
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

safeDpi: a language for controlling

mobile code

Matthew Hennessy

Julian Rathke

Nobuko Yoshida

Report 02/2003 October 2003

Computer Science
Department of Informatics

University of Sussex
Brighton BN1 9QH

ISSN 1350–3170

safeDpi: a language for
ontrolling mobile

ode

Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Abstra
t. safeDpi is a distributed version of the Pi
al
ulus, in whi
h pro
esses

are lo
ated at dynami
ally
reated sites. Parametrised
ode may be sent between

sites using so-
alled ports, whi
h are essentially higher-order versions of Pi
al
ulus

ommuni
ation
hannels. A host lo
ation may prote
t itself by only a

epting
ode

whi
h
onforms to a given type asso
iated to the in
oming port.

We de�ne a sophisti
ated stati
 type system for these ports, whi
h restri
t the

apabilities and a

ess rights of any pro
esses laun
hed by in
oming
ode. Depen-

dent and existential types are used to add
exibility, allowing the behaviour of these

laun
hed pro
esses, en
oded as pro
ess types, to depend on the host's instantiation of

the in
oming
ode.

We also show that a natural
ontextually de�ned behavioural equivalen
e
an be

hara
terised
oindu
tively, using bisimulations based on typed a
tions. The
hara
-

terisation is based on the idea of knowledge a
quisition by a testing environment and

makes expli
it some of the subtleties of determining equivalen
e in this language of

highly
onstrained distributed
ode.

1 Introdu
tion

In this paper we elaborate a theory of distributed systems whi
h in
orpo-

rates resour
e poli
ies. Our main results are:

� a language for distributed systems in whi
h a

ess to hosts by mobile

ode is
ontrolled using
apability-based types

� a �ne-grained type system using novel forms of dependent and exis-

tential types whi
h gives hosts
onsiderable
exibility in determining

the allowed behaviour of in
oming
ode

� a
oindu
tive
hara
terisation of a natural
ontextual equivalen
e, based

on the notion of typed a
tions.

This is developed in terms of an extension of the language Dpi, [10, 8,

20, 14℄, a version of the Pi
al
ulus, [21℄, in whi
h pro
esses may migrate

between between lo
ations, whi
h in turn
an be dynami
ally
reated. In

Dpi a typi
al system takes the form

lJP K j (new e : E)(kJQK j lJRK)

where there are two threads P and R running at l and one, Q, running

at k. The threads Q and R share the private name e at type E. The

2 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

threads P ;Q; R are similar to pro
esses in the Pi
al
ulus in that they

an re
eive and send values on lo
al
hannels; the types of these
hannels

indi
ate the kind of values whi
h may be transmitted. Lo
ations may be

dynami
ally
reated. For example in

lJ(newlo
 k : K)withC in xpt

1

!hki j xpt

2

!hkiK

a new lo
ation k is
reated at type K, the
ode C is installed at k and

the name of the new lo
ation is exported via the
hannels xpt

i

. Lo
ation

types are similar to re
ord types, their form being

lo
[

1

: C

1

; : : :

n

: C

n

℄

This indi
ates that the
hannels, or resour
es,

i

at types C

i

are available

at the lo
ation. So for example K above
ould be

lo
[ping : rwhPi; �ng : rwhFi℄

indi
ating that the servi
es ping and �ng(er) are supported at k; r indi
ates

the permission to read from a
hannel, while w indi
ates the permission

to write to the
hannel. However the types at whi
h k be
omes known

depends on the types of the exporting
hannels. Suppose for example

these had the types

xpt

1

: whlo
[ping : whPi℄i

xpt

2

: whlo
[�ng : whFi℄i

Then pro
esses re
eiving the name k from the sour
e xpt

1

would only be

able to write to the ping servi
e at k, i.e. send messages to that servi
e,

while the sour
e xpt

2

only allows similar restri
ted a

ess to the �nger

servi
e. It is in this way, by sele
tively distributing names at parti
ular

subtypes, that resour
e a

ess poli
ies are implemented in Dpi.

In this paper we make two extensions to Dpi. The �rst allows more

ontrol to lo
ations over
ode whi
h wishes to a

ess their
omputation

spa
e. In Dpi the migration rule is given by

kJgoto l:P K �! lJP K;

any thread is allowed to migrate to the site l. In safeDpi, the language

of this paper, migration is represented by

kJgoto

p

l:F K �! lJp!hF iK

A thread must designate a port p at l in order to migrate. It then redu
es

to the system lJp!hF iK, whi
h a priori represents a thread running at lo-

ation l. However this thread will have no e�e
t until the site l makes

available a
orresponding thread of the form lJp?(x)QK; using standard

ommuni
ation this will now allow the e�e
tive entry of F . In this manner,

safeDpi: a language for
ontrolling mobile
ode 3

by programming the presen
e or absen
e of ports, the site l
an
ontrol

the immigration of
ode.

E�e
tively we have repla
ed un
onstrained spawning of pro
esses at

arbitrary sites by higher-order
ommuni
ation. Moreover these ports,

higher-order
hannels, have types asso
iated with them. The types on

ports are the se
ond major extension to the language. In general we allow

s
ripts, parameterised
ode, to be sent via ports. These take the form

�(~x :

~

T)P

where ea
h x

i

an be mat
hed by arbitrary transmittable values ; it is the

types T

i

whi
h determine the nature of the abstra
tion. But when su
h a

s
ript is transmitted it may be instantiated at the re
eiving site by values

of the appropriate type. This gives added se
urity to sites by
ontrolling

the type at whi
h s
ripts will be a

epted. This of
ourse depends on the

granularity of the type stru
ture for s
ripts.

The most straightforward form of type for s
ripts is

(~x :

~

T)! pro

stating that, whenever a s
ript of this type is instantiated with appropriate

parameters, the result is guaranteed to be a well-typed pro
ess. But a

priori there is no
onstraint on the resour
es it
an use. To limit the

a

ess of in
oming
ode to resour
es we introdu
e �ne-grained pro
ess

types, [25℄. These di
tate the
apabilities, on both lo
al and third-party

hannels, whi
h the
ode is allowed to a

ess, and take the form of a

re
ord:

pr[

1

: C

1

�k

1

; : : : ;

n

: C

n

�k

n

℄

A pro
ess of this type
an use at most the set of
hannels

i

, lo
ated

respe
tively at the lo
ations k

i

, with the
apabilities C

i

; in these pro
ess

types the use of a lo
al
hannel
 is indi
ated by an entry of the form

 : C�here.

When these pro
ess types are in
orporated into s
ript types a host

lo
ation
an have mu
h more e�e
tive
ontrol over the behaviour of in-

oming
ode, parti
ularly when we use a form of dependent fun
tion type.

For example suppose a port only a

epts s
ripts at the type

Fdep(x : rhTi! pr[x : rhTi�here; reply : whTi�k℄)

Then an in
oming s
ript
an only be instantiated by a lo
al
hannel, with

read
apability at type T. Moreover the resulting running
ode is now

only allowed to read from this lo
al
hannel and write to the third-party

hannel
alled reply lo
ated at the spe
i�
 lo
ation k. With a port with

4 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

the type

Fdep(y : whTi�k! pr[info : rhTi�here; y : whTi�k℄)

the host
an instantiate the in
oming s
ript with some
hannel lo
ated

at the site k, on whi
h it has write permission, and the running
ode is

restri
ted to writing there, and reading from a lo
al
hannel
alled info.

Note that in both these examples the lo
ation k is built into the s
ript

types. Thus a server with an a

ess port at this type would only allow

entry to s
ripts whi
h guarantee to write only at k. However dependent

types
an be used to allow this target site to be parameterised. Consider

the simple example

Tdep(z : L) Fdep(y : whTi�z! pr[info : rhTi�here; y : whTi�z℄)

where the s
ript type is now parameterised by lo
ations of some type L.

This allows the server to a

epts s
ripts whi
h
an write the information

at sites determined by the
lient.

Although these dependent types add
onsiderable
exibility to the in-

tera
tion between
lients and servers, they have potential drawba
ks; as

we will see the
lient has to send with the s
ript the a
tual obje
ts on

whi
h their type is parameterised. In prin
iple this opens up the possibil-

ity of (rogue) servers abusing this extra information. However existential

types provide extra prote
tion to
lients, be
ause, as we will see, this extra

information is not required as part of the
ommuni
ation.

The language safeDpi is formally de�ned in Se
tion 2, together with

a redu
tion semanti
s. In Se
tion 3 we de�ne the set of types and the type

inferen
e system; the formal development relies heavily on the type sys-

tems already given in [8, 19℄. In Se
tion 4 we develop a series of example

systems. These are designed on the one hand, to explain the intri
a
ies of

the the type inferen
e rules, and on the other to demonstrate the power

and
exibility of the types. This is followed by a se
tion devoted to es-

tablishing the expe
ted properties of type system, in parti
ular Subje
t

Redu
tion.

We now turn to the se
ond topi
 of the paper, typed behavioural equiv-

alen
es. In untyped languages, these are normally de�ned
oindu
tively,

as the largest equivalen
es over pro
esses whi
h preserve, in some sense,

a
tions of the form

M

�

�!M

0

(1)

Typi
ally these a
tions des
ribe the possible forms of intera
tions between

a pro
ess and its environment. In a typed setting many of these a
tions

will not be possible, be
ause the environment will not have the power to

safeDpi: a language for
ontrolling mobile
ode 5

parti
ipate in them. As a simple example
onsider the system

lJ(new

 : C) (xpt!h
i j
?(x)Q)K

in an environment in whi
h the export
hannel xpt
an only send
hannels

with the read
apability. The environment will re
eive
 along xpt but will

not be able to transmit on
. Consequently the potential input a
tions on

 by the pro
ess above will not be possible.

Following [9, 8℄ we repla
e the untyped a
tions in (1) with typed a
tions

of the form

I �M

�

�! I

0

�M

0

where M is the system being observed while I is a
onstraint on the ob-

serving environment representing its knowledge of the system M . A
tions

hange both the pro
esses and the environment in whi
h they are being

observed. This will lead, in the standard manner, to a
oindu
tively de-

�ned, bisimulation-based, relation between systems, whi
h we denote by

I j= M �

bis

N

In our se
ond main result of the paper, we prove that this
oindu
tive rela-

tion
oin
ides with a naturally de�ned
ontextual equivalen
e. One of the

features of our approa
h is the expli
it representation of the information

whi
h the environment
an obtain from systems through testing with
on-

texts. In su
h a highly
onstrained setting as this, this be
omes a genuine

aid in understanding the equivalen
e. This is the topi
 of Se
tion 6.

This report ends, in Se
tion 7, with some
on
lusions and a brief survey

of related work.

2 The language safeDpi

Syntax: The syntax, given in Figure 1, is a slight extension of that of

Dpi from [8℄. It is expli
itly typed, but for expository purposes we defer

the des
ription of types until Se
tion 3. The syntax also presupposes a

general set of
hannel names Names, ranged over by n;m, and a set

of variables Vars ranged over by x; y. Identi�ers, ranged over by u;w,

may
ome from either of these sets. Names is partitioned into two sets,

Lo
s ranged over by k; l; : : : for lo
ations, and Chans ranged over by

a; b;
; : : : for
hannels. There is also a distinguished subset of
hannels

alled ports, and ranged over by p; q; : : : , whi
h are used to handle higher-

order values. Similarly we will sometimes use �; �

0

for variables whi
h will

be instantiated by higher-order values.

The syntax for systems, ranged over by M;N;O, is the same as in

Dpi, allowing the parallel
omposition of lo
ated pro
esses lJP K, whi
h

may share de�ned names, using the
onstru
t (new e : E)�.

6 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

M;N ::= Systems

lJP K Lo
ated Pro
ess

M jN Composition

(new e : E)M Name Creation

0 Termination

P;Q ::= Pro
esses

u!hV i Output

u?(X : T)P Input

goto

u

v:P Migration

if u

1

= u

2

then P else Q Mat
hing

(new

 : C) P Channel
reation

(newreg n : N) P Global name
reation

(newlo
 k : K)withQ in P Lo
ation
reation

P jQ Composition

F (~v) Appli
ation

�P Iteration

stop Termination

U; V;W ::= Values

(~v) tuples

v ::= Value
omponents

(�~x :

~

T)P S
ripts

u identi�ers

Figure 1. Syntax of safeDpi

The syntax for pro
esses, ranged over by P; Q is an extension of the

Pi
al
ulus, [21℄, with primitives for migration between lo
ations. Par-

allelism is allowed, we have the terminated pro
ess stop, and we also allow

mat
hing and mismat
hing, with the
onstru
t if u

1

= u

2

then P else Q,

and a form of iteration �P .

In the input
onstru
t u?(X : T)P we take X to be a pattern whi
h is

used to de
onstru
t in
oming values; this is a value whi
h only
ontains

distin
t o

urren
es of variables. In our somewhat restri
ted format for

values this means that X has the form (~x), with ea
h x

i

being distin
t.

The output
onstru
t is asyn
hronous, u!hV i. Here V is a tuple
onsisting

of either identi�ers or higher-order values. The latter
an take the form

of s
ripts, � (~x :

~

T): P , where P is an arbitrary pro
ess term; we will

safeDpi: a language for
ontrolling mobile
ode 7

often use F to indi
ate an arbitrary s
ript, whereas v will be reserved for

the individual
omponents in a tuple V ; thus it will represent either an

identi�er or a s
ript. Of parti
ular interest to us will be tuples of the form

(~v; F) whi
h will be interpreted as dependent values ; intuitively the s
ript

F depends on the values ~v.

At the risk of being verbose, the syntax has expli
it notations for the

various forms of names whi
h
an be de
lared. In (new

 : C) P a new

lo
al
hannel named
 is de
lared, while (newregn : N) P represents the

generation of a new globally registered name n for
hannels; see [8℄ for mo-

tivation. When a new lo
ation is de
lared, in (newlo
 k : K)withQ in P ,

its de
laration type K
an only involve
hannel names whi
h have been

registered. This
onstru
t generates the new lo
ation k, sets the
ode Q

running there, and in parallel
ontinues with the exe
ution of P . This

spe
i�

onstru
t for new lo
ations is required sin
e
ode may only be

exe
uted at a lo
ation on
e entry has been be gained via a port; so here

Q represents the
ode with whi
h the lo
ation is initialised.

The main novelty in safeDpi, over Dpi, is the
onstru
t

goto

p

k:F

Intuitively this means: migrate to lo
ation k via the port p with the
ode

F . Our type system will ensure that F is in fa
t a s
ript with a type

appropriate to the port p; moreover entry will only be gained if at the

lo
ation k the port p is
urrently a
tive.

The various binding stru
tures, for names and variables, gives rise

to the standard notions of free and bound o

urren
es of identi�ers, �-

onversion, and (
apture-avoiding) substitution of values for identi�ers

in terms, Pfj

v

=ujg; this is extended to patterns, Pfj

V

=Xjg in the standard

manner. We omit the details but three points are worth emphasising.

The �rst is that many su
h substitutions may give rise to badly formed

pro
ess terms but our typing system will ensure that this will never o

ur

in well-typed terms. The se
ond is that identi�ers may o

ur in our types

and therefore we require a notion of substitution into types; this will be

explained in Se
tion 3. Finally terms will be identi�ed up to �-equivalen
e,

and bound identi�ers will always be
hosen to be distin
t, and di�erent

from any free identi�ers.

In the sequel we use system to refer to a
losed system term, that is

a system term whi
h
ontain no free o

urren
es of variables; similarly a

pro
ess means a
losed pro
ess term.

8 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Redu
tion Semanti
s: This is given in terms of a binary relation be-

tween systems

M �! N

and is a mild generalisation of that given in [8, 10℄ for Dpi.

Definition 2.1 (Contextual relations). A relation R over systems

is said to be
ontextual if it preserves all the system
onstru
tors of the

language; that is M RN implies

� M jORN jO and O jM RO jN

� (new e : E)M R (new e : E)N . �

The redu
tion relation is de�ned to be the least
ontextual relation whi
h

satis�es the axioms and rule in Figure 2. The rule (r-str) merely says that

we are working up to a stru
tural equivalen
e, �, whi
h abstra
ts from

inessential details in the terms representing systems. Formally stru
tural

equivalen
e is de�ned to be the least
ontextual relation between (
losed)

systems whi
h satis�es the axioms whi
h are given in Figure 3; these are

the natural adaptations of the usual axioms for stru
tural equivalen
e in

the Pi
al
ulus.

The main redu
tion involves lo
al
ommuni
ation, governed by the rule

(r-
omm), taken dire
tly from Dpi. However here the value V may be a

s
ript; in other words this rule en
ompasses higher-order
ommuni
ation.

Higher-order output
ommands are generated by (r-move), whi
h has

already been explained in the introdu
tion.

Migration to a site l must designate a port p at whi
h the migrating

ode is to be re
eived. The rule

kJgoto

p

l:F K �! lJp!hF iK

then translates the migration
ommand into the system lJp!hF iK, whi
h a

priori represents a thread running at the target lo
ation l. However this

will have no e�e
t until the site l makes available a
orresponding thread

of the form lJp?(�)QK; using the rule (r-
omm) this will now allow the

e�e
tive entry of F . In this manner the site l
an
ontrol the immigration

of
ode.

The rule (r-
:
reate) exports the new
hannel name
 generated by

a pro
ess at k to the system level, where it is tagged with the de
laration

type C�k; this re
ords the lo
ation of the new
hannel. There is a
or-

responding rule for registered names, (r-n:
reate); but su
h names are

global and therefore there is no need to re
ord where they were de
lared.

The generation of new lo
ations is governed by (r-l:
reate):

kJ(newlo
 l : L)withC in P K �! (new l : L)(kJP K j lJCK)

safeDpi: a language for
ontrolling mobile
ode 9

(r-
omm)

kJ
!hV iK j kJ
?(X : T)P K �! kJPfj

V

=XjgK

(r-split)

kJP jQK �! kJP K j kJQK

(r-n:
reate)

kJ(newregn : N) P K �! (new n : N) kJP K

(r-move)

kJgoto

p

l:F K �! lJp!hF iK

(r-l:
reate)

kJ(newlo
 l : L)withC in P K �! (new l : L)(kJP K j lJCK)

(r-
:
reate)

kJ(new

 : C) P K �! (new
 : C�k) kJP K

(r-unwind)

kJP K jM �!M

0

kJ�P K jM �! kJ�P K jM

0

(r-eq)

kJif u = u then P else QK �! kJP K

(r-beta)

kJ(� (ex :

e

T
): P)(ev)K �! kJPfj

ev

=exjgK

(r-neq)

kJif u = v then P else QK �! kJQK

u 6= v

(r-str)

M � N; M �!M

0

; M

0

� N

0

N �! N

0

Figure 2. Redu
tion semanti
s for safeDpi

(s-extr) (new e)(M jN) = M j (new e)N

if

n

(e) 62 fn(M)

(s-
om) M jN = N jM

(s-asso
) (M jN) jO = M j (N jO)

(s-zero) M j 0 = M

(s-stop) kJstopK = 0

(s-flip) (new n : E) (new n

0

: E

0

)M = (newn

0

: E

0

) (newn : E)M

if n

0

62 E; n 62 E

0

Figure 3. Stru
tural equivalen
e for hDpi

The
ode C is set to run at the new lo
ation l, and note that this name is

known to the
ontinuation thread P running at the initiating lo
ation k.

The remaining axioms are self-explanatory; there is testing of simple

identi�ers in (r-mat
h), �-redu
tion in the rule (r-beta) for instantiating

s
ripts and a standard rule for iterated pro
esses.

For examples of redu
tions see Se
tion 4.

10 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Basi
 types: B ::= int j string j unit j > j pro
 j : : :

Lo
al Channels: C;D ::= rhTi j whTi j rwhT;Ui

Lo
ations: L;K ::= lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄; n � 0

provided u

i

= u

j

implies i = j

Global resour
es: N ::= r
hCi

First-order: A := B j C j L j N j C�w

Pro
esses: � ::= pro
 j pr[u

1

: C

1

�w

1

; : : : ; u

n

: C

n

�w

n

℄

provided u

i

= u

j

; w

i

= w

j

implies i = j

S
ripts: S ::= Fdep(~x :

~

T!�)

Values: T;U ::= A j S j Tdep(~x :

~

T)T j Edep(~x :

~

T)T

Figure 4. Type expressions - informal

3 Typing

In this se
tion we dis
uss the types and type inferen
e for safeDpi. There

are three subse
tions. The �rst dis
usses informally the types used, whi
h

builds on those in [10, 8, 25℄, while the se
ond des
ribes the type environ-

ments required to infer that systems are well-typed. Be
ause the details

are heavily synta
ti
, on �rst reading it may be better to skip dire
tly to

the �nal subse
tion whi
h deals with the type inferen
e rules, referring to

the �rst two se
tions only on a
all-by-need basis.

3.1 The Types

The
olle
tion of types is an extension of those used in [8, 10℄, to whi
h the

reader is referred for more ba
kground and motivation. They are des
ribed

informally in Figure 4 and intuitively they may be
lassi�ed as follows:

Base types, ranged over by base: We in
lude some prede�ned
olle
tion

of types su
h as int; unit; bool, et
. for various
onstants in the language.

The asso
iation of a parti
ular type with a parti
ular
onstant will be

global, that is not dependent on a parti
ular lo
ation. We also in
lude

pro
, to indi
ate that a pro
ess is well-typed, and a top type >, whi
h

an be asso
iated with any identi�er.

Lo
al
hannel types, ranged over by C;D: These take the form

rwhT

r

;T

w

i

where T

r

; T

w

are transmission or value types ; that is types of values

whi
h may be transmitted along
hannels. If an agent has a name

safeDpi: a language for
ontrolling mobile
ode 11

at this type then it
an transmit values of at most type T

w

along it

and re
eive from it values whi
h have at least type T

r

. In the formal

des
ription of types there will be a subtyping
onstraint, that T

w

must

be a subtype of T

r

, explained in detail in [19℄. When the transmit

and re
eive types
oin
ide we abbreviate this type by rwhTi. We also

allow the types whT

w

i and rhT

r

i, whi
h only allow the transmission,

re
eption respe
tively, of values.

Global resour
e name types, ranged over by N: These take the form

r
hCi, where C is a
hannel type. Intuitively these are the types of

names whi
h are available to be used in the de
laration of new lo
a-

tions. They allow an individual resour
e name, su
h as print, to be

used in multiple lo
ations, resulting in a form of dynami
 typing.

Lo
ation types, ranged over by K; L: The standard form for these is

lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄

where C

i

are
hannel types, and the identi�ers u

i

are distin
t. An

agent possessing a lo
ation name k with this type may use the
han-

nels/resour
es u

i

lo
ated there at the types C

i

; from the point of view

of the agent, k is a site whi
h o�ers the servi
es u

1

; : : : u

n

at the
orre-

sponding types. In the formal de�nition we will require ea
h u

i

to be

already de
lared as a global resour
e name. If n is zero then the agent

knows of the existen
e of k but has no right to use resour
es there. We

abbreviate this trivial type from lo
[℄ to lo
. We also identify lo
ation

types up to re-orderings.

Pro
ess types, ranged over by �. The simplest pro
ess type is pro
,

whi
h
an be assigned to any well-typed pro
ess. More �ne-grained

pro
ess types take the form

pr[u

1

: C

1

�w

1

; : : : u

n

: C

n

�w

n

℄

where the pairs (u

i

; w

i

) are assumed to be distin
t. A pro
ess of this

type
an use at most the resour
e names u

i

at the lo
ation w

i

with

their spe
i�ed types C

i

; these types determine the lo
ations at whi
h

the
hannels u

i

may be used.

S
ript types, ranged over by S: The general form here is

Fdep(~x :

~

T!�)

S
ripts of this type require parameters (~v) of type (

~

T); when these are

supplied the resulting pro
ess will be of type �fj

~v

=~xjg. In other words the

type of the resulting pro
ess may in general depend on the parameters.

In these types we allow � to
ontain o

urren
es of a spe
ial lo
ation

12 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

onstant here to denote the
urrent lo
ation.

These types will be abbreviated to (

~

T!�) whenever the variables (~x)

do not appear in the pro
ess type �, that is when the type of result is

in fa
t independent of the parameters.

S
ript types, a generalisation of those used in [25℄, are one major inno-

vation of the
urrent paper; they allow parameterised pro
esses, or s
ripts

to be transmitted. Examples of su
h types in
lude

whTi! pro
: the type of a s
ript whi
h is parameterised on a lo
al
hannel

name, on whi
h write permission at type T is needed.

(rhRi;whWi�k)! pro
: a value of this type will be applied to a pair, the

�rst element will be a lo
al
hannel with read
apability at type R and

the se
ond a
hannel lo
ated at k with write
apability at type W.

More importantly by using �ne-grained pro
ess types, a

ess to re-

sour
es by in
oming
ode
an be restri
ted. Here are two examples:

Fdep(x : rhTi! pr[x : rhTi�here; reply : whTi�k℄)

In
oming
ode re
eived at this type,
an be instantiated by any lo
al

hannel, say
 from whi
h values
an be read at type T. The resulting

pro
ess is then only allowed a

ess to two
hannels, namely the lo
al

hannel
, from whi
h it
an read, and a
hannel named reply at the

lo
ation k, to whi
h it
an write. This pro
ess will have the type pr[
 :

rhTi�here; reply : whTi�k℄. Code at the type

Fdep((x; y; z) : (lo
; rhTi�x;whTi)! pr[y : rhTi�x; z : whTi�here℄)

needs to be instantiated by a lo
ation, a
hannel at that lo
ation, and

a lo
al
hannel. For example the lo
ation
ould be
alled sour
e, the

hannel lo
ated there info, from whi
h values
an be read at the type T,

and the lo
al
hannel re
ord, at whi
h values
an be written at type T.

The resulting pro
ess will then have type

pr[info : rhTi� sour
e; re
ord : whTi�here℄

It
an download information from the third-party sour
e site sour
e via

the
hannel info there.

Finally Transmission or value types di
tate the kind of values whi
h

an be transmitted over
hannels. These may be �rst order values, or

s
ripts. We also allow dependent and existential types to be used. For

example inputting a value of the dependent type Tdep(x : K) S will result in

the re
eption of a pair (k; F), where F is guaranteed to be of type Sfj

k

=xjg; k

is the witness that the s
ript F has the required type, and is re
eived with

safeDpi: a language for
ontrolling mobile
ode 13

the s
ript. On the other hand inputting at the
orresponding existential

type Edep(x : K) S will only result in the re
eption of the value F , although,

as we will see, when the overall system is type
he
ked the witness v must

be produ
ed, to verify that F is indeed well-typed.

Notation 3.1. [Globalising types℄ It is worth noting that there is a
ru-

ial distin
tion between lo
al
hannel types C and, for example lo
ation

types. The former only make sense relative to a spe
i�
 lo
ation, whereas

the latter are lo
ation independent, or global types. We
an
onvert the

lo
al
hannel type C to a global type by appending a lo
ation, C�w; this

is the type of a
hannel of type C lo
ated at w. In various
ontexts it will

be
onvenient to apply this globalisation operation to an arbitrary type,

(T)�w; this will only have an e�e
t on any
omponents of T whi
h are

lo
al
hannel or s
ript types. The operation is de�ned by indu
tion on T:

(C)�w = C�w; (S)�w = S

(K)�w = K; (C�w

0

)�w = C�w

0

(Tdep(~x :

~

T)T)�w = Tdep(~x : (

~

T)�w) (T)�w

(Edep(~x :

~

T)T)�w = Edep(~x : (

~

T)�w) (T)�w

Note that in the last two
lauses we have used the obvious notation (

~

T)�w,

for the list T

1

�w; : : : ;T

n

�w. �

There are numerous
onstraints on the formation rules for types, well-

do
umented in [10, 8℄. The des
ription given in Figure 4 should be viewed

as de�ning pre-types ; those whi
h satisfy the formation
onstraints will

then be
onsidered to be types. It is best to des
ribe these
onstraints

relative to a type environment.

3.2 Type environments

A type judgement will take the form

� ` M

where � is a type environment, a list of assumptions about the types to be

asso
iated with the identi�ers in the system M . These
an take the form

� u : lo
, meaning that u is a lo
ation

� u : C�w, meaning the
hannel u lo
ated at w has type C

� u : r
hCi, meaning u is a global resour
e name, whi
h may be installed

at any new lo
ation.

� x : S, meaning x
an be instantiated by any s
ript whi
h
an be inferred

to have type S

14 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

� x : hT with ~y :

~

Ei. This represents a pa
kage, whi
h will be used to

handle existential types. Intuitively this de�nes the asso
iation x : T

but the type T may depend on the auxiliary asso
iations ~y :

~

E.

Lists of assumptions are
reated dynami
ally during type
he
king, typ-

i
ally by augmenting a
urrent environment with new assumptions on

bound variables. It is
onvenient to introdu
e a parti
ular notation for

this operation:

Definition 3.2 (Forming environments). Let fV : Tg be a list of

type assumptions de�ned by

� fv : C�wg = v : C�w

� fx : Sg = x : S

� fv : lo
[u

1

: C

1

; : : : u

n

: C

n

℄g = v : lo
; u

1

: C

1

�v; : : : u

n

: C

n

�v

� f(~y; x) : Tdep(~y :

~

E)Tg = fy

1

: E

1

g : : : ; fy

n

: E

n

g; fx : Tg

� fx : Edep(~y :

~

E)Tg = x : hT with fy

1

: E

1

g : : : ; fy

n

: E

n

gi �

Of
ourse there a lots of other possibilities for V and T but only those

mentioned give rise to lists of assumptions. Moreover even those given

may give rise to lists whi
h are not
onsistent. For example we should

not be able to introdu
e an assumption u : lo
 if u is already designated

a
hannel, or introdu
e u : C�w unless w is known to be a lo
ation. Sin
e

type expressions also use identi�ers, before introdu
ing this assumption

we would need to ensure that C is a properly formed type; for example it

should only use identi�ers whi
h are already known. In order to des
ribe

the set of valid environments we introdu
e judgements of the form

� ` env

The inferen
e rules are straightforward and
onsequently are relegated to

the appendix, in Figure 10. We also relegate to there the de�nition of

subtyping judgements, of the form

� ` T <: U;

given in Figure 11. Again the rules are straightforward, and mostly inher-

ited from [8℄. However it is worth noting that pro
ess types are ordered

di�erently than lo
ation types. For example we have

� ` pr[u

1

: C

1

�k℄ <: pr[u

1

: C

1

�k; u

2

: C

2

�l℄

but

� ` lo
[u

1

: C

1

; u

2

: C

2

℄ <: lo
[u

1

: C

1

℄

safeDpi: a language for
ontrolling mobile
ode 15

assuming, of
ourse, that the various types used, C

i

;C

j

are well-de�ned

relative to �.

These rules have been formulated so that they
an also be used to say

what is a valid type relative to a type expression.

Definition 3.3 (Valid types). We say the type expression T is a valid

type relative to �, written � ` T : ty, whenever we
an derive the judge-

ment � ` T <: T. �

Types
an be viewed intuitively as sets of
apabilities and unioning these

sets
orresponds to performing ameet operation with respe
t to subtyping.

This we now explain. Let (D;�) be a preorder. We say a subset E � D

is lower-bounded by d 2 D if d � e for every e in E. Upper bounds are

de�ned in a similar manner.

Definition 3.4 (partial meets and joins). We say that the preorder

(D;�) has partial meets if every pair of elements in D whi
h has a lower

bound also has a greatest lower bound. This means that for every pair of

elements d

1

; d

2

in D whi
h has some lower bound, that is there is some

element in d 2 D su
h that d � d

1

; d � d

2

, there is a parti
ular lower

bound, denoted d

1

u d

2

whi
h is less then or equal to every lower bound.

The upper bound of pairs of elements, d

1

t d

2

is de�ned in an analogous

manner. �

Let Types

�

denote the set of all type expressions T su
h that � ` T : ty.

Theorem 3.5. For every �, the set Types

�

, ordered by <:, has partial

meets and partial joins.

Proof: See Proposition A.2 in Appendix A �

Intuitively the existen
e of T u U means that T and U are
ompatible, in

that they allow
ompatible
apabilities on values at these types. Moreover

the type TuU may be viewed as a unioning of the
apabilities allowed by

the individual types.

It is worth pointing out that with our type expressions set Types

�

turns out to be not only a preorder but also a partial order. However this

would no longer be the
ase if we allowed re
ursive types; nevertheless

with this extension our results would still apply. Note also that be
ause

of the existen
e of the top type >, useful in Se
tion 6, joins of types are

always guaranteed to exist.

3.3 Type Inferen
e

We are now ready to des
ribe the type inferen
e system for ensuring that

systems are well-typed. There are three forms of judgements, for systems,

16 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

(ty-gnew)

�; n : r
hCi ` M

� ` (new n : r
hCi)M

(ty-
new)

�;
 : C�k ` M

� ` (new
 : C�k)M

(ty-nil)

� ` env

� ` 0

(ty-par)

� ` M

� ` N

� ` M jN

(ty-pro
)

� `

k

P : pro

� ` kJP K

(ty-lnew)

�; fk : Kg ` M

�; fk : Kg ` k : K

� ` (new k : K)M

Figure 5. Typing Systems

pro
esses and values. The type inferen
e rules for the �rst,

� ` M;

meaning thatM is a well-typed system relative to �, are given in Figure 5.

The intention is that whenever su
h a judgement
an be inferred it will

follow that � is a well-formed environment.

The main inferen
e rule is (ty-pro
). In order to ensure that kJP K

is a well-typed system we must show that the pro
ess P is well-typed

to run at k; at the system level it is suÆ
ient to be able to asso
iate any

pro
ess type with P . The typing of pro
esses must be relative to a lo
ation

be
ause it may use lo
al
hannels whi
h are required to exist at k; it also

turns out that typing of s
ripts will depend on their lo
ation. There is

also a subtlety in the typing of name
reation. First note that in these,

and all subsequent rules, we assume that all bound names in a judgement

must be di�erent than any free names used as part of the judgement.

Thus in (ty-
new) we know that
 is a
tually fresh to �. However we

are still not guaranteed that �;
 : C�k is a well-de�ned environment even

when � is. From the type environment rules it will only be so when C is

a well-de�ned type expression relative to �, and k is known as a lo
ation.

There is a further
ompli
ation in (ty-lnew), the rule for new lo
ation

reation. Deriving �; fk : Kg ` M will ensure that �; fk : Kg is a well-

de�ned environment, but we must also ensure that all of the
hannels used

in the lo
ation type K have already been de
lared, in �, as global resour
e

names. This is enfor
ed by the se
ond requirement, �; fk : Kg ` k : K.

safeDpi: a language for
ontrolling mobile
ode 17

(ty-lookup)

�; v : (E)�w;�

0

` env

�; v : (E)�w;�

0

`

w

v : E

(ty-base)

� ` env

� `

w

b : base

b 2 base

(ty-subval)

� `

w

V : T

� ` T <: T

0

� `

w

V : T

0

(ty-meet)

� `

w

u : T

1

� `

w

u : T

2

� `

w

u : T

1

u T

2

(ty-lo
)

� `

v

u

i

: C

i

� `

w

u

i

: r
hD

i

i

� ` D

i

<: C

i

� `

w

v : lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄

(ty-TuDep)

� `

w

v

i

: E

i

fj

~v

=~xjg

� `

w

v : Tfj

~v

=~xjg

� `

w

(ev; v) : Tdep(ex :

e

E
)T

(ty-EDep)

� `

w

v

i

: E

i

fj

~v

=~xjg

� `

w

v : Tfj

~v

=~xjg

� `

w

hev; vi : Edep(ex :

e

E
)T

(ty-Elookup)

�; y : h(T)�w with ~x :

~

Ei;�

0

` env

�; y : hT�w with ex :

e

Ei;�

0

`

w

y : T

(ty-Unpa
k)

� `

w

h~v; vi : Edep(~x :

~

E)T

� `

w

v : Tfj

ev

=exjg

Figure 6. Typing Values

The typing rules for the judgements on pro
esses

� `

w

P : �

are given in Figure 7, and are de�ned simultaneously with the judgements

for values, in Figure 6,

� ` V : T

Let us �rst examine those for values. The rule (ty-lookup) simply looks

up the type of the identi�er v relative to w in �, whereas (ty-base) allows

base values to be typed for free. Note that the rule (ty-lo
) ensures that

the judgement � `

w

v : K, where K is a lo
ation type,
an only be made

when ea
h
hannel used in K is already known to �, at a suitable type,

as a global resour
e name. The rule (ty-meet) is required be
ause in

ertain
ir
umstan
es we allow multiple asso
iations with identi�ers in

valid environments; of
ourse it
an only be applied for types T

1

;T

2

for

whi
h T

1

uT

2

exists. Dependent tuple values are typed with (ty-TuDep).

The value (~v; v)
an be assigned the type Tdep(~x :

~

E)T provided ea
h v

i

an be assigned the type E

i

fj

~v

=~xjg and v the type Tfj

~v

=~xjg. For existential

18 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

types we need to invent a new kind of value h~v; vi; these do not o

ur in

the language safeDpi, and are only used by the type inferen
e system;

intuitively h~v; vi is a pa
kage
onsisting of the value v together with the

witnesses ~v, whi
h provide eviden
e (for the type inferen
e system) that

v has it's required type. The rule (ty-EDep), whi
h might also be
alled

(ty-Pa
k), allows us to
onstru
t su
h values. It is similar to the rule for

dependent tuples. The pa
kage h~v; vi
an be assigned the type Edep(~x :

~

E)T

provided we
an establish that v

i

an be assigned the type v

i

: E

i

fj

~v

=~xjg

and v the type Tfj

~v

=~xjg. Dependent tuples
an be de
onstru
ted and their

omponents a

essed in the standard manner; see the fourth
lause of

De�nition 3.2. However the
orresponding de
onstru
tion for existential

types only allows a

ess to the �nal
omponent, and not the witnesses;

(ty-Unpa
k) allows the value, rather than the witnesses, to be extra
ted

at the appropriate type from the pa
kage. Similarly (ty-Elookup) only

allows knowledge of the value, and not the witnesses, to be dedu
ed from

an existential assumption.

In Figure 7 the rules for name generation, (ty-new
han),(ty-newlo
)

and (ty-newreg), are simple adaptations of the
orresponding rules at

the system level; note that in (ty-newlo
) we are guaranteed that the

new name k does not o

ur in the type �, be
ause of our
onvention on

bound names; similarly for
 in (ty-new
han) and n in (ty-newreg).

(ty-stop), (ty-iter) and (ty-par) need no
ommentary, (ty-eq) is

adapted from the analogous rule (ty-mat
h) in [10, 8℄ and (ty-abs) and

(ty-beta) are standard rules for abstra
tion and appli
ation, adapted

to dependent fun
tion types. But note the use of f~x : (

~

T)�wg in the

premise of the former; the arguments in an abstra
tion are relativised to

the
urrent lo
ation w. The rule for migration, (ty-go), is justi�ed by the

redu
tion semanti
s, although we
ould easily have phrased it in terms of

the premises of the output rule.

However the real interest is in the typing of the input and output

pro
esses. For example to ensure u!hV i has a pro
ess type � relative to �,

(ty-out), we have to ensure that u has the output
apability at some type

appropriate to V . Thus we need to �nd some type T su
h that � `

w

V : T

and u has the output
apability on T. But we must also
he
k that this

apability is allowed by �. Both of these requirements are en
apsulated

in the se
ond premise of the rule

� ` pr[u : whTi�w℄ <: �

But there is a further
ompli
ation. If the value being sent, V ,
ontains

hannels, or more pre
isely
apabilities on
hannels, then these must also

safeDpi: a language for
ontrolling mobile
ode 19

(ty-out)

� `

w

V : T

� ` pr[u : whTi�w℄ <: �

� ` pr

h

[V : (T)�w℄ <: �

� `

w

u!hV i : �

(ty-outE)

� `

w

h~v; vi : Edep(~x :

~

E)T

� ` pr[u : whEdep(~x :

~

E)Ti�w℄ <: �

� ` pr

h

[~v : (

~

E)�w℄ <: �

� `

w

u!hvi : �

(ty-in)

� ` pr[u : rhTi�w℄ <: �

�; fX : (T)�wg `

w

P : � t pr

h

[X : (T)�w℄

� `

w

u?(X : T)P : �

(ty-subpro
)

� `

w

P : �

� ` � <: �

0

� `

w

P : �

0

(ty-go)

� `

u

v!hF i : �

� `

w

goto

v

u:F : �

v a port

(ty-stop)

� ` � : ty

� `

w

stop : �

(ty-newlo
)

�; fk : Kg `

k

C : �

�; fk : Kg `

w

P : �

�; fk : Kg `

w

k : K

� `

w

(newlo
 k : K)withC in P : �

(ty-new
han)

�;
 : C�w `

w

P : � t pr[
�w : C℄

� `

w

(new

 : C) P : �

(ty-eq)

� `

w

u

1

: T

1

; u

2

: T

2

� `

w

Q : �

�; fu

1

: T

2

g; fu

2

: T

1

g `

w

P : �

� `

w

if u = v then P else Q : �

(ty-newreg)

�; n : N `

w

P : �

� `

w

(newreg n : N) P : �

(ty-abs)

�; f~x : (

~

T)�wg `

w

P : �fj

w

=herejg

� `

w

� (ex :

e

T): P : Fdep(ex :

e

T!�)

(ty-beta)

� `

w

F : Fdep(~x :

~

T!�)

� `

w

v

i

: T

i

� `

w

F (ev) : �fj

ev

=exjgfj

w

=herejg

(ty-iter)

� `

w

P : �

� `

w

�P : �

(ty-par)

� `

w

P : �

� `

w

Q : �

� `

w

P jQ : �

Figure 7. Typing Pro
esses

be allowed by �. This is the intent of the third premise

� ` pr

h

[V : T�w℄ <: �

whi
h uses a (partial) fun
tion whi
h
onstru
ts a pro
ess type from a

value V and its type; it essentially extra
ts out any
hannels whi
h may

20 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

be in V . To de�ne this we use t whi
h is a join operator on types, relative

to <: the subtyping order; when applied to pro
ess types it e�e
tively takes

the union of the
apabilities of the individual types. It is worth noting

that pr

h

[v : T℄ is the trivial pro
ess type pr[℄ when T is a s
ript type.

pr

h

[v : C�w℄ = pr[v : C�w℄

pr

h

[v : K℄ = pr[

1

: C

1

�v; : : : ;

n

: C

n

�v℄

where K = lo
[

1

: C

1

; : : : ;

n

: C

n

℄

pr

h

[~v :

~

T℄ = pr

h

[v

1

: T

1

℄ t : : : t pr

h

[v

1

: T

1

℄

pr

h

[(~v; v) : Tdep(~x :

~

E)T℄ = pr

h

[~v :

~

E℄ t pr

h

[v : T℄

pr

h

[h~v; vi : Edep(~x :

~

E)T℄ = pr

h

[~v :

~

E℄ t pr

h

[v : T℄

pr

h

[v : T℄ = pr[℄ otherwise

The rule for transmitting existential values, (ty-outE) is a slight vari-

ation. We must establish a pa
kage h~v; vi of the
orre
t outgoing type,

but only the (unpa
ked) value v is a
tually transmitted. Finally to ensure

u?(X : T)P has the type �, we need to
he
k that u has the appropriate

read
apability, whi
h also is allowed by �,

� ` pr[u : rhTi�w℄ <: �

and that the
apabilities exer
ised by the residual P are either allowed by

� or inherited by values whi
h are input and bound to X:

�; fX : (T)�wg `

w

P : � t pr

h

[X : T�w℄

It is worth noting that the typing rules for input and output degener-

ate to the more standard form, for example as in [10℄, when we wish to

establish that the pro
esses are simply well-typed, that is have the type

pro
. For example we have the derived instan
es:

(ty-out)

� `

w

V : T

� `

w

u : whTi

� `

w

u!hV i : pro

(ty-in)

� `

w

u : rhTi

�; fX : (T)�wg `

w

P : pro

� `

w

u?(X : T)P : pro

4 Examples

In this se
tion we demonstrate the usefulness of the type system by a series

of examples of in
reasing sophisti
ation.

To make the examples more readable let us introdu
e some
onvenient

notation. First we will abbreviate the transmission type unit! pro
, for

safeDpi: a language for
ontrolling mobile
ode 21

thunked pro
esses, simply to thunk. Then we use run as an abbreviation

for the term �� �(), where () is the only value of type unit. So the type

of run is thunk! pro
; it takes a thunked pro
ess and runs it. Thunked

pro
esses, whi
h we often refer to as thunks, take the form � (): P but

in the
ontext of goto p: : : : and port outputs p!h: : : i we will omit the �

abstra
tion; thus goto

in

l:� (): P is abbreviated to goto

in

l:P . Finally we

mimi
 the notation of pro
ess types for thunks, by letting th[::::℄ denote

the type unit! pr[::::℄.

4.1 Installing and broad
asting servi
es

Suppose there are two globally de�ned
hannel names ping and �ng and

a port name in; that is we are working in a type environment � with the

property that

� ` ping : r
hD

p

i; �ng : r
hD

f

i; in : r
hD

i

i (2)

for some types D

p

;D

f

and D

i

. Let L be a lo
ation type su
h that

L <: lo
[in : C

i

; ping

p

: C

p

; �ng : C

f

℄: (3)

Then in the system

rJ(newlo
 l : L)withC in P K

the site r generates a new lo
ation l with de
laration type L; it evolves to

the new system

(new l : L)(rJP K j lJCK)

To be well-typed with respe
t to � we need that

� L is a proper de
laration type for lo
ations, that is �; fl : Lg ` l : L.

This means that all the resour
e names in L should be globally de�ned

in � with a type whi
h supports their use in L. For example this would

require D

p

<: C

p

; D

f

<: C

f

and D

i

<: C

i

with respe
t to �.

� the residual P is well-typed to run at r, that is

�; fl : Lg `

r

P : pro

� the installed
ode is well-typed to run at the new lo
ation l, that is

�; fl : Lg `

l

C : pro
:

The residual P running at r now knows the lo
ation l and its type,

and may make it known to other agents. Suppose P has the form

�dist

1

hli j �dist

2

hli jQ

where dist

i

are distribution
hannels at r for broad
asting information.

Agents with a

ess to these
hannels
an �nd out about l. More impor-

22 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

tantly the type at whi
h they re
eive l depends on the types of dist

i

at the

site r. For example suppose �
ontains

dist

1

: whlo
[in : whIi; ping : whV

p

i℄i�r;

dist

2

: whlo
[in : whIi; �ng : whV

f

i℄i�r

(4)

for some types I;V

p

;V

f

. Then agents �nding out about l from the sour
e

dist

1

only knows about the resour
e ping there (in addition to the port in),

while if the sour
e of information is dist

2

only �ng may be used. Of
ourse

an agent may have a

ess to both sour
es. If that is the
ase then they

an eventually
ome to know l at the type lo
[in : whIi; ping : whV

p

i; �ng :

whV

f

i℄, thereby obtaining knowledge of both resour
es. Of
ourse a

ess

to l will be governed by ports su
h as in and their programming via the

installed
ode C.

4.2 Servi
ing resour
es

The installed
ode C determines, at least initially, who has a

ess to the

newly
reated site l. A typi
al example of the installed
ode C may take

the form

�in?(� : thunk) (run �) j S

Entry will be allowed to any well-typed thread at the port in, and the

thread
an subsequently intera
t with the servi
ing
ode S. This will only

be well-typed if the original de
laration type for the global name in allows

values of type thunk to be re
eived at that port. For example it will be

well-typed if � ` in : r
hrwhthunkii, that is setting the de
laration type D

i

in (2) above to be thunk, and the type I in the typing for the sour
es at r,

in (4), to be thunk also.

Note that there is some
hoi
e in the type at whi
h in is de
lared at

l, in (3) above. If C

i

is set to rwhthunki then the servi
ing
ode S at l
an

both read and write at in, but the type rhthunki is suÆ
ient for well-typing,

if S never writes to that port.

Consider a thread running at r su
h as

rJdist

1

?(x : L

p

) goto

in

x:ping!hviK (5)

whi
h gains knowledge of the newly
reated lo
ation l via the sour
e dist

1

.

Here we use L

p

to be an abbreviation for an instan
e of the type used in

(4) above, lo
[in : whthunki; ping : whV

p

i℄. This thread is well-typed,

� ` rJdist

1

?(x : L

p

) goto

in

x:ping!hviK

provided the value v
an be assigned the proper type for ping namely V

p

.

This follows from the fa
t that for su
h a � we
an establish

� `

r

dist

1

?(x : L

p

) goto

in

x:ping!hvi : pro

safeDpi: a language for
ontrolling mobile
ode 23

whi
h in turn follows from

�; fx : L

p

g `

r

goto

in

x:ping!hvi : pro

This is a
onsequen
e of applying the typing rule (ty-go) to the judgement

�; fx : L

p

g `

x

in!hping!hvii : pro
 (6)

The type environment �; fx : L

p

g takes the form

�; x : lo
; in : whthunki�x; ping : whV

p

i�x

Therefore (6) follows from an appli
ation of the simple form of the output

rule (ty-out), provided we
an establish

�; x : lo
; in : whthunki�x; ping : whV

p

i�x `

x

� (): ping!hvi : thunk;

that is

�; x : lo
; in : whthunki�x; ping : whV

p

i�x `

x

ping!hvi : pro

Finally this requires the judgement

�; x : lo
; in : whthunki�x; ping : whV

p

i�x `

x

v : V

p

(7)

Note that this
he
king of v is
arried out relative to the variable

lo
ation x; so the type V

p

needs to be some global type, whose meaning is

independent of the
urrent lo
ation. This
ould be a base type su
h as int,

although we will see more interesting examples, su
h as return
hannels,

later.

4.3 Site prote
tion

A simple infrastru
ture for a typi
al site
ould take the form

hJin?(� : I) � run � j SK

The on-site
ode S
ould provide various servi
es for in
oming agents,

repeatedly a

epted at the input port in. In a relaxed
omputing environ-

ment the type I
ould simply be thunk indi
ating that any well-typed
ode

will be allowed to immigrate. In the sequel we will always assume that

when the type of the port in is not dis
ussed it has this liberal type.

However
onstraints
an be imposed on in
oming
ode by only pub-

li
ising ports whi
h have asso
iated with them more restri
tive guardian

types. In su
h
ases it is important that read
apabilities on the these

ports be retained by the host. This point will be ignored in the ensuring

dis
ussion, whi
h instead
on
entrates on the forms the guardian types

an take.

Consider a system
onsisting of a server and
lient, de�ned below,

running in parallel.

24 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Server: sJreq?(� : S) run � j � news!hs
andaliK

Client:
Jgoto

req

s:news?(x) goto

in

: report!hxi

j in?(� : R) run � j report?(y) : : :K

(8)

The server is straightforward; it a

epts in
oming
ode at the port req

and runs it. The only servi
e it provides is some information on a
hannel

alled news. The
lient, who knows of the req port at the server sends
ode

there to
olle
t the news and report it ba
k to it's own
hannel report; the

type at whi
h it inputs from news, whi
h obviously must be string, is

elided. This
ode migrates twi
e, on
e via the port req from the
lient to

the server, and on
e via the port in, from the server to the
lient.

The server prote
ts its site using the guardian type S while the
lient

prote
ts its site using R. What should these be? Let us assume that both

sites have the required
hannels at appropriate types; suppose in � we

have the entries

news : rwhstringi�s; req : rwhSi�s;

report : rwhstringi�
; in : rwhRi�

The �rst possibility is for the
lient to be relaxed but the server vigilant:

R : thunk

S : th[news : rhstringi�s; in : whRi�
℄

Here the
lient allows in any well-typed pro
ess, whereas the server will

only a

ept at the port req pro
esses whi
h use at most the lo
al
hannel

news and the port in at the site
; moreover the lo
al
hannel news
an

only be used in read mode.

With these types one
an show that the overall system is well-typed.

Typing the server is straightforward but to type the
lient we need to

establish, among other requirements,

� `

goto

req

s:news?(x) goto

in

: report!hxi : pro

As usual this follows by an appli
ation of (ty-go) from

� `

s

req!h news?(x) goto

in

: report!hxi i : pro

whi
h in turn requires establishing

� `

s

� (): news?(x) goto

in

: report!hxi : S

In other words the in
oming
ode should mat
h the guardian type of the

safeDpi: a language for
ontrolling mobile
ode 25

server, S. By dethunking we get the requirement

� `

s

news?(x) goto

in

: report!hxi : pr[news : rhstringi�s; in : whRi�
℄

This is established via an appli
ation of the rule (ty-in). The �rst premise

is immediate sin
e we assume � `

s

news : rwhstringi. Moreover the se
ond

amounts to

�; x : string `

s

goto

in

: report!hxi : pr[news : rhstringi�s; in : whRi�
℄

be
ause the value being re
eived is a string; that is pr

h

[x : string�s℄ is the

trivial pro
ess type pr[℄.

The signi�
ant step in establishing this se
ond premise is to
he
k that

the
ode returning to the
lient satis�es its guardian type R:

�; x : string `

in!h report!hxii : pr[news : rhstringi�s; in : whRi�
℄ (9)

However this is straightforward sin
e R is the liberal guardian thunk. It

follows by an appli
ation of the output rule (ty-out) in Figure 7. But it

is important to note that in the appli
ation the third premise is va
uous,

as pr

h

[� (): report!hxi : pro
℄ is the trivial type pr[℄.

The
urrent type R = thunk leaves the
lient site open to abuse but it

is easy to
he
k that the above reasoning is still valid if the guardians are

hanged to

R : th[report : whstringi�
℄

S : th[news : rhstringi�s; in : whRi�
℄

Here the guardian for the
lient only allows in agents whi
h write to the

lo
al port report; note that this
hange requires that the guardian at the

server site also uses this more restri
tive type in its annotation for the

port in at
.

One
an
he
k that with these new restri
tive guardians the system is

still well-typed. The only extra work required is in providing a proof for

the judgement (9) above, ensuring that the
ode returning to the
lient

satis�es the more demanding guardian. By an appli
ation of (ty-go) and

(ty-out) this redu
es to the judgement

�; x : string `

� (): report!hxi : th[report : whstringi�
℄

whi
h is a straightforward
onsequen
e of (ty-out).

It might be tempting to de�ne the guardians by

R : th[report : whstringi�
℄

S : th[news : rhstringi�s; in : whthunki�
℄

Here both server and
lient prote
t their own resour
es but the server is

uninterested in what happens at the
lient site, by allowing
ode with

26 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

arbitrary
apabilities on the
lient port in. However there is an intuitive

in
onsisten
y here. The
lient has read
apability at its port, at the re-

stri
tive type R, while somehow the server has obtained a more liberal

write
apability there, namely thunk.

In fa
t the system
an not be typed with these revised guardians. In

parti
ular

� 6` sJreq?(� : S) run �K

Any derivation of this judgement would require the judgement

�; � : S `

s

run �

whi
h in turn would require

� ` S : ty

or more formally

� ` S <: S

But as we will see this
an not be inferred; that is S is not a valid type,

relative to �.

To see why let us suppose, for simpli
ity, that the port in has been

de
lared at the site
 with a type of the form rwhR;Wi for some type W.

One
onstraint in the type formation rules, (see (ty-
han) in Figure 11)

is that the write
apabilities on a
hannel are always a subtype the read

apabilities; in our setting this means that � ` W <: R. Our rules also

ensure that � `

in : whT

w

i implies � ` T

w

<: W and
onsequently

� ` T

w

<: R.

However the stru
ture of R ensures that �

0

` thunk <: R for no �

0

, from

whi
h we
an
on
lude that � 6`

in : whthunki�
. But this is one of the

requirements, in the formation rules in Figure 11, to establish � ` S : ty.

4.4 Anonymous
hannels

Consider the following variation on the server/
lient system:

Server: sJreq?(� : S) run � j where?((y; z) : T) goto

in

y:z!hs
andaliK

Client:
Jgoto

req

s:where!h
; reporti j in?(� : R) run � j report?(y) : : :K

(10)

Here the proto
ol is somewhat di�erent; the
lient simply supplies to the

server, via the
hannel where, the address of a
hannel on whi
h to supply

the news; this
onsists of the pair of a lo
ation and a
hannel on whi
h to

report. The server then laun
hes a thread whi
h migrates to the relevant

lo
ation, whi
h is assumed to have an in port, to deliver the news.

safeDpi: a language for
ontrolling mobile
ode 27

De�ning guardians is straightforward. For example these
ould be

R : thunk

S : th[where : whTi�s; in : whthunki�
℄

However the diÆ
ulty is in as
ertaining the required type T for the pair

of values. One possibility is to set

T = (I; whstringi)

where I is the lo
ation type lo
[in : whRi℄, allowing the �rst
omponent to

be a lo
ation with an in port at the appropriate type and the se
ond to

be a
hannel for sending strings.

Unfortunately the server
an not be typed with su
h a T. The problem

arises when we try to establish

�; f(y; z) : (T)�sg `

s

goto

in

y:z!hs
andali : pro
 (11)

Unravelling the extended environment this means establishing

�; y : lo
; in : whRi�y; z : whstringi `

y

z!hs
andali : pro

whi
h is not possible; the output rule (ty-out) demands that z be a

hannel at the lo
ation y.

So to be able to stati
ally type this example we need to be able to use

the �rst
omponent in the pair (y; z) as part of the type of the se
ond

omponent; we need a dependent type.

Let

T = Tdep(x : I)whstringi�x

Note that (sub-TuDep) from Figure 11 ensures that this is a well-de�ned

type:

� ` T : ty

be
ause

�; fx : Ig ` whstringi�x : ty

So this type
an be safely used as part of a pro
ess. Moreover it is now

easy to establish (11) above as the extended environment �; f(y; z) : Tg

unravels to �; y : lo
; in : whRi�y; z : whstringi�y:

These lo
ation dependent types were introdu
ed in [10℄, where they

are shown to be very useful for typing migrating
ode, as they allow the

transmission of anonymous
hannels between sites. In our example the

server does not need to know, apriori, the name of the report
hannel

at the
lient site. In the sequel we will borrow the notation used in [10℄

for these dependent types; we use (u�w) to denote any pair of identi�ers

28 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

(u;w) whi
h is expe
ted to have a dependent type of the form Tdep(x : I)C:

In a similar vein we abbreviate this type to C�L. Thus we
an reformulate

the example (10) above as:

Server sJreq?(� : S) run � j where?((z�y) : whstringi�I) goto

in

y:z!hs
andaliK

Client
J(new
 report)

goto

req

s:where!hreport �
i j

in?(� : R) run � j report?(y) : : :K

Here, as a form of self-prote
tion, the
lient generates a new return
han-

nel, also
alled report and whose obvious type is elided, whi
h it sends

to the server. The
lient's self-prote
tion
onsists of reading this
hannel

exa
tly on
e, whi
h it knows will be a response to its request to the server.

Note that these lo
ation dependent types are exa
tly what is required

to type the example (5) above. In the type judgement (7) we need to �nd

an appropriate type V

p

for values transmitted on the
hannel ping. We

an now let V

p

be the dependent type whstringi�lo
,
onsisting of a return

address; that is a lo
ation, and a write
apability at some
hannel at that

lo
ation.

4.5 Dependent pro
ess types

There remains a major diÆ
ulty with the server in (10) and (8) above. The

guardian type of the server S uses the name of the
lient
, and therefore

it
an only be used by that
lient. To over
ome this diÆ
ulty we need to

allow pro
ess types to depend on lo
ations and
hannels. Here the general

form will be

Tdep(~x :

~

E) S

where S is a s
ript type whi
h may depend on the variables ~x. A value of

this type takes the form

(~v; v)

where v is some s
ript. But again to emphasise the o

urren
e of these

types we will use the more des
riptive syntax

v with ~v

An example of the use of su
h types is in the following variation of the

safeDpi: a language for
ontrolling mobile
ode 29

lient server from (8) above:

Server: sJreq?(� with y : S

d

) run � j � news!hs
andaliK

Client:
J(new
 report)

goto

req

s:news?(x) goto

in

: report!hxi with
 j

in?(� : R) run � j report?(y) : : :K

(12)

with the types

R : thunk

S

d

: Tdep(y : I) th[news : rhstringi�s; in : whRi�y℄

I : lo
[in : whRi℄

Here the important point to noti
e is the server's guardian type at the

port req, S

d

, no longer mentions any
lients name; it
an be used by any

lient whi
h satis�es the types requirements. The server a

epts a thunk,

of type th[news : rhstringi�s; in : whRi�y℄ whi
h must be a

ompanied by

a lo
ation of type I to be used in pla
e of the variable y in S

d

. A typi
al

lient

an generate a new reply
hannel report and send to the server

� the thunk news?(x) goto

in

: report!hxi

� a

ompanied by a required lo
ation, in this
ase
.

Let us now see how the overall system type
he
ks, assuming as usual

an environment in whi
h the
hannel news and ports req; in, have the

appropriate types, and that the de
laration type of report is rwhstringi. At

the server let us
on
entrate on establishing

� `

s

req?(� with y : S

d

) run � : pro

This follows by an appli
ation of the simple form of (ty-in) to

�; f(y; �) : (S

d

)�sg `

s

run � : pro

Noting that (S

d

)�s is the same as S

d

, unravelling the extended environ-

ment gives the requirement

�; y : lo
; in : whthunki�y; � : th

y

`

s

run �

where th

y

is an abbreviation for the type th[news : rhstringi�s; in : whRi�y℄:

Apriori typing the pro
ess run � should be straightforward with respe
t to

this environment. But there is a subtlety; at some point in establishing

this judgement we need to apply (ty-base) from Figure 6 to
on
lude

�; y : lo
; in : whthunki�y; � : th

y

`

s

() : unit

and this requires the premise

�; y : lo
; in : whthunki�y; � : th

y

` env

30 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

whi
h in turn requires the premise

�; y : lo
; in : whthunki�y ` th

y

: ty (13)

In other words we have to
he
k that th

y

is a well-de�ned type, relative to

the extended environment. However this is now straightforward using the

rule (sub-pro
) from Figure 11, in the presen
e of the new asso
iations

involving y in the extended environment.

Let us now turn our attention to type
he
king the
lient in (12) above,

where we
on
entrate on ensuring that the pro
ess sent to the port req

satis�es the type S

d

. We have to ensure

�; report : rwhstringi�
 `

s

� (): news?(x) goto

in

: report!hxi with (
) : S

d

The rule (ty-TuDep) in Figure 7 redu
es this to two premises:

�; report : rwhstringi�
 `

s

 : I

�; report : rwhstringi�
 `

s

news?(x) goto

in

: report!hxi :

th[news : rhstringi�s; in : whRi�
℄

The �rst is immediate from our assumptions about � and the se
ond is

essentially the same as a derivation we have already seen on page 25.

Thus using dependent pro
ess types we
an de�ne general purpose

servers whi
h
an be used by multiple
lients. The example we have just

onsidered, (12), apriori leaves the
lients inse
ure be
ause of the use

of the liberal type thunk for the
lients guardian type R. But it
an be

generalised so that this guardian is strengthened, allowing in only threads

whi
h are going to write to the lo
ally de
lared reporting
hannel. Here

is one possible formulation:

Server: sJreq?(� with (y; z; x) : S

d

) run � j � news!hs
andaliK

Client:
J(new
 report)

(new
 in : rwhRi)

goto

req

s:news?(x) goto

in

: report!hxi with (
; report; in) j

in?(� : R) run � j report?(y) : : :K

(14)

Here a
lient generates a lo
al
hannel report, whose type rwhstringi we

have elided, and a lo
al port in whose de
laration type is rwhRi, where

R is the more restri
tive guardian type th[report : whstringi�
℄. In other

words in has been spe
ially
reated to restri
t entry to pro
esses whi
h

will only write on the newly
reated
hannel report. The
lient then sends

safeDpi: a language for
ontrolling mobile
ode 31

the usual pro
ess to the server but now a

ompanies it with the triple

(
; report; in)

The
ode for the server is the same ex
ept that a

ompanying the

in
oming thread it expe
ts three values. Its guardian type S

d

however is

hanged to

S

d

: Tdep(y : lo
; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

th[news : rhstringi�s; x : whth[z : whstringi�y℄i�y℄

Here, on
e more, this guardian type does not mention any
lient names,

but it allows
lients to employ mu
h more restri
tive guardian types at

their own sites. We leave the reader to
he
k that this revised system
an

still be type
he
ked.

4.6 Existential pro
ess types

The use of dependent s
ript types, as in the previous subse
tion, has

ertain disadvantages from the point of view of the
lients. For example

in (14) above the
lient sends to the server, in addition to the s
ript to

be exe
uted, the triple (
; report; in). Although these are not used by the

server we have de�ned other than as part of the re
eived s
ript
lients are

in prin
iple able to use them in any way they seem �t. An alternative

server
ould be given by

badServer: sJreq?(� with (y; z; x) : S

d

) goto

x

y:z!hboringiK (15)

This rogue server does not run the in
oming s
ript to obtain the latest

news; instead it uses the in
oming a

ompanying values and sends dire
tly

to the
lient some boring data.

Existential types allow the
lient to hide from the server the data whi
h

a

ompanies the in
oming s
ripts. Existential s
ript types take the form

Edep(~x :

~

E) S

where, as with dependent types, the type of the s
ript S may depend on

the parameters ~x. Intuitively a value of this type is on
e more a form of

tuple (~v; v), although a

ess to the a

ompanying parameters is restri
ted.

That is reading a value of this type from a port only results in the s
ript

being obtained, although that s
ript itself may use these parameters. This

new form of tuple, often
alled a pa
kage, is denoted by

h~v; vi

The important point about su
h a pa
kage is that it only gives a

ess

to the s
ript v and not the internal parameters ~v. In our formulation to

send su
h a value on a
hannel the sender must have the pa
kage h~v; vi,

although only the s
ript v is emitted. For this reason we need a spe
ial

32 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

output rule for existential types; see (ty-outE) in Figure 7, whi
h has

already been explained in Se
tion 3.3.

Let us now reformulate (14) above using existential types:

Server: sJreq?(� : S

e

) run � j � news!hs
andaliK

Client:
J(new
 report)

(new
 in : rwhRi)

goto

req

s:news?(x) goto

in

: report!hxi j

in?(� : R) run � j report?(y) : : :K

(16)

Here the guardian type S

e

is

Edep(y : lo
; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

th[info : rhstringi�s; x : whth[z : whstringi�y℄i�y℄

The server is mu
h the same as before ex
ept that it does not re
eive any

parameters with the in
oming s
ript. Similarly the
lient only sends the

s
ript.

Let us now see that this example type
he
ks. Establishing that the

server is well-typed is a little more
ompli
ated than with dependent type

S

d

. The interest
entres on establishing

�; f� : (S

e

)�sg `

s

run � : pro

and there are two essential steps. Note that, as with S

d

, (S

e

)�s is the

same as S

e

, and so in the sequel we will omit the (�)�s. The �rst step is

deriving

�; f� : S

e

g `

s

() : unit

and pro
eeds as with the use of S

d

on page 29; unravelling the environment

this amounts to establishing

�; � : hth

y

with y : lo
; z : whstringi�y; x : whth[z : whstringi℄i�yi ` env

(17)

where now th

y

represents th[info : rhstringi�s; in : whth[z : whstringi℄i�y℄.

Here the relevant type formation rule is (e-EDep) from Figure 10, whi
h

requires the premise

�; y : lo
; z : whstringi�y; x : whth[z : whstringi℄i�y ` th

y

: ty

However this is easily established from (sub-s
ript) of the same Figure.

The se
ond essential step in type
he
king the server is

�; f� : S

e

g `

s

� : pro
 (18)

safeDpi: a language for
ontrolling mobile
ode 33

This is ne
essary in order to ensure that run
an be applied to �. Here we

use an appli
ation of (ty-Elookup) from Figure 6 to obtain

�; f� : S

e

g `

s

� : th

y

One
an also establish, using the subtyping rules,

�; f� : S

e

g ` th

y

<: pro

and therefore by (ty-subtyping) from Figure 6 we obtain the required

judgement (18) above.

Now let us examine the
lient. Here the
entral point is to ensure that

the goto

req

s: : : :
ommand is well-typed, whi
h amounts to establishing

the judgement:

�; report : rwhstringi�
 `

s

req!hnews?(x) goto

in

: report!hxii : pro

Here the relevant rule is (ty-outE) from Figure 7. The se
ond premise

follows from our assumption about the type of req at s while the third is

va
uous as � is instantiated to pro
. However the �rst premise requires us

to �nd some ~v su
h that

�; report : rwhstringi�
 `

s

h~v; news?(x) goto

in

: report!hxii : S

e

(19)

In fa
t the required ~v is obviously going to be (
; report; in).

With these values the judgement (19)
an be established using the rule

(ty-EDep) from Figure 6. This requires the following four four premises,

where for
onvenien
e we use �

e

as an abbreviation for the extended en-

vironment �; report : rwhstringi�
; in : rwhRi: Re
all that R is the type

th[report : whstringi℄.

�

e

`

s

 : lo

�

e

`

s

report : whstringi�

�

e

`

s

in : whRi�

�

e

`

s

news?(x) goto

in

: report!hxi

: th[news : rhstringi�s; in : whRi�
℄

The �rst three are simple value judgements and we have already seen a

derivation of the last.

This ends our
onsideration of the
lient/server in (16) above. But let

us re
onsider the badServer from (15) above. Using existential types this

example might be written

badServer: sJreq?(� : S

e

) goto

x

y:z!hboringiK

But one
an show that this no longer type
he
ks. The problem arises

34 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

when trying to establish

�; f� : S

e

g `

y

x!hz!hboringii (20)

We have already seen the expanded environment in (17) above, whi
h is

�; � : hth

y

with y : lo
; z : whstringi�y; x : whth[z : whstringi℄i�yi

However the only way to get information from the pa
kage

� : hth

y

with y : : : : ; z : : : : ; x : : : : i

in this environment is to use the rule (ty-Unpa
k) from Figure 6. This

will only give information on the variable � whereas the judgement (20)

requires information on the other
omponents of the pa
kage y; z; x whi
h

are ina

essible.

4.7 S
ript types

In all of the examples so far servers rea
t to data furnished dire
tly from

lients. The general form of s
ript types,

Fdep(~x :

~

T!�);

allow servers to a

ept parameterised s
ripts, whi
h
an be instantiated

by data owned, or trusted, by the server itself. Consider the following

variation on the
lient used in (8):

Client:
Jgoto

req

s:F j in?(� : R) run � j report?(y) : : :K

F = � y : whstringi: y?(x) goto

in

: report!hxi

It does not know the sour
e of the news at the server; so it sends the s
ript

F there, a s
ript whi
h uses the pre-existing port and
hannel in; report,

but is parameterised on an information
hannel lo
al to the server. The

server inputs the s
ript and is now free to apply it to whatever information

sour
e it deems �t. A simple server, with the same fun
tionality as that

in (8), is given by

Server: sJreq?(� : S

s

) �(news) j � news!hs
andaliK

It simply applies the in
oming s
ript to the lo
al
hannel news. However

it
ould also dynami
ally generate the lo
al news
hannel, along the lines

of

ServerDy: sJreq?(� : S

s

) latest?(z) (� z)K

Note that when F is re
eived by the server and instantiated, the type

of the resulting pro
ess is dependent on that of the
hannel to whi
h F

is applied. Under the assumptions in pla
e during the dis
ussion of (8),

and assuming that foo is a lo
al
hannel, one would expe
t the pro
ess

safeDpi: a language for
ontrolling mobile
ode 35

(F foo), running at s, to behave in a

ordan
e with the type

pr[foo : rhstringi�s; in : whthunki�
℄

This is indeed the
ase as F
an be assigned the parameterised type

Fdep(y : rhstringi! pr[y : rhstringi�here; in : whthunki�
℄) (21)

To see this let � be as des
ribed on 24. Then, using a simple variation on

the inferen
e des
ribed there, we
an infer

�; y : rhstringi�s `

s

y?(x) goto

in

: report!hxi : pr[y : rhstringi�here; in : whthunki�
℄

An appli
ation of (ty-abs) from Figure 7 gives the required

� `

s

F : Fdep(y : rhstringi! pr[y : rhstringi�here; in : whthunki�
℄)

Under the further assumption that � `

s

foo : rhstringi an appli
ation of

(ty-beta) gives

� `

s

(F foo) : pr[foo : rhstringi�s; in : whthunki�
℄

Following this dis
ussion it should be apparent that to ensure that the

overall system is well-typed it is suÆ
ient to use the dependent type (21)

above for the guardian type S

s

. Then it is easy to
he
k

� ` Client j Server

For example typing the server involves establishing

�; � : S

s

`

s

(� news) : pro
 (22)

Assuming that � `

s

news : rhstringi, we have already seen that an appli-

ation of (ty-beta) gives

�; � : S

s

`

s

(� news) : pr[news : rhstringi�s; in : whthunki�
℄

and the required (22) follows by subtyping.

These parameterised fun
tional types
an be used in
onjun
tion with

the other
onstru
tions we have
onsidered, dependent and existential

types, to give a very sophisti
ated language for guardian types whi
h on

the one hand allows non-trivial intera
tion between types, and on the other

enables sites to prote
t their lo
al resour
es by implementing powerful

dynami
 a

ess poli
ies. As a �nal example, to indi
ate the potential

of these types,
onsider the the following variation on the
lient in (16),

36 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

whi
h is in turn an elaboration of the example we have just
onsidered:

Server: sJreq?(� : S

se

) (� news) j � news!hs
andaliK

Client:
J(new
 report)

(new
 in : rwhRi)

goto

req

s:F j

in?(� : R) run � j report?(y) : : :

F = � y : whstringi: y?(x) goto

in

: report!hxiK

Here the
lient does not know the sour
e of the news at the server, and at

the same time the server is not aware of the reply me
hanisms in pla
e at

the
lient; indeed these are generated dynami
ally by the
lient and used

to
onstru
t the s
ript F to be sent to the server. One
an show that this

system is well-typed if we let the guardian type for the
lient an server to

be

R : th[report : whstringi�
℄

S

se

Fdep(w : rhstringi! S

w

e

)

respe
tively, where S

w

e

is the existential type

Edep(y : lo
; z : whstringi�y; x : whth[z : whstringi�y℄i�y)

th[w : rhstringi�s; x : whth[z : whstringi�y℄i�y℄

5 Subje
t Redu
tion

Many of the expe
ted properties
an be derived for our type inferen
e

system. To state these su

in
tly it will useful to use

� `

w

J : T

to denote either a value judgement � `

w

v : T or a pro
ess judgement � `

w

P : T. We will
on�ne our attention to judgements in whi
h �
ontains no

o

urren
es of the spe
ial symbol here; thus they will only o

ur as part

of dependent types Fdep(~x :

~

T!�) and note that in appli
ations the rule

(ty-abs) from Figure 7 they are eliminated.

Proposition 5.1 (Sanity Che
ks).

� � `

w

J : T implies � ` env.

� � `

w

P : � implies � ` � : ty

Proof: The �rst is proved by indu
tion on the inferen
e of � `

w

J : T

while the se
ond is on that of the inferen
e of � `

w

P : �. It is required

by the base
ase (ty-stop) while in the
ases (ty-out), (ty-outE),

safeDpi: a language for
ontrolling mobile
ode 37

(ty-in) and (ty-sub) it follows from the
orresponding result for subtyp-

ing, Proposition A.1. All other
ases follow by indu
tion ex
ept (ty-beta).

There we have � ` F (~v) : �fj

~v

=~xjgfj

w

=herejg be
ause

(i) � `

w

v

i

: T

i

(ii) � `

w

F : Fdep(~x :

~

T!�)

The latter
an only be inferred by (ty-abs) from whi
h we know that

�; f~x : (

~

T)�wg ` P : �fj

w

=herejg: By the indu
tion hypothesis we have that

�; f~x : (

~

T)�wg ` �fj

w

=herejg : ty. It follows by the substitution result,

Proposition A.5, applied to (i), that � ` �fj

w

=herejgfj

~v

=~xjg : ty: However sin
e

we know that w is di�erent than ea
h x

i

this type is �fj

~v

=~xjgfj

w

=herejg. �

In a similar vein we
an show that well-typed pro
esses
an only use well-

de�ned types. For example if � `

w

u?(X : T)P : pro
 then � ` T : ty.

Environments
an be ordered by their ability to assign types to iden-

ti�ers: �

1

<: �

2

if for every identi�er u, �

2

`

w

u : T implies �

1

`

w

u : T.

We will write �

1

� �

2

whenever �

1

<: �

2

and �

2

<: �

1

.

Proposition 5.2.

� (Weakening) Suppose �

2

`

w

J : T and �

1

<: �

2

for some �

1

su
h that

�

1

` env. Then �

1

`

w

J : T.

� (Strengthening) Suppose �; u : T `

w

J : pro
, where u does not o

ur

free in J . Then � `

w

J : pro
.

� (Subtyping) Suppose � `

w

J : T. Then � ` T <: T

0

implies � `

w

J : T

0

Proof: The �rst two statements are proved by indu
tion on the infer-

en
es. The third follows immediately from (ty-subpro
) in Figure 7 and

(ty-subval) in Figure 6. �

Multiple o

urren
es of an identi�er is governed by the following result:

Proposition 5.3. � `

w

u : C

1

�w

1

and � `

w

u : C

2

�w

1

implies � `

w

u :

r
hDi for some D su
h that � ` D <: C

1

; D <: C

2

.

Proof: This property is essentially enfor
ed by the formation rules for

well-de�ned environments. These ensure that if �

1

; u : C

1

�w

1

; : : : ; u :

C

2

�w

2

; : : : is a well-de�ned environment then �

1

must
ontain an entry

u : r
hDi, where �

1

` D <: C

1

and �

1

; u : C

1

�w

1

; : : : ` D <: C

2

.

The formal proof is by indu
tion on the inferen
es of � `

w

u : C

1

�w

1

and � `

w

u : C

2

�w

1

. The base
ase, when both are inferred from

(ty-lookup), depends on this property of well-de�ned environments.

�

38 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

An interesting
onsequen
e of this result is that whenever the
onditions

of the proposition hold C

1

u C

2

is guaranteed to exist. This is spelled out

in detail in Proposition A.2 in the Appendix.

As usual the proof of Subje
t Redu
tion relies on the fa
t that, in a

suitable sense, type inferen
e is preserved under substitutions. We require

two su
h results, one for standard values, and one for the existential values

used in type inferen
e.

Lemma 5.4 (Substitution). Suppose � `

w

1

v : T with x not in �.

Then �; x : (T)�w

1

;� `

w

2

J : T implies �;�fj

v

=xjg `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

Proof: First note that the entry x : (T)�w

1

an only take one of three

forms, a
hannel registration, x : r
hDi, a lo
ation de
laration x : lo
, a

hannel de
laration, x : C�w

0

or a s
ript de
laration x : S. The proof is

by indu
tion on the inferen
e of �; x : (T)�w

1

;� `

w

2

J : T, whi
h
an

use the rules from Figure 6 or Figure 7. For
onvenien
e we use �

0

to

denote �fj

v

=xjg for the various synta
ti

ategories �. Also we use �

e

as

an abbreviation for the environment �; x : (T)�w

1

;�. First let us look at

some
ases from Figure 6.

� Suppose (ty-lookup) is used. So �

e

`

w

2

u : E be
ause

(i) �

e

` env

(ii) �

e

has the form �

1

; u : (E)�w

2

; : : : .

The substitution result for well-de�ned environments, Proposition A.5

in the appendix, ensures that

(i') �;�

0

` env

To obtain the
orresponding

(ii') �;�

0

has the form �

1

; u

0

: (E

0

)�w

0

2

; : : :

we perform a
ase analysis on where u : (E)�w

2

o

urs in �

e

; with

(i') and (ii') an appli
ation of the rule (ty-lookup) gives the required

� `

w

0

2

u

0

: E

0

.

If it o

urs in � then (ii') is immediate sin
e the substitutions have

no e�e
t. If it o

urs in � then u

0

: (E

0

)�w

0

2

o

urs in �

0

and so

(ii') holds. Finally u : (E)�w

2

ould
oin
ide with x : (T)�w

1

. There

are now a number of
ases, depending on the form of (T)�w

1

. As

an example suppose it is C�w

1

. Then w

1

and w

2

oin
ide and x
an

not appear in C; w

1

. Therefore the hypothesis � `

w

1

v : C gives the

required result, �;�

0

`

w

2

v : C, by Weakening.

� The
ase (ty-Elookup) is very similar, although there are only two

safeDpi: a language for
ontrolling mobile
ode 39

rather than three possibilities for the o

urren
e of the asso
iation in

�

e

.

� Suppose (ty-lo
) is used. So �

e

`

w

2

w : K, where K is the type

lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ be
ause

(i) �

e

`

w

u

i

: C

i

(ii) �

e

`

w

2

u

i

: r
hD

i

i

(iii) �

e

` D

i

<: C

i

Indu
tion, and the substitution result for subtyping, Proposition A.5

in the Appendix,
an be applied to these to obtain

(i') �;�

0

`

w

0

u

0

i

: C

0

i

(ii') �;�

0

`

w

0

2

u

i

: r
hD

0

i

i

(iii') �;�

0

` D

0

i

<: C

0

i

The interesting
ase is when both v and x o

ur in u

1

; : : : u

n

; without

loss of generality suppose these are u

1

; u

2

respe
tively, in whi
h
ase

u

0

1

= u

0

2

= v. Then we know, by Proposition 5.3, that C

0

1

u C

0

2

exists

and K

0

is lo
[u

0

2

: (C

0

1

u C

0

2

); : : : ℄. Applying the rule (ty-meet) to

(i') above gives �;�

0

`

w

0

u

0

2

: (C

0

1

u C

0

2

) and therefore we
an apply

(ty-lo
) to this, together with (i'), (ii') and (iii') to obtain the required

�;�

0

`

w

0

2

w

0

: K

0

.

The other
ases from Figure 6 are similar, mostly following by indu
tion.

Now let us look at some
ases from Figure 7.

� Suppose (ty-newlo
) is used so �

e

`

w

2

(newlo
 k : K)withC in P : �

be
ause

(i) �

e

; fk : Kg `

k

C : �

(ii) �

e

; fk : Kg `

w

2

P : �

(iii) �

e

; fk : Kg `

w

2

k : K

Indu
tion
an be applied to ea
h of these, to obtain

(i') �;�

0

; (fk : Kg)

0

`

k

C : �

(ii') �;�

0

; (fk : Kg)

0

`

w

0

2

P : �

(iii') �;�

0

; (fk : Kg)

0

`

w

0

2

k : K

Unfortunately it is not true in general that �;�

0

; (fk : Kg)

0

is the same

as �;�

0

; (fk : K

0

g). For example if K is lo
[x : C

0

1

; v : C

0

2

; : : : ℄ then the

former
ontains the entries : : : k : lo
; v : C

0

1

�k; v : C

0

2

�k; : : : whereas

40 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

the latter
ontains : : : k : lo
; v : (C

0

1

u C

0

2

)�k; : : : . Nevertheless it will

always be the
ase that

�;�

0

; (fk : Kg)

0

� �;�

0

; (fk : K

0

g)

and therefore by Weakening (i'),(ii') and (iii') apply also to the latter.

So (ty-lo
)
an be applied to these to obtain the required

�;�

0

`

w

0

2

(newlo
 k : K

0

)withC

0

in P

0

: �

0

� Suppose (ty-in) is used. So � `

w

2

u?(X : U)P : � be
ause

(i) �

e

` pr[u : rhUi�w

2

℄ <: �

(ii) �

e

; fX : (U)�w

2

g `

w

2

P : (� t pr

h

[X : (U)�w

2

℄)

Applying the substitution result for subtyping, Proposition A.5 we get

(i') �;�

0

` pr[u

0

: rhU

0

i�w

0

2

℄ <: �

0

sin
e (pr[u : rhUi�w

2

℄)

0

is pr[u

0

: rhU

0

i�w

0

2

℄. Applying indu
tion to (ii)

gives

(ii') �;�

0

; (fX : (U)�w

2

g)

0

`

w

0

2

P

0

: (� t pr

h

[X : (U)�w

2

℄)

0

Now substitutions distribute over t (see Proposition A.3 in the Ap-

pendix), and also over the
hannel extra
tion fun
tion (See Proposi-

tion A.4). So this may be rewritten

(ii') �;�

0

; (fX : (U)�w

2

g)

0

`

w

0

2

P

0

: (�

0

t pr

h

[X : (U

0

)�w

0

2

℄)

as x is guaranteed not to be in the pattern X. As in the previous
ase,

we
an show that

�;�

0

; (fX : (U)�w

2

g)

0

� �;�

0

; fX : (U

0

)�w

0

2

g

although be
ause of lo
ation types they may not be identi
al. Never-

theless this is suÆ
ient to be able to apply (ty-in) to (i'),(ii') to obtain

the required �;�

0

`

w

0

2

u?(X : U

0

)P

0

: � �

This substitution result
an be generalised to arbitrary patterns, but

we only require it in a spe
ial
ase:

Corollary 5.5. Let X be a pattern and suppose � `

w

1

V : T where

T is not an existential type. Then �; fX : (T)�w

1

g `

w

2

J : T implies

� `

w

2

fj

V

=Xjg

Jfj

V

=Xjg : Tfj

V

=Xjg

Proof: By indu
tion on the stru
ture of T. The base
ases are
overed by

the previous lemma. There are two other
ases, when T is a lo
ation type

and when it is a dependent type. As an example we
onsider the former,

when it has the form K = lo
[u

1

: C

1

; : : : u

n

: C

n

℄; in this
ase X must be

a variable x and V and identi�er, say v.

safeDpi: a language for
ontrolling mobile
ode 41

So �; fX : (K)�wg is �; x : lo
; u

1

: C

1

�x; : : : ; u

n

: C

n

�x whi
h
an be

written as

�; x : lo
; (u

1

: C

1

�x; : : : ; u

n

: C

n

�x)

So applying the previous lemma we obtain

�; u

1

: C

1

�v; : : : u

n

: C

n

�v `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

But � `

w

2

v : K means that � `

v

u

i

: C

i

for ea
h i. So we see that

� � �; u

1

: C

1

�v; : : : u

n

: C

n

�v from whi
h the required

� `

w

2

fj

v

=xjg

Jfj

v

=xjg : Tfj

v

=xjg

follows. �

The
orresponding result for existential types uses di�erent substitu-

tions into pro
esses and types. The
ru
ial property of existential values

is that the use of their witnesses is very limited:

Proposition 5.6. Suppose �; y : hT with ~x :

~

Ei;�

0

`

w

J : T. Then

x

i

62 fv(J) and x

i

does not o

ur in �

0

; w.

Proof: By indu
tion on the inferen
e. Intuitively the result follows from

the fa
t that the only information available, via (ty-Elookup), from the

entry y : hT with ~x :

~

Ei is that y has the type T; no information on x

i

is available. The proof relies on the
orresponding result for well-de�ned

environments and subtyping, Proposition A.6 �

This result provides the
entral property underlying the substitution result

for existential values.

Lemma 5.7 (ESubstitution). Suppose � `

w

1

h~v; vi : Edep(~x :

~

E)T.

Then �; y : h(T)�w

1

with ~x :

~

Ei;� `

w

2

J : T; w

2

: lo
 implies �;�fj

v

=yjg `

w

2

fj

v

=yjg

Jfj

v

=yjg : Tfj

~v

=~xjg

Proof: The proof follows the lines of that of Lemma 5.4, with frequent

appli
ations of the previous proposition, Proposition 5.6, to ensure that

only the substitution of v for x is applied to pro
ess terms and names. As

usual
ertain
ases depends on the
orresponding result for well-typed en-

vironments and subtyping judgements, Proposition A.7 in the Appendix.

�

Theorem 5.8 (Subje
t Redu
tion).

Suppose � ` M . Then M �! N implies � ` N:

Proof: It is a question of examining ea
h of the rules in Figure 2 in

turn. Note that (r-str) requires that typing is preserved by the stru
tural

42 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

equivalen
e; we leave the proof of this fa
t to the reader, as it follows the

standard approa
h.

Consider the rule (r-
omm):

kJ
!hV iK j kJ
?(X : T)P K �! kJPfj

V

=XjgK

and suppose � ` kJ
!hV iK j kJ
?(X : T)P K. Be
ause pro
 is a top type for

pro
esses this means that

(i) � `

k

!hV i : pro

(ii) � `

k

kJ
?(X : T)P K : pro

We need to show � ` kJPfj

V

=XjgK whi
h follows easily if we
an establish

� `

k

Pfj

V

=Xjg : pro
.

From (i),(ii), we
an show that � `

k

 : rwhT;Ti and � `

k

V : T. There

are now two
ases, depending on the stru
ture of T. First suppose it is

an existential type Edep(~x :

~

E)U, in whi
h
ase the pattern X is a single

variable, say y. Here (i) above
an only be inferred by using (ty-outE),

whi
h means that V is a singleton, say v and there must be some ve
tor

~v of witnesses su
h that � `

k

h~v; vi : Edep(~x :

~

E)U. De
onstru
ting (ii) we

know that �; y : hU with ~x :

~

Ei `

k

P : pro
. We may now apply Lemma 5.7

to obtain the required � `

k

Pfj

v

=yjg.

When T is not an existential type the proof is similar but uses an

appli
ation of Corollary 5.5 in pla
e of Lemma 5.7.

We leave the proof for the other rules to the reader.

�

6 The behaviour of safeDpi systems

In this se
tion we investigate what might be an appropriate notion of

semanti
 equivalen
e between safeDpi systems. We �rst propose what

we believe to be a natural notion of
ontextual equivalen
e. Then, in the

following se
tions, we give a
oindu
tive
hara
terisation using a
tions

between
on�gurations,
onsisting of safeDpi systems together with the

environment's
urrent knowledge of the system.

For notational
onvenien
e we limit ourselves to the
ase when the only

transmission types allowed are of the form

Tdep(~x :

~

A)A Tdep(~x :

~

A) S Edep(~x :

~

A) S

E�e
tively this means that the values transmitted must either be of the

form

� (~u), a tuple of �rst-order values, of type Tdep(~x :

~

A)A

safeDpi: a language for
ontrolling mobile
ode 43

� (~u; F) a tuple in whi
h the last value F , a s
ript, may depend on the

�rst-order values (~u). These have a type of the form Tdep(~x :

~

A) S.

� F a s
ript, the �nal
omponent of an existential value h~u; F i with a

type of the form Edep(~x :

~

A) S.

Simple s
ripts may be simulated via the empty dependent type Tdep() S,

as
an simple �rst-order values, via the type Tdep()A. Our results extend

to the full language, although the proofs require the development of more

ompli
ated notations.

6.1 A
ontextual equivalen
e

We intend to use a
ontext based equivalen
e in whi
h systems are asked

to be deemed equivalent in all reasonable safeDpi
ontexts. What is

perhaps not so
lear here is the notion of reasonable
ontext. In previous

work on mobile
al
uli, [9, 8, 1℄, the equivalen
e took the form

� j= M �

xt

N

meaning, intuitively, that M and N are indistinguishable in any
ontext

typeable by the typing environment �. Although one is primarily inter-

ested in su
h judgements in whi
h � has suÆ
ient knowledge to type M

and N , one is lead to
onsider more general judgements where � only

ontains a subset of that knowledge. Su
h equivalen
es, for Pi
al
ulus

and Dpi,
an be
hara
terised indu
tively using a
tions of the form

(��M)

�

�! (�

0

�M

0

)

where (��M); (��M

0

) are
on�gurations,
onsisting of systems M;M

0

and type environments �;�

0

, representing the
urrent knowlege of the

testing
ontext. In general su
h a
tions
hange not only the systems, M

to M

0

but also the
urrent knowledge, from � to �

0

, typi
ally by adding

new information.

However, there are further subtleties whi
h need to be
onsidered in

the
urrent setting. We dis
uss this with a motivating example.

Example 6.1.

Consider

M = (new k : lo
[b : rwhuniti℄) lJa!hkiK j kJb!hiK

N = (new k : lo
[b : rwhuniti℄) lJa!hkiK j kJstopK

and

� = l : lo
; b : r
hrwhunitii; a : rwhlo
[b : rwhuniti℄i�l

These two systems are well-typed with respe
t to � and should be
onsid-

ered equivalent under most reasonable notions of behavioural equivalen
e;

it is impossible for a testing pro
ess to intera
t with M on b at k, even

44 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

after the intera
tion on a at l. Indeed,
onsider what form a test whi
h

ould a
hieve this must take:

� j lJa?(x) goto

?

x:b?()K

It is
lear that there is no port for the testing pro
ess to enter the lo
ation

k on. Moreover, tests
annot be pla
ed dire
tly at k as k is only dis
overed

through intera
tion.

To sum up we would expe
t

� j= M �

xt

N

to hold, for an appropriate formulation of
ontextual equivalen
e for safeDpi.

But a naive labelled transition system of the form dis
ussed above would

not distinguish them. For example a naive system might yield a
tions

su
h as

(��M)

outputs k on a at l

���������������! (�

0

� lJstopK j kJb!hiK)

where �

0

is the environment � updated with the knowledge about the new

lo
ation k : lo
[b : rwhuniti℄. However, in su
h a system, a subsequent

intera
tion at this newly dis
overed k would be possible. This intera
tion

would suÆ
e to distinguish M and N .

In other words we need to
onsider more sophisti
ated notions of a
-

tions in order to
apture
ontextual equivalen
es for safeDpi. �

It should be
lear from this dis
ussion then that in modelling be-

havioural equivalen
e in this setting, we must be aware of those lo
ations

at whi
h we
an, and
an not, perform tests. And this is not simply a

question of whi
h lo
ations the environment has immigration rights for,

via some port.

Example 6.2. Consider the following s
enario:

M = kJ(new
 b : rwhuniti) a!hbi j b!hiK

N = kJ(new
 b : rwhuniti) a!hbi j stopK

and

� = k : lo
; a : rwhrwhunitii�k

Here the testing environment already knows about k but does not have

any immigration rights there. NeverthelessM and N
an be distinguished

by a reasonable test, one whi
h is typeable by �:

� j kJa?(x) x?hi eureka!hiK

�

safeDpi: a language for
ontrolling mobile
ode 45

Thus, in representing the environment's knowledge of the system we must

also represent the information about whi
h lo
ations are available for di-

re
t testing. This motivates the following de�nition.

Definition 6.3 (Knowledge stru
tures). A knowledge stru
ture is

a pair (�; T), where

� � is a type environment su
h that � ` env

� T is a subset of Lo
s su
h that if k 2 T then k : lo
 2 �

We use I to range over knowledge stru
tures and write I

�

and I

T

to refer

to the respe
tive
omponents of the stru
ture. We sometimes refer to the

lo
ations in I

T

as those to whi
h the information stru
ture allows a

ess

rights. We often abuse notation by writing I;� to mean the knowledge

stru
ture ((I

�

;�); I

T

). �

Definition 6.4 (Configurations). We write I�M for a
on�guration

where

� I is a knowledge stru
ture

� there exists some � su
h that � ` M , � <: I

�

, and dom(�) =

dom(I

�

). �

Definition 6.5 (Knowledge-indexed relations). We
all a family

of binary relations between systems indexed by knowledge stru
tures a

knowledge-indexed relation over systems. We write I j= M RN to mean

that systems M and N are related by R at index I and moreover, I �M

and I �N are both
on�gurations. �

We will use knowledge-indexed relations to propose a notion of be-

havioural equivalen
e appropriate to this setting. We do this in an estab-

lished manner [11, 6, 9℄ by proposing that we
onsider the largest equiva-

len
e
losed under
ertain natural properties listed below.

Redu
tion
losure: We say that a knowledge-indexed relation is re-

du
tion
losed if whenever I j= M RN and M �!M

0

there exists some

N

0

su
h that N�!

�

N

0

and I j=M

0

RN

0

.

Context
losure: We say that a knowledge-indexed relation is
on-

textual if

(1) I j= M R N and I

�

; k : lo
 ` env implies I

0

j= M R N where I

0

is

((I

�

; k : lo
); I

T

+ k)

(2) I j=M RN and I

�

;�

0

` env implies I;�

0

j=M RN

(3) I j=M RN and I

�

` kJP K with k 2 I

T

implies

I j= (M j kJP K)R (N j kJP K)

46 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

(4) I; fn : Eg j=M RN implies I j= (new n : E)M R (new n : E)N �

In the �rst
ondition we are assured that k is a fresh lo
ation; therefore

this form of weakening allows the environment to
reate for itself fresh

lo
ations at whi
h it may deploy
ode. The se
ond form of weakening,

in (2), allows it to invent new names with whi
h to program pro
esses.

Condition (3) allows it to pla
e well-typed
ode at sites to whi
h it has

a

ess rights, while (4) is the standard me
hanism for handling names

whi
h are private to the systems being investigated.

Barb Preservation: For any given lo
ation k and any given
hannel a

su
h that k 2 I

T

and I

�

`

k

a : rwhuniti we write I ` M +

barb

a�k if there

exists some M

0

su
h that M�!

�

M

0

j kJa!hiK. We say that a knowledge-

indexed relation is barb preserving if I j= M R N and I ` M +

barb

a�k

implies I ` N +

barb

a�k.

Definition 6.6 (Redu
tion barbed
ongruen
e). We let �

xt

be

the largest knowledge-indexed relation over systems whi
h is

� pointwise symmetri
 (that is I j=M �

xt

N implies I j= N �

xt

N)

� redu
tion
losed

�
ontextual

� barb preserving �

We take redu
tion barbed
ongruen
e to be our tou
hstone equivalen
e

for safeDpi as it is based on simple observable behaviour respe
ted in all

ontexts. The de�nition above is stated relative to
hoi
e of the knowledge

stru
ture I. We should point out however that, for any given systems

M;N and type environment � su
h that � ` M and � ` N then there

is a
anoni
al
hoi
e of knowledge stru
ture I, namely, (�; T

�

) where we

let T

�

= f k j k : lo
 2 � g. This
hoi
e of knowledge stru
ture gives

rise to what we feel to be a natural and intuitive notion of equivalen
e for

well-typed safeDpi systems.

Of
ourse, the quanti�
ation over all
ontexts makes reasoning about

the equivalen
e virtually intra
table. However it is
ommon pra
ti
e, [19,

21, 1, 9, 8℄, to provide some sort of model or alternative
hara
terisation

in terms of labelled transition systems, whi
h makes the behaviour of

systems mu
h more a

essible. In parti
ular if the a
tions in the labelled

transition system are suÆ
iently simple this
an lead to automati
, or

semi-automati
 veri�
ation methods.

In the next se
tion we show that this
ontextual equivalen
e for safeDpi

an be
hara
terised in a similar manner, as a bisimulation equivalen
e

over a suitably de�ned labelled transition system.

safeDpi: a language for
ontrolling mobile
ode 47

6.2 A bisimulation equivalen
e

We �rst dis
uss the labels, or a
tions, to be used in the labelled transition

system. They are given by the following grammar:

� ::= � j (~n :

~

E)go

p

k:F j (~n :

~

E)(~m)k:a:�

� ::= V ? j V !

where it is assumed that k; a; p 62 ~n; ~m. These are intended to be read as

follows:

� � represents internal
ommuni
ation in whi
h no intera
tion with the

environment takes pla
e

� go

p

k:F represents an attempt by the environment to enter lo
ation k

on port p. The
ode to be deployed, if this attempt su

eeds, is given

by the s
ript F .

� k:a:V ! represents a
ommuni
ation between the system and the envi-

ronment in whi
h the system exports on
hannel a at k. The value V

in this a
tion depends on the type of the
hannel. First order values

an be re
ognised by the environment and so they are re
orded in the

a
tion label. S
ripts, on the other hand,
an not ne
essarily be identi-

�ed. So instead the environment provides a suitable re
eiving
ontext

for a s
ript. For example suppose the system exports some s
ript F on

a
hannel a of s
ript type S. To test F the environment
an supply any

abstra
tion G of type G : S! pro
, with whi
h F
an be investigated;

see rule (m-send� s
ript) in Figure 8.

� k:a:V ? represents a
ommuni
ation between system and environment

in whi
h the system imports on
hannel a at k. The value V is always

provided by the environment.

� (n)� represents an a
tion � in whi
h the new name n has been exported

from the system; it is new in the sense that it has not previously been

en
ountered by the testing environment. The type of n is not re
orded

sin
e it
an be inferred from the type of the
hannel on whi
h it is

exported.

� (n : E)� represents an a
tion � in whi
h the fresh name n is being

provided by the environment.

48 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

The following notation is useful in de�ning the labelled transition system.

Firstly, the subje
t labels, subj(�) of an a
tion are given by:

subj(�) = ;

subj((~n :

~

E)(~m)k:a:�) = fk; ag

subj((~n :

~

E)go

p

k:V) = fk; pg

Next, we de�ne the obje
t labels of an a
tion. These are divided into both

input and output obje
t labels using the two fun
tions obj

?

(�) and obj

!

(�)

in order to identify whether the names returned are being provided by the

environment or exported from the system. We use input obje
t labels to

identify the former and output obje
t labels the latter.

obj

?

(�) = ; obj

!

(�) = ;

obj

?

(~u!) = ; obj

!

(~u!) = fn(~u)

obj

?

(

~

V ?) = fn(V) obj

!

(

~

V ?) = ;

obj

?

((~u;G)!) = fn(G) obj

!

((~u;G)!) = fn(~u)

obj

?

((~n :

~

E)go

p

k:V) = fn(V) n ~n obj

!

((~n :

~

E)go

p

k:V) = ;

obj

?

((~n :

~

E)(~m)k:a:�) = obj

?

(�) n ~n obj

!

((~n :

~

E)(~m)k:a:�) = obj

!

(�) n ~m

The interesting
ase here is � = (~u;G)!, whi
h represents the export from

the system to the environment a higher-order s
ript, dependent on the

�rst-order values (~u). This exported s
ript is not represented in the la-

bel; instead G, whi
h is supplied by the environment, is applied to it. So

obj

?

(�) is all the free names in G, sin
e these are supplied by the environ-

ment, while obj

!

(�) are all the iden�ers in ~u, sin
e these are supplied by

the system.

With this notation we de�ne judgements of the form

(I �M)

�

�! (I �N) (23)

representing the e�e
t of the system M performing the a
tion labelled

�, in an environment whose knowlege is I. This a
tion
hanges
hanges

the system, from M to N , and the knowledge, from I to I

0

. Typi
ally

this is an in
rease in knowledge of the testing environment of the system,

represented as the
hange from the type environment, I

�

to I

0

�

.

The axioms for the judgements (23) are given in Figures 8; these are

based on the rules in Figure 10 of [8℄. We make use of the following

notation in the presentation of the rules: For a type environment I

�

we

write

I

r

�

(a; k) = fT j a : rhTi�k 2 I

�

or a : rwhT;Ui�k 2 I

�

g

I

w

�

(a; k) = fU j a : whUi�k 2 I

�

or a : rwhT;Ui�k 2 I

�

g

safeDpi: a language for
ontrolling mobile
ode 49

(m-re
eive)

k 2 I

T

T =

d

I

w

�

(a; k) I

w

�

(a; k) 6= ;

I

�

`

k

V : T

(I � kJa?(X : U)P K)

k:a:V ?

����! (I � kJPfj

V

=XjgK)

(m-deliver)

k 2 I

T

T =

d

I

w

�

(a; k) I

w

�

(a; k) 6= ;

I

�

`

k

V : T

(I �M)

k:a:V ?

����!
(I �M j kJa!hV iK)

(m-send:val)

k 2 I

T

Ta �rst-order type

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

; f~u : (T)�kg ` env

(I � kJa!heuiK)

k:a:eu!

���! (I; feu : (T)�kg� kJstopK)

(m-send:s
ript)

k 2 I

T

T of the form Edep(~x :

~

T)S

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

`

k

G : T! pro

(I � kJa!hF iK)

k:a:G!

����! (I � kJG (F)K)

(m-send:dep:s
ript)

k 2 I

T

T of the form Tdep(~x :

~

E) S

T =

d

I

r

�

(a; k) I

r

�

(a; k) 6= ;

I

�

; f~u : (

~

E)�kg ` env

I

�

`

k

G : T! pro

(I � kJa!h(eu; F)iK)

k:a:(eu;G)!

������! (I; feu :

e

(E)�kg� kJG (eu; F)K)

(m-goto)

k 62 I

T

I

�

`

k

p!hV i : pro

(I �M)

go

p

k:V

����! (I �M j kJp!hV iK)

Figure 8. Labelled Transition System Axioms

The input rule (m-re
eive) is a mild generalisation of the
orresponding

rule in [8℄, given there as (lts-in). Note that the a
tion is only possible

if the environment has a

ess rights to its lo
ation k, that is if k is in I

T

.

Be
ause safeDpi is asyn
hronous there are two forms of output a
tions.

The rule (m-deliver) represents the delivery of a value to a
hannel,

50 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

(m-red)

M �!M

0

(I �M)

�

�! (I �M

0

)

(m-par)

(I �M)

�

�! (I

0

�M

0

)

(I �M jN)

�

�! (I

0

�M

0

jN)

(I �N jM)

�

�! (I

0

�N jM

0

)

(m-new)

(I; n : >�M)

�

�! (I

0

; n : >�M

0

)

(I � (newn : E)M)

�

�! (I

0

� (new n : E)M

0

)

n 62

n

(�)

(m-open)

(I;m : >�M)

�

�! (I

0

�M

0

)

(I � (newm : E)M)

(m)�

���! (I

0

�M

0

)

m 62 subj(�);m 2 obj

!

(�)

(m-weak)

(I; fn : Eg�M)

�

�! (I

0

�M

0

)

(I �M)

(n:E)�

����!
(I

0

�M

0

)

n 62 subj(�); n 2 obj

?

(�)

(m-Tweak)

((I

�

; fk : Kg); I

T

+ k)�M)

�

�! (I

0

�M

0

)

(I �M)

(k:K)�

����! (I

0

�M

0

)

k 62 subj(�); k 2 obj

?

(�)

Figure 9. Labelled Transition System Rules

although it may not ne
esarily be
onsumed; note again that a

ess rights

are required to the
hannels' lo
ation.

There are three versions of the se
ond form of output rule, in whi
h the

value is
onsumed by the
hannel; the variation depends on the type of the

hannel, but all require a

ess rights. The �rst, (m-send:val), for �rst-

order values, is an extension of the
orresponding rule, (lts-out), from

[8℄; note that here the environment's knowledge is in
reased, by adding

the information
ontained in f~u : (T)�kg. Output of s
ripts is handled

by (m-send:s
ript), where the environment supplies an appropriate G

for further investigation of the s
ript F . Dependent s
ripts, (~u; F) are

handled by (m-send:dep:s
ript); here the values (~u) are exported from

the system to the environment, while G, used for further investigation of

F is imported to the system from the environment.

The �nal rule in Figure 8, (m-goto), is novel. It allows the environ-

ment to pla
e arbitrary (well-typed)
ode at a site k, even if it does not

have a

ess rights there, provided it knows of a port p at k. Of
ourse, in

a

ordan
e with our operational semanti
s, k is free to ignore this
ode,

by not pro�ering an input at the port p.

safeDpi: a language for
ontrolling mobile
ode 51

The inferen
e rules for the a
tion judgements (23) are given in Fig-

ures 9, and again they are informed by the
orresponding rules in Fig-

ure 10 of [8℄. Here we abuse notation a little by writing (m)� to mean

(~n :

~

E)(m; ~m)�

0

whenever � is (~n :

~

E)(~m)�

0

. Note that, unlike in [8℄, we

have two weakening rules; the new one, (m-Tweak), allows the environ-

ment to invent a new lo
ation k at whi
h it has a

ess rights.

As a sanity
he
k on these judgements we give a pre
ise des
ription of

the possible forms the a
tions
an take; to aid readability we will use G

to represent a s
ript furnished by the environment and F to represent one

furnished by the system:

Proposition 6.7. Suppose that I � M is a
on�guration from whi
h

(I �M)

�

�! (I

0

�N), where � is not � . Then � takes one of the following

forms:

First-order: input (~n :

~

E)k:a:(~u)?, where (~n) � (~u), or output (~m)k:a:(~u)!,

where (~m) � (~u)

S
ript: input (~n :

~

E)k:a:F ?, where (~n) � fn(F), or output (~n :

~

E)k:a:G!

where (~n) � fn(G)

Dependent s
ript: input (~n :

~

E)k:a:(~u; F)?, where (~n) � (~u) [fn(F),

or output (~n :

~

E)(~m)k:a:(~u;G)!, where (~n) � fn(G) and (~m) � (~u)

Ayn
hronous-goto: (~n :

~

E)go

p

k:F , where (~n) � fn(F).

Proof: By indu
tion on the inferen
e of (I �M)

�

�! (I

0

�N): �

Proposition 6.8 (Well-definedness). Suppose I �M is a
on�gura-

tion. Then (I �M)

�

�! (I

0

�N) implies I

0

�N is also a
on�guration.

Proof: By indu
tion on the inferen
e of (I �M)

�

�! (I

0

� N), and an

analysis of the last rule used; the details are similar to the
orresponding

result, Proposition 4.4 of [8℄; the a

ess rights
omponent of I, I

T

only

plays a role in one rule, (m-Tweak), and even there it is a minor role.

The axiom (m-re
eive) requires an appli
ation of the substitution

results, Corollary 5.5 or Lemma 5.7 depending on the transmission type

involved. The remaining axioms are straightforward, as their premises

ontain suÆ
ient typing information to guarantee that the residual is in-

deed a
on�guration.

The proof for the rule (m-red) depends on Subje
t Redu
tion, Theo-

rem 5.8, while that for (m-new) relies on Weakening; the remaining rules

follow immediately by indu
tion. �

With this result we now have a labelled transition system for safeDpi,

the nodes being
on�gurations and the a
tions all judgements (23) whi
h

52 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

an be inferred from Figure 8 and Figure 9. The standard de�nition of

bisimulation therefore gives a
o-indu
tive relation over
on�gurations:

Definition 6.9 (Bisimulations). We say the binary relation between

on�gurations R is a typed bisimulation if C RD implies

� C

�

�! C

0

implies D

�̂

=)D

0

for D

0

su
h that C

0

RD

0

� D

�

�!D

0

implies C

�̂

=)C

0

for C

0

su
h that C

0

RD

0

where

�̂

=) is the standard notation, meaning

�

�!

�

�

�!

�

�!

�

for � not equal

to � and

�

�!

�

otherwise.

We write I j= M �

bis

N whenever there exists some bisimulation R

su
h that (I �M)R (I �N). �

With this notation, that is by viewing the knowledge-stru
ture I as a pa-

rameter, we
onstrue �

bis

to be a knowledge-indexed relation over systems.

This enables us to
ompare it dire
tly with the tou
hstone behavioural

equivalen
e �

xt

. The main te
hni
al property we require of �

bis

is given

in the following result:

Proposition 6.10. The knowledge-indexed relaton �

bis

is
ontextual.

Proof: This follows similar lines to the equivalent statement in [8℄. For

this reason we only show that �

bis

is preserved by parallel
omposition

here. Let R be de�ned by

(I � (new ~n :

~

T

1

)M j

Y

i2I

k

i

JP

i

K)R (I � (new ~n :

~

T

2

)N j

Y

i2I

k

i

JP

i

K)

if and only if there exists some I

0

�

, (

~

T) and T

0

su
h that

I

0

�

<: I

�

(

~

T

1

) <: (

~

T) and (

~

T

2

) <: (

~

T)

T

0

� ~n

I

0

�

` k

i

JP

i

K and k

i

2 I

T

+ T

0

for ea
h i 2 I

(I

0

�

; I

T

+ T

0

); f~n : Tg j=M �

bis

N

We aim to show that R is a bisimulation from whi
h the result follows

immediately. For the purposes of this exposition we will assume that ~n is

empty and that the indexing set I is a singleton. We take any

(I �M j kJP K)R (I �N j kJP K)

so we have some I

0

�

su
h that

(I

0

�

; I

T

) j=M �

bis

N (24)

with I

0

�

` kJP K and k 2 I

T

. We suppose that (I�M jkJP K)

�

�! (I

0

�M

0

)

and now must show that there is a
orresponding mat
hing move from

safeDpi: a language for
ontrolling mobile
ode 53

(I�N jkJP K). In
ases in whi
h � is not � this is easily done by appealing

to (24). For � = � we know that I

0

= I also. By an analogue of the

De
omposition Lemma of [8℄ we
an obtain �ve possibilities:

1. (I �M)

�

�! (I �M

00

) su
h that M

0

�M

00

j kJP K

2. kJP K �!M

00

su
h that M

0

�M jM

00

3. for �rst order T, (I �M)

(~m)k:a:~v!

������! (I

00

�M

00

) with

� kJP K � kJa?(~x : T)QK

� M

0

� (new ~m : U)M

00

j kJQ[fj

~v

=~xjg℄K

4. for other T, (I �M)

(~m)k:a:V !

������! (I

00

�M

00

) with

� kJP K � kJa?(~x : T)QK

� V = (~v; � ~x : T: Q)

� (new ~m : U)M

00

�!M

0

derived from (r-beta)

5. (I �M)

(~n:T)k:a:V ?

�������! (I

0

�M

00

) with

� kJP K � kJa!hV iK

� M

0

�M

00

j kJstopK

For ea
h
ase we show that these
onditions lead to the desired mat
hing

transition. We deal with ea
h of them in turn.

� For (1) we appeal dire
tly to (24).

� More interesting is
ase (2), parti
ularly when the redu
tion is gener-

ated by use of the rule (r-l:
reate) or (r-move). We examine ea
h

of these: suppose kJP K �!M

00

is derived from a use of (r-l:
reate)

so that

P = (newlo
 l : L)withC in Q

M

00

� (new l : L) lJCK j kJQK

We know by (24) that (I

0

�

; I

T

) j= M �

bis

N and hen
e, by weakening

to introdu
e a new testable lo
ation, we have

(I

0

�

; l : lo
; I

T

+ l) j= M �

bis

N

and by further weakening we obtain,

(I

0

�

; fl : Lg; I

T

+ l) j= M �

bis

N

Call the knowledge stru
ture above, I

00

. We know, by
onstru
tion of

R, that I

0

�

` kJP K with k 2 I

T

, and therefore, a

ording to the type

rules (ty-newlo
), (ty-subpro
) and (ty-pro
), we must have

I

00

` lJCK and I

00

` kJQK

54 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

with l; k 2 I

00

T

also. Therefore, by de�nition of R again, we see that

I j= (new l : L)(M j lJCK j kJQK)R (new l : L)(N j lJCK j kJQK) (25)

We know that (I �N j kJP K)

�

�! (I � (new l : L)(N j lJCK j kJQK)) and

that M

0

�M jM

00

� (new l : L)(M j lJCK j kJQK), so by (25), we have

I j= M

0

R (new l : L)(N j lJCK j kJQK)

and our mat
hing transition as required.

Alternatively, suppose that kJP K �! M

00

is derived from an in-

stan
e of (r-move). We then have

P = goto p:lF and M

00

� lJp!hF iK

for some p; l; F . It is important to note here that the lo
ation l may

not be
ontained in I

T

and this prevents us from immediately using

the de�nition of relation R to
laim that

I j= M j lJp!hF iKRN j lJp!hF iK

However, we do know that I

0

�

` kJP K so

(I

0

�

; I

T

)�M

go

p

l:F

����! (I

0

�

; I

T

)�M j lJp!hF iK

is a valid transition. The hypothesis (24) tells us that there is a mat
h-

ing transition

(I

0

�

; I

T

)�N

go

p

l:F

===) (I

0

�

; I

T

)�N

00

su
h that (I

0

�

; I

T

) j= M j lJp!hF iK �

bis

N

00

. This tells us that there is

some N

0

su
h that

N�!

�

N

0

and N

0

j lJp!hF iK�!

�

N

00

Therefore, it is
lear that (I � N j kJP K) =) (I � N

00

) with I j=

M j lJp!F K�

bis

N

00

as required.

� Cases (3) and (4) are similar in nature so we only show the reasoning

for the latter. We have, in this instan
e, that

(I �M)

(~m)k:a:(~m

0

;G)!

���������! (I

00

�M

00

)

where

G = � ~x : T: Q

P = a?(~x : T)Q

M

00

�!M

000

(from (r-beta) su
h that M

0

� (new ~m : U

0

)M

000

~m � ~m

0

It is easy to
he
k (
f. Lemma 4.8 of [8℄) that

(I

0

�

; I

T

)�M

(~m)k:a:(~m

0

;G)!

���������! (I

0

�

; f ~m

0

: Ug�M

00

); I

T

)�M

00

safeDpi: a language for
ontrolling mobile
ode 55

where U

0

<: U. Call the target knowledge stru
ture I

000

. This tells us,

by (24) that there exists a mat
hing transition

(I

0

�

; I

T

)�N

(~m)k:a:(~m

0

;G)!

=========) (I

000

�N

00

)

with I

000

j= M

00

�

bis

N

00

. Note that M

00

�! M

000

(derived from

(r-beta)) guarantees, by
on
uen
e properties of beta-redu
tion, that

I

000

j= M

000

�

bis

N

00

and we
an also assume, without loss of general-

ity that N

00

is stable with respe
t to ��redu
tions. By analysing the

above transition we see that there exists some N

000

, ~n : T

0

and V su
h

that

N�!

�

(new ~m : U

00

) (new ~n : T

0

)(N

000

j kJa!hV iK)

with

(new ~n : T

0

)(N

000

j kJ� ~x : T: Q(V)K)�!

�

N

00

and U

00

<: U

Therefore we have

N j kJP K �!

�

(new ~m : U

00

) (new ~n : T

0

)(N

000

j kJa!hV iK j kJa?(~x : T)QK)

�!

�

(new ~m : U

00

) (new ~n : T

0

)(N

000

j kJQfj

V

=~xjgK)

�!

�

(new ~m : U

00

)N

00

� N

0

Given that M

0

� (new ~m : U

0

)M

000

, we have enough to
on
lude that

I j= M

0

RN

0

as required.

� Finally, in
ase (5) we follow a similar argument to that in [8℄ with

only a slight modi�
ation to a

ount for the asyn
hronous nature of

safeDpi. �

6.3 Relating bisimulation and
ontextual barbed
ongruen
e

This se
tion is devoted to showing that these equivalen
es, viewed as

knowledge-indexed relations
oin
ide.

Proposition 6.11 (Soundness of �

bis

for �

xt

).

I j= M �

bis

N implies I j= M �

xt

N:

Proof: It is evident that �

bis

forms a symmetri
, redu
tion
losed and

barb preserving knowledge-indexed relation. Therefore, be
ause of Propo-

sition 6.10 �

bis

satis�es all the de�ning properties of �

xt

. Sin
e �

xt

is

the largest su
h relation the result follows. �

The for
e of this proposition is that any distin
tions made between

systems by the
ontextual
ongruen
e
an also be made by the labelled

transition system. This means that we have provided enough labels of

suÆ
ient distinguishing power. We must also
he
k that we have not

56 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

provided too mu
h distinguishing power in the labelled transition system.

This is done by relating ea
h a
tion de�ned in the labelled transition

system to an a
tual well-typed safeDpi
ontext.

Proposition 6.12 (Definability (
f. Prop 4.4 of [9℄)). For ea
h la-

bel � and ea
h knowledge stru
ture I there exists a system C

I

�

whi
h uses

the fresh barb name Æ, port name Æ

in

and lo
ation k

0

and tests for � in

the sense that

� if (I �M)

�

�! (I

0

�M

0

) then I; fk

0

: K

0

g ` C

I

�

and moreover,

C

I

�

jM�!

�

(new ~m :

~

E)(k

0

JÆ

in

!hÆ!hiiK jM

00

) with M

00

�M

0

� if C

I

�

jM�!

�

(new ~m :

~

E)(k

0

JÆ

in

!hÆ!hiiK jM

00

) and I; fk

0

: K

0

g ` C

I

�

where ~m = obj

!

(�) then (I �M)

�

�! (I

0

�M

0

) with M

00

�M

0

.

where

K

0

= lo
[Æ

in

: rwhthunki; Æ : rwhuniti; Æ

fail

: rwhuniti; Æ

su

: rwhuniti℄

(the barbs Æ

fail

and Æ

su

are to be used later).

Proof: These systems are, for the most part, straightforward, and readers

familiar with the work in [8, 9℄ will have little trouble re
onstru
ting them.

As an example we show the systems for k:a:(~v;G)! and go

p

l:V a
tions:

we de�ne

C

I

k:a:(~v;G)!

def

= kJa?(~x; y) if ~x = ~v then G(~x; y) j goto

Æ

in

k

0

:Æ!hi else stopK

and

C

I

go

p

l:V

def

= k

0

JÆ

in

!hÆ!hii j goto

p

l:V K

The interested reader is invited to
he
k that, for any
on�guration su
h

that (I �M)

�

�! (I �M

0

) for one of these a
tions then it is the
ase that

I

�

; fk

0

: K

0

g ` C

�

and moreover C

�

jM�!

�

k

0

JÆ

in

!hÆ!hiiK jM

00

where M

00

is stru
turally equivalent to M

0

up to
olle
tion of terminated garbage

threads lJstopK. �

By providing su
h testing systems for ea
h a
tion in the lts provided

above we are able to establish our se
ond main result

Theorem 6.13 (Full abstra
tion of �

bis

for �

xt

).

I j=M �

xt

N if and only if I j=M �

bis

N:

Proof: (Sket
h) One dire
tion is given by Proposition 6.11. The
onverse

is shown by building a bisimulation from all pairs of
on�gurations su
h

that I j= M �

xt

N . Spe
i�
ally, let R be a relation over
on�gurations

de�ned by

(I j=M) R (I j= N)

safeDpi: a language for
ontrolling mobile
ode 57

if I j= M �

xt

N . We outline the proof that R de�nes a bisimulation,

from whi
h the result follows.

To this end suppose (I � M)

�

�! (I

0

� M

0

), where I j= M R N .

We must �nd a mat
hing move (I � N)

�

=) (I

0

� N

0

), su
h that I

0

j=

M

0

R N

0

. For the purposes of this sket
h we assume for simpli
ity that

I = I

0

. By De�nability, Proposition 6.12. We know that there exists a

system C

I

�

, typeable from I

�

; fk

0

: K

0

g, whi
h satis�es the
onditions of

ontextuality for knowledge-indexed relations and moreover, indu
es an

intera
tion when plugged with M . In other words,

C

I

�

jM�!

�

k

0

JÆ

in

!hÆ!hiiK jM

00

(26)

for some Æ; Æ

in

at k

0

andM

00

equivalent toM

0

up to stru
ture and garbage

olle
tion. We make use of this property of C

I

�

as follows: �rst for the barb

names, Æ

fail

and Æ

su

in K

0

let

Flip

def

= k

0

JÆ

fail

!hi j Æ?():Æ

fail

?():Æ

su

!hiK

and let

D

I

�

def

= (k

0

JÆ

in

?(X : thunk)X()K j Flip j C

I

�

j �)

It is easy to
he
k that I

�

; fk

0

: K

0

g ` D

I

�

whenever I

�

; fk

0

: K

0

g ` C

I

�

.

We should note that the redu
tions (26) above extend so that (up to

stru
ture and garbage
olle
tion)

D

I

�

[M ℄�!

�

k

0

JÆ

su

!hiK jM

00

The hypothesis I j= M �

xt

N , the fa
t that I

�

; fk

0

: K

0

g ` C

I

�

and

weakening,
ontextuality and barb preserving properties of �

xt

together

allow us to use (I

�

; fk

0

: K

0

g; I

T

+ k

0

) j= D

I

�

[M ℄�

xt

D

I

�

[N ℄ to �nd a

mat
hing transition

D

I

�

[N ℄�!

�

k

0

JÆ

su

!()K jN

00

with

(I

�

; fk

0

: K

0

g; I

T

+ k

0

) j= kJÆ!hiK jM

00

�

xt

kJÆ!hiK jN

00

:

Note that we
an guarantee this form by the absen
e of the Æ

fail

barb in

k

0

JÆ

su

!hiK jM

00

and the fa
t that, by symmetry, absen
e of barbs must

also be preserved. The systems C

I

�

are also built in su
h a way as to

guarantee that whenever D

I

�

[N ℄�!

�

k

0

JÆ

su

!hiK j N

00

then we must also

have I�N

�

=)I�N

0

where, again, N

00

is equivalent to N

0

up to stru
tural

equivalen
e and garbage
olle
tion. It is easy to show dire
tly that

(I

�

; fk

0

: K

0

g; I

T

+ k

0

) j= k

0

JÆ

su

!hiK jM

00

�

xt

k

0

JÆ

su

!hiK jN

00

implies I j= M

0

�

xt

N

0

whi
h is enough to
on
lude with I j= M

0

RN

0

.

A symmetri
 argument establishes that R is a bisimulation.

58 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

The
ase in whi
h (I�M)

�

�!(I

0

�M

0

) for I

0

not equal to I is slightly

more
ompli
ated and is dealt with using an Extrusion Lemma similar to

that found in [6, 9, 8℄. �

This provides an alternative
hara
terisation of redu
tion barbed
on-

gruen
e whi
h models the nature of knowledge a
quisition possible by

testing with highly
onstrained mobile
ode in an expli
it way.

7 Con
lusion

We have developed a sophisti
ated type system for
ontrolling the be-

haviour of mobile
ode in distributed systems, and demonstrated that,

at least in prin
iple,
oindu
tive proof prin
iples
an still be applied to

investigate their behaviour.

The use of types in this manner
ould be
onsidered as a parti
ular

ase of the general approa
h of proof-
arrying
ode, [18℄ and typed assembly

language (TAL) [17℄. Here hosts would publish their safety poli
ies in

terms of a type or logi
al proposition and
ode wishing to enter would

have to arrive with a proof, whi
h a type
he
ker or proof
he
ker
an use

to verify that it satis�es the published poli
y. Indeed we intend to use

the types of the
urrent paper in this manner, by extending the work in

[20℄. The work of [18℄ and [17℄ has inspired mu
h further resear
h into

the use of type systems in higher-level languages for resour
e a

ess and

usage monitoring, [23℄, [12℄, for example. However the emphasis in these

papers is on dynami
s and
ounting of resour
e usage rather than using

sophisti
ated types to spe
ify �ne-grained a

ess
ontrol.

There has been mu
h work on modelling mobility and lo
ations using

parti
ular pro
ess
al
uli. Perhaps the
al
ulus
losest to safeDpi is the

Seal Cal
ulus, [5℄. Seals are hierar
hi
ally organised
omputational sites

in whi
h inter-seal
ommuni
ation, whi
h is
hannel-based, is only allowed

among siblings or between parents and siblings. Seals may also be
om-

muni
ated, rather like the
ommuni
ation of higher-order pro
esses along

ports in safeDpi; indeed in some sense it is more general as the seal being

transmitted may be
omputationally a
tive. However the
ommuni
ation

of seals is more
ompli
ated, as it involves agreement between three par-

ti
ipants, the sender, the re
eiver, and the seal being transmitted. Seals

are also typed using interfa
es, similar to our �ne-grained pro
ess types,

�. But these only re
ord the input
apabilities a seal o�ers to its parents,

and in order to preserve interfa
es under redu
tion the transmission of

input
hannel
apabilities is forbidden in the language. This is a severe

restri
tion, at least in general distributed
omputing, if not in the more fo-

used appli
ation area of seals. For example the generation of new servers

safeDpi: a language for
ontrolling mobile
ode 59

requires the the transmission of input
apabilities. We believe that our

dependent and existential types
an also be applied to the Seal Cal
ulus,

to obtain a more general notion of interfa
e, whi
h will still be preserved

by redu
tion.

The M-
al
ulus, [22℄, a higher-order extension of the distributed join

al
ulus, is also
losely related, at least
on
eptually, to safeDpi. Here,

not only are lo
ations hierar
hi
ally organised, but are programmable, in

the sense that entry and exit poli
ies for ea
h lo
ation
an be expli
itly

programmed. In addition it has an interesting operator,
alled passivation,

whi
h
an freeze the
ontents of a site into a value. However their type

system is not related to one we have developed for safeDpi; the latter

addresses a

ess
ontrol issues for migrating
ode whereas the former is

on
erned with uni
ity of lo
ations; in a higher-order language with a

passivation operator it is important to ensure that ea
h lo
ality has a

unique name. Thus the type system for the M-Cal
ulus draws on that

presented in [24℄, where uni
ity of the lo
ation of
hannel names was

addressed, rather than that of [25℄, whi
h developed �ne-grained a

ess

ontrol types for pro
esses.

Type systems have also been used to expli
itly
ontrol mobility in

distributed
al
uli, most notably in variants of the Ambient
al
ulus of

Cardelli and Gordon [3℄. In parti
ular, [2℄, [16℄ use subtyping to
on-

trol movement of mobile pro
esses in a hierar
hi
ally distributed system

by introdu
ing expli
it types to express permission to migrate. A simi-

lar te
hnique was used for Dpi in [10℄, [8℄. In
ontrast, here we
ontrol

mobility only indire
tly through types. Code is always permitted to mi-

grate provided it has a

ess to a suitable port at the target lo
ation. But

by restri
ting the use of
hannels in the types this
onsequently restri
ts

migration. Indeed, we de
ouple permission to migrate from the lo
ation

name itself, a�ording more
exibility in the
ontrol of migration.

The
oindu
tive
hara
terisation presented here makes use of higher-

order a
tions in the sense that, to intera
t with a system willing to send

a s
ript V , the environment must supply a re
eiving s
ript G to whi
h V

will be applied. A similar approa
h is used in the
hara
terisation theo-

rems for various forms of ambients in [7℄ and [15℄. Higher-order a
tions

are also used in the bisimulation equivalen
e presented in [4℄ for the Seal

al
ulus. However, there the three way nature of higher-order
ommuni-

ation leads to a proliferation of su
h a
tions, some of whi
h
an not be

simulated by seal
ontexts; see Se
tion 4.4 of [5℄ for examples. As a re-

sult the bisimulation equivalen
e is more dis
riminating than the natural

ontextual equivalen
e for seals.

Su
h higher-order bisimulations do not dire
tly result in automati

60 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

(e-empty)

` env

(e-s
ript)

� ` S : ty

�; x : S ` env

x 62 �

(e-gres)

� ` C : ty

�; u : r
hCi ` env

u 62 �

(e-lo
)

� ` env

�; u : lo
 ` env

u 62 �

(ty-lookup)

�; u : T;�

0

` env

�; u : T;�

0

`

lookup

u : T

(ty-Elookup)

�; h~x :

~

E; y : Ti;�

0

` env

�; hex :

e

E; y : Ti;�

0

`

lookup

y : T

(e-newl
han)

� `

lookup

w : lo

� ` C : ty

�; u : C�w ` env

u 62 �

(e-l
han)

� `

lookup

w : lo

� `

lookup

u : r
hDi

� ` D <: C

�; u : C�w ` env

(e-Edep)

�; fx

1

: E

1

g; : : : ; fx

n

: E

n

g ` T : ty

�; y : hT with ex :

e

Ei ` env

x

i

; y 62 �

y 6= x

i

Figure 10. Well-de�ned Environments

veri�
ation methods for distributed systems. But they do serve to fo
us

on the essential features of systems whi
h determine their behaviour; for

example our results for safeDpi have demonstrated the importan
e of

the goto moves go

p

k:V . Moreover they serve as a starting point for more

in-depth analyses of the behaviour of safeDpi systems, and more parti
-

ularly of interesting sub-languages. For example is it possible to use the

te
hnique of [13℄ to �nd a fully-abstra
t bisimulation equivalen
e whi
h

only uses �rst-order labels? There the re
eiving
ontexts for higher-order

values are repla
ed by symboli
 representatives. Although not dire
tly ap-

pli
able due to the extra
ompli
ation of distribution and mobility
ontrol,

it would be of great interest to pursue those ideas in the
urrent setting.

A
knowledgements: The �rst two authors would like to a
knowledge

the �nan
ial support of the two EU Global
omputing proje
ts, Mikado

and Myths.

A Auxiliary De�nitions and Results

Types and Type Environments: The judgements for well-de�ned en-

vironments, � ` env, and subtyping, � ` T <: U, are de�ned simultane-

safeDpi: a language for
ontrolling mobile
ode 61

(sub-base)

� ` env

� ` base <: base

(sub-top)

� ` env

� ` T <: >

(sub-pro
top)

� ` � <: �

� ` � <: pro

(sub-
han)

� ` T

r

<: U

r

;U

w

<: T

w

;

T

w

<: T

r

� ` whT

w

i <: whU

w

i;

� ` rhT

r

i <: rhU

r

i

� ` rwhT

r

;T

w

i <: rwhU

r

;U

w

i

� ` T

r

<: U

r

;U

w

<: T

w

T

w

<: T

r

� ` rwhT

r

;T

w

i <: whU

w

i

� ` rwhT

r

;T

w

i <: rhU

r

i

(sub-lo
)

� `

lookup

u

i

: r
hD

i

i

� ` D

i

<: C

i

; D

j

<: C

0

j

;

� ` C

i

<: C

0

i

;

� ` lo
[u

1

: C

1

; : : : ; u

m

: C

m

℄ <: lo
[u

1

: C

0

1

; : : : ; u

n

: C

0

n

℄

0 � n � m

(sub-hom)

� ` C <: C

0

� `

lookup

w : lo

� ` C�w <: C

0

�w

� ` r
hCi <: r
hC

0

i

(sub-s
ript)

�; fx

1

: (T

1

)�hereg; : : : ; fx

n

: (T

n

)�hereg ` � <: �

0

� ` Fdep(ex :

e

T!�) <: Fdep(ex :

e

T!�

0

)

(sub-pro
)

� ` u

i

: C

i

�w

i

; u

j

: C

0

j

�w

j

� ` C

0

i

�w

0

i

<: C

i

�w

i

� ` pr[u

1

: C

1

�w

1

; : : : ; u

m

: C

m

�w

m

℄ <: pr[u

1

: C

0

1

�w

1

; : : : ; u

n

: C

0

n

�w

n

℄

0 � m � n

(sub-TuDep)

�; fx

1

: E

1

g; : : : ; fx

n

: E

n

g ` T <: T

0

� ` Tdep(ex :

e

E
)T <: Tdep(ex :

e

E
)T

0

(sub-EDep)

�; fx

1

: E

1

g; : : : ; fx

n

: E

n

g ` T <: T

0

� ` Edep(ex :

e

E)T <: Edep(ex :

e

E)T

0

Figure 11. Subtyping

62 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

ously, using the rules in Figure 10 and Figure 11. The former are a mild

extension of the
orresponding rules in Figure 6 of [8℄ to a

ommodate

s
ript and dependent types and rely on a predi
ate � `

lookup

u : T, whi
h

simply looks up the type asso
iated with u in �. The latter is an extension

of the well-known subtyping rules of types in the Pi
al
ulus, [21℄, and

Dpi, [10, 8℄; the rules for pro
ess types are similar to those used in [25℄.

The judgements also
he
k that the identi�ers used in T; U are a
tually

de
lared appropriately in �.

Proposition A.1 (Sanity Che
ks).

� � ` T <: U implies � ` env

� � ` T <: U implies � ` T : ty and � ` U : ty

� � ` T <: U, � ` U <: R implies � ` T <: R

� �; u : T ` env implies � ` env and � ` T : ty

Proof: By rule indu
tion. �

Meets and Joins: The partial operators u; t on type expressions are

de�ned by extending the de�nitions used in [10, 8℄ for
hannel and lo
ation

types. We take them to be the least re
exive and symmetri
 operators

whi
h satisfy a series of rules for
ombining together various kinds of type

expressions. Those governing
hannel expressions are, as in [10℄:

� rhT

1

i u rhT

2

i = rhT

1

u T

2

i, rhT

1

i t rhT

2

i = rhT

1

t T

2

i

� whT

1

i u whT

2

i = whT

1

t T

2

i, whT

1

i t whT

2

i = whT

1

u T

2

i

� rhT

r

i u whT

w

i = rwhT

r

;T

w

i

� rwhT

r

;T

w

i u rhT

0

r

i = rwhT

r

u T

0

r

;T

w

i,

rwhT

r

;T

w

i t rhT

0

r

i = rwhT

r

t T

0

r

;T

w

i,

� rwhT

r

;T

w

i u whT

0

w

i = rwhT

r

;T

w

t T

0

w

i,

rwhT

r

;T

w

i t rhT

0

w

i = rwhT

r

;T

w

u T

0

w

i,

To express the rules for lo
ation types we take advantage of the fa
t that

the ordering of their
omponents is immaterial:

� lo
[u

1

: C

0

1

℄u lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[u

1

: (C

0

1

uC

1

); : : : ; u

n

: C

n

℄,

lo
[u

1

: C

0

1

℄ t lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[u

1

: (C

0

1

t C

1

)℄

� if u does not o

ur in fu

1

; : : : ; u

n

g then

lo
[u : C℄ u lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[u : C; u

1

: C

1

; : : : ; u

n

: C

n

℄,

lo
[u : C℄ t lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ = lo
[℄

� lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄ u K = lo
[u

1

: C

1

℄ u (: : : (lo
[u

n

: C

n

℄ u K) : : :),

lo
[u

1

: C

1

; : : : ; u

n

: C

n

℄tK = (lo
[u

1

: C

1

℄tK)u : : :u (lo
[u

n

: C

n

℄tK)

safeDpi: a language for
ontrolling mobile
ode 63

We use a similar approa
h to de�ning the operations on pro
ess types,

where we use GC as an arbitrary type of the form C�w. However the

pro
ess type
onstru
tor is
ontravariant, whereas the lo
ation
onstru
tor

is
ovariant.

� pr[u

1

: C

0

1

�w

1

℄ u pr[u

1

: C

1

�w

1

; : : : ; u

n

: GC

n

℄ = pr[u

1

: (C

0

1

t C

1

)�w

1

℄,

pr[u

1

: C

0

1

�w

1

℄ t pr[u

1

: C

1

�w

1

; : : : ; u

n

: GC

n

℄ =

pr[u

1

: (C

0

1

u C

1

)�w

1

; : : : ; u

n

: GC

n

℄

� if u�w does not o

ur in fu

1

�w

1

; : : : ; u

n

�w

n

g then

pr[u : C�w℄ u pr[u

1

: C

1

�w; : : : ; u

n

: C

n

�w

n

℄ = pr[℄,

pr[u : C�w℄ t pr[u

1

: C

1

�w

1

; : : : ; u

n

: C

n

�w

n

℄ =

pr[u : C�w; u

1

: C

1

�w

1

: : : ; u

n

: C

n

�w℄

� pr[u

1

: GC

1

; : : : ; u

n

: GC

n

℄ u � =

(pr[u

1

: GC

1

℄ u �) t : : : t (pr[u

n

: GC

n

℄ u �),

pr[u

1

: GC

1

; : : : ; u

n

: GC

n

℄ t � = pr[u

1

: GC

1

℄ t (: : : (u

n

: GC

n

t �) : : :)

� pro
 u � = �, pro
 t � = pro

For the various forms of dependent types, the rules are straightforward:

� Fdep(~x :

~

T!�) u Fdep(~x :

~

T!�

0

) = Fdep(~x :

~

T!(� u �

0

)),

Fdep(~x :

~

T!�) t Fdep(~x :

~

T!�

0

) = Tdep(~x :

~

T) (� t �

0

)

� Tdep(~x :

~

T)T u Tdep(~x :

~

T)T

0

= Tdep(~x :

~

T) (T u T

0

),

Tdep(~x :

~

T)T t Tdep(~x :

~

T)T

0

= Tdep(~x :

~

T) (T t T

0

)

� Edep(~x :

~

T)T u Edep(~x :

~

T)T

0

= Edep(~x :

~

T) (T u T

0

),

Edep(~x :

~

T)T t Edep(~x :

~

T)T

0

= Edep(~x :

~

T) (T t T

0

)

For the remaining kinds of type expressions we merely extend the de�ni-

tions homomorphi
ally:

� r
hCi u r
hC

0

i = r
hC u C

0

i, r
hCi t r
hC

0

i = r
hC t C

0

i

� T�w u T

0

�w = (T u T

0

)�w

Proposition A.2.

� If there exists some type expression T su
h that � ` T <: T

1

and

� ` T <: T

2

then T

1

u T

2

is well-de�ned

� When T

1

uT

2

is well-de�ned, � ` T

1

uT

2

<: T

i

and � ` T <: T

1

uT

2

,

for any type expression T su
h that � ` T <: T

1

and � ` T <: T

2

.

� If there exists some type expression T su
h that � ` T

1

<: T and

� ` T

2

<: T then T

1

t T

2

is well-de�ned

� When T

1

tT

2

is well-de�ned, � ` T

i

<: T

1

tT

2

, and � ` T

1

tT

2

<: T,

for any type expression T su
h that � ` T

1

<: T and � ` T

2

<: T.

64 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Proof: The �rst and third statements are proved by indu
tion on the

derivations of � ` T

i

<: T and � ` T <: T

i

respe
tively. The se
ond and

fourth are by indu
tion on the
onstru
tion of T

1

uT

2

; T

1

tT

2

respe
tively.

�

Note that be
ause of the top type > the premise of the third statement is

always true; so T

1

t T

2

always exists, although in many
ases it will be

the uninformative type >.

Substitutions: Free identi�ers may o

ur in type expressions and there-

fore we need to de�ne Tfj

v

=ujg for an arbitrary type expression T; this is

then used as part of the de�nition of substitution into pro
ess terms. The

de�nition of Tfj

v

=ujg is by indu
tion on the stru
ture of T. The only inter-

esting
ases are lo
ation and pro
ess types, where the de�nition needs to

ensure that the entries remain unique:

� lo
[u

0

: C℄fj

v

=ujg = lo
[u

0

fj

v

=ujg : Cfj

v

=ujg℄

� lo
[u

1

: C

1

; : : : u

n

: C

n

℄fj

v

=ujg =

(lo
[u

1

: C

1

℄fj

v

=ujg) u : : : u (lo
[u

n

: C

n

℄fj

v

=ujg)

� pr[u

0

: C℄fj

v

=ujg = pr[u

0

fj

v

=ujg : Cfj

v

=ujg℄

� pr[u

1

: C

1

; : : : u

n

: C

n

℄fj

v

=ujg = (pr[u

1

: C

1

℄fj

v

=ujg)t : : :t (pr[u

n

: C

n

℄fj

v

=ujg)

� All other
ases are de�ned homomorphi
ally. For example

{ rwhT

r

;T

w

ifj

v

=ujg = rwhT

r

fj

v

=ujg;T

w

fj

v

=ujgi

{ Tdep(~x :

~

E)Tfj

v

=ujg = Tdep(~x : (

~

Efj

v

=ujg)) (Tfj

v

=ujg), where we assume v

is di�erent from ea
h x

i

Proposition A.3.

� Suppose T u U is de�ned. Then so is Tfj

v

=ujg u Ufj

v

=ujg and (up to �-

equivalen
e) is the same as (T u U)fj

v

=ujg

� Similarly for T t U.

Proof: By simultaneous indu
tion on the de�nitions of T uU and T tU.

�

Substitution of identi�ers also
ommutes with the
hannel extra
tion

fun
tion.

Proposition A.4. For all identi�ers u; v,

pr

h

[V : T℄fj

v

=ujg = pr

h

[V fj

v

=ujg : Tfj

v

=ujg℄

Proof: By indu
tion on the de�nition of pr

h

[V : T℄. The only non-trivial

ase is when V is an identi�er w and T a lo
ation type, when the proof

safeDpi: a language for
ontrolling mobile
ode 65

depends on the pe
uliaries of the appli
ation of substitutions to lo
ation

and pro
ess types. �

Proposition A.5 (Substitution). Suppose � `

w

v : T and x 62 �.

Then

� �; x : (T)�w;� ` env implies �;�fj

v

=xjg ` env

� �; ; x : (T)�w;� ` T <: U implies �;�fj

v

=xjg ` Tfj

v

=xjg <: Ufj

v

=xjg

Proof: By simulataneous indu
tion on the derivations. Note that there

are only four possibilities for the entry x : (T)�w, namely x : lo
, x : r
hDi,

x : C�w or x : S. �

The
orresponding substitution result for existential values depends on

the following property of existential witnesses.

Proposition A.6. Let �

e

denote �; y : hT with ~x :

~

Ti;�

0

. Then

� �

e

` env implies x

i

does not o

ur in �

0

.

� �

e

` T <: U implies x

i

does not o
ur free in T; U.

Proposition A.7. Suppose � `

w

h~v; vi : Edep(~x :

~

E)T. Let �

e

denote

�; y : h(T)�w with ~x : (

~

E)�wi;�. Then

� �

e

` env implies �;�fj

v

=yjg ` env

� � ` U

1

<: U

2

implies U

1

fj

~v;v

=~x;yjg <: U

2

fj

~v;v

=~x;yjg

Proof: By simultaneous indu
tion on the inferen
es. �

Adding knowledge to environments: Here we extend the meet op-

erator u to lists of type asso
iations. This is used in Figure 9, in the rules

(m-send:val) and (m-send:dep:s
ript), for in
reasing the knowledge in

a type environment. We �rst de�ne the (partial) operation � u u : E

between an arbitrary asso
iation list � and a singleton:

� If E is a lo
ated
hannel A�w then � u u : E is �; u : E.

� Otherwise if u has no asso
iation in � then � u u : E is also �; u : E.

� Otherwise � u u : E is obtained by repla
ing the asso
iation of u in �,

say u : E

0

, by the new asso
iation u : (EuE

0

); in this
ase the operation

is only de�ned if (E u E

0

) exists.

The general de�nition of �

1

u �

2

then follows by indu
tion on the size of

�

2

:

� �

1

u � = �

1

� �

1

u (�

0

2

; u : E) = (�

1

u �

0

2

) u u : E

66 Matthew Hennessy, Julian Rathke and Nobuko Yoshida

Referen
es

[1℄ M. Boreale and D. Sangiorgi. Bisimulation in name-passing
al
uli without mat
h-

ing. In Pro
. 13th LICS Conf. IEEE Computer So
iety Press, 1998.

[2℄ L. Cardelli, G. Ghelli, and A. Gordon. Ambient groups and mobility types. In Pro
.

IFIP TCS 2000, volume 1872 of Le
ture Notes in Computer S
ien
e. Springer-

Verlag, 2000.

[3℄ L. Cardelli and A. Gordon. Mobile ambients. In Pro
. FoSSaCS '98, LNCS.

Springer-Verlag, 1998.

[4℄ G. Castagna and F. Zappa Nardelli. The Seal
al
ulus revisited: Contextual equiv-

alen
es and bisimilarity. In Pro
eedings of FSTTCS, Le
ture Notes in Computer

S
ien
e, 2002.

[5℄ Giuseppe Castagna, Jan Vitek, and Fran
es
o Zappa. The Seal
al
ulus. 2003.

Available from ftp://ftp.di.ens.fr/pub/users/
astagna/seal.ps.gz.

[6℄ C. Fournet, G. Gonthier, J-J. Levy, L. Maranget, and D. Remy. A
al
ulus of

mobile agents. In Pro
. CONCUR, volume 1119 of Le
ture notes in
omputer

s
ien
e. Springer-Verlag, 1996.

[7℄ M. Hennessy and M. Merro. Bisimulation
ongruen
es in safe ambients. In Pro
.

POPL 02. ACM Press, 2002.

[8℄ Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural

theory of a

ess and mobility
ontrol in distributed systems. Te
hni
al Report

2002:01, COGS, University of Sussex, 2002. Extended Abstra
t published in the

Pro
eedings of FoSSaCS 2003.

[9℄ Matthew Hennessy and Julian Rathke. Typed behavioural equivalen
es for pro-

esses in the presen
e of subtyping. In James Harland, editor, Ele
troni
 Notes in

Theoreti
al Computer S
ien
e, volume 61. Elsevier S
ien
e Publishers, 2002. To

appear in Mathemati
al Stru
tures in Computer S
ien
e.

[10℄ Matthew Hennessy and James Riely. Resour
e a

ess
ontrol in systems of mobile

agents. Information and Computation, 173:82{120, 2002.

[11℄ K. Honda and N. Yoshida. On redu
tion-based pro
ess semanti
s. Theoreti
al

Computer S
ien
e, 152(2):437{486, 1995.

[12℄ Atsushi Igarashi and Naoki Kobayashi. Resour
e usage analysis. In Pro
eedings

of ACM Symposium on Prin
iples of Programming Languages (POPL'02), pages

331{342, 2002.

[13℄ Alan Je�rey and Julian Rathke. Contextual equivalen
e for higher-order �-
al
ulus

revisited. In Pro
eedings MFPS XIX, Montreal, 2003.

[14℄ Cedri
 Lhoussaine. Type inferen
e for a distributed pi-
al
ulus. In ESOP'02,

volume 2618 of LNCS, pages 253{269. Springer-Verlag, 2002.

[15℄ Massimo Merro and Fran
es
o Zappa Nardelli. Bisimulation proof te
hniques

for mobile ambients. In Pro
. 30

th

International Colloquium on Automata, Lan-

guages, and Programming (ICALP 2003), Eindhoven, Le
ture Notes in Computer

S
ien
e. Springer-Verlag, 2003.

[16℄ Massimo Merro and Vladimiro Sassone. Typing and subtyping mobility in boxed

ambients. In Pro
eedings CONCUR 02, volume 1644 of Le
ture Notes in Computer

S
ien
e. Springer-Verlag, 2002.

[17℄ Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Sta
k-based typed

assembly language. In Types in Compilation, volume 1473 of Le
ture notes in

Computer S
ien
e, pages 25{35. Springer-Verlag, 1998.

safeDpi: a language for
ontrolling mobile
ode 67

[18℄ George C. Ne
ula. Proof-
arrying
ode. In Conferen
e Re
ord of POPL '97:

The 24th ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming

Languages, pages 106{119, Paris, Fran
e, jan 1997.

[19℄ B. Pier
e and D. Sangiorgi. Behavioral equivalen
e in the polymorphi
 pi-
al
ulus.

Journal of the ACM, 47(3):531{584, 2000.

[20℄ James Riely and Matthew Hennessy. Trust and partial typing in open systems of

mobile agents (extended abstra
t). In Conferen
e Re
ord of POPL '99 The 26th

ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages,

pages 93{104, 1999. To appear in the Journal of Automated Reasoning.

[21℄ Davide Sangiorgi and David Walker. The �-
al
ulus. Cambridge University Press,

2001.

[22℄ A. S
hmitt. and J.-B. Stefani. The M-
al
ulus: A higher-order distributed pro
ess

al
ulus. In POPL2003, January 2003.

[23℄ David Walker. A type system for expressive se
urity properties. In the twenty sev-

enth ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Lan-

guages, Boston, pages 254{267, 2000.

[24℄ Nobuko Yoshida and Matthew Hennessy. Subtyping and lo
ality in distributed

higher order pro
esses. In Pro
. CONCUR, volume 1664 of Le
ture notes in
om-

puter s
ien
e. Springer-Verlag, 1999.

[25℄ Nobuko Yoshida and Matthew Hennessy. Assigning types to pro
esses. Informa-

tion and Computation, 172:82{120, 2002.

