
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Typed behavioural equivalences for

processes in the presence of subtyping

Matthew Hennessy

Julian Rathke

Report 02/2001 March 2001

Computer Science
School of Cognitive and Computing Sciences

University of Sussex
Brighton BN1 9QH

ISSN 1350–3170

Typed behavioural equivalen
es for pro
esses

in the presen
e of subtyping

Matthew Hennessy and Julian Rathke

Abstra
t. We study typed behavioural equivalen
es for the �-
al
ulus, in whi
h the

type system allows a form of subtyping. This enables pro
esses to sele
tively distribute

di�erent
apabilities on
ommuni
ation
hannels.

The equivalen
es
onsidered in
lude typed versions of testing equivalen
es and

barbed bisimulation equivalen
es.

We show that these
an be
hara
terised via standard te
hniques applied to a novel

labelled transition system of
on�gurations. These
onsist of a pro
ess term together

with two related type environments; one
onstraining the pro
ess and the other its

omputing environment.

1

1 Introdu
tion

Type systems are playing an in
reasingly important role in the theory of

distributed systems. They are essentially a form of stati
 analysis whi
h

help in the elimination of run-time errors from programs. Within the

theory of distributed systems this intuitive notion of run-time error has

been extended to in
lude a diverse range of properties. For example in

[12, 3℄ type systems have been designed to dete
t potential deadlo
ks

while [18℄ introdu
ed a system of types for the �-
al
ulus whi
h are used

to
ontrol the interpretation of the �-
al
ulus. This system of types was

extended further in [17℄ and now forms the basis for the powerful type

system implemented in the programming language Pi
t, [19℄; related type

systems for higher-order
on
urrent languages may be found in [10, 11℄.

In papers su
h as [21, 20℄ types have been used to manage a

ess
ontrol

to resour
es, while in [22℄ notions of trust have been in
orporated in order

to prote
t good host sites from bad
omputing agents.

Sub-typing is an essential part of most of these systems. For example

in Pi
t (a

ording to [19℄, page 9) it is relatively rare for
ommuni
ation

hannels to be used for both input and output in the same \region" of a

program. Typi
ally servers have one form of a

ess while
lients require a

di�erent form. These a

ess requirements
an be implemented and man-

aged using a subtype relation on the set of types. For example a parti
ular

hannel may be de
lared with a type whi
h allows both read and write

1

Resear
h partially funded by EPSRC grant GR/M71169

2 Matthew Hennessy and Julian Rathke

a

ess; this
hannel
ould be passed to one pro
ess, say a server, at a sub-

type whi
h only allows read, or input a

ess, and passed to a
lient at a

di�erent subtype, allowing write, or output a

ess only. Indeed in papers

su
h as [21, 25℄ types are viewed as sets of
apabilities, su
h as read a

ess

and write a

ess, and sending a name to a pro
ess at a subtype amounts

to sending it with a subset of the de
lared
apabilities.

The subje
t of this paper is the investigation of behavioural equiva-

len
es for typed pro
ess languages, parti
ularly in the presen
e of subtyp-

ing. The type environment in whi
h a pro
ess runs obviously a�e
ts its

behaviour, and therefore behavioural identities. Let us informally write

� ` P ' Q (y)

to denote that P and Q exhibit the same behaviour when run in an en-

vironment
onstrained by some type environment. The type environment

di
tates the type at whi
h identi�ers may be used and also, indire
tly, the

names a
tually in existen
e; if an identi�er is not in the domain of � then

intuitively it
an not be used by the pro
ess or its environment. Then,

using the syntax of the �-
al
ulus, we would expe
t the identity

� ` (a!hviR) j P ' P

if the identi�er a is not in the domain of the
onstraining environment

�. It should also be true if it were in the domain but � di
tates that it

ould only be used to output values. In this
ase neither P nor the pro
ess

environment would never be able to exer
ise the
omponent a!hviR; to do

so would require read a

ess to a, whi
h is forbidden by �.

In the presen
e of subtyping the situation gets more
ompli
ated. For

example
onsider the two pro
esses, again expressed in �-
al
ulus syntax,

P � (new
 : rwhi) a!h
i j
!hviS

Q � (new
 : rwhi) a!h
i j 0

Both generate a new
hannel
 at some type rwhi whi
h allows both read

and write a

ess. Now suppose � is a type environment in whi
h the type

asso
iated with a is su
h that it
an only be used to write identi�ers whi
h

themselves
an be used for at most write a

ess. Su
h types are a standard

part of many of the type systems for the �-
al
ulus, [18℄. In this situation

we would expe
t

� ` P ' Q

be
ause no observing pro
ess
an exer
ise the
!hvi
omponent. This fol-

lows sin
e the observing pro
ess
an only gain knowledge of the new
han-

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 3

nel
 by re
eiving it on the
hannel a; but this method of transmission

ensures that it
an never obtain read a

ess on
, be
ause of the type of a

in �, and therefore
an never a
tivate the
omponent
!hvi.

Intuitively in (y) the type environment �
onstrains both the pro
esses

being observed, but also the pro
esses with whi
h they are intera
ting, the

observing pro
esses. However this example shows that in general the type

environment of the observer diverges from that of the observed pro
esses,

in this
ase P and Q. After the
ommuni
ation on the
hannel a the ob-

served pro
esses, P and Q, are now working relative to the environment �

augmented with the new name
 at the type rwhi, while the observing pro-

ess is working with respe
t to a di�erent type environment, � augmented

with
 at a di�erent type; in fa
t a subtype of rwhi.

In papers su
h as [2, 17℄ behavioural equivalen
es have been de�ned for

typed versions of the �-
al
ulus. These are along the lines that for (y) to

be true, C[P ℄ and C[Q℄ must exhibit the same (simple) behaviour for all

ontexts C[℄ whi
h are suitably typed respe
t to �. Moreover interesting

identities have been established, [24℄. However all of the proofs involve

ompli
ated reasoning over possible
ontexts, essentially establishing a

form of Context Lemma in ea
h parti
ular
ase. This is in
ontrast to the

untyped behavioural equivalen
es, [13, 8℄, for whi
h there are a range of

powerful te
hniques based on labelled transition systems. These des
ribe

pro
esses in terms of the a
tions they
an perform and their
onsequen
es,

with judgements of the form

P

�

�! Q

In this paper we show that similar te
hniques
an be developed for typed

equivalen
es.

The
entral idea is to repla
e the untyped a
tions above with new

judgements of the form

I; � ` P

�

�! I

0

; �

0

`Q

where � represents the type environment of the observed pro
ess, P , and I

the knowledge that the surrounding
ontext, or observing
ontext, knows

of �. Performing an a
tion may result in the modi�
ation of either, or

both, of these environments. Triples of the form I; � ` P , with minor

onsisten
y requirements, are
alled
on�gurations and our judgements

endow the set of
on�gurations, Conf , with the stru
ture of a label tran-

sition system (lts). We show that typed versions of barbed
ongruen
e and

may and must testing equivalen
es
an be
hara
terised by adapting the

standard approa
hes, [13, 8℄ to this lts.

We now outline the remainder of the paper. In the following se
tion we

4 Matthew Hennessy and Julian Rathke

T; U ::= Terms

u?(X : A)T Input

u!hviT Output

if u = v then T else U Mat
hing

(new n : A) T Name Creation

T j T Con
urren
y

�T Repetition

0 Termination

X;Y ::= Patterns

x variable

(X

1

; : : : ; X

n

) tuple

u; v; w ::= Values

bv base value

n name

x variable

(u

1

; : : : ; u

n

) tuple

Figure 1. The Syntax

review our version of the �-
al
ulus, whi
h uses a set of types derived from

those in [21℄, although they are only a minor variation of those from [18℄;

the se
tion
ontains a standard operational semanti
s, in terms of an lts,

that is a labelled transition system, a type inferen
e system and a state-

ment of Subje
t Redu
tion. In Se
tion 3 we de�ne the typed behavioural

equivalen
es whi
h are the main
on
ern of the paper. This is followed by

the prin
ipal se
tion of the paper, Se
tion 4, where we de�ne the set typed

a
tions whi
h gives rise to the lts Conf ; this se
tion also
ontains an anal-

ysis of Conf and proofs of the various properties we require of it. This

is followed by two te
hni
al se
tions, Se
tion 5 whi
h
ontains a
hara
-

terisation of the typed testing equivalen
es, and Se
tion 6 whi
h
ontains

a
o-indu
tive
hara
terisation of typed barbed
ongruen
e. The paper

ends with a short example and a
on
lusion, whi
h
ontains a
omparison

with related work.

2 The Language

In this se
tion we review the (polyadi
) �-
al
ulus, its standard opera-

tional semanti
s and the type system we use throughout the paper.

The syntax of the language is given in Figure 1. We presuppose a

ountable supply of both variables, ranged over by x; y, and names, ranged

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 5

over by n;m. Readers familiar with the �-
al
ulus will �nd little of surprise

here ex
ept perhaps the omission of the non-deterministi

hoi
e operator.

This operator has little impa
t with respe
t to typing, and in parti
ular,

subtyping, so we disregard it for the purposes of this paper. The input

operator a?(X : A)� a
ts as a binder for the variables o

urring in the

pattern X while (new n : A) � binds the name n. This gives rise to the

usual notion of alpha
onversion between terms, �

�

, and we refer to
losed

terms, those
ontaining no free o

urren
es of variables, as programs ; they

are ranged over by P;Q. More generally we use fn(T); fv(T) to denote

the set of free names, variables respe
tively, in the term T . We assume

a well-de�ned
apture-free substitution operation Tfjv=Xjg whi
h allows

the value v to be substituted for the pattern X throughout the term T ;

this assumes that v has the same stru
ture as X, and as usual we require

o

urren
es of variables in patterns to be unique.

For te
hni
al reasons we present the redu
tion relation

�

�! between

untyped programs using stru
tural indu
tion and untyped labelled tran-

sitions. The generating rules are presented in Figure 2 and are entirely

standard for the polyadi
 �-
al
ulus. The a
tions, ranged over by �, take

the form

input:

a?v

��!

output:

(~
:

~

C)a!v

�����!

redu
tion:

�

�!

We use bn(�) for the set of bound names in the a
tion �, that is,

bn((~
 :

~

C)a!v) is ~
 and empty otherwise, and write

n

(�) for all of its

names. We will use the =) notation for so-
alled weak transitions in whi
h

� redu
tions are abstra
ted. Spe
i�
ally,

�

=) is the transitive
losure of

�

�! and =) is the re
exive
losure of

�

=). For labelled transitions,

�

=),

denotes =)

�

�!=) and, for a string of a
tions �

1

; : : : ; �

n

,

s

=) refers to

the relational
omposition

�

1

=) : : :

�

n

=).

We now present the types used, and the subtyping relation <:, in Fig-

ure 3. In addition to some primitive types su
h as int;bool we have

types of the form rhAi;whBi and frhAi;whBig, where A;B are in turn

types. Values allo
ated these types, respe
tively, are to be thought of as

hannel names with the
apability to read values of type A, write val-

ues of type B or both. We will often use the shorthand rwhAi to mean

frhAi;whAig. Sin
e we use a polyadi
 version of the �-
al
ulus we also

allow tuple-types. It will also be
onvenient to have a maximal type >,

whi
h dominates all types in the subtyping relation. Intuitively a name a

at this type
an not be used for either reading or writing; but our version

6 Matthew Hennessy and Julian Rathke

(l-out)

a!hviP

a!v

��! P

(l-in)

a?(X : A)P

a?v

��! Pfjv=X jg

(l-open)

P

(~
:

~

C)a!v

�����! P

0

(new b : B) P

(b:B)(e
:

e

C)a!v

��������! P

0

b 6= a

b 2 fn(v)

(l-
om)

P

(~
:

~

C)a!v

�����! P

0

; Q

a?v

��! Q

0

P jQ

�

�!
(new e
 :

e

C
) (P

0

jQ

0

)

~
 \ fn(Q) = ;

(l-
om)

P

a?v

��! P

0

; Q

(~
:

~

C)a!v

�����! Q

0

P jQ

�

�! (new e
 :

e

C) (P

0

jQ

0

)

~
 \ fn(P) = ;

(l-eq)

if u = w then P else Q

�

�! Q

u 6= w

if u = u then P else Q

�

�! P

(l-
ntx)

P

�

�! P

0

P jQ

�

�! P

0

jQ

Q j P

�

�! Q j P

0

bn(�) 62 fn(Q)

P

�

�! P

0

�P

�

�! �P j P

0

P

�

�!
P

0

(new a : A) P

�

�! (new a : A) P

0

a 62

n

(�)

P

�

�!
P

0

P �

�

Q

Q

�

�! P

0

Figure 2. The Operational Semanti
s

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 7

Types:

>; int;bool 2 Types

A 2 Types

rhAi 2 Types

whAi 2 Types

A;B 2 Types; B <: A

frhAi; whBig 2 Types

A

i

2 Types

(A

1

; : : : ;A

n

) 2 Types

Subtyping:

A <: A

0

rhAi <: rhA

0

i

frhAi;whBig <: rhA

0

i

A <: A

0

whA

0

i <: whAi

frhBi;whA

0

ig <: whAi

A <: A

0

; B <: B

0

frhAi;whB

0

ig <: frhA

0

i;whBig A <: >

A

i

<: A

0

i

(A

1

: : :A

n

) <: (A

0

1

: : :A

0

n

)

Figure 3. Types

8 Matthew Hennessy and Julian Rathke

(t-id)

�(u) <: A

� ` u : A

(t-base)

bv 2 Base

� ` bv : Base

(t-tup)

� ` v

i

: A

i

(8i)

� ` (v

1

; : : : ; v

k

) : (A

1

; : : : ;A

k

)

(t-in)

�; X : A ` T

� ` u : rhAi

� ` u?(X : A)T

(t-out)

� ` u : whAi

� ` v : A

� ` T

� ` u!hviT

(t-eq)

� ` u : A; v : B

� ` U

� u fu : B; v : Ag ` T

� ` if u = v then T else U

(t-new)

�; a : A ` T

� ` (new a : A) T

(t-str)

� ` T; U

� ` T j U; �T; 0

Figure 4. The Typing Rules

of the �-
al
ulus has name mat
hing and therefore a name at type >
an

be
ompared to other names.

Thus our types are a generalisation of those introdu
ed in [18℄. The

subtyping relation <:
an also be viewed as the obvious generalisation of

their subtyping relation. In fa
t our types, and our subtyping relation,

are a mild variation of those used in [21℄, to whi
h the reader is referred

for more details, parti
ularly with respe
t to the following result:

Proposition 2.1 The set of types Types is a preorder with respe
t to <:,

with both a partial meet operation u and a partial join t. 2.

The essential point here is that if two types A

1

;A

2

are bounded below,

that is B <: A

1

; B <: A

1

for some type B then they have a greatest lower

bound, A

1

uA

2

. Intuitively A

1

uA

2

is the \union of the
apabilities" in A

1

and A

2

. Be
ause the write
apability wh�i is
ontravariant with respe
t

to <: the de�nition of u requires the existen
e of a partial join t.

We now present the type inferen
e rules for pro
ess terms in Figure 4.

The judgements are of the form � ` T where � is a type environment, that

is a �nite mapping from identi�ers, variables and names, to types.

For an identi�er id we write �; id : A for the type environment obtained

by augmenting � so as to map id to A; this notation is only de�ned if id

is not already in the domain of �. More generally we use � u id : A to

mean the type environment �; id : A if id is not in the domain of � and �

0

otherwise, where �

0

is equal to � ex
ept possibly at id, where �

0

takes the

value �(id) u A (if de�ned). This notation is generalised in the obvious

way to values. We will often write � for
losed type environments whose

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 9

domain
onsists solely of names.

The reader familiar with the input/output
apability types of �-
al
ulus,

[18℄, should �nd little surprise in the inferen
e rules ex
ept perhaps for the

type rule for
onditionals, taken from [21℄:

(t-eq)

� ` u : A; v : B

� ` U

� u fu : B; v : Ag ` T

� ` if u = v then T else U

In order to establish that if u = v then T else U is well-typed with respe
t

to the type environment � we would want to at least
he
k that T and

U are well-typed with respe
t to � and perhaps one might imagine that

u and v have the same type. Given that u and v may be di�erent it is

perfe
tly reasonable, parti
ularly in the presen
e of subtyping, to allow for

the fa
t that u and v may be
hannels with very di�erent
apabilities and

we ought not to insist upon them having ne
essarily the same types. If

however, it transpires that u and v are equal, and the
onditional bran
h

ontaining T is taken, then we have gained extra information in the sense

that u and v must have the same
apabilities and the
ontinuing pro
ess

T may take advantage of this. The inferen
e rule re
e
ts this reasoning in

the hypothesis � u fu : B; v : Ag ` T (note the swit
h of types for u and

v). Re
all that the u operator essentially forms a union of
apabilities on

types.

Our �rst obligation is to establish that the redu
tion relation

�

�! re-

stri
ts to the sub
lass of well-typed terms. Moreover, we provide two

useful synta
ti
 properties of typed terms with respe
t to
ommuni
ation

a
tions. We write �

r

(n) # to indi
ate that the type environment � at n

has a type of the form rhAi or frhAi;whBig and, in this situation, we will

write �

r

(n) to refer to the type A , at whi
h n may read values. Similarly

for �

w

(n) for types with write
apability.

Theorem 2.2 (Subje
t Redu
tion) Suppose � ` P . Then

� P

�

�! Q implies � ` Q

� P

a?v

��! Q implies �

r

(a) # and if � u v : �

r

(a) is well-de�ned then

� u v : �

r

(a) ` Q.

� P

(~
:

~

C)a!v

�����! Q implies �

w

(a) #, and �; ~
 :

~

C ` v : �

w

(a); Q.

We end this se
tion by brie
y de�ning a stru
tural
ongruen
e � of the

�-
al
ulus. This is de�ned to be the least equivalen
e extending �

�

, whi
h

10 Matthew Hennessy and Julian Rathke

is preserved by the operators of the language, and satis�es the axioms:

T j (new a) U � (new a) (T jU) if a 62 fn(T)

(new a) T � T if a 62 fn(T)

T jU � U jT

T j 0 � T

if u = v then (new a) T else U � (new a) (if u = v then T else U)

if a 62 fn(T); a 6= u; v

if u = v then T else (new a) U � (new a) (if u = v then T else U)

if a 62 fn(U); a 6= u; v

u?(x) (new a) T � (new a) (u?(x) t) if a 6= u

We state, without proof, the following well-known properties of this stru
-

tural
ongruen
e:

Proposition 2.3

� For every �nite term T (i.e. with no o

urren
e of repli
ation) there is

a newfree term T

0

, that is a term
ontaining no o

urren
es of (new) ,

su
h that T � (new ~
 :

~

C) T

0

� If P � Q and P

�

�! P

0

then there exists some Q

�

�! Q

0

su
h that

P

0

� Q

0

. 2

3 Typed Behavioural Equivalen
es

We are interested in developing behavioural equivalen
es between pro-

esses whi
h take into a

ount the type environment in whi
h the pro-

esses are operating. We
on
entrate on two main approa
hes, the �rst

based on the ability of observers to dis
ern a di�eren
e in the run-time

behaviour of pro
esses [16, 8℄, while the se
ond, usually asso
iated with

bisimulation theory [13℄, uses
o-indu
tive methods.

3.1 Testing Preorders

Here we make expli
it the
omputing
ontext in whi
h a pro
ess operates.

A test or observer is a �nite pro
ess with an o

urren
e of a new reserved

name !, used to report the su

ess of the test. The restri
tion to �nite

tests is for
onvenien
e only; it is well-known [8℄ that in�nite tests do not

result in any extra dis
riminating power. We let T to range over tests,

with the typing rule I ` !!hi for all type environments I. When pla
ed

in parallel with a pro
ess P , a test may intera
t with P , produ
ing an

output on ! if some desired behaviour of P has been observed. We write

P may T

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 11

T j P

�

�!

�

R for some R su
h that R
an report su

ess, i.e. R

!!hi

��!. The

stronger relation

P must T

holds when in every
omputation

T j P

�

�! R

1

�

�! : : :

�

�! R

n

�

�! : : :

there is some R

k

; k � 0, whi
h
an report su

ess. Behavioural equiva-

len
es
an now be de�ned by requiring that pro
esses rea
t in the same

manner for a given
lass of tests. Here it is appropriate to
hoose the
lass

of tests whi
h are well-typed relative to a given environment I.

De�nition 3.1 (Testing Preorders) We write I j= P

�

<

may

Q if P may

T implies Qmay T , for every test T su
h that I ` T .

Similarly I j= P

�

<

must

Q means that for every su
h T , P must T implies

Qmust T .

We use

�

=

may

and

�

=

must

denote the related equivalen
e relations.

Note that in I`P

�

=

must

Q (and similar judgements) the type environment

I is a
onstraint on the observer, or
omputing
ontext, rather than the

pro
esses P; Q themselves; indeed in the de�nition there is no requirement

on P; Q to be well-typed. However the alternative
hara
terisations of

these relations given in Se
tion 5 depend on them being well-typed in a

type environment
ompatible with I.

3.2 Co-indu
tive methods

In this subse
tion we use type environments as
onstraints on the pro
esses

themselves rather than their
omputing
ontext.

De�nition 3.2 A typed relation over pro
esses
onsists of a family R of

relations over pro
esses, parametrised by
losed type environments,

R = fR

�

j �
losed type environment g

whi
h satis�es P R

�

Q implies � ` P; Q.

We normally write � j= P R Q in pla
e of P R

�

Q.

Typed relations over pro
esses are generalised to arbitrary terms by de�n-

ing

�; X : A j= T R

o

U

to be true if for every value v,
losed type environment �

0

disjoint from �

and type A su
h that �;�

0

` v : A, we have �;�

0

` Tfjv=X jg R Ufjv=Xjg.

Note that this enables us to substitute new values, values whi
h are not

12 Matthew Hennessy and Julian Rathke

ne
essarily known to the
urrent type environment �, although it does not

allow us to extend the types of values whi
h are already in the domain

of �. However even on
losed terms there may be a di�eren
e between a

relation R and its open extension R

o

; in general for � j= P R

o

Q to be

true we must have �;�

0

j= P R Q for every allowed �

0

. Note that this is

a form of weakening.

De�nition 3.3 A typed relation R is said to
losed with respe
t to weak-

ening, or w-
losed, if R

o

= R.

All the behavioural equivalen
es we will
onsider will be w-
losed. to

de�ne these we need to
onsider a number of properties of typed relations.

Redu
tion
losed: The typed relationR is redu
tion
losed whenever

� j= P R Q and P

�

�! P

0

implies there exists some Q

0

su
h that Q =) Q

0

and � j= P

0

R Q

0

.

Contextual: Contexts are de�ned by extending the syntax in Figure 1,

allowing typed holes [�

�

℄ in terms. The typing system in Figure 4 is ex-

tended to
ontexts in the obvious way, by adding the rule

(t-
xt)

�;�

0

` [�

�

℄

We use C[℄ to denote
ontexts with at most one hole and C[T ℄ the term

whi
h results from substituting the term T into the hole. We leave the

reader to establish

Proposition 3.4 �

0

` T and � ` C[�

�

0

℄ implies � ` C[T ℄. 2

Then we say the typed relation R is
ontextual whenever �

0

j= T R

o

U

and � ` C[�

�

0

℄ implies � j= C[T ℄ R

o

C[U ℄.

Unravelling this de�nition gives the following example
onsequen
es

for
ontextual relations over
losed terms.

� � j= P R P

0

implies �;�

0

j= P R P

0

� � j= P R P

0

and � ` Q implies � j= P jQ R P

0

jQ.

� � j= P R P

0

and � ` a!hvi 0 implies � j= a!hviP R a!hviP

0

.

� If � ` a : rhAi and for every v, �

0

, su
h that �;�

0

` v : A we have

�;�

0

j= Tfjv=Xjg R Ufjv=X jg then �;�

0

j= a?(X : A)T R a?(X : A)U .

� �; a : A j= P R P

0

implies � j= (new a : A) P R (new a : A) P

0

.

The
ondition on inputs is very natural; a?(X : A)T and a?(X : A)U are

only related if Tfjv=Xjg and Ufjv=Xjg are related for every v and �

0

su
h

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 13

that �;�

0

` v : A; this in
ludes values v whi
h are not known in the

urrent environment �.

Barb Preserving: For a given name a su
h that � ` a : rwh>i. we

write � j= P +

barb

a if there exists some P

0

su
h that P

�

�!

�

P

0

and

P

0

a!hi

��!. Then we say the typed relationR is barb preserving if � j= P R Q

and � j= P +

barb

a implies � j= Q +

barb

a.

De�nition 3.5 (Contextual observational equivalen
e) Let

�

=

xt

obs

be

the largest typed relation over pro
esses whi
h is

� symmetri
, that is ea
h
omponent of the relation is symmetri

�
ontextual

� redu
tion
losed

� barb preserving.

We will usually write this relation in the form � j= P

�

=

xt

obs

Q, and we

emphasise that here � is a
onstraint on the pro
esses themselves, that is

� ` P; Q, rather than its
ontext.

One signi�
ant property of this behavioural relation is:

Lemma 3.6 The relation

�

=

xt

obs

is w-
losed. That is � j= P

�

=

xt

obs

Q

implies �;�

0

j= P

�

=

xt

obs

Q.

Proof: Follows immediately from
ontextuality. 2

In Se
tion 6 we will give a
o-indu
tive
hara
terisation of this relation in

the lts Conf .

4 The LTS of Typed A
tions

In this se
tion we formally de�ne the typed a
tions dis
ussed in the Intro-

du
tion and derive their properties. These a
tions will form the labelled

transition system Conf , whi
h
an be used to provide
hara
terisations

of the behavioural equivalen
es dis
ussed in the previous se
tion.

4.1 Typed A
tions

A type environment I is
ompatible with � if

� I :> �

� dom(I) = dom(�)

De�nition 4.1 The triple I; �`T is a
on�guration if � is a
losed type

environment su
h that

14 Matthew Hennessy and Julian Rathke

(tylts-red)

P

�

�! P

0

I; � ` P

�

�! I; � ` P

0

(tylts-out)

I

r

(a) #

I; � ` a!hviP

a!v

��! I u v : I

r

(a);� ` P

(tylts-in)

I

w

(a) # I ` v : I

w

(a)

I; � ` a?(X : A)P

a?v

��! I; � ` Pfjv=Xjg

(tylts-open)

I; b : >; �; b : B ` P

(~
)a!v

���! I

0

; �

0

` P

0

I; � ` (new b : B) P

(be
)a!v

����! I

0

; �

0

` P

0

b 6= a

b 2 fn(v)

(tylts-
txt)

I; � ` P

�

�! I

0

; �

0

` P

0

I; � ` �P

�

�!
I

0

; �

0

` �P j P

0

(tylts-equiv)

I; � ` P

�

�! I

0

; �

0

` P

0

I; � `Q

�

�!
I; �

0

` P

0

P �

�

Q

I; � ` P

�

�! I

0

; �

0

` P

0

I; � ` P jQ

�

�! I

0

; �

0

` P

0

jQ

I; � `Q j P

�

�! I

0

; �

0

`Q j P

0

bn(�) 62 fn(Q)

I; a : >; �; a : A ` P

�

�! I

0

; a : >; �

0

; a : A ` P

0

I; � ` (new a : A) P

�

�! I

0

; �

0

` (new a : A) P

0

a 62

n

(�)

Figure 5. Typed A
tions

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 15

� I is
ompatible with �

� � ` T

The environment I represents the environment's view of the types allo-

ated to the names in the pro
ess. For this reason this view must a

ord

with the a
tual types allo
ated to these names. This is guaranteed by

requiring I :> � where � is the a
tual type
ontext for the term under

investigation. Essentially this says that the environment
annot know
a-

pabilities for a
hannel whi
h simply do not exist. The requirement that

the domains of the environments be the same is a te
hni
al means of en-

suring uniqueness of fresh names. We use Conf , ranged over by C;D, to

denote the set of all
on�gurations.

The generating rules for the transition system of typed a
tions are de-

�ned in Figure 5 and are to be understood as a
ting on
on�gurations.

The rules are obtained from those in Figure 2 by taking the type envi-

ronment of the
omputing
ontext, I, into a

ount; essentially a
tions are

only possible if they are allowed by I. Note also that the type annotations

on the bound names of output a
tions are dropped; they are only required

in Figure 2 for the de�nition of the untyped redu
tion relation

�

�!.

Note also that a priori the rule (tylts-out) is partial in the sense that

the
on
lusion
an only be formed if the extended environment Iuv : I

r

(a)

is well de�ned. However the �rst part of the next Proposition establishes

that this meet always exists. It also proves that the set of
on�gurations

is preserved by the transitions.

Proposition 4.2

� If I

r

(v) exists and � <: I then I u v : I

r

(a), is always de�ned.

� If I; � ` P

�

�! I

0

; �

0

` P

0

and I; � ` P is a
on�guration then so is

I

0

; �

0

` P

0

.

Proof: For the �rst statement it is suÆ
ient to prove the stronger state-

ment, that I u v : I

r

(a) :> �. This is done by �rst noting that these
an

only di�er at v so we use the hypothesis I :> � to redu
e our obligation

to showing I(v) u I

r

(a) :> �(v). This would follow easily if we knew

I

r

(a) :> �(v) as I(v) :> �(v)
learly holds. So, in order to establish

I

r

(a) :> �(v) we observe that, be
ause � ` a!v:P , there must exist some

A su
h that

(i) � ` a : whAi

(ii) � ` v : A.

16 Matthew Hennessy and Julian Rathke

This means that �(v) <: A (by (ii)), and that A <: �

w

(a) (by (i)). We

know that I

r

(a) # and, as I :> �, thus �

r

(a) # also. By virtue of being

a well-formed type it must be the
ase that �

w

(a) <: �

r

(a) and, in turn,

�

r

(a) <: I

r

(a). Colle
ting these together, transitivity of <: gives the

required result.

For the se
ond statement we pro
eed by rule indu
tion. For the most

part this is straightforward, the only involved
ase arises when

�

�! has

been derived as an instan
e of the (tylts-out) rule. We demonstrate

this
ase here.

We are to show that I u v : I

r

(a);� ` P is a
on�guration given that

� ` a!v:P , I :> �, and I

r

(a) #. It is easy to see from the type inferen
e

rules that � ` P and in the �rst part we have already established the

other requirement, namely that I u v : I

r

(a) :> �. 2

It follows that (Conf ;A
t) is indeed a labelled transition system, (lts).

In the next two se
tions we show that the various typed behaviour relations

over pro
esses
an be
hara
terised by adapting the standard de�nitions,

[14, 8℄ to this lts.

We end this se
tion by establishing various properties whi
h will be

required of typed a
tions. We �rst determine under what
ir
umstan
es

the untyped a
tions, in Figure 2,
an give rise to typed a
tions.

Lemma 4.3 Suppose I; � ` P is a
on�guration.

� I; � ` P

�

�! I; � `Q if and only if P

�

�! Q

� I; � ` P

a?v

��! I; � ` Q if and only if I

w

(a) #, I ` v : I

w

(a) and

P

a?v

��! Q.

� I; � ` P

(~
)a!v

���! I u v : I

r

(a);�; ~
 :

~

C ` Q if and only if I

r

(a) # and

P

(~
:

~

C)a!v

�����! Q.

Proof: Straightforward rule indu
tion. 2

It turns out that these are the only form of typed a
tions whi
h
an be

dedu
ed from the rules. Note that the a
tion determines
ompletely the

resulting type environment of the observer, the
hange from I to I

0

, but

not ne
essarily that of the pro
ess itself. To make this pre
ise let us de�ne

the partial predi
ate after � over environments as follows:

� = � : Here I after � is always de�ned to be I.

� = a?v: Here I after � is also de�ned to be I.

� = (~
)a!v: Here it is only de�ned if I

r

(a) exists and I u v : I

r

(a) is

well-de�ned; in whi
h
ase it is this last updated environment.

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 17

We leave the reader to
he
k that

Lemma 4.4 If I; � ` P

�

�! I

0

; �

0

` Q then I after � exists and I

0

=

I after �. 2

So to determine the pre
ise form of a typed a
tion it is now suÆ
ient to

des
ribe the resulting type environment of the pro
ess, the
hange from

� to �

0

. We
an now give the pre
ise form of typed a
tions.

Lemma 4.5 Suppose I; � ` P

�

�! (I after �);�

0

`Q. Then

� = � : Here �

0

= �.

� = a?v: Here �

0

= �.

� = (~
)a!v: Here �

0

= �; ~
 :

~

C for some

~

C su
h that �; ~
 :

~

C ` v : I

r

(a).

Proof: Again, a straightforward rule indu
tion suÆ
es. 2

4.2 Contextuality of labelled transitions

An important feature of our labelled transitions of typed a
tions is that

the observations we make of pro
esses are
ontextually valid. That is to

say, the method of the environment learning information regarding
om-

muni
ation
apabilities from pro
esses by means of the labelled transi-

tion system
an a
tually be realised with well-typed
ode fragments, or

ontexts, written in our language. The formalisation of this idea simply

identi�es ea
h label � of the transition system (other than �) with a small

testing
ontext of the language with the appropriate properties. These

properties essentially say that � transitions indu
e redu
tions in �
on-

texts and vi
e-versa. There is some added te
hni
al
ompli
ations whi
h

allow the environment's type information to
hange over time. After ea
h

observation we use the testing
ontext to export all the information about

the
urrent state of knowledge to the environment.

The following abbreviations will be useful: if I is the type environ-

ment v

1

: A

1

; : : : ; v

n

: A

n

then we write (I) to represent the tuple type

(A

1

; : : : ;A

n

) and we write v

I

to mean the tuple of values (v

1

; : : : ; v

n

).

Proposition 4.6 For ea
h label � and ea
h environment I
ompatible

with �, there exists a pro
ess C

I

�

, using a fresh name Æ, su
h that

(i) if I; � ` P

�

�! I

0

; �;�

0

` P

0

then I; Æ : rwhAi ` C

I

�

and P j C

I

�

=)

(new�

0

) P

0

j Æ!hv

I

0

i, where A = (I

0

)

(ii) if P jC

I

�

=) (new�

0

) P

0

jÆ!hv

0

i for some v

0

and I; Æ : rwhAi ` C

I

�

with

Æ 62 �

0

and dom(�

0

) = bn(�) then I; � ` P

�

=) (I after �);�;�

0

` P

0

18 Matthew Hennessy and Julian Rathke

Proof: For ease of presentation we restri
t ourselves to terms of the

monadi
 �-
al
ulus, i.e. no tuple types; it is a simple but tedious pro
e-

dure to extend this to the full polyadi
 language. Given an environment

I and label � we
hoose a fresh name Æ of type rwh(I

0

)i and let B be the

type I

r

(a), if de�ned, and otherwise >. De�ne the testing pro
esses C

I

�

as follows:

� C

I

a!b

= a?(x : B) if x = b then Æ!hv

Iub:B

i else 0

� C

I

(b)a!b

= a?(x : B) if x 62 I then Æ!hv

I;x:B

i else 0

� C

I

a?b

= a!b:Æ!hv

I

i

where x 62 I is
oded using nested
onditionals to
he
k that x is not equal

to any of the names in I.

As an example of (i) we
onsider the
ase in whi
h � is a!b;the other

ases are similar. Note that the hypothesis, I; � ` P

�

�! I

0

; �;�

0

` P

0

,

ensures that I

r

(a) is de�ned and therefore C

I

�

is well typed.

We �rst show P j C

I

�

=) (new�

0

) P

0

j Æ!hv

I

0

i. Applying the hypothesis

to Lemma 4.3 we obtain

P

a!b

�! P

0

and, by de�nition,

C

I

a!hbi

a?b

��!�! Æ!hv

I

0

i

These
an intera
t to yield:

P j C

I

a!hbi

=) P

0

j Æ!hv

I

0

i

as required.

To show that the testing pro
ess is well-typed let � be the type
ontext

x : B; I; Æ : rwh(I

0

)i u b : B u x : I(b) where I

0

is I u b : B in this
ase. It

is easy to
he
k that

� ` Æ : wh(I

0

)i and � ` v

Iub:B

: (I

0

)

thus, by applying the typing rule (t-out) we know � ` Æ!hv

Iub:B

i. This

an now be used as a hypothesis to rule (t-eq) to infer

x : B; I; Æ : rwh(I

0

)i ` if x = b then Æ!hv

Iub:B

i else 0 :

We know that B = I

r

(a) so I; Æ : rwh(I

0

)i ` a : rhBi and this,
ombined

with the previous judgement, allow us to apply (t-in) to obtain

I; Æ : rwh(I

0

)i ` a?(x : B) if x = b then Æ!hv

I

0

i else 0 (= C

I

a!b

):

The reader should note the essential use of the a

umulated type infor-

mation in the hypothesis of the type rule (t-eq).

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 19

For the
onverse, part (ii), we use the
ase � = a?b as an illustrative

example. Suppose then that I; Æ : rwh(I)i ` C

I

�

and

P j C

I

�

=) P

0

j Æ!hv

0

i

for some v

0

. It must be the
ase, as Æ is fresh to P , that v

0

is v

I

and,

by analysis of the redu
tion rules, that P =)

a?b

��!=) P

0

. Now, we know

that I; Æ : rwh(I)i ` C

I

�

so from this we
an dedu
e that this must have

been inferred from I ` a : whBi and I ` b : B for some type B su
h that

B <: I

w

(a). This ensures I

w

(a) # and I ` b : I

w

(a), allowing us to apply

Lemma 4.3 to obtain the required

I; � ` P =)

a?b

��!=) I; � ` P

0

2

5 Chara
terising the Testing Preorders

In this se
tion we give alternative
hara
terisations of the two testing

preorders. It should be emphasised that these are obtained by applying

the
ompletely standard de�nitions of tra
es and a

eptan
e sets, [8℄, not

to the lts obtained from the operational semanti
s given in Figure 2, but

to the lts of types a
tions, Conf . However a priori there is a mismat
h

between formalisation of Conf and the de�nition of the testing preorders

in Se
tion 3.1; the latter uses only one type environment, that of the

observer, while the former uses two type environments, one for the observer

and the other for the pro
ess under observation. To re
tify this situation

we adapt the testing preorders, in a trivial manner, to typed pro
esses,

that is pro
esses with their typing environment.

De�nition 5.1 (Testing Preorders) Let I j= (� ` P)

�

<

may

(�

0

` Q)

if

� both I; � ` P and I; � ` P are
on�gurations

� I ` P

�

<

may

Q

The preorder

�

<

must

is generalised in a similar manner.

To study these relations we need to generalise various properties originally

de�ned for typed relations, that is relations parametrised over single type

environments, to relations over
on�gurations, su
h as

�

<

may

and

�

<

must

in the above de�nition. So for example a natural generalisation of the

de�nition of open extension, on page 11, is to allow I j= (� ` P) �

o

may

(� ` Q) whenever I; I

0

j= (�; I

0

` P) �

may

(�; I

0

` Q), for every I

0

disjoint from I. With this de�nition we have:

20 Matthew Hennessy and Julian Rathke

Proposition 5.2 The relations

�

<

may

and

�

=

must

over
on�gurations are

w-
losed.

Proof: A simple
orollary of Lemma 2.3. 2

We now give alternative
hara
terisations to these behavioural preorders.

5.1 May Testing

Typed a
tions are extended to typed tra
es a straightforward manner:

� I; � ` P

"

=) I; � ` P

� I; �`P

�

�! I; �

0

`P

0

and I; �

0

`P

0

s

=) I; �

00

`P

00

implies I; �`P

s

=)

I; �

00

` P

00

� I; �`P

�

�! I; �

0

`P

0

and I; �

0

`P

0

s

=) I; �

0

`P

00

implies I; �`P

��s

=)

I; �

00

` P

00

The
hara
terisation depends on a De
omposition and Composition result

for these sequen
es. This requires an asymmetri
 de�nition of
omplemen-

tary a
tion. For a visible a
tion � we let � denote a!v if � is a?v and a?v if

� has the form (~
 :

~

C)a?v. Thus � transforms an a
tion from the untyped

semanti
s in Figure 2 to one from the typed semanti
s in Figure 5. It is

extended to sequen
es in the natural way.

Theorem 5.3 (Tra
e De
omposition) Suppose T j P

�

�!

�

R where

I; �`P is a
on�guration su
h that I ` T , and T is newfree. Then there

exists a typed tra
e I; � ` P

s

=) I

0

; �

0

` P

0

and a derivation T

s

=) T

0

,

where R � (~
 :

~

C)(T

0

j P

0

), for some (~
 :

~

C).

Proof: By indu
tion on the derivation T j P

�

�!

�

R. The indu
tive
ase

is when it has the form T j P

�

�!

�

�!

�

R and a
ase analysis is required

on the �rst move. The interesting
ase is where there is
ommuni
ation

between T and P .

Output from T to P : In this
ase we have T j P

�

�! T

0

j P

0

�

�!

�

R

where

T

a!v

��! T

0

P

a?v

��! P

0

sin
e T is newfree. Applying Subje
t Redu
tion to the �rst redu
tion

we obtain I

w

(a) # and I ` v : I

w

(a), whi
h enables us to apply the

se
ond part of Lemma 4.3 to obtain the typed a
tion I; � ` P

a?v

��!

I; �`P

0

. Subje
t Redu
tion also gives I ` T

0

and therefore indu
tion

may be applied to obtain the rest of the typed tra
e.

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 21

Output from P to T : Here we have

T j P

�

�! (new

~

d :

~

D) (T

0

j P

0

)

�

�!

�

(new

~

d :

~

D) R

0

where

T

a?v

��! T

0

P

(

~

d:

~

D)a!v

�����! P

0

:

Again we
an apply Subje
t Redu
tion to the �rst a
tion to obtain

I

r

(a) # and we
an apply the third part of Lemma 4.3, this time to

obtain the typed a
tion I; � ` P

(

~

d:

~

D)a!v

�����! I u v : I

r

(a);�;

~

d :

~

D `Q

Also, sin
e I u v : I

r

(a) is de�ned, Subje
t Redu
tion gives I u v :

I

r

(a) ` T

0

and so we
an apply indu
tion to the sequen
e T

0

jP

0

�

�!

�

R

0

to obtain the remainder of the typed tra
e.

2

Note that this result is not true if T
ontains any o

urren
es of (new n) ().

Example 5.4 Suppose T; P represent the terms (new
 : C) a!h
i
?() T

0

and a?(x) x!hiP

0

respe
tively, where C is the type rwhi, and suppose that

I and � are
ompatible environments su
h that I ` T , � ` P and I

r

(a) =

�

r

(a) = whi; these are easy to
onstru
t. Then the derivation T jP

�

�!

�

�!

(new
 : C) T

0

j P

0

an not be de
omposed.

This is a
onsequen
e of the assumption built into our
on�gurations

I; � ` P , that I <: �.

Theorem 5.5 (Tra
e Composition) Suppose I; � ` P

s

=) I; �

0

` P

0

and T

s

=) T

0

. Then there exists a derivation T j P

�

�!

�

(~
 :

~

C)(T

0

j P

0

),

for some (~
 :

~

C).

Proof: Straightforward indu
tion on s. 2

These two results enable us to state our �rst
hara
terisation result.

De�nition 5.6 For any typed pro
ess � ` P let

Seq

I

(� ` P) = f s j I; � ` P

s

=)g

Then we write

I j= (� ` P)�

may

(� ` Q)

if Seq

I

(� ` P) � Seq

I

(� ` Q).

22 Matthew Hennessy and Julian Rathke

Our aim is to show that

�

<

may

oin
ides with the open extension of�

may

,

�

o

may

. It is the use of the open extension whi
h enables us to
apture the

e�e
t of tests whi
h generate new names, unknown to the pro
ess being

observed.

Theorem 5.7 (Alternative Chara
terisation of May Testing)

I`(� ` P)

�

<

may

(�

0

` Q) if and only if I j= (� ` P)�

o

may

(�

0

` Q).

Proof:(Outline) First suppose I j= (� ` P)�

o

may

(�

0

` Q). and P may

T for some test T su
h that I ` T . Using the stru
tural
ongruen
e

the test T may be written as T � (new ~
 :

~

C) T

0

, where T

0

is newfree;

moreover it is easy to
he
k, using Proposition 2.3, that for any pro
ess

R, Rmay T if and only if Rmay T

0

. So we establish Qmay T

0

.

From P may T

0

we know there is a
omputation

T

0

j P

�

�! R

1

�

�! : : :

�

�! R

n

for some R

n

whi
h reports su

ess. We know I; ~
 :

~

C ` T

0

, and by

weakening �; ~
 :

~

C ` P . Therefore using Tra
e De
omposition we
an

obtain

I; ~
 :

~

C; �; ~
 :

~

C ` P

s

=) I

0

; �

0

` P

0

T

0 s

=) T

00

where T

00

!!hi

��!. The hypothesis ensures

Seq

I;~
:

~

C

(�; ~
 :

~

C ` P) � Seq

I;~
:

~

C

(�

0

; ~
 :

~

C ` Q)

and therefore we have a typed tra
e

I; ~
 :

~

C; �

0

; ~
 :

~

C `Q

s

=)

Now Tra
e Composition
an be used to obtain a su

essful
omputation

from T

0

jQ.

The
onverse requires the de�nition of testing pro
esses whi
h
an

determine if a pro
ess
an perform a parti
ular tra
e. These use the terms

C

I

�

, de�ned in Se
tion 4.2, and sin
e their
onstru
tion is very similar to

those used in Theorem 5.11 below. We leave the details to the reader. 2

5.2 Must Testing

The
hara
terisation of must testing requires a notion of
onvergen
e and

a

eptan
e set for the lts Conf .

De�nition 5.8 (Convergen
e) We say the
on�guration C
onverges,

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 23

written C +, if there is no in�nite sequen
e of derivations

C

�

�! C

1

�

�! : : :

�

�! C

k

�

�!

This is generalised to tra
e sets by

C + " if C +

C + � � s if C + and C

0

+ s whenever C

0

�

�! C

0

De�nition 5.9 (A

eptan
e Sets) For any
on�guration let its ready

set be de�ned by

R(C) = f a? j 9v:C

a?v

��!g [f a! j 9v; ~
:C

(~
a!v

���!g:

Then its a

eptan
e set after S is given by

A

(C; s) = fR(C

0

) j C

s

=) C

0

6

�

�!g:

De�nition 5.10 We write I j= (� ` P) �

must

(�

0

` Q) if for every

tra
e s

(I; � ` P) + s implies (a) (I; �

0

` Q) + s

(b) 8D 2 A

(I; �

0

` Q; s)

9C 2 A

(I; � ` P; s) su
h that C � D:

Theorem 5.11 (Must Chara
terisation) I j= (� ` P)

�

<

must

(�

0

`

Q) if and only if I j= (� ` P)�

o

must

(�

0

` Q).

Proof: We leave the reader to prove one dire
tion, I j= (� ` P) �

o

must

(�

0

` Q) implies I j= (� ` P)

�

<

must

(�

0

` Q). It follows the lines of

Lemma 4.4.13 and Theorem 2.2.5 of [8℄, but using the De
omposition and

Composition Theorems given above; as in Theorem 5.7 tests with new

names are handled via the open extension.

To prove the
onverse we need to show that if I; I

0

j= �; I

0

`P 6�

must

�

0

; I

0

` Q then there is a test T su
h that P must T while Q 6must T .

We only
onsider the
ase when I

0

is empty; it
ontains all the ingredients

of the more general
ase.

There are two possible reasons for I j= �`P 6�

must

; �

0

`Q not being

true,
on
erning
onvergen
e and a

eptan
es respe
tively. Let us �rst

onsider
onvergen
e. Here the situation is that I; � ` P + s, for some s,

but I; �

0

`Q

s

=) I

0

; �

00

`Q

0

where Q

0

diverges. We
onstru
t a test C(s)

su
h that I ` C(s), P must C(s), and Q 6must C(s). The de�nition uses

the following notation:

� P�Q is used as shorthand for (new n) n!hijn?()P jn?()Q, the internal

hoi
e between P and Q.

24 Matthew Hennessy and Julian Rathke

� C

I

�;n

will be used to denote the
ontext asso
iated with the a
tion

� in Proposition 4.6, however with o

urren
es of Æ!hvi repla
ed by

n?() Æ!hvi.

If s is the empty sequen
e then C(s) is simply !!hi � !!hi. Otherwise

suppose it has the form � � s

0

. Then C(s) is de�ned to be

(new n) n!hi j n?()!!hi j

(new Æ : rwhI

0

i) C

I

�;n

j Æ?(X : (I

0

)) (C(s

0

)fjX=v

I

0

jg)

where I

0

is I after �.

The s derivation from I; �

0

`Q ensures that I ` C(s). The fa
t that

I; � ` P + s ensures that P must C(s) sin
e any stable state rea
hable

from C(s) must be su

essful. Finally the derivation from I; �

0

`Q ending

in the divergent Q

0

ensures that Q 6must C(s).

The se
ond possibility is that there is some D 2 A

(I; �

0

` Q; s)

whi
h has no
orresponding a

eptan
e set in A

(I; � ` P; s); here we

an assume that both
on�gurations I; � ` P and I; �

0

` Q
onverge

with respe
t to s.

Let C

1

; : : : ; C

n

be all the a

eptan
e sets in A

(I; � ` P; s). Then

we know that there is a set f

1

; : : :

n

g su
h that

i

2 C

i

�D, for ea
h i.

Note n may be zero but this will not a�e
t our argument.

First let us
onstru
t a test from this set:

T

D

= T (

1

) j : : : j T (

n

)

where the tests T (

i

) depend on the form of

i

:

�

i

is an input a?: Here we know there is a derivation

I; � ` P

s

=) (I after s);�

0

` P

00 a?v

��!

for some v. So let T (

i

) be a!hvi!!hi.

�

i

is an output a!v: Here we have

I; � ` P

s

=) (I after s);�

00

` P

0 a!v

��!

So we let T (

i

) be a?(X : A)!!hi, where A denotes (I after s)

r

(a),

whi
h by virtue of the last move we know exists.

Note we have
onstru
ted T

D

so that it
an be typed by (I after s).

Now we
onstru
t the test A(s;D) by indu
tion on s, in the same

manner as C(s). The only di�eren
e is in the base
ase, when s is the

empty sequen
e, where A(s;D) is de�ned to be T

D

.

Again one
an
he
k that

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 25

� I ` A(s;D)

� Q 6must A(s;D) be
ause of the derivation from Q whi
h gives rise to

the a

eptan
e set D

� but by
onstru
tion P must A(s;D); note this holds even in the
ase

when A

(I; � ` P; s) is empty.

2

6 Bisimulation

We now des
ribe our
hara
terisation of the
o-indu
tively de�ned be-

havioural equivalen
e,

�

=

xt

obs

, outlined in Se
tion 3.2.

First we re
all the de�nition of weak bisimulation from [13℄.

De�nition 6.1 Given a labelled transition system T , we say that a binary

relation R on T is a bisimulation if whenever n R m then

� if n

�

�! n

0

then there exists a m

�̂

=) m

0

su
h that n

0

R m

0

� if m

�

�! m

0

then there exists a n

�̂

=) n

0

su
h that n

0

R m

0

where �̂ is ", the empty string, if � is � and � otherwise.

Our intention is to show that

�

=

xt

obs

an be
hara
terised in terms of a

bisimulation over Conf .

However as in Se
tion 5 we have a mismat
h between the formalisation

of this relation,

�

=

xt

obs

, in Se
tion 3.2, whi
h only uses one type environment,

of the pro
ess being observed, and that of bisimulation equivalen
e, whi
h

uses two type environments. As with testing, we re
on
ile this di�eren
e

by extending the de�nition of

�

=

xt

obs

so that it takes into a

ount both

environments.

First we generalise De�nition 3.2 by now saying that an (extended)

typed relation is a familyR of relations over typed pro
esses, parametrised,

as before, by
losed type environments, whi
h satis�es: (� ` P) R

I

(�

0

`

Q) implies I; � ` P and I; � ` Q are
on�gurations: To
onform to

our previous notation we write this as

I j= (� ` P) R (�

0

` Q):

although e�e
tively these are restri
ted forms of relations over
on�gura-

tions.

De�nition 6.2 Let (typed) bisimulation equivalen
e be the largest typed

relation � whi
h is

26 Matthew Hennessy and Julian Rathke

� a weak bisimulation

� w-
losed, that is satisfying I j= (� ` P) R (�

0

` Q) implies I;�

00

j=

(�;�

00

` P) R (�

0

;�

00

` Q)

Bisimulation equivalen
e will be written as

I j= (� ` P) � (�

0

` Q):

Note that the se
ond requirement is required be
ause we have already seen

that

�

=

xt

obs

is w-
losed. Intuitively its in
lusion allows environments to pass

new values to pro
esses under investigation.

Two natural properties of (typed) bisimulation equivalen
e is given in

the following proposition:

Proposition 6.3 Suppose I j= (� ` P) � (�

0

` Q). Then

� for any appropriate �

00

, I;�

00

j= (�;�

00

` P) � (�

0

;�

00

` Q).

� If I <: I

0

then I

0

j= (� ` P) � (�

0

` Q)

Proof: The �rst result is simply a re-iteration of the fa
t that � is w-

losed. Intuitively the se
ond property is true be
ause I
onstrains the

behaviour under whi
h P and Q are
ompared. If they are equivalent

under the
onstraint I then they should remain equivalent when they are

onstrained further, by I

0

. To prove it formally let the familyR be de�ned

by

I

0

j= (� ` P) R (�

0

` Q)

if I j= (� ` P) � (�

0

` Q) for some I <: I

0

. This family is w-
losed by

de�nition, and it is straightforward to show that it is a bisimulation. It

follows that R � �, pointwise, from whi
h the result follows. 2

Let us now turn our attention to giving a similar formulation to

�

=

xt

obs

,

using two, rather than one, type environments. The de�nitions of redu
-

tion
losed and barb preserving generalise immediately to extended

typed relations. However that of being
ontextual is more
ompli
ated.

Rather than giving a general de�nition based on arbitrary
ontexts we

give a set of spe
i�
 rules for our
onstru
tors; we say the extended re-

lation R is
ontextual if it satis�es the rules given in Figure 6. Finally

let

�

=

xt

obs

be, as before, be the largest symmetri
, redu
tion
losed, barbed

preserving
ontextual extended typed relation.

The requirements in Figure 6 are for the most part natural gener-

alisations of the standard requirements for a relation to be preserved by

onstru
tors, generalised to take into a

ount the type environments. Note

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 27

(
xt-spe
)

I j= (� ` P) R (�

0

` Q); I <: I

0

I

0

j= (�;` P) R (�

0

;` Q)

(
xt-weak)

I j= (� ` P) R (�

0

` Q)

I;�

00

j= (�;�

00

` P) R (�

0

;�

00

` Q)

(
xt-in)

I ` a : rhAi

I;�

00

j= (�;�

00

` T [v=X℄) R (�

0

;�

00

` U [v=X℄); whenever I;�

00

` v : A

I j= (� ` a?(X : A)T) R (�

0

` a?(X : A) :U)

(
xt-out)

I ` u : whAi

I ` v : A

I j= (� ` P) R (�

0

` Q)

I j= (� ` u!hviP) R (�

0

` u!hviQ)

(
xt-mat
h)

� ` u : A; v : A

0

�

0

` u : B; v : B

0

I j= (� ` P

0

) R (�

0

` Q

0

)

I j= (� u fu : A

0

; v : Ag ` P) R (�

0

u fu : B

0

; v : Bg ` Q)

I j= (� ` if u = v then P else P

0

) R (�

0

` if u = v then Q else Q

0

)

(
xt-new)

I; a : > j= (�; a : A ` P) R (�

0

; a : A ` Q)

I j= (� ` (new a : A) P) R (�

0

` (new a : A) Q)

(
xt-par)

I j= (� ` P) R (�

0

` Q)

I ` R

I j= (� ` P jR) R (�

0

` Q jR)

I j= (� ` R j P) R (�

0

` R jQ)

(
xt-iter)

I j= (� ` P) R (�

0

` Q)

I j= (� ` �P) R (�

0

` �Q)

Figure 6. Contextuality for indexed relations over
on�gurations

28 Matthew Hennessy and Julian Rathke

however that the �rst two rules, (
xt-spe
) and (
xt-weak), automat-

i
ally build in spe
ialisation and weakening properties, respe
tively. This

may seem arti�
ial but is justi�ed by the following result, whi
h shows

that we do indeed have a generalisation of the de�nition of

�

=

xt

obs

from

Se
tion 3.2:

Proposition 6.4 � j= (� ` P)

�

=

xt

obs

(� ` Q) if and only if � j= P

�

=

xt

obs

Q.

Proof: We �rst show the if dire
tion. De�ne a typed relationR by letting

I j= (� ` P) R (� ` Q)

if � j= P

�

=

xt

obs

Q and � <: I. R is symmetri
, redu
tion
losed and

barb preserving. Using the fa
t that

�

=

xt

obs

, as a family of relations over

pro
esses, is
ontextual, we
an show that it satis�es all of the rules in

Figure 6.

Therefore R is
ontained pointwise in

�

=

xt

obs

, from whi
h the result

follows, sin
e � j= P

�

=

xt

obs

Q implies � j= (� ` P) R (� ` Q).

The
onverse is similar. Let the family of relations R, over pro
esses,

be de�ned by

� j= P R Q if � j= (� ` P)

�

=

xt

obs

(� ` Q):

Here the result will follow if we
an show that R is
ontained pointwise

in

�

=

xt

obs

, whi
h in turn will follow if we
an show that R satis�es all the

de�ning properties of

�

=

xt

obs

. The proof that it is symmetri
, redu
tion

losed and barb preserving is straightforward.

It remains to show
ontextuality, that �

0

j= T R

o

U and � ` C[�

�

0

℄

implies � j= C[T ℄ R

o

C[U ℄. This is proved by indu
tion on the derivation

of � ` C[�

�

℄, using the rules in Figure 6. Note that the rule (
xt-spe
)

is essential in the proof of the
ase in whi
h the
ontext is dedu
ed using

(t-new).

2

The remainder of this se
tion is devoted to showing that this gener-

alised
ontextual equivalen
e
oin
ides with weak bisimulation on Conf ;

that is I j= (� ` P)

�

=

xt

obs

(�

0

` Q) if and only if I j= (� ` P) � (�

0

` Q).

6.1 Soundness

First let us show that typed bisimulation equivalen
e is preserved, in some

appropriate manner, by the prin
ipal operators of the language.

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 29

Proposition 6.5 If I; a : > j= (�; a : A ` P) � (�

0

; a : A ` Q) then

I j= (� ` (new a : A) P) � (�

0

` (new a : A) Q).

Proof: Let the relation R over typed pro
esses be de�ned by

I j= (� ` R) R (� ` S)

if

� I j= (� ` R) � (� ` S)

� or R S, have the form (new a : A) P; (new a : A) Q, respe
tively, and

I; a : > j= (�; a : A ` P) � (�

0

; a : A ` Q).

Then R is w-
losed by de�nition. We show it is a bisimulation,

from whi
h the result will follow sin
e we will have established that,

pointwise, R is
ontained in �.

We show how every possible move from I; � ` R
an be mat
hed

by one from I; � ` S. The only non-trivial
ases are when R; S have

the se
ond form above. From the de�nition of typed a
tions in Figure 5

there are two possibilities.

1. The move is inferred using the rule (tylts-open):

I; � ` (new a : A) P

(a)�

��! I

0

; �

�

` P

0

;

for some output move �, be
ause

I; a : >; �; a : A ` P

�

�! I

0

; �

�

` P

0

:

Here the latter move
an be mat
hed by

I; a : >; �

0

; a : A ` Q

�

=) I

0

; �

0

�

` Q

0

for some Q

0

su
h that

I

0

j= (�

�

;` P) � (�

0

�

;` Q);

that is

I

0

j= (�

�

` P) R (�

0

�

` Q):

However an appli
ation of the rule (tylts-open), together with

some redu
tions, gives the required mat
hing move

I; �

0

` (new a : A) Q

(a)�

==) I

0

; �

0

�

` Q

0

:

2. The se
ond possibility is that the move is inferred using the rule

(tylts-
txt):

I; � ` (new a : A) P

�

�! I

0

; �

�

` (new a : A) P

0

;

be
ause

I; a : >; �; a : A ` P

�

�! I

0

; �

�

` P

0

;

30 Matthew Hennessy and Julian Rathke

where a 62

n

(�).

Here the proof is similar. We
an �nd a mat
hing move from I; a :

>; �

0

; a : A ` Q and then use (tylts-
txt) to obtain the required

mat
hing move from I; � ` (new a : A) Q.

2

Proposition 6.6 Suppose I ` R. Then I j= (� ` P) � (�

0

` Q) implies

I j= (� ` P jR) � (�

0

` Q jR).

Proof: Here, be
ause of the possible internal
ommuni
ations between R

and P; Q, the required de�nition of the relation over typed pro
esses is

somewhat
ompli
ated.

De�ne the relation R su
h that

I j= (� ` (new�

0

) P jR) R (�

0

` (new�

0

0

) Q jR)

if and only if there exists an I

0

ompatible with �

0

and �

0

0

su
h that

I; I

0

j= (�;�

0

` P) � (�

0

;�

0

0

` Q) and I; I

0

` R

and show that R forms a bisimulation.

Suppose then that

I j= (� ` (new�

0

) P jR) R (�

0

` (new�

0

0

) Q jR)

and that

I; � ` P jR

�

�! I

0

; �

00

` P

0

:

This presupposes the existen
e of an environment I

0

ompatible with both

�

0

and �

0

0

with the properties outlined in the de�nition of R . If � is a not

a � -a
tion then we know that the transition derives either from P or from

R. In either
ase, we
an use the hypothesis to obtain a
orresponding

transition from Q or from R again. So, the interesting
ase is when � is a

� a
tion. Consider how this
an o

ur:

(i) P or R performs a � a
tion independently.

(ii) P

(~
:

~

C)a!v

�����! P

0

and R

a?v

��! R

0

so that P

0

is (new�

0

; ~
 :

~

C) P

0

j R

0

for

some

~

C.

(iii) P

a?v

��! P

0

and R

(~
:

~

C)a!v

�����! R

0

so that P

0

is (new�

0

; ~
 :

~

C) P

0

jR

0

Obviously the �rst
ase (i) is treated as the
ase above when � is not a �

a
tion.

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 31

Suppose
ase (ii) holds. We know that I; I

0

` R so that, by Subje
t

Redu
tion 2.2, (I; I

0

)

r

(a) #. Then, Lemma 4.3 tells us that

I; I

0

; �;�

0

` P

(~
)a!v

���! I; I

0

after (~
)a!v; �;�

0

; ~
 :

~

C ` P

0

:

We know by hypothesis that

I; I

0

j= (�;�

0

` P) � (�

0

;�

0

0

` Q)

whi
h means there must exist a transition from Q whi
h mat
hes P 's

output. That is, there is some Q

0

su
h that

I; I

0

; �

0

;�

0

0

`Q

(~
)a!v

===) I; I

0

after (~
)a!v; �

0

;�

0

0

; ~
 :

~

C

0

`Q

0

with

I; I

0

after (~
)a!v j= (�;�

0

; ~
 :

~

C ` P

0

) � (�

0

;�

0

0

; ~
 :

~

C

0

` Q

0

):

We also know that R
an intera
t with Q to produ
e:

I; �

0

` (new�

0

0

) Q jR =) I; �

0

` (new�

0

0

; ~
 :

~

C

0

) Q

0

jR

0

and observe that

I j= (� ` (new�

0

; ~
 :

~

C) P

0

jR

0

) R (�

0

` (new�

0

0

; ~
 :

~

C

0

) Q

0

jR

0

)

be
ause I

0

j= (�

0

` P

0

) R (�

0

0

` Q

0

) and I; I

0

after (~
)a!v ` R

0

. This

last fa
t is guaranteed by the premise I; I

0

` R after applying Subje
t

Redu
tion 2.2.

Finally, suppose (iii) holds. Again we have I; I

0

` R so that Subje
t

Redu
tion, Theorem 2.2, tells us (I; I

0

)

w

(a) # and, if we let I

+

denote

I; I

0

; ~
 :

~

C, we also have I

+

` v : (I

+

)

w

(a). This allows us to appeal to

Lemma 4.3 to observe:

I

+

; �;�

0

; ~
 :

~

C ` P

a?v

��! I

+

; �;�

0

; ~
 :

~

C ` P

0

:

By hypothesis we know,

I; I

0

j= (�;�

0

` P) � (�

0

;�

0

0

` Q)

so, be
ause � is !-
losed we also have,

I

+

j= (�;�

0

; ~
 :

~

C ` P) � (�

0

;�

0

0

; ~
 :

~

C ` Q):

This guarantees our mat
hing transition

I

+

; �;�

0

; ~
 :

~

C `Q

a?v

==) I

+

; �;�

0

; ~
 :

~

C `Q

0

with I

+

j= (�;�

0

; ~
 :

~

C ` P

0

) � (�

0

;�

0

0

; ~
 :

~

C ` Q

0

). We use the

intera
tion with R to obtain the redu
tions

I; �

0

` (new�

0

) Q jR =) I; �

0

` (new�

0

; ~
 :

~

C) Q

0

jR

0

32 Matthew Hennessy and Julian Rathke

and, again by Subje
t Redu
tion, Theorem 2.2, it is easy to see that

I

+

` R

0

, when
e

I j= (� ` (new�

0

; ~
 :

~

C) P

0

jR

0

) R (�

0

` (new�

0

0

; ~
 :

~

C) Q

0

jR

0

)

as required.

2

We now have most of the ingredients to prove:

Theorem 6.7 (Soundness)

If I j= (� ` P) � (�

0

` Q) then I j= (� ` P)

�

=

xt

obs

(�

0

` Q):

Proof: It is easy to see that � is a redu
tion
losed, symmetri
 and barb

preserving relation over typed pro
esses. If we
an demonstrate that it

is also
ontextual then, be
ause of the the fa
t that

�

=

xt

obs

is the largest

su
h relation we have our result. Therefore we only have to prove that �

satis�es all the rules in Figure 6.

The rules (
xt-spe
) and (
xt-weak) are
overed by Proposition 6.3,

while (
xt-new) and (
xt-par) have just been established in the previous

two Propositions. The remaining rules
an be handled in a similar manner,

by setting up an appropriate w-
losed relation over typed pro
esses and

showing it is a bisimulation.

2

6.2 Completeness

Here we show the
onverse of Theorem 6.7,
ompleteness, namely that

ontextual equivalen
e implies bisimularity. To do so we only need a re-

stri
ted version of
ontextual equivalen
e. Let

�

=

p-
xt

obs

denote the largest

relation over
on�gurations whi
h is redu
tion
losed, barb preserving and

ontextual with respe
t to parallel and new name
ontexts, that is satis-

�es the rules (
xt-spe
), (
xt-weak), (
xt-par) and (
xt-new) from

Figure 6. It is
lear that

�

=

xt

obs

implies

�

=

p-
xt

obs

so, in fa
t, it suÆ
es to prove

ompleteness for the latter and we shall use this relation from now on.

Before we prove this theorem it will be useful to present a te
hni
al

lemma. It is here that we utilize the exported names in the terms whi
h

witness the
ontextuality of labels. Essentially, the lemma states that the

environment really
an
ollate the information gained via the lts.

Lemma 6.8 Suppose I

0

is
ompatible with �; ~
 :

~

C and �

0

; ~
 :

~

C and Æ is

fresh to P;Q. Then

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 33

I; Æ : rwh(I

0

)i j= (�; Æ : rwh(I

0

)i ` (new ~
 :

~

C) P j Æ!v

I

0

)

�

=

p-
xt

obs

(�

0

; Æ : rwh(I

0

)i ` (new ~
 :

~

C

0

) Q j Æ!v

I

0

)

implies

I

0

j= (�; ~
 :

~

C ` P)

�

=

p-
xt

obs

(�

0

; ~
 :

~

C

0

` Q):

Proof: We prove this by
o-indu
tion. Let the relation R

I

0

be de�ned

for I

0

ompatible with �;�

0

and �

0

;�

0

0

, so that

I

0

j= (�;�

0

` (new�

1

) P) R (�

0

;�

0

` (new�

0

1

) Q)

if and only if there is some Æ : rwh(I

0

)i su
h that

I; Æ : rwh(I

0

)i j= (�; Æ : rwh(I

0

)i ` (new�

0

;�

1

) P j Æ!hv

I

0

i)

�

=

p-
xt

obs

(�

0

; Æ : rwh(I

0

)i ` (new�

0

0

;�

0

1

) Q j Æ!hv

I

0

i):

We simply need to show that R is redu
tion
losed, barb preserving,

and
losed with respe
t to rules (
xt-spe
), (
xt-weak), (
xt-par)

and (
xt-new). Redu
tion
losure is immediate by the de�nition of R ,

as is
losure with respe
t to (
xt-spe
) and (
xt-weak). For the other

requirements we pro
eed by supposing that

I

0

j= (�;�

0

` P) R (�

0

;�

0

0

` Q)

su
h that Æ : rwh(I

0

)i with

I; Æ j= (�; Æ ` (new�

0

) P j Æ!hv

I

0

i)

�

=

p-
xt

obs

(�

0

; Æ ` (new�

0

0

) Q j Æ!hv

I

0

i):

In the above equation, for the sake of presentation, we have omitted, and

shall
ontinue to do so for the remainder of this proof, to give the type

information asso
iated with the barb Æ.

We �rst show
losure with respe
t to (
xt-par). Suppose I

0

` R. We

need to show that I

0

j= (�;�

0

` P j R) R (�

0

;�

0

0

` Q j R). To do this

we
hoose some fresh Æ

0

and
onstru
t R

0

= Æ?(X : I

0

) (R[X=

n

(I

0

)℄ jÆ

0

!hi)

(re
all that

n

(�) refers to the names in the domain of �). It should be

evident that Æ; Æ

0

` R

0

and, by
losure of

�

=

p-
xt

obs

with respe
t to (
xt-spe
),

(
xt-weak), (
xt-new) and (
xt-par) we have

I; Æ

0

j= (�; Æ

0

` (new�

0

; Æ) P j Æ!hv

I

0

i jR

0

)

�

=

p-
xt

obs

(�

0

; Æ

0

` (new�

0

0

; Æ) Q j Æ!hv

I

0

i jR

0

)

It is fairly easy to
he
k that

I

0

; Æ

0

j= (�; Æ

0

` (new�

0

; Æ) (P j Æ!hv

I

0

i jR

0

))

�

=

p-
xt

obs

(�

0

; Æ

0

` (new�

0

) (P jR j Æ

0

!hv

I

0

i))

34 Matthew Hennessy and Julian Rathke

and similarly for Q. Hen
e,

I; Æ

0

j= (�; Æ

0

` (new�

0

) P jRjÆ

0

!hv

I

0

i)

�

=

p-
xt

obs

(�

0

; Æ

0

` (new�

0

0

) QjRjÆ

0

!hv

I

0

i)

This serves to witness

I

0

j= (�;�

0

` P jR) R (�

0

;�

0

0

` Q jR)

as required.

The
losure of R with respe
t to (
xt-new) follows easily from the

losure of

�

=

p-
xt

obs

with respe
t to this rule. So we will �nish by showing

that R is barb preserving.

We suppose that I

0

; �;�

0

` P +

barb

a for some a su
h that I

0

` a :

rwhAi. Choose a fresh Æ

0

: rwh>i and buildR = Æ?(X : I

0

) X

a

?(Y : A) Æ

0

!hi

where X

a

refers to the
omponent of X to whi
h the name a will be
ome

bound to as it re
eives the value v

I

0

. We know that Æ; Æ

0

` R,

I; Æ; Æ

0

j= (� ` (new�

0

) P j Æ!hv

I

0

i jR)

�

=

p-
xt

obs

(�

0

` (new�

0

0

) Q j Æ!v

I

0

jR)

and

I; Æ; Æ

0

; � ` (new�

0

) P j Æ!hv

I

0

i jR +

barb

Æ

0

:

This means that, by the barb preservation property of

�

=

p-
xt

obs

, we know

I; Æ; Æ

0

:; �

0

` (new�

0

0

) Q j Æ!hv

I

0

i jR +

barb

Æ

0

also. But, as Æ

0

is fresh, this
ould only have arisen by intera
tion with R

along a, when
e

I

0

; �

0

;�

0

0

`Q +

barb

a

as required. 2

We
an state the
entral theorem whi
h allows us to a
hieve
omplete-

ness:

Theorem 6.9 (Completeness)

If I j= (� ` P)

�

=

xt

obs

(�

0

` Q) then I j= (� ` P) � (�

0

` Q):

Proof: Again, the proof pro
eeds by
o-indu
tion, this time we de�ne the

relation R by letting I j= (� ` P) R (�

0

` Q) if I j= (� ` P)

�

=

p-
xt

obs

(�

0

` Q). By de�nition it is w-
losed. We demonstrate that it forms a

bisimulation. To this end, suppose I j= (� ` P) R (�

0

` Q) and that

I; � ` P

�

�! I

0

; �

0

` P

0

. We use the
ontextuality of labels to �nd a

mat
hing transition and pro
eed by
ases on �. We only show the
ase for

� is (~
)a!v here, it being the most involved. Note that, in this
ase, �

0

is

�; ~
 :

~

C.

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 35

We
hoose a fresh Æ : A

Æ

where A

Æ

denotes rwh(I

0

)i, and use Propo-

sition 4.6 to �nd a term su
h that I; Æ : A

Æ

` C

I

�

with the appropriate

properties. In fa
t, the �rst property tells us that

I; Æ : A

Æ

; �; Æ : A

Æ

`P j C

I

�

=) I; Æ : A

Æ

; �; Æ : A

Æ

` (new ~
 :

~

C) (P

0

j Æ!hv

I

0

i)

Using C

I

�

we
an build a test term by
hoosing further fresh names

Æ

0

: A

Æ

; a : rwh>i and letting

C

Æ

0

= a!hi j Æ?(x) a?(y) :Æ

0

!hxi

we note immediately that C

Æ

0

+

barb

a.

From
ontextual
losure (omitting some type information) we know

that

I; Æ

0

j= (�; Æ

0

` (new Æ) (P j C

I

�

j C

Æ

0

))

�

=

p-
xt

obs

(�

0

; Æ

0

` (new Æ) (Q j C

I

�

j C

Æ

0

))

We also know that the left hand side of this equation may redu
e (up to

a minor stru
tural equivalen
e) to

I; Æ

0

; �; Æ

0

` (new ~
 :

~

C) P

0

j Æ

0

!hv

I

0

i :

We use C

P

to refer to this
on�guration and observe that C

P

6+

barb

a but

C

P

+

barb

Æ

0

.

Redu
tion
losure now tells us that there must exist some mat
hing

redu
tions

I; Æ

0

; �

0

; Æ

0

` (new Æ) (Q j C

I

�

j C

Æ

0

) =) C

Q

for some C

Q

su
h that C

P

�

=

p-
xt

obs

C

Q

.

Now

�

=

p-
xt

obs

preserves barbs, so this means, in parti
ular, that C

Q

6+

barb

a and C

Q

+

barb

Æ

0

also. Hen
e we know that C

Q

must be (again up to a

minor stru
tural equivalen
e) of a very spe
i�
 form:

I; Æ

0

; �

0

; Æ

0

` (new ~
 :

~

C

0

) Q

0

j Æ

0

h!v

0

i)

for some Q

0

and some v

0

. By the
onstru
tion of C

Æ

0

and the fa
t that

C

Q

6+

barb

a we know that the redu
tions to C

Q

must have been generated

by intera
tion with redu
tions of the form

(I; Æ; �

0

; Æ `Q j C

I

�

) =) (I; Æ; �

0

; Æ ` (new ~
 :

~

C

0

) Q

0

j Æ!hv

0

i

whi
h, by Proposition 4.6, must themselves have been generated by inter-

a
tion with transitions of the form

I; �

0

`Q

�

=) I

0

; �

0

; ~
 :

~

C

0

`Q

0

:

It only remains to demonstrate that

I

0

j= (�; ~
 :

~

C ` P

0

) R (�

0

; ~
 :

~

C

0

` Q

0

):

This follows from the fa
t that C

P

�

=

p-
xt

obs

C

Q

and Lemma 6.8. 2

36 Matthew Hennessy and Julian Rathke

Soundness, Completeness and Proposition 6.4 allows us to now
on-

lude with the main result of the paper:

Corollary 6.10 If � j= P

�

=

xt

obs

Q if and only if � j= (� ` P) �

o

(� ` Q).

6.3 Example

The
hara
terisation of the previous se
tions provide a
onvenient
o-

indu
tive method for establishing
ontextual observational equivalen
e be-

tween terms. We provide a short example whi
h demonstrates the utility

of the bisimulation proof method. The pro
esses that we
onsider provide

two di�erent implementations of a produ
er/
onsumer unit server.

Clients send requests for servi
e along a global
hannel req, whi
h

must be a

ompanied by a reply
hannel whi
h has type at least R =

wh(wh>i; rh>i)i. The server
reates dedi
ated produ
e and
onsume
han-

nels, ex
lusively for the
lient, at type A = rwh>i, and returns these along

the reply
hannel. Note that be
ause of the type of the return
hannel

the
lient only re
eives the write
apability on the produ
e
hannel and

the read
apability on the
onsume
hannel. The server then manages the

simple proto
ol that for every
all on the produ
e
hannel, a
orresponding

request
an be made of the
onsume
hannel:

CU

1

= �req?(x : R) (new p;
 : A) x!hp;
i � p?() :
!hi

Here the server and uses the pro
ess �p?() :
!hi to manage the produ
e and

onsume requests.

Another implementation is given by:

CU

2

= �req?(x : R) (new p;
 : A) x!(p;
): (�p?() :
!hi j �
?() :p!hi):

The behaviour of this server, when managing the produ
e/
onsume re-

quests is a little di�erent. Here the server itself, in addition to the
lient,

may
onsume a request; if it does so it then reprodu
es a message in

re
ompense.

There is a bug in the se
ond implementation be
ause, having set up

a proto
ol for a
lient, when a message is sent by the
lient it may be

onsumed by the server itself,
onsequently unleashing an in�nite sequen
e

of produ
e/
onsume messages internal to the server. This
an be formally

demonstrated using the must testing equivalen
e.

Let �

<

req

be any typing environment su
h that �

<

req

(req) = rwhrwh(B;C)ii,

where B <: wh>i. Then

�

<

req

j= CU

1

6

�

=

must

CU

2

:

To prove this result we exhibit a test T su
h that �

<

req

` T , CU

1

must T

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 37

but CU

1

6must T . The required T is given by

(new r : A

r

) req!hri r?((x; y) : (wh>i; rh>i)) x!hi!!hi

where A

r

is the type rwh(B;C)i. It is straightforward to show that this

an be typed by �

req

, that it is guaranteed by CU

1

but when applied to

CU

2

, may lead to a non-terminating
omputation.

It is well-known that
ontextual observational equivalen
e is insensitive

to su
h internal divergent behaviour. However there are further reasons

for these two servers to exhibit di�erent behaviour, in
ertain type en-

vironments. Suppose for example that �

d

maps the
hannel req to the

type rwhrwh(B;C)ii, where B;C are rwh>i; rh>i respe
tively. This type

enables the environment, when it re
eives a produ
e/
onsume pair p;
,

to both write and read on p; with this
apability CU

1

and CU

2

an be

distinguished. For example
onsider the
ontext C[℄:

T j [℄

where T is the pro
ess

(new r : A

r

) req!hri r?((x; y) : (rwh>i; rh>i)) x!hi x?() d!hi :

Then it is easy to see, assuming �

d

has the appropriate type for d, that

� j= C[CU

2

℄ +

barb

d whereas � j= C[CU

1

℄ 6+

barb

d. It follows that

�

d

j= CU

1

6

�

=

xt

obs

CU

2

:

Note that a similar example
an be
onstru
ted if, instead, we allow the

environment write a

ess on the
onsume
hannel
.

However if we limit the environment's a

ess to the produ
e/
onsume

pair to be write, read respe
tively then we
an show that the two servers

are
ontextually equivalent:

Proposition 6.11 Suppose that �

req

is any typing environment su
h that

�

req

(req) = rwhrwh(B;C)ii;

where B :> wh>i and C :> rh>i. Then

�

req

j= CU

1

�

=

xt

obs

CU

2

:

Proof: We will establish that these pro
esses are in fa
t bisimilar and

then by soundness we may
on
lude that they are
ontextual observational

equivalent. To show that they are bisimilar we may appeal to
ongruen
e

properties of bisimulation equivalen
e and show that, for �

A

= p : A;
 : A,

P

1

= �p?():
!h i and P

2

= �p?():
!h i j �
?():p!h i

38 Matthew Hennessy and Julian Rathke

and for any I :> p : B;
 : C, we have

I j= (�

A

` P

1

) � (�

A

` P

2

):

To demonstrate this we de�ne our
andidate relation for the bisimulation

as follows. Let
!

n

for a non-negative integer n mean the n-fold parallel

omposition of the terms
!h i. We relate terms su
h that (upto �)

I j= (�

A

` P

1

j
!

n

) R (�

A

` P

2

j
!

m

j p!

k

)

whenever n = m + k. We must show that the !-
losure of R forms a

bisimulation.

This is reasonably straightforward, as an example of the work involved

(ignoring !-
losures) we suppose that

I j= (�

A

` P

1

j
!

n

) R (�

A

` P

2

j
!

m

j p!

k

)

and that I; �

A

` P

1

j
!

n

�

�! I; �

A

` P

0

(note that I and �

A

will not

hange throughout this proof and n = m+ k).

We
onsider how this
ould arise: �rstly, if the transition originated

in P

1

then we know � must be of the form p?(). This is only possible in

ase the environment I has write
apability on
hannel p, whi
h it may.

There is an obvious mat
hing transition from P

2

whi
h is always ready

to re
eive produ
e requests on p also. The resulting states rea
hed are in

R :

I j= (�

A

` P

1

j
!

n+1

) R (�

A

` P

2

j
!

m+1

j p!

k

)

as (n+ 1) = (m+ 1) + k.

The se
ond possibility is that the transition from originates from
!

n

and is an output of the form
!() (that is n > 0 and P

0

is P

1

j
!

n�1

).

This
an only be possible if the environment I has read
apability on this

hannel, whi
h it may. The mat
hing transition for this would of
ourse

simply be an output
!() from P

2

j
!

m

jp!

k

, but we do not ne
essarily know

that m > 0. However, we do know that n = m + k > 0 so, in the
ase

m = 0 we must have k > 0 and an internal
ommuni
ation between p!

k

and P

2

ensures the availability of a
!() transition. Thus, the mat
hing

transitions are, for m > 0,

(I; �

A

` P

2

j
!

m

j p!

k

)

!hi

��! (I; �

A

` P

2

j
!

m�1

j p!

k

);

and for m = 0,

(I; �

A

` P

2

j
!

m

j p!

k

)

�

�!

!hi

��! (I; �

A

` P

2

j
!

m

j p!

k�1

):

In either
ase we end up ba
k in R .

Similar arguments
an be used to mat
h transitions from P

2

j
!

m

j p!

k

.

The only extra transitions here arise as internal
ommuni
ations. There

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 39

are two possibilities for these: an intera
tion between P

2

and
!

m

and an

intera
tion between P

2

and p!

k

. Note that in ea
h
ase the resulting state

is

P

2

j
!

m�1

j p!

k+1

for the former and

P

2

j
!

m+1

j p!

k�1

for the latter. In either
ase the total m+ k is invariant. This means that

the extra internal transitions exhibited by P

2

j
!

m

j p!

k

may be mat
hed

in R by an empty transition from P

1

j
!

n

.

It is worth mentioning here that it is not possible to observe output

transitions of the form p!hi from I; �

A

`P

2

j
!

m

j p!

k

as we have supposed

that I(p) :> B :> wh>i and thus
annot the read
apability required

to make this observation. Similarly, it is not possible to observe input

transitions of the form
?hi from I; �

A

` P

2

.

2

This short example demonstrates the use of a
o-indu
tive proof for

establishing
ontextual observational equivalen
e. The use of the bisimu-

lation method allows us to establish equivalen
e without quantifying over

all possible
lients for these servers. In e�e
t, the environment plays the

role of an arbitrary
lient.

7 Con
lusion

In this paper we have studied typed behavioural equivalen
es for the �-

al
ulus. In parti
ular we have shown that natural typed versions testing

and barbed
ongruen
es
an be
aptured by applying standard te
hniques

to a new lts of typed a
tions, Conf . Thus, at least in prin
iple, it should

be possible to use, or adapt, existing proof methodologies and veri�
ation

systems, [4, 5℄ to prove type dependent equivalen
es between pro
esses.

Admittedly the states, I; � ` P , in the lts are a priori
ompli
ated,
on-

sisting of a pro
ess term P , a type environment for its
omputing
ontext

I and a separate type environment for the pro
ess itself �. But the ob-

servant reader will have noti
ed that in the rules for generated Conf ,

in Figure 5, the last type environment � plays no role. Te
hni
ally its

presen
e has been
onvenient for deriving our results, whi
h depend on

the fa
t that pro
esses are well-typed with respe
t to some environment

oherent with I, but in an implementation of Conf they
ould be safely

omitted.

Typed pro
ess equivalen
es, as opposed to untyped ones, have nu-

40 Matthew Hennessy and Julian Rathke

merous interesting appli
ations. For example su
h an equivalen
e has

been used in [18℄ to investigate translations of the �-
al
ulus into the �-

al
ulus; the use of types enables stronger results to be demonstrated. In

[24℄
omplier optimisations are justi�ed using a typed equivalen
e, for a

language similar to ours. We also intend to develop typed equivalen
es

for the higher-order pro
ess language in [25, 22℄, where types are used to

resour
es and
omputing hosts from mali
ious agents; in su
h s
enarios

demonstrating that a parti
ular poli
y does indeed o�er host prote
tion

would amount to proving typed equivalen
es.

We have based our notion of
ontextual equivalen
e on the approa
h

of [9, 7℄ rather than that used, for example in [15℄. In the latter the

behavioural equivalen
e itself is not required to be itself
ontextual, but

instead the largest
ontextual relation
ontained in it is the fo
us of study.

The two approa
hes are
on
eptually not very di�erent and in many
ases

they a
tually generate the same behavioural relation; see for example [9, 6℄.

However proofs
hara
terising the latter in terms of bisimulation relations

are often
omplex, dependent on the pre
ise
onstru
ts of the language

being investigated, and sometimes even require in�nitary synta
ti

on-

stru
ts; see for example the
hara
terisation proofs in [15, 23℄. Indeed

more re
ent
hara
terisation theorems, su
h as that in [1℄ tend to be re-

stri
ted to �nite-bran
hing pro
esses. On the other hand
hara
terisation

theorems for the kind of formalisation we have
hosen are usually
on
ep-

tually more simple, or at least not very dependent on the pre
ise language

onstru
ts to hand; see for example the proofs in [9, 11℄.

There have been some previous attempts at
hara
terising typed
on-

textual equivalen
es [2, 17℄ using an observer's view of the type envi-

ronment. In [17℄ the observer's view is used to a

ount for
ontextual

equivalen
es in the presen
e of polymorphi
 types in the �-
al
ulus but

subtyping is not
onsidered. Also no
omplete
hara
terisation of barbed

ongruen
e was provided in this setting. Although this paper did not deal

with subtyping the subsequent work in [2℄ did ta
kle this problem albeit

in a theoreti
ally very di�erent setting to ours. The
hief di�eren
e lays in

the absen
e of the name equality test. We
ru
ially use the name equal-

ity operator to witness that ea
h of our a
tions � may be
onstru
ted

as a test C

�

[℄ and that the type information gained during this test

may be a

umulated. In [2℄ the la
k of the equality test impa
ts upon

the labelled transition system in the sense that names being sent to the

observer
annot be re
ognised as names en
ountered during a prior test.

In parti
ular this pre
ludes a

umulation of knowledge about a name and

the labelled transition system presented in this paper re
e
ts this. A
o-

indu
tive
hara
terisation of barbed
ongruen
e is provided although the

Typed behavioural equivalen
es for pro
esses in the presen
e of subtyping 41

equations holding in this setting vary
onsiderably from ours. For instan
e

the well-known Repli
ation Theorem of �-
al
ulus used to illustrate their

te
hnique fails to hold in the presen
e of equality testing.

Our system allows for a gradual in
rease in knowledge about types

of names and provides a fresh approa
h to understanding the e�e
ts of

subtyping on pro
ess equivalen
e.

Referen
es

[1℄ Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations

for the asyn
hronous �-
al
ulus. Theoreti
al Computer S
ien
e, 195(2):291{324,

30 Mar
h 1998.

[2℄ M. Boreale and D. Sangiorgi. Bisimulation in name-passing
al
uli without mat
h-

ing. In Pro
. 13th LICS Conf. IEEE Computer So
iety Press, 1998.

[3℄ G. Boudol. Typing the use of resour
es in a
on
urrent
al
ulus. In Pro
eedings

of the ASIAN'97, number 1345 in Le
ture Notes in Computer S
ien
e, pages 239{

253, 1997.

[4℄ R. Cleaveland, J. Parrow, and B. Ste�en. The
on
urren
y workben
h: A se-

manti
s based veri�
ation tool for �nite state systems. ACM Transa
tions on

Programming Systems, 15:36{72, 1989.

[5℄ Ran
e Cleaveland. The
on
urren
y fa
tory: A development environment for

on
urrent systems. In R. Alur and T. Henzinger, editors, Pro
eedings of CAV'96,

volume 1102 of Le
ture Notes in Computer S
ien
e, pages 398{401. Springer-

Verlag, 1988.

[6℄ C. Fournet and G.Gonthier. A hierar
hy of equivalen
es for asyn
hronous
al
uli

(extended abstra
t). In Pro
eedings of ICALP'98, volume 1443 of Le
ture Notes

in Computer S
ien
e, pages 844{855. Springer-Verlag, 1988.

[7℄ C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A
al
ulus of mo-

bile agents. In U. Montanari and V. Sassone, editors, Pro
eedings of CONCUR'96,

volume 1119 of Le
ture Notes in Computer S
ien
e, pages 406{421, Pisa, August

1996. Springer Verlag.

[8℄ M. Hennessy. An Algebrai
 Theory of Pro
esses. MIT Press, 1988.

[9℄ Kohei Honda and Mario Tokoro. On asyn
hronous
ommuni
ation semanti
s.

In P. Wegner M. Tokoro, O. Nierstrasz, editor, Pro
eedings of the ECOOP '91

Workshop on Obje
t-Based Con
urrent Computing, volume 612 of LNCS 612.

Springer-Verlag, 1992.

[10℄ A. Je�rey. A distributed obje
t
al
ulus. In Pro
. ACM Foundations of Obje
t

Oriented Languages. IEEE Computer So
iety Press, 2000.

[11℄ A. Je�rey and J. Rathke. A theory of bisimulation for a fragment of
on
urrent

ml with lo
al names. In Pro
. LICS2000, 15

th

Annual Symposium on Logi
 in

Computer S
ien
e, Santa Barbara, pages 311{321. IEEE Computer So
iety Press,

2000.

[12℄ Naoki Kobayashi. A partially deadlo
k-free typed pro
ess
al
ulus. In Pro
eedings,

Twelth Annual IEEE Symposium on Logi
 in Computer S
ien
e, pages 128{139,

Warsaw, Poland, 29 June{2 July 1997. IEEE Computer So
iety Press.

[13℄ R. Milner. Communi
ation and Con
urren
y. Prenti
e-Hall, 1989.

[14℄ R. Milner. Comuni
ating and mobile systems: the �-
al
ulus. Cambridge Univer-

42 Matthew Hennessy and Julian Rathke

sity Press, 1999.

[15℄ R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kui
h, editor, Pro
.

19th ICALP, volume 623 of Le
ture Notes in Computer S
ien
e, pages 685{695.

Springer-Verlag, 1992.

[16℄ R. De Ni
ola and M. Hennessy. Testing equivalen
es for pro
esses. Theoreti
al

Computer S
ien
e, 24:83{113, 1984.

[17℄ B. Pier
e and D. Sangiorgi. Behavioral equivalen
e in the polymorphi
 pi-
al
ulus.

In Pro
. 24th POPL. ACM Press, 1997. Full paper to appear in Journal of the

ACM.

[18℄ Benjamin Pier
e and Davide Sangiorgi. Typing and subtyping for mobile pro
esses.

Mathemati
al Stru
tures in Computer S
ien
e, 6(5):409{454, 1996. Extended ab-

stra
t in LICS '93.

[19℄ Benjamin C. Pier
e and David N. Turner. Pi
t: A programming language based

on the pi-
al
ulus. Te
hni
al Report CSCI 476, Computer S
ien
e Department,

Indiana University, 1997. To appear in Proof, Language and Intera
tion: Essays in

Honour of Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte, editors,

MIT Press.

[20℄ R. Pugliese R. DeNi
ola, G. Ferrari. Klaim: a kernel language for agents intera
-

tion and mobility. In IEEE Transa
tions on Software Engineering, number 5 in

24, pages 315{330. IEEE Computer So
iety, 1998.

[21℄ James Riely and Matthew Hennessy. Resour
e a

ess
ontrol in systems of mobile

agents (extended abstra
t). In Pro
eedings of 3rd International Workshop on

High-Level Con
urrent Languages, Ni
e, Fran
e, September 1998. Full version

available as Computer S
ien
e Te
hni
al Report 2/98, University of Sussex, 1997.

Available from http://www.
ogs.susx.a
.uk/To be published in Information and

Computation.

[22℄ James Riely and Matthew Hennessy. Trust and partial typing in open systems of

mobile agents (extended abstra
t). In Conferen
e Re
ord of POPL '99 The 26th

ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages,

pages 93{104, 1999.

[23℄ D. Sangiorgi. Expressing Mobility in Pro
ess Algebras: First-Order and Higher-

Order Paradigms. PhD thesis CST{99{93, Department of Computer S
ien
e,

University of Edinburgh, 1992.

[24℄ Akinori Yonnezawa, Motoki Nakade, and Naoki Kobayashi. Stati
 analysis of
om-

muni
ation for asyn
hronous
on
urrent programming languages. In A. My
roft,

editor, Stati
 Analysis. Pro
eedings, volume 983 of Le
ture Notes in Computer

S
ien
e, pages 225{242. Springer-Verlag, 1995.

[25℄ N. Yoshida and M. Hennessy. Assigning types to pro
esses (extended abstra
t). In

Pro
eedings, Fifteenth Annual IEEE Symposium on Logi
 in Computer S
ien
e,

pages 334{348, Santa Barbara, US, 19{23 June 2000. IEEE Computer So
iety

Press.

