
A theory of bisimulation for a fragment of concurrent ML

with local names

Alan Jeffrey

CTI, DePaul University

243 South Wabash Ave

Chicago IL 60604, USA

ajeffrey@cs.depaul.edu

Julian Rathke∗

COGS, University of Sussex

Brighton BN1 9QH, UK

julianr@cogs.susx.ac.uk

Abstract

Concurrent ML is an extension of Standard ML with π-calculus-like primitives for multi-threaded pro-

gramming. CML has a reduction semantics, but to date there has been no labelled transitions semantics

provided for the entire language. In this paper, we present a labelled transition semantics for a fragment

of CML called µνCML which includes features not covered before: dynamically generated local chan-

nels and thread identifiers. We show that weak bisimilarity for µνCML is a congruence, and coincides

with barbed bisimulation congruence. We also provide a variant of Sangiorgi’s normal bisimulation for

µνCML, and show that this too coincides with bisimilarity.

1 Introduction

Concurrent threads of program execution have now become part of a standard toolkit available in modern

object-oriented programming languages such as C++ and Java. Their use can ease design of systems, im-

prove readability of code and improve performance. In order to take advantage of the flexibility offered

by concurrent programming, combined with the expressive programming style offered by functional

languages Reppy [23] defined and implemented Concurrent ML (CML), an extension of Standard ML

[25] with concurrency primitives based on Milner’s CCS [17] and π-calculus [18, 19].

In keeping with practice for ML, Reppy [23] and Berry, Milner and Turner [5] provided CML with

a reduction semantics, based on the SML language definition [25]. Such a semantics allows the proof of

many important properties of the language such as subject reduction, but does not directly support a no-

tion of program equivalence. An understanding of program equivalence for any programming language

is important both in practical terms, for instance, for rewrites in compiler optimizations, and for more

theoretical concerns such as expressivity of certain useful, but inessential, language features.

Typically a notion of equivalence for a programming language will be defined by identifying some

basic observable property of programs, such as termination or production of a particular value, and then

∗Research funded by EPSRC grant GR/L93058 and the Nuffield Foundation.

1

ask that equivalent programs display the same observable properties in all program contexts. It is this

latter requirement that makes reasoning about such equivalence appear to be a cumbersome task. By

modelling the programming language it is often possible to characterise the program equivalence in a

direct manner which avoids such quantification over contexts of the language and can simply reasoning

about program equivalence significantly. We choose to study a notion of equivalence based upon barbed

bisimulation [20] appropriate for a concurrent programming language.

Initial efforts towards characterising program equivalence for CML were made by Ferreira, Hennessy

and Jeffrey [6] who provided a labelled transition system semantics for a fragment of CML, and showed

that the resulting theory of bisimulation was a congruence. This result is significant in the sense that

equivalences established using this semantics could be used to justify equational rewriting for program

fragments. The sublanguage of CML covered, however, was more restrictive than Reppy’s reduction

semantics, and in particular did not treat two important features of the language: channel generation,

and thread identifiers. In this paper, we show how these features can also be modelled cleanly using

labelled transition semantics.

Channel generation is an important primitive of CML: it allows new communication channels to be

created dynamically, and for their local scope to be controlled in the style of the π-calculus. Much of

the power of CML rests on local name generation, for example it is used in Reppy’s coding of recursion

into λcv. Many languages, such as Fournet et al.’s join calculus [7, 9], Boudol’s blue calculus [3], Thom-

sen’s CHOCS [30] and Sangiorgi’s higher-order π-calculus [26] include encodings of the λ-calculus

which rely upon local name generation. This paper provides the first direct characterization of program

equivalence for the λ-calculus together with π-style concurrency.

Our richer fragment of the language CML also contains thread identifiers. In particular, the type for

the spawn primitive which creates new threads is given by

spawn : (unit→σ)→σ thread

That is, spawn takes an inactive thread and sets it running concurrently with the new thread. The result

of this command is the identifier name of the new thread, which can then be used to block waiting for

another thread to terminate, using:

join : σ thread→σ

Calling join t causes the current thread to wait for t to terminate with some value v, which is then returned.

Ferreira, Hennessy and Jeffrey’s treatment of CML ignored thread identifiers entirely. Their type for

thread spawning was simply:

spawn : (unit→unit)→unit

Thread identifiers have received less attention in the literature than channels, largely because they can

be easily expressed in terms of channels. In this paper, we provide a semantics for thread identifiers,

partly because they already exist in CML, but also because they help simplify the labelled transition

system semantics considerably. This use of thread identifiers is similar to the use of function definitions

in Fournet et al.’s join calculus, and object pointers in Gordon and Hankin’s [11] concurrent object

calculus, but with the important difference that thread identifiers can contain actively executing code

rather than just functions or objects. They can also be seen as a restricted form of Cardelli and Gordon’s

[4] ambients, where the ambient tree is flat and names are used linearly.

Characterising equivalence for higher-order languages featuring locally declared names is known to

be a difficult task [22]. The problems arise particularly for bisimulation based approaches when it comes

2

to demonstrating that bisimilarity forms a congruence. The authors made initial steps towards the current

labelled transition semantics for local names in [15]. We proposed there a novel transition system which

incorporated a notion of privacy as a means of studying locality in the small sequential language ν-

calculus of Pitts and Stark, [21] with the intention of developing useful proof techniques for establishing

congruence of bisimilarity. We discovered that the pure interaction of higher-order functions and locally

declared names generates a subtle and complex notion of equivalence which can be simplified greatly by

the addition of side-effecting computation. The present work can also be seen as a case in support of this

argument by investigating the problem in the concurrent setting. In fact we adopt the same technique

for modelling local names in this paper; unfortunately however, the proof techniques for establishing

congruence of bisimilarity are very different.

In the previous paper we used a variant of a proof technique known as Howe’s method [14, 10].

Unfortunately, this is not available to us here as Howe’s method relies heavily upon syntactic structure

of terms. The use of a sophisticated structural equivalence such as the parallel composition operator

forming a commutative monoid is in direct conflict with Howe’s proof technique. If one were to attempt

a reduction semantics for the current language without recourse to a structural equivalence then one

finds that, in order to establish the notion of substitutivity required for the Howe relation, we require

congruence with respect to parallel composition; this is of course too difficult to show directly. Instead of

employing Howe’s method we adapt Sangiorgi’s [26] trigger semantics from the higher-order π-calculus.

The approach we develop here generalizes the trigger encodings and their corresponding correctness

proofs to accommodate the functional setting. This is achieved by introducing a hierarchy of operational

semantics based on type-order and establishing correctness throughout the hierarchy. We also make

use of a ‘bisimulation up to’ technique [27] based on confluent reduction to simplify and structure the

correctness proofs.

The remainder of the paper is organized as follows: in the next section we present the fragment of

CML which contains the features of interest to us and define a type system, reduction semantics and

notion of observational equivalence for the language. In Section 3 we describe our labelled transition

system semantics and offer justification for our transition rules by demonstrating a contextuality result.

Bisimulation equivalence for our language is also presented here. Section 4 is given over to establishing

that bisimilarity is a congruence. We follow this up with a much simpler labelled transition semantics

for which bisimulation equivalence coincides with the equivalence of Section 3. Finally we conclude

with some closing remarks about related and future work.

2 A core fragment of CML

We examine the language µνCML, which is a subset of Reppy’s [23] concurrent functional language

CML, given by extending the simply-typed λ-calculus with primitives for thread creation and inter-

thread communication. Threads can communicate in two ways: by π-calculus-style synchronous chan-

nels, or by waiting for a thread to terminate.

µνCML contains many of the features of Ferreira, Hennessy and Jeffrey’s [6] µCML, but is missing

the event type and its associated functions. We believe that adding the event type back into µνCML

would pose few technical problems.

The grammar for µνCML types is obtained by extending that for simply-typed lambda calculus with

type constructors for thread identifiers and channel identifiers. We assume a grammar B for base types,

3

Γ;∆,n : σ ⊢ n : σ
Γ;∆ ⊢ e : σ1 Γ,x : σ1;∆ ⊢ t : σ2

Γ;∆ ⊢ letx= e in t : σ2

Γ;∆ ⊢ v1 : σ thread Γ;∆ ⊢ v2 : σ thread

Γ;∆ ⊢ v1 = v2 : bool

Γ;∆ ⊢ v1 : σchan Γ;∆ ⊢ v2 : σchan

Γ;∆ ⊢ v1 = v2 : bool

Γ;∆ ⊢ v1 : B Γ;∆ ⊢ v2 : B

Γ;∆ ⊢ v1 = v2 : bool

Γ;∆ ⊢ v : bool Γ;∆ ⊢ t1 : σ Γ;∆ ⊢ t2 : σ
Γ;∆ ⊢ if v then t1 else t2 : σ

Γ;∆ ⊢ v : unit

Γ;∆ ⊢ chanv : σchan

Γ;∆ ⊢ v : σchan∗σ
Γ;∆ ⊢ sendv : unit

Γ;∆ ⊢ v : σchan

Γ;∆ ⊢ recvv : σ

Γ;∆ ⊢ v : σ thread

Γ;∆ ⊢ joinv : σ
Γ;∆ ⊢ v : unit→σ

Γ;∆ ⊢ spawnv : σ thread

Figure 1: Thread type inference rules (not showing the usual simply typed λ-calculus rules)

;∆,n : σ thread ⊢ t : σ
∆,n : σ thread ⊢ n[t] ∆ ⊢ 0

∆ ⊢C1 ∆ ⊢C2

∆ ⊢C1 ‖C2

∆,n : σ ⊢C

∆ ⊢ νn : σ .C

Figure 2: Configuration type inference rules

including at least the unit type unit and the boolean type bool. The grammar of types is given:

σ ::= B | σ∗σ | σ→σ | σchan | σ thread

Since we are using a call-by-value reduction semantics, we need a grammar for values. We assume an

infinite set of variables x and names n, and some base values b including at least (), true and false. The

grammar of µνCML values is given:

v ::= b | (v,v) | λx : σ . t | n | x

Threads take the form letx1 = e1 in · · · letxn = en inv and consist of a stack of expressions e1, . . . ,en to be

evaluated, followed by a return value v. The grammar of µνCML threads is given:

t ::= v | letx= e in t

An expression consists of the usual simply-typed λ-calculus with booleans, together with primitives for

multi-threaded computation:

• chan () creates a new channel identifier.

• send (c,v) sends value v along channel c to a matching expression recvc, which returns v.

4

0‖C ≡ C

(C1 ‖C2)‖C3 ≡ C1 ‖ (C2 ‖C3)

C1 ‖C2 ≡ C2 ‖C1

C1 ‖νn .C2 ≡ νn . (C1 ‖C2) (n 6∈C1)

νn .νn′ .C ≡ νn′ .νn .C

Figure 3: Axioms for structural congruence C ≡C′

• spawnv creates a new named thread, which executes v(), and returns the thread identifier.

• join i blocks waiting for the thread with identifier i to terminate with value v, which is then returned

(this is similar to Reppy’s [23] joinVal function).

The grammar of µνCML expressions is given:

e ::= t | fstv | sndv | vv | if v then t else t | v= v |
sendv | recvv | chanv | joinv | spawnv

The use of values rather than expressions in many of the above terms may appear to be rather restrictive

however, in light of the fact that we are using call-by-value reduction we can use simple syntactic sugar

to recover many terms such as

fste≡ letx= e in fstx.

We will also make use of a sequential composition operator defined by

e;e′ ≡ letx= e ine′

where x does not occur free in e′.

The type inference rules for threads are given in Figure 1. The type judgements are of the form:

Γ;∆ ⊢ t : σ

where Γ is the type context for free variables and ∆ the type context for free names.

In order to present the reduction semantics for µνCML it will be useful to describe the configurations

of evaluation. The basic unit of a configuration is a named thread. These can be combined using ‖ to

express concurrency and the configuration 0 represents the empty configuration and forms a unit for ‖.
We use the scoping operator νn : σ . [·] to delimit the portion of the configuration in which the identifier

n is deemed to exist. The grammar for configurations is as follows:

C ::= 0 |C ‖C | νn : σ .C | n[t]

Let the thread names of a configuration be defined:

tn(0) = /0 tn(C1 ‖C2) = tn(C1)∪ tn(C2)

tn(n[t]) = {n} tn(νn .C) = tn(C)\{n}

We will only consider configurations in which threads are named uniquely, that is:

5

In any configuration C1 ‖C2, the thread names of C1 and C2 are disjoint.

We present the type inference rules for configurations in Figure 2. Judgements are of the form:

∆ ⊢C

A context, C [·∆], is a configuration which contains a single occurrence of a typed indexed ‘hole’ [·∆]
which is well-typed according to the rules in Figure 2 along with

∆,∆′ ⊢ [·∆]

Placement of a configuration ∆ ⊢ C in a context ∆′ ⊢ C [·∆] is standard and respects well-typedness.

There is an evident structural congruence on configurations given in Figure 3 which should be familiar

to readers from the π-calculus [18]. As we can see then, a configuration is simply a collection of named

threads running concurrently, with shared private names and, up to structural congruence, can be written

in the form

ν~m :~σ . (n1[t1]‖ . . .‖nk[tk])

We will, on occasion, write n[e] as shorthand for the configuration n[letx= e inx].
Let the reduction relation C→C′ be the least precongruence on configurations which includes the

axioms in Figure 4 and satisfies: if C≡C′→C′′≡C′′′ then C→C′′′. We have split the reduction axioms

into confluent rules C
β✲ C′ and one non-confluent communication rule C

τ✲ C′. We will often annotate

the a reduction C→C′ with β or τ to indicate which of the basic axioms were used to infer C→C ′. Let

⇒ be the reflexive transitive closure of→.

2.1 Barbed equivalence, ≈b

We present a notion of observational equivalence for our language following [13], which is a variant of

the barbed bisimulation equivalence proposed in [20]. In both approaches a basic observable behaviour,

called a barb, is identified. Bisimulation relations are defined so that equivalent processes simulate

reduction transitions (coinductively) and barbs. The crucial difference however lies in how the resulting

equivalence is demanded to be a congruence. In the approach we follow we ask that each witness for the

coinductively defined equivalence be a congruence whereas the approach prescribed in [20] asks solely

that the equivalence itself be a congruence. We adopt the former approach because it appears more

suitable to our setting in which certain ‘asynchronous’ transitions are present in the labelled transition

semantics of the next section. The interested reader can see [8] for a thorough discussion regarding these

two approaches.

We define a type-indexed relation R to be a family of relations R∆ on typed configurations ∆ ⊢ C.

We will often write ∆ � C1 R C2 whenever (∆ ⊢C1) R∆ (∆ ⊢C2). Furthermore, we call a type-indexed

relation R on configurations contextual if it satisfies:

∆ � C1 R C2 implies ∆′ � C [C1] R C [C2]

for all contexts

∆′ ⊢ C [·∆]

R is barbed if it satisfies:

C1 R C2 implies ∀n .C1 ⇓n iff C2 ⇓n

6

n[letx= v in t]
β✲ n[t[v/x]]

n[letx2 =(letx1 = e1 in t2) int3]
β✲ n[letx1 = e1 in(letx2 = t2 in t3)] (x1 6∈ t3)

n[letx= fst (v1,v2) in t]
β✲ n[letx= v1 in t]

n[letx= snd (v1,v2) in t]
β✲ n[letx= v2 in t]

n[letx=(λx1 . t1)v1 in t]
β✲ n[letx=(letx1 = v1 in t1) in t]

n[letx=(if true then t1 else t2) in t]
β✲ n[letx= t1 in t]

n[letx=(if falsethen t1 else t2) in t]
β✲ n[letx= t2 in t]

n[letx=(v= v) in t]
β✲ n[letx= true in t]

n[letx=(v1 = v2) in t]
β✲ n[letx= false in t] (v1 6= v2)

n[letx= chan () int]
β✲ νn′ .n[letx=n′ in t] (n′ fresh)

n1[letx= joinn2 in t]‖n2[v]
β✲ n1[letx= v in t]‖n2[v]

n[letx= spawnv in t]
β✲ νn′ .n[letx=n′ in t]‖n′[v()] (n′ fresh)

n1[letx1 = send (n,v) int1]‖n2[letx2 = recvn in t2]
τ✲ n1[letx1 =() in t1]‖n2[letx2 = v in t2]

Figure 4: Axioms for reduction precongruence C→C′

where:

C ⇓n iff ∃C′ .C⇒ n[true]‖C′

R is reduction closed if it satisfies:

C1
✛R✲ C2

C′1

❄
can be completed

C1
✛R✲ C2

C′1

❄
✛R✲ C′2

�

w

w

w

and a similar symmetric condition.

Then, barbed equivalence,≈b is defined to be the largest reduction-closed barbed contextual relation

on well-typed configurations. It is routine to show that barbed equivalence is a congruence, since we

have required it to be contextual.

Barbed equivalence is a natural definition for a bisimulation-like equivalence, but it is very difficult

to reason about, since its definition includes a quantification over all contexts. In the remainder of this

paper, we shall present a labelled transition system semantics for µνCML and a coinductive presentation

of barbed equivalence based on this.

7

3 Operational semantics and bisimulation equivalence

3.1 Labelled transition semantics

We make our first steps towards characterizing barbed equivalence using a labelled transition system

semantics. We adopt the approach we advocated in [15] by designing a semantics such that:

• Bisimulation can be defined in the standard way, following Gordon [10] and Bernstein’s [1] ap-

proach to bisimulation for higher-order languages. This contrasts with the higher-order bisimula-

tion used by Thomsen [30] and Ferreira, Hennessy and Jeffrey [6] in which a non-standard notion

of bisimulation is proposed whereby processes which emit other processes are compared such that

the emitted values must be related independently of the residual processes. Sangiorgi [26] showed

this approach to be inadequate for higher-order statically scoped languages with name generation.

• Labels are contextual in the sense that each labelled transition represents a small program fragment

which induces an appropriate reduction. This notion of contextual label has been investigated in

depth by Sewell [28] and Leifer and Milner [16].

Our labelled transition system is defined as a relation between well-typed configurations. The rules are

presented in Figure 5 but we elide type information for thread identifiers. In addition to these transitions

with labels ranged over by γ, the labelled transition system relation also contains the reduction relation

→ of the previous section, suitably labelled with β and τ: that is (∆ ⊢C)
β✲ (∆ ⊢C′) holds whenever

C
β✲ C′ holds (and similarly for τ).

Let α range over γ, τ and β transitions. We define (∆⊢C) =
α
⇒ (∆′ ⊢C′) as (∆⊢C)⇒

α✲ ⇒ (∆′ ⊢C′)

and (∆⊢C) =
α̂
⇒ (∆′ ⊢C′) as (∆ ⊢C)⇒ (∆′ ⊢C′) when α is β or τ and (∆ ⊢C) =

α
⇒ (∆′ ⊢C′) otherwise.

The labels used take various forms, many are prepended with an identifier, for example,
n.b✲ . This

signifies which named thread we are currently investigating. Some are followed by another identifier,

for example,
n.fst.n′✲ indicates that we can observe that thread n has converged to a pair of values and we

may take the first component of this pair and test with it in a new thread named n ′. Because the only way

in which an observer may interact with thread n is by means of a non-destructive join synchronisation

we notice that the thread under examination will be unaffected by the test thus allowing subsequent

tests upon this pair of values to be performed. This obviates the need for explicit copying transitions

to allow repeated testing, cf. [15]. The transitions for modelling the communication primitives are not

addressed using a thread identifier because the origin of a communication is not an observable property

in this language. Similarly, the transition labelled join simply allocates a value to the named thread,

irrespective of any term under investigation. It should be clear that such transitions are necessary in

order to distinguish, say,

n[letx= joinn′ in true] 6≈ n[letx= joinn′ in false]

However, it is not observable in this language whether a thread is currently waiting on another to termi-

nate. This bears similarity to the situation of the asynchronous π-calculus [2, 12] and the transitions we

use are akin to those for input receptivity [12]. It is observable whether a particular thread has terminated

though and we use the transitions labelled n ⇓ to allow this. The use of the free name context allows us

to model the static scoping discipline present in CML. The intention is that the names in ∆ are global and

8

(∆ ⊢ n[v])
n⇓✲ (∆ ⊢ n[v])

(∆ ⊢C)
weak.n:σ✲ (∆,n : σ ⊢C)

(∆ ⊢ n[b])
n.b✲ (∆ ⊢ n[b])

(∆ ⊢ n[n′′])
n.n′′✲ (∆ ⊢ n[n′′])

(∆ ⊢ n[(v1,v2)])
n.fst.n′✲ (∆,n′ ⊢ n[(v1,v2)]‖n′[v1])

(∆ ⊢ n[(v1,v2)])
n.snd.n′✲ (∆,n′ ⊢ n[(v1,v2)]‖n′[v2])

(∆ ⊢ n[λx1 : σ1 . t1])
n.@v1.n

′
✲ (∆,n′ ⊢ n[λx1 : σ1 . t1]‖n′[letx1 = v1 in t1]) if (∆ ⊢ v1 : σ1)

(∆ ⊢ n[letx= send (n′′,v) int])
send(n′′).n′✲ (∆,n′ ⊢ n[letx=() in t]‖n′[v])

(∆ ⊢ n[letx= recvn′′ in t])
recv(n′′,v)✲ (∆ ⊢ n[letx= v in t]) if (∆ ⊢ n′′ : σchan and ∆ ⊢ v : σ)

(∆ ⊢ 0)
join(v).n✲ (∆ ⊢ n[v]) if (∆ ⊢ n : σ thread and ∆ ⊢ v : σ)

(∆ ⊢C1)
γ✲ (∆′ ⊢C′1)

(∆ ⊢C1 ‖C2)
γ✲ (∆′ ⊢C′1 ‖C2)

(∆ ⊢C2)
γ✲ (∆′ ⊢C′2)

(∆ ⊢C1 ‖C2)
γ✲ (∆′ ⊢C1 ‖C′2)

(∆,n : σ ⊢C)
γ✲ (∆′,n : σ ⊢C′)

(∆ ⊢ νn : σ .C)
γ✲ (∆′ ⊢ νn : σ .C′)

[n 6∈ γ]
(∆,n′ : σ ⊢C)

n.n′✲ (∆,n′ : σ ⊢C′)

(∆ ⊢ νn′ : σ .C)
n.νn′✲ (∆,n′ : σ ⊢C′)

[n 6= n′]

Figure 5: Labelled transition system semantics

thus known to the observer. The observer is also at liberty to invent fresh names of their own, modelled

by the use of the weak .n : σ transitions. The transition rules we use are essentially those of [15] and the

side-conditions in the two rules for inferring transitions under νn. contexts ensure privacy and freshness

respectively.

We can now prove some crucial properties of the reduction semantics and lts semantics for µνCML,

including subject reduction:

Proposition 3.1 (Subject Reduction) If ∆ ⊢C and (∆ ⊢C)
α✲ (∆′ ⊢C′) then ∆′ ⊢C′

Proof: Straightforward induction. ✷

Proposition 3.2 If C ≡C′ and (∆ ⊢C′)
α✲ (∆′ ⊢C′′) and C′′ ≡C′′′ then (∆ ⊢C)

α✲ (∆′ ⊢C′′′) also.

Proof: Straightforward induction. ✷

The above proposition states the lts semantics is still well-defined if we consider the transition relation to

be defined on structural equivalence classes of well-typed configurations. This allows us to work freely

with transitions up to ≡ yet still perform rule induction over the judgements.

9

It is not too hard to see that the reductions we identified as being β-reductions are in fact conflu-

ent. They are not only confluent with respect to other reductions, but in fact with respect to labelled

transitions:

Proposition 3.3 The follow diagram can be completed:

(∆ ⊢C)
β✲ (∆ ⊢C′)

(∆′ ⊢C′′)

α
❄

as

(∆ ⊢C)
β✲ (∆ ⊢C′)

(∆′ ⊢C′′)

α
❄ β✲ (∆′ ⊢C′′′)

α
❄

or C′ ≡C′′ if α is β.

Proof: Firstly we can easily establish that all β-reductions are, up to structural equivalence, of the form

ν∆0 . (C1 ‖C2)
β✲ ν∆0 . (C′1 ‖C2)

where C1
β✲ C′1 is an instance of a β-reduction axiom.

Now, suppose (wlog) that (∆ ⊢ ν∆0 . (C1‖C2))
α✲ (∆′ ⊢C′′) also and C′ is ν∆0 . (C′1‖C2). Given this,

it is then easy to see by inspecting the reduction and transition axioms that, for α 6= β, save for the case

in which the join synchronisation β-reduction occurs, it must be that (∆ ⊢ ν∆0 .C2)
α✲ (∆′ ⊢ ν∆′0 .C′2)

for appropriate ∆′0. So C′′ must be of the form ν∆′0 . (C1 ‖C′2) and if we let C′′′ be ν∆′0 . (C′1 ‖C′2) we are

done.

If, however, the β-reduction actually arises as an instance of the join axiom:

ν∆0 . (n1[letx= joinn2 in t]‖n2[v]‖C2)
β✲ ν∆0 . (n1[letx= v in t]‖n2[v]‖C2)

then we notice that α may be derived not only from C2 but also from n2[v]. In this situation we also see

that all observations, α, deriving from this value have the general form

∆ ⊢ ν∆0 . (n1[letx= joinn2 in t]‖n2[v]‖C2)
α✲ ∆′ ⊢ ν∆′0 . (n1[letx= joinn2 in t]‖n2[v]‖C′2)

thus n2[v] is again residual in the target term and the α transition cannot preclude the β-reduction.

It only to remains to investigate the case in which the α transition is actually a β-reduction. Clearly,

this could be exactly the same β-reduction in C1 (then C′ ≡C′′), or it be a different reduction originating

entirely in C2, in which case the two clearly commute. Alternatively, it could be an overlapping instance

of the join axiom

ν∆0 . (n1[letx= joinn2 in t]‖n2[v]‖n3[letx= joinn2 in t ′]‖C2)
β✲ ν∆0 . (n1[letx= joinn2 in t]‖n2[v]‖n3[letx= v in t′]‖C2)

Again, we notice that the n2[v] is residual in the target term and this allows the two β-reductions to

commute. ✷

10

We now make good on our claim that the labelled transitions presented above actually correspond to

small reduction-inducing contexts of the language. Barbs play an important role here as we use them to

establish whether a context has successfully induced a reduction. We list below the actual terms used to

build a context for each label. We write C∆
γ to mean the configuration corresponding to the label γ used on

a term with free names in ∆ with a barb indicating success at a special fresh location l. We also report, at

another fresh location m, the names of any fresh identifiers which are created during a transition labelled

γ. This is a technical convenience whose use will become apparent in proving bisimilarity complete for

barbed equivalence. Given this configuration we build a context for γ simply by placing it in parallel

with the hole, that is C∆
γ ‖ [·].

C∆
n⇓ = m[()]‖ l[joinn; true]

C∆
weak.n:σ = νn : σ . (m[n]‖ l[true])

C∆
n.b = m[()]‖ l[b= joinn]

C∆
n.n′ = m[()]‖ l[n′= joinn]

C∆
n.νn′ = m[joinn]‖ l[(joinn) 6∈ ∆]

C∆
n.fst.n′ = νn′ . (m[n′]‖ l[joinn; true]‖n′[fst(joinn)])

C∆
n.snd.n′ = νn′ . (m[n′]‖ l[joinn; true]‖n′[snd(joinn)])

C∆
n.@v.n′ = νn′ . (m[n′]‖ l[joinn; true]‖n′[joinnv])

C∆
recv(n,v) = m[()]‖ l[send (n,v);true]

C∆
send(n).n′ = νn′ . (m[n′]‖ l[joinn′; true]‖n′[recvn])

C∆
join(v).n = m[()]‖ l[true]‖n[v]

where we use obvious syntax sugar such as n 6∈ ∆ and abuse notation by writing ∆ to also mean the tuple

of names declared in the environment ∆.

Proposition 3.4 (Contextuality)

(i) If (∆ ⊢C)
γ✲ (∆,∆′ ⊢C′) then C∆

γ ‖C⇒ ν∆′ . (m[∆′]‖ l[true]‖C′)

(ii) If C∆
γ ‖C⇒ l[true]‖C′′ then (∆ ⊢C) ==

γ
⇒ (∆,∆′ ⊢C′) and C′′

β
→∗ ν∆′ . (m[∆′]‖C′).

Proof: Part (i) We proceed by induction on the derivation of (∆ ⊢C)
γ✲ (∆,∆′ ⊢C′). Examples of the

base case are:

• Suppose C is n[n′] and γ is n .n′ so that ∆′ is empty and C′ is C.

We know that C∆
n.n′ is m[()]‖ l[n′= joinn] and

(m[()]‖ l[joinn=n′]‖n[n′])⇒ (m[()]‖ l[n′=n′]‖n[n′])⇒ (m[()]‖ l[true]‖n[n′])

as required.

11

• Suppose C is n[λx . t] and γ is n .@v.n′ so that ∆′ is n′ : σ′ thread (where ∆ ⊢ n : σ→σ′ thread) and

C′ is C ‖n′[letx= v in t]. We know that C∆
γ is νn′ .m[n′]‖ l[joinn; true]‖n′[joinnv] and that

νn′ .m[n′]‖ l[joinn; true]‖n′[joinnv]‖n[λx . t]

reduces through join synchronisations to

νn′ .m[n′]‖ l[(λx . t);true]‖n′[(λx . t)v]‖n[λx . t]

which further reduces to

νn′ .m[n′]‖ l[true]‖n′[letx= v in t]‖n[λx . t]

as required.

For the inductive case we must consider transitions generated underneath parallel composition and name

restriction. The former case follows easily from the inductive hypothesis so we concentrate on the latter.

• Firstly, suppose that the last rule used to derive the transition was

(∆,n : σ ⊢C)
γ✲ (∆′,n : σ ⊢C′)

(∆ ⊢ νn : σ .C)
γ✲ (∆′ ⊢ νn : σ .C′)

[n 6∈ γ]

then we know from the inductive hypothesis that C
∆,n:σ
γ ‖C⇒ ν∆′ . (m[∆′] ‖ l[true] ‖C′). It is not

too hard to check that this and the fact that n 6∈ γ implies that C∆
γ ‖C⇒ ν∆′ . (m[∆′] ‖ l[true] ‖C′)

also. From this we have:

C∆
γ ‖νn .C ≡ νn . (C∆

γ ‖C)⇒ ν∆′ . (m[∆′]‖ l[true]‖νn .C′)

as required.

• Now suppose that the last rule used was

(∆,n′ : σ ⊢C)
n.n′✲ (∆,n′ : σ ⊢C′)

(∆ ⊢ νn′ : σ .C)
n.νn′✲ (∆,n′ : σ ⊢C′)

[n 6= n′]

We know by the induction hypothesis that

C
∆,n′

n.n′ ‖C⇒ m[()]‖ l[true]‖C′

that is,

m[()]‖ l[n′= joinn]‖C⇒ m[()]‖ l[true]‖C′

which implies that C′ ≡ n[n′]‖C′′ for some C′′. In this case,

C∆
n.νn′ ‖νn′ .C⇒ νn′ . (m[n′]‖ l[n′ 6∈ ∆]‖n[n′]‖C′′)

and we clearly have that n′ 6∈ ∆ so this reduces as required.

12

Part (ii) We proceed by case analysis on γ. The reasoning is much the same in each of the cases so we

demonstrate only two.

• If γ = n .νn′ (with ∆′ = n′) then, by hypothesis,

m[joinn]‖ l[joinn 6∈ ∆]‖C⇒ l[true]‖C′′

so we know by analysing the reduction rules, along with the fact that f n(C) ⊆ ∆, that, for some

C′:

C′′
β
→∗ νn′ . (m[n′]‖n[n′]‖C′).

and so

(∆ ⊢C)⇒ (∆ ⊢ νn′ .n[n′]‖C′)
n.νn′✲ (∆,n′ ⊢ n[n′]‖C′)

as required.

• If γ = n .@v.n′ (with ∆′ = n′) then, by hypothesis,

νn′ .m[n′]‖ l[joinn; true]‖n′[joinnv]‖C⇒ l[true]‖C′′

then it must be the case, for some ∆′′,C′′′,C′′′′, that

C⇒ ν∆′′ . (n[λx . t]‖C′′′) ν∆′′ . (n′[joinnv]‖n[λx . t]‖C′′′)⇒C′′′′ νn′ . (m[n′]‖C′′′′)≡C′′

So, since ∆ ⊢ v,

(∆ ⊢C) ⇒ (∆ ⊢ ν∆′′ . (n[λx . t]‖C′′′))
n.@v.n′✲ (∆,n′ ⊢ ν∆′′ . (n[λx . t]‖n′[letx= v in t]‖C′′′))

β
←∗ (∆,n′ ⊢ ν∆′′ . (n[λx . t]‖n′[joinnv]‖C′′′))

⇒ (∆,n′ ⊢C′′′′)

By confluence (Proposition 3.3), we can find C′ such that

(ν∆′′ . (n[λx . t]‖n′[letx= v in t]‖C′′′))⇒C′
β
←∗ C′′′′.

Therefore

(∆ ⊢C) ===
n.@v.n′

⇒ (∆,n′ ⊢C′) C′′
β
→∗ νn′ . (m[n′]‖C′)

as required. ✷

3.2 Bisimilarity

A simulation is a type-indexed relation on configurations R such that the following diagram can be

completed:

(∆ ⊢C1) ✛R✲ (∆ ⊢C2)

(∆′ ⊢C′1)

α
❄

as

(∆ ⊢C1) ✛R✲ (∆ ⊢C2)

(∆′ ⊢C′1)

α
❄

✛R✲ (∆′ ⊢C′2)

α̂
�

w

w

w

13

A bisimulation is a simulation whose inverse is also a simulation. Let bisimilarity, ≈, denote the largest

bisimulation between configurations.

We now state a proof principle which we use heavily, namely weak bisimulation up to β-reduction.

We say that a type-indexed relation R is a simulation up to (
β
→∗,≈) if we can complete the diagram:

(∆ ⊢C1) ✛R✲ (∆ ⊢C2)

(∆′ ⊢C′1)

α
❄

as

(∆ ⊢C1) ✛ R ✲ (∆ ⊢C2)

(∆′ ⊢C′1)

α
❄

✛
β
→∗R≈✲ (∆′ ⊢C′2)

α̂
�

w

w

w

As before we say that R is a bisimulation up to (
β
→∗,≈) if both R and its inverse are simulations up to

(
β
→∗,≈). The proof principle we appeal to is

Proposition 3.5 If R is a bisimulation up to (
β
→∗,≈) then ≈R ≈ is a bisimulation.

Proof: We use the fact that R is a bisimulation up to (
β
→∗,≈) and confluence of β-reduction, Proposi-

tion 3.3, to show that we can complete the diagram:

(∆ ⊢C1) ✛R✲ (∆ ⊢C2)

(∆′ ⊢C′1)

α̂
�

w

w

w as

(∆ ⊢C1) ✛ R ✲ (∆ ⊢C2)

(∆′ ⊢C′1)

α̂
�

w

w

w

✛
β
→∗R≈✲ (∆′ ⊢C′2)

α̂
�

w

w

w

Given this it is straightforward to demonstrate that≈R ≈ is a bisimulation by, again using confluence to

observe that
β
→∗ is contained in ≈. ✷

3.3 Full abstraction

We will now show that bisimilarity for µνCML coincides with barbed equivalence. Soundness follows

immediately once we have that bisimilarity is a congruence: this is the subject of the next section.

Proposition 3.6 (Bisimilarity is sound for barbed equivalence) ∆ � C1 ≈C2 implies ∆ � C1 ≈
b C2

Proof: It is easy to show that ≈ is barbed and reduction-closed, and Theorem 4.9 shows that ≈ is a

congruence. Hence, ≈ implies ≈b. ✷

Having proved soundness, to obtain full abstraction we must prove its converse: completeness. We

will actually show a slightly stronger completeness result though. Bisimilarity is complete for a barbed

equivalence in which the only contexts used are parallel compositions with some configuration. A binary

relation R on configurations is ‖-contextual if it satisfies:

∆ � C1 R C2 implies ∆,∆′ � C1 ‖C R C2 ‖C

for all ∆,∆′ ⊢C. Then, ‖-barbed equivalence, ≈pb is defined to be the largest reduction-closed barbed

‖-contextual relation.

It is immediate that ≈b is contained in ≈pb, so it suffices to show that ≈ is complete for ≈pb. First

though we present some useful technical lemmas.

14

Lemma 3.7 (Garbage collection) If ∆,n � n[v]‖C1 ≈
pb n[v]‖C2 and n 6∈C1,C2 then ∆ � C1 ≈

pb C2.

Proof: Straightforward. ✷

Lemma 3.8 (Extrusion) If

∆,m � ν∆′ . (m[∆′]‖C1)≈
pb ν∆′ . (m[∆′]‖C2)

and m 6∈C1,C2 then ∆,∆′ � C1 ≈
pb C2.

Proof: We prove this by coinduction. Let R be defined such that ∆,∆′ � C1 R C2 if and only if

∆,m � ν∆′ . (m[∆′]‖C1)≈
pb ν∆′ . (m[∆′]‖C2)

where m 6∈ ∆′. We need to demonstrate that R is barbed, and reduction closed and moreover that it is ‖-
contextual. Because ≈pb is the largest such relation, we would then know that R ⊆≈pb, thus achieving

our result.

• Reduction closure for R is immediate from the definition.

• To show that R is barbed closed we suppose C1 ⇓n for some n. If n is defined in ∆ then by

assumption we find C2 ⇓n. The more difficult possibility is that n is defined in ∆′. In this case we

use parallel contextuality of ≈pb to help. Choose a fresh n′ and define C to be

n′[letx=πn(joinm) in joinx]

where πn refers to projected component of ∆′ at which n occurs. This configuration fetches the

private names exported at m and uses the particular name n to synchronise on. We observe that

Ci ⇓n if and only if ν∆′ . (m[∆′] ‖Ci)‖C ⇓n′ (for i = 1,2). We know that C is well-typed so, by

hypothesis and ‖-contextuality, it is easy to see that C1 ⇓n if and only if C2 ⇓n.

• In order to demonstrate that R is ‖-contextual we take ∆,∆′ � C1 R C2 and some ∆,∆′,∆′′ ⊢C and

show that

∆,∆′,∆′′ � C1 ‖C R C2 ‖C

This can be achieved by building a configuration C′ based on C but typable in the environment

∆,∆′′. Proceed by noticing that C may be expressed, up to structural equivalence, as

ν∆′′′ .∏
i

ni[ti]

we define C′ to be

ν∆′′′ .∏
i

ni[let∆′= joinm in ti]

where we write let∆= t1 in t2 as syntax sugar, defined:

let(n1 : σ1, . . . ,nk : σk)= t1 in t2 = let (x1 : σ1, . . . ,xk : σk)= t1 in t2[x1/n1, . . . ,xk/nk].

15

Note that

m[∆′]‖C′
β
→∗ m[∆′]‖C.

So, by ‖-contextuality we know that

∆,∆′′,m � ν∆′ . (m[∆′]‖C1)‖C′ ≈pb ν∆′ . (m[∆′]‖C2)‖C′.

Since
β
→∗ is contained in ≈pb we have

∆,∆′′,m � ν∆′ . (m[∆′]‖C1 ‖C)≈pb ν∆′ . (m[∆′]‖C2 ‖C),

and so

∆,∆′,∆′′ � C1 ‖C R C2 ‖C

as required. ✷

Proposition 3.9 (Bisimilarity is complete for barbed equivalence) ∆ �C1≈
b C2 implies ∆ �C1≈C2

Proof: We notice immediately that ≈b ⊆ ≈pb so, by coinduction, it suffices to show that ≈pb forms a

bisimulation. So, suppose that ∆ � C1 ≈
pb C2 and that (∆ ⊢C1)

α✲ (∆,∆′ ⊢C′1). If α is β or τ then we

immediately have a match as ≈pb is reduction closed. Otherwise, we know by Proposition 3.4, that for

fresh l,m there exists a term ∆, l,m ⊢C∆
α with the appropriate properties. From this we choose a further

fresh name, n and build a new configuration C as:

C∆
α ‖n[if (join l) then(true⊕ false)else true]

where ⊕ is syntactic sugar for a suitable encoding of an internal choice operator with reductions

n[letx=(v1⊕ v2) in t]⇒ n[letx= vi in t]

(for i = 1,2). Now, it should be easy to see that

C1 ‖C⇒C′′′1 where C′′′1 ≡ ν∆′ . (m[∆′]‖ l[true]‖n[false]‖C′1).

We know that ≈pb is reduction closed and ‖-contextual so we can find some C′′′2 such that

C2 ‖C⇒C′′′2 and ∆, l,m,n � C′′′1 ≈
pb C′′′2 .

Since C′′′1 ⇓l and C′′′1 6⇓n we know that C′′′2 ⇓l and C′′′2 6⇓n. From this and the definition of C we have

C′′′2 ≡C′′2 ‖ l[true]‖n[false] and C2 ‖C∆
α⇒C′′2 ‖ l[true]

By Proposition 3.4 we find some C′2 such that

(∆ ⊢C2) ==
α
⇒ (∆,∆′ ⊢C′2) and C′′2

β
→∗ ν∆′ . (C′2 ‖m[∆′]).

We know C′′′2

β
→∗ ν∆′ . (m[∆′]‖ l[true]‖n[false]‖C′2) and, because

β
→∗ is contained in ≈pb, we know that

ν∆′ . (m[∆′]‖ l[true]‖n[false]‖C′1)≡C′′′1 ≈
pb C′′′2 ≈

pb ν∆′ . (m[∆′]‖ l[true]‖n[false]‖C′2).

So, two uses of Lemma 3.7 and one use of Lemma 3.8 gives us

∆,∆′ � C′1 ≈
pb C′2

as required. ✷

Theorem 3.10 (Full abstraction) ∆ � C1 ≈
b C2 if and only if ∆ � C1 ≈C2

Proof: Follows from Propositions 3.6 and 3.9. ✷

16

4 Congruence properties of bisimilarity

We are left with the task of showing that bisimilarity is a congruence. This is a notoriously difficult

problem, and proof techniques which work in the presence of both higher-order features and dynamically

generated names are limited [21, 22].

A viable approach to tackling this problem in languages with sufficient power is to represent higher-

order computation by first-order means. Indeed, Sangiorgi demonstrates in his thesis [26] that higher-

order π-calculus can be encoded, fully abstractly, in the first-order π-calculus by means of reference

passing—this transformation is described in two stages, the first of which is known as a trigger encod-

ing and recasts higher-order π-calculus in a sublanguage of itself in which only canonical higher-order

values, or triggers, are passed.

We adopt a similar approach here but, owing to the functional nature of the language, our encoding is

more complicated than that of the higher-order π-calculus. This is simply because processes in languages

such as π-calculus do not compute and return values in the way that functions do. Thus, if one were to

encode the evaluation of a function in some context by actually evaluating the function out of context,

then the resulting value would eventually need to be replaced in that context. This situation does not

arise in the π-calculus. The thrust of the current work is to demonstrate a novel approach to proving

a fully abstract trigger encoding which can be used to prove congruence of bisimilarity in higher-order

languages.

Rather than compositionally translating our higher-order language into a simpler language, we de-

scribe an alternative operational semantics which implements this trigger passing. The intention is that

there is a direct proof of congruence of bisimilarity on this alternative operational semantics, and cor-

rectness between the two semantics yields congruence on the original. Correctness between the two

semantics can be stated quite tightly as:

[[C]]ω ≈ [[C]]0

where [[C]]ω is understood to be the interpretation of C using the original semantics and [[C]]0 the triggered

semantics.

In fact, to relieve the difficulty of proving correctness we aim to use an induction on the order of the

type of C. This leads us to defining a hierarchy of semantics, indexed by type order. In [[C]]n, terms of

type lower than n are passed directly, and terms of higher type are trigger-encoded. We can then regard

[[C]]ω as the ‘limit’ of the semantics [[C]]0, [[C]]1, . . . Our proof that bisimilarity is a congruence is then

broken into three parts:

1. Prove that bisimilarity is a congruence for [[·]]0.

2. Prove that if [[C]]0 ≈ [[C′]]i for all i then [[C]]0 ≈ [[C′]]ω.

3. Prove for all i that [[C]]i ≈ [[C]]i+1.

From these three properties, it is easy to prove that bisimulation is a congruence for [[·]]ω, which is, by

definition, exactly our original semantics for µνCML.

Note that this proof relies on a well-founded order on types, and so will not work in the presence

of general recursive types. This is not as limiting as might first be thought, since σchan and σ thread

are considered to be order 0 no matter the order of σ, and so we can deal with any recursive type as

17

long as the recursive type variable is beneath a ·chan or · thread. This is a similar situation as for most

imperative languages, which restrict recursive types to those including pointers. Also note that this

restriction is weak enough to include all of the π-calculus sorts, such as the type µX . X chan which

describes monomorphic π-calculus channels.

We will now present the triggered semantics and show the three required properties.

4.1 Trigger Semantics for µνCML

In order to describe these semantics concisely it will be helpful to introduce a mild language extension.

There is no explicit recursive function definitions in the core language we presented above as such terms

can be programmed using the thread synchronization primitives (cf. coding the Y-combinator using

general references). We introduce a replicated reception primitive, which can indeed be coded using

recursive functions, or more directly, with join synchronization. Let us write ∗recvn to represent this

new expression. There is an associated reduction rule for this new expression which behaves as a recv

expression but spawns a new thread of evaluation. This is defined as

n1[letx1 = send (n,v) in t1]‖n2[letx2 =∗recvn int2]
τ✲

νn3 .

(

n1[letx1 =() in t1]‖n2[letx2 = v in t2]‖
n3[letx2 =∗recvn in t2]

)

Of course, there is an obvious corresponding transition rule for replicated reception also:

(∆ ⊢ n[letx=∗recvn′ in t])
recv(n′,v)✲ (∆ ⊢ νn′′ .n[letx= v in t]‖n′′[letx=∗recvn int])

The following pieces of notation will be convenient. Let τa denote the term

λx . letr = chan() in send (a,(x,r)); recv r

The trigger call τa is used to substitute through terms in place of functions. When the trigger call is

applied to an argument, the trigger simply sends the argument off to the actual function (on channel a).

It must also wait for the resulting value given by the application on a freshly created private channel.

Complementary to this is the resource at a, written a⇐ f , where we use f to range over λ-abstractions.

This is defined to be a replicated receive command:

let(x1,x2)=∗recva in let z= f x1 insend (x2,z)

which can continually receive arguments to f , along with a reply channel. It then applies f to the

argument and sends the result back along the reply channel.

These are the two basic components of the triggered semantics. We use them to define a notion

of type-indexed substitution. Recall that the order of a type O(σ) is defined by induction such that

O(σ1) < O(σ1→σ2) ≥ O(σ2) and O(σ thread) = O(σchan) = 0 and the type-order of a closed term

O(t) is the order of the term’s type. Strictly speaking, this ought to be defined relative to the name

environment ∆ in which t is typed but the type-order of names is always 0 so we may safely omit this

18

here. Let the level i substitution [v/x]i be defined by:

C[b/x]i = C[b/x]
C[n/x]i = C[n/x]
C[(v1,v2)/x]i = (C[(x1,x2)/x])[v1/x1]i[v2/x2]i

C[f/x]i =

{

C[f/x] if O(f)≤ i

νa,n . (C[τa/x]‖n[a⇐ f]) otherwise

From the definition of level i substitution, we can now define the level i trigger semantics [[·]] i by replac-

ing the β-reduction rule for let expressions with

n[letx= v in t]
β✲ n[t][v/x]i

and leaving all other rules unchanged.

We now state some useful lemmas concerning the trigger protocol semantics. Firstly, we need

to refer to terms which may only contain a particular name n as the argument to a send command.

Moreover, this property needs to be maintained as an invariant under transitions. To this end define

n is a send -channel in C whenever every free occurrence of n in C is of the form send(n,v) for some v.

The following properties of this relation are easy to verify by structural induction.

Lemma 4.1

(i) a is a send -channel in τa

(ii) If a is a send -channel in f then a is a send -channel in a⇐ f .

(iii) If n is a send -channel in t and n is a send -channel in v then n is a send -channel in t[v/x].

(iv) If n is a send -channel in C and (∆ ⊢ C)
α✲ (∆′ ⊢ C′) (in any level semantics) with n 6∈ α then

n is a send -channel in C′.

Lemma 4.2 Any reductions which are instances of the following are confluent with all other transitions

and we label them β to reflect this:

νr. (n[letx= recv r in t]‖n′[letx′= send (r,v) int ′])
β✲

νr. (n[letx= v in t]‖n′[letx′=() int ′])

and
νn . (C ‖n1[letx1 = send (n,v) int1]‖n2[letx2 =∗recvn in t2])

β✲

νnn3 .

(

C ‖n1[letx1 =() in t1]‖
n3[letx2 =∗recvn in t2]‖n2[letx2 = v in t2]

)

providing n is a send -channel in C.

19

The first of these observes that channels which have unique points of communication give confluent

reduction because no competition between resources occurs. This is used for the return part of the

trigger protocol. The latter is slightly more involved and relies upon a side-condition that the sending

participant cannot communicate with any party other than the replicated input. We have this property

when beginning each trigger protocol communication and the lemmas above show that we can maintain

it as an invariant throughout testing. There are a series of technical lemmas we must work through before

we can show correctness of the triggered semantics. The first of these serves to demonstrate that we can

remove, up to weak bisimulation, unwanted η-expansions introduced by the trigger protocol. Note that

because we may not assume congruence of bisimulation at this point we must state these lemmas in

context.

Lemma 4.3

(i) ∆ � [[ν∆′ .C ‖n[t]]]i ≈ [[ν∆′ .C ‖n[letx= t inx]]]i

(ii) ∆ � [[ν∆′ .C ‖n[letx1 = t1 in t2]]]i ≈ [[ν∆′ .C ‖n[letx2 = t1 in letx1 = x2 in t2]]]i

Proof: This is easy to prove using bisimulations. The only point to watch is the case in which t (or t1) is

itself a let expression. To accommodate this we must build the witness, for (i) say, as

∆ � ν∆′ .C ‖n[let~x=~t in t] R ν∆′ .C ‖n[let~x =~t in letx= t inx]

where let~x =~t in t refers to the nested sequence letx1 = t1 in letx2 = t2 in . . . letxn = tn in t. ✷

The next lemma is used to establish the correctness of the return end of the trigger protocol.

Lemma 4.4

∆ � [[ν∆′ .C ‖νn′r. (n[letx= recv r in t2]‖n′[letz= t1 insend (r,z)])]]i ≈ [[ν∆′ .C ‖n[letx= t1 in t2]]]i

Proof: We use the bisimulation up to (
β
→∗,≈) technique here. The witness must use a stack of evaluation

contexts in a similar manner to the previous lemma. Specifically we let R contain ≈ along with pairs of

configurations formed from

∆ ⊢ ν∆′ .C ‖νn′r. (n[letx= recv r in t2]‖n′[let~x=~t in letz= t1 insend (r,z)])

and

∆ ⊢ ν∆′ .C ‖n[let~x=~t in letx= t1 in t2]

and show that R has the relevant closure properties. This is more or less straightforward checking. The

only points of interest occur in the situation when the evaluation stack is empty and t1 is a value. In

this case the communication on r occurs. We note that, because r is private, this communication is an

instance of the first special β-reduction of Lemma 4.2 and hence can be used in the up to
β
→∗ technique.

Also, the residual of this communication will leave a terminated private thread at n ′ and a new name

declaration for r which is no longer used. We note that these can easily be garbage collected using weak

bisimulation. ✷

20

The next lemma is the heart of the correctness proof. This essentially states that, for substitutions

of functions of type order i the trigger protocol correctly implements the substitution. In order to see

this we show that the relation {C[v/x]i,C[v/x]i+1} is a bisimulation up to (
β
→∗,≈). The difficulty here is

seen in the case in which v is a function of order i+1, being applied to some argument in C. On the right

hand side we have a standard substitution and a standard β-reduction. Whereas on the left hand side we

see a triggered substitution, and, by virtue of the argument being of type < i+1, a standard β-reduction.

It is crucial that no nested trigger substitution is incurred here and we can use the power of the up to

technique to finish by appealing to the previous lemma.

Lemma 4.5 [[C[v/x]i]]i′ ≈ [[C[v/x]i+1]]i′ for all i′ ≥ i.

Proof: We begin by induction on the structure of the value to be substituted. For a base case we notice

that v must be a constant, with type order 0. This means that the substitution at any i is not triggered and

there is nothing to prove. We can use the inductive hypothesis twice to establish the result in the case

where v is a pair of values. This follows easily from the definition and simple properties of substitution

at level i.

The difficult case occurs when v is an abstraction, λx . t, say. We notice that if O(v) 6= i + 1 then

C[v/x]i = C[v/x]i+1 so we may assume that O(v) = i + 1. Now, we proceed using bisimulation up to

(
β
→∗,≈) (working in the level i′ semantics) to show the result. We let R contain bisimilarity and let it

relate the configurations ∆ ⊢C[f/x]i and ∆ ⊢C[f/x]i+1 where f has type order i + 1. To check that R

forms a bisimulation, suppose we take a pair of configurations related by R . Either these are bisimilar,

hence satisfy the required closure property or we have

∆ � C[f/x]i R C[f/x]i+1

We notice straight away that the right-hand expression contains a standard substitution, whereas the left-

hand expression contains a triggered substitution. Suppose then that (∆ ⊢ C[f/x] i)
α✲ (∆′ ⊢ C′). We

must find a matching transition. By inspecting the transition rules it is apparent that the only transitions

which are affected by the change in substitution are those which destroy λ-terms, namely, those in which

α is n .@v.n′ and instances of the β-reduction

n[letx=(λx1t1)v1 in t]
β✲ n[letx=(letx1 = v1 in t1) in t]

we consider these in turn. Firstly, suppose that C is of the form

ν∆0 . (C1 ‖n[x])[λx1 . t1/x]i

that is to say, that this is a triggered substitution:

ν(∆0,a,n1) . (C1[τa/x]‖n[τa]‖n1[a⇐λx1 . t1])

so that, after a n .@v.n′ transition, a configuration

∆,n′ ⊢ ν(∆0,a,n1) . (C1[τa/x]‖n[τa]‖n′[letx1 = v inB(τa)]‖n1[a⇐λx1 . t1])≡C′

21

is reached where B(τa) refers to the body of the abstraction defining the trigger call. Noting that

O(v) < i + 1 ≤ i′, we can observe a sequence of β-reductions in which the value is passed (and not

triggered) to reach the configuration

∆,n′ ⊢ ν∆0 . (C1 ‖n[x]‖νr,n′′ .n′[letx1 = recv r inx1]‖n′′[letx2 =(letx1 =v in t1) insend (r,x2)])[λx1 . t1/x]i

It is this configuration, call it CA, that we will find our match in R for. Note that these β-reductions

include the second special β-reduction of Lemma 4.2 as we know a is a send -channel in C1[τa/x] (closed

under reduction).

To find our match we consider the corresponding C under the level i + 1 substitution. This is of

course a standard substitution so we may observe an n .@v.n′ transition from

∆ ⊢ ν∆0 . (C1 ‖n[x])[λx1 . t1/x]i+1

to

∆,n′ ⊢ ν∆0 . (C1 ‖n[x]‖n′[letx1 = v in t1])[λx1 . t1/x]i+1

Given this, call it CB, we then apply Lemmas 4.3 part (i) and 4.4 to see that CB is in fact weakly bisimilar

to

ν∆0 . (C1 ‖n[x]‖νr,n′′ .n′[letx1 = recv r inx1]‖n′′[letx2 =(letx1 = v in t1) insend (r,x2)])[λx1 . t1/x]i+1

which is just CA with a level i+1 substitution in place of the level i substitution. Thus we have

C′
β
→∗ CA R≈CB

with (∆ ⊢C[λx1 . t1/x]i+1) ===
n.@v.n′

⇒ (∆,n′ ⊢CB) as required.

Similar reasoning can be applied in the case of α being an instance of the β-reduction mentioned

above. However, in this case Lemma 4.3 part (ii), is required.

We must also demonstrate that R −1 is a simulation. This is done in exactly the same manner. ✷

Proposition 4.6

(i) [[C]]i ≈ [[C]]i+1 for all i.

(ii) If [[C]]0 ≈ [[C′]]i for all i then [[C]]0 ≈ [[C′]]ω.

Proof: Part (i) is easy to show using a bisimulation. The witness for the bisimulation is simply the

identity relation between terms in the i and i+1 level semantics, that is ∆ � [[C]]i R [[C]]i+1. To show that

this is a bisimulation we must show that any transitions of ∆ ⊢C in the level i semantics can be matched

in the i+1 semantics (and vice-versa). The only transitions which behave differently between these se-

mantics are of course β-reductions which are instances of the let reduction rule. All other transitions are

simply matched with an identical transition to an identical term. We use Lemma 4.5 (with i ′ instantiated

to i and i+1) to provide us with an up to weak bisimulation match for these β-reductions, which are best

depicted in the following diagram. For reasons of clarity we have omitted the index of the semantics

22

being used, however all terms on the left are to be considered in the level i semantics whilst all terms on

the right in the level i+1.

(∆ ⊢C) ✛ R ✲ (∆ ⊢C)

(∆′ ⊢C′[v/x]i)

β
❄

(∆′ ⊢C′[v/x]i+1)

β
❄

■❅
❅

❅
R

❅
❅

❅❘

�
�

�✒

✠�
�

�

(∆′ ⊢C′[v/x]i+1)

(Lemma 4.5)≈

❄

✻

(∆′ ⊢C′[v/x]i)

≈ (Lemma 4.5)

❄

✻

For Part (ii) we construct a bisimulation:

R = {(∆ ⊢ [[C1]]0,∆ ⊢ [[C2]]ω) | ∃i .∀i′ > i .∆ � [[C1]]0 ≈ [[C2]]i′}

We must show that this is actually a bisimulation. Suppose that ∆ � C1 R C2 and (∆ ⊢C1)
α✲ (∆′ ⊢C′1).

We know that there must exist some i0 such that for all j > i0 we have some

(∆ ⊢C2) ==
α̂
⇒ (∆′ ⊢C

′ j
2)

in the level j semantics with ∆′ � C′1 ≈ C
′ j
2 for terms between the level 0 and level j semantics. In

particular we can choose j to be greater than i0, the highest type order appearing in the type derivation

tree of C2 and the highest type order appearing in the type derivations of any values appearing in α. We

know that, by definition, any substitution performed in the transitions (∆ ⊢C2) ==
α̂
⇒ (∆′ ⊢C

′ j
2) are not

triggered. Therefore we also have (∆ ⊢C2) =
α̂
⇒ (∆′ ⊢C

′ j
2) in the level ω semantics. Moreover, we know

from part (i) that ∆′ � [[C′
j
2]] j ≈ [[C′

j
2]]i′ for any i′ > j. Hence, ∆′ � C′1 R C′

j
2 as required.

The transitions from ∆ ⊢C2 can be matched similarly. ✷

Corollary 4.7 [[C]]0 ≈ [[C]]ω for all C.

4.2 Congruence

We have described how, in order to verify congruence of bisimulation equivalence for the standard

semantics, it is sufficient to verify congruence of bisimulation equivalence for the completely triggered,

level 0, semantics. We show this now.

Proposition 4.8 For all contexts ∆′ ⊢ C [·∆],

If ∆ � [[C1]]0 ≈ [[C2]]0 then ∆′ � [[C [C1]]]0 ≈ [[C [C2]]]0

23

Proof: This can now be proved fairly directly using our bisimulation up to technique. The level 0 seman-

tics ensure that the only substitution which occurs is for base values, names and triggers. Bisimilarity

on these values is just syntactic identity so any problems with substitutivity (in the presence of static

scoping) which arise in [10, 15] are avoided. We omit details of this as they can be recovered from the

proof of Proposition 5.6. ✷

Given this we can draw upon the results of Corollary 4.7 and the above Proposition to obtain:

Theorem 4.9 Bisimilarity is a congruence.

5 A canonical labelled transition system

So far we have shown that bisimilarity coincides with barbed equivalence. The motivation for providing

such a characterisation lies in the need to alleviate the quantification over all contexts present in the def-

inition of barbed equivalence. We achieve this to an extent by reducing contexts to labelled transitions.

However, despite being a neater coinductive equivalence, the definition of bisimilarity now quantifies

over all transitions. We must question whether this is truly a lighter quantification. One measure we

proposed in [15] to answer such a question was to demand that labels be applicative. That is to say,

whenever a label contains an arbitrary value, the type of that value should be strictly less than the types

of the threads being tested. Our labelled transition system defined above is certainly not applicative in

this sense. In particular, the join(v) .n labels have no such restriction and grant powerful testing abilities.

In order to rectify this shortcoming of our bisimilarity we provide a cut-down lts semantics which do

have applicative labels for which bisimilarity coincides with the original. This new semantics is closely

related to normal bisimulation of Sangiorgi [26], in which a beautifully simple characterisation of bisim-

ilarity for higher-order π-calculus is achieved by restricting test values to be either names or trigger calls

alone. We adopt a similar approach here by defining canonical values to be those of the form

vc ::= b | n | x | (vc,vc) | τa

Now, the canonical, or normal semantics for configurations is given by the lts rules in Figures 4, 5

with all values in the transition labels restricted to be canonical. Write [[C]]c
i to signify the canonical

semantics with level i substitutions. If we can show that bisimilarity is a congruence on configurations

for the canonical semantics it is a relatively simple step to prove the following theorem which justifies

the claim that our bisimilarity is a simple characterisation of barbed equivalence.

Theorem 5.1 The following are equivalent:

(i) ∆ � [[C]]0 ≈ [[C′]]0

(ii) ∆ � [[C]]ω ≈ [[C′]]ω

(iii) ∆ � [[C]]cω ≈ [[C′]]cω

(iv) ∆ � [[C]]c0 ≈ [[C′]]c0

24

Proof: The proof of (i) implies (ii) appears in the previous section and (ii) implies (iii) is immediate as

the labels allowed for testing in the standard bisimulation subsume those allowed for bisimulation in the

canonical semantics. Also, (iii) implies (iv) is easily established using the same proof as Corollary 4.7

for the canonical semantics. Finally, (iv) implies (i) makes use of the congruence properties of ≈ for the

level 0 canonical semantics:

By Corollary 4.7 it is sufficient to demonstrate that ∆ � [[C]]c
0 ≈ [[C′]]c0 implies ∆ � [[C]]0 ≈ [[C′]]0. We

let

R∆=
{

(C,C′) | ∆ � [[C]]c0 ≈ [[C′]]c0
}

and proceed to show that R forms a bisimulation (up to β) in the level 0 semantics. Therefore, take

∆ � C1 R C2 (so that ∆ � [[C1]]
c
0 ≈ [[C2]]

c
0) and suppose that ∆ ⊢C1

α✲ ∆′ ⊢C′1. We must find a matching

transition from C2. If α only contains canonical values then this follows easily from the construction of

R . However, we must consider the cases in which α may contain non-canonical values: that is, α is

n .@v.n′, recv(n,v), or join(v) .n.

Consider the latter case: C′1 is simply C1 ‖n[v]. To find a match from C2 we observe that, by congru-

ence of bisimilarity for the canonical semantics, Proposition 5.6, we have that

∆ � [[C1 ‖n[v]]]c0 ≈ [[C2 ‖n[v]]]c0

hence (∆ ⊢C2)
join(v).n✲ (∆ ⊢C2 ‖n[v]) serves as a matching transition.

In case α is n .@v.n′ we observe that

• C1 is (up to structure) of the form ν∆1 . (C0 ‖n[λx . t])

• C′1 is (up to beta-reduction) of the form ν(n0,a) . (CA ‖n0[a⇐v]) where CA is

ν∆1 . (C0 ‖n[λx . t]‖n′[letx= τa in t]).

Thus we find that there are transitions

(∆ ⊢C1)
weak.a✲ n.@τa.n

′
✲ (∆,a,n′ ⊢CA)

We know that ∆ � [[C1]]
c
0 ≈ [[C2]]

c
0 so we have matching transitions

(∆ ⊢C2) ===
weak.a
⇒ ====

n.@τa.n
′

⇒ (∆,a,n′ ⊢CB)

for some CB such that ∆,a,n′ � [[CA]]c0 ≈ [[CB]]c0. We also know by Proposition 5.6 that

∆,n′ � [[νa,n0 . (CA ‖n0[a⇐v])]]c0 ≈ [[νa,n0 . (CB ‖n0[a⇐v])]]c0

and it is straightforward to check that there exists a weak transition

(∆ ⊢C2) ===
n.@v.n′

⇒ (∆,n′ ⊢ νa,n0 .CB ‖n0[a⇐v])

to match the α transition from C1.

A similar argument may be used to match recv(n,v) transitions from C1 and a symmetric argument

enables us to match transitions from C2. ✷

This does however oblige us to show congruence for the canonical semantics.

25

5.1 Bisimilarity is a congruence for the canonical semantics

The proof that bisimilarity for the canonical, level 0, semantics is preserved by contexts is non-trivial,

and it will be helpful to present some technical lemmas to assist in its exposition. For the remainder of

this section, all configurations are to be understood using the canonical, level 0 semantics.

Lemma 5.2 (i) If ∆,n : σ � C1 ≈C2 then ∆ � νn : σ .C1 ≈ νn : σ .C2.

(ii) If ∆,n � C1 ≈C2 then ∆ � C1 ‖n[vc]≈C2 ‖n[vc].

(iii) If ∆,n : σ � C1 ‖n[v1]≈C2 ‖n[v2] and n 6∈C1,C2 then ∆ � C1 ≈C2.

(iv) If ∆,n � C1 ≈C2 and n′ 6∈ ∆ then ∆,n′ � C1[n
′/n]≈C2[n

′/n]

Proof: Straightforward coinductions. ✷

Lemma 5.3 For n of type σ thread and for fresh l of type unit thread we have:

(i) If ∆,n � ν∆1 .C1 ‖n[f1]≈ ν∆2 .C2 ‖n[f2] then

∆,n � ν∆1, l . (C1 ‖n[f1]‖ l[a⇐ f1])≈ ν∆2, l . (C2 ‖n[f2]‖ l[a⇐ f2])

for any abstractions f1, f2.

(ii) If ∆,n � ν∆1 . (C1 ‖n[t1])≈ ν∆2 . (C2 ‖n[t2]) and n 6∈ f n(C1), f n(C2) then

∆ � ν∆1, l . (C1 ‖ l[letx= t1 in send(r,x)])≈ ν∆2, l . (C2 ‖ l[letx= t2 insend (r,x)])

for ∆ ⊢ r : σchan.

(iii) If ∆,n � ν∆1 . (C1 ‖n[v1])≈ ν∆2 . (C2 ‖n[v2]) and n 6∈ f n(C1), f n(C2) then

∆ � ν∆1, l . (C1 ‖ l[send(r,v1)])≈ ν∆2, l . (C2 ‖ l[send(r,v2)])

for ∆ ⊢ r : σchan.

Proof: We proceed by showing these simultaneously by induction on the functional structure of type σ
using the following inductive structure:

• (i) implies (iii),

• (i) and (iii) imply (ii),

• (i) and (ii) (at smaller types than σ) imply (i)

Specifically, we let bool,unit,σ′ thread,σ′ chan (for any σ′) be considered as base types, and order higher

types by σ1,σ2 < σ1→σ2.

We will demonstrate the dependencies listed above. For the sake of a simpler exposition we will

assume that all the values v1,v2 referred to in the following proof are not of the form (v′,v′′). This does

not constitute any real restriction as an obvious mixture of the proof techniques described below for base

and higher types serves to validate the Lemma for such values.

26

• Suppose (i) holds: we show (iii).

To begin with we let

∆ � ν∆1, l . (C1 ‖ l[send(r,v1)]) R ν∆2, l . (C2 ‖ l[send(r,v2)])

hold exactly when ∆,n � ν∆1 . (C1 ‖ n[v1])≈ ν∆2 . (C2 ‖ n[v2]). We will show that R ∪ ≈ forms a

bisimulation relation:

Suppose that ∆ � C R C′ is witnessed by ∆ � C ≈ C′. The diagram required to demonstrate

bisimulation is trivially closed. Therefore we can assume that ∆ � C R C ′ is of the form:

∆ � ν∆1, l . (C1 ‖ l[send(r,v1)]) R ν∆2, l . (C2 ‖ l[send(r,v2)]),

witnessed by

∆,n � ν∆1 . (C1 ‖n[v1])≈ ν∆2 . (C2 ‖n[v2]).

Furthermore suppose that ∆ ⊢ ν∆1, l .C1 ‖ l[send(r,v1)]
α✲ ∆′ ⊢ D1 with n 6∈ α. We consider the

possible forms for this transition:

– Firstly, α may have originated in C1, that is, ∆′ is ∆,∆0 where the domain of ∆0 is the bound

names of α, and if we write ∆i as ∆′i,∆0 (for i = 1,2), then we have D1 is, up to structural

equivalence, of the form

ν∆′1, l . (C
′
1 ‖ l[send(r,v1)]).

In this case we also know that

∆,n ⊢ ν∆1 . (C1 ‖n[v1])
α✲ ∆′,n ⊢ ν∆′1 . (C′1 ‖n[v1])

and we know that the closure condition on ≈ guarantees a matching transition

∆,n ⊢ ν∆2 . (C2 ‖n[v2]) ==
α̂
⇒ ∆′,n ⊢ ν∆′2 . (C′2 ‖n[v2])

with

∆′,n � ν∆′1 . (C′1 ‖n[v1]) ≈ ν∆′2 . (C′2 ‖n[v2]) (1)

Now we know that this transition cannot depend on n as n is not contained in α or C2.

Therefore

∆ ⊢ ν∆2, l . (C2 ‖ l[send(r,v2)]) ==
α̂
⇒ ∆′ ⊢ ν∆′2, l . (C

′
2 ‖ l[send(r,v2)])

also holds. Let us call the target of these transitions D2. We use equation (1) and the definition

of R to observe that ∆′ � D1 R D2.

– Secondly, α may be a join(vc) .n transition. We know by Lemma 5.2 that we can simply use

a join(vc) .n from ν∆2, l . (C2 ‖ l[send(r,v2)]) to match this.

27

– Thirdly, α is send(r) .n′ and ∆′ ⊢ D1 is (up to β-reduction) ∆,n′ ⊢ ν∆1, l . (C1 ‖ l[()]‖n′[v1]).
We simply observe that

∆ ⊢ ν∆2, l . (C2 ‖ l[send(r,v2)])
α✲ ν∆2, l . (C2 ‖ l[()]‖n′[v2])

with ∆′ � D1 ≈ ν∆2, l . (C2 ‖ l[()]‖n′[v2]) by hypothesis and Lemma 5.2.

– Finally, if α is τ arising from communication then we must have

C1 ≡ ν∆′1 . (C′1 ‖n0[letx= recv r in t1]) D1
β
→∗ ν∆1,∆′1, l . (C

′
1 ‖n0[letx= v1 in t1]‖ l[()]).

In this case we also know that if v1 has base type then it is actually a canonical value and

hence

∆ ⊢ ν∆1 . (C1 ‖n[v1])
recv(r,v1)✲ ∆ ⊢ ν∆1,∆′1 . (C′1 ‖n0[letx1 = v1 in t1]‖n[v1])

is a valid transition. In this case v2 is also canonical as it must be identical to v1. We appeal

to the hypothesis to see that

∆ ⊢ ν∆2 . (C2 ‖n[v2]) ====
recv(r,v1)

⇒ ∆ ⊢ ν∆2 . (C′2 ‖n[v2])

for some C′2 such that ∆ � ν∆1,∆′1 . (C′1 ‖n0[letx=v1 in t1]‖n[v1])≈ ν∆2 . (C′2 ‖n[v2]). There-

fore we know that

∆ ⊢ ν∆2, l . (C2 ‖ l[send(r,v2)])⇒ ∆ ⊢ ν∆2, l . (C
′
2 ‖ l[()])

and we now just need to use Lemma 5.2 to see that

∆ � D1 ≈ ν∆2, l .C
′
2 ‖ l[()]

We must also consider the case in which v1 has functional type. Here, v1 may not be canoni-

cal so we cannot immediately use a recv(r,v1) transition to help us find our match. However,

we may note that we have

∆′ � D1
β
→∗ ν∆1,∆′1, l, l

′,a . (C′1 ‖n0[t1[τa/x]]‖ l[()]‖ l ′[a⇐v1]).

Thus, we can use a weakening transition and

(∆,n,a ⊢ ν∆1 . (C1 ‖n[v1]))
recv(r,τa)✲ (∆,n,a ⊢ ν∆1,∆′1 . (C′1 ‖n0[letx= τa in t1]‖n[v1]))

to obtain matching transitions

(∆,n,a ⊢ ν∆2 . (C2 ‖n[v2])) ====
recv(r,τa)

⇒ (∆,n,a ⊢ ν∆2 . (C′2 ‖n[v2]))

such that

∆,n,a � ν∆1,∆′1 . (C′1 ‖n0[letx= τa in t1]‖n[v1]) ≈ ν∆2 . (C′2 ‖n[v2]) (2)

28

We use these transitions, and the fact that n 6∈ f n(C2),α, to observe that there must exist

some D2 such that

∆ ⊢ νn2, l . (C2 ‖ l[send(r,v2)])⇒ ∆ ⊢ D2 ∆ � D2 ≡ νn2, l, l
′,a . (C′2 ‖ l[()]‖ l ′[a⇐v2]).

We now simply apply part (i) and Lemma 5.2 to (2) to obtain

∆ � D1 ≈ νn2, l, l
′,a . (C′2 ‖ l[()]‖ l ′[a⇐v2])≈ D2

as required.

• Suppose (i) and (iii) hold: we show (ii).

Again we build a relation R and show that R ∪ ≈ forms a bisimulation.

Suppose (wlog) we have

∆ � ν∆1, l . (C1 ‖ l[letx= t1 insend (r,x)]) R ν∆2, l . (C2 ‖ l[letx= t2 insend (r,x)])

witnessed by

∆,n � ν∆1 . (C1 ‖n[t1])≈ ν∆2 . (C2 ‖n[t2])

and suppose that

∆ ⊢ ν∆1, l . (C1 ‖ l[letx= t1 insend (r,x)])
α✲ ∆′ ⊢ D1

with n 6∈ α. Now if α originates in C1 or t1, or even as an interaction between the two, this is

easily dealt with using the hypothesis. Similarly, if α is a join(v) .n ′ transition then we can easily

find a matching transition. The case of interest arises when t1 is actually a value, v1, say and α is

a β-reduction. If v1 is of base type then v1 is necessarily a canonical value so D1 will be of the

form ν∆1, l . (C1 ‖ l[send(r,v1)]). It is relatively easy to see using the value transitions at n that the

witness guarantees that there exists some transitions

∆,n ⊢ ν∆2 . (C2 ‖n[t2])⇒ ∆,n ⊢ ν∆2,∆′2 . (C′2 ‖n[v2])

such that ∆,n � ν∆1 . (C1 ‖ n[v1]) ≈ ν∆2,∆′2 . (C′2 ‖ n[v2]) with v1 identical to v2 (note that this

supposes that v1 is not contained in ∆1, in which case the new name transitions can be used to

weaken the name environment ∆ to include v1). Given this we can also see that

∆ ⊢ ν∆2, l . (C2 ‖ l[letx= t2 insend (r,x)])⇒ ∆ ⊢ ν∆2, l,∆′2 . (C′2 ‖ l[send(r,v2)])

By hypothesis, we can now use (iii) to see that

∆ � D1 ≈ ν∆2, l,∆′2 . (C′2 ‖ l[send(r,v2)]).

Otherwise, v1 is of functional type σ1→σ2. In this case we know that, D1 must be of the form

ν∆1, l, l
′,a′ . (C1 ‖ l[send(r,τa′)]‖ l′[a′⇐v1]).

As above we still know, because of n ⇓ transitions, that there must exist transitions

∆ ⊢ ν∆2 . (C2 ‖n[t2])⇒ ∆ ⊢ ν∆2,∆′2 . (C′2 ‖n[v2])

29

with ∆,n � ν∆1 . (C1 ‖n[v1])≈ ν∆2,∆′2 . (C′2 ‖n[v2]). We can apply Lemma 5.2 to this, after weak-

ening to obtain

∆,n,n′,a′ � ν∆1 . (C1 ‖n[v1]‖n′[τa′])≈ ν∆2,∆′2 . (C′2 ‖n[v2]‖n′[τa′])

and we can then apply part (iii) to obtain

∆,n,a′ � ν∆1, l . (C1 ‖n[v1]‖ l[send (r,τa′)]) ≈ ν∆2,∆′2, l . (C
′
2 ‖n[v2]‖ l[send(r,τa′)]). (3)

We conclude by observing that

∆ ⊢ ν∆2, l . (C2 ‖ l[letx= t2 insend (r,x)])⇒ ∆ ⊢ ν∆2,∆′2, l, l
′,a′ . (C′2 ‖ l′[a′⇐ v2]‖ l[send(r,τa′)])

(call this latter term D2) We use part (i) with (3) (with suitable renamings) and Lemma 5.2, to get

∆ � D1 ≈ D2

as required.

• Suppose (i) holds at type σ1 and (ii) holds at type σ2 where σ is σ1→σ2: we show (i).

As before we build a relation R by defining

∆,n � ν∆1, l . (C1 ‖n[f1]‖ l[a⇐ f1]) R ν∆2, l . (C2 ‖n[f2]‖ l[a⇐ f2])

if

∆,n � ν∆1 .C1 ‖n[f1]≈ ν∆2 .C2 ‖n[f2]

for some a ∈ ∆. We show that R forms a bisimulation up to (
β
→∗,≈). We will assume that f1 is

of the form λx.t1. Suppose also that

∆,n ⊢ ν∆1, l . (C1 ‖n[f1]‖ l[a⇐ f1])
α✲ ∆′ ⊢ D1

for some ∆′ and D1. We consider the cases for α:

– Firstly, if α originates in C1 ‖n[f1], or is a join(v) .n transition then we may find the matching

transition as above.

– Of more interest is the case in which the environment calls the resource l[a⇐ f1] with a

recv(a,(vc,r)) transition. That is D1 is, up to β-reduction, of the form:

ν∆1, l, l
′ . (C1 ‖n[f1]‖ l[letz=(letx= vc in t1) insend (r,z)]‖ l ′[a⇐ f1]).

Now we know that (for α = recv(a,(vc,r)))

∆,n ⊢ ν∆2, l . (C2 ‖n[f2]‖ l[a⇐ f2])

==
α
⇒ ∆,n ⊢ ν∆2, l, l

′ . (C2 ‖n[f2]‖ l[letz= f2 vc insend (r,z)]‖ l ′[a⇐ f2])

is also a valid transition, call the target of it D2, say. We also know that,

∆,n ⊢ ν∆1 .C1 ‖n[f1]
n.@vc.n

′
✲ ∆,n,n′ ⊢ ν∆1 .C1 ‖n[f1]‖n′[letx= vc in t1].

30

Thus, by hypothesis, we know that there exists a matching weak transition,

∆,n ⊢ ν∆2 .C2 ‖n[f2] ====
n.@vc.n

′

⇒ ∆,n,n′ ⊢ ν∆2,∆′2 . (C′2 ‖n[f2]‖n′[t2])

such that

∆,n,n′ � ν∆1 .C1 ‖n[f1]‖n′[letx= vc in t1] ≈ ν∆2,∆′2 . (C′2 ‖n[f2]‖n′[t2]). (4)

Moreover, it can easily seen by analysing the matching transitions that

∆,n ⊢ D2⇒ ∆,n ⊢ ν∆2,∆′2, l, l
′ . (C′2 ‖n[f2]‖ l[let z= t2 in send(r,z)]‖ l ′[a⇐ f2])

also. Call the target of these transitions D′2. Thus we have

(∆,n ⊢ ν∆2, l .C2 ‖ l[a⇐ f2]) ==
α
⇒ (∆,n ⊢ D2)⇒ (∆,n ⊢ D′2)

and, by using part (ii) at n′ at type σ2 with (4), and then by definition of R , we have

∆ � D1
β
→∗R≈ D′2.

– Finally, we consider the case in which α is τ, a communication between C1 and l[a⇐ f1]. In

this case, C1 must be (up to ≡) of the form

ν∆′1 . (C′1 ‖n0[let()= send(a,(v1,r)) int ′1]).

We know that, by hypothesis,

∆,n � ν∆1 .C1 ‖n[f1]≈ ν∆2 .C2 ‖n[f2],

and we also know that

(∆,n ⊢ ν∆1 . (C1 ‖n[f1]))
send(a).n′✲ β

→∗ (∆,n,n′ ⊢ ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n′[(v1,r)]‖n[f1])).

Given this we can find matching transitions

(∆,n ⊢ ν∆2 . (C2 ‖n[f2])) =====
send(a).n′

⇒ (∆,n,n′ ⊢ ν∆2,∆′2 . (C′2 ‖n′[w]‖n[f2]))

with

∆,n,n′ � ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n′[(r,v1)]‖n[f1])≈ ν∆2,∆′2 . (C′2 ‖n′[w]‖n[f2]).

Now, by using n′ . fst. and n′ .snd. projection transitions and Lemma 5.2, and because n′ 6∈C′2,

we know that w must be of the form (v2,r) for some v2, moreover we can find C′′2 and n′′

such that

∆,n,n′′ � ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n′′[v1]‖n[f1]) ≈ ν∆2,∆′2 . (C′′2 ‖n′′[v2]‖n[f2]) (5)

with C′2 ‖n[f2]⇒C′′2 ‖n[f2].

Now we must consider two subcases according to the type of v1:

31

Case(a): If v1 is of base type then D1, up to β-reduction, will be of the form (where f1 is λx.t1)

ν∆1,∆′1, l, l
′ . (C′1 ‖n0[t

′
1]‖n[f1]‖ l[letx′=(letx= v1 in t1) insend (r,x′)]‖ l′[a⇐ f1])

In this case, we know that v1 is canonical and, by the previous equivalence, we know that v2

is also canonical, and moreover is identical to v1. We can use Lemma 5.2 to see that

∆,n � ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n[f1])≈ ν∆2,∆′2 . (C′′2 ‖n[f2])

(note that this ignores the case in which v1,v2 contain private names, but we may assume,

because of the n . νm transitions, that such names have already been extruded). We have

stated that v1 is canonical so there exists a transition

∆,n ⊢ ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n[f1])

n.@v1.n
′

✲ ∆,n,n′ ⊢ ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n[f1]‖n′[letx= v1 in t1])

where n′ is fresh. This means that there must exist matching transitions

∆,n ⊢ ν∆2,∆′2 . (C′′2 ‖n[f2]) ====
n.@v1.n

′

⇒ ∆,n,n′ ⊢ ν∆2,∆′2,∆
′′
2 . (C′′′2 ‖n[f2]‖n′[t2])

such that

∆,n,n′ � ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n[f1]‖n′[letx= v1 in t1])

≈

ν∆2,∆′2,∆
′′
2 . (C′′′2 ‖n[f2]‖n′[t2])

(6)

and ν∆2,∆′2 .(C′′2 ‖n[f2]‖n′[f2 v2])⇒ ν∆2,∆′2,∆
′′
2 .(C′′′2 ‖n[f2]‖n′[t2]). By collecting the above

transitions together though we see that

∆,n ⊢ ν∆2, l . (C2 ‖n[f2]‖ l[a⇐ f2])

⇒ ∆,n ⊢ ν∆2,∆′2, l, l
′ . (C′′2 ‖n[f2]‖ l[letx= f2 v2 insend (r,x)]‖ l′[a⇐ f2])

and moreover, this configuration further reduces to

∆,n ⊢ ν∆2,∆′2,∆
′′
2, l, l

′ . (C′′′2 ‖n[f2]‖ l[letx= t2 insend (r,x)]‖ l′[a⇐ f2])

which we will call D2. We can now use part (ii) at n′′ at type σ2 on (6), and the definition of

R to see that ∆,n � D1
β
→∗R≈ D2 as required.

Case(b): If v1 is an abstraction, necessarily of functional type, σ1→σ2, say. We know that D1 will

again be, up to β-reduction, of the form

ν∆1,∆′1,a
′, l, l′, l′′.

(C′1 ‖n0[t
′
1]‖n[f1]‖ l[letx′=(letx= τa in t1) insend (r,x′)]‖ l′[a⇐ f1]‖ l′′[a′⇐ v1])

We may not be able to use an n .@v1 .n′ transition as above because v1 may be non-canonical,

or even a trigger call on a private name. However, we can choose a fresh trigger name, a′,

say, and, after weakening, observe the following transition:

∆,n,n′′,a′ ⊢ ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n′′[v1]‖n[f1])

n.@τa′ .n
′

✲ ∆,n,n′,n′′,a′ ⊢ ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n′′[v1]‖n[f1]‖n′[letx= τa′ in t1])

32

where n′ is fresh and f1 is λx.t1. This means that, by (5), there must exist matching transitions

∆,n,n′′,a′ ⊢ ν∆2,∆′2 . (C′′2 ‖n′′[v2]‖n[f2])

====
n.@τa′ .n

′

⇒

∆,n,n′,n′′,a′ ⊢ ν∆2,∆′2,∆
′′
2 . (C′′′2 ‖n′′[v2]‖n[f2]‖n′[t2])

such that

∆,n,n′,n′′,a′ � ν∆1,∆′1 . (C′1 ‖n0[t
′
1]‖n′′[v1]‖n[f1]‖n′[letx= τa′ in t1])

≈

ν∆2,∆′2,∆
′′
2 . (C′′′2 ‖n′′[v2]‖n[f2]‖n′[t2])

(7)

and ν∆2,∆′2 . (C′′2 ‖n[f2]‖n′[f2 τa′])⇒ ν∆2,∆′2,∆
′′
2 . (C′′′2 ‖n[f2]‖n′[t2]). We can apply part (i)

at n′′ at type σ1, Lemma 5.2 and part (ii) at n′ at type σ2 to equation (7) to obtain

∆,n ⊢ ν∆1,∆′1, l, l
′′,a′ . (C′1 ‖n0[t

′
1]‖n[f1]‖ l[letx′= letx= τa′ in t1 insend (r,x′)]‖ l′′[a′⇐ v1])

≈

ν∆2,∆′2,∆
′′
2,a
′, l, l ′′ . (C′′′2 ‖ l′′[a′⇐ v2]‖n[f2]‖ l[letx= t2 insend (r,x)])

(8)

We also note that, by collecting the matching transitions together,

∆,n ⊢ ν∆2, l . (C2 ‖n[f2]‖ l[a⇐ f2])

⇒

∆,n ⊢ ν∆2,∆′2, l, l
′, l′′,a′ . (C′′2 ‖n[f2]‖ l[letx= f2 τa′ insend (r,x)]‖ l′[a⇐ f2]‖ l′′[a′⇐ v2])

and moreover, this configuration further reduces to

∆ ⊢ ν∆2,∆′2,∆
′′
2, l, l

′, l′′,a′ . (C′′′2 ‖n[f2]‖ l[letx= t2 insend (r,x)]‖ l′[a⇐ f2]‖ l′′[a′⇐ v2])

which we will call D2. This means that, by (8), we have

∆ ⊢ ν∆2, l . (C2 ‖ l[a⇐ f2])⇒ ∆ ⊢ D2

such that that ∆ � D1
β
→∗R≈ D2 as required. ✷

Lemma 5.4 ∆ � νa, l . (C[v/x]0 ‖ l[a⇐v])≈ νa, l . (C[τa/x]‖ l[a⇐v]) for all C,v.

Proof: Let the type-indexed relation R be defined:

∆ � νa, l . (C[a/a′]‖ l[a⇐v]) R νa,a′, l, l ′ . (C ‖ l[a⇐v]‖ l ′[a′⇐v])

when a and a′ are send -channels in C, and l, l′ 6∈ C. We show that R is a bisimulation, and the result

follows. ✷

33

Lemma 5.5 If

(∆,a ⊢C ‖n[τa])
α✲ (∆′,a ⊢C′ ‖n[τa])

with α not of the form n .@v0 .n0, and a is a send -channel in C and ∆,a ⊢C0 is of the form

ν∆0 . (n[v]‖νl . l[a⇐v]‖C′0)

with n,a 6∈ ∆0, then

(∆ ⊢ νa . (C ‖C0))
α✲ ≈ (∆′ ⊢ νa . (C′ ‖C0)).

Proof: The only transition of C ‖ n[τa] which may be prevented by νa . (C ‖C0) is that in which C

performs a join communication on n to receive τa. That is, C is of the form

ν∆1 . (C1 ‖n1[letx= joinn in t1])

and C′ is of the form

ν∆1 . (C1 ‖n1[letx= τa in t1]).

Clearly though,

νa . (C ‖C0) → νa,∆1 . (C1 ‖n1[letx= v in t1]‖C0)
β✲ νa,∆1 . (C1 ‖n1[t1]‖C0)[v/x]0

(Lemma 5.4) ≈ νa,∆1 . (C1 ‖n1[t1[τa/x]]‖C0)

≡ νa . (C′ ‖C0)

as required. ✷

Having shown these rather technical lemmas we may now proceed with the main Proposition: congru-

ence of bisimilarity for the level 0, canonical semantics.

Proposition 5.6 If ∆,∆0 � C1 ≈C2 and ∆,∆0 ⊢C then ∆ � ν∆0 . (C1 ‖C)≈ ν∆0 . (C2 ‖C).

Proof: Define:

∆ � ν∆0 . (C1 ‖C) R ν∆0 . (C2 ‖C)

iff ∆,∆0 ⊢C and there exists some~n, ~a, such that

∆,∆0 � C1 ‖
k

∏
i=0

ni[τai
]≈C2 ‖

k

∏
i=0

ni[τai
]

and such that ai is a send -channel in C1,C2, ni 6∈ ∆0, ai ∈ ∆0 (for 0≤ i≤ k), and

C ≡ ν∆′,~l . (
k

∏
i=1

ni[vi]‖
k

∏
i=0

li[ai⇐vi]‖C′).

We will demonstrate R to be bisimulation up to (
β
→∗,≈) and our result follows in the case k = 0.

Suppose then that

∆ � ν∆0 . (C1 ‖C) R ν∆0 . (C2 ‖C)

34

and also suppose that (∆ ⊢ ν∆0 . (C1 ‖C))
α✲ (∆′ ⊢ D1) for some ∆′ ⊢ D1. We must check the bisim-

ulation closure property. If α originates in C then it is clear that there is a matching transition from

(∆ ⊢ ν∆0 . (C2 ‖C)). Similarly, if α originates in C1, we consider the definition of R to see that

∆,∆0 � C1 ‖
k

∏
i=1

ni[τai
]≈C2 ‖

k

∏
i=1

ni[τai
].

For the purposes of exposition, unless otherwise stated we will suppose that k = 1 as this suffices to show

the relevant proof without burdening the reader with excessive detail. For other values of k the proof

follows in a very similar manner. Therefore we know that there must exist some matching transitions

from

(∆,∆0 ⊢C2 ‖n[τa])

and that by iterating Lemma 5.5 we see that these matching transitions are valid from

(∆ ⊢ ν∆0 . (C2 ‖C))

also. The difficulties arise in the cases in which α is the result of an interaction between C1 and C, in

particular: channel communication between these configurations and join synchronizations.

We consider these cases in turn. Note that we will omit the cases for communication with a replicated

receive expression as they are very similar to the cases for the single receive. Also, we will assume for

the sake of clear exposition that all values communicated will be either base type values, names, or

abstractions. This is of course no real restriction as the same proof technique with judicious use of

projection transitions is valid for tupled values also.

• Suppose

C1 ≡ ν∆1 . (C′1 ‖n1[let()= send(c,v1) int1])

C ≡ ν∆′0 . (C′0 ‖n0[letx= recvc in t0])

D1
β
→∗ ν∆0,∆1,∆′0 . (C′1 ‖n1[t1]‖C′0 ‖n0[letx= v1 in t0])

We know that

(∆,∆0 ⊢C1)
send(c).n′✲ β

→∗ (∆,∆0,n
′ ⊢ ν∆1 . (C′1 ‖n1[t1]‖n′[v1]))

and we know by hypothesis that ∆,∆0 � C1 ≈C2 or ∆,∆0 � C1 ‖n[τa]≈C2 ‖n[τa]. In, for instance,

the latter case we find matching transitions

(∆,∆0 � C2 ‖n[τa]) =====
send(c).n′

⇒ (∆,∆0 � ν∆2 . (C′2 ‖n[τa]‖n′[v2]))

say, with

∆,∆0,n
′
� ν∆1 . (C′1 ‖n1[t1]‖n[τa]‖n′[v1])≈ ν∆2 . (C′2 ‖n[τa]‖n′[v2]) (9)

We note that, if v1 is of base type then the value transitions at n′ guarantee that v2 is identical to v1

and by Lemma 5.2 we have

∆,∆0 � ν∆1 . (C′1 ‖n1[t1]‖n[τa])≈ ν∆2 . (C′2 ‖n[τa]). (10)

35

Note that, for the sake of simplicity, we use the new name transitions to allow us to assume that

any name in v1 has already been extruded. Now, Lemma 5.5 tells us that

(∆ ⊢ ν∆0 . (C2 ‖C))⇒≈ (∆ ⊢ ν∆0 . (ν∆2 . (C′2)‖ν∆′0 . (C′0 ‖n0[t0[v2/x]]))

(call the target term D2), and by noticing that

D1
β
→∗ ν∆0 . (ν∆1 . (C′1 ‖n0[t0])‖ν∆′0 . (C′0 ‖n0[t0[v1/x]]))

along with the fact that v1 ≡ v2, (10) tells us

∆ � D1
β
→∗R≈ D2

as required.

Otherwise, v1 must be an abstraction and

D1
β
→∗ ν∆0,a

′ . (ν∆1, l . (C
′
1 ‖n1[t1]‖ l[a′⇐v1])‖ν∆′0 . (C′0 ‖n0[t0[τa′/x]])).

We use Lemmas 5.3 and 5.2 to see that

∆,∆0,n
′
� ν∆1 . (C′1, l ‖n1[t1]‖n[τa]‖ l[a′⇐ v1])≈ ν∆2, l . (C

′
2 ‖n[τa]‖ l[a′⇐v2]) (11)

Again, Lemma 5.5 tells us that

(∆ ⊢ ν∆0 . (C2 ‖C))⇒≈ (∆ ⊢ ν∆0,a
′ . (ν∆2, l . (C

′
2 ‖ l[a′⇐v2])‖ν∆′0 . (C′0 ‖n0[t0[τa′/x]]))

(call the target term D2). Thus by using (11) we see that ∆ � D1
β
→∗R≈ D2 as required.

• Suppose

C1 ≡ ν∆1 . (C′1 ‖n1[letx= recvc in t1])

C ≡ ν∆′0 . (C′0 ‖n0[let ()= send(c,v) in t0])

D1
β
→∗ ν∆0,∆1,∆′0 . (C′1 ‖n1[letx= v in t1]‖C′0 ‖n0[t0])

Again, we must consider whether v1 is of base or higher type. We demonstrate only the latter as

the arguments for both are very similar. We observe immediately a further β-reduction from D1

such that

D1
β
→∗ ν∆0,a

′ . (ν∆1 . (C′1 ‖n1[t1[τa′/x]])‖ν∆′0, l . (C
′
0 ‖n0[t0]‖ l[a′⇐v]))

We know that

(∆,∆0,a
′ ⊢C1)

recv(c,τa′)✲ ≈ (∆,∆0,a
′ ⊢ ν∆′1 . (C′1 ‖n1[t1[τa′/x]]))

so, by the hypothesis that

∆,∆0 � C1 ‖n[τa]≈C2 ‖n[τa],

36

say, we also know that there exists some

(∆,∆0,a
′ ⊢C2 ‖n[τa]) =====

recv(c,τa′)
⇒ (∆,∆0,a

′ ⊢ ν∆′2 . (C′2 ‖n[τa])

such that

∆,∆0,a
′
� ν∆′1 . (C′1 ‖n1[t1[τa′/x]]‖n[τa])≈ ν∆′2 . (C′2 ‖n[τa]) (12)

We use Lemma 5.5 to observe that

(∆ ⊢ ν∆0 . (C2 ‖C))⇒≈ (∆ ⊢ ν∆0,a
′ . (ν∆′2 .C′2 ‖ν∆′0, l . (C

′
0 ‖n0[t0]‖ l[a′⇐v])))

call the target term D2. We use (12) to conclude that ∆ ⊢ D1
β
→∗R D2.

• Suppose

C1 ≡ ν∆1 . (C′1 ‖n1[v1])

C ≡ ν∆′0 . (C′0 ‖n0[letx= joinn1t0 in])

D1 ≡ ν∆0,∆1,∆′0 . (C′1 ‖n1[v1]‖C′0 ‖n0[letx= v1 in t0])

We know that (∆,∆0 ⊢C1)
n1⇓✲ (∆,∆0,⊢C1) and that, by hypothesis,

∆,∆0 � C1 ‖n[τa]≈C2 ‖n[τa],

say. This means that there must exist some

(∆,∆0 ⊢C2 ‖n[τa]) ==
n1⇓
⇒ (∆,∆0 ⊢ ν∆2 . (C′2 ‖n1[v2]‖n[τa]))

with

∆,∆0 � C1 ‖n[τa]≈ (∆,∆0 ⊢ ν∆2 . (C′2 ‖n1[v2]‖n[τa])).

This tells us that if v1 is of base type then it is clear that v2 must be identical to it. We can then

use Lemma 5.5 to obtain the matching transitions required fairly easily. However, if v1 is an

abstraction then we we can apply Lemma 5.3 to obtain

∆,∆0,a
′
� ν∆1 . (C′1, l ‖n1[v1]‖ l[a′⇐ v1]‖n[τa])≈ ν∆2, l . (C

′
2 ‖n1[v2]‖ l[a′⇐ v2]‖n[τa]) (13)

Lemma 5.5 allows us to observe

(∆ ⊢ ν∆0 . (C2 ‖C))⇒≈ (∆ ⊢ ν∆0,a
′ . (ν∆2, l . (C

′
2 ‖n1[v2]‖ l[a′⇐ v2])‖ν∆′0 . (C′0 ‖n0[t0[τa′/x]])))

(call the target term D2). Therefore, as

D1
β
→∗ ν∆0,a

′ . (ν∆1, l . (C
′
1 ‖n1[v1]‖ l[a′⇐v1])‖ν∆0 . (C′0 ‖n0[t0[τa′/x]]))

we can use (13) to see that ∆ � D1
β
→∗R≈ D2.

37

• Suppose

C1 ≡ ν∆1 . (C′1 ‖n1[letx= joinn0 in t1])

C ≡ ν∆′0 . (C′0 ‖n0[v])

D1 ≡ ν∆0,∆1,∆′0 . (C′1 ‖n1[letx= v in t1]‖C′0 ‖n0[v])

Suppose firstly that v is of base type. We know that it must be the case that our hypothesis is

∆,∆0 ⊢C1 ‖n[τa]≈C2 ‖n[τa] with no thread at n0 defined in C1 or C2. Note that, if v is not typable

in environment ∆,∆0 then we must weaken this environment by some name (v : σ) from ∆′0 and

use

(∆,∆0,(v : σ) ⊢C1 ‖n[τa])
join(v).n0✲ β

→∗ (∆,∆0,(v : σ) ⊢ ν∆1 . (C′1 ‖n1[letx=v in t1]‖n[τa]‖n0[v]))

and our hypothesis to tell us that there exist transitions

(∆,∆0,(v : σ) ⊢C2 ‖n[τa]) ====
join(v).n0

⇒ (∆,∆0,(v : σ) ⊢ ν∆′2 . (C′2 ‖n[τa]‖n0[v]))

such that

∆,∆0,(v : σ) � ν∆1 . (C′1 ‖n1[letx= v in t1]‖n0[v]‖n[τa])≈ ν∆′2 . (C′2 ‖n0[v]‖n[τa]) (14)

It should be clear by Lemma 5.5 that

(∆ ⊢ ν∆0 . (C2 ‖C))⇒≈ (∆ ⊢ ν(∆0,(v : σ)) . (ν∆2 . (C′2 ‖n0[v])‖ν(∆′0 \ (v : σ)) .C′0))

and we call the target of this D2. Thus, by (14), we see that ∆ � D1
β
→∗R≈ D2.

Otherwise, v must be an abstraction. We know by hypothesis that

∆,∆0 � C1 ‖n[τa]≈C2 ‖n[τa].

There are two cases to consider here according to whether n and n0 coincide.

Suppose that n is not n0. We notice that

(∆,∆0,a
′ ⊢C1 ‖n[τa])

join(τa′).n0✲ ≈ (∆,∆0,a
′ ⊢ ν∆1 . (C′1 ‖n1[t1[τa′/x]]‖n[τa]‖n0[τa′]))

must be matched by some

(∆,∆0,a
′ ⊢C2 ‖n[τa]) ======

join(τa′).n0

⇒ (∆,∆0,a
′ ⊢ ν∆2 . (C′2 ‖n[τa]‖n0[τa′]))

such that

∆,∆0,a
′
� ν∆1 . (C′1 ‖n1[t1[τa′/x]]‖n[τa]‖n0[τa′])≈ ν∆2 . (C′2 ‖n[τa]‖n0[τa′]) (15)

We now use Lemma 5.5 to observe that

(∆ ⊢ ν∆0 . (C2 ‖C))⇒≈ (∆ ⊢ ν∆0,a
′ . (ν∆2 .C′2 ‖ν∆′0, l . (C

′
0 ‖n0[v]‖ l[a′⇐ v])))

38

(call the target of this D2). We should point out that the subterm l[a′⇐v] in the target here is either

created by some derivate of C2 performing a joinn0 command and a subsequent substitution, or,

in the absence of this, we can insert it artificially to obtain a term which is weakly bisimilar to the

actual derivate of ν∆0 . (C2 ‖C)). In either case, because

D1
β
→∗ ν∆0,a

′ . (ν∆1 . (C′1 ‖n1[t1[τa′/x]])‖ν∆′0, l . (C
′
0 ‖n0[v]‖ l[a′⇐ v]))

we see by (15) that ∆ � D1
β
→∗R≈ D2 as required.

To finish we note that if n is equal to n0 then we may proceed as above but rather than using a
join(τa′).n0✲ transition to obtain a match in C2 we simply use the internal join communication along

n in C1 ‖n[τa]. ✷

6 Concluding remarks

We have developed an operational account of program equivalence for a fragment of Concurrent ML

which features higher-order functions, concurrency primitives and statically-scoped local names. The

bisimulation equivalence, and in particular that for the canonical semantics provide a lightweight charac-

terisation of barbed equivalence in this setting. This is the first such treatment for a language containing

all of these features.

The proof techniques employed here owe much to Sangiorgi [26] and we consider the hierarchical

approach to trigger correctness a useful generalization of Sangiorgi’s method to the functional setting.

Indeed such techniques could be employed in any functional language sufficiently expressive to encode

the trigger passing mechanism. We have also identified a useful ‘bisimulation up to’ technique based on

confluent reduction.

There is a striking relationship between location based mobile agent languages in the sense of [4,

24, 29] and the thread identifiers. It could be fruitful to adapt the techniques used here to such a setting.

In particular, trigger encodings could address the issues of migrating processes and scope in much the

same way they help us achieve congruence here.

References

[1] K.L. Bernstein and E.W. Stark. Operational semantics of a focussing debugger. In Proc. MFPS 95. Springer-Verlag,

1995. Vol 1. Electronic Notes in Comp. Sci.

[2] G. Boudol. Asynchrony and the π-calculus. Technical Report 1702, INRIA, Sophia-Antipolis, 1991.

[3] G. Boudol. The π-calculus in direct style. Higher-order and Symbolic Computation, 11, 1998.

[4] L. Cardelli and A. Gordon. Mobile ambients. In Proc. FoSSaCS ’98, LNCS. Springer-Verlag, 1998.

[5] R. Milner D. Berry and D. Turner. A Semantics for ML Concurrency Primitives. In Proceedings of the 19th ACM

Symposium on Principles of Programmings Languages, 1992.

[6] W. Ferreira, M. Hennessy, and A.S.A Jeffrey. A theory of weak bisimulation for core CML. J. Functional Programming,

8(5):447–491, 1998.

[7] C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In Proc. ACM-POPL, 1996.

[8] C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi. In Proc. ICALP, volume 1443 of

Lecture notes in computer science. Springer-Verlag, 1998.

39

[9] C. Fournet, G. Gonthier, J-J. Levy, L. Maranget, and D. Remy. A calculus of mobile agents. In Proc. CONCUR, volume

1119 of Lecture notes in computer science. Springer-Verlag, 1996.

[10] A. Gordon. Bisimilarity as a theory of functional programming. In Proc. MFPS 95, number 1 in Electronic Notes in

Comp. Sci. Springer-Verlag, 1995.

[11] A. Gordon and P.D. Hankin. A concurrent object calculus. In Proc. HLCL, 1998.

[12] K. Honda and M. Tokoro. An object calculus for asynchronous communication. In Proc. ECOOP 91, Geneve, 1991.

[13] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer Science, 152(2):437–486,

1995.

[14] Douglas Howe. Equality in lazy computation systems. In Proc. LICS ’89, pages 198–203. IEEE Computer Society

Press, 1989.

[15] A.S.A. Jeffrey and J. Rathke. Towards a theory of bisimilarity for local names. In Proc. LICS, pages 56–66. IEEE

Computer Society Press, 1999.

[16] J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems. In C. Palamidessi, editor, Proc.

CONCUR 2000, volume 1877 of Lecture notes in Computer Science. Springer-Verlag, 2000.

[17] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture notes in Computer Science. Springer-Verlag,

1980.

[18] R. Milner. Communication and mobile systems: the π-calculus. Cambridge University Press, 1999.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I + II. Information and Computation,

100(1):1–77, 1992.

[20] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. ICALP, volume 623 of Lecture notes in Computer Science.

Springer-Verlag, 1992.

[21] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that dynamically create local names, or:

What’s new? In Proc. MFCS 93, pages 122–141. Springer-Verlag, 1993. LNCS 711.

[22] A.M. Pitts and I.D.B. Stark. Operational reasoning for functions with local state. In A.D. Gordon and A.M. Pitts, editors,

Higher Order Operational Techniques in Semantics, pages 227–273. Cambridge University Press, 1998. Publications

of the Newton Institute.

[23] J. Reppy. Higher-Order Concurrency. PhD thesis, Cornell University, 1992. Technical Report TR 92-1285.

[24] J. Riely and M. Hennessy. A typed language for distributed mobile processes. In Proc. POPL. ACM Press, 1998.

[25] M.Tofte R.Milner and R.Harper. The Definition of Standard ML. MIT Press, 1990.

[26] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD thesis, Uni-

versity of Edinburgh, 1993.

[27] D. Sangiorgi and R. Milner. On the problem of ‘weak bisimulation up to’. In Proc. CONCUR, volume 630 of Lecture

Notes in Computer Science, pages 32–46. Springer-Verlag, 1992.

[28] P. Sewell. From rewrite rules to bisimulation congruences. In Proc. CONCUR, volume 1466 of Lecture Notes in

Computer Science, pages 269–284. Springer-Verlag, 1992.

[29] P. Sewell. Global/local subtyping and capability inference for a distributed π-calculus. In Proc. ICALP, volume 1443

of Lecture Notes in Computer Science, pages 695–706. Springer-Verlag, 1998.

[30] B. Thomsen. Calculi for Higher-Order Communicating Systems. PhD thesis, University of London, 1990.

40

