
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Typed behavioural equivalences for

processes in the presence of subtyping

Matthew Hennessy

Julian Rathke

Report 02/2001 March 2001

Computer Science
School of Cognitive and Computing Sciences

University of Sussex
Brighton BN1 9QH

ISSN 1350–3170

Typed behavioural equivalenes for proesses

in the presene of subtyping

Matthew Hennessy and Julian Rathke

Abstrat. We study typed behavioural equivalenes for the �-alulus, in whih the

type system allows a form of subtyping. This enables proesses to seletively distribute

di�erent apabilities on ommuniation hannels.

The equivalenes onsidered inlude typed versions of testing equivalenes and

barbed bisimulation equivalenes.

We show that these an be haraterised via standard tehniques applied to a novel

labelled transition system of on�gurations. These onsist of a proess term together

with two related type environments; one onstraining the proess and the other its

omputing environment.

1

1 Introdution

Type systems are playing an inreasingly important role in the theory of

distributed systems. They are essentially a form of stati analysis whih

help in the elimination of run-time errors from programs. Within the

theory of distributed systems this intuitive notion of run-time error has

been extended to inlude a diverse range of properties. For example in

[12, 3℄ type systems have been designed to detet potential deadloks

while [18℄ introdued a system of types for the �-alulus whih are used

to ontrol the interpretation of the �-alulus. This system of types was

extended further in [17℄ and now forms the basis for the powerful type

system implemented in the programming language Pit, [19℄; related type

systems for higher-order onurrent languages may be found in [10, 11℄.

In papers suh as [21, 20℄ types have been used to manage aess ontrol

to resoures, while in [22℄ notions of trust have been inorporated in order

to protet good host sites from bad omputing agents.

Sub-typing is an essential part of most of these systems. For example

in Pit (aording to [19℄, page 9) it is relatively rare for ommuniation

hannels to be used for both input and output in the same \region" of a

program. Typially servers have one form of aess while lients require a

di�erent form. These aess requirements an be implemented and man-

aged using a subtype relation on the set of types. For example a partiular

hannel may be delared with a type whih allows both read and write

1

Researh partially funded by EPSRC grant GR/M71169

2 Matthew Hennessy and Julian Rathke

aess; this hannel ould be passed to one proess, say a server, at a sub-

type whih only allows read, or input aess, and passed to a lient at a

di�erent subtype, allowing write, or output aess only. Indeed in papers

suh as [21, 25℄ types are viewed as sets of apabilities, suh as read aess

and write aess, and sending a name to a proess at a subtype amounts

to sending it with a subset of the delared apabilities.

The subjet of this paper is the investigation of behavioural equiva-

lenes for typed proess languages, partiularly in the presene of subtyp-

ing. The type environment in whih a proess runs obviously a�ets its

behaviour, and therefore behavioural identities. Let us informally write

� ` P ' Q (y)

to denote that P and Q exhibit the same behaviour when run in an en-

vironment onstrained by some type environment. The type environment

ditates the type at whih identi�ers may be used and also, indiretly, the

names atually in existene; if an identi�er is not in the domain of � then

intuitively it an not be used by the proess or its environment. Then,

using the syntax of the �-alulus, we would expet the identity

� ` (a!hviR) j P ' P

if the identi�er a is not in the domain of the onstraining environment

�. It should also be true if it were in the domain but � ditates that it

ould only be used to output values. In this ase neither P nor the proess

environment would never be able to exerise the omponent a!hviR; to do

so would require read aess to a, whih is forbidden by �.

In the presene of subtyping the situation gets more ompliated. For

example onsider the two proesses, again expressed in �-alulus syntax,

P � (new : rwhi) a!hi j !hviS

Q � (new : rwhi) a!hi j 0

Both generate a new hannel at some type rwhi whih allows both read

and write aess. Now suppose � is a type environment in whih the type

assoiated with a is suh that it an only be used to write identi�ers whih

themselves an be used for at most write aess. Suh types are a standard

part of many of the type systems for the �-alulus, [18℄. In this situation

we would expet

� ` P ' Q

beause no observing proess an exerise the !hvi omponent. This fol-

lows sine the observing proess an only gain knowledge of the new han-

Typed behavioural equivalenes for proesses in the presene of subtyping 3

nel by reeiving it on the hannel a; but this method of transmission

ensures that it an never obtain read aess on , beause of the type of a

in �, and therefore an never ativate the omponent !hvi.

Intuitively in (y) the type environment � onstrains both the proesses

being observed, but also the proesses with whih they are interating, the

observing proesses. However this example shows that in general the type

environment of the observer diverges from that of the observed proesses,

in this ase P and Q. After the ommuniation on the hannel a the ob-

served proesses, P and Q, are now working relative to the environment �

augmented with the new name at the type rwhi, while the observing pro-

ess is working with respet to a di�erent type environment, � augmented

with at a di�erent type; in fat a subtype of rwhi.

In papers suh as [2, 17℄ behavioural equivalenes have been de�ned for

typed versions of the �-alulus. These are along the lines that for (y) to

be true, C[P ℄ and C[Q℄ must exhibit the same (simple) behaviour for all

ontexts C[℄ whih are suitably typed respet to �. Moreover interesting

identities have been established, [24℄. However all of the proofs involve

ompliated reasoning over possible ontexts, essentially establishing a

form of Context Lemma in eah partiular ase. This is in ontrast to the

untyped behavioural equivalenes, [13, 8℄, for whih there are a range of

powerful tehniques based on labelled transition systems. These desribe

proesses in terms of the ations they an perform and their onsequenes,

with judgements of the form

P

�

�! Q

In this paper we show that similar tehniques an be developed for typed

equivalenes.

The entral idea is to replae the untyped ations above with new

judgements of the form

I; � ` P

�

�! I

0

; �

0

`Q

where � represents the type environment of the observed proess, P , and I

the knowledge that the surrounding ontext, or observing ontext, knows

of �. Performing an ation may result in the modi�ation of either, or

both, of these environments. Triples of the form I; � ` P , with minor

onsisteny requirements, are alled on�gurations and our judgements

endow the set of on�gurations, Conf , with the struture of a label tran-

sition system (lts). We show that typed versions of barbed ongruene and

may and must testing equivalenes an be haraterised by adapting the

standard approahes, [13, 8℄ to this lts.

We now outline the remainder of the paper. In the following setion we

4 Matthew Hennessy and Julian Rathke

T; U ::= Terms

u?(X : A)T Input

u!hviT Output

if u = v then T else U Mathing

(new n : A) T Name Creation

T j T Conurreny

�T Repetition

0 Termination

X;Y ::= Patterns

x variable

(X

1

; : : : ; X

n

) tuple

u; v; w ::= Values

bv base value

n name

x variable

(u

1

; : : : ; u

n

) tuple

Figure 1. The Syntax

review our version of the �-alulus, whih uses a set of types derived from

those in [21℄, although they are only a minor variation of those from [18℄;

the setion ontains a standard operational semantis, in terms of an lts,

that is a labelled transition system, a type inferene system and a state-

ment of Subjet Redution. In Setion 3 we de�ne the typed behavioural

equivalenes whih are the main onern of the paper. This is followed by

the prinipal setion of the paper, Setion 4, where we de�ne the set typed

ations whih gives rise to the lts Conf ; this setion also ontains an anal-

ysis of Conf and proofs of the various properties we require of it. This

is followed by two tehnial setions, Setion 5 whih ontains a hara-

terisation of the typed testing equivalenes, and Setion 6 whih ontains

a o-indutive haraterisation of typed barbed ongruene. The paper

ends with a short example and a onlusion, whih ontains a omparison

with related work.

2 The Language

In this setion we review the (polyadi) �-alulus, its standard opera-

tional semantis and the type system we use throughout the paper.

The syntax of the language is given in Figure 1. We presuppose a

ountable supply of both variables, ranged over by x; y, and names, ranged

Typed behavioural equivalenes for proesses in the presene of subtyping 5

over by n;m. Readers familiar with the �-alulus will �nd little of surprise

here exept perhaps the omission of the non-deterministi hoie operator.

This operator has little impat with respet to typing, and in partiular,

subtyping, so we disregard it for the purposes of this paper. The input

operator a?(X : A)� ats as a binder for the variables ourring in the

pattern X while (new n : A) � binds the name n. This gives rise to the

usual notion of alpha onversion between terms, �

�

, and we refer to losed

terms, those ontaining no free ourrenes of variables, as programs ; they

are ranged over by P;Q. More generally we use fn(T); fv(T) to denote

the set of free names, variables respetively, in the term T . We assume

a well-de�ned apture-free substitution operation Tfjv=Xjg whih allows

the value v to be substituted for the pattern X throughout the term T ;

this assumes that v has the same struture as X, and as usual we require

ourrenes of variables in patterns to be unique.

For tehnial reasons we present the redution relation

�

�! between

untyped programs using strutural indution and untyped labelled tran-

sitions. The generating rules are presented in Figure 2 and are entirely

standard for the polyadi �-alulus. The ations, ranged over by �, take

the form

input:

a?v

��!

output:

(~:

~

C)a!v

�����!

redution:

�

�!

We use bn(�) for the set of bound names in the ation �, that is,

bn((~ :

~

C)a!v) is ~ and empty otherwise, and write

n

(�) for all of its

names. We will use the =) notation for so-alled weak transitions in whih

� redutions are abstrated. Spei�ally,

�

=) is the transitive losure of

�

�! and =) is the reexive losure of

�

=). For labelled transitions,

�

=),

denotes =)

�

�!=) and, for a string of ations �

1

; : : : ; �

n

,

s

=) refers to

the relational omposition

�

1

=) : : :

�

n

=).

We now present the types used, and the subtyping relation <:, in Fig-

ure 3. In addition to some primitive types suh as int;bool we have

types of the form rhAi;whBi and frhAi;whBig, where A;B are in turn

types. Values alloated these types, respetively, are to be thought of as

hannel names with the apability to read values of type A, write val-

ues of type B or both. We will often use the shorthand rwhAi to mean

frhAi;whAig. Sine we use a polyadi version of the �-alulus we also

allow tuple-types. It will also be onvenient to have a maximal type >,

whih dominates all types in the subtyping relation. Intuitively a name a

at this type an not be used for either reading or writing; but our version

6 Matthew Hennessy and Julian Rathke

(l-out)

a!hviP

a!v

��! P

(l-in)

a?(X : A)P

a?v

��! Pfjv=X jg

(l-open)

P

(~:

~

C)a!v

�����! P

0

(new b : B) P

(b:B)(e:

e

C)a!v

��������! P

0

b 6= a

b 2 fn(v)

(l-om)

P

(~:

~

C)a!v

�����! P

0

; Q

a?v

��! Q

0

P jQ

�

�!
(new e :

e

C
) (P

0

jQ

0

)

~ \ fn(Q) = ;

(l-om)

P

a?v

��! P

0

; Q

(~:

~

C)a!v

�����! Q

0

P jQ

�

�! (new e :

e

C) (P

0

jQ

0

)

~ \ fn(P) = ;

(l-eq)

if u = w then P else Q

�

�! Q

u 6= w

if u = u then P else Q

�

�! P

(l-ntx)

P

�

�! P

0

P jQ

�

�! P

0

jQ

Q j P

�

�! Q j P

0

bn(�) 62 fn(Q)

P

�

�! P

0

�P

�

�! �P j P

0

P

�

�!
P

0

(new a : A) P

�

�! (new a : A) P

0

a 62

n

(�)

P

�

�!
P

0

P �

�

Q

Q

�

�! P

0

Figure 2. The Operational Semantis

Typed behavioural equivalenes for proesses in the presene of subtyping 7

Types:

>; int;bool 2 Types

A 2 Types

rhAi 2 Types

whAi 2 Types

A;B 2 Types; B <: A

frhAi; whBig 2 Types

A

i

2 Types

(A

1

; : : : ;A

n

) 2 Types

Subtyping:

A <: A

0

rhAi <: rhA

0

i

frhAi;whBig <: rhA

0

i

A <: A

0

whA

0

i <: whAi

frhBi;whA

0

ig <: whAi

A <: A

0

; B <: B

0

frhAi;whB

0

ig <: frhA

0

i;whBig A <: >

A

i

<: A

0

i

(A

1

: : :A

n

) <: (A

0

1

: : :A

0

n

)

Figure 3. Types

8 Matthew Hennessy and Julian Rathke

(t-id)

�(u) <: A

� ` u : A

(t-base)

bv 2 Base

� ` bv : Base

(t-tup)

� ` v

i

: A

i

(8i)

� ` (v

1

; : : : ; v

k

) : (A

1

; : : : ;A

k

)

(t-in)

�; X : A ` T

� ` u : rhAi

� ` u?(X : A)T

(t-out)

� ` u : whAi

� ` v : A

� ` T

� ` u!hviT

(t-eq)

� ` u : A; v : B

� ` U

� u fu : B; v : Ag ` T

� ` if u = v then T else U

(t-new)

�; a : A ` T

� ` (new a : A) T

(t-str)

� ` T; U

� ` T j U; �T; 0

Figure 4. The Typing Rules

of the �-alulus has name mathing and therefore a name at type > an

be ompared to other names.

Thus our types are a generalisation of those introdued in [18℄. The

subtyping relation <: an also be viewed as the obvious generalisation of

their subtyping relation. In fat our types, and our subtyping relation,

are a mild variation of those used in [21℄, to whih the reader is referred

for more details, partiularly with respet to the following result:

Proposition 2.1 The set of types Types is a preorder with respet to <:,

with both a partial meet operation u and a partial join t. 2.

The essential point here is that if two types A

1

;A

2

are bounded below,

that is B <: A

1

; B <: A

1

for some type B then they have a greatest lower

bound, A

1

uA

2

. Intuitively A

1

uA

2

is the \union of the apabilities" in A

1

and A

2

. Beause the write apability wh�i is ontravariant with respet

to <: the de�nition of u requires the existene of a partial join t.

We now present the type inferene rules for proess terms in Figure 4.

The judgements are of the form � ` T where � is a type environment, that

is a �nite mapping from identi�ers, variables and names, to types.

For an identi�er id we write �; id : A for the type environment obtained

by augmenting � so as to map id to A; this notation is only de�ned if id

is not already in the domain of �. More generally we use � u id : A to

mean the type environment �; id : A if id is not in the domain of � and �

0

otherwise, where �

0

is equal to � exept possibly at id, where �

0

takes the

value �(id) u A (if de�ned). This notation is generalised in the obvious

way to values. We will often write � for losed type environments whose

Typed behavioural equivalenes for proesses in the presene of subtyping 9

domain onsists solely of names.

The reader familiar with the input/output apability types of �-alulus,

[18℄, should �nd little surprise in the inferene rules exept perhaps for the

type rule for onditionals, taken from [21℄:

(t-eq)

� ` u : A; v : B

� ` U

� u fu : B; v : Ag ` T

� ` if u = v then T else U

In order to establish that if u = v then T else U is well-typed with respet

to the type environment � we would want to at least hek that T and

U are well-typed with respet to � and perhaps one might imagine that

u and v have the same type. Given that u and v may be di�erent it is

perfetly reasonable, partiularly in the presene of subtyping, to allow for

the fat that u and v may be hannels with very di�erent apabilities and

we ought not to insist upon them having neessarily the same types. If

however, it transpires that u and v are equal, and the onditional branh

ontaining T is taken, then we have gained extra information in the sense

that u and v must have the same apabilities and the ontinuing proess

T may take advantage of this. The inferene rule reets this reasoning in

the hypothesis � u fu : B; v : Ag ` T (note the swith of types for u and

v). Reall that the u operator essentially forms a union of apabilities on

types.

Our �rst obligation is to establish that the redution relation

�

�! re-

strits to the sublass of well-typed terms. Moreover, we provide two

useful syntati properties of typed terms with respet to ommuniation

ations. We write �

r

(n) # to indiate that the type environment � at n

has a type of the form rhAi or frhAi;whBig and, in this situation, we will

write �

r

(n) to refer to the type A , at whih n may read values. Similarly

for �

w

(n) for types with write apability.

Theorem 2.2 (Subjet Redution) Suppose � ` P . Then

� P

�

�! Q implies � ` Q

� P

a?v

��! Q implies �

r

(a) # and if � u v : �

r

(a) is well-de�ned then

� u v : �

r

(a) ` Q.

� P

(~:

~

C)a!v

�����! Q implies �

w

(a) #, and �; ~ :

~

C ` v : �

w

(a); Q.

We end this setion by briey de�ning a strutural ongruene � of the

�-alulus. This is de�ned to be the least equivalene extending �

�

, whih

10 Matthew Hennessy and Julian Rathke

is preserved by the operators of the language, and satis�es the axioms:

T j (new a) U � (new a) (T jU) if a 62 fn(T)

(new a) T � T if a 62 fn(T)

T jU � U jT

T j 0 � T

if u = v then (new a) T else U � (new a) (if u = v then T else U)

if a 62 fn(T); a 6= u; v

if u = v then T else (new a) U � (new a) (if u = v then T else U)

if a 62 fn(U); a 6= u; v

u?(x) (new a) T � (new a) (u?(x) t) if a 6= u

We state, without proof, the following well-known properties of this stru-

tural ongruene:

Proposition 2.3

� For every �nite term T (i.e. with no ourrene of repliation) there is

a newfree term T

0

, that is a term ontaining no ourrenes of (new) ,

suh that T � (new ~ :

~

C) T

0

� If P � Q and P

�

�! P

0

then there exists some Q

�

�! Q

0

suh that

P

0

� Q

0

. 2

3 Typed Behavioural Equivalenes

We are interested in developing behavioural equivalenes between pro-

esses whih take into aount the type environment in whih the pro-

esses are operating. We onentrate on two main approahes, the �rst

based on the ability of observers to disern a di�erene in the run-time

behaviour of proesses [16, 8℄, while the seond, usually assoiated with

bisimulation theory [13℄, uses o-indutive methods.

3.1 Testing Preorders

Here we make expliit the omputing ontext in whih a proess operates.

A test or observer is a �nite proess with an ourrene of a new reserved

name !, used to report the suess of the test. The restrition to �nite

tests is for onveniene only; it is well-known [8℄ that in�nite tests do not

result in any extra disriminating power. We let T to range over tests,

with the typing rule I ` !!hi for all type environments I. When plaed

in parallel with a proess P , a test may interat with P , produing an

output on ! if some desired behaviour of P has been observed. We write

P may T

Typed behavioural equivalenes for proesses in the presene of subtyping 11

T j P

�

�!

�

R for some R suh that R an report suess, i.e. R

!!hi

��!. The

stronger relation

P must T

holds when in every omputation

T j P

�

�! R

1

�

�! : : :

�

�! R

n

�

�! : : :

there is some R

k

; k � 0, whih an report suess. Behavioural equiva-

lenes an now be de�ned by requiring that proesses reat in the same

manner for a given lass of tests. Here it is appropriate to hoose the lass

of tests whih are well-typed relative to a given environment I.

De�nition 3.1 (Testing Preorders) We write I j= P

�

<

may

Q if P may

T implies Qmay T , for every test T suh that I ` T .

Similarly I j= P

�

<

must

Q means that for every suh T , P must T implies

Qmust T .

We use

�

=

may

and

�

=

must

denote the related equivalene relations.

Note that in I`P

�

=

must

Q (and similar judgements) the type environment

I is a onstraint on the observer, or omputing ontext, rather than the

proesses P; Q themselves; indeed in the de�nition there is no requirement

on P; Q to be well-typed. However the alternative haraterisations of

these relations given in Setion 5 depend on them being well-typed in a

type environment ompatible with I.

3.2 Co-indutive methods

In this subsetion we use type environments as onstraints on the proesses

themselves rather than their omputing ontext.

De�nition 3.2 A typed relation over proesses onsists of a family R of

relations over proesses, parametrised by losed type environments,

R = fR

�

j � losed type environment g

whih satis�es P R

�

Q implies � ` P; Q.

We normally write � j= P R Q in plae of P R

�

Q.

Typed relations over proesses are generalised to arbitrary terms by de�n-

ing

�; X : A j= T R

o

U

to be true if for every value v, losed type environment �

0

disjoint from �

and type A suh that �;�

0

` v : A, we have �;�

0

` Tfjv=X jg R Ufjv=Xjg.

Note that this enables us to substitute new values, values whih are not

12 Matthew Hennessy and Julian Rathke

neessarily known to the urrent type environment �, although it does not

allow us to extend the types of values whih are already in the domain

of �. However even on losed terms there may be a di�erene between a

relation R and its open extension R

o

; in general for � j= P R

o

Q to be

true we must have �;�

0

j= P R Q for every allowed �

0

. Note that this is

a form of weakening.

De�nition 3.3 A typed relation R is said to losed with respet to weak-

ening, or w-losed, if R

o

= R.

All the behavioural equivalenes we will onsider will be w-losed. to

de�ne these we need to onsider a number of properties of typed relations.

Redution losed: The typed relationR is redution losed whenever

� j= P R Q and P

�

�! P

0

implies there exists some Q

0

suh that Q =) Q

0

and � j= P

0

R Q

0

.

Contextual: Contexts are de�ned by extending the syntax in Figure 1,

allowing typed holes [�

�

℄ in terms. The typing system in Figure 4 is ex-

tended to ontexts in the obvious way, by adding the rule

(t-xt)

�;�

0

` [�

�

℄

We use C[℄ to denote ontexts with at most one hole and C[T ℄ the term

whih results from substituting the term T into the hole. We leave the

reader to establish

Proposition 3.4 �

0

` T and � ` C[�

�

0

℄ implies � ` C[T ℄. 2

Then we say the typed relation R is ontextual whenever �

0

j= T R

o

U

and � ` C[�

�

0

℄ implies � j= C[T ℄ R

o

C[U ℄.

Unravelling this de�nition gives the following example onsequenes

for ontextual relations over losed terms.

� � j= P R P

0

implies �;�

0

j= P R P

0

� � j= P R P

0

and � ` Q implies � j= P jQ R P

0

jQ.

� � j= P R P

0

and � ` a!hvi 0 implies � j= a!hviP R a!hviP

0

.

� If � ` a : rhAi and for every v, �

0

, suh that �;�

0

` v : A we have

�;�

0

j= Tfjv=Xjg R Ufjv=X jg then �;�

0

j= a?(X : A)T R a?(X : A)U .

� �; a : A j= P R P

0

implies � j= (new a : A) P R (new a : A) P

0

.

The ondition on inputs is very natural; a?(X : A)T and a?(X : A)U are

only related if Tfjv=Xjg and Ufjv=Xjg are related for every v and �

0

suh

Typed behavioural equivalenes for proesses in the presene of subtyping 13

that �;�

0

` v : A; this inludes values v whih are not known in the

urrent environment �.

Barb Preserving: For a given name a suh that � ` a : rwh>i. we

write � j= P +

barb

a if there exists some P

0

suh that P

�

�!

�

P

0

and

P

0

a!hi

��!. Then we say the typed relationR is barb preserving if � j= P R Q

and � j= P +

barb

a implies � j= Q +

barb

a.

De�nition 3.5 (Contextual observational equivalene) Let

�

=

xt

obs

be

the largest typed relation over proesses whih is

� symmetri, that is eah omponent of the relation is symmetri

� ontextual

� redution losed

� barb preserving.

We will usually write this relation in the form � j= P

�

=

xt

obs

Q, and we

emphasise that here � is a onstraint on the proesses themselves, that is

� ` P; Q, rather than its ontext.

One signi�ant property of this behavioural relation is:

Lemma 3.6 The relation

�

=

xt

obs

is w-losed. That is � j= P

�

=

xt

obs

Q

implies �;�

0

j= P

�

=

xt

obs

Q.

Proof: Follows immediately from ontextuality. 2

In Setion 6 we will give a o-indutive haraterisation of this relation in

the lts Conf .

4 The LTS of Typed Ations

In this setion we formally de�ne the typed ations disussed in the Intro-

dution and derive their properties. These ations will form the labelled

transition system Conf , whih an be used to provide haraterisations

of the behavioural equivalenes disussed in the previous setion.

4.1 Typed Ations

A type environment I is ompatible with � if

� I :> �

� dom(I) = dom(�)

De�nition 4.1 The triple I; �`T is a on�guration if � is a losed type

environment suh that

14 Matthew Hennessy and Julian Rathke

(tylts-red)

P

�

�! P

0

I; � ` P

�

�! I; � ` P

0

(tylts-out)

I

r

(a) #

I; � ` a!hviP

a!v

��! I u v : I

r

(a);� ` P

(tylts-in)

I

w

(a) # I ` v : I

w

(a)

I; � ` a?(X : A)P

a?v

��! I; � ` Pfjv=Xjg

(tylts-open)

I; b : >; �; b : B ` P

(~)a!v

���! I

0

; �

0

` P

0

I; � ` (new b : B) P

(be)a!v

����! I

0

; �

0

` P

0

b 6= a

b 2 fn(v)

(tylts-txt)

I; � ` P

�

�! I

0

; �

0

` P

0

I; � ` �P

�

�!
I

0

; �

0

` �P j P

0

(tylts-equiv)

I; � ` P

�

�! I

0

; �

0

` P

0

I; � `Q

�

�!
I; �

0

` P

0

P �

�

Q

I; � ` P

�

�! I

0

; �

0

` P

0

I; � ` P jQ

�

�! I

0

; �

0

` P

0

jQ

I; � `Q j P

�

�! I

0

; �

0

`Q j P

0

bn(�) 62 fn(Q)

I; a : >; �; a : A ` P

�

�! I

0

; a : >; �

0

; a : A ` P

0

I; � ` (new a : A) P

�

�! I

0

; �

0

` (new a : A) P

0

a 62

n

(�)

Figure 5. Typed Ations

Typed behavioural equivalenes for proesses in the presene of subtyping 15

� I is ompatible with �

� � ` T

The environment I represents the environment's view of the types allo-

ated to the names in the proess. For this reason this view must aord

with the atual types alloated to these names. This is guaranteed by

requiring I :> � where � is the atual type ontext for the term under

investigation. Essentially this says that the environment annot know a-

pabilities for a hannel whih simply do not exist. The requirement that

the domains of the environments be the same is a tehnial means of en-

suring uniqueness of fresh names. We use Conf , ranged over by C;D, to

denote the set of all on�gurations.

The generating rules for the transition system of typed ations are de-

�ned in Figure 5 and are to be understood as ating on on�gurations.

The rules are obtained from those in Figure 2 by taking the type envi-

ronment of the omputing ontext, I, into aount; essentially ations are

only possible if they are allowed by I. Note also that the type annotations

on the bound names of output ations are dropped; they are only required

in Figure 2 for the de�nition of the untyped redution relation

�

�!.

Note also that a priori the rule (tylts-out) is partial in the sense that

the onlusion an only be formed if the extended environment Iuv : I

r

(a)

is well de�ned. However the �rst part of the next Proposition establishes

that this meet always exists. It also proves that the set of on�gurations

is preserved by the transitions.

Proposition 4.2

� If I

r

(v) exists and � <: I then I u v : I

r

(a), is always de�ned.

� If I; � ` P

�

�! I

0

; �

0

` P

0

and I; � ` P is a on�guration then so is

I

0

; �

0

` P

0

.

Proof: For the �rst statement it is suÆient to prove the stronger state-

ment, that I u v : I

r

(a) :> �. This is done by �rst noting that these an

only di�er at v so we use the hypothesis I :> � to redue our obligation

to showing I(v) u I

r

(a) :> �(v). This would follow easily if we knew

I

r

(a) :> �(v) as I(v) :> �(v) learly holds. So, in order to establish

I

r

(a) :> �(v) we observe that, beause � ` a!v:P , there must exist some

A suh that

(i) � ` a : whAi

(ii) � ` v : A.

16 Matthew Hennessy and Julian Rathke

This means that �(v) <: A (by (ii)), and that A <: �

w

(a) (by (i)). We

know that I

r

(a) # and, as I :> �, thus �

r

(a) # also. By virtue of being

a well-formed type it must be the ase that �

w

(a) <: �

r

(a) and, in turn,

�

r

(a) <: I

r

(a). Colleting these together, transitivity of <: gives the

required result.

For the seond statement we proeed by rule indution. For the most

part this is straightforward, the only involved ase arises when

�

�! has

been derived as an instane of the (tylts-out) rule. We demonstrate

this ase here.

We are to show that I u v : I

r

(a);� ` P is a on�guration given that

� ` a!v:P , I :> �, and I

r

(a) #. It is easy to see from the type inferene

rules that � ` P and in the �rst part we have already established the

other requirement, namely that I u v : I

r

(a) :> �. 2

It follows that (Conf ;At) is indeed a labelled transition system, (lts).

In the next two setions we show that the various typed behaviour relations

over proesses an be haraterised by adapting the standard de�nitions,

[14, 8℄ to this lts.

We end this setion by establishing various properties whih will be

required of typed ations. We �rst determine under what irumstanes

the untyped ations, in Figure 2, an give rise to typed ations.

Lemma 4.3 Suppose I; � ` P is a on�guration.

� I; � ` P

�

�! I; � `Q if and only if P

�

�! Q

� I; � ` P

a?v

��! I; � ` Q if and only if I

w

(a) #, I ` v : I

w

(a) and

P

a?v

��! Q.

� I; � ` P

(~)a!v

���! I u v : I

r

(a);�; ~ :

~

C ` Q if and only if I

r

(a) # and

P

(~:

~

C)a!v

�����! Q.

Proof: Straightforward rule indution. 2

It turns out that these are the only form of typed ations whih an be

dedued from the rules. Note that the ation determines ompletely the

resulting type environment of the observer, the hange from I to I

0

, but

not neessarily that of the proess itself. To make this preise let us de�ne

the partial prediate after � over environments as follows:

� = � : Here I after � is always de�ned to be I.

� = a?v: Here I after � is also de�ned to be I.

� = (~)a!v: Here it is only de�ned if I

r

(a) exists and I u v : I

r

(a) is

well-de�ned; in whih ase it is this last updated environment.

Typed behavioural equivalenes for proesses in the presene of subtyping 17

We leave the reader to hek that

Lemma 4.4 If I; � ` P

�

�! I

0

; �

0

` Q then I after � exists and I

0

=

I after �. 2

So to determine the preise form of a typed ation it is now suÆient to

desribe the resulting type environment of the proess, the hange from

� to �

0

. We an now give the preise form of typed ations.

Lemma 4.5 Suppose I; � ` P

�

�! (I after �);�

0

`Q. Then

� = � : Here �

0

= �.

� = a?v: Here �

0

= �.

� = (~)a!v: Here �

0

= �; ~ :

~

C for some

~

C suh that �; ~ :

~

C ` v : I

r

(a).

Proof: Again, a straightforward rule indution suÆes. 2

4.2 Contextuality of labelled transitions

An important feature of our labelled transitions of typed ations is that

the observations we make of proesses are ontextually valid. That is to

say, the method of the environment learning information regarding om-

muniation apabilities from proesses by means of the labelled transi-

tion system an atually be realised with well-typed ode fragments, or

ontexts, written in our language. The formalisation of this idea simply

identi�es eah label � of the transition system (other than �) with a small

testing ontext of the language with the appropriate properties. These

properties essentially say that � transitions indue redutions in � on-

texts and vie-versa. There is some added tehnial ompliations whih

allow the environment's type information to hange over time. After eah

observation we use the testing ontext to export all the information about

the urrent state of knowledge to the environment.

The following abbreviations will be useful: if I is the type environ-

ment v

1

: A

1

; : : : ; v

n

: A

n

then we write (I) to represent the tuple type

(A

1

; : : : ;A

n

) and we write v

I

to mean the tuple of values (v

1

; : : : ; v

n

).

Proposition 4.6 For eah label � and eah environment I ompatible

with �, there exists a proess C

I

�

, using a fresh name Æ, suh that

(i) if I; � ` P

�

�! I

0

; �;�

0

` P

0

then I; Æ : rwhAi ` C

I

�

and P j C

I

�

=)

(new�

0

) P

0

j Æ!hv

I

0

i, where A = (I

0

)

(ii) if P jC

I

�

=) (new�

0

) P

0

jÆ!hv

0

i for some v

0

and I; Æ : rwhAi ` C

I

�

with

Æ 62 �

0

and dom(�

0

) = bn(�) then I; � ` P

�

=) (I after �);�;�

0

` P

0

18 Matthew Hennessy and Julian Rathke

Proof: For ease of presentation we restrit ourselves to terms of the

monadi �-alulus, i.e. no tuple types; it is a simple but tedious proe-

dure to extend this to the full polyadi language. Given an environment

I and label � we hoose a fresh name Æ of type rwh(I

0

)i and let B be the

type I

r

(a), if de�ned, and otherwise >. De�ne the testing proesses C

I

�

as follows:

� C

I

a!b

= a?(x : B) if x = b then Æ!hv

Iub:B

i else 0

� C

I

(b)a!b

= a?(x : B) if x 62 I then Æ!hv

I;x:B

i else 0

� C

I

a?b

= a!b:Æ!hv

I

i

where x 62 I is oded using nested onditionals to hek that x is not equal

to any of the names in I.

As an example of (i) we onsider the ase in whih � is a!b;the other

ases are similar. Note that the hypothesis, I; � ` P

�

�! I

0

; �;�

0

` P

0

,

ensures that I

r

(a) is de�ned and therefore C

I

�

is well typed.

We �rst show P j C

I

�

=) (new�

0

) P

0

j Æ!hv

I

0

i. Applying the hypothesis

to Lemma 4.3 we obtain

P

a!b

�! P

0

and, by de�nition,

C

I

a!hbi

a?b

��!�! Æ!hv

I

0

i

These an interat to yield:

P j C

I

a!hbi

=) P

0

j Æ!hv

I

0

i

as required.

To show that the testing proess is well-typed let � be the type ontext

x : B; I; Æ : rwh(I

0

)i u b : B u x : I(b) where I

0

is I u b : B in this ase. It

is easy to hek that

� ` Æ : wh(I

0

)i and � ` v

Iub:B

: (I

0

)

thus, by applying the typing rule (t-out) we know � ` Æ!hv

Iub:B

i. This

an now be used as a hypothesis to rule (t-eq) to infer

x : B; I; Æ : rwh(I

0

)i ` if x = b then Æ!hv

Iub:B

i else 0 :

We know that B = I

r

(a) so I; Æ : rwh(I

0

)i ` a : rhBi and this, ombined

with the previous judgement, allow us to apply (t-in) to obtain

I; Æ : rwh(I

0

)i ` a?(x : B) if x = b then Æ!hv

I

0

i else 0 (= C

I

a!b

):

The reader should note the essential use of the aumulated type infor-

mation in the hypothesis of the type rule (t-eq).

Typed behavioural equivalenes for proesses in the presene of subtyping 19

For the onverse, part (ii), we use the ase � = a?b as an illustrative

example. Suppose then that I; Æ : rwh(I)i ` C

I

�

and

P j C

I

�

=) P

0

j Æ!hv

0

i

for some v

0

. It must be the ase, as Æ is fresh to P , that v

0

is v

I

and,

by analysis of the redution rules, that P =)

a?b

��!=) P

0

. Now, we know

that I; Æ : rwh(I)i ` C

I

�

so from this we an dedue that this must have

been inferred from I ` a : whBi and I ` b : B for some type B suh that

B <: I

w

(a). This ensures I

w

(a) # and I ` b : I

w

(a), allowing us to apply

Lemma 4.3 to obtain the required

I; � ` P =)

a?b

��!=) I; � ` P

0

2

5 Charaterising the Testing Preorders

In this setion we give alternative haraterisations of the two testing

preorders. It should be emphasised that these are obtained by applying

the ompletely standard de�nitions of traes and aeptane sets, [8℄, not

to the lts obtained from the operational semantis given in Figure 2, but

to the lts of types ations, Conf . However a priori there is a mismath

between formalisation of Conf and the de�nition of the testing preorders

in Setion 3.1; the latter uses only one type environment, that of the

observer, while the former uses two type environments, one for the observer

and the other for the proess under observation. To retify this situation

we adapt the testing preorders, in a trivial manner, to typed proesses,

that is proesses with their typing environment.

De�nition 5.1 (Testing Preorders) Let I j= (� ` P)

�

<

may

(�

0

` Q)

if

� both I; � ` P and I; � ` P are on�gurations

� I ` P

�

<

may

Q

The preorder

�

<

must

is generalised in a similar manner.

To study these relations we need to generalise various properties originally

de�ned for typed relations, that is relations parametrised over single type

environments, to relations over on�gurations, suh as

�

<

may

and

�

<

must

in the above de�nition. So for example a natural generalisation of the

de�nition of open extension, on page 11, is to allow I j= (� ` P) �

o

may

(� ` Q) whenever I; I

0

j= (�; I

0

` P) �

may

(�; I

0

` Q), for every I

0

disjoint from I. With this de�nition we have:

20 Matthew Hennessy and Julian Rathke

Proposition 5.2 The relations

�

<

may

and

�

=

must

over on�gurations are

w-losed.

Proof: A simple orollary of Lemma 2.3. 2

We now give alternative haraterisations to these behavioural preorders.

5.1 May Testing

Typed ations are extended to typed traes a straightforward manner:

� I; � ` P

"

=) I; � ` P

� I; �`P

�

�! I; �

0

`P

0

and I; �

0

`P

0

s

=) I; �

00

`P

00

implies I; �`P

s

=)

I; �

00

` P

00

� I; �`P

�

�! I; �

0

`P

0

and I; �

0

`P

0

s

=) I; �

0

`P

00

implies I; �`P

��s

=)

I; �

00

` P

00

The haraterisation depends on a Deomposition and Composition result

for these sequenes. This requires an asymmetri de�nition of omplemen-

tary ation. For a visible ation � we let � denote a!v if � is a?v and a?v if

� has the form (~ :

~

C)a?v. Thus � transforms an ation from the untyped

semantis in Figure 2 to one from the typed semantis in Figure 5. It is

extended to sequenes in the natural way.

Theorem 5.3 (Trae Deomposition) Suppose T j P

�

�!

�

R where

I; �`P is a on�guration suh that I ` T , and T is newfree. Then there

exists a typed trae I; � ` P

s

=) I

0

; �

0

` P

0

and a derivation T

s

=) T

0

,

where R � (~ :

~

C)(T

0

j P

0

), for some (~ :

~

C).

Proof: By indution on the derivation T j P

�

�!

�

R. The indutive ase

is when it has the form T j P

�

�!

�

�!

�

R and a ase analysis is required

on the �rst move. The interesting ase is where there is ommuniation

between T and P .

Output from T to P : In this ase we have T j P

�

�! T

0

j P

0

�

�!

�

R

where

T

a!v

��! T

0

P

a?v

��! P

0

sine T is newfree. Applying Subjet Redution to the �rst redution

we obtain I

w

(a) # and I ` v : I

w

(a), whih enables us to apply the

seond part of Lemma 4.3 to obtain the typed ation I; � ` P

a?v

��!

I; �`P

0

. Subjet Redution also gives I ` T

0

and therefore indution

may be applied to obtain the rest of the typed trae.

Typed behavioural equivalenes for proesses in the presene of subtyping 21

Output from P to T : Here we have

T j P

�

�! (new

~

d :

~

D) (T

0

j P

0

)

�

�!

�

(new

~

d :

~

D) R

0

where

T

a?v

��! T

0

P

(

~

d:

~

D)a!v

�����! P

0

:

Again we an apply Subjet Redution to the �rst ation to obtain

I

r

(a) # and we an apply the third part of Lemma 4.3, this time to

obtain the typed ation I; � ` P

(

~

d:

~

D)a!v

�����! I u v : I

r

(a);�;

~

d :

~

D `Q

Also, sine I u v : I

r

(a) is de�ned, Subjet Redution gives I u v :

I

r

(a) ` T

0

and so we an apply indution to the sequene T

0

jP

0

�

�!

�

R

0

to obtain the remainder of the typed trae.

2

Note that this result is not true if T ontains any ourrenes of (new n) ().

Example 5.4 Suppose T; P represent the terms (new : C) a!hi ?() T

0

and a?(x) x!hiP

0

respetively, where C is the type rwhi, and suppose that

I and � are ompatible environments suh that I ` T , � ` P and I

r

(a) =

�

r

(a) = whi; these are easy to onstrut. Then the derivation T jP

�

�!

�

�!

(new : C) T

0

j P

0

an not be deomposed.

This is a onsequene of the assumption built into our on�gurations

I; � ` P , that I <: �.

Theorem 5.5 (Trae Composition) Suppose I; � ` P

s

=) I; �

0

` P

0

and T

s

=) T

0

. Then there exists a derivation T j P

�

�!

�

(~ :

~

C)(T

0

j P

0

),

for some (~ :

~

C).

Proof: Straightforward indution on s. 2

These two results enable us to state our �rst haraterisation result.

De�nition 5.6 For any typed proess � ` P let

Seq

I

(� ` P) = f s j I; � ` P

s

=)g

Then we write

I j= (� ` P)�

may

(� ` Q)

if Seq

I

(� ` P) � Seq

I

(� ` Q).

22 Matthew Hennessy and Julian Rathke

Our aim is to show that

�

<

may

oinides with the open extension of�

may

,

�

o

may

. It is the use of the open extension whih enables us to apture the

e�et of tests whih generate new names, unknown to the proess being

observed.

Theorem 5.7 (Alternative Charaterisation of May Testing)

I`(� ` P)

�

<

may

(�

0

` Q) if and only if I j= (� ` P)�

o

may

(�

0

` Q).

Proof:(Outline) First suppose I j= (� ` P)�

o

may

(�

0

` Q). and P may

T for some test T suh that I ` T . Using the strutural ongruene

the test T may be written as T � (new ~ :

~

C) T

0

, where T

0

is newfree;

moreover it is easy to hek, using Proposition 2.3, that for any proess

R, Rmay T if and only if Rmay T

0

. So we establish Qmay T

0

.

From P may T

0

we know there is a omputation

T

0

j P

�

�! R

1

�

�! : : :

�

�! R

n

for some R

n

whih reports suess. We know I; ~ :

~

C ` T

0

, and by

weakening �; ~ :

~

C ` P . Therefore using Trae Deomposition we an

obtain

I; ~ :

~

C; �; ~ :

~

C ` P

s

=) I

0

; �

0

` P

0

T

0 s

=) T

00

where T

00

!!hi

��!. The hypothesis ensures

Seq

I;~:

~

C

(�; ~ :

~

C ` P) � Seq

I;~:

~

C

(�

0

; ~ :

~

C ` Q)

and therefore we have a typed trae

I; ~ :

~

C; �

0

; ~ :

~

C `Q

s

=)

Now Trae Composition an be used to obtain a suessful omputation

from T

0

jQ.

The onverse requires the de�nition of testing proesses whih an

determine if a proess an perform a partiular trae. These use the terms

C

I

�

, de�ned in Setion 4.2, and sine their onstrution is very similar to

those used in Theorem 5.11 below. We leave the details to the reader. 2

5.2 Must Testing

The haraterisation of must testing requires a notion of onvergene and

aeptane set for the lts Conf .

De�nition 5.8 (Convergene) We say the on�guration C onverges,

Typed behavioural equivalenes for proesses in the presene of subtyping 23

written C +, if there is no in�nite sequene of derivations

C

�

�! C

1

�

�! : : :

�

�! C

k

�

�!

This is generalised to trae sets by

C + " if C +

C + � � s if C + and C

0

+ s whenever C

0

�

�! C

0

De�nition 5.9 (Aeptane Sets) For any on�guration let its ready

set be de�ned by

R(C) = f a? j 9v:C

a?v

��!g [f a! j 9v; ~:C

(~a!v

���!g:

Then its aeptane set after S is given by

A(C; s) = fR(C

0

) j C

s

=) C

0

6

�

�!g:

De�nition 5.10 We write I j= (� ` P) �

must

(�

0

` Q) if for every

trae s

(I; � ` P) + s implies (a) (I; �

0

` Q) + s

(b) 8D 2 A(I; �

0

` Q; s)

9C 2 A(I; � ` P; s) suh that C � D:

Theorem 5.11 (Must Charaterisation) I j= (� ` P)

�

<

must

(�

0

`

Q) if and only if I j= (� ` P)�

o

must

(�

0

` Q).

Proof: We leave the reader to prove one diretion, I j= (� ` P) �

o

must

(�

0

` Q) implies I j= (� ` P)

�

<

must

(�

0

` Q). It follows the lines of

Lemma 4.4.13 and Theorem 2.2.5 of [8℄, but using the Deomposition and

Composition Theorems given above; as in Theorem 5.7 tests with new

names are handled via the open extension.

To prove the onverse we need to show that if I; I

0

j= �; I

0

`P 6�

must

�

0

; I

0

` Q then there is a test T suh that P must T while Q 6must T .

We only onsider the ase when I

0

is empty; it ontains all the ingredients

of the more general ase.

There are two possible reasons for I j= �`P 6�

must

; �

0

`Q not being

true, onerning onvergene and aeptanes respetively. Let us �rst

onsider onvergene. Here the situation is that I; � ` P + s, for some s,

but I; �

0

`Q

s

=) I

0

; �

00

`Q

0

where Q

0

diverges. We onstrut a test C(s)

suh that I ` C(s), P must C(s), and Q 6must C(s). The de�nition uses

the following notation:

� P�Q is used as shorthand for (new n) n!hijn?()P jn?()Q, the internal

hoie between P and Q.

24 Matthew Hennessy and Julian Rathke

� C

I

�;n

will be used to denote the ontext assoiated with the ation

� in Proposition 4.6, however with ourrenes of Æ!hvi replaed by

n?() Æ!hvi.

If s is the empty sequene then C(s) is simply !!hi � !!hi. Otherwise

suppose it has the form � � s

0

. Then C(s) is de�ned to be

(new n) n!hi j n?()!!hi j

(new Æ : rwhI

0

i) C

I

�;n

j Æ?(X : (I

0

)) (C(s

0

)fjX=v

I

0

jg)

where I

0

is I after �.

The s derivation from I; �

0

`Q ensures that I ` C(s). The fat that

I; � ` P + s ensures that P must C(s) sine any stable state reahable

from C(s) must be suessful. Finally the derivation from I; �

0

`Q ending

in the divergent Q

0

ensures that Q 6must C(s).

The seond possibility is that there is some D 2 A(I; �

0

` Q; s)

whih has no orresponding aeptane set in A(I; � ` P; s); here we

an assume that both on�gurations I; � ` P and I; �

0

` Q onverge

with respet to s.

Let C

1

; : : : ; C

n

be all the aeptane sets in A(I; � ` P; s). Then

we know that there is a set f

1

; : : :

n

g suh that

i

2 C

i

�D, for eah i.

Note n may be zero but this will not a�et our argument.

First let us onstrut a test from this set:

T

D

= T (

1

) j : : : j T (

n

)

where the tests T (

i

) depend on the form of

i

:

�

i

is an input a?: Here we know there is a derivation

I; � ` P

s

=) (I after s);�

0

` P

00 a?v

��!

for some v. So let T (

i

) be a!hvi!!hi.

�

i

is an output a!v: Here we have

I; � ` P

s

=) (I after s);�

00

` P

0 a!v

��!

So we let T (

i

) be a?(X : A)!!hi, where A denotes (I after s)

r

(a),

whih by virtue of the last move we know exists.

Note we have onstruted T

D

so that it an be typed by (I after s).

Now we onstrut the test A(s;D) by indution on s, in the same

manner as C(s). The only di�erene is in the base ase, when s is the

empty sequene, where A(s;D) is de�ned to be T

D

.

Again one an hek that

Typed behavioural equivalenes for proesses in the presene of subtyping 25

� I ` A(s;D)

� Q 6must A(s;D) beause of the derivation from Q whih gives rise to

the aeptane set D

� but by onstrution P must A(s;D); note this holds even in the ase

when A(I; � ` P; s) is empty.

2

6 Bisimulation

We now desribe our haraterisation of the o-indutively de�ned be-

havioural equivalene,

�

=

xt

obs

, outlined in Setion 3.2.

First we reall the de�nition of weak bisimulation from [13℄.

De�nition 6.1 Given a labelled transition system T , we say that a binary

relation R on T is a bisimulation if whenever n R m then

� if n

�

�! n

0

then there exists a m

�̂

=) m

0

suh that n

0

R m

0

� if m

�

�! m

0

then there exists a n

�̂

=) n

0

suh that n

0

R m

0

where �̂ is ", the empty string, if � is � and � otherwise.

Our intention is to show that

�

=

xt

obs

an be haraterised in terms of a

bisimulation over Conf .

However as in Setion 5 we have a mismath between the formalisation

of this relation,

�

=

xt

obs

, in Setion 3.2, whih only uses one type environment,

of the proess being observed, and that of bisimulation equivalene, whih

uses two type environments. As with testing, we reonile this di�erene

by extending the de�nition of

�

=

xt

obs

so that it takes into aount both

environments.

First we generalise De�nition 3.2 by now saying that an (extended)

typed relation is a familyR of relations over typed proesses, parametrised,

as before, by losed type environments, whih satis�es: (� ` P) R

I

(�

0

`

Q) implies I; � ` P and I; � ` Q are on�gurations: To onform to

our previous notation we write this as

I j= (� ` P) R (�

0

` Q):

although e�etively these are restrited forms of relations over on�gura-

tions.

De�nition 6.2 Let (typed) bisimulation equivalene be the largest typed

relation � whih is

26 Matthew Hennessy and Julian Rathke

� a weak bisimulation

� w-losed, that is satisfying I j= (� ` P) R (�

0

` Q) implies I;�

00

j=

(�;�

00

` P) R (�

0

;�

00

` Q)

Bisimulation equivalene will be written as

I j= (� ` P) � (�

0

` Q):

Note that the seond requirement is required beause we have already seen

that

�

=

xt

obs

is w-losed. Intuitively its inlusion allows environments to pass

new values to proesses under investigation.

Two natural properties of (typed) bisimulation equivalene is given in

the following proposition:

Proposition 6.3 Suppose I j= (� ` P) � (�

0

` Q). Then

� for any appropriate �

00

, I;�

00

j= (�;�

00

` P) � (�

0

;�

00

` Q).

� If I <: I

0

then I

0

j= (� ` P) � (�

0

` Q)

Proof: The �rst result is simply a re-iteration of the fat that � is w-

losed. Intuitively the seond property is true beause I onstrains the

behaviour under whih P and Q are ompared. If they are equivalent

under the onstraint I then they should remain equivalent when they are

onstrained further, by I

0

. To prove it formally let the familyR be de�ned

by

I

0

j= (� ` P) R (�

0

` Q)

if I j= (� ` P) � (�

0

` Q) for some I <: I

0

. This family is w-losed by

de�nition, and it is straightforward to show that it is a bisimulation. It

follows that R � �, pointwise, from whih the result follows. 2

Let us now turn our attention to giving a similar formulation to

�

=

xt

obs

,

using two, rather than one, type environments. The de�nitions of redu-

tion losed and barb preserving generalise immediately to extended

typed relations. However that of being ontextual is more ompliated.

Rather than giving a general de�nition based on arbitrary ontexts we

give a set of spei� rules for our onstrutors; we say the extended re-

lation R is ontextual if it satis�es the rules given in Figure 6. Finally

let

�

=

xt

obs

be, as before, be the largest symmetri, redution losed, barbed

preserving ontextual extended typed relation.

The requirements in Figure 6 are for the most part natural gener-

alisations of the standard requirements for a relation to be preserved by

onstrutors, generalised to take into aount the type environments. Note

Typed behavioural equivalenes for proesses in the presene of subtyping 27

(xt-spe)

I j= (� ` P) R (�

0

` Q); I <: I

0

I

0

j= (�;` P) R (�

0

;` Q)

(xt-weak)

I j= (� ` P) R (�

0

` Q)

I;�

00

j= (�;�

00

` P) R (�

0

;�

00

` Q)

(xt-in)

I ` a : rhAi

I;�

00

j= (�;�

00

` T [v=X℄) R (�

0

;�

00

` U [v=X℄); whenever I;�

00

` v : A

I j= (� ` a?(X : A)T) R (�

0

` a?(X : A) :U)

(xt-out)

I ` u : whAi

I ` v : A

I j= (� ` P) R (�

0

` Q)

I j= (� ` u!hviP) R (�

0

` u!hviQ)

(xt-math)

� ` u : A; v : A

0

�

0

` u : B; v : B

0

I j= (� ` P

0

) R (�

0

` Q

0

)

I j= (� u fu : A

0

; v : Ag ` P) R (�

0

u fu : B

0

; v : Bg ` Q)

I j= (� ` if u = v then P else P

0

) R (�

0

` if u = v then Q else Q

0

)

(xt-new)

I; a : > j= (�; a : A ` P) R (�

0

; a : A ` Q)

I j= (� ` (new a : A) P) R (�

0

` (new a : A) Q)

(xt-par)

I j= (� ` P) R (�

0

` Q)

I ` R

I j= (� ` P jR) R (�

0

` Q jR)

I j= (� ` R j P) R (�

0

` R jQ)

(xt-iter)

I j= (� ` P) R (�

0

` Q)

I j= (� ` �P) R (�

0

` �Q)

Figure 6. Contextuality for indexed relations over on�gurations

28 Matthew Hennessy and Julian Rathke

however that the �rst two rules, (xt-spe) and (xt-weak), automat-

ially build in speialisation and weakening properties, respetively. This

may seem arti�ial but is justi�ed by the following result, whih shows

that we do indeed have a generalisation of the de�nition of

�

=

xt

obs

from

Setion 3.2:

Proposition 6.4 � j= (� ` P)

�

=

xt

obs

(� ` Q) if and only if � j= P

�

=

xt

obs

Q.

Proof: We �rst show the if diretion. De�ne a typed relationR by letting

I j= (� ` P) R (� ` Q)

if � j= P

�

=

xt

obs

Q and � <: I. R is symmetri, redution losed and

barb preserving. Using the fat that

�

=

xt

obs

, as a family of relations over

proesses, is ontextual, we an show that it satis�es all of the rules in

Figure 6.

Therefore R is ontained pointwise in

�

=

xt

obs

, from whih the result

follows, sine � j= P

�

=

xt

obs

Q implies � j= (� ` P) R (� ` Q).

The onverse is similar. Let the family of relations R, over proesses,

be de�ned by

� j= P R Q if � j= (� ` P)

�

=

xt

obs

(� ` Q):

Here the result will follow if we an show that R is ontained pointwise

in

�

=

xt

obs

, whih in turn will follow if we an show that R satis�es all the

de�ning properties of

�

=

xt

obs

. The proof that it is symmetri, redution

losed and barb preserving is straightforward.

It remains to show ontextuality, that �

0

j= T R

o

U and � ` C[�

�

0

℄

implies � j= C[T ℄ R

o

C[U ℄. This is proved by indution on the derivation

of � ` C[�

�

℄, using the rules in Figure 6. Note that the rule (xt-spe)

is essential in the proof of the ase in whih the ontext is dedued using

(t-new).

2

The remainder of this setion is devoted to showing that this gener-

alised ontextual equivalene oinides with weak bisimulation on Conf ;

that is I j= (� ` P)

�

=

xt

obs

(�

0

` Q) if and only if I j= (� ` P) � (�

0

` Q).

6.1 Soundness

First let us show that typed bisimulation equivalene is preserved, in some

appropriate manner, by the prinipal operators of the language.

Typed behavioural equivalenes for proesses in the presene of subtyping 29

Proposition 6.5 If I; a : > j= (�; a : A ` P) � (�

0

; a : A ` Q) then

I j= (� ` (new a : A) P) � (�

0

` (new a : A) Q).

Proof: Let the relation R over typed proesses be de�ned by

I j= (� ` R) R (� ` S)

if

� I j= (� ` R) � (� ` S)

� or R S, have the form (new a : A) P; (new a : A) Q, respetively, and

I; a : > j= (�; a : A ` P) � (�

0

; a : A ` Q).

Then R is w-losed by de�nition. We show it is a bisimulation,

from whih the result will follow sine we will have established that,

pointwise, R is ontained in �.

We show how every possible move from I; � ` R an be mathed

by one from I; � ` S. The only non-trivial ases are when R; S have

the seond form above. From the de�nition of typed ations in Figure 5

there are two possibilities.

1. The move is inferred using the rule (tylts-open):

I; � ` (new a : A) P

(a)�

��! I

0

; �

�

` P

0

;

for some output move �, beause

I; a : >; �; a : A ` P

�

�! I

0

; �

�

` P

0

:

Here the latter move an be mathed by

I; a : >; �

0

; a : A ` Q

�

=) I

0

; �

0

�

` Q

0

for some Q

0

suh that

I

0

j= (�

�

;` P) � (�

0

�

;` Q);

that is

I

0

j= (�

�

` P) R (�

0

�

` Q):

However an appliation of the rule (tylts-open), together with

some redutions, gives the required mathing move

I; �

0

` (new a : A) Q

(a)�

==) I

0

; �

0

�

` Q

0

:

2. The seond possibility is that the move is inferred using the rule

(tylts-txt):

I; � ` (new a : A) P

�

�! I

0

; �

�

` (new a : A) P

0

;

beause

I; a : >; �; a : A ` P

�

�! I

0

; �

�

` P

0

;

30 Matthew Hennessy and Julian Rathke

where a 62

n

(�).

Here the proof is similar. We an �nd a mathing move from I; a :

>; �

0

; a : A ` Q and then use (tylts-txt) to obtain the required

mathing move from I; � ` (new a : A) Q.

2

Proposition 6.6 Suppose I ` R. Then I j= (� ` P) � (�

0

` Q) implies

I j= (� ` P jR) � (�

0

` Q jR).

Proof: Here, beause of the possible internal ommuniations between R

and P; Q, the required de�nition of the relation over typed proesses is

somewhat ompliated.

De�ne the relation R suh that

I j= (� ` (new�

0

) P jR) R (�

0

` (new�

0

0

) Q jR)

if and only if there exists an I

0

ompatible with �

0

and �

0

0

suh that

I; I

0

j= (�;�

0

` P) � (�

0

;�

0

0

` Q) and I; I

0

` R

and show that R forms a bisimulation.

Suppose then that

I j= (� ` (new�

0

) P jR) R (�

0

` (new�

0

0

) Q jR)

and that

I; � ` P jR

�

�! I

0

; �

00

` P

0

:

This presupposes the existene of an environment I

0

ompatible with both

�

0

and �

0

0

with the properties outlined in the de�nition of R . If � is a not

a � -ation then we know that the transition derives either from P or from

R. In either ase, we an use the hypothesis to obtain a orresponding

transition from Q or from R again. So, the interesting ase is when � is a

� ation. Consider how this an our:

(i) P or R performs a � ation independently.

(ii) P

(~:

~

C)a!v

�����! P

0

and R

a?v

��! R

0

so that P

0

is (new�

0

; ~ :

~

C) P

0

j R

0

for

some

~

C.

(iii) P

a?v

��! P

0

and R

(~:

~

C)a!v

�����! R

0

so that P

0

is (new�

0

; ~ :

~

C) P

0

jR

0

Obviously the �rst ase (i) is treated as the ase above when � is not a �

ation.

Typed behavioural equivalenes for proesses in the presene of subtyping 31

Suppose ase (ii) holds. We know that I; I

0

` R so that, by Subjet

Redution 2.2, (I; I

0

)

r

(a) #. Then, Lemma 4.3 tells us that

I; I

0

; �;�

0

` P

(~)a!v

���! I; I

0

after (~)a!v; �;�

0

; ~ :

~

C ` P

0

:

We know by hypothesis that

I; I

0

j= (�;�

0

` P) � (�

0

;�

0

0

` Q)

whih means there must exist a transition from Q whih mathes P 's

output. That is, there is some Q

0

suh that

I; I

0

; �

0

;�

0

0

`Q

(~)a!v

===) I; I

0

after (~)a!v; �

0

;�

0

0

; ~ :

~

C

0

`Q

0

with

I; I

0

after (~)a!v j= (�;�

0

; ~ :

~

C ` P

0

) � (�

0

;�

0

0

; ~ :

~

C

0

` Q

0

):

We also know that R an interat with Q to produe:

I; �

0

` (new�

0

0

) Q jR =) I; �

0

` (new�

0

0

; ~ :

~

C

0

) Q

0

jR

0

and observe that

I j= (� ` (new�

0

; ~ :

~

C) P

0

jR

0

) R (�

0

` (new�

0

0

; ~ :

~

C

0

) Q

0

jR

0

)

beause I

0

j= (�

0

` P

0

) R (�

0

0

` Q

0

) and I; I

0

after (~)a!v ` R

0

. This

last fat is guaranteed by the premise I; I

0

` R after applying Subjet

Redution 2.2.

Finally, suppose (iii) holds. Again we have I; I

0

` R so that Subjet

Redution, Theorem 2.2, tells us (I; I

0

)

w

(a) # and, if we let I

+

denote

I; I

0

; ~ :

~

C, we also have I

+

` v : (I

+

)

w

(a). This allows us to appeal to

Lemma 4.3 to observe:

I

+

; �;�

0

; ~ :

~

C ` P

a?v

��! I

+

; �;�

0

; ~ :

~

C ` P

0

:

By hypothesis we know,

I; I

0

j= (�;�

0

` P) � (�

0

;�

0

0

` Q)

so, beause � is !-losed we also have,

I

+

j= (�;�

0

; ~ :

~

C ` P) � (�

0

;�

0

0

; ~ :

~

C ` Q):

This guarantees our mathing transition

I

+

; �;�

0

; ~ :

~

C `Q

a?v

==) I

+

; �;�

0

; ~ :

~

C `Q

0

with I

+

j= (�;�

0

; ~ :

~

C ` P

0

) � (�

0

;�

0

0

; ~ :

~

C ` Q

0

). We use the

interation with R to obtain the redutions

I; �

0

` (new�

0

) Q jR =) I; �

0

` (new�

0

; ~ :

~

C) Q

0

jR

0

32 Matthew Hennessy and Julian Rathke

and, again by Subjet Redution, Theorem 2.2, it is easy to see that

I

+

` R

0

, whene

I j= (� ` (new�

0

; ~ :

~

C) P

0

jR

0

) R (�

0

` (new�

0

0

; ~ :

~

C) Q

0

jR

0

)

as required.

2

We now have most of the ingredients to prove:

Theorem 6.7 (Soundness)

If I j= (� ` P) � (�

0

` Q) then I j= (� ` P)

�

=

xt

obs

(�

0

` Q):

Proof: It is easy to see that � is a redution losed, symmetri and barb

preserving relation over typed proesses. If we an demonstrate that it

is also ontextual then, beause of the the fat that

�

=

xt

obs

is the largest

suh relation we have our result. Therefore we only have to prove that �

satis�es all the rules in Figure 6.

The rules (xt-spe) and (xt-weak) are overed by Proposition 6.3,

while (xt-new) and (xt-par) have just been established in the previous

two Propositions. The remaining rules an be handled in a similar manner,

by setting up an appropriate w-losed relation over typed proesses and

showing it is a bisimulation.

2

6.2 Completeness

Here we show the onverse of Theorem 6.7, ompleteness, namely that

ontextual equivalene implies bisimularity. To do so we only need a re-

strited version of ontextual equivalene. Let

�

=

p-xt

obs

denote the largest

relation over on�gurations whih is redution losed, barb preserving and

ontextual with respet to parallel and new name ontexts, that is satis-

�es the rules (xt-spe), (xt-weak), (xt-par) and (xt-new) from

Figure 6. It is lear that

�

=

xt

obs

implies

�

=

p-xt

obs

so, in fat, it suÆes to prove

ompleteness for the latter and we shall use this relation from now on.

Before we prove this theorem it will be useful to present a tehnial

lemma. It is here that we utilize the exported names in the terms whih

witness the ontextuality of labels. Essentially, the lemma states that the

environment really an ollate the information gained via the lts.

Lemma 6.8 Suppose I

0

is ompatible with �; ~ :

~

C and �

0

; ~ :

~

C and Æ is

fresh to P;Q. Then

Typed behavioural equivalenes for proesses in the presene of subtyping 33

I; Æ : rwh(I

0

)i j= (�; Æ : rwh(I

0

)i ` (new ~ :

~

C) P j Æ!v

I

0

)

�

=

p-xt

obs

(�

0

; Æ : rwh(I

0

)i ` (new ~ :

~

C

0

) Q j Æ!v

I

0

)

implies

I

0

j= (�; ~ :

~

C ` P)

�

=

p-xt

obs

(�

0

; ~ :

~

C

0

` Q):

Proof: We prove this by o-indution. Let the relation R

I

0

be de�ned

for I

0

ompatible with �;�

0

and �

0

;�

0

0

, so that

I

0

j= (�;�

0

` (new�

1

) P) R (�

0

;�

0

` (new�

0

1

) Q)

if and only if there is some Æ : rwh(I

0

)i suh that

I; Æ : rwh(I

0

)i j= (�; Æ : rwh(I

0

)i ` (new�

0

;�

1

) P j Æ!hv

I

0

i)

�

=

p-xt

obs

(�

0

; Æ : rwh(I

0

)i ` (new�

0

0

;�

0

1

) Q j Æ!hv

I

0

i):

We simply need to show that R is redution losed, barb preserving,

and losed with respet to rules (xt-spe), (xt-weak), (xt-par)

and (xt-new). Redution losure is immediate by the de�nition of R ,

as is losure with respet to (xt-spe) and (xt-weak). For the other

requirements we proeed by supposing that

I

0

j= (�;�

0

` P) R (�

0

;�

0

0

` Q)

suh that Æ : rwh(I

0

)i with

I; Æ j= (�; Æ ` (new�

0

) P j Æ!hv

I

0

i)

�

=

p-xt

obs

(�

0

; Æ ` (new�

0

0

) Q j Æ!hv

I

0

i):

In the above equation, for the sake of presentation, we have omitted, and

shall ontinue to do so for the remainder of this proof, to give the type

information assoiated with the barb Æ.

We �rst show losure with respet to (xt-par). Suppose I

0

` R. We

need to show that I

0

j= (�;�

0

` P j R) R (�

0

;�

0

0

` Q j R). To do this

we hoose some fresh Æ

0

and onstrut R

0

= Æ?(X : I

0

) (R[X=

n

(I

0

)℄ jÆ

0

!hi)

(reall that

n

(�) refers to the names in the domain of �). It should be

evident that Æ; Æ

0

` R

0

and, by losure of

�

=

p-xt

obs

with respet to (xt-spe),

(xt-weak), (xt-new) and (xt-par) we have

I; Æ

0

j= (�; Æ

0

` (new�

0

; Æ) P j Æ!hv

I

0

i jR

0

)

�

=

p-xt

obs

(�

0

; Æ

0

` (new�

0

0

; Æ) Q j Æ!hv

I

0

i jR

0

)

It is fairly easy to hek that

I

0

; Æ

0

j= (�; Æ

0

` (new�

0

; Æ) (P j Æ!hv

I

0

i jR

0

))

�

=

p-xt

obs

(�

0

; Æ

0

` (new�

0

) (P jR j Æ

0

!hv

I

0

i))

34 Matthew Hennessy and Julian Rathke

and similarly for Q. Hene,

I; Æ

0

j= (�; Æ

0

` (new�

0

) P jRjÆ

0

!hv

I

0

i)

�

=

p-xt

obs

(�

0

; Æ

0

` (new�

0

0

) QjRjÆ

0

!hv

I

0

i)

This serves to witness

I

0

j= (�;�

0

` P jR) R (�

0

;�

0

0

` Q jR)

as required.

The losure of R with respet to (xt-new) follows easily from the

losure of

�

=

p-xt

obs

with respet to this rule. So we will �nish by showing

that R is barb preserving.

We suppose that I

0

; �;�

0

` P +

barb

a for some a suh that I

0

` a :

rwhAi. Choose a fresh Æ

0

: rwh>i and buildR = Æ?(X : I

0

) X

a

?(Y : A) Æ

0

!hi

where X

a

refers to the omponent of X to whih the name a will beome

bound to as it reeives the value v

I

0

. We know that Æ; Æ

0

` R,

I; Æ; Æ

0

j= (� ` (new�

0

) P j Æ!hv

I

0

i jR)

�

=

p-xt

obs

(�

0

` (new�

0

0

) Q j Æ!v

I

0

jR)

and

I; Æ; Æ

0

; � ` (new�

0

) P j Æ!hv

I

0

i jR +

barb

Æ

0

:

This means that, by the barb preservation property of

�

=

p-xt

obs

, we know

I; Æ; Æ

0

:; �

0

` (new�

0

0

) Q j Æ!hv

I

0

i jR +

barb

Æ

0

also. But, as Æ

0

is fresh, this ould only have arisen by interation with R

along a, whene

I

0

; �

0

;�

0

0

`Q +

barb

a

as required. 2

We an state the entral theorem whih allows us to ahieve omplete-

ness:

Theorem 6.9 (Completeness)

If I j= (� ` P)

�

=

xt

obs

(�

0

` Q) then I j= (� ` P) � (�

0

` Q):

Proof: Again, the proof proeeds by o-indution, this time we de�ne the

relation R by letting I j= (� ` P) R (�

0

` Q) if I j= (� ` P)

�

=

p-xt

obs

(�

0

` Q). By de�nition it is w-losed. We demonstrate that it forms a

bisimulation. To this end, suppose I j= (� ` P) R (�

0

` Q) and that

I; � ` P

�

�! I

0

; �

0

` P

0

. We use the ontextuality of labels to �nd a

mathing transition and proeed by ases on �. We only show the ase for

� is (~)a!v here, it being the most involved. Note that, in this ase, �

0

is

�; ~ :

~

C.

Typed behavioural equivalenes for proesses in the presene of subtyping 35

We hoose a fresh Æ : A

Æ

where A

Æ

denotes rwh(I

0

)i, and use Propo-

sition 4.6 to �nd a term suh that I; Æ : A

Æ

` C

I

�

with the appropriate

properties. In fat, the �rst property tells us that

I; Æ : A

Æ

; �; Æ : A

Æ

`P j C

I

�

=) I; Æ : A

Æ

; �; Æ : A

Æ

` (new ~ :

~

C) (P

0

j Æ!hv

I

0

i)

Using C

I

�

we an build a test term by hoosing further fresh names

Æ

0

: A

Æ

; a : rwh>i and letting

C

Æ

0

= a!hi j Æ?(x) a?(y) :Æ

0

!hxi

we note immediately that C

Æ

0

+

barb

a.

From ontextual losure (omitting some type information) we know

that

I; Æ

0

j= (�; Æ

0

` (new Æ) (P j C

I

�

j C

Æ

0

))

�

=

p-xt

obs

(�

0

; Æ

0

` (new Æ) (Q j C

I

�

j C

Æ

0

))

We also know that the left hand side of this equation may redue (up to

a minor strutural equivalene) to

I; Æ

0

; �; Æ

0

` (new ~ :

~

C) P

0

j Æ

0

!hv

I

0

i :

We use C

P

to refer to this on�guration and observe that C

P

6+

barb

a but

C

P

+

barb

Æ

0

.

Redution losure now tells us that there must exist some mathing

redutions

I; Æ

0

; �

0

; Æ

0

` (new Æ) (Q j C

I

�

j C

Æ

0

) =) C

Q

for some C

Q

suh that C

P

�

=

p-xt

obs

C

Q

.

Now

�

=

p-xt

obs

preserves barbs, so this means, in partiular, that C

Q

6+

barb

a and C

Q

+

barb

Æ

0

also. Hene we know that C

Q

must be (again up to a

minor strutural equivalene) of a very spei� form:

I; Æ

0

; �

0

; Æ

0

` (new ~ :

~

C

0

) Q

0

j Æ

0

h!v

0

i)

for some Q

0

and some v

0

. By the onstrution of C

Æ

0

and the fat that

C

Q

6+

barb

a we know that the redutions to C

Q

must have been generated

by interation with redutions of the form

(I; Æ; �

0

; Æ `Q j C

I

�

) =) (I; Æ; �

0

; Æ ` (new ~ :

~

C

0

) Q

0

j Æ!hv

0

i

whih, by Proposition 4.6, must themselves have been generated by inter-

ation with transitions of the form

I; �

0

`Q

�

=) I

0

; �

0

; ~ :

~

C

0

`Q

0

:

It only remains to demonstrate that

I

0

j= (�; ~ :

~

C ` P

0

) R (�

0

; ~ :

~

C

0

` Q

0

):

This follows from the fat that C

P

�

=

p-xt

obs

C

Q

and Lemma 6.8. 2

36 Matthew Hennessy and Julian Rathke

Soundness, Completeness and Proposition 6.4 allows us to now on-

lude with the main result of the paper:

Corollary 6.10 If � j= P

�

=

xt

obs

Q if and only if � j= (� ` P) �

o

(� ` Q).

6.3 Example

The haraterisation of the previous setions provide a onvenient o-

indutive method for establishing ontextual observational equivalene be-

tween terms. We provide a short example whih demonstrates the utility

of the bisimulation proof method. The proesses that we onsider provide

two di�erent implementations of a produer/onsumer unit server.

Clients send requests for servie along a global hannel req, whih

must be aompanied by a reply hannel whih has type at least R =

wh(wh>i; rh>i)i. The server reates dediated produe and onsume han-

nels, exlusively for the lient, at type A = rwh>i, and returns these along

the reply hannel. Note that beause of the type of the return hannel

the lient only reeives the write apability on the produe hannel and

the read apability on the onsume hannel. The server then manages the

simple protool that for every all on the produe hannel, a orresponding

request an be made of the onsume hannel:

CU

1

= �req?(x : R) (new p; : A) x!hp; i � p?() :!hi

Here the server and uses the proess �p?() :!hi to manage the produe and

onsume requests.

Another implementation is given by:

CU

2

= �req?(x : R) (new p; : A) x!(p;): (�p?() :!hi j �?() :p!hi):

The behaviour of this server, when managing the produe/onsume re-

quests is a little di�erent. Here the server itself, in addition to the lient,

may onsume a request; if it does so it then reprodues a message in

reompense.

There is a bug in the seond implementation beause, having set up

a protool for a lient, when a message is sent by the lient it may be

onsumed by the server itself, onsequently unleashing an in�nite sequene

of produe/onsume messages internal to the server. This an be formally

demonstrated using the must testing equivalene.

Let �

<

req

be any typing environment suh that �

<

req

(req) = rwhrwh(B;C)ii,

where B <: wh>i. Then

�

<

req

j= CU

1

6

�

=

must

CU

2

:

To prove this result we exhibit a test T suh that �

<

req

` T , CU

1

must T

Typed behavioural equivalenes for proesses in the presene of subtyping 37

but CU

1

6must T . The required T is given by

(new r : A

r

) req!hri r?((x; y) : (wh>i; rh>i)) x!hi!!hi

where A

r

is the type rwh(B;C)i. It is straightforward to show that this

an be typed by �

req

, that it is guaranteed by CU

1

but when applied to

CU

2

, may lead to a non-terminating omputation.

It is well-known that ontextual observational equivalene is insensitive

to suh internal divergent behaviour. However there are further reasons

for these two servers to exhibit di�erent behaviour, in ertain type en-

vironments. Suppose for example that �

d

maps the hannel req to the

type rwhrwh(B;C)ii, where B;C are rwh>i; rh>i respetively. This type

enables the environment, when it reeives a produe/onsume pair p; ,

to both write and read on p; with this apability CU

1

and CU

2

an be

distinguished. For example onsider the ontext C[℄:

T j [℄

where T is the proess

(new r : A

r

) req!hri r?((x; y) : (rwh>i; rh>i)) x!hi x?() d!hi :

Then it is easy to see, assuming �

d

has the appropriate type for d, that

� j= C[CU

2

℄ +

barb

d whereas � j= C[CU

1

℄ 6+

barb

d. It follows that

�

d

j= CU

1

6

�

=

xt

obs

CU

2

:

Note that a similar example an be onstruted if, instead, we allow the

environment write aess on the onsume hannel .

However if we limit the environment's aess to the produe/onsume

pair to be write, read respetively then we an show that the two servers

are ontextually equivalent:

Proposition 6.11 Suppose that �

req

is any typing environment suh that

�

req

(req) = rwhrwh(B;C)ii;

where B :> wh>i and C :> rh>i. Then

�

req

j= CU

1

�

=

xt

obs

CU

2

:

Proof: We will establish that these proesses are in fat bisimilar and

then by soundness we may onlude that they are ontextual observational

equivalent. To show that they are bisimilar we may appeal to ongruene

properties of bisimulation equivalene and show that, for �

A

= p : A; : A,

P

1

= �p?():!h i and P

2

= �p?():!h i j �?():p!h i

38 Matthew Hennessy and Julian Rathke

and for any I :> p : B; : C, we have

I j= (�

A

` P

1

) � (�

A

` P

2

):

To demonstrate this we de�ne our andidate relation for the bisimulation

as follows. Let !

n

for a non-negative integer n mean the n-fold parallel

omposition of the terms !h i. We relate terms suh that (upto �)

I j= (�

A

` P

1

j !

n

) R (�

A

` P

2

j !

m

j p!

k

)

whenever n = m + k. We must show that the !-losure of R forms a

bisimulation.

This is reasonably straightforward, as an example of the work involved

(ignoring !-losures) we suppose that

I j= (�

A

` P

1

j !

n

) R (�

A

` P

2

j !

m

j p!

k

)

and that I; �

A

` P

1

j !

n

�

�! I; �

A

` P

0

(note that I and �

A

will not

hange throughout this proof and n = m+ k).

We onsider how this ould arise: �rstly, if the transition originated

in P

1

then we know � must be of the form p?(). This is only possible in

ase the environment I has write apability on hannel p, whih it may.

There is an obvious mathing transition from P

2

whih is always ready

to reeive produe requests on p also. The resulting states reahed are in

R :

I j= (�

A

` P

1

j !

n+1

) R (�

A

` P

2

j !

m+1

j p!

k

)

as (n+ 1) = (m+ 1) + k.

The seond possibility is that the transition from originates from !

n

and is an output of the form !() (that is n > 0 and P

0

is P

1

j !

n�1

).

This an only be possible if the environment I has read apability on this

hannel, whih it may. The mathing transition for this would of ourse

simply be an output !() from P

2

j!

m

jp!

k

, but we do not neessarily know

that m > 0. However, we do know that n = m + k > 0 so, in the ase

m = 0 we must have k > 0 and an internal ommuniation between p!

k

and P

2

ensures the availability of a !() transition. Thus, the mathing

transitions are, for m > 0,

(I; �

A

` P

2

j !

m

j p!

k

)

!hi

��! (I; �

A

` P

2

j !

m�1

j p!

k

);

and for m = 0,

(I; �

A

` P

2

j !

m

j p!

k

)

�

�!

!hi

��! (I; �

A

` P

2

j !

m

j p!

k�1

):

In either ase we end up bak in R .

Similar arguments an be used to math transitions from P

2

j !

m

j p!

k

.

The only extra transitions here arise as internal ommuniations. There

Typed behavioural equivalenes for proesses in the presene of subtyping 39

are two possibilities for these: an interation between P

2

and !

m

and an

interation between P

2

and p!

k

. Note that in eah ase the resulting state

is

P

2

j !

m�1

j p!

k+1

for the former and

P

2

j !

m+1

j p!

k�1

for the latter. In either ase the total m+ k is invariant. This means that

the extra internal transitions exhibited by P

2

j !

m

j p!

k

may be mathed

in R by an empty transition from P

1

j !

n

.

It is worth mentioning here that it is not possible to observe output

transitions of the form p!hi from I; �

A

`P

2

j !

m

j p!

k

as we have supposed

that I(p) :> B :> wh>i and thus annot the read apability required

to make this observation. Similarly, it is not possible to observe input

transitions of the form ?hi from I; �

A

` P

2

.

2

This short example demonstrates the use of a o-indutive proof for

establishing ontextual observational equivalene. The use of the bisimu-

lation method allows us to establish equivalene without quantifying over

all possible lients for these servers. In e�et, the environment plays the

role of an arbitrary lient.

7 Conlusion

In this paper we have studied typed behavioural equivalenes for the �-

alulus. In partiular we have shown that natural typed versions testing

and barbed ongruenes an be aptured by applying standard tehniques

to a new lts of typed ations, Conf . Thus, at least in priniple, it should

be possible to use, or adapt, existing proof methodologies and veri�ation

systems, [4, 5℄ to prove type dependent equivalenes between proesses.

Admittedly the states, I; � ` P , in the lts are a priori ompliated, on-

sisting of a proess term P , a type environment for its omputing ontext

I and a separate type environment for the proess itself �. But the ob-

servant reader will have notied that in the rules for generated Conf ,

in Figure 5, the last type environment � plays no role. Tehnially its

presene has been onvenient for deriving our results, whih depend on

the fat that proesses are well-typed with respet to some environment

oherent with I, but in an implementation of Conf they ould be safely

omitted.

Typed proess equivalenes, as opposed to untyped ones, have nu-

40 Matthew Hennessy and Julian Rathke

merous interesting appliations. For example suh an equivalene has

been used in [18℄ to investigate translations of the �-alulus into the �-

alulus; the use of types enables stronger results to be demonstrated. In

[24℄ omplier optimisations are justi�ed using a typed equivalene, for a

language similar to ours. We also intend to develop typed equivalenes

for the higher-order proess language in [25, 22℄, where types are used to

resoures and omputing hosts from maliious agents; in suh senarios

demonstrating that a partiular poliy does indeed o�er host protetion

would amount to proving typed equivalenes.

We have based our notion of ontextual equivalene on the approah

of [9, 7℄ rather than that used, for example in [15℄. In the latter the

behavioural equivalene itself is not required to be itself ontextual, but

instead the largest ontextual relation ontained in it is the fous of study.

The two approahes are oneptually not very di�erent and in many ases

they atually generate the same behavioural relation; see for example [9, 6℄.

However proofs haraterising the latter in terms of bisimulation relations

are often omplex, dependent on the preise onstruts of the language

being investigated, and sometimes even require in�nitary syntati on-

struts; see for example the haraterisation proofs in [15, 23℄. Indeed

more reent haraterisation theorems, suh as that in [1℄ tend to be re-

strited to �nite-branhing proesses. On the other hand haraterisation

theorems for the kind of formalisation we have hosen are usually onep-

tually more simple, or at least not very dependent on the preise language

onstruts to hand; see for example the proofs in [9, 11℄.

There have been some previous attempts at haraterising typed on-

textual equivalenes [2, 17℄ using an observer's view of the type envi-

ronment. In [17℄ the observer's view is used to aount for ontextual

equivalenes in the presene of polymorphi types in the �-alulus but

subtyping is not onsidered. Also no omplete haraterisation of barbed

ongruene was provided in this setting. Although this paper did not deal

with subtyping the subsequent work in [2℄ did takle this problem albeit

in a theoretially very di�erent setting to ours. The hief di�erene lays in

the absene of the name equality test. We ruially use the name equal-

ity operator to witness that eah of our ations � may be onstruted

as a test C

�

[℄ and that the type information gained during this test

may be aumulated. In [2℄ the lak of the equality test impats upon

the labelled transition system in the sense that names being sent to the

observer annot be reognised as names enountered during a prior test.

In partiular this preludes aumulation of knowledge about a name and

the labelled transition system presented in this paper reets this. A o-

indutive haraterisation of barbed ongruene is provided although the

Typed behavioural equivalenes for proesses in the presene of subtyping 41

equations holding in this setting vary onsiderably from ours. For instane

the well-known Repliation Theorem of �-alulus used to illustrate their

tehnique fails to hold in the presene of equality testing.

Our system allows for a gradual inrease in knowledge about types

of names and provides a fresh approah to understanding the e�ets of

subtyping on proess equivalene.

Referenes

[1℄ Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations

for the asynhronous �-alulus. Theoretial Computer Siene, 195(2):291{324,

30 Marh 1998.

[2℄ M. Boreale and D. Sangiorgi. Bisimulation in name-passing aluli without math-

ing. In Pro. 13th LICS Conf. IEEE Computer Soiety Press, 1998.

[3℄ G. Boudol. Typing the use of resoures in a onurrent alulus. In Proeedings

of the ASIAN'97, number 1345 in Leture Notes in Computer Siene, pages 239{

253, 1997.

[4℄ R. Cleaveland, J. Parrow, and B. Ste�en. The onurreny workbenh: A se-

mantis based veri�ation tool for �nite state systems. ACM Transations on

Programming Systems, 15:36{72, 1989.

[5℄ Rane Cleaveland. The onurreny fatory: A development environment for

onurrent systems. In R. Alur and T. Henzinger, editors, Proeedings of CAV'96,

volume 1102 of Leture Notes in Computer Siene, pages 398{401. Springer-

Verlag, 1988.

[6℄ C. Fournet and G.Gonthier. A hierarhy of equivalenes for asynhronous aluli

(extended abstrat). In Proeedings of ICALP'98, volume 1443 of Leture Notes

in Computer Siene, pages 844{855. Springer-Verlag, 1988.

[7℄ C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A alulus of mo-

bile agents. In U. Montanari and V. Sassone, editors, Proeedings of CONCUR'96,

volume 1119 of Leture Notes in Computer Siene, pages 406{421, Pisa, August

1996. Springer Verlag.

[8℄ M. Hennessy. An Algebrai Theory of Proesses. MIT Press, 1988.

[9℄ Kohei Honda and Mario Tokoro. On asynhronous ommuniation semantis.

In P. Wegner M. Tokoro, O. Nierstrasz, editor, Proeedings of the ECOOP '91

Workshop on Objet-Based Conurrent Computing, volume 612 of LNCS 612.

Springer-Verlag, 1992.

[10℄ A. Je�rey. A distributed objet alulus. In Pro. ACM Foundations of Objet

Oriented Languages. IEEE Computer Soiety Press, 2000.

[11℄ A. Je�rey and J. Rathke. A theory of bisimulation for a fragment of onurrent

ml with loal names. In Pro. LICS2000, 15

th

Annual Symposium on Logi in

Computer Siene, Santa Barbara, pages 311{321. IEEE Computer Soiety Press,

2000.

[12℄ Naoki Kobayashi. A partially deadlok-free typed proess alulus. In Proeedings,

Twelth Annual IEEE Symposium on Logi in Computer Siene, pages 128{139,

Warsaw, Poland, 29 June{2 July 1997. IEEE Computer Soiety Press.

[13℄ R. Milner. Communiation and Conurreny. Prentie-Hall, 1989.

[14℄ R. Milner. Comuniating and mobile systems: the �-alulus. Cambridge Univer-

42 Matthew Hennessy and Julian Rathke

sity Press, 1999.

[15℄ R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuih, editor, Pro.

19th ICALP, volume 623 of Leture Notes in Computer Siene, pages 685{695.

Springer-Verlag, 1992.

[16℄ R. De Niola and M. Hennessy. Testing equivalenes for proesses. Theoretial

Computer Siene, 24:83{113, 1984.

[17℄ B. Piere and D. Sangiorgi. Behavioral equivalene in the polymorphi pi-alulus.

In Pro. 24th POPL. ACM Press, 1997. Full paper to appear in Journal of the

ACM.

[18℄ Benjamin Piere and Davide Sangiorgi. Typing and subtyping for mobile proesses.

Mathematial Strutures in Computer Siene, 6(5):409{454, 1996. Extended ab-

strat in LICS '93.

[19℄ Benjamin C. Piere and David N. Turner. Pit: A programming language based

on the pi-alulus. Tehnial Report CSCI 476, Computer Siene Department,

Indiana University, 1997. To appear in Proof, Language and Interation: Essays in

Honour of Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte, editors,

MIT Press.

[20℄ R. Pugliese R. DeNiola, G. Ferrari. Klaim: a kernel language for agents intera-

tion and mobility. In IEEE Transations on Software Engineering, number 5 in

24, pages 315{330. IEEE Computer Soiety, 1998.

[21℄ James Riely and Matthew Hennessy. Resoure aess ontrol in systems of mobile

agents (extended abstrat). In Proeedings of 3rd International Workshop on

High-Level Conurrent Languages, Nie, Frane, September 1998. Full version

available as Computer Siene Tehnial Report 2/98, University of Sussex, 1997.

Available from http://www.ogs.susx.a.uk/To be published in Information and

Computation.

[22℄ James Riely and Matthew Hennessy. Trust and partial typing in open systems of

mobile agents (extended abstrat). In Conferene Reord of POPL '99 The 26th

ACM SIGPLAN-SIGACT Symposium on Priniples of Programming Languages,

pages 93{104, 1999.

[23℄ D. Sangiorgi. Expressing Mobility in Proess Algebras: First-Order and Higher-

Order Paradigms. PhD thesis CST{99{93, Department of Computer Siene,

University of Edinburgh, 1992.

[24℄ Akinori Yonnezawa, Motoki Nakade, and Naoki Kobayashi. Stati analysis of om-

muniation for asynhronous onurrent programming languages. In A. Myroft,

editor, Stati Analysis. Proeedings, volume 983 of Leture Notes in Computer

Siene, pages 225{242. Springer-Verlag, 1995.

[25℄ N. Yoshida and M. Hennessy. Assigning types to proesses (extended abstrat). In

Proeedings, Fifteenth Annual IEEE Symposium on Logi in Computer Siene,

pages 334{348, Santa Barbara, US, 19{23 June 2000. IEEE Computer Soiety

Press.

