UNIVERSITY OF SUSSEX
COMPUTER SCIENCE

UNIVERSITY OF

SUSSEX

AT BRIGHTON

Typed behavioural equivalences for
processes in the presence of subtyping

Matthew Hennessy
Julian Rathke

Report 02/2001 March 2001

Computer Science

School of Cognitive and Computing Sciences
University of Sussex
Brighton BN1 9QH

ISSN 1350-3170

Typed behavioural equivalences for processes
in the presence of subtyping

MATTHEW HENNESSY and JULIAN RATHKE

ABSTRACT. We study typed behavioural equivalences for the m-calculus, in which the
type system allows a form of subtyping. This enables processes to selectively distribute
different capabilities on communication channels.

The equivalences considered include typed versions of testing equivalences and
barbed bisimulation equivalences.

We show that these can be characterised via standard techniques applied to a novel
labelled transition system of configurations. These consist of a process term together
with two related type environments; one constraining the process and the other its
computing environment.!

1 Introduction

Type systems are playing an increasingly important role in the theory of
distributed systems. They are essentially a form of static analysis which
help in the elimination of run-time errors from programs. Within the
theory of distributed systems this intuitive notion of run-time error has
been extended to include a diverse range of properties. For example in
[12, 3] type systems have been designed to detect potential deadlocks
while [18] introduced a system of types for the w-calculus which are used
to control the interpretation of the A-calculus. This system of types was
extended further in [17] and now forms the basis for the powerful type
system implemented in the programming language Pict, [19]; related type
systems for higher-order concurrent languages may be found in [10, 11].
In papers such as [21, 20] types have been used to manage access control
to resources, while in [22] notions of trust have been incorporated in order
to protect good host sites from bad computing agents.

Sub-typing is an essential part of most of these systems. For example
in Pict (according to [19], page 9) it is relatively rare for communication
channels to be used for both input and output in the same “region” of a
program. Typically servers have one form of access while clients require a
different form. These access requirements can be implemented and man-
aged using a subtype relation on the set of types. For example a particular
channel may be declared with a type which allows both read and write

lResearch partially funded by EPSRC grant GR/M71169

2 Matthew Hennessy and Julian Rathke

access; this channel could be passed to one process, say a server, at a sub-
type which only allows read, or input access, and passed to a client at a
different subtype, allowing write, or output access only. Indeed in papers
such as [21, 25] types are viewed as sets of capabilities, such as read access
and write access, and sending a name to a process at a subtype amounts
to sending it with a subset of the declared capabilities.

The subject of this paper is the investigation of behavioural equiva-
lences for typed process languages, particularly in the presence of subtyp-
ing. The type environment in which a process runs obviously affects its
behaviour, and therefore behavioural identities. Let us informally write

I'-P~Q (1)

to denote that P and () exhibit the same behaviour when run in an en-
vironment constrained by some type environment. The type environment
dictates the type at which identifiers may be used and also, indirectly, the
names actually in existence; if an identifier is not in the domain of I' then
intuitively it can not be used by the process or its environment. Then,
using the syntax of the m-calculus, we would expect the identity

' (al{(v)R)| P~ P

if the identifier a is not in the domain of the constraining environment
I'. It should also be true if it were in the domain but I' dictates that it
could only be used to output values. In this case neither P nor the process
environment would never be able to exercise the component a!(v) R; to do
so would require read access to a, which is forbidden by I'.

In the presence of subtyping the situation gets more complicated. For
example consider the two processes, again expressed in m-calculus syntax,

P = (newc:rw()) al{c) | cl{v) S
Q = (newc:rw()) al{c)|0

Both generate a new channel ¢ at some type rw() which allows both read
and write access. Now suppose I' is a type environment in which the type
associated with a is such that it can only be used to write identifiers which
themselves can be used for at most write access. Such types are a standard
part of many of the type systems for the m-calculus, [18]. In this situation
we would expect

TFP~Q

because no observing process can exercise the ¢!(v) component. This fol-
lows since the observing process can only gain knowledge of the new chan-

Typed behavioural equivalences for processes in the presence of subtyping 3

nel ¢ by receiving it on the channel a; but this method of transmission
ensures that it can never obtain read access on ¢, because of the type of a
in I'; and therefore can never activate the component c!(v).

Intuitively in () the type environment I' constrains both the processes
being observed, but also the processes with which they are interacting, the
observing processes. However this example shows that in general the type
environment of the observer diverges from that of the observed processes,
in this case P and (). After the communication on the channel a the ob-
served processes, P and (), are now working relative to the environment I'
augmented with the new name c at the type rw(), while the observing pro-
cess is working with respect to a different type environment, I' augmented
with ¢ at a different type; in fact a subtype of rw().

In papers such as [2, 17] behavioural equivalences have been defined for
typed versions of the m-calculus. These are along the lines that for (1) to
be true, C[P] and C|[Q] must exhibit the same (simple) behaviour for all
contexts C| | which are suitably typed respect to I'. Moreover interesting
identities have been established, [24]. However all of the proofs involve
complicated reasoning over possible contexts, essentially establishing a
form of Context Lemma in each particular case. This is in contrast to the
untyped behavioural equivalences, [13, 8], for which there are a range of
powerful techniques based on labelled transition systems. These describe
processes in terms of the actions they can perform and their consequences,
with judgements of the form

P Q

In this paper we show that similar techniques can be developed for typed
equivalences.

The central idea is to replace the untyped actions above with new
judgements of the form

T,ARP £ TN FQ

where A represents the type environment of the observed process, P, and 7
the knowledge that the surrounding context, or observing context, knows
of A. Performing an action may result in the modification of either, or
both, of these environments. Triples of the form Z; A - P, with minor
consistency requirements, are called configurations and our judgements
endow the set of configurations, Conf, with the structure of a label tran-
sition system (Its). We show that typed versions of barbed congruence and
may and must testing equivalences can be characterised by adapting the
standard approaches, [13, 8] to this Its.

We now outline the remainder of the paper. In the following section we

4 Matthew Hennessy and Julian Rathke

T, U == Terms
u?(X :A)T Input
ul(v) T Output
if w = v then T else U Matching
(newn : A) T Name Creation
T|T Concurrency
*T Repetition
0 Termination
XY = Patterns
x variable
(X1,...,Xn) tuple
U, v, w = Values
bv base value
n name
x variable
(Ugy... ,up) tuple

F1GURE 1. The Syntax

review our version of the m-calculus, which uses a set of types derived from
those in [21], although they are only a minor variation of those from [18];
the section contains a standard operational semantics, in terms of an lts,
that is a labelled transition system, a type inference system and a state-
ment, of Subject Reduction. In Section 3 we define the typed behavioural
equivalences which are the main concern of the paper. This is followed by
the principal section of the paper, Section 4, where we define the set typed
actions which gives rise to the lts Conf’; this section also contains an anal-
ysis of Conf and proofs of the various properties we require of it. This
is followed by two technical sections, Section 5 which contains a charac-
terisation of the typed testing equivalences, and Section 6 which contains
a co-inductive characterisation of typed barbed congruence. The paper
ends with a short example and a conclusion, which contains a comparison
with related work.

2 The Language

In this section we review the (polyadic) m-calculus, its standard opera-
tional semantics and the type system we use throughout the paper.

The syntax of the language is given in Figure 1. We presuppose a
countable supply of both variables, ranged over by z, y, and names, ranged

Typed behavioural equivalences for processes in the presence of subtyping)

over by n, m. Readers familiar with the 7-calculus will find little of surprise
here except perhaps the omission of the non-deterministic choice operator.
This operator has little impact with respect to typing, and in particular,
subtyping, so we disregard it for the purposes of this paper. The input
operator a?(X : A) — acts as a binder for the variables occurring in the
pattern X while (newn : A) — binds the name n. This gives rise to the
usual notion of alpha conversion between terms, =, and we refer to closed
terms, those containing no free occurrences of variables, as programs; they
are ranged over by P, (). More generally we use fn(7T), fv(T') to denote
the set of free names, variables respectively, in the term 7. We assume
a well-defined capture-free substitution operation T{v/X} which allows
the value v to be substituted for the pattern X throughout the term T’
this assumes that v has the same structure as X, and as usual we require
occurrences of variables in patterns to be unique.

For technical reasons we present the reduction relation —/— between
untyped programs using structural induction and untyped labelled tran-
sitions. The generating rules are presented in Figure 2 and are entirely
standard for the polyadic m-calculus. The actions, ranged over by u, take
the form

INPUT: 2%

,.._" 1
ouTpuT: (&Caly
REDUCTION: ——

We use bn(u) for the set of bound names in the action p, that is,
bn((¢ : C)alv) is ¢ and empty otherwise, and write n(u) for all of its
names. We will use the = notation for so-called weak transitions in which
7 reductions are abstracted. Specifically, == is the transitive closure of
—T» and = is the reflexive closure of ==-. For labelled transitions, =%,
denotes —-%3—> and, for a string of actions aq,...,a,, == refers to
the relational composition = ... 2=

We now present the types used, and the subtyping relation <:, in Fig-
ure 3. In addition to some primitive types such as int,bool we have
types of the form r(A),w(B) and {r(A),w(B)}, where A,B are in turn
types. Values allocated these types, respectively, are to be thought of as
channel names with the capability to read values of type A, write val-
ues of type B or both. We will often use the shorthand rw(A) to mean
{r(A),w(A)}. Since we use a polyadic version of the m-calculus we also
allow tuple-types. It will also be convenient to have a mazrimal type T,
which dominates all types in the subtyping relation. Intuitively a name a
at this type can not be used for either reading or writing; but our version

6 Matthew Hennessy and Julian Rathke

(r-out) (L-IN)
al(v)y P 4% p a?(X : A)P % Plu/X}
(;_O(P;%))a!v P’ b
_ a
(newb . B) P (b:B)(¢:C)alw, P’ b € fn(v)
(L-com)

P (¢:C)alw P,, Q a_?'U>QI

= ecNfn(Q) =10

P|@Q = (newc:C) (P Q)
(L-com) .
P a_?’U>Pl, Q (c:C)a!v} Q/

—— é¢nfn(P) =10
P|Q = (newc:C) (P Q)
(1-EQ)
: u# w -
if u = w then P else Q — @ if u=wu then P else Q — P
(L-ONTX)
P £ p]) P £ P
Pl & prg W EmE@) «P L +P | P’
QP2 Q|P
P £ p P £ p P=,Q
(newa:A) P & (newa:A) P/ “E"W o p

F1GURE 2. The Operational Semantics

Typed behavioural equivalences for processes in the presence of subtyping

Types:
A € Types
T,int,bool € Types r(A) € Types
w(A) € Types
A,B € Types, B <: A A; € Types
{r(A), w(B)} € Types (Ay,...,A,) € Types
Subtyping:
A< A A< A
r(A) <:r(A’) w(A") <: w(A)
{r(A),w(B)} <: r(A’) {r(B),w(A"}} <: w(A)

A<:A' B<:B
{r(A),w(B")} <: {r(A"),w(B)} A< T

A; <IA;
(Ai...A,) <: (A]...A")

FIGURE 3. Types

8 Matthew Hennessy and Julian Rathke

(T-1D) (T-BASE) (T-TUP)

I'(u) <: A bv € Base ko Ay (Vi)

FFu:A [+ bv: Base I'F (v, ,08) : (Aq, ..., Ag)
(T-oUT) (T-EQ)

(T-1N) IC'Fwu:w(A) 'Fu:Av:B

X :AFT 'Fov:A r-u

I'Fw:r(A) =T Fm{u:Bv: A} T

F'Fu?(X:A)T TFu{o)T I'Fif u =wvthen T else U
(T-NEW) (T-STR)
a:AFT r=7T 0

I'F(newa:A)T THT|U, T, 0
F1GURE 4. The Typing Rules

of the m-calculus has name matching and therefore a name at type T can
be compared to other names.

Thus our types are a generalisation of those introduced in [18]. The
subtyping relation <: can also be viewed as the obvious generalisation of
their subtyping relation. In fact our types, and our subtyping relation,
are a mild variation of those used in [21], to which the reader is referred
for more details, particularly with respect to the following result:

Proposition 2.1 The set of types Types is a preorder with respect to <:,
with both a partial meet operation M and a partial join L. .

The essential point here is that if two types Aq, Ay are bounded below,
that is B <: Ay, B <: A; for some type B then they have a greatest lower
bound, A1 MA5. Intuitively A;MAs is the “union of the capabilities” in A
and As. Because the write capability w(—) is contravariant with respect
to <: the definition of M requires the existence of a partial join LI.

We now present the type inference rules for process terms in Figure 4.
The judgements are of the form I' - T where I' is a type environment, that
is a finite mapping from identifiers, variables and names, to types.

For an identifier id we write I, ¢d : A for the type environment obtained
by augmenting I' so as to map id to A; this notation is only defined if id
is not already in the domain of I'. More generally we use I' T 4d : A to
mean the type environment I, id : A if id is not in the domain of I" and I
otherwise, where I is equal to I" except possibly at id, where I'V takes the
value I'(id) M A (if defined). This notation is generalised in the obvious
way to values. We will often write A for closed type environments whose

Typed behavioural equivalences for processes in the presence of subtyping 9

domain consists solely of names.

The reader familiar with the input/output capability types of m-calculus,
[18], should find little surprise in the inference rules except perhaps for the
type rule for conditionals, taken from [21]:

(T-EQ)

'u:Av:B

|
F'M{u:Bv: A} T
I'Fif u=vthen T else U

In order to establish that if u = v then T else U is well-typed with respect
to the type environment I' we would want to at least check that T and
U are well-typed with respect to I' and perhaps one might imagine that
v and v have the same type. Given that v and v may be different it is
perfectly reasonable, particularly in the presence of subtyping, to allow for
the fact that u and v may be channels with very different capabilities and
we ought not to insist upon them having necessarily the same types. If
however, it transpires that v and v are equal, and the conditional branch
containing 7' is taken, then we have gained extra information in the sense
that v and v must have the same capabilities and the continuing process
T may take advantage of this. The inference rule reflects this reasoning in
the hypothesis I' T {u : B,v : A} F T (note the switch of types for u and
v). Recall that the M operator essentially forms a union of capabilities on
types.

Our first obligation is to establish that the reduction relation -/ re-
stricts to the subclass of well-typed terms. Moreover, we provide two
useful syntactic properties of typed terms with respect to communication
actions. We write A"(n) | to indicate that the type environment A at n
has a type of the form r(A) or {r(A), w(B)} and, in this situation, we will
write A" (n) to refer to the type A , at which n may read values. Similarly
for A (n) for types with write capability.

Theorem 2.2 (Subject Reduction) Suppose A+ P. Then
o P (Q implies A+ Q

o P % Q implies A"(a) | and if AT v : A"(a) is well-defined then
AMv:A"(a) F Q.

o P (&Caly Q implies A (a) |, and A,é: CFHv:A¥(a), Q.

We end this section by briefly defining a structural congruence = of the
m-calculus. This is defined to be the least equivalence extending =, which

10 Matthew Hennessy and Julian Rathke

is preserved by the operators of the language, and satisfies the axioms:

T|(newa) U = (newa) (T|U) if a & fn(T)
(newa) T=T if a & fn(T)
T|U = U|T
T0=T
if w = v then (newa) T else U = (newa) (if u = v then T else U)
if a € fn(T),a # u,v
if w = v then T else (newa) U = (newa) (if u = v then T else U)
if a € fn(U),a # u,v
u?(x) (newa) T = (newa) (u?(z)t) ifa #u

We state, without proof, the following well-known properties of this struc-
tural congruence:

Proposition 2.3

o For every finite term T (i.e. with no occurrence of replication) there is

a new free term T", that is a term containing no occurrences of (new) ,
such that T = (new¢: C) T”

o If P =Q and P =5 P’ then there exists some Q —— @' such that
P =q. O

3 Typed Behavioural Equivalences

We are interested in developing behavioural equivalences between pro-
cesses which take into account the type environment in which the pro-
cesses are operating. We concentrate on two main approaches, the first
based on the ability of observers to discern a difference in the run-time
behaviour of processes [16, 8], while the second, usually associated with
bisimulation theory [13], uses co-inductive methods.

3.1 Testing Preorders

Here we make explicit the computing context in which a process operates.
A test or observer is a finite process with an occurrence of a new reserved
name w, used to report the success of the test. The restriction to finite
tests is for convenience only; it is well-known [8] that infinite tests do not
result in any extra discriminating power. We let T to range over tests,
with the typing rule Z + w!() for all type environments Z. When placed
in parallel with a process P, a test may interact with P, producing an
output on w if some desired behaviour of P has been observed. We write

P may T

Typed behavioural equivalences for processes in the presence of subtyping 11

T | P —* R for some R such that R can report success, i.e. R w . The
stronger relation

P must T
holds when in every computation

TIPSR ... 5 R, ...

there is some Ry, k > 0, which can report success. Behavioural equiva-
lences can now be defined by requiring that processes react in the same
manner for a given class of tests. Here it is appropriate to choose the class
of tests which are well-typed relative to a given environment 7.

Definition 3.1 (Testing Preorders) We writeZ = P L0y Q if P may
T implies QQ may T, for every test T such that T+ T.

Similarly T = P Cust @ means that for every such T, P must T implies
Q mustT.

We use mmay and =must denote the related equivalence relations.

Note that in ZF- P =45 @ (and similar judgements) the type environment
7 is a constraint on the observer, or computing context, rather than the
processes P, () themselves; indeed in the definition there is no requirement
on P, () to be well-typed. However the alternative characterisations of
these relations given in Section 5 depend on them being well-typed in a
type environment compatible with Z.

3.2 Co-inductive methods

In this subsection we use type environments as constraints on the processes
themselves rather than their computing context.

Definition 3.2 A typed relation over processes consists of a family R of
relations over processes, parametrised by closed type environments,

R ={Ra | A closed type environment }
which satisfies P Ra @ implies A+ P, Q.
We normally write A = P R @ in place of P Ra Q.
Typed relations over processes are generalised to arbitrary terms by defin-
ing
A X:AETR°U
to be true if for every value v, closed type environment A’ disjoint from A

and type A such that AJA’"F v : A, we have A, A" - T{v/ X} R U{v/X}.
Note that this enables us to substitute new values, values which are not

12 Matthew Hennessy and Julian Rathke

necessarily known to the current type environment I', although it does not
allow us to extend the types of values which are already in the domain
of A. However even on closed terms there may be a difference between a
relation R and its open extension R?; in general for A = P R° @ to be
true we must have A, A’ = P R @ for every allowed A’. Note that this is
a form of weakening.

Definition 3.3 A typed relation R is said to closed with respect to weak-
ening, or w-closed, if R° = R.

All the behavioural equivalences we will consider will be w-closed. to
define these we need to consider a number of properties of typed relations.

REDUCTION CLOSED: The typed relation R is reduction closed whenever
A= PR Qand P -5 P’ implies there exists some Q' such that Q@ = @’
and A =P R Q.

CONTEXTUAL: Contexts are defined by extending the syntax in Figure 1,
allowing typed holes [-v] in terms. The typing system in Figure 4 is ex-
tended to contexts in the obvious way, by adding the rule

(T-CXT) T g

We use C[] to denote contexts with at most one hole and C[T] the term
which results from substituting the term T into the hole. We leave the
reader to establish

Proposition 3.4 I"+T and I' - C[-r/] implies I = C[T]. O

Then we say the typed relation R is contextual whenever IV =T R° U
and I' - C[-r/] implies I" = C[T] R° C[U].

Unravelling this definition gives the following example consequences
for contextual relations over closed terms.

e AE=PTR P implies A)/A'E= PR P’
AEPRP and AFQ implies AEP|QR P |Q.
A E PR P and At al(v)0 implies A = al(v) P R al(v) P'.

o If Ak a:r(A) and for every v, A’, such that A, A’ - v : A we have
AN ET{v/X} RU{v/X]} then A;A" = a?(X : A)T Ra?(X : A)U.

e Aia: A PR P implies A = (newa:A) PR (newa:A) P

The condition on inputs is very natural; a?(X : A)T and a?(X : A) U are
only related if T{v/X| and U{v/X| are related for every v and A’ such

Typed behavioural equivalences for processes in the presence of subtyping 13
that A,A’ + v : A; this includes values v which are not known in the

current environment A.

BARB PRESERVING: For a given name a such that A F a : rw(T). we
write A = P P2 g if there exists some P’ such that P -=+* P’ and
P’ %X} Then we say the typed relation R is barb preserving if A FEPRQ
and A = P ||’ ¢ implies A = @Q ||°?™ a.

Definition 3.5 (Contextual observational equivalence) Let =% be
the largest typed relation over processes which is

o symmetric, that is each component of the relation is symmetric
e contextual
e reduction closed

e barb preserving.

We will usually write this relation in the form A | P =% @, and we

~obs
emphasise that here A is a constraint on the processes themselves, that is

A F P, @Q, rather than its context.
One significant property of this behavioural relation is:

Lemma 3.6 The relation =3 is w-closed. That is A E P =&t
implies A, A" E P =<3

Proof: Follows immediately from contextuality. O

In Section 6 we will give a co-inductive characterisation of this relation in
the 1ts Conf.

4 The LTS of Typed Actions

In this section we formally define the typed actions discussed in the Intro-
duction and derive their properties. These actions will form the labelled
transition system Conf, which can be used to provide characterisations
of the behavioural equivalences discussed in the previous section.

4.1 Typed Actions
A type environment 7 is compatible with A if

e 7:>A
e dom(Z) = dom(A)

Definition 4.1 The triple Z; AF-T is a configuration if A s a closed type
environment such that

Matthew Hennessy and Julian Rathke

(TYLTS-RED) (TYLTS-0OUT)

Py P I"(a) |
;,AFP I, AR P ;A al(v)P Y% TNo:I(a); AF P
(TYLTS-IN)

I%(a) | IZkwv:Z%a)

T;AFa?(X : AP 2% T A+ P{v/X|

(TYLTS-OPEN)

T,b:T;Ab:BEP LA AP,

Z; At (newb : B) p baals, 77 A7 pr b€ fn(v)

(TYLTS-CTXT) (TYLTS-EQUIV)
;,AFP & T AN P ,AFP S TNEP b
;A b xP 45 T A"+ P | P’ TAFQ L T, AN P =a ¢

I;AFP 2 T: NP

I,AFP‘Q—‘LL—)I,,A”—PI|Q bn(ﬂ)gfn(Q)

,AFQ|P LS TITHAFQ | P

Z,a:T;Ma:AFP 5T a:T;Aa: AF P’

T;AF (newa:A) P T;A'F (newa : A) P’ a ¢ n(u)

F1GURE 5. Typed Actions

Typed behavioural equivalences for processes in the presence of subtyping 15

e T is compatible with A
e AT

The environment Z represents the environment’s view of the types allo-
cated to the names in the process. For this reason this view must accord
with the actual types allocated to these names. This is guaranteed by
requiring Z :> A where A is the actual type context for the term under
investigation. Essentially this says that the environment cannot know ca-
pabilities for a channel which simply do not exist. The requirement that
the domains of the environments be the same is a technical means of en-
suring uniqueness of fresh names. We use Conf, ranged over by C, D, to
denote the set of all configurations.

The generating rules for the transition system of typed actions are de-
fined in Figure 5 and are to be understood as acting on configurations.
The rules are obtained from those in Figure 2 by taking the type envi-
ronment of the computing context, Z, into account; essentially actions are
only possible if they are allowed by Z. Note also that the type annotations
on the bound names of output actions are dropped; they are only required
in Figure 2 for the definition of the untyped reduction relation —.

Note also that a priori the rule (TYLTS-OUT) is partial in the sense that
the conclusion can only be formed if the extended environment ZMv : Z"(a)
is well defined. However the first part of the next Proposition establishes
that this meet always exists. It also proves that the set of configurations
is preserved by the transitions.

Proposition 4.2
o If7"(v) exists and A <:T then ZMwv :Z"(a), is always defined.

o IfT;,A+P £ T,A'H P and T; A+ P is a configuration then so is
T, A"+ P,

Proof: For the first statement it is sufficient to prove the stronger state-
ment, that ZMwv : Z"(a) :> A. This is done by first noting that these can
only differ at v so we use the hypothesis Z :> A to reduce our obligation
to showing Z(v) MZ"(a) :> A(v). This would follow easily if we knew
I"(a) :> A(v) as Z(v) :> A(v) clearly holds. So, in order to establish
ZI"(a) :> A(v) we observe that, because A t alv.P, there must exist some
A such that

(i) AFa:w(A)
(ii)) AFov: A,

16 Matthew Hennessy and Julian Rathke

This means that A(v) <: A (by (ii)), and that A <: A%(a) (by (i)). We
know that Z"(a) | and, as Z :> A, thus A"(a) | also. By virtue of being
a well-formed type it must be the case that A¥(a) <: A"(a) and, in turn,
A"(a) <: I"(a). Collecting these together, transitivity of <: gives the
required result.

For the second statement we proceed by rule induction. For the most
part this is straightforward, the only involved case arises when —£+ has
been derived as an instance of the (TYLTS-OUT) rule. We demonstrate
this case here.

We are to show that ZMwv : Z"(a); A+ P is a configuration given that
AFalv.P,T:> A, and Z"(a) |. It is easy to see from the type inference
rules that A - P and in the first part we have already established the
other requirement, namely that ZMv : Z"(a) :> A. O

It follows that (Conf, Act) is indeed a labelled transition system, (lts).
In the next two sections we show that the various typed behaviour relations
over processes can be characterised by adapting the standard definitions,
[14, 8] to this lts.

We end this section by establishing various properties which will be
required of typed actions. We first determine under what circumstances
the untyped actions, in Figure 2, can give rise to typed actions.

Lemma 4.3 Suppose Z; A+ P is a configuration.
e I AFP S T;,AFQ if and only if P = Q
e T:AFP % T.AF Q if and only if Z%(a) |, T F v : I%(a) and
P ™ Q.
e ;AEP Balv, 7y . T (a); A, é: CFQ if and only if T'(a) | and
P (é:C)alw Q
Proof: Straightforward rule induction. O

It turns out that these are the only form of typed actions which can be
deduced from the rules. Note that the action determines completely the
resulting type environment of the observer, the change from 7 to Z’, but
not necessarily that of the process itself. To make this precise let us define
the partial predicate after ;i over environments as follows:

= 1: Here Z after u is always defined to be Z.
= a?v: Here T after i is also defined to be 7.

p = (€)alv: Here it is only defined if Z"(a) exists and Z Mwv : Z"(a) is
well-defined; in which case it is this last updated environment.

Typed behavioural equivalences for processes in the presence of subtyping 17

We leave the reader to check that

Lemma 4.4 If T; A+ P £ T'; A"+ Q then T after u exists and ' =
7 after u. O

So to determine the precise form of a typed action it is now sufficient to
describe the resulting type environment of the process, the change from
A to A’. We can now give the precise form of typed actions.

Lemma 4.5 Suppose Z; A+ P £ (T after p); A’ = Q. Then

uw=rT1: Here A" = A.

u=a?v: Here A" = A.

p=(¢)alv: Here A" = A,é:C for some C such that A,é: CFov:I"(a).

Proof: Again, a straightforward rule induction suffices. O

4.2 Contextuality of labelled transitions

An important feature of our labelled transitions of typed actions is that
the observations we make of processes are contextually valid. That is to
say, the method of the environment learning information regarding com-
munication capabilities from processes by means of the labelled transi-
tion system can actually be realised with well-typed code fragments, or
contexts, written in our language. The formalisation of this idea simply
identifies each label a of the transition system (other than 7) with a small
testing context of the language with the appropriate properties. These
properties essentially say that « transitions induce reductions in « con-
texts and vice-versa. There is some added technical complications which
allow the environment’s type information to change over time. After each
observation we use the testing context to export all the information about
the current state of knowledge to the environment.

The following abbreviations will be useful: if Z is the type environ-
ment vy : Aq,...,v, : A, then we write (Z) to represent the tuple type
(Aq,...,A,) and we write vz to mean the tuple of values (vy,... ,v,).

Proposition 4.6 For each label oo and each environment T compatible

with A, there exists a process CZ, using a fresh name §, such that

(i) if I;AFP -2 T'; AN+ P’ then Z,6 : rw(A) - CZ and P |CI =
(new A") P'|0Yvg:), where A = (T')

(ii) if P|CLZ = (new A’) P’|6/(vg) for some vy and IZ,§ : rw(A) + CL with
d & A" and dom(A’) = bn(a) then Z; A+ P =% (Z after a); A, A"+ P’

18 Matthew Hennessy and Julian Rathke

Proof: For ease of presentation we restrict ourselves to terms of the
monadic m-calculus, ¢.e. no tuple types; it is a simple but tedious proce-
dure to extend this to the full polyadic language. Given an environment
7 and label o we choose a fresh name § of type rw((Z’)) and let B be the
type ZI"(a), if defined, and otherwise T. Define the testing processes CZ
as follows:

o CL, =a?(z:B)if x = bthen §/(vzrp.p) else 0
. C(Ib)a!b = a?(z: B)if x ¢ T then 6/(vz ,.5) else 0
° CaI?b = a!b.5!(vz>

where x ¢ 7T is coded using nested conditionals to check that x is not equal
to any of the names in 7.

As an example of (i) we consider the case in which « is alb;the other
cases are similar. Note that the hypothesis, Z; A - P % 7"; A, A’ = P/,
ensures that Z"(a) is defined and therefore CZ is well typed.

We first show P |CZ = (new A’) P’|§!/(vr). Applying the hypothesis
to Lemma 4.3 we obtain

p o p/
and, by definition,
CaI!(b> ath s §1(vg)
These can interact to yield:
P|Coypy = P' |8 (vr)

as required.

To show that the testing process is well-typed let I' be the type context
z:B,Z,§ :rw((Z"))Mb:BMx:Z(b) where Z' is ZM b : B in this case. It
is easy to check that

F'Ed:w((Z) and T Fourmps: (Z)

thus, by applying the typing rule (T-oUT) we know I' F §!(vzrp.s). This
can now be used as a hypothesis to rule (T-EQ) to infer

z:B,Z,§: w({(Z")) I if z = b then 6/{(vzrp.p) else 0.

We know that B = Z"(a) so Z,6 : rw((Z')) - a : r(B) and this, combined
with the previous judgement, allow us to apply (T-IN) to obtain

Z,8 : tw((T")) F a?(z : B)if z = bthen §/(vy:) else 0 (= CZL,).

The reader should note the essential use of the accumulated type infor-
mation in the hypothesis of the type rule (T-EQ).

Typed behavioural equivalences for processes in the presence of subtyping 19

For the converse, part (ii), we use the case a = a?b as an illustrative
example. Suppose then that Z,d : rw((Z)) F CZ and

P‘Cgﬁpl‘(ﬂ(v(ﬁ

for some vg. It must be the case, as § is fresh to P, that vy is vz and,
by analysis of the reduction rules, that P =2*%— P’. Now, we know
that Z,0 : rw((Z)) - CZ so from this we can deduce that this must have
been inferred from Z - a : w(B) and Z - b : B for some type B such that
B <:Z%(a). This ensures Z¥(a) | and Z + b: Z%(a), allowing us to apply
Lemma 4.3 to obtain the required

I AFP =Y T-A}+ P’

5 Characterising the Testing Preorders

In this section we give alternative characterisations of the two testing
preorders. It should be emphasised that these are obtained by applying
the completely standard definitions of traces and acceptance sets, [8], not
to the lts obtained from the operational semantics given in Figure 2, but
to the Its of types actions, Conf. However a priori there is a mismatch
between formalisation of Conf and the definition of the testing preorders
in Section 3.1; the latter uses only one type environment, that of the
observer, while the former uses two type environments, one for the observer
and the other for the process under observation. To rectify this situation
we adapt the testing preorders, in a trivial manner, to typed processes,
that is processes with their typing environment.

Definition 5.1 (Testing Preorders) Let 7 = (A F P) Ty (A" F Q)
if

e bothZ; A+ P and Z; A+ P are configurations

¢ TFP Conay Q

The preorder Tust 1S generalised in a similar manner.

To study these relations we need to generalise various properties originally
defined for typed relations, that is relations parametrised over single type
environments, to relations over configurations, such as [,4y and Touse
in the above definition. So for example a natural generalisation of the
definition of open ertension, on page 11, is to allow Z |= (A F P) <7,,,
(A F Q) whenever Z,7' = (A, Z' F P) <may (AT F Q), for every I’
disjoint from Z. With this definition we have:

20 Matthew Hennessy and Julian Rathke

Proposition 5.2 The relations ey and smust over configurations are
w-closed.

Proof: A simple corollary of Lemma, 2.3. O
We now give alternative characterisations to these behavioural preorders.

5.1 May Testing

Typed actions are extended to typed traces a straightforward manner:
e ,AFP=<TI;,AFP

o T:AFP T3 T; A'FP’ and T; A’ P! =% T; A”F P” implies T; AFP =
TZ: A" F P

o T:AFP % T AP’ and T; A’F P’ =% T: A’ P" implies T; AF P 5
;A" | P

The characterisation depends on a Decomposition and Composition result
for these sequences. This requires an asymmetric definition of complemen-
tary action. For a visible action o we let @ denote alv if « is a?v and a?v if
o has the form (¢ : C)a?v. Thus @ transforms an action from the untyped
semantics in Figure 2 to one from the typed semantics in Figure 5. It is
extended to sequences in the natural way.

Theorem 5.3 (Trace Decomposition) Suppose T'| P —* R where
Z; A+ P is a configuration such that Z =T, and T is newfree. Then there
exists a typed trace T, A+ P == T': A+ P’ and a derivation T = T',
where R= (&: C)(T" | P'), for some (¢: C).

Proof: By induction on the derivation T'| P —* R. The inductive case
is when it has the form 7' | P —-* R and a case analysis is required
on the first move. The interesting case is where there is communication
between T" and P.

OurpuT FROM T TO P: In this case we have T | P - T" | P/ —* R
where

T o 7

p 23 pf
since T is new free. Applying Subject Reduction to the first reduction
we obtain Z%(a) | and Z v : Z%(a), which enables us to apply the

second part of Lemma 4.3 to obtain the typed action Z; A + P %%
Z; A+ P’. Subject Reduction also gives Z F T” and therefore induction

may be applied to obtain the rest of the typed trace.

Typed behavioural equivalences for processes in the presence of subtyping 21

OuTtpuT FROM P TO T: Here we have
T|P = (newd : D) (T' | P') =+* (newd : D) R’
where
T 2% T’
p (d:D)alu, pr
Again we can apply Subject Reduction to the first action to obtain

Z"(a) | and we can apply the third part of Lemma 4.3, this time to
obtain the typed action Z; A+ P (d:Daly, 71y . Z"(a); A d:DFQ

Also, since ZMwv : Z"(a) is defined, Subject Reduction gives ZMwv :

T

7" (a) F T" and so we can apply induction to the sequence 7’| P’ ——* R’
to obtain the remainder of the typed trace.

a

Note that this result is not true if 7" contains any occurrences of (newn) ().

Example 5.4 Suppose T, P represent the terms (newc: C) al(c) ¢?() T’
and a?(z) z!() P' respectively, where C is the type rw(), and suppose that
T and A are compatible environments such thatZ+= T, AF P andZ"(a) =
A" (a) = w(); these are easy to construct. Then the derivation T|P -+
(newc: C) T | P’ can not be decomposed.

This is a consequence of the assumption built into our configurations

T:AF P, that T <: A.

Theorem 5.5 (Trace Composition) Suppose T; A+ P =% T; A" P’
and T =% T'. Then there exists a derivation T' | P —=* (¢ : C)(T" | P’),
for some (¢: C).

Proof: Straightforward induction on s. O

These two results enable us to state our first characterisation result.

Definition 5.6 For any typed process A+ P let
Seq;(AFP)={s|T;AFP =}
Then we write
ITE(AFP)<may (AFQ)
if Seqz (A F P) C Seqr (A F Q).

22 Matthew Hennessy and Julian Rathke

Our aim is to show that [, coincides with the open extension of <4y,
K hay- It is the use of the open extension which enables us to capture the
effect of tests which generate new names, unknown to the process being
observed.

Theorem 5.7 (Alternative Characterisation of May Testing)
IF(AF P) Cimay (A" Q) ifand only if T |= (A F P) <540y (A" Q).

Proof:(Outline) First suppose Z |= (A - P) <5,,, (A" F Q). and P may
T for some test T such that Z + T. Using the structural congruence
the test 7' may be written as T = (newé: C) T’, where T” is new free;
moreover it is easy to check, using Proposition 2.3, that for any process
R, R may T if and only if R may T’. So we establish () may T".
From P may T’ we know there is a computation
TP R 5 ... R,

for some R, which reports success. We know Z,¢ : CFT , and by
weakening A,¢ : C' F P. Therefore using Trace Decomposition we can
obtain

I,é:C;A,é:CHP=T:AN+P
T = 1"

where 7" “X% The hypothesis ensures
Seqs z.a(A, ¢ C+P)C Seqr -.a(A' ¢ CFQ)
and therefore we have a typed trace
I,é:C;Né:CFHQ =

Now Trace Composition can be used to obtain a successful computation
from 7" | Q.

The converse requires the definition of testing processes which can
determine if a process can perform a particular trace. These use the terms

CZ, defined in Section 4.2, and since their construction is very similar to
those used in Theorem 5.11 below. We leave the details to the reader. O

5.2 Must Testing

The characterisation of must testing requires a notion of convergence and
acceptance set for the lts Conf.

Definition 5.8 (Convergence) We say the configuration C converges,

Typed behavioural equivalences for processes in the presence of subtyping 23

written C |}, if there is no infinite sequence of derivations
CH5C ... 5C =
This is generalised to trace sets by

CleifCl
Cla-sifCl and C' |} s whenever C' -2 C’

Definition 5.9 (Acceptance Sets) For any configuration let its ready
set be defined by

R(C) = {a? | Jv.C 2% YU {a! | Tu,cC LL2ln],
Then its acceptance set after S is given by

Ace(C,s) = {R(C') | C =5 C' /).

Definition 5.10 We write T = (A F P) < pmust (A" F Q) if for every
trace s

(Z; A F P) | s implies (a) (Z; A" Q) | s
(b) VD € Acc(Z; A" F Q, 5)
AC € Acc(Z; A+ P, s) such that C C D.

Theorem 5.11 (Must Characterisation) Z = (A F P) Tust (A’ F
Q) if and only if T = (AF P) <2, (A F Q).

Proof: We leave the reader to prove one direction, Z = (A F P) <2 ...
(A" F Q) implies Z = (A F P) Coust (A" F Q). Tt follows the lines of
Lemma 4.4.13 and Theorem 2.2.5 of [8], but using the Decomposition and
Composition Theorems given above; as in Theorem 5.7 tests with new
names are handled via the open extension.

To prove the converse we need to show that if Z,7" = A, 7'F P € pnust
A’, 7" F @ then there is a test T such that P must T while QQ vhust T.
We only consider the case when Z’ is empty; it contains all the ingredients
of the more general case.

There are two possible reasons for Z = AF P £ ust; A’ F Q not being
true, concerning convergence and acceptances respectively. Let us first
consider convergence. Here the situation is that Z; A+ P |} s, for some s,
but Z; A'FQ = 7', A" - Q" where Q' diverges. We construct a test C(s)
such that Z + C(s), P must C(s), and @ yaust C(s). The definition uses

the following notation:

e PP Q is used as shorthand for (newn) n!()|n?() P|n?() @, the internal
choice between P and Q.

24 Matthew Hennessy and Julian Rathke

o Cg,n will be used to denote the context associated with the action

a in Proposition 4.6, however with occurrences of §!(v) replaced by
n?() 6N (v).

If s is the empty sequence then C(s) is simply w!() ® w!(). Otherwise
suppose it has the form « - s’. Then C(s) is defined to be

(newn) nl() [n?()wl() |
(new ¢ : rw(Z")) Cg,n | 02(X : (Z')) (C(s"|X /v]})

where 7' is T after a.

The s derivation from Z; A’ - @ ensures that Z = C(s). The fact that
Z;A+ P | s ensures that P must C/(s) since any stable state reachable
from C'(s) must be successful. Finally the derivation from Z; A’+ (@ ending
in the divergent @)’ ensures that) vhust C(s).

The second possibility is that there is some D € Ace(Z; A" F Q,s)
which has no corresponding acceptance set in Acc(Z; A + P,s); here we
can assume that both configurations Z; A = P and Z; A’ F @) converge
with respect to s.

Let C1,...,C, be all the acceptance sets in Acc(Z; A + P,s). Then
we know that there is a set {ci,...c,} such that ¢; € C; — D, for each i.
Note n may be zero but this will not affect our argument.

First let us construct a test from this set:

Tp =T(c1)|...| T(cn)
where the tests T'(¢;) depend on the form of ¢;:
e ¢; is an input a?: Here we know there is a derivation
T;A+ P == (T afters); A"+ P" 2%
for some v. So let T'(¢;) be al(v)w!().
e ¢; is an output alv: Here we have
T;A+ P =% (T afters); A" - P’ 4%

So we let T'(c;) be a?(X : A)w!(), where A denotes (Z after s)"(a),
which by virtue of the last move we know exists.

Note we have constructed T so that it can be typed by (Z afters).

Now we construct the test A(s, D) by induction on s, in the same
manner as C(s). The only difference is in the base case, when s is the
empty sequence, where A(s, D) is defined to be Tp.

Again one can check that

Typed behavioural equivalences for processes in the presence of subtyping 25
e T+ A(s,D)

e () vhust A(s, D) because of the derivation from ¢ which gives rise to
the acceptance set D

e but by construction P must A(s, D); note this holds even in the case
when Acc(Z; A F P, s) is empty.

6 Bisimulation

We now describe our characterisation of the co-inductively defined be-
havioural equivalence, =S¢, outlined in Section 3.2.
First we recall the definition of weak bisimulation from [13].

Definition 6.1 Given a labelled transition system T, we say that a binary
relation R on T is a bisimulation if whenever n R m then

o if n 5 ' then there exists a m =& m’ such that n’ R m’
o if m -5 m/ then there exists a n =% n' such that n’ R m’
where [i 1s €, the empty string, if pu s T and p otherwise.

_cxt

=c. can be characterised in terms of a

Our intention is to show that
bisimulation over Conf.

However as in Section 5 we have a mismatch between the formalisation
of this relation, =S¢, in Section 3.2, which only uses one type environment,
of the process being observed, and that of bisimulation equivalence, which
uses two type environments. As with testing, we reconcile this difference
by extending the definition of =& so that it takes into account both
environments.

First we generalise Definition 3.2 by now saying that an (extended)
typed relation is a family R of relations over typed processes, parametrised,
as before, by closed type environments, which satisfies: (A F P) Rz (A’ -
() implies Z; A+ P and Z;A F @ are configurations. To conform to

our previous notation we write this as
IE(AFP) R (A'FQ).

although effectively these are restricted forms of relations over configura-
tions.

Definition 6.2 Let (typed) bisimulation equivalence be the largest typed
relation ~ which is

26 Matthew Hennessy and Julian Rathke
o a weak bistmulation

e w-closed, that is satisfying T = (A F P) R (A" F Q) implies Z, A" =
(A,A"EPYR (A, A" Q)

Bisimulation equivalence will be written as

Tk (AFP)~ (A F Q).

Note that the second requirement is required because we have already seen
that =S¢ is w-closed. Intuitively its inclusion allows environments to pass
new values to processes under investigation.

Two natural properties of (typed) bisimulation equivalence is given in

the following proposition:

Proposition 6.3 Suppose Z = (A+ P) ~ (A" Q). Then

o for any appropriate A", T, A" = (A, A" F P) =~ (A", A" + Q).

o IfT<:T thenT | (AF P)~(A"+F Q)
Proof: The first result is simply a re-iteration of the fact that ~ is w-
closed. Intuitively the second property is true because Z constrains the
behaviour under which P and () are compared. If they are equivalent
under the constraint Z then they should remain equivalent when they are

constrained further, by Z’. To prove it formally let the family R be defined
by

T’E(AFP)R(A'FQ)

fZE(AFP)~ (A"F Q) for some Z <:Z'. This family is w-closed by
definition, and it is straightforward to show that it is a bisimulation. It

follows that R C =, pointwise, from which the result follows. O
Let us now turn our attention to giving a similar formulation to =&&t,

using two, rather than one, type environments. The definitions of reduc-
tion closed and barb preserving generalise immediately to extended
typed relations. However that of being contextual is more complicated.
Rather than giving a general definition based on arbitrary contexts we
give a set of specific rules for our constructors; we say the extended re-
lation R is contextual if it satisfies the rules given in Figure 6. Finally
let =% be, as before, be the largest symmetric, reduction closed, barbed
preserving contextual extended typed relation.

The requirements in Figure 6 are for the most part natural gener-
alisations of the standard requirements for a relation to be preserved by

constructors, generalised to take into account the type environments. Note

Typed behavioural equivalences for processes in the presence of subtyping 27

(CXT-SPEC)

IEAFP)R(AFQ), I<:T

' = (AR P)R(ALFQ)

(CXT-WEAK)

IE(AFP)R(A'FQ)

Z,A" = (A,A"FP)R (A, A" F Q)

(CXT-IN)

Tka:r(A)

A" = (AA" FTw/X]) R (A,A” F U[v/X]), whenever Z,A" v : A

TE(AFa?(X:A)T)R (A Fa?(X:A).U)

(exT-0UT)

TFu:w(A)

ITHv: A
IE(AFP)R (A'FQ)

TE (AFul{v)P) R (A"F ul{v) Q)

(CXT-MATCH)

AFu:Av:A A'Fu:B,v:B
IE(AFP)R(A'FQ)
ITE(AM{u: A v:A}FP)R(A'M{u:Bv:B}F Q)

Tk (At ifu=uvthen Pelse P') R (A" Fif u = v then Q else Q')

(CXT-NEW)

Z,a: TE(Aja:AFP)R (Aya: A Q)

ZTkE (AF (newa:A) P) R (A"F (newa: A) Q)

(CXT-PAR)
Tk (AFP)R (A FQ)
I-R

TE(AFP|R) R (A F
TE(AFR|P)R (A F

(CXT-ITER)

IE(AFP)R(A'FQ)

Tl (AF «P) R (A F +Q)

F1GURE 6. Contextuality for indexed relations over configurations

28 Matthew Hennessy and Julian Rathke

however that the first two rules, (CXT-SPEC) and (CXT-WEAK), automat-
ically build in specialisation and weakening properties, respectively. This
may seem artificial but is justified by the following result, which shows

that we do indeed have a generalisation of the definition of =St from
Section 3.2:

Proposition 6.4 A = (AF P) =% (AF Q) if and only if A = P =53¢
Q.

Proof: We first show the if direction. Define a typed relation R by letting
IE(AFP)R(AFQ)

if AP =S Q and A <@ Z. R is symmetric, reduction closed and
barb preserving. Using the fact that =% as a family of relations over
processes, is contextual, we can show that it satisfies all of the rules in
Figure 6.

__cxt

Therefore R is contained pointwise in =cy., from which the result

follows, since A = P =% @ implies A = (AFP) R (AF Q).

~obs
The converse is similar. Let the family of relations R, over processes,

be defined by
AEP R Q if AE(AFP)SE (AFQ).

~obs

Here the result will follow if we can show that R is contained pointwise
in =% which in turn will follow if we can show that R satisfies all the
defining properties of =&*t. The proof that it is symmetric, reduction
closed and barb preserving is straightforward.

It remains to show contextuality, that I'' =T R° U and I" - C[-1/]
implies I' = C[T] R° C[U]. This is proved by induction on the derivation
of I' = C[-r], using the rules in Figure 6. Note that the rule (CXT-SPEC)
is essential in the proof of the case in which the context is deduced using

(T-NEW).

O

The remainder of this section is devoted to showing that this gener-
alised contextual equivalence coincides with weak bisimulation on Conf;

thatisZ = (AF P) =S (A’ Q) ifandonlyif Z = (AF P) =~ (A’ F Q).

~obs
6.1 Soundness

First let us show that typed bisimulation equivalence is preserved, in some
appropriate manner, by the principal operators of the language.

Typed behavioural equivalences for processes in the presence of subtyping 29
Proposition 6.5 If Z,a : T E (A,a: AF P) = (A';a: AF Q) then
ZTE(AF (newa:A) P)~ (A’ F (newa: A) Q).
Proof: Let the relation R over typed processes be defined by
ITE(AFR)R(AFS)
if
e T=(AFR)~(AFS)

e or R S, have the form (newa: A) P, (newa: A) @, respectively, and
Z,a: TE(Aja:AFP)~ (Aa: AF Q).

Then R is w-closed by definition. We show it is a bisimulation,
from which the result will follow since we will have established that,
pointwise, R is contained in ~.

We show how every possible move from Z; A F R can be matched
by one from Z; A F S. The only non-trivial cases are when R, S have
the second form above. From the definition of typed actions in Figure 5
there are two possibilities.

1. The move is inferred using the rule (TYLTS-OPEN):
T;AF (newa: A) P T/ A+ P/,
for some output move «, because
Z,a: T;Aa: AP T A, FP.
Here the latter move can be matched by
Zoa:T;Aa:AFQ=T/A+Q
for some ()’ such that
T = (A b P) ~ (A, F Q),
that is
T E (As - P)R (AL Q).

However an application of the rule (TYLTS-OPEN), together with
some reductions, gives the required matching move

;A ¢ (newa : A) Q {22 7. Al F Q.
2. The second possibility is that the move is inferred using the rule
(TYLTS-CTXT):
;A F (newa: A) P2 T A, (newa: A) P,
because
Z,a:T:Aja:AFP & T:A,F P,

30 Matthew Hennessy and Julian Rathke

where a & n(u).
Here the proof is similar. We can find a matching move from Z, a :

T;A’ a: AF @ and then use (TYLTS-CTXT) to obtain the required
matching move from Z; A F (newa : A) Q.

Proposition 6.6 Suppose T+ R. ThenT = (A F P) ~ (A’ F Q) implies
I=(AFP|R) =~ (A'"FQ|R).

Proof: Here, because of the possible internal communications between R
and P, @, the required definition of the relation over typed processes is
somewhat complicated.

Define the relation R such that

TE (At (newAp) P|R)R (A"F (newAj) Q| R)
if and only if there exists an Zy compatible with Ag and Aj such that
I,IO ‘: (A,AO - P) ~ (A/,A6 + Q) and I,IO FR

and show that R forms a bisimulation.
Suppose then that

TE(AF (newAp) P|R) R (A"F (newAj) Q| R)
and that
;A P|R-E T A"+ P
This presupposes the existence of an environment Zy compatible with both
Ay and Aj with the properties outlined in the definition of R . If p is a not
a T-action then we know that the transition derives either from P or from
R. In either case, we can use the hypothesis to obtain a corresponding

transition from @ or from R again. So, the interesting case is when p is a
T action. Consider how this can occur:

(i) P or R performs a 7 action independently.

(ii)) P 15—61)“—'% Py and R <% R’ so that P’ is (newAg,é: C) Py | R’ for
some C.

(iii) P 2% Py and R {&99!% R/ g6 that P’ is (new Ag,é: C) Py | R

Obviously the first case (i) is treated as the case above when u is not a 7
action.

Typed behavioural equivalences for processes in the presence of subtyping 31

Suppose case (ii) holds. We know that Z,Zy - R so that, by Subject
Reduction 2.2, (Z,Zy)"(a) J. Then, Lemma 4.3 tells us that

T,To; A, Ag - P 199 T 7o after (¢)alv; A, Ay, é : C - P,.
We know by hypothesis that
I,Io ‘: (A,AO = P) ~ (A’,AB + Q)

which means there must exist a transition from () which matches P’s
output. That is, there is some Q¢ such that

T,To; A', AL - Q L8998 T Ty after (¢)alv; A, A}, & : C'FQq
with
T, Ty after (&)alv |= (A, Ag,é: CF Py) ~ (A, A}, &: C'F Qo).
We also know that R can interact with () to produce:
T;A'F (newAl) Q|R=T;A'F (newAl,é:C') Qo | R
and observe that
TE(AF (newAg,é:C) Po|R)R (A" F (newA),é:C') Qo | R))

because 7' = (Ag F Py) R (A} F Qo) and Z,Zy after (¢)alv = R’. This
last fact is guaranteed by the premise Z,7Zy - R after applying Subject
Reduction 2.2.

Finally, suppose (iii) holds. Again we have Z,Z; - R so that Subject
Reduction, Theorem 2.2, tells us (Z,Zy)"(a) | and, if we let ZT denote
T,Ty,¢ : C, we also have Tt F v : (Z1)%(a). This allows us to appeal to
Lemma 4.3 to observe:

IT:A, Ay, é:CHP 2 TH A Ay, é: CH Py

By hypothesis we know,
T,7y = (A, Ag - P) = (A", AL F Q)

so, because & is w-closed we also have,

It = (A, Ag,é: CHP)~ (A, A,é: CF Q).
This guarantees our matching transition

IT:A Ay, ¢:CHQ 2 TH A Ay, ¢ CI—Q
with Zt = (A,Ag,é : C F Py) ~ (A,A},é: CF Qo). We use the

interaction with R to obtain the reductions

T;A'F (newAg) Q| R=T; A"+ (new A, é: C) Qo | R

32 Matthew Hennessy and Julian Rathke

and, again by Subject Reduction, Theorem 2.2, it is easy to see that
IT + R’, whence

TE(AF (newAy,é:C) Py|R) R (A" + (newAl,é:C) Qo | R

as required.

We now have most of the ingredients to prove:

Theorem 6.7 (Soundness)
FIE(AFP)=~(A'FQ) thenT = (AFP)= (A" Q).

~obs

Proof: It is easy to see that ~ is a reduction closed, symmetric and barb
preserving relation over typed processes. If we can demonstrate that it
is also contextual then, because of the the fact that =& is the largest
such relation we have our result. Therefore we only have to prove that ~
satisfies all the rules in Figure 6.

The rules (CXT-SPEC) and (CXT-WEAK) are covered by Proposition 6.3,
while (CXT-NEW) and (CXT-PAR) have just been established in the previous
two Propositions. The remaining rules can be handled in a similar manner,
by setting up an appropriate w-closed relation over typed processes and

showing it is a bisimulation.

6.2 Completeness

Here we show the converse of Theorem 6.7, completeness, namely that
contextual equivalence implies bisimularity. To do so we only need a re-
stricted version of contextual equivalence. Let =Fio" denote the largest
relation over configurations which is reduction closed, barb preserving and
contextual with respect to parallel and new name contexts, that is satis-
fies the rules (CXT-SPEC), (CXT-WEAK), (CXT-PAR) and (CXT-NEW) from
Figure 6. It is clear that =& implies =P;o" so, in fact, it suffices to prove
completeness for the latter and we shall use this relation from now on.
Before we prove this theorem it will be useful to present a technical
lemma. It is here that we utilize the exported names in the terms which
witness the contextuality of labels. Essentially, the lemma states that the

environment really can collate the information gained via the Its.

Lemma 6.8 Suppose I is compatible with A,é: C and A',¢: C and § is
fresh to P,@Q. Then

Typed behavioural equivalences for processes in the presence of subtyping 33
7,6 : tw((Z')) = (A, 6 : vw((T)) F (newé : C) P |6lg)
=P (AL S rw((T')) F (newé : C) Q| 8lug)

~obs
implies
7 = (Aé:CFP)SH (Aé: O F Q).

Proof: We prove this by co-induction. Let the relation R 7/ be defined
for 7' compatible with A, Ay and A’, A}, so that

T E (A, ApF (newAy) P) R (A, Ag - (new A}) Q)
if and only if there is some § : rw((Z")) such that

Z,6 : vw((Z)) E (A0 : rw((Z')) F (new Ay, Ay) P | vrr))
Stpe (A0 w((Z')) F (new A, A}) Q| 8vz)).
We simply need to show that R is reduction closed, barb preserving,
and closed with respect to rules (CXT-SPEC), (CXT-WEAK), (CXT-PAR)
and (CXT-NEW). Reduction closure is immediate by the definition of R,
as is closure with respect to (CXT-SPEC) and (CXT-WEAK). For the other
requirements we proceed by supposing that

T = (A, Ac - P)R (A, Ay - Q)
such that 0 : rw((Z")) with
T,6 = (A6 (newAy) PN vr)) S (A6 F (new A) Q| (vr)).

~obs

In the above equation, for the sake of presentation, we have omitted, and
shall continue to do so for the remainder of this proof, to give the type
information associated with the barb 9.

We first show closure with respect to (CXT-PAR). Suppose Z' F R. We
need to show that 7/ = (A, A F P|R) R (A", Aj F Q| R). To do this
we choose some fresh ¢’ and construct R' = §?(X : Z') (R[X/n(Z")]|'1())
(recall that n(I") refers to the names in the domain of I'). It should be
evident that 8,4’ - R’ and, by closure of =P *** with respect to (CXT-SPEC),

~obs

(CXT-WEAK), (CXT-NEW) and (CXT-PAR) we have
7,8 = (A, F (new Ag,8) P |6l vp) | R) =2

~obs

(A" 6" F (new AG,8) Q|8 vr) | R)
It is fairly easy to check that
T',8" = (A, 8 F (new Ay,) (P |8 (vr) | R)) =P

~obs

(A, 6" (new Ag) (P | R| &) vz)))

34 Matthew Hennessy and Julian Rathke

and similarly for). Hence,

7,8 = (A8 F (newAg) P|R|§vp)) =P (A, 6 F (new AL) Q|R|6'N(vr))

~obs

This serves to witness
T = (A,AOI—P|R)R(A',A6|—Q|R)
as required.

The closure of R with respect to (CXT-NEW) follows easily from the
closure of =P with respect to this rule. So we will finish by showing
that R is barb preserving.

We suppose that Z’; A, Ay - P P2 ¢ for some a such that 7' - a :
rw(A). Choose a fresh ¢’ : rw(T) and build R = §7(X : Z') X, 7(Y : A)d'l()
where X, refers to the component of X to which the name a will become
bound to as it receives the value vz.. We know that 6,6’ - R,

7,6,8' = (A F (newAq) P|6Y vz} |R) =% (A" F (new Af) Q| 6wz | R)

~obs
and
7,6,0'; AF (new Ag) P |6 vr) | R P 4.

__ p-cxt
~obs

7,6,8' ;A" (new A)) Q|6 (vr) | R P2 4’

also. But, as ¢’ is fresh, this could only have arisen by interaction with R
along a, whence

This means that, by the barb preservation property of = we know

I,;A,,A6 = Q U(barb a
as required. O

We can state the central theorem which allows us to achieve complete-
ness:

Theorem 6.9 (Completeness)
FI=(AFP)=St (A'FQ) thenT | (A P)~ (A F Q).

~obs

Proof: Again, the proof proceeds by co-induction, this time we define the
relation R by letting Z = (A - P) R (A’ F Q) if Z | (A F P) gho
(A" F Q). By definition it is w-closed. We demonstrate that it forms a
bisimulation. To this end, suppose Z = (A - P) R (A’ - @) and that
;AP £ T, Ag - P'. We use the contextuality of labels to find a
matching transition and proceed by cases on . We only show the case for

p is (¢)alv here, it being the most involved. Note that, in this case, Ag is

A,é:C.

Typed behavioural equivalences for processes in the presence of subtyping 35

We choose a fresh § : As where As denotes rw((Z’)), and use Propo-
sition 4.6 to find a term such that Z,0 : As CZ with the appropriate
properties. In fact, the first property tells us that

Z,§:As; A0 A(;I—P\Cf — 7,8 : As; A6 : Ask(newé : C) (P'|6Yvpr))
Using CZ we can build a test term by choosing further fresh names
§' : Ags, a:rw(T) and letting
Cs = al() | 67(z) a?(y).0"!(z)
we note immediately that Cs, {|"*™ a.

From contextual closure (omitting some type information) we know
that

7,6' = (A, F (newd) (P|CE [Cp)) S5 (A6 F (newd) (Q | CT | Cp))

~obs
We also know that the left hand side of this equation may reduce (up to
a minor structural equivalence) to
7,68 A6 F (newé: C) P'| 6" vgr).

We use Cp to refer to this configuration and observe that Cp Jlbarb a but
CP llbarb 5

Reduction closure now tells us that there must exist some matching
reductions

I,8'; A, 6"+ (newd) (Q | CL | Cs) = Co

for some Cg such that Cp =2 Cy.

** preserves barbs, so this means, in particular, that Co Jyparb
a and Cg P §" also. Hence we know that Cp must be (again up to a
minor structural equivalence) of a very specific form:

Z,6; A, 6" F (newé : C7) Q' |6 (lwg))

for some @' and some vy. By the construction of C; and the fact that
Co ¥P*™ a we know that the reductions to Cg must have been generated
by interaction with reductions of the form

(Z,6;A',6FQ|CL) = (Z,6;A',6F (newé: C') Q' | 8! (vp)

which, by Proposition 4.6, must themselves have been generated by inter-
action with transitions of the form

TANFQT N é:.C'HQ.
It only remains to demonstrate that
T = (Aée:CHPYR(Aé:C'F Q).
This follows from the fact that Cp =P Co and Lemma 6.8. O

~obs

36 Matthew Hennessy and Julian Rathke

Soundness, Completeness and Proposition 6.4 allows us to now con-
clude with the main result of the paper:

Corollary 6.10 If T E P =% Q if and only if T = (T F P) ~° (T + Q).

~obs

6.3 Example

The characterisation of the previous sections provide a convenient co-
inductive method for establishing contextual observational equivalence be-
tween terms. We provide a short example which demonstrates the utility
of the bisimulation proof method. The processes that we consider provide
two different implementations of a producer/consumer unit server.

Clients send requests for service along a global channel req, which
must be accompanied by a reply channel which has type at least R =
w{(w(T),r(T))). The server creates dedicated produce and consume chan-
nels, exclusively for the client, at type A = rw(T), and returns these along
the reply channel. Note that because of the type of the return channel
the client only receives the write capability on the produce channel and
the read capability on the consume channel. The server then manages the
simple protocol that for every call on the produce channel, a corresponding
request can be made of the consume channel:

CU; = xreq?(xz : R) (newp,c: A) zl(p,c) =*p?().cl{)

Here the server and uses the process xp?() .c!() to manage the produce and
consume requests.
Another implementation is given by:

CUy = *req?(z : R) (newp,c: A) z!l(p,c). (xp?().cl{) | *c?() .pl()).

The behaviour of this server, when managing the produce/consume re-
quests is a little different. Here the server itself, in addition to the client,
may consume a request; if it does so it then reproduces a message in
recompense.

There is a bug in the second implementation because, having set up
a protocol for a client, when a message is sent by the client it may be
consumed by the server itself, consequently unleashing an infinite sequence
of produce/consume messages internal to the server. This can be formally
demonstrated using the must testing equivalence.

Let Ay, be any typing environment such that A (req) = rw(rw{(B, C))),

req req

where B <: w(T). Then
Afeq E CU; Zmust CUs.
To prove this result we exhibit a test T such that AS, T, CU; must T

req

Typed behavioural equivalences for processes in the presence of subtyping 37

but CU; vhust T. The required T is given by

(newr : A,) req!(r) r?((z,y) : (w(T),r(T))) z!{) w!()

where A, is the type rw((B,C)). It is straightforward to show that this
can be typed by A,.,, that it is guaranteed by CU; but when applied to
CU,, may lead to a non-terminating computation.

It is well-known that contextual observational equivalence is insensitive
to such internal divergent behaviour. However there are further reasons
for these two servers to exhibit different behaviour, in certain type en-
vironments. Suppose for example that Ay maps the channel req to the
type rw(rw((B, C))), where B,C are rw(T), r(T) respectively. This type
enables the environment, when it receives a produce/consume pair p, ¢,
to both write and read on p; with this capability C'U; and C'Us can be
distinguished. For example consider the context C] |:

T[]

where T is the process

(newr : A,) reg!(r) r?((z,y) : (rw(T), r(T))) x!{) x?()d!{).

Then it is easy to see, assuming Ay has the appropriate type for d, that
A | C[CUs] |}P*™ d whereas A = C[CU;| P2 d. Tt follows that

Ag = CUL £ CUs.

Note that a similar example can be constructed if, instead, we allow the
environment write access on the consume channel c.

However if we limit the environment’s access to the produce/consume
pair to be write, read respectively then we can show that the two servers
are contextually equivalent:

Proposition 6.11 Suppose that A, is any typing environment such that
Areq(req) = rw(rw((B, C))),
where B :> w(T) and C:>r(T). Then
Aveqg E CUL 555 CUS.
Proof: We will establish that these processes are in fact bisimilar and
then by soundness we may conclude that they are contextual observational

equivalent. To show that they are bisimilar we may appeal to congruence
properties of bisimulation equivalence and show that, for Ay =p: A,c: A,

Py =xp?().cl{) and Py =xp?().cl{)|*c?().p!()

38 Matthew Hennessy and Julian Rathke
and for any Z :> p: B,c: C, we have

TE(AsF P~ (AgF Py).

To demonstrate this we define our candidate relation for the bisimulation
as follows. Let c!™ for a non-negative integer n mean the n-fold parallel
composition of the terms c!(). We relate terms such that (upto =)

TE(AAFP | ™) R (Ask Pyc!™]p!¥)

whenever n = m + k. We must show that the w-closure of R forms a
bisimulation.

This is reasonably straightforward, as an example of the work involved
(ignoring w-closures) we suppose that

TE(AAFP | ™) R (AskF Pyc™]p!¥)

and that Z; Ag - Py | ™ &5 T; A4 = P’ (note that Z and A4 will not
change throughout this proof and n = m + k).

We consider how this could arise: firstly, if the transition originated
in P; then we know p must be of the form p?(). This is only possible in
case the environment 7 has write capability on channel p, which it may.
There is an obvious matching transition from P, which is always ready
to receive produce requests on p also. The resulting states reached are in

R :
TE(AAF P ") R (AsF Py | ™ plF)

as (n+1)=(m+1)+k.

The second possibility is that the transition from originates from c!™
and is an output of the form c!() (that is n > 0 and P’ is P; | c!I"71).
This can only be possible if the environment Z has read capability on this
channel, which it may. The matching transition for this would of course
simply be an output c!() from Ps |c!™ | p!¥, but we do not necessarily know
that m > 0. However, we do know that n = m + k£ > 0 so, in the case
m = 0 we must have £ > 0 and an internal communication between p!*
and P, ensures the availability of a ¢!() transition. Thus, the matching
transitions are, for m > 0,

(Z; A4 F Py cl™ | p*) <0 (T Ap F Py | ™71 | plF),
and for m = 0,
(Z; A4 F Py | ™| pl*) = (T, A F Py | ™ | plFh).

In either case we end up back in R .
Similar arguments can be used to match transitions from P | c!™ | p!*.
The only extra transitions here arise as internal communications. There

Typed behavioural equivalences for processes in the presence of subtyping 39

are two possibilities for these: an interaction between P, and c!™ and an
interaction between P, and p!*. Note that in each case the resulting state
is

P2 | C!m—l |p!kz—|—1

for the former and
P | clm+l \p!k_1

for the latter. In either case the total m + k is invariant. This means that
the extra internal transitions exhibited by Py | ¢!™ | p!* may be matched
in R by an empty transition from Pj | c!™.

It is worth mentioning here that it is not possible to observe output
transitions of the form p!() from Z; A4 Py | c!™ | p!* as we have supposed
that Z(p) :> B :> w(T) and thus cannot the read capability required
to make this observation. Similarly, it is not possible to observe input
transitions of the form ¢?() from Z; A4 - Ps.

a

This short example demonstrates the use of a co-inductive proof for
establishing contextual observational equivalence. The use of the bisimu-
lation method allows us to establish equivalence without quantifying over
all possible clients for these servers. In effect, the environment plays the
role of an arbitrary client.

7 Conclusion

In this paper we have studied typed behavioural equivalences for the -
calculus. In particular we have shown that natural typed versions testing
and barbed congruences can be captured by applying standard techniques
to a new lts of typed actions, Conf. Thus, at least in principle, it should
be possible to use, or adapt, existing proof methodologies and verification
systems, [4, 5] to prove type dependent equivalences between processes.
Admittedly the states, Z; A+ P, in the lts are a priori complicated, con-
sisting of a process term P, a type environment for its computing context
7 and a separate type environment for the process itself A. But the ob-
servant reader will have noticed that in the rules for generated Conf,
in Figure 5, the last type environment A plays no role. Technically its
presence has been convenient for deriving our results, which depend on
the fact that processes are well-typed with respect to some environment
coherent with Z, but in an implementation of Conf they could be safely
omitted.

Typed process equivalences, as opposed to untyped ones, have nu-

40 Matthew Hennessy and Julian Rathke

merous interesting applications. For example such an equivalence has
been used in [18] to investigate translations of the A-calculus into the 7-
calculus; the use of types enables stronger results to be demonstrated. In
[24] complier optimisations are justified using a typed equivalence, for a
language similar to ours. We also intend to develop typed equivalences
for the higher-order process language in [25, 22], where types are used to
resources and computing hosts from malicious agents; in such scenarios
demonstrating that a particular policy does indeed offer host protection
would amount to proving typed equivalences.

We have based our notion of contextual equivalence on the approach
of [9, 7] rather than that used, for example in [15]. In the latter the
behavioural equivalence itself is not required to be itself contextual, but
instead the largest contextual relation contained in it is the focus of study.
The two approaches are conceptually not very different and in many cases
they actually generate the same behavioural relation; see for example [9, 6].
However proofs characterising the latter in terms of bisimulation relations
are often complex, dependent on the precise constructs of the language
being investigated, and sometimes even require infinitary syntactic con-
structs; see for example the characterisation proofs in [15, 23]. Indeed
more recent characterisation theorems, such as that in [1] tend to be re-
stricted to finite-branching processes. On the other hand characterisation
theorems for the kind of formalisation we have chosen are usually concep-
tually more simple, or at least not very dependent on the precise language
constructs to hand; see for example the proofs in [9, 11].

There have been some previous attempts at characterising typed con-
textual equivalences [2, 17] using an observer’s view of the type envi-
ronment. In [17] the observer’s view is used to account for contextual
equivalences in the presence of polymorphic types in the m-calculus but
subtyping is not considered. Also no complete characterisation of barbed
congruence was provided in this setting. Although this paper did not deal
with subtyping the subsequent work in [2] did tackle this problem albeit
in a theoretically very different setting to ours. The chief difference lays in
the absence of the name equality test. We crucially use the name equal-
ity operator to witness that each of our actions o may be constructed
as a test Cy[| and that the type information gained during this test
may be accumulated. In [2] the lack of the equality test impacts upon
the labelled transition system in the sense that names being sent to the
observer cannot be recognised as names encountered during a prior test.
In particular this precludes accumulation of knowledge about a name and
the labelled transition system presented in this paper reflects this. A co-
inductive characterisation of barbed congruence is provided although the

Typed behavioural equivalences for processes in the presence of subtyping 41

equations holding in this setting vary considerably from ours. For instance
the well-known Replication Theorem of 7-calculus used to illustrate their
technique fails to hold in the presence of equality testing.

Our system allows for a gradual increase in knowledge about types

of names and provides a fresh approach to understanding the effects of
subtyping on process equivalence.

References

[1]

[2]

[10]

[11]

[12]

[13]
[14]

Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations
for the asynchronous w-calculus. Theoretical Computer Science, 195(2):291-324,
30 March 1998.

M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi without match-
ing. In Proc. 13th LICS Conf. IEEE Computer Society Press, 1998.

G. Boudol. Typing the use of resources in a concurrent calculus. In Proceedings
of the ASTAN’97, number 1345 in Lecture Notes in Computer Science, pages 239—
253, 1997.

R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A se-
mantics based verification tool for finite state systems. ACM Transactions on
Programming Systems, 15:36—72, 1989.

Rance Cleaveland. The concurrency factory: A development environment for
concurrent systems. In R. Alur and T. Henzinger, editors, Proceedings of CAV’96,
volume 1102 of Lecture Notes in Computer Science, pages 398-401. Springer-
Verlag, 1988.

C. Fournet and G.Gonthier. A hierarchy of equivalences for asynchronous calculi
(extended abstract). In Proceedings of ICALP’98, volume 1443 of Lecture Notes
in Computer Science, pages 844-855. Springer-Verlag, 1988.

C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A calculus of mo-
bile agents. In U. Montanari and V. Sassone, editors, Proceedings of CONCUR’96,
volume 1119 of Lecture Notes in Computer Science, pages 406—421, Pisa, August
1996. Springer Verlag.

| M. Hennessy. An Algebraic Theory of Processes. MIT Press, 1988.

Kohei Honda and Mario Tokoro. On asynchronous communication semantics.
In P. Wegner M. Tokoro, O. Nierstrasz, editor, Proceedings of the ECOOP ’91
Workshop on Object-Based Concurrent Computing, volume 612 of LNCS 612.
Springer-Verlag, 1992.

A. Jeffrey. A distributed object calculus. In Proc. ACM Foundations of Object
Oriented Languages. IEEE Computer Society Press, 2000.

A. Jeffrey and J. Rathke. A theory of bisimulation for a fragment of concurrent
ml with local names. In Proc. LICS2000, 15" Annual Symposium on Logic in
Computer Science, Santa Barbara, pages 311-321. IEEE Computer Society Press,
2000.

Naoki Kobayashi. A partially deadlock-free typed process calculus. In Proceedings,
Twelth Annual IEEE Symposium on Logic in Computer Science, pages 128—139,
Warsaw, Poland, 29 June-2 July 1997. IEEE Computer Society Press.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

R. Milner. Comunicating and mobile systems: the m-calculus. Cambridge Univer-

42

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Matthew Hennessy and Julian Rathke

sity Press, 1999.

R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Proc.
19th ICALP, volume 623 of Lecture Notes in Computer Science, pages 685—695.
Springer-Verlag, 1992.

R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 24:83—-113, 1984.

B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus.
In Proc. 24th POPL. ACM Press, 1997. Full paper to appear in Journal of the
ACM.

Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409-454, 1996. Extended ab-
stract in LICS ’93.

Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. Technical Report CSCI 476, Computer Science Department,
Indiana University, 1997. To appear in Proof, Language and Interaction: FEssays in
Honour of Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte, editors,
MIT Press.

R. Pugliese R. DeNicola, G. Ferrari. Klaim: a kernel language for agents interac-
tion and mobility. In IEEFE Transactions on Software Engineering, number 5 in
24, pages 315-330. IEEE Computer Society, 1998.

James Riely and Matthew Hennessy. Resource access control in systems of mobile
agents (extended abstract). In Proceedings of 3rd International Workshop on
High-Level Concurrent Languages, Nice, France, September 1998. Full version
available as Computer Science Technical Report 2/98, University of Sussex, 1997.
Available from http://www.cogs.susx.ac.uk/ To be published in Information and
Computation.

James Riely and Matthew Hennessy. Trust and partial typing in open systems of
mobile agents (extended abstract). In Conference Record of POPL ’99 The 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 93-104, 1999.

D. Sangiorgi. Fzpressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis CST-99-93, Department of Computer Science,
University of Edinburgh, 1992.

Akinori Yonnezawa, Motoki Nakade, and Naoki Kobayashi. Static analysis of com-
munication for asynchronous concurrent programming languages. In A. Mycroft,
editor, Static Analysis. Proceedings, volume 983 of Lecture Notes in Computer
Science, pages 225-242. Springer-Verlag, 1995.

N. Yoshida and M. Hennessy. Assigning types to processes (extended abstract). In
Proceedings, Fifteenth Annual IEEE Symposium on Logic in Computer Science,
pages 334-348, Santa Barbara, US, 19-23 June 2000. IEEE Computer Society
Press.

