avoiding) substitution of values for identi�ers

in terms, Pfj

v

=ujg; this is extended to patterns, Pfj

V

=Xjg in the standard

manner. We omit the details but three points are worth emphasising.

The �rst is that many su
h substitutions may give rise to badly formed

pro
ess terms but our typing system will ensure that this will never o

ur

in well-typed terms. The se
ond is that identi�ers may o

ur in our types

and therefore we require a notion of substitution into types; this will be

explained in Se
tion 3. Finally terms will be identi�ed up to �-equivalen
e,

and bound identi�ers will always be 
hosen to be distin
t, and di�erent

from any free identi�ers.

In the sequel we use system to refer to a 
losed system term, that is

a system term whi
h 
ontain no free o

urren
es of variables; similarly a

pro
ess means a 
losed pro
ess term.
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Redu
tion Semanti
s: This is given in terms of a binary relation be-

tween systems

M �! N

and is a mild generalisation of that given in [8, 10℄ for Dpi.

Definition 2.1 (Contextual relations). A relation R over systems

is said to be 
ontextual if it preserves all the system 
onstru
tors of the

language; that is M RN implies

� M jORN jO and O jM RO jN

� (new e : E)M R (new e : E)N . �

The redu
tion relation is de�ned to be the least 
ontextual relation whi
h

satis�es the axioms and rule in Figure 2. The rule (r-str) merely says that

we are working up to a stru
tural equivalen
e, �, whi
h abstra
ts from

inessential details in the terms representing systems. Formally stru
tural

equivalen
e is de�ned to be the least 
ontextual relation between (
losed)

systems whi
h satis�es the axioms whi
h are given in Figure 3; these are

the natural adaptations of the usual axioms for stru
tural equivalen
e in

the Pi
al
ulus.

The main redu
tion involves lo
al 
ommuni
ation, governed by the rule

(r-
omm), taken dire
tly from Dpi. However here the value V may be a

s
ript; in other words this rule en
ompasses higher-order 
ommuni
ation.

Higher-order output 
ommands are generated by (r-move), whi
h has

already been explained in the introdu
tion.

Migration to a site l must designate a port p at whi
h the migrating


ode is to be re
eived. The rule

kJgoto

p

l:F K �! lJp!hF iK

then translates the migration 
ommand into the system lJp!hF iK, whi
h a

priori represents a thread running at the target lo
ation l. However this

will have no e�e
t until the site l makes available a 
orresponding thread

of the form lJp?(�)QK; using the rule (r-
omm) this will now allow the

e�e
tive entry of F . In this manner the site l 
an 
ontrol the immigration

of 
ode.

The rule (r-
:
reate) exports the new 
hannel name 
 generated by

a pro
ess at k to the system level, where it is tagged with the de
laration

type C�k; this re
ords the lo
ation of the new 
hannel. There is a 
or-

responding rule for registered names, (r-n:
reate); but su
h names are

global and therefore there is no need to re
ord where they were de
lared.

The generation of new lo
ations is governed by (r-l:
reate):

kJ(newlo
 l : L)withC in P K �! (new l : L)(kJP K j lJCK)
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(r-
omm)

kJ
!hV iK j kJ
?(X : T)P K �! kJPfj

V

=XjgK

(r-split)

kJP jQK �! kJP K j kJQK

(r-n:
reate)

kJ(newregn : N) P K �! (new n : N) kJP K

(r-move)

kJgoto

p

l:F K �! lJp!hF iK

(r-l:
reate)

kJ(newlo
 l : L)withC in P K �! (new l : L)(kJP K j lJCK)

(r-
:
reate)

kJ(new
 
 : C) P K �! (new 
 : C�k) kJP K

(r-unwind)

kJP K jM �!M

0

kJ�P K jM �! kJ�P K jM

0

(r-eq)

kJif u = u then P else QK �! kJP K

(r-beta)

kJ(� (ex :

e

T
): P )(ev)K �! kJPfj

ev

=exjgK

(r-neq)

kJif u = v then P else QK �! kJQK

u 6= v

(r-str)

M � N; M �!M

0

; M

0

� N

0

N �! N

0

Figure 2. Redu
tion semanti
s for safeDpi

(s-extr) (new e)(M jN) = M j (new e)N

if

n

(e) 62 fn(M)

(s-
om) M jN = N jM

(s-asso
) (M jN) jO = M j (N jO)

(s-zero) M j 0 = M

(s-stop) kJstopK = 0

(s-flip) (new n : E) (new n

0

: E

0

)M = (newn

0

: E

0

) (newn : E)M

if n

0

62 E; n 62 E

0

Figure 3. Stru
tural equivalen
e for hDpi

The 
ode C is set to run at the new lo
ation l, and note that this name is

known to the 
ontinuation thread P running at the initiating lo
ation k.

The remaining axioms are self-explanatory; there is testing of simple

identi�ers in (r-mat
h), �-redu
tion in the rule (r-beta) for instantiating

s
ripts and a standard rule for iterated pro
esses.

For examples of redu
tions see Se
tion 4.
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Basi
 types: B ::= int j string j unit j > j pro
 j : : :

Lo
al Channels: C;D ::= rhTi j whTi j rwhT;Ui

Lo
ations: L;K ::= lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄; n � 0

provided u

i

= u

j

implies i = j

Global resour
es: N ::= r
hCi

First-order: A := B j C j L j N j C�w

Pro
esses: � ::= pro
 j pr[u

1

: C

1

�w

1

; : : : ; u

n

: C

n

�w

n

℄

provided u

i

= u

j

; w

i

= w

j

implies i = j

S
ripts: S ::= Fdep(~x :

~

T!�)

Values: T;U ::= A j S j Tdep(~x :

~

T)T j Edep(~x :

~

T)T

Figure 4. Type expressions - informal

3 Typing

In this se
tion we dis
uss the types and type inferen
e for safeDpi. There

are three subse
tions. The �rst dis
usses informally the types used, whi
h

builds on those in [10, 8, 25℄, while the se
ond des
ribes the type environ-

ments required to infer that systems are well-typed. Be
ause the details

are heavily synta
ti
, on �rst reading it may be better to skip dire
tly to

the �nal subse
tion whi
h deals with the type inferen
e rules, referring to

the �rst two se
tions only on a 
all-by-need basis.

3.1 The Types

The 
olle
tion of types is an extension of those used in [8, 10℄, to whi
h the

reader is referred for more ba
kground and motivation. They are des
ribed

informally in Figure 4 and intuitively they may be 
lassi�ed as follows:

Base types, ranged over by base: We in
lude some prede�ned 
olle
tion

of types su
h as int; unit; bool, et
. for various 
onstants in the language.

The asso
iation of a parti
ular type with a parti
ular 
onstant will be

global, that is not dependent on a parti
ular lo
ation. We also in
lude

pro
, to indi
ate that a pro
ess is well-typed, and a top type >, whi
h


an be asso
iated with any identi�er.

Lo
al 
hannel types, ranged over by C;D: These take the form

rwhT

r

;T

w

i

where T

r

; T

w

are transmission or value types ; that is types of values

whi
h may be transmitted along 
hannels. If an agent has a name



safeDpi: a language for 
ontrolling mobile 
ode 11

at this type then it 
an transmit values of at most type T

w

along it

and re
eive from it values whi
h have at least type T

r

. In the formal

des
ription of types there will be a subtyping 
onstraint, that T

w

must

be a subtype of T

r

, explained in detail in [19℄. When the transmit

and re
eive types 
oin
ide we abbreviate this type by rwhTi. We also

allow the types whT

w

i and rhT

r

i, whi
h only allow the transmission,

re
eption respe
tively, of values.

Global resour
e name types, ranged over by N: These take the form

r
hCi, where C is a 
hannel type. Intuitively these are the types of

names whi
h are available to be used in the de
laration of new lo
a-

tions. They allow an individual resour
e name, su
h as print, to be

used in multiple lo
ations, resulting in a form of dynami
 typing.

Lo
ation types, ranged over by K; L: The standard form for these is

lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄

where C

i

are 
hannel types, and the identi�ers u

i

are distin
t. An

agent possessing a lo
ation name k with this type may use the 
han-

nels/resour
es u

i

lo
ated there at the types C

i

; from the point of view

of the agent, k is a site whi
h o�ers the servi
es u

1

; : : : u

n

at the 
orre-

sponding types. In the formal de�nition we will require ea
h u

i

to be

already de
lared as a global resour
e name. If n is zero then the agent

knows of the existen
e of k but has no right to use resour
es there. We

abbreviate this trivial type from lo
[℄ to lo
. We also identify lo
ation

types up to re-orderings.

Pro
ess types, ranged over by �. The simplest pro
ess type is pro
,

whi
h 
an be assigned to any well-typed pro
ess. More �ne-grained

pro
ess types take the form

pr[u

1

: C

1

�w

1

; : : : u

n

: C

n

�w

n

℄

where the pairs (u

i

; w

i

) are assumed to be distin
t. A pro
ess of this

type 
an use at most the resour
e names u

i

at the lo
ation w

i

with

their spe
i�ed types C

i

; these types determine the lo
ations at whi
h

the 
hannels u

i

may be used.

S
ript types, ranged over by S: The general form here is

Fdep(~x :

~

T!�)

S
ripts of this type require parameters (~v) of type (

~

T); when these are

supplied the resulting pro
ess will be of type �fj

~v

=~xjg. In other words the

type of the resulting pro
ess may in general depend on the parameters.

In these types we allow � to 
ontain o

urren
es of a spe
ial lo
ation
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onstant here to denote the 
urrent lo
ation.

These types will be abbreviated to (

~

T!�) whenever the variables (~x)

do not appear in the pro
ess type �, that is when the type of result is

in fa
t independent of the parameters.

S
ript types, a generalisation of those used in [25℄, are one major inno-

vation of the 
urrent paper; they allow parameterised pro
esses, or s
ripts

to be transmitted. Examples of su
h types in
lude

whTi! pro
: the type of a s
ript whi
h is parameterised on a lo
al 
hannel

name, on whi
h write permission at type T is needed.

(rhRi;whWi�k)! pro
: a value of this type will be applied to a pair, the

�rst element will be a lo
al 
hannel with read 
apability at type R and

the se
ond a 
hannel lo
ated at k with write 
apability at type W.

More importantly by using �ne-grained pro
ess types, a

ess to re-

sour
es by in
oming 
ode 
an be restri
ted. Here are two examples:

Fdep(x : rhTi! pr[x : rhTi�here; reply : whTi�k℄)

In
oming 
ode re
eived at this type, 
an be instantiated by any lo
al


hannel, say 
 from whi
h values 
an be read at type T. The resulting

pro
ess is then only allowed a

ess to two 
hannels, namely the lo
al


hannel 
, from whi
h it 
an read, and a 
hannel named reply at the

lo
ation k, to whi
h it 
an write. This pro
ess will have the type pr[
 :

rhTi�here; reply : whTi�k℄. Code at the type

Fdep((x; y; z) : (lo
; rhTi�x;whTi)! pr[y : rhTi�x; z : whTi�here℄)

needs to be instantiated by a lo
ation, a 
hannel at that lo
ation, and

a lo
al 
hannel. For example the lo
ation 
ould be 
alled sour
e, the


hannel lo
ated there info, from whi
h values 
an be read at the type T,

and the lo
al 
hannel re
ord, at whi
h values 
an be written at type T.

The resulting pro
ess will then have type

pr[info : rhTi� sour
e; re
ord : whTi�here℄

It 
an download information from the third-party sour
e site sour
e via

the 
hannel info there.

Finally Transmission or value types di
tate the kind of values whi
h


an be transmitted over 
hannels. These may be �rst order values, or

s
ripts. We also allow dependent and existential types to be used. For

example inputting a value of the dependent type Tdep(x : K) S will result in

the re
eption of a pair (k; F ), where F is guaranteed to be of type Sfj

k

=xjg; k

is the witness that the s
ript F has the required type, and is re
eived with
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the s
ript. On the other hand inputting at the 
orresponding existential

type Edep(x : K) S will only result in the re
eption of the value F , although,

as we will see, when the overall system is type 
he
ked the witness v must

be produ
ed, to verify that F is indeed well-typed.

Notation 3.1. [Globalising types℄ It is worth noting that there is a 
ru-


ial distin
tion between lo
al 
hannel types C and, for example lo
ation

types. The former only make sense relative to a spe
i�
 lo
ation, whereas

the latter are lo
ation independent, or global types. We 
an 
onvert the

lo
al 
hannel type C to a global type by appending a lo
ation, C�w; this

is the type of a 
hannel of type C lo
ated at w. In various 
ontexts it will

be 
onvenient to apply this globalisation operation to an arbitrary type,

(T)�w; this will only have an e�e
t on any 
omponents of T whi
h are

lo
al 
hannel or s
ript types. The operation is de�ned by indu
tion on T:

(C)�w = C�w; (S)�w = S

(K)�w = K; (C�w

0

)�w = C�w

0

(Tdep(~x :

~

T)T)�w = Tdep(~x : (

~

T)�w ) (T)�w

(Edep(~x :

~

T)T)�w = Edep(~x : (

~

T)�w ) (T)�w

Note that in the last two 
lauses we have used the obvious notation (

~

T)�w,

for the list T

1

�w; : : : ;T

n

�w. �

There are numerous 
onstraints on the formation rules for types, well-

do
umented in [10, 8℄. The des
ription given in Figure 4 should be viewed

as de�ning pre-types ; those whi
h satisfy the formation 
onstraints will

then be 
onsidered to be types. It is best to des
ribe these 
onstraints

relative to a type environment.

3.2 Type environments

A type judgement will take the form

� ` M

where � is a type environment, a list of assumptions about the types to be

asso
iated with the identi�ers in the system M . These 
an take the form

� u : lo
, meaning that u is a lo
ation

� u : C�w, meaning the 
hannel u lo
ated at w has type C

� u : r
hCi, meaning u is a global resour
e name, whi
h may be installed

at any new lo
ation.

� x : S, meaning x 
an be instantiated by any s
ript whi
h 
an be inferred

to have type S
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� x : hT with ~y :

~

Ei. This represents a pa
kage, whi
h will be used to

handle existential types. Intuitively this de�nes the asso
iation x : T

but the type T may depend on the auxiliary asso
iations ~y :

~

E.

Lists of assumptions are 
reated dynami
ally during type
he
king, typ-

i
ally by augmenting a 
urrent environment with new assumptions on

bound variables. It is 
onvenient to introdu
e a parti
ular notation for

this operation:

Definition 3.2 (Forming environments). Let fV : Tg be a list of

type assumptions de�ned by

� fv : C�wg = v : C�w

� fx : Sg = x : S

� fv : lo
[u

1

: C

1

; : : : u

n

: C

n

℄g = v : lo
; u

1

: C

1

�v; : : : u

n

: C

n

�v

� f(~y; x) : Tdep(~y :

~

E)Tg = fy

1

: E

1

g : : : ; fy

n

: E

n

g; fx : Tg

� fx : Edep(~y :

~

E)Tg = x : hT with fy

1

: E

1

g : : : ; fy

n

: E

n

gi �

Of 
ourse there a lots of other possibilities for V and T but only those

mentioned give rise to lists of assumptions. Moreover even those given

may give rise to lists whi
h are not 
onsistent. For example we should

not be able to introdu
e an assumption u : lo
 if u is already designated

a 
hannel, or introdu
e u : C�w unless w is known to be a lo
ation. Sin
e

type expressions also use identi�ers, before introdu
ing this assumption

we would need to ensure that C is a properly formed type; for example it

should only use identi�ers whi
h are already known. In order to des
ribe

the set of valid environments we introdu
e judgements of the form

� ` env

The inferen
e rules are straightforward and 
onsequently are relegated to

the appendix, in Figure 10. We also relegate to there the de�nition of

subtyping judgements, of the form

� ` T <: U;

given in Figure 11. Again the rules are straightforward, and mostly inher-

ited from [8℄. However it is worth noting that pro
ess types are ordered

di�erently than lo
ation types. For example we have

� ` pr[u

1

: C

1

�k℄ <: pr[u

1

: C

1

�k; u

2

: C

2

�l℄

but

� ` lo
[u

1

: C

1

; u

2

: C

2

℄ <: lo
[u

1

: C

1

℄



safeDpi: a language for 
ontrolling mobile 
ode 15

assuming, of 
ourse, that the various types used, C

i

;C

j

are well-de�ned

relative to �.

These rules have been formulated so that they 
an also be used to say

what is a valid type relative to a type expression.

Definition 3.3 (Valid types). We say the type expression T is a valid

type relative to �, written � ` T : ty, whenever we 
an derive the judge-

ment � ` T <: T. �

Types 
an be viewed intuitively as sets of 
apabilities and unioning these

sets 
orresponds to performing ameet operation with respe
t to subtyping.

This we now explain. Let (D;�) be a preorder. We say a subset E � D

is lower-bounded by d 2 D if d � e for every e in E. Upper bounds are

de�ned in a similar manner.

Definition 3.4 (partial meets and joins). We say that the preorder

(D;�) has partial meets if every pair of elements in D whi
h has a lower

bound also has a greatest lower bound. This means that for every pair of

elements d

1

; d

2

in D whi
h has some lower bound, that is there is some

element in d 2 D su
h that d � d

1

; d � d

2

, there is a parti
ular lower

bound, denoted d

1

u d

2

whi
h is less then or equal to every lower bound.

The upper bound of pairs of elements, d

1

t d

2

is de�ned in an analogous

manner. �

Let Types

�

denote the set of all type expressions T su
h that � ` T : ty.

Theorem 3.5. For every �, the set Types

�

, ordered by <:, has partial

meets and partial joins.

Proof: See Proposition A.2 in Appendix A �

Intuitively the existen
e of T u U means that T and U are 
ompatible, in

that they allow 
ompatible 
apabilities on values at these types. Moreover

the type TuU may be viewed as a unioning of the 
apabilities allowed by

the individual types.

It is worth pointing out that with our type expressions set Types

�

turns out to be not only a preorder but also a partial order. However this

would no longer be the 
ase if we allowed re
ursive types; nevertheless

with this extension our results would still apply. Note also that be
ause

of the existen
e of the top type >, useful in Se
tion 6, joins of types are

always guaranteed to exist.

3.3 Type Inferen
e

We are now ready to des
ribe the type inferen
e system for ensuring that

systems are well-typed. There are three forms of judgements, for systems,
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(ty-gnew)

�; n : r
hCi ` M

� ` (new n : r
hCi)M

(ty-
new)

�; 
 : C�k ` M

� ` (new 
 : C�k)M

(ty-nil)

� ` env

� ` 0

(ty-par)

� ` M

� ` N

� ` M jN

(ty-pro
)

� `

k

P : pro


� ` kJP K

(ty-lnew)

�; fk : Kg ` M

�; fk : Kg ` k : K

� ` (new k : K)M

Figure 5. Typing Systems

pro
esses and values. The type inferen
e rules for the �rst,

� ` M;

meaning thatM is a well-typed system relative to �, are given in Figure 5.

The intention is that whenever su
h a judgement 
an be inferred it will

follow that � is a well-formed environment.

The main inferen
e rule is (ty-pro
). In order to ensure that kJP K

is a well-typed system we must show that the pro
ess P is well-typed

to run at k; at the system level it is suÆ
ient to be able to asso
iate any

pro
ess type with P . The typing of pro
esses must be relative to a lo
ation

be
ause it may use lo
al 
hannels whi
h are required to exist at k; it also

turns out that typing of s
ripts will depend on their lo
ation. There is

also a subtlety in the typing of name 
reation. First note that in these,

and all subsequent rules, we assume that all bound names in a judgement

must be di�erent than any free names used as part of the judgement.

Thus in (ty-
new) we know that 
 is a
tually fresh to �. However we

are still not guaranteed that �; 
 : C�k is a well-de�ned environment even

when � is. From the type environment rules it will only be so when C is

a well-de�ned type expression relative to �, and k is known as a lo
ation.

There is a further 
ompli
ation in (ty-lnew), the rule for new lo
ation


reation. Deriving �; fk : Kg ` M will ensure that �; fk : Kg is a well-

de�ned environment, but we must also ensure that all of the 
hannels used

in the lo
ation type K have already been de
lared, in �, as global resour
e

names. This is enfor
ed by the se
ond requirement, �; fk : Kg ` k : K.
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(ty-lookup)

�; v : (E)�w;�

0

` env

�; v : (E)�w;�

0

`

w

v : E

(ty-base)

� ` env

� `

w

b : base

b 2 base

(ty-subval)

� `

w

V : T

� ` T <: T

0

� `

w

V : T

0

(ty-meet)

� `

w

u : T

1

� `

w

u : T

2

� `

w

u : T

1

u T

2

(ty-lo
)

� `

v

u

i

: C

i

� `

w

u

i

: r
hD

i

i

� ` D

i

<: C

i

� `

w

v : lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄

(ty-TuDep)

� `

w

v

i

: E

i

fj

~v

=~xjg

� `

w

v : Tfj

~v

=~xjg

� `

w

(ev; v) : Tdep(ex :

e

E
)T

(ty-EDep)

� `

w

v

i

: E

i

fj

~v

=~xjg

� `

w

v : Tfj

~v

=~xjg

� `

w

hev; vi : Edep(ex :

e

E
)T

(ty-Elookup)

�; y : h(T)�w with ~x :

~

Ei;�

0

` env

�; y : hT�w with ex :

e

Ei;�

0

`

w

y : T

(ty-Unpa
k)

� `

w

h~v; vi : Edep(~x :

~

E)T

� `

w

v : Tfj

ev

=exjg

Figure 6. Typing Values

The typing rules for the judgements on pro
esses

� `

w

P : �

are given in Figure 7, and are de�ned simultaneously with the judgements

for values, in Figure 6,

� ` V : T

Let us �rst examine those for values. The rule (ty-lookup) simply looks

up the type of the identi�er v relative to w in �, whereas (ty-base) allows

base values to be typed for free. Note that the rule (ty-lo
) ensures that

the judgement � `

w

v : K, where K is a lo
ation type, 
an only be made

when ea
h 
hannel used in K is already known to �, at a suitable type,

as a global resour
e name. The rule (ty-meet) is required be
ause in


ertain 
ir
umstan
es we allow multiple asso
iations with identi�ers in

valid environments; of 
ourse it 
an only be applied for types T

1

;T

2

for

whi
h T

1

uT

2

exists. Dependent tuple values are typed with (ty-TuDep).

The value (~v; v) 
an be assigned the type Tdep(~x :

~

E)T provided ea
h v

i


an be assigned the type E

i

fj

~v

=~xjg and v the type Tfj

~v

=~xjg. For existential
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types we need to invent a new kind of value h~v; vi; these do not o

ur in

the language safeDpi, and are only used by the type inferen
e system;

intuitively h~v; vi is a pa
kage 
onsisting of the value v together with the

witnesses ~v, whi
h provide eviden
e (for the type inferen
e system) that

v has it's required type. The rule (ty-EDep), whi
h might also be 
alled

(ty-Pa
k), allows us to 
onstru
t su
h values. It is similar to the rule for

dependent tuples. The pa
kage h~v; vi 
an be assigned the type Edep(~x :

~

E)T

provided we 
an establish that v

i


an be assigned the type v

i

: E

i

fj

~v

=~xjg

and v the type Tfj

~v

=~xjg. Dependent tuples 
an be de
onstru
ted and their


omponents a

essed in the standard manner; see the fourth 
lause of

De�nition 3.2. However the 
orresponding de
onstru
tion for existential

types only allows a

ess to the �nal 
omponent, and not the witnesses;

(ty-Unpa
k) allows the value, rather than the witnesses, to be extra
ted

at the appropriate type from the pa
kage. Similarly (ty-Elookup) only

allows knowledge of the value, and not the witnesses, to be dedu
ed from

an existential assumption.

In Figure 7 the rules for name generation, (ty-new
han),(ty-newlo
)

and (ty-newreg), are simple adaptations of the 
orresponding rules at

the system level; note that in (ty-newlo
) we are guaranteed that the

new name k does not o

ur in the type �, be
ause of our 
onvention on

bound names; similarly for 
 in (ty-new
han) and n in (ty-newreg).

(ty-stop), (ty-iter) and (ty-par) need no 
ommentary, (ty-eq) is

adapted from the analogous rule (ty-mat
h) in [10, 8℄ and (ty-abs) and

(ty-beta) are standard rules for abstra
tion and appli
ation, adapted

to dependent fun
tion types. But note the use of f~x : (

~

T)�wg in the

premise of the former; the arguments in an abstra
tion are relativised to

the 
urrent lo
ation w. The rule for migration, (ty-go), is justi�ed by the

redu
tion semanti
s, although we 
ould easily have phrased it in terms of

the premises of the output rule.

However the real interest is in the typing of the input and output

pro
esses. For example to ensure u!hV i has a pro
ess type � relative to �,

(ty-out), we have to ensure that u has the output 
apability at some type

appropriate to V . Thus we need to �nd some type T su
h that � `

w

V : T

and u has the output 
apability on T. But we must also 
he
k that this


apability is allowed by �. Both of these requirements are en
apsulated

in the se
ond premise of the rule

� ` pr[u : whTi�w℄ <: �

But there is a further 
ompli
ation. If the value being sent, V , 
ontains


hannels, or more pre
isely 
apabilities on 
hannels, then these must also
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(ty-out)

� `

w

V : T

� ` pr[u : whTi�w℄ <: �

� ` pr


h

[V : (T)�w℄ <: �

� `

w

u!hV i : �

(ty-outE)

� `

w

h~v; vi : Edep(~x :

~

E)T

� ` pr[u : whEdep(~x :

~

E)Ti�w℄ <: �

� ` pr


h

[~v : (

~

E)�w℄ <: �

� `

w

u!hvi : �

(ty-in)

� ` pr[u : rhTi�w℄ <: �

�; fX : (T)�wg `

w

P : � t pr


h

[X : (T)�w℄

� `

w

u?(X : T)P : �

(ty-subpro
)

� `

w

P : �

� ` � <: �

0

� `

w

P : �

0

(ty-go)

� `

u

v!hF i : �

� `

w

goto

v

u:F : �

v a port

(ty-stop)

� ` � : ty

� `

w

stop : �

(ty-newlo
)

�; fk : Kg `

k

C : �

�; fk : Kg `

w

P : �

�; fk : Kg `

w

k : K

� `

w

(newlo
 k : K)withC in P : �

(ty-new
han)

�; 
 : C�w `

w

P : � t pr[
�w : C℄

� `

w

(new
 
 : C) P : �

(ty-eq)

� `

w

u

1

: T

1

; u

2

: T

2

� `

w

Q : �

�; fu

1

: T

2

g; fu

2

: T

1

g `

w

P : �

� `

w

if u = v then P else Q : �

(ty-newreg)

�; n : N `

w

P : �

� `

w

(newreg n : N) P : �

(ty-abs)

�; f~x : (

~

T)�wg `

w

P : �fj

w

=herejg

� `

w

� (ex :

e

T): P : Fdep(ex :

e

T!�)

(ty-beta)

� `

w

F : Fdep(~x :

~

T!�)

� `

w

v

i

: T

i

� `

w

F (ev) : �fj

ev

=exjgfj

w

=herejg

(ty-iter)

� `

w

P : �

� `

w

�P : �

(ty-par)

� `

w

P : �

� `

w

Q : �

� `

w

P jQ : �

Figure 7. Typing Pro
esses

be allowed by �. This is the intent of the third premise

� ` pr


h

[V : T�w℄ <: �

whi
h uses a (partial) fun
tion whi
h 
onstru
ts a pro
ess type from a

value V and its type; it essentially extra
ts out any 
hannels whi
h may
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be in V . To de�ne this we use t whi
h is a join operator on types, relative

to <: the subtyping order; when applied to pro
ess types it e�e
tively takes

the union of the 
apabilities of the individual types. It is worth noting

that pr


h

[v : T℄ is the trivial pro
ess type pr[℄ when T is a s
ript type.

pr


h

[v : C�w℄ = pr[v : C�w℄

pr


h

[v : K℄ = pr[


1

: C

1

�v; : : : ; 


n

: C

n

�v℄

where K = lo
[


1

: C

1

; : : : ; 


n

: C

n

℄

pr


h

[~v :

~

T℄ = pr


h

[v

1

: T

1

℄ t : : : t pr


h

[v

1

: T

1

℄

pr


h

[(~v; v) : Tdep(~x :

~

E)T℄ = pr


h

[~v :

~

E℄ t pr


h

[v : T℄

pr


h

[h~v; vi : Edep(~x :

~

E)T℄ = pr


h

[~v :

~

E℄ t pr


h

[v : T℄

pr


h

[v : T℄ = pr[℄ otherwise

The rule for transmitting existential values, (ty-outE) is a slight vari-

ation. We must establish a pa
kage h~v; vi of the 
orre
t outgoing type,

but only the (unpa
ked) value v is a
tually transmitted. Finally to ensure

u?(X : T)P has the type �, we need to 
he
k that u has the appropriate

read 
apability, whi
h also is allowed by �,

� ` pr[u : rhTi�w℄ <: �

and that the 
apabilities exer
ised by the residual P are either allowed by

� or inherited by values whi
h are input and bound to X:

�; fX : (T)�wg `

w

P : � t pr


h

[X : T�w℄

It is worth noting that the typing rules for input and output degener-

ate to the more standard form, for example as in [10℄, when we wish to

establish that the pro
esses are simply well-typed, that is have the type

pro
. For example we have the derived instan
es:

(ty-out)

� `

w

V : T

� `

w

u : whTi

� `

w

u!hV i : pro


(ty-in)

� `

w

u : rhTi

�; fX : (T)�wg `

w

P : pro


� `

w

u?(X : T)P : pro


4 Examples

In this se
tion we demonstrate the usefulness of the type system by a series

of examples of in
reasing sophisti
ation.

To make the examples more readable let us introdu
e some 
onvenient

notation. First we will abbreviate the transmission type unit! pro
, for
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thunked pro
esses, simply to thunk. Then we use run as an abbreviation

for the term �� �(), where () is the only value of type unit. So the type

of run is thunk! pro
; it takes a thunked pro
ess and runs it. Thunked

pro
esses, whi
h we often refer to as thunks, take the form � (): P but

in the 
ontext of goto p: : : : and port outputs p!h: : : i we will omit the �

abstra
tion; thus goto

in

l:� (): P is abbreviated to goto

in

l:P . Finally we

mimi
 the notation of pro
ess types for thunks, by letting th[::::℄ denote

the type unit! pr[::::℄.

4.1 Installing and broad
asting servi
es

Suppose there are two globally de�ned 
hannel names ping and �ng and

a port name in; that is we are working in a type environment � with the

property that

� ` ping : r
hD

p

i; �ng : r
hD

f

i; in : r
hD

i

i (2)

for some types D

p

;D

f

and D

i

. Let L be a lo
ation type su
h that

L <: lo
[in : C

i

; ping

p

: C

p

; �ng : C

f

℄: (3)

Then in the system

rJ(newlo
 l : L)withC in P K

the site r generates a new lo
ation l with de
laration type L; it evolves to

the new system

(new l : L)(rJP K j lJCK)

To be well-typed with respe
t to � we need that

� L is a proper de
laration type for lo
ations, that is �; fl : Lg ` l : L.

This means that all the resour
e names in L should be globally de�ned

in � with a type whi
h supports their use in L. For example this would

require D

p

<: C

p

; D

f

<: C

f

and D

i

<: C

i

with respe
t to �.

� the residual P is well-typed to run at r, that is

�; fl : Lg `

r

P : pro


� the installed 
ode is well-typed to run at the new lo
ation l, that is

�; fl : Lg `

l

C : pro
:

The residual P running at r now knows the lo
ation l and its type,

and may make it known to other agents. Suppose P has the form

�dist

1

hli j �dist

2

hli jQ

where dist

i

are distribution 
hannels at r for broad
asting information.

Agents with a

ess to these 
hannels 
an �nd out about l. More impor-
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tantly the type at whi
h they re
eive l depends on the types of dist

i

at the

site r. For example suppose � 
ontains

dist

1

: whlo
[in : whIi; ping : whV

p

i℄i�r;

dist

2

: whlo
[in : whIi; �ng : whV

f

i℄i�r

(4)

for some types I;V

p

;V

f

. Then agents �nding out about l from the sour
e

dist

1

only knows about the resour
e ping there (in addition to the port in),

while if the sour
e of information is dist

2

only �ng may be used. Of 
ourse

an agent may have a

ess to both sour
es. If that is the 
ase then they


an eventually 
ome to know l at the type lo
[in : whIi; ping : whV

p

i; �ng :

whV

f

i℄, thereby obtaining knowledge of both resour
es. Of 
ourse a

ess

to l will be governed by ports su
h as in and their programming via the

installed 
ode C.

4.2 Servi
ing resour
es

The installed 
ode C determines, at least initially, who has a

ess to the

newly 
reated site l. A typi
al example of the installed 
ode C may take

the form

�in?(� : thunk) (run �) j S

Entry will be allowed to any well-typed thread at the port in, and the

thread 
an subsequently intera
t with the servi
ing 
ode S. This will only

be well-typed if the original de
laration type for the global name in allows

values of type thunk to be re
eived at that port. For example it will be

well-typed if � ` in : r
hrwhthunkii, that is setting the de
laration type D

i

in (2) above to be thunk, and the type I in the typing for the sour
es at r,

in (4), to be thunk also.

Note that there is some 
hoi
e in the type at whi
h in is de
lared at

l, in (3) above. If C

i

is set to rwhthunki then the servi
ing 
ode S at l 
an

both read and write at in, but the type rhthunki is suÆ
ient for well-typing,

if S never writes to that port.

Consider a thread running at r su
h as

rJdist

1

?(x : L

p

) goto

in

x:ping!hviK (5)

whi
h gains knowledge of the newly 
reated lo
ation l via the sour
e dist

1

.

Here we use L

p

to be an abbreviation for an instan
e of the type used in

(4) above, lo
[in : whthunki; ping : whV

p

i℄. This thread is well-typed,

� ` rJdist

1

?(x : L

p

) goto

in

x:ping!hviK

provided the value v 
an be assigned the proper type for ping namely V

p

.

This follows from the fa
t that for su
h a � we 
an establish

� `

r

dist

1

?(x : L

p

) goto

in

x:ping!hvi : pro




safeDpi: a language for 
ontrolling mobile 
ode 23

whi
h in turn follows from

�; fx : L

p

g `

r

goto

in

x:ping!hvi : pro


This is a 
onsequen
e of applying the typing rule (ty-go) to the judgement

�; fx : L

p

g `

x

in!hping!hvii : pro
 (6)

The type environment �; fx : L

p

g takes the form

�; x : lo
; in : whthunki�x; ping : whV

p

i�x

Therefore (6) follows from an appli
ation of the simple form of the output

rule (ty-out), provided we 
an establish

�; x : lo
; in : whthunki�x; ping : whV

p

i�x `

x

� (): ping!hvi : thunk;

that is

�; x : lo
; in : whthunki�x; ping : whV

p

i�x `

x

ping!hvi : pro


Finally this requires the judgement

�; x : lo
; in : whthunki�x; ping : whV

p

i�x `

x

v : V

p

(7)

Note that this 
he
king of v is 
arried out relative to the variable

lo
ation x; so the type V

p

needs to be some global type, whose meaning is

independent of the 
urrent lo
ation. This 
ould be a base type su
h as int,

although we will see more interesting examples, su
h as return 
hannels,

later.

4.3 Site prote
tion

A simple infrastru
ture for a typi
al site 
ould take the form

hJin?(� : I) � run � j SK

The on-site 
ode S 
ould provide various servi
es for in
oming agents,

repeatedly a

epted at the input port in. In a relaxed 
omputing environ-

ment the type I 
ould simply be thunk indi
ating that any well-typed 
ode

will be allowed to immigrate. In the sequel we will always assume that

when the type of the port in is not dis
ussed it has this liberal type.

However 
onstraints 
an be imposed on in
oming 
ode by only pub-

li
ising ports whi
h have asso
iated with them more restri
tive guardian

types. In su
h 
ases it is important that read 
apabilities on the these

ports be retained by the host. This point will be ignored in the ensuring

dis
ussion, whi
h instead 
on
entrates on the forms the guardian types


an take.

Consider a system 
onsisting of a server and 
lient, de�ned below,

running in parallel.
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Server: sJreq?(� : S) run � j � news!hs
andaliK

Client: 
Jgoto

req

s:news?(x) goto

in


: report!hxi

j in?(� : R) run � j report?(y) : : :K

(8)

The server is straightforward; it a

epts in
oming 
ode at the port req

and runs it. The only servi
e it provides is some information on a 
hannel


alled news. The 
lient, who knows of the req port at the server sends 
ode

there to 
olle
t the news and report it ba
k to it's own 
hannel report; the

type at whi
h it inputs from news, whi
h obviously must be string, is

elided. This 
ode migrates twi
e, on
e via the port req from the 
lient to

the server, and on
e via the port in, from the server to the 
lient.

The server prote
ts its site using the guardian type S while the 
lient

prote
ts its site using R. What should these be? Let us assume that both

sites have the required 
hannels at appropriate types; suppose in � we

have the entries

news : rwhstringi�s; req : rwhSi�s;

report : rwhstringi�
; in : rwhRi�


The �rst possibility is for the 
lient to be relaxed but the server vigilant:

R : thunk

S : th[news : rhstringi�s; in : whRi�
℄

Here the 
lient allows in any well-typed pro
ess, whereas the server will

only a

ept at the port req pro
esses whi
h use at most the lo
al 
hannel

news and the port in at the site 
; moreover the lo
al 
hannel news 
an

only be used in read mode.

With these types one 
an show that the overall system is well-typed.

Typing the server is straightforward but to type the 
lient we need to

establish, among other requirements,

� `




goto

req

s:news?(x) goto

in


: report!hxi : pro


As usual this follows by an appli
ation of (ty-go) from

� `

s

req!h news?(x) goto

in


: report!hxi i : pro


whi
h in turn requires establishing

� `

s

� (): news?(x) goto

in


: report!hxi : S

In other words the in
oming 
ode should mat
h the guardian type of the
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server, S. By dethunking we get the requirement

� `

s

news?(x) goto

in


: report!hxi : pr[news : rhstringi�s; in : whRi�
℄

This is established via an appli
ation of the rule (ty-in). The �rst premise

is immediate sin
e we assume � `

s

news : rwhstringi. Moreover the se
ond

amounts to

�; x : string `

s

goto

in


: report!hxi : pr[news : rhstringi�s; in : whRi�
℄

be
ause the value being re
eived is a string; that is pr


h

[x : string�s℄ is the

trivial pro
ess type pr[℄.

The signi�
ant step in establishing this se
ond premise is to 
he
k that

the 
ode returning to the 
lient satis�es its guardian type R:

�; x : string `




in!h report!hxii : pr[news : rhstringi�s; in : whRi�
℄ (9)

However this is straightforward sin
e R is the liberal guardian thunk. It

follows by an appli
ation of the output rule (ty-out) in Figure 7. But it

is important to note that in the appli
ation the third premise is va
uous,

as pr


h

[� (): report!hxi : pro
℄ is the trivial type pr[℄.

The 
urrent type R = thunk leaves the 
lient site open to abuse but it

is easy to 
he
k that the above reasoning is still valid if the guardians are


hanged to

R : th[report : whstringi�
℄

S : th[news : rhstringi�s; in : whRi�
℄

Here the guardian for the 
lient only allows in agents whi
h write to the

lo
al port report; note that this 
hange requires that the guardian at the

server site also uses this more restri
tive type in its annotation for the

port in at 
.

One 
an 
he
k that with these new restri
tive guardians the system is

still well-typed. The only extra work required is in providing a proof for

the judgement (9) above, ensuring that the 
ode returning to the 
lient

satis�es the more demanding guardian. By an appli
ation of (ty-go) and

(ty-out) this redu
es to the judgement

�; x : string `




� (): report!hxi : th[report : whstringi�
℄

whi
h is a straightforward 
onsequen
e of (ty-out).

It might be tempting to de�ne the guardians by

R : th[report : whstringi�
℄

S : th[news : rhstringi�s; in : whthunki�
℄

Here both server and 
lient prote
t their own resour
es but the server is

uninterested in what happens at the 
lient site, by allowing 
ode with
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arbitrary 
apabilities on the 
lient port in. However there is an intuitive

in
onsisten
y here. The 
lient has read 
apability at its port, at the re-

stri
tive type R, while somehow the server has obtained a more liberal

write 
apability there, namely thunk.

In fa
t the system 
an not be typed with these revised guardians. In

parti
ular

� 6` sJreq?(� : S) run �K

Any derivation of this judgement would require the judgement

�; � : S `

s

run �

whi
h in turn would require

� ` S : ty

or more formally

� ` S <: S

But as we will see this 
an not be inferred; that is S is not a valid type,

relative to �.

To see why let us suppose, for simpli
ity, that the port in has been

de
lared at the site 
 with a type of the form rwhR;Wi for some type W.

One 
onstraint in the type formation rules, (see (ty-
han) in Figure 11)

is that the write 
apabilities on a 
hannel are always a subtype the read


apabilities; in our setting this means that � ` W <: R. Our rules also

ensure that � `




in : whT

w

i implies � ` T

w

<: W and 
onsequently

� ` T

w

<: R.

However the stru
ture of R ensures that �

0

` thunk <: R for no �

0

, from

whi
h we 
an 
on
lude that � 6`




in : whthunki�
. But this is one of the

requirements, in the formation rules in Figure 11, to establish � ` S : ty.

4.4 Anonymous 
hannels

Consider the following variation on the server/
lient system:

Server: sJreq?(� : S) run � j where?((y; z) : T) goto

in

y:z!hs
andaliK

Client: 
Jgoto

req

s:where!h
; reporti j in?(� : R) run � j report?(y) : : :K

(10)

Here the proto
ol is somewhat di�erent; the 
lient simply supplies to the

server, via the 
hannel where, the address of a 
hannel on whi
h to supply

the news; this 
onsists of the pair of a lo
ation and a 
hannel on whi
h to

report. The server then laun
hes a thread whi
h migrates to the relevant

lo
ation, whi
h is assumed to have an in port, to deliver the news.
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De�ning guardians is straightforward. For example these 
ould be

R : thunk

S : th[where : whTi�s; in : whthunki�
℄

However the diÆ
ulty is in as
ertaining the required type T for the pair

of values. One possibility is to set

T = (I; whstringi)

where I is the lo
ation type lo
[in : whRi℄, allowing the �rst 
omponent to

be a lo
ation with an in port at the appropriate type and the se
ond to

be a 
hannel for sending strings.

Unfortunately the server 
an not be typed with su
h a T. The problem

arises when we try to establish

�; f(y; z) : (T)�sg `

s

goto

in

y:z!hs
andali : pro
 (11)

Unravelling the extended environment this means establishing

�; y : lo
; in : whRi�y; z : whstringi `

y

z!hs
andali : pro


whi
h is not possible; the output rule (ty-out) demands that z be a


hannel at the lo
ation y.

So to be able to stati
ally type this example we need to be able to use

the �rst 
omponent in the pair (y; z) as part of the type of the se
ond


omponent; we need a dependent type.

Let

T = Tdep(x : I)whstringi�x

Note that (sub-TuDep) from Figure 11 ensures that this is a well-de�ned

type:

� ` T : ty

be
ause

�; fx : Ig ` whstringi�x : ty

So this type 
an be safely used as part of a pro
ess. Moreover it is now

easy to establish (11) above as the extended environment �; f(y; z) : Tg

unravels to �; y : lo
; in : whRi�y; z : whstringi�y:

These lo
ation dependent types were introdu
ed in [10℄, where they

are shown to be very useful for typing migrating 
ode, as they allow the

transmission of anonymous 
hannels between sites. In our example the

server does not need to know, apriori, the name of the report 
hannel

at the 
lient site. In the sequel we will borrow the notation used in [10℄

for these dependent types; we use (u�w) to denote any pair of identi�ers
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(u;w) whi
h is expe
ted to have a dependent type of the form Tdep(x : I)C:

In a similar vein we abbreviate this type to C�L. Thus we 
an reformulate

the example (10) above as:

Server sJreq?(� : S) run � j where?((z�y) : whstringi�I) goto

in

y:z!hs
andaliK

Client 
J(new
 report)

goto

req

s:where!hreport �
i j

in?(� : R) run � j report?(y) : : :K

Here, as a form of self-prote
tion, the 
lient generates a new return 
han-

nel, also 
alled report and whose obvious type is elided, whi
h it sends

to the server. The 
lient's self-prote
tion 
onsists of reading this 
hannel

exa
tly on
e, whi
h it knows will be a response to its request to the server.

Note that these lo
ation dependent types are exa
tly what is required

to type the example (5) above. In the type judgement (7) we need to �nd

an appropriate type V

p

for values transmitted on the 
hannel ping. We


an now let V

p

be the dependent type whstringi�lo
, 
onsisting of a return

address; that is a lo
ation, and a write 
apability at some 
hannel at that

lo
ation.

4.5 Dependent pro
ess types

There remains a major diÆ
ulty with the server in (10) and (8) above. The

guardian type of the server S uses the name of the 
lient 
, and therefore

it 
an only be used by that 
lient. To over
ome this diÆ
ulty we need to

allow pro
ess types to depend on lo
ations and 
hannels. Here the general

form will be

Tdep(~x :

~

E) S

where S is a s
ript type whi
h may depend on the variables ~x. A value of

this type takes the form

(~v; v)

where v is some s
ript. But again to emphasise the o

urren
e of these

types we will use the more des
riptive syntax

v with ~v

An example of the use of su
h types is in the following variation of the
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lient server from (8) above:

Server: sJreq?(� with y : S

d

) run � j � news!hs
andaliK

Client: 
J(new
 report)

goto

req

s:news?(x) goto

in


: report!hxi with 
 j

in?(� : R) run � j report?(y) : : :K

(12)

with the types

R : thunk

S

d

: Tdep(y : I) th[news : rhstringi�s; in : whRi�y℄

I : lo
[in : whRi℄

Here the important point to noti
e is the server's guardian type at the

port req, S

d

, no longer mentions any 
lients name; it 
an be used by any


lient whi
h satis�es the types requirements. The server a

epts a thunk,

of type th[news : rhstringi�s; in : whRi�y℄ whi
h must be a

ompanied by

a lo
ation of type I to be used in pla
e of the variable y in S

d

. A typi
al


lient 
 
an generate a new reply 
hannel report and send to the server

� the thunk news?(x) goto

in


: report!hxi

� a

ompanied by a required lo
ation, in this 
ase 
.

Let us now see how the overall system type
he
ks, assuming as usual

an environment in whi
h the 
hannel news and ports req; in, have the

appropriate types, and that the de
laration type of report is rwhstringi. At

the server let us 
on
entrate on establishing

� `

s

req?(� with y : S

d

) run � : pro


This follows by an appli
ation of the simple form of (ty-in) to

�; f(y; �) : (S

d

)�sg `

s

run � : pro


Noting that (S

d

)�s is the same as S

d

, unravelling the extended environ-

ment gives the requirement

�; y : lo
; in : whthunki�y; � : th

y

`

s

run �

where th

y

is an abbreviation for the type th[news : rhstringi�s; in : whRi�y℄:

Apriori typing the pro
ess run � should be straightforward with respe
t to

this environment. But there is a subtlety; at some point in establishing

this judgement we need to apply (ty-base) from Figure 6 to 
on
lude

�; y : lo
; in : whthunki�y; � : th

y

`

s

() : unit

and this requires the premise

�; y : lo
; in : whthunki�y; � : th

y

` env
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whi
h in turn requires the premise

�; y : lo
; in : whthunki�y ` th

y

: ty (13)

In other words we have to 
he
k that th

y

is a well-de�ned type, relative to

the extended environment. However this is now straightforward using the

rule (sub-pro
) from Figure 11, in the presen
e of the new asso
iations

involving y in the extended environment.

Let us now turn our attention to type
he
king the 
lient in (12) above,

where we 
on
entrate on ensuring that the pro
ess sent to the port req

satis�es the type S

d

. We have to ensure

�; report : rwhstringi�
 `

s

� (): news?(x) goto

in


: report!hxi with (
) : S

d

The rule (ty-TuDep) in Figure 7 redu
es this to two premises:

�; report : rwhstringi�
 `

s


 : I

�; report : rwhstringi�
 `

s

news?(x) goto

in


: report!hxi :

th[news : rhstringi�s; in : whRi�
℄

The �rst is immediate from our assumptions about � and the se
ond is

essentially the same as a derivation we have already seen on page 25.

Thus using dependent pro
ess types we 
an de�ne general purpose

servers whi
h 
an be used by multiple 
lients. The example we have just


onsidered, (12), apriori leaves the 
lients inse
ure be
ause of the use

of the liberal type thunk for the 
lients guardian type R. But it 
an be

generalised so that this guardian is strengthened, allowing in only threads

whi
h are going to write to the lo
ally de
lared reporting 
hannel. Here

is one possible formulation:

Server: sJreq?(� with (y; z; x) : S

d

) run � j � news!hs
andaliK

Client: 
J(new
 report)

(new
 in : rwhRi)

goto

req

s:news?(x) goto

in


: report!hxi with (
; report; in) j

in?(� : R) run � j report?(y) : : :K

(14)

Here a 
lient generates a lo
al 
hannel report, whose type rwhstringi we

have elided, and a lo
al port in whose de
laration type is rwhRi, where

R is the more restri
tive guardian type th[report : whstringi�
℄. In other

words in has been spe
ially 
reated to restri
t entry to pro
esses whi
h

will only write on the newly 
reated 
hannel report. The 
lient then sends
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the usual pro
ess to the server but now a

ompanies it with the triple

(
; report; in)

The 
ode for the server is the same ex
ept that a

ompanying the

in
oming thread it expe
ts three values. Its guardian type S

d

however is


hanged to

S

d

: Tdep(y : lo
; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

th[news : rhstringi�s; x : whth[z : whstringi�y℄i�y℄

Here, on
e more, this guardian type does not mention any 
lient names,

but it allows 
lients to employ mu
h more restri
tive guardian types at

their own sites. We leave the reader to 
he
k that this revised system 
an

still be type
he
ked.

4.6 Existential pro
ess types

The use of dependent s
ript types, as in the previous subse
tion, has


ertain disadvantages from the point of view of the 
lients. For example

in (14) above the 
lient sends to the server, in addition to the s
ript to

be exe
uted, the triple (
; report; in). Although these are not used by the

server we have de�ned other than as part of the re
eived s
ript 
lients are

in prin
iple able to use them in any way they seem �t. An alternative

server 
ould be given by

badServer: sJreq?(� with (y; z; x) : S

d

) goto

x

y:z!hboringiK (15)

This rogue server does not run the in
oming s
ript to obtain the latest

news; instead it uses the in
oming a

ompanying values and sends dire
tly

to the 
lient some boring data.

Existential types allow the 
lient to hide from the server the data whi
h

a

ompanies the in
oming s
ripts. Existential s
ript types take the form

Edep(~x :

~

E) S

where, as with dependent types, the type of the s
ript S may depend on

the parameters ~x. Intuitively a value of this type is on
e more a form of

tuple (~v; v), although a

ess to the a

ompanying parameters is restri
ted.

That is reading a value of this type from a port only results in the s
ript

being obtained, although that s
ript itself may use these parameters. This

new form of tuple, often 
alled a pa
kage, is denoted by

h~v; vi

The important point about su
h a pa
kage is that it only gives a

ess

to the s
ript v and not the internal parameters ~v. In our formulation to

send su
h a value on a 
hannel the sender must have the pa
kage h~v; vi,

although only the s
ript v is emitted. For this reason we need a spe
ial
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output rule for existential types; see (ty-outE) in Figure 7, whi
h has

already been explained in Se
tion 3.3.

Let us now reformulate (14) above using existential types:

Server: sJreq?(� : S

e

) run � j � news!hs
andaliK

Client: 
J(new
 report)

(new
 in : rwhRi)

goto

req

s:news?(x) goto

in


: report!hxi j

in?(� : R) run � j report?(y) : : :K

(16)

Here the guardian type S

e

is

Edep(y : lo
; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

th[info : rhstringi�s; x : whth[z : whstringi�y℄i�y℄

The server is mu
h the same as before ex
ept that it does not re
eive any

parameters with the in
oming s
ript. Similarly the 
lient only sends the

s
ript.

Let us now see that this example type
he
ks. Establishing that the

server is well-typed is a little more 
ompli
ated than with dependent type

S

d

. The interest 
entres on establishing

�; f� : (S

e

)�sg `

s

run � : pro


and there are two essential steps. Note that, as with S

d

, (S

e

)�s is the

same as S

e

, and so in the sequel we will omit the (�)�s. The �rst step is

deriving

�; f� : S

e

g `

s

() : unit

and pro
eeds as with the use of S

d

on page 29; unravelling the environment

this amounts to establishing

�; � : hth

y

with y : lo
; z : whstringi�y; x : whth[z : whstringi℄i�yi ` env

(17)

where now th

y

represents th[info : rhstringi�s; in : whth[z : whstringi℄i�y℄.

Here the relevant type formation rule is (e-EDep) from Figure 10, whi
h

requires the premise

�; y : lo
; z : whstringi�y; x : whth[z : whstringi℄i�y ` th

y

: ty

However this is easily established from (sub-s
ript) of the same Figure.

The se
ond essential step in type
he
king the server is

�; f� : S

e

g `

s

� : pro
 (18)
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This is ne
essary in order to ensure that run 
an be applied to �. Here we

use an appli
ation of (ty-Elookup) from Figure 6 to obtain

�; f� : S

e

g `

s

� : th

y

One 
an also establish, using the subtyping rules,

�; f� : S

e

g ` th

y

<: pro


and therefore by (ty-subtyping) from Figure 6 we obtain the required

judgement (18) above.

Now let us examine the 
lient. Here the 
entral point is to ensure that

the goto

req

s: : : : 
ommand is well-typed, whi
h amounts to establishing

the judgement:

�; report : rwhstringi�
 `

s

req!hnews?(x) goto

in


: report!hxii : pro


Here the relevant rule is (ty-outE) from Figure 7. The se
ond premise

follows from our assumption about the type of req at s while the third is

va
uous as � is instantiated to pro
. However the �rst premise requires us

to �nd some ~v su
h that

�; report : rwhstringi�
 `

s

h~v; news?(x) goto

in


: report!hxii : S

e

(19)

In fa
t the required ~v is obviously going to be (
; report; in).

With these values the judgement (19) 
an be established using the rule

(ty-EDep) from Figure 6. This requires the following four four premises,

where for 
onvenien
e we use �

e

as an abbreviation for the extended en-

vironment �; report : rwhstringi�
; in : rwhRi: Re
all that R is the type

th[report : whstringi℄.

�

e

`

s


 : lo


�

e

`

s

report : whstringi�


�

e

`

s

in : whRi�


�

e

`

s

news?(x) goto

in


: report!hxi

: th[news : rhstringi�s; in : whRi�
℄

The �rst three are simple value judgements and we have already seen a

derivation of the last.

This ends our 
onsideration of the 
lient/server in (16) above. But let

us re
onsider the badServer from (15) above. Using existential types this

example might be written

badServer: sJreq?(� : S

e

) goto

x

y:z!hboringiK

But one 
an show that this no longer type
he
ks. The problem arises



34 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

when trying to establish

�; f� : S

e

g `

y

x!hz!hboringii (20)

We have already seen the expanded environment in (17) above, whi
h is

�; � : hth

y

with y : lo
; z : whstringi�y; x : whth[z : whstringi℄i�yi

However the only way to get information from the pa
kage

� : hth

y

with y : : : : ; z : : : : ; x : : : : i

in this environment is to use the rule (ty-Unpa
k) from Figure 6. This

will only give information on the variable � whereas the judgement (20)

requires information on the other 
omponents of the pa
kage y; z; x whi
h

are ina

essible.

4.7 S
ript types

In all of the examples so far servers rea
t to data furnished dire
tly from


lients. The general form of s
ript types,

Fdep(~x :

~

T!�);

allow servers to a

ept parameterised s
ripts, whi
h 
an be instantiated

by data owned, or trusted, by the server itself. Consider the following

variation on the 
lient used in (8):

Client: 
Jgoto

req

s:F j in?(� : R) run � j report?(y) : : :K

F = � y : whstringi: y?(x) goto

in


: report!hxi

It does not know the sour
e of the news at the server; so it sends the s
ript

F there, a s
ript whi
h uses the pre-existing port and 
hannel in; report,

but is parameterised on an information 
hannel lo
al to the server. The

server inputs the s
ript and is now free to apply it to whatever information

sour
e it deems �t. A simple server, with the same fun
tionality as that

in (8), is given by

Server: sJreq?(� : S

s

) �(news) j � news!hs
andaliK

It simply applies the in
oming s
ript to the lo
al 
hannel news. However

it 
ould also dynami
ally generate the lo
al news 
hannel, along the lines

of

ServerDy: sJreq?(� : S

s

) latest?(z) (� z)K

Note that when F is re
eived by the server and instantiated, the type

of the resulting pro
ess is dependent on that of the 
hannel to whi
h F

is applied. Under the assumptions in pla
e during the dis
ussion of (8),

and assuming that foo is a lo
al 
hannel, one would expe
t the pro
ess
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(F foo), running at s, to behave in a

ordan
e with the type

pr[foo : rhstringi�s; in : whthunki�
℄

This is indeed the 
ase as F 
an be assigned the parameterised type

Fdep(y : rhstringi! pr[y : rhstringi�here; in : whthunki�
℄) (21)

To see this let � be as des
ribed on 24. Then, using a simple variation on

the inferen
e des
ribed there, we 
an infer

�; y : rhstringi�s `

s

y?(x) goto

in


: report!hxi : pr[y : rhstringi�here; in : whthunki�
℄

An appli
ation of (ty-abs) from Figure 7 gives the required

� `

s

F : Fdep(y : rhstringi! pr[y : rhstringi�here; in : whthunki�
℄)

Under the further assumption that � `

s

foo : rhstringi an appli
ation of

(ty-beta) gives

� `

s

(F foo) : pr[foo : rhstringi�s; in : whthunki�
℄

Following this dis
ussion it should be apparent that to ensure that the

overall system is well-typed it is suÆ
ient to use the dependent type (21)

above for the guardian type S

s

. Then it is easy to 
he
k

� ` Client j Server

For example typing the server involves establishing

�; � : S

s

`

s

(� news) : pro
 (22)

Assuming that � `

s

news : rhstringi, we have already seen that an appli-


ation of (ty-beta) gives

�; � : S

s

`

s

(� news) : pr[news : rhstringi�s; in : whthunki�
℄

and the required (22) follows by subtyping.

These parameterised fun
tional types 
an be used in 
onjun
tion with

the other 
onstru
tions we have 
onsidered, dependent and existential

types, to give a very sophisti
ated language for guardian types whi
h on

the one hand allows non-trivial intera
tion between types, and on the other

enables sites to prote
t their lo
al resour
es by implementing powerful

dynami
 a

ess poli
ies. As a �nal example, to indi
ate the potential

of these types, 
onsider the the following variation on the 
lient in (16),
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whi
h is in turn an elaboration of the example we have just 
onsidered:

Server: sJreq?(� : S

se

) (� news) j � news!hs
andaliK

Client: 
J(new
 report)

(new
 in : rwhRi)

goto

req

s:F j

in?(� : R) run � j report?(y) : : :

F = � y : whstringi: y?(x) goto

in


: report!hxiK

Here the 
lient does not know the sour
e of the news at the server, and at

the same time the server is not aware of the reply me
hanisms in pla
e at

the 
lient; indeed these are generated dynami
ally by the 
lient and used

to 
onstru
t the s
ript F to be sent to the server. One 
an show that this

system is well-typed if we let the guardian type for the 
lient an server to

be

R : th[report : whstringi�
℄

S

se

Fdep(w : rhstringi! S

w

e

)

respe
tively, where S

w

e

is the existential type

Edep(y : lo
; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

th[w : rhstringi�s; x : whth[z : whstringi�y℄i�y℄

5 Subje
t Redu
tion

Many of the expe
ted properties 
an be derived for our type inferen
e

system. To state these su

in
tly it will useful to use

� `

w

J : T

to denote either a value judgement � `

w

v : T or a pro
ess judgement � `

w

P : T. We will 
on�ne our attention to judgements in whi
h � 
ontains no

o

urren
es of the spe
ial symbol here; thus they will only o

ur as part

of dependent types Fdep(~x :

~

T!�) and note that in appli
ations the rule

(ty-abs) from Figure 7 they are eliminated.

Proposition 5.1 (Sanity Che
ks).

� � `

w

J : T implies � ` env.

� � `

w

P : � implies � ` � : ty

Proof: The �rst is proved by indu
tion on the inferen
e of � `

w

J : T

while the se
ond is on that of the inferen
e of � `

w

P : �. It is required

by the base 
ase (ty-stop) while in the 
ases (ty-out), (ty-outE),
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(ty-in) and (ty-sub) it follows from the 
orresponding result for subtyp-

ing, Proposition A.1. All other 
ases follow by indu
tion ex
ept (ty-beta).

There we have � ` F (~v) : �fj

~v

=~xjgfj

w

=herejg be
ause

(i) � `

w

v

i

: T

i

(ii) � `

w

F : Fdep(~x :

~

T!�)

The latter 
an only be inferred by (ty-abs) from whi
h we know that

�; f~x : (

~

T)�wg ` P : �fj

w

=herejg: By the indu
tion hypothesis we have that

�; f~x : (

~

T)�wg ` �fj

w

=herejg : ty. It follows by the substitution result,

Proposition A.5, applied to (i), that � ` �fj

w

=herejgfj

~v

=~xjg : ty: However sin
e

we know that w is di�erent than ea
h x

i

this type is �fj

~v

=~xjgfj

w

=herejg. �

In a similar vein we 
an show that well-typed pro
esses 
an only use well-

de�ned types. For example if � `

w

u?(X : T)P : pro
 then � ` T : ty.

Environments 
an be ordered by their ability to assign types to iden-

ti�ers: �

1

<: �

2

if for every identi�er u, �

2

`

w

u : T implies �

1

`

w

u : T.

We will write �

1

� �

2

whenever �

1

<: �

2

and �

2

<: �

1

.

Proposition 5.2.

� (Weakening) Suppose �

2

`

w

J : T and �

1

<: �

2

for some �

1

su
h that

�

1

` env. Then �

1

`

w

J : T.

� (Strengthening) Suppose �; u : T `

w

J : pro
, where u does not o

ur

free in J . Then � `

w

J : pro
.

� (Subtyping) Suppose � `

w

J : T. Then � ` T <: T

0

implies � `

w

J : T

0

Proof: The �rst two statements are proved by indu
tion on the infer-

en
es. The third follows immediately from (ty-subpro
) in Figure 7 and

(ty-subval) in Figure 6. �

Multiple o

urren
es of an identi�er is governed by the following result:

Proposition 5.3. � `

w

u : C

1

�w

1

and � `

w

u : C

2

�w

1

implies � `

w

u :

r
hDi for some D su
h that � ` D <: C

1

; D <: C

2

.

Proof: This property is essentially enfor
ed by the formation rules for

well-de�ned environments. These ensure that if �

1

; u : C

1

�w

1

; : : : ; u :

C

2

�w

2

; : : : is a well-de�ned environment then �

1

must 
ontain an entry

u : r
hDi, where �

1

` D <: C

1

and �

1

; u : C

1

�w

1

; : : : ` D <: C

2

.

The formal proof is by indu
tion on the inferen
es of � `

w

u : C

1

�w

1

and � `

w

u : C

2

�w

1

. The base 
ase, when both are inferred from

(ty-lookup), depends on this property of well-de�ned environments.

�
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An interesting 
onsequen
e of this result is that whenever the 
onditions

of the proposition hold C

1

u C

2

is guaranteed to exist. This is spelled out

in detail in Proposition A.2 in the Appendix.

As usual the proof of Subje
t Redu
tion relies on the fa
t that, in a

suitable sense, type inferen
e is preserved under substitutions. We require

two su
h results, one for standard values, and one for the existential values

used in type inferen
e.

Lemma 5.4 (Substitution). Suppose � `

w

1

v : T with x not in �.

Then �; x : (T)�w

1

;� `

w

2

J : T implies �;�fj

v

=xjg `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

Proof: First note that the entry x : (T)�w

1


an only take one of three

forms, a 
hannel registration, x : r
hDi, a lo
ation de
laration x : lo
, a


hannel de
laration, x : C�w

0

or a s
ript de
laration x : S. The proof is

by indu
tion on the inferen
e of �; x : (T)�w

1

;� `

w

2

J : T, whi
h 
an

use the rules from Figure 6 or Figure 7. For 
onvenien
e we use �

0

to

denote �fj

v

=xjg for the various synta
ti
 
ategories �. Also we use �

e

as

an abbreviation for the environment �; x : (T)�w

1

;�. First let us look at

some 
ases from Figure 6.

� Suppose (ty-lookup) is used. So �

e

`

w

2

u : E be
ause

(i) �

e

` env

(ii) �

e

has the form �

1

; u : (E)�w

2

; : : : .

The substitution result for well-de�ned environments, Proposition A.5

in the appendix, ensures that

(i') �;�

0

` env

To obtain the 
orresponding

(ii') �;�

0

has the form �

1

; u

0

: (E

0

)�w

0

2

; : : :

we perform a 
ase analysis on where u : (E)�w

2

o

urs in �

e

; with

(i') and (ii') an appli
ation of the rule (ty-lookup) gives the required

� `

w

0

2

u

0

: E

0

.

If it o

urs in � then (ii') is immediate sin
e the substitutions have

no e�e
t. If it o

urs in � then u

0

: (E

0

)�w

0

2

o

urs in �

0

and so

(ii') holds. Finally u : (E)�w

2


ould 
oin
ide with x : (T)�w

1

. There

are now a number of 
ases, depending on the form of (T)�w

1

. As

an example suppose it is C�w

1

. Then w

1

and w

2


oin
ide and x 
an

not appear in C; w

1

. Therefore the hypothesis � `

w

1

v : C gives the

required result, �;�

0

`

w

2

v : C, by Weakening.

� The 
ase (ty-Elookup) is very similar, although there are only two
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rather than three possibilities for the o

urren
e of the asso
iation in

�

e

.

� Suppose (ty-lo
) is used. So �

e

`

w

2

w : K, where K is the type

lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ be
ause

(i) �

e

`

w

u

i

: C

i

(ii) �

e

`

w

2

u

i

: r
hD

i

i

(iii) �

e

` D

i

<: C

i

Indu
tion, and the substitution result for subtyping, Proposition A.5

in the Appendix, 
an be applied to these to obtain

(i') �;�

0

`

w

0

u

0

i

: C

0

i

(ii') �;�

0

`

w

0

2

u

i

: r
hD

0

i

i

(iii') �;�

0

` D

0

i

<: C

0

i

The interesting 
ase is when both v and x o

ur in u

1

; : : : u

n

; without

loss of generality suppose these are u

1

; u

2

respe
tively, in whi
h 
ase

u

0

1

= u

0

2

= v. Then we know, by Proposition 5.3, that C

0

1

u C

0

2

exists

and K

0

is lo
[u

0

2

: (C

0

1

u C

0

2

); : : : ℄. Applying the rule (ty-meet) to

(i') above gives �;�

0

`

w

0

u

0

2

: (C

0

1

u C

0

2

) and therefore we 
an apply

(ty-lo
) to this, together with (i'), (ii') and (iii') to obtain the required

�;�

0

`

w

0

2

w

0

: K

0

.

The other 
ases from Figure 6 are similar, mostly following by indu
tion.

Now let us look at some 
ases from Figure 7.

� Suppose (ty-newlo
) is used so �

e

`

w

2

(newlo
 k : K)withC in P : �

be
ause

(i) �

e

; fk : Kg `

k

C : �

(ii) �

e

; fk : Kg `

w

2

P : �

(iii) �

e

; fk : Kg `

w

2

k : K

Indu
tion 
an be applied to ea
h of these, to obtain

(i') �;�

0

; (fk : Kg)

0

`

k

C : �

(ii') �;�

0

; (fk : Kg)

0

`

w

0

2

P : �

(iii') �;�

0

; (fk : Kg)

0

`

w

0

2

k : K

Unfortunately it is not true in general that �;�

0

; (fk : Kg)

0

is the same

as �;�

0

; (fk : K

0

g). For example if K is lo
[x : C

0

1

; v : C

0

2

; : : : ℄ then the

former 
ontains the entries : : : k : lo
; v : C

0

1

�k; v : C

0

2

�k; : : : whereas
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the latter 
ontains : : : k : lo
; v : (C

0

1

u C

0

2

)�k; : : : . Nevertheless it will

always be the 
ase that

�;�

0

; (fk : Kg)

0

� �;�

0

; (fk : K

0

g)

and therefore by Weakening (i'),(ii') and (iii') apply also to the latter.

So (ty-lo
) 
an be applied to these to obtain the required

�;�

0

`

w

0

2

(newlo
 k : K

0

)withC

0

in P

0

: �

0

� Suppose (ty-in) is used. So � `

w

2

u?(X : U)P : � be
ause

(i) �

e

` pr[u : rhUi�w

2

℄ <: �

(ii) �

e

; fX : (U)�w

2

g `

w

2

P : (� t pr


h

[X : (U)�w

2

℄)

Applying the substitution result for subtyping, Proposition A.5 we get

(i') �;�

0

` pr[u

0

: rhU

0

i�w

0

2

℄ <: �

0

sin
e (pr[u : rhUi�w

2

℄)

0

is pr[u

0

: rhU

0

i�w

0

2

℄. Applying indu
tion to (ii)

gives

(ii') �;�

0

; (fX : (U)�w

2

g)

0

`

w

0

2

P

0

: (� t pr


h

[X : (U)�w

2

℄)

0

Now substitutions distribute over t (see Proposition A.3 in the Ap-

pendix), and also over the 
hannel extra
tion fun
tion (See Proposi-

tion A.4). So this may be rewritten

(ii') �;�

0

; (fX : (U)�w

2

g)

0

`

w

0

2

P

0

: (�

0

t pr


h

[X : (U

0

)�w

0

2

℄)

as x is guaranteed not to be in the pattern X. As in the previous 
ase,

we 
an show that

�;�

0

; (fX : (U)�w

2

g)

0

� �;�

0

; fX : (U

0

)�w

0

2

g

although be
ause of lo
ation types they may not be identi
al. Never-

theless this is suÆ
ient to be able to apply (ty-in) to (i'),(ii') to obtain

the required �;�

0

`

w

0

2

u?(X : U

0

)P

0

: � �

This substitution result 
an be generalised to arbitrary patterns, but

we only require it in a spe
ial 
ase:

Corollary 5.5. Let X be a pattern and suppose � `

w

1

V : T where

T is not an existential type. Then �; fX : (T)�w

1

g `

w

2

J : T implies

� `

w

2

fj

V

=Xjg

Jfj

V

=Xjg : Tfj

V

=Xjg

Proof: By indu
tion on the stru
ture of T. The base 
ases are 
overed by

the previous lemma. There are two other 
ases, when T is a lo
ation type

and when it is a dependent type. As an example we 
onsider the former,

when it has the form K = lo
[u

1

: C

1

; : : : u

n

: C

n

℄; in this 
ase X must be

a variable x and V and identi�er, say v.
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So �; fX : (K)�wg is �; x : lo
; u

1

: C

1

�x; : : : ; u

n

: C

n

�x whi
h 
an be

written as

�; x : lo
; (u

1

: C

1

�x; : : : ; u

n

: C

n

�x)

So applying the previous lemma we obtain

�; u

1

: C

1

�v; : : : u

n

: C

n

�v `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

But � `

w

2

v : K means that � `

v

u

i

: C

i

for ea
h i. So we see that

� � �; u

1

: C

1

�v; : : : u

n

: C

n

�v from whi
h the required

� `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

follows. �

The 
orresponding result for existential types uses di�erent substitu-

tions into pro
esses and types. The 
ru
ial property of existential values

is that the use of their witnesses is very limited:

Proposition 5.6. Suppose �; y : hT with ~x :

~

Ei;�

0

`

w

J : T. Then

x

i

62 fv(J) and x

i

does not o

ur in �

0

; w.

Proof: By indu
tion on the inferen
e. Intuitively the result follows from

the fa
t that the only information available, via (ty-Elookup), from the

entry y : hT with ~x :

~

Ei is that y has the type T; no information on x

i

is available. The proof relies on the 
orresponding result for well-de�ned

environments and subtyping, Proposition A.6 �

This result provides the 
entral property underlying the substitution result

for existential values.

Lemma 5.7 (ESubstitution). Suppose � `

w

1

h~v; vi : Edep(~x :

~

E)T.

Then �; y : h(T)�w

1

with ~x :

~

Ei;� `

w

2

J : T; w

2

: lo
 implies �;�fj

v

=yjg `

w

2

fj

v

=yjg

Jfj

v

=yjg : Tfj

~v

=~xjg

Proof: The proof follows the lines of that of Lemma 5.4, with frequent

appli
ations of the previous proposition, Proposition 5.6, to ensure that

only the substitution of v for x is applied to pro
ess terms and names. As

usual 
ertain 
ases depends on the 
orresponding result for well-typed en-

vironments and subtyping judgements, Proposition A.7 in the Appendix.

�

Theorem 5.8 (Subje
t Redu
tion).

Suppose � ` M . Then M �! N implies � ` N:

Proof: It is a question of examining ea
h of the rules in Figure 2 in

turn. Note that (r-str) requires that typing is preserved by the stru
tural
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equivalen
e; we leave the proof of this fa
t to the reader, as it follows the

standard approa
h.

Consider the rule (r-
omm):

kJ
!hV iK j kJ
?(X : T)P K �! kJPfj

V

=XjgK

and suppose � ` kJ
!hV iK j kJ
?(X : T)P K. Be
ause pro
 is a top type for

pro
esses this means that

(i) � `

k


!hV i : pro


(ii) � `

k

kJ
?(X : T)P K : pro


We need to show � ` kJPfj

V

=XjgK whi
h follows easily if we 
an establish

� `

k

Pfj

V

=Xjg : pro
.

From (i),(ii), we 
an show that � `

k


 : rwhT;Ti and � `

k

V : T. There

are now two 
ases, depending on the stru
ture of T. First suppose it is

an existential type Edep(~x :

~

E)U, in whi
h 
ase the pattern X is a single

variable, say y. Here (i) above 
an only be inferred by using (ty-outE),

whi
h means that V is a singleton, say v and there must be some ve
tor

~v of witnesses su
h that � `

k

h~v; vi : Edep(~x :

~

E)U. De
onstru
ting (ii) we

know that �; y : hU with ~x :

~

Ei `

k

P : pro
. We may now apply Lemma 5.7

to obtain the required � `

k

Pfj

v

=yjg.

When T is not an existential type the proof is similar but uses an

appli
ation of Corollary 5.5 in pla
e of Lemma 5.7.

We leave the proof for the other rules to the reader.

�

6 The behaviour of safeDpi systems

In this se
tion we investigate what might be an appropriate notion of

semanti
 equivalen
e between safeDpi systems. We �rst propose what

we believe to be a natural notion of 
ontextual equivalen
e. Then, in the

following se
tions, we give a 
oindu
tive 
hara
terisation using a
tions

between 
on�gurations, 
onsisting of safeDpi systems together with the

environment's 
urrent knowledge of the system.

For notational 
onvenien
e we limit ourselves to the 
ase when the only

transmission types allowed are of the form

Tdep(~x :

~

A)A Tdep(~x :

~

A) S Edep(~x :

~

A) S

E�e
tively this means that the values transmitted must either be of the

form

� (~u), a tuple of �rst-order values, of type Tdep(~x :

~

A)A
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� (~u; F ) a tuple in whi
h the last value F , a s
ript, may depend on the

�rst-order values (~u). These have a type of the form Tdep(~x :

~

A) S.

� F a s
ript, the �nal 
omponent of an existential value h~u; F i with a

type of the form Edep(~x :

~

A) S.

Simple s
ripts may be simulated via the empty dependent type Tdep() S,

as 
an simple �rst-order values, via the type Tdep()A. Our results extend

to the full language, although the proofs require the development of more


ompli
ated notations.

6.1 A 
ontextual equivalen
e

We intend to use a 
ontext based equivalen
e in whi
h systems are asked

to be deemed equivalent in all reasonable safeDpi 
ontexts. What is

perhaps not so 
lear here is the notion of reasonable 
ontext. In previous

work on mobile 
al
uli, [9, 8, 1℄, the equivalen
e took the form

� j= M �


xt

N

meaning, intuitively, that M and N are indistinguishable in any 
ontext

typeable by the typing environment �. Although one is primarily inter-

ested in su
h judgements in whi
h � has suÆ
ient knowledge to type M

and N , one is lead to 
onsider more general judgements where � only


ontains a subset of that knowledge. Su
h equivalen
es, for Pi
al
ulus

and Dpi, 
an be 
hara
terised indu
tively using a
tions of the form

(��M)

�

�! (�

0

�M

0

)

where (��M); (��M

0

) are 
on�gurations, 
onsisting of systems M;M

0

and type environments �;�

0

, representing the 
urrent knowlege of the

testing 
ontext. In general su
h a
tions 
hange not only the systems, M

to M

0

but also the 
urrent knowledge, from � to �

0

, typi
ally by adding

new information.

However, there are further subtleties whi
h need to be 
onsidered in

the 
urrent setting. We dis
uss this with a motivating example.

Example 6.1.

Consider

M = (new k : lo
[b : rwhuniti℄) lJa!hkiK j kJb!hiK

N = (new k : lo
[b : rwhuniti℄) lJa!hkiK j kJstopK

and

� = l : lo
; b : r
hrwhunitii; a : rwhlo
[b : rwhuniti℄i�l

These two systems are well-typed with respe
t to � and should be 
onsid-

ered equivalent under most reasonable notions of behavioural equivalen
e;

it is impossible for a testing pro
ess to intera
t with M on b at k, even
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after the intera
tion on a at l. Indeed, 
onsider what form a test whi
h


ould a
hieve this must take:

� j lJa?(x) goto

?

x:b?()K

It is 
lear that there is no port for the testing pro
ess to enter the lo
ation

k on. Moreover, tests 
annot be pla
ed dire
tly at k as k is only dis
overed

through intera
tion.

To sum up we would expe
t

� j= M �


xt

N

to hold, for an appropriate formulation of 
ontextual equivalen
e for safeDpi.

But a naive labelled transition system of the form dis
ussed above would

not distinguish them. For example a naive system might yield a
tions

su
h as

(��M)

outputs k on a at l

���������������! (�

0

� lJstopK j kJb!hiK)

where �

0

is the environment � updated with the knowledge about the new

lo
ation k : lo
[b : rwhuniti℄. However, in su
h a system, a subsequent

intera
tion at this newly dis
overed k would be possible. This intera
tion

would suÆ
e to distinguish M and N .

In other words we need to 
onsider more sophisti
ated notions of a
-

tions in order to 
apture 
ontextual equivalen
es for safeDpi. �

It should be 
lear from this dis
ussion then that in modelling be-

havioural equivalen
e in this setting, we must be aware of those lo
ations

at whi
h we 
an, and 
an not, perform tests. And this is not simply a

question of whi
h lo
ations the environment has immigration rights for,

via some port.

Example 6.2. Consider the following s
enario:

M = kJ(new
 b : rwhuniti) a!hbi j b!hiK

N = kJ(new
 b : rwhuniti) a!hbi j stopK

and

� = k : lo
; a : rwhrwhunitii�k

Here the testing environment already knows about k but does not have

any immigration rights there. NeverthelessM and N 
an be distinguished

by a reasonable test, one whi
h is typeable by �:

� j kJa?(x) x?hi eureka!hiK

�
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Thus, in representing the environment's knowledge of the system we must

also represent the information about whi
h lo
ations are available for di-

re
t testing. This motivates the following de�nition.

Definition 6.3 (Knowledge stru
tures). A knowledge stru
ture is

a pair (�; T ), where

� � is a type environment su
h that � ` env

� T is a subset of Lo
s su
h that if k 2 T then k : lo
 2 �

We use I to range over knowledge stru
tures and write I

�

and I

T

to refer

to the respe
tive 
omponents of the stru
ture. We sometimes refer to the

lo
ations in I

T

as those to whi
h the information stru
ture allows a

ess

rights. We often abuse notation by writing I;� to mean the knowledge

stru
ture ((I

�

;�); I

T

). �

Definition 6.4 (Configurations). We write I�M for a 
on�guration

where

� I is a knowledge stru
ture

� there exists some � su
h that � ` M , � <: I

�

, and dom(�) =

dom(I

�

). �

Definition 6.5 (Knowledge-indexed relations). We 
all a family

of binary relations between systems indexed by knowledge stru
tures a

knowledge-indexed relation over systems. We write I j= M RN to mean

that systems M and N are related by R at index I and moreover, I �M

and I �N are both 
on�gurations. �

We will use knowledge-indexed relations to propose a notion of be-

havioural equivalen
e appropriate to this setting. We do this in an estab-

lished manner [11, 6, 9℄ by proposing that we 
onsider the largest equiva-

len
e 
losed under 
ertain natural properties listed below.

Redu
tion 
losure: We say that a knowledge-indexed relation is re-

du
tion 
losed if whenever I j= M RN and M �!M

0

there exists some

N

0

su
h that N�!

�

N

0

and I j=M

0

RN

0

.

Context 
losure: We say that a knowledge-indexed relation is 
on-

textual if

(1) I j= M R N and I

�

; k : lo
 ` env implies I

0

j= M R N where I

0

is

((I

�

; k : lo
); I

T

+ k)

(2) I j=M RN and I

�

;�

0

` env implies I;�

0

j=M RN

(3) I j=M RN and I

�

` kJP K with k 2 I

T

implies

I j= (M j kJP K)R (N j kJP K)
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(4) I; fn : Eg j=M RN implies I j= (new n : E)M R (new n : E)N �

In the �rst 
ondition we are assured that k is a fresh lo
ation; therefore

this form of weakening allows the environment to 
reate for itself fresh

lo
ations at whi
h it may deploy 
ode. The se
ond form of weakening,

in (2), allows it to invent new names with whi
h to program pro
esses.

Condition (3) allows it to pla
e well-typed 
ode at sites to whi
h it has

a

ess rights, while (4) is the standard me
hanism for handling names

whi
h are private to the systems being investigated.

Barb Preservation: For any given lo
ation k and any given 
hannel a

su
h that k 2 I

T

and I

�

`

k

a : rwhuniti we write I ` M +

barb

a�k if there

exists some M

0

su
h that M�!

�

M

0

j kJa!hiK. We say that a knowledge-

indexed relation is barb preserving if I j= M R N and I ` M +

barb

a�k

implies I ` N +

barb

a�k.

Definition 6.6 (Redu
tion barbed 
ongruen
e). We let �


xt

be

the largest knowledge-indexed relation over systems whi
h is

� pointwise symmetri
 (that is I j=M �


xt

N implies I j= N �


xt

N)

� redu
tion 
losed

� 
ontextual

� barb preserving �

We take redu
tion barbed 
ongruen
e to be our tou
hstone equivalen
e

for safeDpi as it is based on simple observable behaviour respe
ted in all


ontexts. The de�nition above is stated relative to 
hoi
e of the knowledge

stru
ture I. We should point out however that, for any given systems

M;N and type environment � su
h that � ` M and � ` N then there

is a 
anoni
al 
hoi
e of knowledge stru
ture I, namely, (�; T

�

) where we

let T

�

= f k j k : lo
 2 � g. This 
hoi
e of knowledge stru
ture gives

rise to what we feel to be a natural and intuitive notion of equivalen
e for

well-typed safeDpi systems.

Of 
ourse, the quanti�
ation over all 
ontexts makes reasoning about

the equivalen
e virtually intra
table. However it is 
ommon pra
ti
e, [19,

21, 1, 9, 8℄, to provide some sort of model or alternative 
hara
terisation

in terms of labelled transition systems, whi
h makes the behaviour of

systems mu
h more a

essible. In parti
ular if the a
tions in the labelled

transition system are suÆ
iently simple this 
an lead to automati
, or

semi-automati
 veri�
ation methods.

In the next se
tion we show that this 
ontextual equivalen
e for safeDpi


an be 
hara
terised in a similar manner, as a bisimulation equivalen
e

over a suitably de�ned labelled transition system.
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6.2 A bisimulation equivalen
e

We �rst dis
uss the labels, or a
tions, to be used in the labelled transition

system. They are given by the following grammar:

� ::= � j (~n :

~

E)go

p

k:F j (~n :

~

E)( ~m)k:a:�

� ::= V ? j V !

where it is assumed that k; a; p 62 ~n; ~m. These are intended to be read as

follows:

� � represents internal 
ommuni
ation in whi
h no intera
tion with the

environment takes pla
e

� go

p

k:F represents an attempt by the environment to enter lo
ation k

on port p. The 
ode to be deployed, if this attempt su

eeds, is given

by the s
ript F .

� k:a:V ! represents a 
ommuni
ation between the system and the envi-

ronment in whi
h the system exports on 
hannel a at k. The value V

in this a
tion depends on the type of the 
hannel. First order values


an be re
ognised by the environment and so they are re
orded in the

a
tion label. S
ripts, on the other hand, 
an not ne
essarily be identi-

�ed. So instead the environment provides a suitable re
eiving 
ontext

for a s
ript. For example suppose the system exports some s
ript F on

a 
hannel a of s
ript type S. To test F the environment 
an supply any

abstra
tion G of type G : S! pro
, with whi
h F 
an be investigated;

see rule (m-send� s
ript) in Figure 8.

� k:a:V ? represents a 
ommuni
ation between system and environment

in whi
h the system imports on 
hannel a at k. The value V is always

provided by the environment.

� (n)� represents an a
tion � in whi
h the new name n has been exported

from the system; it is new in the sense that it has not previously been

en
ountered by the testing environment. The type of n is not re
orded

sin
e it 
an be inferred from the type of the 
hannel on whi
h it is

exported.

� (n : E)� represents an a
tion � in whi
h the fresh name n is being

provided by the environment.
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The following notation is useful in de�ning the labelled transition system.

Firstly, the subje
t labels, subj(�) of an a
tion are given by:

subj(� ) = ;

subj((~n :

~

E)( ~m)k:a:�) = fk; ag

subj((~n :

~

E)go

p

k:V ) = fk; pg

Next, we de�ne the obje
t labels of an a
tion. These are divided into both

input and output obje
t labels using the two fun
tions obj

?

(�) and obj

!

(�)

in order to identify whether the names returned are being provided by the

environment or exported from the system. We use input obje
t labels to

identify the former and output obje
t labels the latter.

obj

?

(� ) = ; obj

!

(� ) = ;

obj

?

(~u!) = ; obj

!

(~u!) = fn(~u)

obj

?

(

~

V ?) = fn(V ) obj

!

(

~

V ?) = ;

obj

?

((~u;G)!) = fn(G) obj

!

((~u;G)!) = fn(~u)

obj

?

((~n :

~

E)go

p

k:V ) = fn(V ) n ~n obj

!

((~n :

~

E)go

p

k:V ) = ;

obj

?

((~n :

~

E)( ~m)k:a:�) = obj

?

(�) n ~n obj

!

((~n :

~

E)( ~m)k:a:�) = obj

!

(�) n ~m

The interesting 
ase here is � = (~u;G)!, whi
h represents the export from

the system to the environment a higher-order s
ript, dependent on the

�rst-order values (~u). This exported s
ript is not represented in the la-

bel; instead G, whi
h is supplied by the environment, is applied to it. So

obj

?

(�) is all the free names in G, sin
e these are supplied by the environ-

ment, while obj

!

(�) are all the iden�ers in ~u, sin
e these are supplied by

the system.

With this notation we de�ne judgements of the form

(I �M)

�

�! (I �N) (23)

representing the e�e
t of the system M performing the a
tion labelled

�, in an environment whose knowlege is I. This a
tion 
hanges 
hanges

the system, from M to N , and the knowledge, from I to I

0

. Typi
ally

this is an in
rease in knowledge of the testing environment of the system,

represented as the 
hange from the type environment, I

�

to I

0

�

.

The axioms for the judgements (23) are given in Figures 8; these are

based on the rules in Figure 10 of [8℄. We make use of the following

notation in the presentation of the rules: For a type environment I

�

we

write

I

r

�

(a; k) = fT j a : rhTi�k 2 I

�

or a : rwhT;Ui�k 2 I

�

g

I

w

�

(a; k) = fU j a : whUi�k 2 I

�

or a : rwhT;Ui�k 2 I

�

g
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(m-re
eive)

k 2 I

T

T =

d

I

w

�

(a; k) I

w

�

(a; k) 6= ;

I

�

`

k

V : T

(I � kJa?(X : U)P K)

k:a:V ?

����! (I � kJPfj

V

=XjgK)

(m-deliver)

k 2 I

T

T =

d

I

w

�

(a; k) I

w

�

(a; k) 6= ;

I

�

`

k

V : T

(I �M)

k:a:V ?

����!
(I �M j kJa!hV iK)

(m-send:val)

k 2 I

T

Ta �rst-order type

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

; f~u : (T)�kg ` env

(I � kJa!heuiK)

k:a:eu!

���! (I; feu : (T)�kg� kJstopK)

(m-send:s
ript)

k 2 I

T

T of the form Edep(~x :

~

T )S

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

`

k

G : T! pro


(I � kJa!hF iK)

k:a:G!

����! (I � kJG (F )K)

(m-send:dep:s
ript)

k 2 I

T

T of the form Tdep(~x :

~

E) S

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

; f~u : (

~

E)�kg ` env

I

�

`

k

G : T! pro


(I � kJa!h(eu; F )iK)

k:a:(eu;G)!

������! (I; feu :

e

(E)�kg� kJG (eu; F )K)

(m-goto)

k 62 I

T

I

�

`

k

p!hV i : pro


(I �M)

go

p

k:V

����! (I �M j kJp!hV iK)

Figure 8. Labelled Transition System Axioms

The input rule (m-re
eive) is a mild generalisation of the 
orresponding

rule in [8℄, given there as (lts-in). Note that the a
tion is only possible

if the environment has a

ess rights to its lo
ation k, that is if k is in I

T

.

Be
ause safeDpi is asyn
hronous there are two forms of output a
tions.

The rule (m-deliver) represents the delivery of a value to a 
hannel,
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(m-red)

M �!M

0

(I �M)

�

�! (I �M

0

)

(m-par)

(I �M)

�

�! (I

0

�M

0

)

(I �M jN)

�

�! (I

0

�M

0

jN)

(I �N jM)

�

�! (I

0

�N jM

0

)

(m-new)

(I; n : >�M)

�

�! (I

0

; n : >�M

0

)

(I � (newn : E)M)

�

�! (I

0

� (new n : E)M

0

)

n 62

n

(�)

(m-open)

(I;m : >�M)

�

�! (I

0

�M

0

)

(I � (newm : E)M)

(m)�

���! (I

0

�M

0

)

m 62 subj(�);m 2 obj

!

(�)

(m-weak)

(I; fn : Eg�M)

�

�! (I

0

�M

0

)

(I �M)

(n:E)�

����!
(I

0

�M

0

)

n 62 subj(�); n 2 obj

?

(�)

(m-Tweak)

((I

�

; fk : Kg); I

T

+ k)�M)

�

�! (I

0

�M

0

)

(I �M)

(k:K)�

����! (I

0

�M

0

)

k 62 subj(�); k 2 obj

?

(�)

Figure 9. Labelled Transition System Rules

although it may not ne
esarily be 
onsumed; note again that a

ess rights

are required to the 
hannels' lo
ation.

There are three versions of the se
ond form of output rule, in whi
h the

value is 
onsumed by the 
hannel; the variation depends on the type of the


hannel, but all require a

ess rights. The �rst, (m-send:val), for �rst-

order values, is an extension of the 
orresponding rule, (lts-out), from

[8℄; note that here the environment's knowledge is in
reased, by adding

the information 
ontained in f~u : (T)�kg. Output of s
ripts is handled

by (m-send:s
ript), where the environment supplies an appropriate G

for further investigation of the s
ript F . Dependent s
ripts, (~u; F ) are

handled by (m-send:dep:s
ript); here the values (~u) are exported from

the system to the environment, while G, used for further investigation of

F is imported to the system from the environment.

The �nal rule in Figure 8, (m-goto), is novel. It allows the environ-

ment to pla
e arbitrary (well-typed) 
ode at a site k, even if it does not

have a

ess rights there, provided it knows of a port p at k. Of 
ourse, in

a

ordan
e with our operational semanti
s, k is free to ignore this 
ode,

by not pro�ering an input at the port p.
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The inferen
e rules for the a
tion judgements (23) are given in Fig-

ures 9, and again they are informed by the 
orresponding rules in Fig-

ure 10 of [8℄. Here we abuse notation a little by writing (m)� to mean

(~n :

~

E)(m; ~m)�

0

whenever � is (~n :

~

E)( ~m)�

0

. Note that, unlike in [8℄, we

have two weakening rules; the new one, (m-Tweak), allows the environ-

ment to invent a new lo
ation k at whi
h it has a

ess rights.

As a sanity 
he
k on these judgements we give a pre
ise des
ription of

the possible forms the a
tions 
an take; to aid readability we will use G

to represent a s
ript furnished by the environment and F to represent one

furnished by the system:

Proposition 6.7. Suppose that I � M is a 
on�guration from whi
h

(I �M)

�

�! (I

0

�N), where � is not � . Then � takes one of the following

forms:

First-order: input (~n :

~

E)k:a:(~u)?, where (~n) � (~u), or output ( ~m)k:a:(~u)!,

where ( ~m) � (~u)

S
ript: input (~n :

~

E)k:a:F ?, where (~n) � fn(F ), or output (~n :

~

E)k:a:G!

where (~n) � fn(G)

Dependent s
ript: input (~n :

~

E)k:a:(~u; F )?, where (~n) � (~u) [ fn(F ),

or output (~n :

~

E)( ~m)k:a:(~u;G)!, where (~n) � fn(G) and ( ~m) � (~u)

Ayn
hronous-goto: (~n :

~

E)go

p

k:F , where (~n) � fn(F ).

Proof: By indu
tion on the inferen
e of (I �M)

�

�! (I

0

�N): �

Proposition 6.8 (Well-definedness). Suppose I �M is a 
on�gura-

tion. Then (I �M)

�

�! (I

0

�N) implies I

0

�N is also a 
on�guration.

Proof: By indu
tion on the inferen
e of (I �M)

�

�! (I

0

� N), and an

analysis of the last rule used; the details are similar to the 
orresponding

result, Proposition 4.4 of [8℄; the a

ess rights 
omponent of I, I

T

only

plays a role in one rule, (m-Tweak), and even there it is a minor role.

The axiom (m-re
eive) requires an appli
ation of the substitution

results, Corollary 5.5 or Lemma 5.7 depending on the transmission type

involved. The remaining axioms are straightforward, as their premises


ontain suÆ
ient typing information to guarantee that the residual is in-

deed a 
on�guration.

The proof for the rule (m-red) depends on Subje
t Redu
tion, Theo-

rem 5.8, while that for (m-new) relies on Weakening; the remaining rules

follow immediately by indu
tion. �

With this result we now have a labelled transition system for safeDpi,

the nodes being 
on�gurations and the a
tions all judgements (23) whi
h
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an be inferred from Figure 8 and Figure 9. The standard de�nition of

bisimulation therefore gives a 
o-indu
tive relation over 
on�gurations:

Definition 6.9 (Bisimulations). We say the binary relation between


on�gurations R is a typed bisimulation if C RD implies

� C

�

�! C

0

implies D

�̂

=)D

0

for D

0

su
h that C

0

RD

0

� D

�

�!D

0

implies C

�̂

=)C

0

for C

0

su
h that C

0

RD

0

where

�̂

=) is the standard notation, meaning

�

�!

�

�

�!

�

�!

�

for � not equal

to � and

�

�!

�

otherwise.

We write I j= M �

bis

N whenever there exists some bisimulation R

su
h that (I �M)R (I �N). �

With this notation, that is by viewing the knowledge-stru
ture I as a pa-

rameter, we 
onstrue �

bis

to be a knowledge-indexed relation over systems.

This enables us to 
ompare it dire
tly with the tou
hstone behavioural

equivalen
e �


xt

. The main te
hni
al property we require of �

bis

is given

in the following result:

Proposition 6.10. The knowledge-indexed relaton �

bis

is 
ontextual.

Proof: This follows similar lines to the equivalent statement in [8℄. For

this reason we only show that �

bis

is preserved by parallel 
omposition

here. Let R be de�ned by

(I � (new ~n :

~

T

1

)M j

Y

i2I

k

i

JP

i

K)R (I � (new ~n :

~

T

2

)N j

Y

i2I

k

i

JP

i

K)

if and only if there exists some I

0

�

, (

~

T) and T

0

su
h that

I

0

�

<: I

�

(

~

T

1

) <: (

~

T) and (

~

T

2

) <: (

~

T)

T

0

� ~n

I

0

�

` k

i

JP

i

K and k

i

2 I

T

+ T

0

for ea
h i 2 I

(I

0

�

; I

T

+ T

0

); f~n : Tg j=M �

bis

N

We aim to show that R is a bisimulation from whi
h the result follows

immediately. For the purposes of this exposition we will assume that ~n is

empty and that the indexing set I is a singleton. We take any

(I �M j kJP K)R (I �N j kJP K)

so we have some I

0

�

su
h that

(I

0

�

; I

T

) j=M �

bis

N (24)

with I

0

�

` kJP K and k 2 I

T

. We suppose that (I�M jkJP K)

�

�! (I

0

�M

0

)

and now must show that there is a 
orresponding mat
hing move from
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(I�N jkJP K). In 
ases in whi
h � is not � this is easily done by appealing

to (24). For � = � we know that I

0

= I also. By an analogue of the

De
omposition Lemma of [8℄ we 
an obtain �ve possibilities:

1. (I �M)

�

�! (I �M

00

) su
h that M

0

�M

00

j kJP K

2. kJP K �!M

00

su
h that M

0

�M jM

00

3. for �rst order T, (I �M)

( ~m)k:a:~v!

������! (I

00

�M

00

) with

� kJP K � kJa?(~x : T)QK

� M

0

� (new ~m : U)M

00

j kJQ[fj

~v

=~xjg℄K

4. for other T, (I �M)

( ~m)k:a:V !

������! (I

00

�M

00

) with

� kJP K � kJa?(~x : T)QK

� V = (~v; � ~x : T: Q)

� (new ~m : U)M

00

�!M

0

derived from (r-beta)

5. (I �M)

(~n:T)k:a:V ?

�������! (I

0

�M

00

) with

� kJP K � kJa!hV iK

� M

0

�M

00

j kJstopK

For ea
h 
ase we show that these 
onditions lead to the desired mat
hing

transition. We deal with ea
h of them in turn.

� For (1) we appeal dire
tly to (24).

� More interesting is 
ase (2), parti
ularly when the redu
tion is gener-

ated by use of the rule (r-l:
reate) or (r-move). We examine ea
h

of these: suppose kJP K �!M

00

is derived from a use of (r-l:
reate)

so that

P = (newlo
 l : L)withC in Q

M

00

� (new l : L) lJCK j kJQK

We know by (24) that (I

0

�

; I

T

) j= M �

bis

N and hen
e, by weakening

to introdu
e a new testable lo
ation, we have

(I

0

�

; l : lo
; I

T

+ l) j= M �

bis

N

and by further weakening we obtain,

(I

0

�

; fl : Lg; I

T

+ l) j= M �

bis

N

Call the knowledge stru
ture above, I

00

. We know, by 
onstru
tion of

R, that I

0

�

` kJP K with k 2 I

T

, and therefore, a

ording to the type

rules (ty-newlo
), (ty-subpro
) and (ty-pro
), we must have

I

00

` lJCK and I

00

` kJQK
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with l; k 2 I

00

T

also. Therefore, by de�nition of R again, we see that

I j= (new l : L)(M j lJCK j kJQK)R (new l : L)(N j lJCK j kJQK) (25)

We know that (I �N j kJP K)

�

�! (I � (new l : L)(N j lJCK j kJQK)) and

that M

0

�M jM

00

� (new l : L)(M j lJCK j kJQK), so by (25), we have

I j= M

0

R (new l : L)(N j lJCK j kJQK)

and our mat
hing transition as required.

Alternatively, suppose that kJP K �! M

00

is derived from an in-

stan
e of (r-move). We then have

P = goto p:lF and M

00

� lJp!hF iK

for some p; l; F . It is important to note here that the lo
ation l may

not be 
ontained in I

T

and this prevents us from immediately using

the de�nition of relation R to 
laim that

I j= M j lJp!hF iKRN j lJp!hF iK

However, we do know that I

0

�

` kJP K so

(I

0

�

; I

T

)�M

go

p

l:F

����! (I

0

�

; I

T

)�M j lJp!hF iK

is a valid transition. The hypothesis (24) tells us that there is a mat
h-

ing transition

(I

0

�

; I

T

)�N

go

p

l:F

===) (I

0

�

; I

T

)�N

00

su
h that (I

0

�

; I

T

) j= M j lJp!hF iK �

bis

N

00

. This tells us that there is

some N

0

su
h that

N�!

�

N

0

and N

0

j lJp!hF iK�!

�

N

00

Therefore, it is 
lear that (I � N j kJP K) =) (I � N

00

) with I j=

M j lJp!F K�

bis

N

00

as required.

� Cases (3) and (4) are similar in nature so we only show the reasoning

for the latter. We have, in this instan
e, that

(I �M)

( ~m)k:a:( ~m

0

;G)!

���������! (I

00

�M

00

)

where

G = � ~x : T: Q

P = a?(~x : T)Q

M

00

�!M

000

(from (r-beta) su
h that M

0

� (new ~m : U

0

)M

000

~m � ~m

0

It is easy to 
he
k (
f. Lemma 4.8 of [8℄) that

(I

0

�

; I

T

)�M

( ~m)k:a:( ~m

0

;G)!

���������! (I

0

�

; f ~m

0

: Ug�M

00

); I

T

)�M

00
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where U

0

<: U. Call the target knowledge stru
ture I

000

. This tells us,

by (24) that there exists a mat
hing transition

(I

0

�

; I

T

)�N

( ~m)k:a:( ~m

0

;G)!

=========) (I

000

�N

00

)

with I

000

j= M

00

�

bis

N

00

. Note that M

00

�! M

000

(derived from

(r-beta)) guarantees, by 
on
uen
e properties of beta-redu
tion, that

I

000

j= M

000

�

bis

N

00

and we 
an also assume, without loss of general-

ity that N

00

is stable with respe
t to ��redu
tions. By analysing the

above transition we see that there exists some N

000

, ~n : T

0

and V su
h

that

N�!

�

(new ~m : U

00

) (new ~n : T

0

)(N

000

j kJa!hV iK)

with

(new ~n : T

0

)(N

000

j kJ� ~x : T: Q(V )K)�!

�

N

00

and U

00

<: U

Therefore we have

N j kJP K �!

�

(new ~m : U

00

) (new ~n : T

0

)(N

000

j kJa!hV iK j kJa?(~x : T)QK)

�!

�

(new ~m : U

00

) (new ~n : T

0

)(N

000

j kJQfj

V

=~xjgK)

�!

�

(new ~m : U

00

)N

00

� N

0

Given that M

0

� (new ~m : U

0

)M

000

, we have enough to 
on
lude that

I j= M

0

RN

0

as required.

� Finally, in 
ase (5) we follow a similar argument to that in [8℄ with

only a slight modi�
ation to a

ount for the asyn
hronous nature of

safeDpi. �

6.3 Relating bisimulation and 
ontextual barbed 
ongruen
e

This se
tion is devoted to showing that these equivalen
es, viewed as

knowledge-indexed relations 
oin
ide.

Proposition 6.11 (Soundness of �

bis

for �


xt

).

I j= M �

bis

N implies I j= M �


xt

N:

Proof: It is evident that �

bis

forms a symmetri
, redu
tion 
losed and

barb preserving knowledge-indexed relation. Therefore, be
ause of Propo-

sition 6.10 �

bis

satis�es all the de�ning properties of �


xt

. Sin
e �


xt

is

the largest su
h relation the result follows. �

The for
e of this proposition is that any distin
tions made between

systems by the 
ontextual 
ongruen
e 
an also be made by the labelled

transition system. This means that we have provided enough labels of

suÆ
ient distinguishing power. We must also 
he
k that we have not
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provided too mu
h distinguishing power in the labelled transition system.

This is done by relating ea
h a
tion de�ned in the labelled transition

system to an a
tual well-typed safeDpi 
ontext.

Proposition 6.12 (Definability (
f. Prop 4.4 of [9℄)). For ea
h la-

bel � and ea
h knowledge stru
ture I there exists a system C

I

�

whi
h uses

the fresh barb name Æ, port name Æ

in

and lo
ation k

0

and tests for � in

the sense that

� if (I �M)

�

�! (I

0

�M

0

) then I; fk

0

: K

0

g ` C

I

�

and moreover,

C

I

�

jM�!

�

(new ~m :

~

E)(k

0

JÆ

in

!hÆ!hiiK jM

00

) with M

00

�M

0

� if C

I

�

jM�!

�

(new ~m :

~

E)(k

0

JÆ

in

!hÆ!hiiK jM

00

) and I; fk

0

: K

0

g ` C

I

�

where ~m = obj

!

(�) then (I �M)

�

�! (I

0

�M

0

) with M

00

�M

0

.

where

K

0

= lo
[Æ

in

: rwhthunki; Æ : rwhuniti; Æ

fail

: rwhuniti; Æ

su



: rwhuniti℄

(the barbs Æ

fail

and Æ

su



are to be used later).

Proof: These systems are, for the most part, straightforward, and readers

familiar with the work in [8, 9℄ will have little trouble re
onstru
ting them.

As an example we show the systems for k:a:(~v;G)! and go

p

l:V a
tions:

we de�ne

C

I

k:a:(~v;G)!

def

= kJa?(~x; y) if ~x = ~v then G(~x; y) j goto

Æ

in

k

0

:Æ!hi else stopK

and

C

I

go

p

l:V

def

= k

0

JÆ

in

!hÆ!hii j goto

p

l:V K

The interested reader is invited to 
he
k that, for any 
on�guration su
h

that (I �M)

�

�! (I �M

0

) for one of these a
tions then it is the 
ase that

I

�

; fk

0

: K

0

g ` C

�

and moreover C

�

jM�!

�

k

0

JÆ

in

!hÆ!hiiK jM

00

where M

00

is stru
turally equivalent to M

0

up to 
olle
tion of terminated garbage

threads lJstopK. �

By providing su
h testing systems for ea
h a
tion in the lts provided

above we are able to establish our se
ond main result

Theorem 6.13 (Full abstra
tion of �

bis

for �


xt

).

I j=M �


xt

N if and only if I j=M �

bis

N:

Proof: (Sket
h) One dire
tion is given by Proposition 6.11. The 
onverse

is shown by building a bisimulation from all pairs of 
on�gurations su
h

that I j= M �


xt

N . Spe
i�
ally, let R be a relation over 
on�gurations

de�ned by

(I j=M) R (I j= N)
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if I j= M �


xt

N . We outline the proof that R de�nes a bisimulation,

from whi
h the result follows.

To this end suppose (I � M)

�

�! (I

0

� M

0

), where I j= M R N .

We must �nd a mat
hing move (I � N)

�

=) (I

0

� N

0

), su
h that I

0

j=

M

0

R N

0

. For the purposes of this sket
h we assume for simpli
ity that

I = I

0

. By De�nability, Proposition 6.12. We know that there exists a

system C

I

�

, typeable from I

�

; fk

0

: K

0

g, whi
h satis�es the 
onditions of


ontextuality for knowledge-indexed relations and moreover, indu
es an

intera
tion when plugged with M . In other words,

C

I

�

jM�!

�

k

0

JÆ

in

!hÆ!hiiK jM

00

(26)

for some Æ; Æ

in

at k

0

andM

00

equivalent toM

0

up to stru
ture and garbage


olle
tion. We make use of this property of C

I

�

as follows: �rst for the barb

names, Æ

fail

and Æ

su



in K

0

let

Flip

def

= k

0

JÆ

fail

!hi j Æ?():Æ

fail

?():Æ

su



!hiK

and let

D

I

�

def

= (k

0

JÆ

in

?(X : thunk)X()K j Flip j C

I

�

j �)

It is easy to 
he
k that I

�

; fk

0

: K

0

g ` D

I

�

whenever I

�

; fk

0

: K

0

g ` C

I

�

.

We should note that the redu
tions (26) above extend so that (up to

stru
ture and garbage 
olle
tion)

D

I

�

[M ℄�!

�

k

0

JÆ

su



!hiK jM

00

The hypothesis I j= M �


xt

N , the fa
t that I

�

; fk

0

: K

0

g ` C

I

�

and

weakening, 
ontextuality and barb preserving properties of �


xt

together

allow us to use (I

�

; fk

0

: K

0

g; I

T

+ k

0

) j= D

I

�

[M ℄�


xt

D

I

�

[N ℄ to �nd a

mat
hing transition

D

I

�

[N ℄�!

�

k

0

JÆ

su



!()K jN

00

with

(I

�

; fk

0

: K

0

g; I

T

+ k

0

) j= kJÆ!hiK jM

00

�


xt

kJÆ!hiK jN

00

:

Note that we 
an guarantee this form by the absen
e of the Æ

fail

barb in

k

0

JÆ

su



!hiK jM

00

and the fa
t that, by symmetry, absen
e of barbs must

also be preserved. The systems C

I

�

are also built in su
h a way as to

guarantee that whenever D

I

�

[N ℄�!

�

k

0

JÆ

su



!hiK j N

00

then we must also

have I�N

�

=)I�N

0

where, again, N

00

is equivalent to N

0

up to stru
tural

equivalen
e and garbage 
olle
tion. It is easy to show dire
tly that

(I

�

; fk

0

: K

0

g; I

T

+ k

0

) j= k

0

JÆ

su



!hiK jM

00

�


xt

k

0

JÆ

su



!hiK jN

00

implies I j= M

0

�


xt

N

0

whi
h is enough to 
on
lude with I j= M

0

RN

0

.

A symmetri
 argument establishes that R is a bisimulation.
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The 
ase in whi
h (I�M)

�

�!(I

0

�M

0

) for I

0

not equal to I is slightly

more 
ompli
ated and is dealt with using an Extrusion Lemma similar to

that found in [6, 9, 8℄. �

This provides an alternative 
hara
terisation of redu
tion barbed 
on-

gruen
e whi
h models the nature of knowledge a
quisition possible by

testing with highly 
onstrained mobile 
ode in an expli
it way.

7 Con
lusion

We have developed a sophisti
ated type system for 
ontrolling the be-

haviour of mobile 
ode in distributed systems, and demonstrated that,

at least in prin
iple, 
oindu
tive proof prin
iples 
an still be applied to

investigate their behaviour.

The use of types in this manner 
ould be 
onsidered as a parti
ular


ase of the general approa
h of proof-
arrying 
ode, [18℄ and typed assembly

language (TAL) [17℄. Here hosts would publish their safety poli
ies in

terms of a type or logi
al proposition and 
ode wishing to enter would

have to arrive with a proof, whi
h a type
he
ker or proof
he
ker 
an use

to verify that it satis�es the published poli
y. Indeed we intend to use

the types of the 
urrent paper in this manner, by extending the work in

[20℄. The work of [18℄ and [17℄ has inspired mu
h further resear
h into

the use of type systems in higher-level languages for resour
e a

ess and

usage monitoring, [23℄, [12℄, for example. However the emphasis in these

papers is on dynami
s and 
ounting of resour
e usage rather than using

sophisti
ated types to spe
ify �ne-grained a

ess 
ontrol.

There has been mu
h work on modelling mobility and lo
ations using

parti
ular pro
ess 
al
uli. Perhaps the 
al
ulus 
losest to safeDpi is the

Seal Cal
ulus, [5℄. Seals are hierar
hi
ally organised 
omputational sites

in whi
h inter-seal 
ommuni
ation, whi
h is 
hannel-based, is only allowed

among siblings or between parents and siblings. Seals may also be 
om-

muni
ated, rather like the 
ommuni
ation of higher-order pro
esses along

ports in safeDpi; indeed in some sense it is more general as the seal being

transmitted may be 
omputationally a
tive. However the 
ommuni
ation

of seals is more 
ompli
ated, as it involves agreement between three par-

ti
ipants, the sender, the re
eiver, and the seal being transmitted. Seals

are also typed using interfa
es, similar to our �ne-grained pro
ess types,

�. But these only re
ord the input 
apabilities a seal o�ers to its parents,

and in order to preserve interfa
es under redu
tion the transmission of

input 
hannel 
apabilities is forbidden in the language. This is a severe

restri
tion, at least in general distributed 
omputing, if not in the more fo-


used appli
ation area of seals. For example the generation of new servers
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requires the the transmission of input 
apabilities. We believe that our

dependent and existential types 
an also be applied to the Seal Cal
ulus,

to obtain a more general notion of interfa
e, whi
h will still be preserved

by redu
tion.

The M-
al
ulus, [22℄, a higher-order extension of the distributed join


al
ulus, is also 
losely related, at least 
on
eptually, to safeDpi. Here,

not only are lo
ations hierar
hi
ally organised, but are programmable, in

the sense that entry and exit poli
ies for ea
h lo
ation 
an be expli
itly

programmed. In addition it has an interesting operator, 
alled passivation,

whi
h 
an freeze the 
ontents of a site into a value. However their type

system is not related to one we have developed for safeDpi; the latter

addresses a

ess 
ontrol issues for migrating 
ode whereas the former is


on
erned with uni
ity of lo
ations; in a higher-order language with a

passivation operator it is important to ensure that ea
h lo
ality has a

unique name. Thus the type system for the M-Cal
ulus draws on that

presented in [24℄, where uni
ity of the lo
ation of 
hannel names was

addressed, rather than that of [25℄, whi
h developed �ne-grained a

ess


ontrol types for pro
esses.

Type systems have also been used to expli
itly 
ontrol mobility in

distributed 
al
uli, most notably in variants of the Ambient 
al
ulus of

Cardelli and Gordon [3℄. In parti
ular, [2℄, [16℄ use subtyping to 
on-

trol movement of mobile pro
esses in a hierar
hi
ally distributed system

by introdu
ing expli
it types to express permission to migrate. A simi-

lar te
hnique was used for Dpi in [10℄, [8℄. In 
ontrast, here we 
ontrol

mobility only indire
tly through types. Code is always permitted to mi-

grate provided it has a

ess to a suitable port at the target lo
ation. But

by restri
ting the use of 
hannels in the types this 
onsequently restri
ts

migration. Indeed, we de
ouple permission to migrate from the lo
ation

name itself, a�ording more 
exibility in the 
ontrol of migration.

The 
oindu
tive 
hara
terisation presented here makes use of higher-

order a
tions in the sense that, to intera
t with a system willing to send

a s
ript V , the environment must supply a re
eiving s
ript G to whi
h V

will be applied. A similar approa
h is used in the 
hara
terisation theo-

rems for various forms of ambients in [7℄ and [15℄. Higher-order a
tions

are also used in the bisimulation equivalen
e presented in [4℄ for the Seal


al
ulus. However, there the three way nature of higher-order 
ommuni-


ation leads to a proliferation of su
h a
tions, some of whi
h 
an not be

simulated by seal 
ontexts; see Se
tion 4.4 of [5℄ for examples. As a re-

sult the bisimulation equivalen
e is more dis
riminating than the natural


ontextual equivalen
e for seals.

Su
h higher-order bisimulations do not dire
tly result in automati
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(e-empty)

` env

(e-s
ript)

� ` S : ty

�; x : S ` env

x 62 �

(e-gres)

� ` C : ty

�; u : r
hCi ` env

u 62 �

(e-lo
)

� ` env

�; u : lo
 ` env

u 62 �

(ty-lookup)

�; u : T;�

0

` env

�; u : T;�

0

`

lookup

u : T

(ty-Elookup)

�; h~x :

~

E; y : Ti;�

0

` env

�; hex :

e

E; y : Ti;�

0

`

lookup

y : T

(e-newl
han)

� `

lookup

w : lo


� ` C : ty

�; u : C�w ` env

u 62 �

(e-l
han)

� `

lookup

w : lo


� `

lookup

u : r
hDi

� ` D <: C

�; u : C�w ` env

(e-Edep)

�; fx

1

: E

1

g; : : : ; fx

n

: E

n

g ` T : ty

�; y : hT with ex :

e

Ei ` env

x

i

; y 62 �

y 6= x

i

Figure 10. Well-de�ned Environments

veri�
ation methods for distributed systems. But they do serve to fo
us

on the essential features of systems whi
h determine their behaviour; for

example our results for safeDpi have demonstrated the importan
e of

the goto moves go

p

k:V . Moreover they serve as a starting point for more

in-depth analyses of the behaviour of safeDpi systems, and more parti
-

ularly of interesting sub-languages. For example is it possible to use the

te
hnique of [13℄ to �nd a fully-abstra
t bisimulation equivalen
e whi
h

only uses �rst-order labels? There the re
eiving 
ontexts for higher-order

values are repla
ed by symboli
 representatives. Although not dire
tly ap-

pli
able due to the extra 
ompli
ation of distribution and mobility 
ontrol,

it would be of great interest to pursue those ideas in the 
urrent setting.

A
knowledgements: The �rst two authors would like to a
knowledge

the �nan
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omputing proje
ts, Mikado

and Myths.

A Auxiliary De�nitions and Results

Types and Type Environments: The judgements for well-de�ned en-

vironments, � ` env, and subtyping, � ` T <: U, are de�ned simultane-
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(sub-base)

� ` env

� ` base <: base

(sub-top)

� ` env

� ` T <: >

(sub-pro
top)

� ` � <: �

� ` � <: pro


(sub-
han)

� ` T

r

<: U

r

;U

w

<: T

w

;

T

w

<: T

r

� ` whT

w

i <: whU

w

i;

� ` rhT

r

i <: rhU

r

i

� ` rwhT

r

;T

w

i <: rwhU

r

;U

w

i

� ` T

r

<: U

r

;U

w

<: T

w

T

w

<: T

r

� ` rwhT

r

;T

w

i <: whU

w

i

� ` rwhT

r

;T

w

i <: rhU

r

i

(sub-lo
)

� `

lookup

u

i

: r
hD

i

i

� ` D

i

<: C

i

; D

j

<: C

0

j

;

� ` C

i

<: C

0

i

;

� ` lo
[u

1

: C

1

; : : : ; u

m

: C

m

℄ <: lo
[u

1

: C

0

1

; : : : ; u

n

: C

0

n

℄

0 � n � m

(sub-hom)

� ` C <: C

0

� `

lookup

w : lo


� ` C�w <: C

0

�w

� ` r
hCi <: r
hC

0

i

(sub-s
ript)

�; fx

1

: (T

1

)�hereg; : : : ; fx

n

: (T

n

)�hereg ` � <: �

0

� ` Fdep(ex :

e

T!�) <: Fdep(ex :

e

T!�

0

)

(sub-pro
)

� ` u

i

: C

i

�w

i

; u

j

: C

0

j

�w

j

� ` C

0

i

�w

0

i

<: C

i

�w

i

� ` pr[u

1

: C

1

�w

1

; : : : ; u

m

: C

m

�w

m

℄ <: pr[u

1

: C

0

1

�w

1

; : : : ; u

n

: C

0

n

�w

n

℄

0 � m � n

(sub-TuDep)

�; fx

1

: E

1

g; : : : ; fx

n

: E

n

g ` T <: T

0

� ` Tdep(ex :

e

E
)T <: Tdep(ex :

e

E
)T

0

(sub-EDep)

�; fx

1

: E

1

g; : : : ; fx

n

: E

n

g ` T <: T

0

� ` Edep(ex :

e

E)T <: Edep(ex :

e

E)T

0

Figure 11. Subtyping



62 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

ously, using the rules in Figure 10 and Figure 11. The former are a mild

extension of the 
orresponding rules in Figure 6 of [8℄ to a

ommodate

s
ript and dependent types and rely on a predi
ate � `

lookup

u : T, whi
h

simply looks up the type asso
iated with u in �. The latter is an extension

of the well-known subtyping rules of types in the Pi
al
ulus, [21℄, and

Dpi, [10, 8℄; the rules for pro
ess types are similar to those used in [25℄.

The judgements also 
he
k that the identi�ers used in T; U are a
tually

de
lared appropriately in �.

Proposition A.1 (Sanity Che
ks).

� � ` T <: U implies � ` env

� � ` T <: U implies � ` T : ty and � ` U : ty

� � ` T <: U, � ` U <: R implies � ` T <: R

� �; u : T ` env implies � ` env and � ` T : ty

Proof: By rule indu
tion. �

Meets and Joins: The partial operators u; t on type expressions are

de�ned by extending the de�nitions used in [10, 8℄ for 
hannel and lo
ation

types. We take them to be the least re
exive and symmetri
 operators

whi
h satisfy a series of rules for 
ombining together various kinds of type

expressions. Those governing 
hannel expressions are, as in [10℄:

� rhT

1

i u rhT

2

i = rhT

1

u T

2

i, rhT

1

i t rhT

2

i = rhT

1

t T

2

i

� whT

1

i u whT

2

i = whT

1

t T

2

i, whT

1

i t whT

2

i = whT

1

u T

2

i

� rhT

r

i u whT

w

i = rwhT

r

;T

w

i

� rwhT

r

;T

w

i u rhT

0

r

i = rwhT

r

u T

0

r

;T

w

i,

rwhT

r

;T

w

i t rhT

0

r

i = rwhT

r

t T

0

r

;T

w

i,

� rwhT

r

;T

w

i u whT

0

w

i = rwhT

r

;T

w

t T

0

w

i,

rwhT

r

;T

w

i t rhT

0

w

i = rwhT

r

;T

w

u T

0

w

i,

To express the rules for lo
ation types we take advantage of the fa
t that

the ordering of their 
omponents is immaterial:

� lo
[u

1

: C

0

1

℄u lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[u

1

: (C

0

1

uC

1

); : : : ; u

n

: C

n

℄,

lo
[u

1

: C

0

1

℄ t lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[u

1

: (C

0

1

t C

1

)℄

� if u does not o

ur in fu

1

; : : : ; u

n

g then

lo
[u : C℄ u lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[u : C; u

1

: C

1

; : : : ; u

n

: C

n

℄,

lo
[u : C℄ t lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[℄

� lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ u K = lo
[u

1

: C

1

℄ u (: : : (lo
[u

n

: C

n

℄ u K) : : : ),

lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄tK = (lo
[u

1

: C

1

℄tK)u : : :u (lo
[u

n

: C

n

℄tK)
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We use a similar approa
h to de�ning the operations on pro
ess types,

where we use GC as an arbitrary type of the form C�w. However the

pro
ess type 
onstru
tor is 
ontravariant, whereas the lo
ation 
onstru
tor

is 
ovariant.

� pr[u

1

: C

0

1

�w

1

℄ u pr[u

1

: C

1

�w

1

; : : : ; u

n

: GC

n

℄ = pr[u

1

: (C

0

1

t C

1

)�w

1

℄,

pr[u

1

: C

0

1

�w

1

℄ t pr[u

1

: C

1

�w

1

; : : : ; u

n

: GC

n

℄ =

pr[u

1

: (C

0

1

u C

1

)�w

1

; : : : ; u

n

: GC

n

℄

� if u�w does not o

ur in fu

1

�w

1

; : : : ; u

n

�w

n

g then

pr[u : C�w℄ u pr[u

1

: C

1

�w; : : : ; u

n

: C

n

�w

n

℄ = pr[℄,

pr[u : C�w℄ t pr[u

1

: C

1

�w

1

; : : : ; u

n

: C

n

�w

n

℄ =

pr[u : C�w; u

1

: C

1

�w

1

: : : ; u

n

: C

n

�w℄

� pr[u

1

: GC

1

; : : : ; u

n

: GC

n

℄ u � =

(pr[u

1

: GC

1

℄ u �) t : : : t (pr[u

n

: GC

n

℄ u �),

pr[u

1

: GC

1

; : : : ; u

n

: GC

n

℄ t � = pr[u

1

: GC

1

℄ t (: : : (u

n

: GC

n

t �) : : : )

� pro
 u � = �, pro
 t � = pro


For the various forms of dependent types, the rules are straightforward:

� Fdep(~x :

~

T!�) u Fdep(~x :

~

T!�

0

) = Fdep(~x :

~

T!(� u �

0

)),

Fdep(~x :

~

T!�) t Fdep(~x :

~

T!�

0

) = Tdep(~x :

~

T) (� t �

0

)

� Tdep(~x :

~

T)T u Tdep(~x :

~

T)T

0

= Tdep(~x :

~

T) (T u T

0

),

Tdep(~x :

~

T)T t Tdep(~x :

~

T)T

0

= Tdep(~x :

~

T) (T t T

0

)

� Edep(~x :

~

T)T u Edep(~x :

~

T)T

0

= Edep(~x :

~

T) (T u T

0

),

Edep(~x :

~

T)T t Edep(~x :

~

T)T

0

= Edep(~x :

~

T) (T t T

0

)

For the remaining kinds of type expressions we merely extend the de�ni-

tions homomorphi
ally:

� r
hCi u r
hC

0

i = r
hC u C

0

i, r
hCi t r
hC

0

i = r
hC t C

0

i

� T�w u T

0

�w = (T u T

0

)�w

Proposition A.2.

� If there exists some type expression T su
h that � ` T <: T

1

and

� ` T <: T

2

then T

1

u T

2

is well-de�ned

� When T

1

uT

2

is well-de�ned, � ` T

1

uT

2

<: T

i

and � ` T <: T

1

uT

2

,

for any type expression T su
h that � ` T <: T

1

and � ` T <: T

2

.

� If there exists some type expression T su
h that � ` T

1

<: T and

� ` T

2

<: T then T

1

t T

2

is well-de�ned

� When T

1

tT

2

is well-de�ned, � ` T

i

<: T

1

tT

2

, and � ` T

1

tT

2

<: T,

for any type expression T su
h that � ` T

1

<: T and � ` T

2

<: T.
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Proof: The �rst and third statements are proved by indu
tion on the

derivations of � ` T

i

<: T and � ` T <: T

i

respe
tively. The se
ond and

fourth are by indu
tion on the 
onstru
tion of T

1

uT

2

; T

1

tT

2

respe
tively.

�

Note that be
ause of the top type > the premise of the third statement is

always true; so T

1

t T

2

always exists, although in many 
ases it will be

the uninformative type >.

Substitutions: Free identi�ers may o

ur in type expressions and there-

fore we need to de�ne Tfj

v

=ujg for an arbitrary type expression T; this is

then used as part of the de�nition of substitution into pro
ess terms. The

de�nition of Tfj

v

=ujg is by indu
tion on the stru
ture of T. The only inter-

esting 
ases are lo
ation and pro
ess types, where the de�nition needs to

ensure that the entries remain unique:

� lo
[u

0

: C℄fj

v

=ujg = lo
[u

0

fj

v

=ujg : Cfj

v

=ujg℄

� lo
[u

1

: C

1

; : : : u

n

: C

n

℄fj

v

=ujg =

(lo
[u

1

: C

1

℄fj

v

=ujg) u : : : u (lo
[u

n

: C

n

℄fj

v

=ujg)

� pr[u

0

: C℄fj

v

=ujg = pr[u

0

fj

v

=ujg : Cfj

v

=ujg℄

� pr[u

1

: C

1

; : : : u

n

: C

n

℄fj

v

=ujg = (pr[u

1

: C

1

℄fj

v

=ujg)t : : :t (pr[u

n

: C

n

℄fj

v

=ujg)

� All other 
ases are de�ned homomorphi
ally. For example

{ rwhT

r

;T

w

ifj

v

=ujg = rwhT

r

fj

v

=ujg;T

w

fj

v

=ujgi

{ Tdep(~x :

~

E)Tfj

v

=ujg = Tdep(~x : (

~

Efj

v

=ujg)) (Tfj

v

=ujg), where we assume v

is di�erent from ea
h x

i

Proposition A.3.

� Suppose T u U is de�ned. Then so is Tfj

v

=ujg u Ufj

v

=ujg and (up to �-

equivalen
e) is the same as (T u U)fj

v

=ujg

� Similarly for T t U.

Proof: By simultaneous indu
tion on the de�nitions of T uU and T tU.

�

Substitution of identi�ers also 
ommutes with the 
hannel extra
tion

fun
tion.

Proposition A.4. For all identi�ers u; v,

pr


h

[V : T℄fj

v

=ujg = pr


h

[V fj

v

=ujg : Tfj

v

=ujg℄

Proof: By indu
tion on the de�nition of pr


h

[V : T℄. The only non-trivial


ase is when V is an identi�er w and T a lo
ation type, when the proof
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depends on the pe
uliaries of the appli
ation of substitutions to lo
ation

and pro
ess types. �

Proposition A.5 (Substitution). Suppose � `

w

v : T and x 62 �.

Then

� �; x : (T)�w;� ` env implies �;�fj

v

=xjg ` env

� �; ; x : (T)�w;� ` T <: U implies �;�fj

v

=xjg ` Tfj

v

=xjg <: Ufj

v

=xjg

Proof: By simulataneous indu
tion on the derivations. Note that there

are only four possibilities for the entry x : (T)�w, namely x : lo
, x : r
hDi,

x : C�w or x : S. �

The 
orresponding substitution result for existential values depends on

the following property of existential witnesses.

Proposition A.6. Let �

e

denote �; y : hT with ~x :

~

Ti;�

0

. Then

� �

e

` env implies x

i

does not o

ur in �

0

.

� �

e

` T <: U implies x

i

does not o
ur free in T; U.

Proposition A.7. Suppose � `

w

h~v; vi : Edep(~x :

~

E)T. Let �

e

denote

�; y : h(T)�w with ~x : (

~

E)�wi;�. Then

� �

e

` env implies �;�fj

v

=yjg ` env

� � ` U

1

<: U

2

implies U

1

fj

~v;v

=~x;yjg <: U

2

fj

~v;v

=~x;yjg

Proof: By simultaneous indu
tion on the inferen
es. �

Adding knowledge to environments: Here we extend the meet op-

erator u to lists of type asso
iations. This is used in Figure 9, in the rules

(m-send:val) and (m-send:dep:s
ript), for in
reasing the knowledge in

a type environment. We �rst de�ne the (partial) operation � u u : E

between an arbitrary asso
iation list � and a singleton:

� If E is a lo
ated 
hannel A�w then � u u : E is �; u : E.

� Otherwise if u has no asso
iation in � then � u u : E is also �; u : E.

� Otherwise � u u : E is obtained by repla
ing the asso
iation of u in �,

say u : E

0

, by the new asso
iation u : (EuE

0

); in this 
ase the operation

is only de�ned if (E u E

0

) exists.

The general de�nition of �

1

u �

2

then follows by indu
tion on the size of

�

2

:

� �

1

u � = �

1

� �

1

u (�

0

2

; u : E) = (�

1

u �

0

2

) u u : E
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