
Towards a theory of bisimulation for local names

Alan Jeffrey

CTI, DePaul University

243 South Wabash Ave

Chicago IL 60604, USA

ajeffrey@cs.depaul.edu

Julian Rathke

COGS, University of Sussex

Brighton BN1 9QH, UK

julianr@cogs.susx.ac.uk

Report 2/00, January 2000

Abstract

Pitts and Stark have proposed the ν-calculus as a language for investigating the interaction

of unique name generation and higher-order functions. They developed a sound model based

on logical relations, but left completeness as an open problem. In this paper, we develop a

complete model based on bisimulation for a labelled transition system semantics. We show

that bisimulation is complete, but not sound, for the ν-calculus. We also show that by adding

assignment to the ν-calculus, bisimulation becomes sound and complete. The analysis used

to obtain this result illuminates the difficulties involved in finding fully abstract models for

ν-calculus proper.

Keywords: semantics, bisimulation, nominal calculi.

1 Introduction

The use of localised information in computing is endemic. In a workplace where the prevalence

of networks and mobile agents is increasing, the concepts of private and public data are of great

importance, and the question of how secrecy can be maintained is a significant one. Issues of

privacy are important for notions of locally defined names such as communication channels [11],

references [15], encryption keys [1], or locations [4]. Gordon has described such languages as

nominal calculi [7].

Using ideas from an unpublished manuscript by Stoughton, Pitts and Stark developed a core

higher-order nominal language, the ν-calculus [13, 14, 21], by extending the simply typed λ-

calculus with an abstract type of names, together with a name generator and an equality test.

Even this small language allows one to model and reason about visibility and scoping quite

thoroughly. In fact, the interaction between locally declared names and higher-order functions

is extremely complex, and at present there is no known fully abstract model of the ν-calculus

beyond first-order types.

In this paper we revisit the ν-calculus and provide a novel treatment of the semantics of

local names using a labelled transition systems (lts). In order for the standard notion of weak

bisimulation to be fully abstract for contextual equivalence we have to demonstrate:

1

� Completeness. We must show that contextual equivalence implies weak bisimilarity. To

do this we show that each transition ===

γ
) corresponds to a small piece of context Cγ[t]

such that t ===

γ
) v iff Cγ[t]) (v;true). (We call such lts’s contextual: the notion that

transition labels should correspond to small contexts appears to be folklore, and has only

recently been investigated formally by Sewell [20].) This formal relationship between

labelled observations and reduction in contexts yields completeness because non-bisimilar

terms have a distinguishing trace of labelled actions, yielding a distinguishing context.

� For the converse, soundness, we must show that bisimilarity implies contextual equiva-

lence, for which it is sufficient to demonstrate that bisimilarity is a congruence.

We note that our approach to characterising contextual equivalence is already in sharp contrast to

Pitts and Stark. They propose logical relations as an operational proof technique for establishing

contextual equivalence of ν-calculus terms. The logical relation can easily be construed as a

form of bisimulation on an lts, but the labels which would have to be used are not contextual—

this compromises completeness in order to obtain a direct proof of soundness for their technique.

In the case of the λ-calculus, we revisit Gordon [6] and Bernstein and Stark’s [2] presentation

of an lts semantics of the λ-calculus. Completeness is routine, and soundness follows by using

Howe’s [10] technique to show bisimulation to be a congruence.

For the ν-calculus, there is a simple intuitive extension of the lts for the λ-calculus to give a

reasonable semantics for local names up to first-order types, but it transpires that bisimulation on

this lts fails to be a congruence for types of second-order and above. We make explicit the reason

for this failure and argue that the problem arises due to the paucity of observational contexts of

the ν-calculus and that, by extending the base calculus with more realistic features, the problem

dissolves. By ‘more realistic features’ we mean any side-effecting operators which have the

capability to model leaking secrets.

The particular language extension we select for study in this paper is the νref-calculus, given

by adding global references which store names. Leaking a secret name is implemented by assign-

ing it to a shared reference. We consider this to be a minimal extension of the language for which

our proof techniques are successful. We demonstrate that bisimulation for the extended language

is actually a congruence and thus achieve a full abstraction result for contextual equivalence.

We would like to thank Karen Bernstein, Matthew Hennessy, Guy McCusker, Ian Stark and

Allen Stoughton for discussions about this paper.

2 λ-calculus

In this section we consider a simply typed call-by-value lambda-calculus with booleans and pair-

ing. We present the usual small-step reduction semantics, and a slight modification of Gor-

don’s [6] and Bernstein and Stark’s [2] labelled transition system semantics. We then show that

bisimulation (defined on the lts semantics) is both sound and complete for contextual equivalence

(defined on the reduction semantics). This is the result already shown in both [6] and [2] save for

a few technical differences. We reiterate the result here for presentational purposes.

We show completeness (contextual equivalence implies bisimulation) by observing that each

label of the lts semantics corresponds to a small piece of context, and so each lts transition can

be matched by contextual equivalence. This is proof is inspired by Hennessy’s [8] proofs for

completeness of may and must testing.

2

Soundness (bisimulation implies contextual equivalence) follows immediately once we can

show that bisimulation is a congruence. We briefly discuss Gordon’s [6] presentation of Howe’s

technique [10] for this proof, concentrating on the aspect of the proof which is problematical for

the ν-calculus.

2.1 Syntax and type rules

The grammar of types is given by:

σ ::= unit j bool j σ�σ j σ! σ
The grammar of values is given by:

v ::= x j () j true j false j (v;v) j λx : σ : t

where x is drawn from some infinite set of variables, and the grammar of terms is given by:

t ::= v j if v then t else t j fst v j snd v j vv j let x = t in t

We have taken the liberty of limiting much of the syntax to values: we can use obvious syntax

sugar (in the spirit of Moggi’s [12] computational monads) to extend these to terms. For example

the term (t; t 0) is defined:

(t; t 0)
def

= let x = t in let x0 = t 0 in (x;x0)

The type system for this λ-calculus is standard, and is given by judgements of the form Γ ` t : σ
where Γ is a type environment of the form x1 : σ1; :::;xn : σn for disjoint x1; :::;xn.

2.2 Reduction semantics

We now consider the operational semantics of the λ-calculus, given as small-step reductions

t
τ
- t 0. First, we give the atomic rules for reduction:

if true then t else t 0
τ
- t

if false then t else t 0
τ
- t 0

fst (v;v0)
τ
- v

snd (v;v0)
τ
- v0

(λx : σ : t)v
τ
- t[v=x]

let x = v in t
τ
- t[v=x]

then, following Wright and Felleisen [22] we allow reduction in any evaluation context given by

the grammar:

E ::= � j let x = E in t

with the rule:

t
τ
- t 0

E[t]
τ
- E[t 0]

Let) denote the reflexive, transitive closure of
τ
- .

We can define the usual notion of contextual equivalence: two terms are considered equivalent

whenever there is no boolean context which can distinguish between them: for terms Γ ` t : σ
and Γ ` t 0 : σ, we define Γ ` t �ctx t 0 : σ if for all closing contexts C of type bool, we have

C [t]) true iff C [t 0]) true.

3

2.3 Labelled transition system semantics

We now introduce a lts semantics for well-typed λ-calculus terms.

For closed terms, transitions are of the form (` v : σ)

γ
-

(` t : σ0

) where the grammar of

labels is given by:

γ ::= true j false j@v j copy j discard j l:γ j r:γ

Atomic rules for reductions:

(` v : bool)
v
-

(` () : unit)

(` v : σ ! σ0

)

@v0

-

(` v(v0) : σ0

) (where ` v0 : σ)

diagonal and terminal transitions:

(` v : σ)

copy

-

(` (v;v) : σ�σ)

(` v : σ)

discard

-

(` () : unit)

and inference rules for pair contexts:

(` v1 : σ1)
γ
-

(` t1 : σ0

1)

(` (v1;v2) : σ1�σ2)
l:γ
-

(` (t1;v2) : σ0

1�σ2)

(` v2 : σ2)
γ
-

(` t2 : σ0

2)

(` (v1;v2) : σ1�σ2)
r:γ
-

(` (v1; t2) : σ1�σ0

2)

recalling that (t;v) and (v; t) can be defined as syntax sugar using let.

We can then include the reduction semantics to give reductions of the form t
α
- t 0 where:

α ::= τ j γ

Define t ==

α
) t 0 as t) v

α
- t 0. Define t ==

α̂
) t 0 as t) t 0 when α is τ and t ==

α
) t 0 otherwise.

A type-indexed relation on terms R is a family of relations RΓ;σ between type judgements

(Γ ` t : σ). We shall usually write Γ � t R t 0 : σ for (Γ ` t : σ) RΓ;σ (Γ ` t 0 : σ), and often elide the

type information where it is obvious from context.

A simulation is a type-indexed relation R such that the following diagram can be completed:

(` t1 : σ)

�

R
-

(` t2 : σ)

(` t 01 : σ0

)

α

?

as

(` t1 : σ)

�

R
-

(` t2 : σ)

(` t 01 : σ0

)

α

?

�

R
-

(` t 02 : σ0

)

α̂
�

w

w

w

w

w

w

w

w

A strong simulation is a type-indexed relation R such that the following diagram can be com-

pleted:

(` t1 : σ)

�

R
-

(` t2 : σ)

(` t 01 : σ0

)

α

?

as

(` t1 : σ)

�

R
-

(` t2 : σ)

(` t 01 : σ0

)

α

?

�

R
-

(` t 02 : σ0

)

α

?

4

A (strong) bisimulation is a (strong) simulation whose inverse is a simulation.

Let � be the largest bisimulation, and let � be the largest strong bisimulation.

We can extend these relations from closed terms to open terms by closing with any appropri-

ately typed values. A type-indexed relation R on closed terms can be extended to a relation R� on

open terms:

Γ � t R� t 0 : σ
iff for all ` [v=x] : Γ we have:

� (t[v=x]) R (t 0[v=x]) : σ

where we write ` [v=x] : (x : σ) whenever ` v : σ.

2.4 Example

Let not be defined:

not
def

= λx : bool : if x then false else true

then one sample reduction of not is:

not ===

copy

) (not;not)

====

l:@true

) (not(true);not)

===

τ
) (false;not)

=====

r:@false

) (false;not(false))

===

τ
) (false;true)

====

l:false

) (();true)

===

r:true

) ((); ())

showing how not evaluates when applied to true or false.

2.5 Completeness

In this section, we shall show that bisimulation is complete, that is:

if t �ctx t 0 then t �� t 0

First we observe that the λ-calculus is deterministic and normalizing, and so bisimulation and

trace equivalence coincide.

We then show that contextual equivalence implies trace equivalence by constructing a context

Cγ for each sequence of labels γ so that the context induces reductions for each label:

Lemma 2.1 For every sequence γ of transition labels there is a context Cγ such that:

(` t : σ) ===

γ
)) (` v : σ0

) iff (` Cγ[t] : (σ0

�bool))) (` (v;true) : (σ0

�bool))

Proof: We describe the context Cγ by first giving contexts for each individual label, using some

obvious syntax sugar on terms:

5

C
true

[t]
def

= let x = t in (x;x)

C
false

[t]
def

= let x = t in (x;not(x))

C@v[t]
def

= let x = t(v) in (x;true)

C
copy

[t]
def

= let x = t in ((x;x);true)

C
discard

[t]
def

= let x = t in (();true)

C
l:γ[t]

def

= let (x1;x2) = t

in let (x01;x
0

2) = Cγ[x1] in ((x01;x2);x
0

2)

C
r:γ[t]

def

= let (x1;x2) = t

in let (x01;x
0

2) = Cγ[x2] in ((x1;x
0

1);x
0

2)

We then prove that Cγ has the required property, by induction on γ. This is straightforward, as an

example we demonstrate the case where the label is l:γ.

Suppose t ===

l:γ
)) v. We know that t must converge to a value, and by construction, we

know that this value must be a pair, (v1;v2) say, such that v1 ===

γ
)) v0, where v = (v0;v2).

Now,

C
l:γ[t]) let (x01;x

0

2) = Cγ[v1] in ((x01;v2);x
0

2):

By induction we know that Cγ[v1]) (v0;true), thus we have

let (x01;x
0

2) = Cγ[v1] in ((x01;v2);x
0

2)) ((v0;v2);true)

which is to say C
l:γ[t]) (v;true).

Conversely, suppose that C
l:γ[t]) (v;true). By inspection of the context we note that

t) (v1;v2) for some values and Cγ[v1]) (v0;true) such that v is (v0;v2). From this we know by

induction that v1 ===

γ
)) v0, whence t) (v1;v2) ===

l:γ
) ((v0;v2);true) as required.

For a sequence of labels, we define:

Cε[t]
def

= let x = t in (x;true)

Cγ;γ0[t]
def

= let (x1;x2) = Cγ[t]

in let (x01;x
0

2) = Cγ0 [x1] in (x01;x2^ x02)

The result follows by induction on the length of γ. 2

Theorem 2.2 (completeness for λ-calculus) If Γ � t �ctx t 0 : σ then Γ � t �� t 0 : σ.

Proof: It suffices to show the result for closed terms. Let γ be a trace of t:

(` t : σ) ===

γ
)

so (` t : σ) ===

γ
)) (` v : σ0

) (λ-calculus is terminating)

so (` Cγ[t] : (σ0

�bool))) (` (v;true) : (σ0

�bool)) (Lemma 2.1)

so (` snd (Cγ[t]) : bool)) (` true : bool) (Defn of snd)

so (` snd (Cγ[t
0

]) : bool)) (` true : bool) (t �ctx t 0)

so (` Cγ[t
0

] : (σ0

�bool))) (` (v0;true) : (σ0

�bool)) (Defn of snd)

so (` t 0 : σ) ===

γ
)) (` v0 : σ0

) (Lemma 2.1)

6

Similarly, any trace of t 0 is a trace of t, so the terms are trace equivalent. Since the λ-calculus is

deterministic, trace equivalence and bisimulation coincide, so t � t 0. 2

2.6 Soundness

In this section, we shall show that bisimulation is sound, that is:

if t �� t 0 then t �ctx t 0

This result is immediate from the result that bisimulation is a congruence, for which we adopt

Howe’s technique [10], following Gordon [6].

For any type-indexed relation R, let bR be defined such that for each type rule in the language:

Γ ` t : σ
Γ ` op(t) : σ

we have:
Γ � t R t 0 : σ

Γ � op(t) bR op(t
0

) : σ
For any type-indexed relation R, let R� be defined:

t1 cR
� t2 R� t3

t1 R� t3

Howe’s proof depends first on showing that �� is substitutive on values:

if t1 �
� t2

and v1 �
� v2

then t1[v1=x]�� t2[v2=x]

and then showing that �� is a bisimulation. The only tricky case is let-β, where we complete:

let x = v1 in t1 �
c

�

�

-

let x = v2 in t2 �
�

- t3

t1[v1=x]

τ

?

as:

let x = v1 in t1 �
c

�

�

-

let x = v2 in t2 �
�

- t3

t1[v1=x]

τ

?

�

�

�

- t2[v2=x]

τ

?

�

�

- t 03

�

w

w

w

w

w

w

w

w

which commutes because �� is substitutive on values. From this, it is routine to show that

bisimulation is a congruence, and so is sound.

Theorem 2.3 (soundness for λ-calculus) If Γ � t �� t 0 : σ then Γ � t �ctx t 0 : σ.

7

2.7 Comments

The astute reader will notice that the copy and discard transitions are redundant in this setting.

In fact, it is a well known property of pure functional languages that ‘operational extensionality’

holds, that is, contextual equivalence can be verified by using applicative contexts alone. This

does certainly not hold true of the extensions to the λ-calculus which we will consider later in

this paper where operational extensionality fails.

In a similar vein, we notice that the use of l: and r: tags rather than Gordon’s fst and

snd transitions is also unnecessary here because pairing forms a product on values. In later

sections, because of the presence of side-effects, the pairing operator is no longer a product, but

is symmetric monoidal.

It is an important feature of the transition systems being used here, and also those of [6, 2]

that they are applicative in nature. That is, any arbitrary pieces of code being carried in the label

is always of lower order type than the term under scrutiny.

3 ν-calculus

We now extend the λ-calculus with unique name generation and equality testing, in order to

investigate Pitts and Stark’s [13] ν-calculus.

Pitts and Stark have demonstrated that finding a sound and complete semantics for the ν-

calculus is a difficult open problem. They provide a sound (but incomplete) semantics using

logical relations. In this section, we provide an ‘upper bound’ to complement their ‘lower bound’

by presenting a bisimulation which is complete (but only sound up to first-order). We observe that

our complete bisimulation provides a more investigative proof method for establishing contextual

inequivalence which allows one to construct distinguishing contexts in a piecemeal fashion. This

useful feature of the semantics avoids the need to build these, sometimes elaborate, contexts

completely by making much of the construction automatic.

3.1 Syntax and type rules

Extend the grammar of types with:

σ ::= � � � j name

Extend the grammar of values with:

v ::= � � � j n

Extend the grammar of terms with:

t ::= � � � j νn : t j v = v

Extend the type judgements Γ` t : σ to include a name context ∆ of the form n1; :::;nn for distinct

ni, so judgements are now of the form Γ;∆ ` t : σ. The type rules for the new terms are:

Γ;∆;n;∆0

` n : name

Γ;∆;n ` t : σ
Γ;∆ ` νn : t : σ

Γ;∆ ` v : name Γ;∆ ` v0 : name

Γ;∆ ` v = v0 : bool

The other rules do not change the name context.

8

3.2 Reduction semantics

Terms no longer reduce to values, instead they now reduce to prevalues of the form:

p ::= νn : v

Extend the reduction relation with (when n 6= n0):

n = n
τ
-

true

n = n0

τ
-

false

Extend the grammar of evaluation contexts by:

E ::= � � � j νn : E

Replace the let-β reduction rule by:

let x = νn : v in t
τ
- νn : t[v=x]

where we α-convert νn : v if necessary to ensure that none of the free names in t are captured. It is

in this rule that scope extrusion of the static name binder occurs. There is an obvious translation

from Pitts and Stark’s ν-calculus into ours (theirs does not include pairing), and it is routine to

show that this translation is adequate.

The definition of contextual equivalence remains the same, except that the results of a test can

include some private names: t �ctx t 0 whenever for all closing contexts C of type bool, we have

C [t]) νn : true iff C [t 0]) νn0

: true.

3.3 Labelled transition system semantics

We can no longer define the lts semantics as judgements (` v : σ)

γ
-

(` t : σ0

), for two

reasons:

� Terms may reduce down to prevalues now, rather than values, so transitions should be of

the form (` p : σ)

γ
-

(` t : σ0

).

� One of the allowed transitions allows a private name to become public, and we α-convert

the name to ensure it does not clash with any existing public names. To do this, we carry

an environment of existing public names, so transitions should be of the form

(∆ ` p : σ)

γ
-

(∆;∆0

` t : σ0

)

Note that transitions can add new public names, but not remove any.

We extend the grammar of labels by:

γ ::= � � � j n j νn

These labels can be read as ‘the term announces a public name’ and ‘the term announces a private

name, and makes it public’. Labels now contain bound names:

bn(νn) = fng bn(γ;γ0) = bn(γ)[bn(γ0)

9

and free names:

f n(n) = fng f n(@v) = f n(v) f n(γ;γ0) = f n(γ)[f n(γ0)nbn(γ)

A public name can be announced:

(∆ ` n : name)
n
-

(∆ ` () : unit)

The context νn : � is an observation context:

(∆;n ` p : σ)

γ
-

(∆;n;∆0

` t : σ0

)

(∆ ` νn : p : σ)

γ
-

(∆;∆0

` νn : t : σ0

)

[n not in γ]

Private names can announce themselves and become public:

(∆;n ` p : σ)

ι:n
-

(∆;n ` t : σ0

)

(∆ ` νn : p : σ)

ι:νn
-

(∆;n ` t : σ0

)

where ι: is a sequence of l: and r: tags. The side-condition on application is weakened to allow

values to have free public names:

(∆ ` v : σ! σ0

)

@v0

-

(∆ ` v(v0) : σ0

) (where ∆ ` v0 : σ)

Note that for any well-typed (∆ ` t), if (∆ ` t) ===

γ
) (∆;∆0

` t 0) then the free names of γ are

contained in ∆ and the bound names of γ are ∆0.

We define bisimulation as before between configurations (∆ ` t : σ).

Since we are allowing free names in terms, we have to change the definition of open extension

R� to allow the environment to introduce new names:

Γ;∆ � t R� t 0 : σ
iff for all ∆;∆0

` [v=x] : Γ we have:

∆;∆0

� (t[v=x]) R (t 0[v=x]) : σ

This is necessary, for example, in order to distinguish:

x : name;∆ � x 2 ∆ 6��

true : bool

we need to introduce a new name n to substitute for x:

∆;n � n 2 ∆ 6� true : bool

If R� were not allowed to introduce new names, then these terms could not be distinguished, and

so �� would not be a congruence, even at first order.

3.4 Examples

Consider the terms:

νn : λx : unit : n 6� λx : unit : νn : n

10

These are not bisimilar because the first term has the reduction:

νn : λx : unit : n ===

copy

) νn : (λx : unit : n;λx : unit : n)

===

l:@()

)) νn : (n;λx : unit : n)

===

r:@()

)) νn : (n;n)

===

l:νn
) (();n)

===

r:n
) ((); ())

which the second term can only match:

λx : unit : νn : n ===

copy

) (λx : unit : νn : n;λx : unit : νn : n)

===

l:@()

)) (νn : n;λx : unit : νn : n)

===

r:@()

)) νn : (n;νn0

: n0

)

===

l:νn
) νn0

: (();n0

)

At this point the term cannot match the last ==

r:n
) transition performed by the first term because

its only move is:

νn0

: (();n0

) ===

r:νn0

) ((); ())

Note that this example relies crucially on the use of copy, l:γ and r:γ transitions.

3.5 Completeness

Completeness for the ν-calculus follows in much the same way as it does for the λ-calculus how-

ever the inducing contexts must now carry information about the new names which are introduced

during reduction.

Lemma 3.1 For every sequence γ of transition labels with free names in ∆ and bound names ∆0,

there is a context C
∆
γ such that:

(∆ ` t : σ) ===

γ
)) (∆;∆0

` p : σ0

)

iff:

(∆ ` C
∆
γ [t] : (σ0

�bool))) (∆ ` ν∆0

: (∆0

; p;true) : (name��� ��name�σ0

�bool))

Proof: We modify all the contexts Cγ from Lemma 2.1 in the obvious way and add:

C
∆
n [t]

def

= let x = t in ((); ();x = n)

C
∆
νn[t]

def

= let x = t in (x; ();x 62 ∆)

The result follows for contexts Cγ by induction on γ as for the λ-calculus. For sequences of labels,

we define C ∆
γ (where ∆0 is the bound variables of γ and ∆00 is the bound variables of γ0) as:

C
∆
ε

def

= let x = t in (();x;true)

C
∆
γ;γ0

def

= let (∆0

;x1;x2) = C
∆
γ [t] in let (∆00

;x01;x
0

2) = C
∆;∆0

γ0

[x1] in (∆0

;∆00

;x01;x2^ x02)

11

using some syntax sugar such as:

let n = t in t 0
def

= let x = t in (t 0[x=n])

The result then follows by induction on γ. 2

Theorem 3.2 (completeness for ν-calculus) If Γ;∆ � t �ctx t 0 : σ then Γ;∆ � t �� t 0 : σ.

3.6 Partial soundness

It is a fairly simple matter to show that bisimulation is sound for the ν-calculus at first order, by

showing that bisimulation coincides with Pitts and Stark’s logical relation semantics.

Theorem 3.3 (soundness for ν-calculus at first order) For first order σ, if Γ;∆� t �� t 0 : σ then

Γ;∆ � t �ctx t 0 : σ.

Unfortunately, bisimulation is not sound for the ν-calculus. The counterexample is from Pitts

and Stark [21]. Consider three functions of type (name! bool)! bool:

t1
def

= λ f : name! bool : true

t2
def

= νn : νn0

: λ f : name! bool : f (n) = f (n0

)

t3
def

= νn : λ f : name! bool : νn0

: f (n) = f (n0

)

These three terms are all bisimilar. To see this we note that Pitts and Stark showed that t1 and t2
are contextually equivalent so by completeness it follows that the terms are bisimilar. We leave it

to the reader to convince oneself that terms t2 and t3 cannot be distinguished by any sequence of

transitions. However, we do note that t2 6�ctx t3, since the following context distinguishes them:

C[�]

def

= let F = � in F(λx : name : F(λx0 : name : x = x0))

This is the same counterexample that Pitts and Stark use to show that logical relations are incom-

plete, since logical relations identify none of these terms.

Bisimulation is unsound because it is not a congruence. To see why Howe’s proof fails, we

have to observe that the crucial step in Howe is that�� matches let-β reductions. In the ν-calculus

we would have to complete the diagram:

let x = νn1 : v1 in t1 �
c

�

�

-

let x = νn2 : v2 in t2 �
�

- t3

νn1 : t1[v1=x]

τ

?

as:

let x = νn1 : v1 in t1 �
c

�

�

-

let x = νn2 : v2 in t2 �
�

- t3

νn1 : t1[v1=x]

τ

?

�

???
- νn2 : t2[v2=x]

τ

?

�

�

- t 03

�

w

w

w

w

w

w

w

w

12

but in order to complete the diagram we need to know that �� is substitutive on prevalues:

if t1 �
� t2

and νn1 : v1 �
� νn2 : v2

then νn1 : t1[v1=x]�� νn2 : t2[v2=x]

which is not true of the ν-calculus, as witnessed by the counterexample described above.

3.7 Comments

We now consider how our bisimulation compares with logical relations. The example given

above serves to demonstrate that logical relations are strictly finer than bisimulation, and that

they only coincide at first order. The main difference between the two approaches is the view of

privacy they adopt. In the bisimulation approach names are considered private until the secret is

leaked by a νn transition, whereas the logical relations use a more overt proof method whereby

the environment has access to secrets but can only test using them restrictedly. For terms of first-

order type the test values are of ground type and the restrictions imposed by the logical relations

are strong enough to disallow any testing with secrets altogether, thus realigning the method with

the more covert approach of bisimulation.

There is also an evident analogue of Sangiorgi’s context bisimulation [18], which could be

formulated for the ν-calculus. In essence, this says that whenever we need to test a λ-abstraction

we must consider its behaviour in every context. This could easily be formulated in an lts by

allowing suitably typed transitions of the form v
f @
- f (v). This of course, defies our insistence

that labels be applicative because the type of f here must be of higher-order than v. In fact,

bisimulation on such an lts could easily be shown to be fully abstract but this would, in effect,

be no more than a restatement of the ciu-theorem of [13] following [9]. Sangiorgi did find an

applicative characterisation of context bisimulation for higher-order π-calculus which he refers to

as normal bisimulation [18]. This characterisation exploits the very simple nature of evaluation

context in π-calculus and is tailored to that setting. It would therefore be inappropriate in the

current work.

Although one obvious reason for bisimulation failing to be a congruence is that the labels

in our lts do not provide sufficient distinguishing power, it is difficult to see how the label set

could be effectively enlarged without using non-applicative values such as are used for context

bisimulation.

As an alternative, we extend the ν-calculus to include imperative side-effects, to get the νref-

calculus, and show that the extra @v transitions give us full abstraction. This is the subject of the

next section.

4 νref-calculus

We have shown that bisimulation is complete (but unsound) for the ν-calculus. In this section

we show that adding imperative side-effects to the language allows us to recover a sound and

complete semantics.

The reason why assignments allow us to recover completeness is that the counterexamples

rely on the fact that n is a ‘secret’ in terms such as:

νn : λ f : name! bool : f (n)

13

despite the fact that some ‘foreign’ code f is being applied to n. By adding assignment, f can

leak the secret name n to the environment.

We believe that any form of side-effect which allows secrets to leak like this will help to make

bisimulation sound and complete, for example call-cc, communication channels or imperative ob-

jects. Although the extent to which any additional features are required is as yet unclear. We have

chosen to investigate global assignment as it is the simplest addition which is still deterministic

and terminating.

4.1 Syntax and type rules

Extend the grammar of terms by:

t ::= � � � j r := v : t j ?r

where r ranges over an infinite set of references. These operations allow a name to be written to,

or read from, a reference. We do not introduce references themselves as values and thus have no

need for introducing a type of references.

We introduce a use-def type system to ensure that all references are written to before they

are read from. The type judgements are now of the form Γ;∆;R;W ` t : σ where R is the set of

references which are read by the term, and W is the set of references which are written by the

term. Most of the type rules remain unchanged from the ν-calculus, the notable changes are in

let and function bodies:

Γ;x : σ;∆;R; ` t : σ0

Γ;∆;R; ` (λx : σ : t) : (σ ! σ0

)

Γ;∆;R;W[r ` t : σ Γ;x : σ;∆;R[r;W0

` t 0 : σ0

Γ;∆;R;W[W0

` let x = t in t 0 : σ0

The type judgements for the new operators are:

Γ;∆;R; ` v : name Γ;∆;R[r;Wn r ` t : σ
Γ;∆;R;W ` r := v : t : σ Γ;∆;R[r; ` ?r : name

Note that we can derive the following weakening rule for references:

Γ;∆;R;W[W0

` t : σ
Γ;∆;R[R0;W ` t : σ

We shall refer to any term which can be typed ∆; ;W ` t : σ as being ref-closed, and other terms

as being ref-open. For example ?r is ref-open, but r := n : ?r is ref-closed.

4.2 Reduction semantics

Prevalues are now terms of the form:

p ::= d : v d ::= νn : r := n0

:

The reduction semantics for the νref-calculus is defined up to a structural equivalence, following

Berry and Boudol’s Chemical Abstract Machine [3]. Let the heating relation, V be the least

preorder given by:

r := n : νn0

: t V νn0

: r := n : t (n 6= n0

)

r1 := n1 : r2 := n2 : t V r2 := n2 : r1 := n1 : t (r1 6= r2)

r := n1 : r := n2 : t V r := n2 : t

νn : νn0

: t V νn0

: νn : t

d:let v = t in t 0 V let v = d:t in t 0

14

(where the bound names in d do not clash with free names in t 0) and:

t1V t2
E[t1]V E[t2]

Let � be the least equivalence generated byV.

Extend the evaluation contexts to include assignment:

E ::= � � � j r := v : E

Extend the reduction semantics with a rule for dereferencing:

r := n : ?r
τ
- r := n : n

Since we have modified the prevalues, we need to modify the let-β rule:

let x = d : v in t
τ
- d : t[v=x]

Add a structural equivalence rule:

t1 � t2 t2
τ
- t3 t3 � t4

t1
τ
- t4

The definition of contextual equivalence remains the same, except that the results of a test can

include some assignments: t1 �ctx t2 whenever for all ref-closing contexts C of type bool, we

have C [t1]) d1 : true iff C [t2]) d2 : true.

Lemma 4.1 Any derivation t
τ
- t 0 can be deduced t V t 00

τ
- t 000 � t 0 where t 00

τ
- t 000 can

be deduced without using structural equivalence.

Proof: A simple analysis of the rules which generateV suffices to show that any reduction which

may occur on the left-hand side of a rule may also occur on the right, so naught is to be gained

by cooling. 2

The reader may like to note that the νref-calculus contains closed terms which may not necessar-

ily converge to a prevalue, such as let x = ?r in t. However, all such terms are ref-open, and

our reduction semantics is only used for ref-closed terms.

4.3 Labelled transition system semantics

We need to provide a semantics for terms with references, so judgements are now of the form

(∆;R;W` p : σ)

γ
-

(∆;∆0;R;W` t : σ0

). Note that since terms cannot generate new references,

that the reference environments are not changed by transitions.

Extend the grammar of labels with:

γ ::= � � � j r:=n j ?r

The new transitions allow a name to be assigned:

(∆;R; ` () : unit)
r:=n
-

(∆;R; ` r := n : () : unit) (where n 2 ∆)

15

and to be read:

(∆;R; ` () : unit)
?r
-

(∆;R; ` ?r : name) (where r 2 R)

We weaken the side-condition on application to allow the argument to include free references:

(∆;R; ` v : σ! σ0

)

@v0

-

(∆;R; ` v(v0) : σ0

) (where ∆;R; ` v0 : σ)

Transitions are allowed in assignment contexts:

(∆;R[r;Wn r ` p : σ)

γ
-

(∆;∆0;R[r;Wn r ` t : σ0

)

(∆;R;W ` r := n : p : σ)

γ
-

(∆;∆0;R;W ` r := n : t : σ0

)

We define bisimulation as before between configurations (∆; ;W ` t : σ): note we are only defin-

ing bisimulation on ref-closed terms. For ref-open terms, we extend the definition of R� to include

ref-closing assignments:

Γ;∆;R;W � t R� t 0 : σ
iff for all ∆;∆0;R[R0; ` [v=x] : Γ and ∆;∆0

` (r := n) : (R[R0

) we have:

∆;∆0; ;R[R0

[W � (r := n : t[v=x]) R (r := n : t 0[v=x]) : σ
where we write ∆ ` (r := n) : (r) whenever n� ∆.

4.4 Example

We can distinguish the problem cases from the ν-calculus:

t1
def

= λ f : name! bool : true

t2
def

= νn : νn0

: λ f : name! bool : f (n) = f (n0

)

t3
def

= νn : λ f : name! bool : νn0

: f (n) = f (n0

)

It is easy to distinguish t1 from the others, since we just let f be a function with a side-effect. To

distinguish t2 from t3 we define:

v2
def

= λ f : name! bool : f (n) = f (n0

)

and so for fresh r0 and n0:

r0 := n0 : t2 � νn : νn0

: r0 := n0 : v2

===

copy

) νn : νn0

: r0 := n0 : (v2;v2)

===============

l:@λx:name:r0 := x:true

) νn : νn0

: r0 := n0 : (v2(λx : name : r0 := x : true);v2)

===

τ
) νn : νn0

: r0 := n0

: (true;v2)

=====

l:discard

) νn : νn0

: r0 := n0

: (();v2)

===

l:?r0
) νn : νn0

: r0 := n0

: (?r0;v2)

===

τ
) νn : νn0

: r0 := n0

: (n0

;v2)

===============

r:@λx:name:r0 := x:true

) νn : νn0

: r0 := n0

: (n0

;v2(λx : name : r0 := x : true))

===

τ
) νn : νn0

: r0 := n0

: (n0

;true)

=====

r:discard

) νn : νn0

: r0 := n0

: (n0

; ())

===

r:?r0
) νn : νn0

: r0 := n0

: (n0

;?r0)

===

τ
) νn : νn0

: r0 := n0

: (n0

;n0

)

16

whereas when we try to emulate these transitions in t3 we end with:

νn : νn0

: νn00

: r0 := n00

: (n0

;n00

)

which are easily distinguished.

4.5 Completeness

Completeness for the νref-calculus follows as it does for the λ-calculus and ν-calculus. The

contexts corresponding to the extra transitions for reference manipulation are immediate.

Theorem 4.2 (completeness for νref-calculus)

If Γ;∆;R;W � t �ctx t 0 : σ then Γ;∆;R;W � t �� t 0 : σ:

4.6 Soundness

The subject of the next section of this paper is to establish that bisimulation is a congruence for

the νref-calculus, from which soundness immediately follows.

Theorem 4.3 (soundness for νref-calculus)

If Γ;∆;R;W � t �� t 0 : σ then Γ;∆;R;W � t �ctx t 0 : σ:

The remainder of the paper is given over to proving this theorem.

4.7 Comments

In the definition of Standard ML [17] a model of references is presented using configurations

of the form (S; t) where S is a state (a mapping of references to values). In this paper, we have

included states in the syntax of terms, so the configuration (fr 7! vg; t) is modelled by the term

r := v : t. A similar use of syntax to model configuration is used in Ferreira, Hennessy and

Jeffrey’s [5] lts model of Reppy’s [16] configuration-based model of Concurrent ML.

A recent paper of Pitts and Stark [15] also concerns itself with an operational study of locality

using references. The difference here is that they use a language of integer references so that all

equality tests between local names are definable from primitive operations, such as assignment

and equality test on integers. The logical relations presented in [15] are much stronger than those

of the ν-calculus, largely because of their non-applicative nature. They are closer in spirit to

context bisimulation than to the bisimulations presented here.

The use of global references in this paper is not intended as a serious language extension,

rather a means of demonstrating the nature of private names in the ν-calculus. We are certainly

looking to extend this work to a setting in which the references themselves may be made local, or

indeed other side-effects are used. For instance, we rely on a termination property in the proof of

soundness which would fail in the presence of recursively defined functions. In order to relax the

termination requirement we would be obliged to use side-effects with a certain amount of control,

such as exceptions or call-cc. Unfortunately these side-effects alone do not enjoy other properties

of references which we employ in our proof. For instance, we make explicit use of references as

boolean flags in order to codify test values which behave differently on each instantiation:

(∆; ;W ` λx : σ! σ0

:(xv1;xv2)

17

could actually be tested with a term which simulates the test

(∆; ;W ` (f v1;gv2))

for different f and g, by applying a function which behaved like f provided a certain flag held

true and like g otherwise simply by initialising the flag to true and lowering it after the first call.

It is unclear at present whether such a property is crucial for obtaining a bisimulation congruence

or just an artefact of the proof method we employ. This certainly bears further investigation.

5 Congruence of bisimulation for the νref-calculus

5.1 Active and passive names

To show that bisimulation is a congruence, we need to perform some analysis on the names

generated by the prevalues.

For ref-closed terms, we define ∆ to be active in (∆;∆0; ;W ` t : σ) if there is some sequence

of transitions γ with free names in ∆0 and some n in ∆ such that:

(∆;∆; ;W ` t : σ) ===

γ
) ===

ι:n
)

For ref-open terms (Γ;∆;∆0;R;W` t : σ), we define ∆ to be active iff there exists some ref-closing

substitution ∆0

;∆00;R[R0; ` [v=x] : Γ and ref-closing assignment ∆0

;∆00

` r := n : R[R0 such that

∆ is active in (∆;∆0

;∆00; ;R[R0

[W ` r := n : t[v=x] : σ).

A name environment is passive if it is not active. We shall often use Π to range over passive

name environments.

Intuitively, if a name is passive in a term then it is a secret which the term never reveals.

Unfortunately, this intuition does not hold for the ν-calculus, where we can construct terms:

F
def

= λ f : name! bool : νn0

: if f (n0

) = f (n) then n0

else n

f
def

= λx : name : x = n

then we have n is passive in F and f , but is active in F(f). This is not only very counterintuitive,

but strikes at the heart of the problem for finding a fully abstract model for ν-calculus. The

logical relations approach fails to be complete because when new names are generated it must

be guessed whether the names are active (global) or passive (secret). The environment is then

allowed to test with secret names provided they occur passively in the test value. During passive

testing though the names may change their status from passive to active so no consistent guess

can be made.

By comparison, in the νref-calculus, although n is passive in f , it is not passive in F since we

have the transitions:

F =============

@λx:name:r := x:true

)) νn0

: r := n : n0

====

discard

) νn0

: r := n : ()

===

?r
)) νn0

: r := n : n

===

n
) νn0

: r := n : ()

We can now state the following key proposition, which is not true of the ν-calculus:

18

Proposition 5.1 If Π is passive in (Γ;∆;R; ` v : σ) and in (Γ;x : σ;∆;R;W ` t : σ0

) then Π is

passive in (Γ;∆;R;W ` t[v=x] : σ0

).

Proof: See the appendix. 2

5.2 Overt bisimulation

Motivated by the distinction between active and passive names, we present an alternative bisim-

ulation for the νref-calculus, which is more complex, but turns out to be more suitable for Howe-

style proof.

This relation is inspired by Pitts and Stark’s logical relations semantics although there are

some subtle differences, which we will discuss later.

A type-indexed family of relations RΠ (where if ∆; ;W � t RΠ t 0 : σ then Π � ∆) is an overt

simulation if:

1. We can complete the following diagram:

(∆; ;W ` t1 : σ)

�

RΠ
-

(∆; ;W ` t2 : σ)

(∆0; ;W ` t 01 : σ0

)

α

?

where the free names of α are disjoint from Π as:

(∆; ;W ` t1 : σ)

�

RΠ
-

(∆; ;W ` t2 : σ)

(∆0; ;W ` t 01 : σ0

)

α

?

�

RΠ
-

(∆0; ;W ` t 02 : σ0

)

α̂
�

w

w

w

w

w

w

w

w

2. If ∆; ;W � νn : p1 RΠ p2 : σ then either:

(a) p2 � νn : p3 and ∆;n; ;W � p1 RΠ p3 : σ, or

(b) ∆;n; ;W � p1 RΠ;n p2 : σ.

3. If ∆; ;W � p1 RΠ p2 : σ and (∆; ;W ` p1 : σ)

ι:n
- then n 62Π.

Let �Π
o be the largest overt bisimulation. We shall write �o when Π is empty.

Intuitively, the definition of an overt bisimulation says:

1. �Π
o is a bisimulation,

2. If ∆; ;W � νn : p1 �
Π
o p2 : σ then either:

(a) n is active in p1, so p2 has to match it by having an appropriate name binder (which

is added to the active name environment ∆), or

19

(b) n is passive in p1, so p2 can match it by ignoring the name (which is added to the

passive name environment Π).

3. Π only contains passive names.

Overt bisimulation is a partial equivalence relation, and we can show a generalization of transi-

tivity, as evidenced in the following lemma.

Lemma 5.2 If Γ;∆;R;W � t �
Π0;Π1
o

�

�

Π0;Π2
o u : σ then Γ;∆;R;W � t �

Π0;Π1;Π2
o

�

u : σ.

Proof: It suffices to show the result for ref-closed terms, since we can then close up under all

closing substitutions and ref-closing assignments. Define:

RΠ0

=

�

(t;u) j t �Π0;Π1
o �

Π0;Π2
o u; and Π0

= Π0;Π1;Π2

	

:

It is not difficult to check that R forms an overt bisimulation. 2

Since an overt simulation is a simulation, it is easy to see that �o is a finer relation than �. In

fact, we can show that overt bisimulation coincides with bisimulation.

Proposition 5.3 � is the same as �o

Proof: Define ∆;Π; ;W � t1 �
Π t2 : σ whenever ∆; ;W � νΠ : t1 � νΠ : t2 : σ and Π is passive

in t1 and t2. It is routine to verify that this is an overt bisimulation, and that it coincides with

bisimulation when Π is empty. 2

5.3 Congruence of overt bisimulation

The proof that overt bisimulation is a congruence uses Howe’s technique, but the definition of��

is rather more complex, since we have to allow names to move between the passive and active

name environments.

Define �Π
o
�

by two rules:

Γ;∆;R;W � t1
d

�

Π
o
�

t2 Γ;∆;R;W � t2 �
Π;Π0

o

�

t3

Γ;∆;R;W � t1 �
Π;Π0

o

�

t3

and:
Γ;∆;n;R;W� t1 �

Π;n
o

�

t2 Γ;∆;R;W � νn : t2 �
Π
o
�

t3
Γ;∆;R;W � νn : t1 �

Π
o
�

t3

This relation satisfies the usual [6] properties required of this relation, that is it contains theˆ

closure of itself and it contains overt bisimulation.

Lemma 5.4 If Γ;∆;R;W � t �
Π0;Π1
o

�

�

Π0;Π2
o

�

u : σ then Γ;∆;R;W � t �
Π0;Π1;Π2
o

�

u : σ.

Proof: Suppose Γ;∆;R;W � t �
Π0;Π1
o

�

t0 �
Π0;Π2
o u : σ and proceed by induction on the structure

of t. There are two main cases to consider based on how the Howe relation decomposes.

Firstly, suppose Γ;∆;R;W � t[�Π0

o
�

t 00 �
Π0;Π1
o

�

t0 : σ. In this case we use Lemma 5.2 to

establish Γ;∆;R;W� t 00 �
Π0;Π1;Π2
o

�

u : σ and then use the Howe relation to fold these terms back

up to Γ;∆;R;W � t �
Π0;Π1;Π2
o

�

u : σ.

20

Secondly, consider the case in which t is νn : t 0 and the latter Howe rule is used. This means

that there is some t 00 such that

Γ;∆;n;R;W � t 0 �Π0;Π1;n
o

�

t 00 : σ and Γ;∆;R;W � νn : t 00 �
Π0;Π1
o

�

t0 : σ:

We can apply the induction hypothesis to

Γ;∆;n;R;W� t 0 �Π0;Π1;n
o

�

t 00 �
Π0;Π1;Π2;n
o t 00 : σ

to yield Γ;∆;n;R;W� t 0 �
Π0;Π1;Π2;n
o

�

t 00 : σ, and use Lemma 5.2 again to obtain

Γ;∆;R;W � νn : t 00 �
Π0;Π1;Π2
o

�

u : σ:

From here we apply the second Howe rule to finish. 2

First, we show some technical lemmas, which extend obvious properties of bisimulation on

ref-closed terms to ref-open terms. All have routine proofs.

Lemma 5.5 If Γ;∆;R;W � t �Π
o
�

t 0 : σ then Π are passive in Γ;∆;R;W ` t : σ.

Lemma 5.6 If Γ;∆;R;W � νn : p�Π
o
�

p0 : σ then either:

1. p0

� νn : p00 and Γ;∆;n;R;W � p�Π
o
�

p00 : σ, or

2. Γ;∆;n;R;W� p�
Π;n
o

�

p0 : σ.

Lemma 5.7 If Γ;∆;R;W � r := n : p�Π
o
�

p0 : σ then p0

� r := n : p00 and

Γ;∆;R[r;Wn r � p�Π
o

�

p00 : σ:

Lemma 5.8 If Π;n are passive in Γ;∆;R;W ` t : σ then Γ;∆;R;W � t �Π
o
� νn : t : σ.

We can now verify that �Π
o
�

is substitutive on prevalues:

Proposition 5.9 �

Π
o
�

is substitutive on prevalues, that is:

if Γ;x : σ;∆;R[r;W0

� t1 �
Π
o
�

t2 : σ0

and Γ;∆;R;W[r � d1 : v1 �
Π
o
�

d2 : v2 : σ
then Γ;∆;R;W[W0

� d1 : t1[v1=x]�Π
o
�

d2 : t2[v2=x] : σ0

Proof: We use induction on the size of the declaration d1.

Case: d1 is empty.

In this case we know that Γ;∆;R; � v1 �
Π
o
�

d2:v2 : σ. It is fairly easy to see that d2 must be

of the form νn, that is it contains no assignments, otherwise this would break the hypothesis

that d2:v2 is bisimilar to a value, which certainly has no immediate assignments. Suppose

then that d2 = νn so that:

Γ;∆;R; � v1
[

�

Π0

o
�

v3 �
Π
o

� νn : v2 : σ

21

for some value v3. By Lemma 5.6 we have:

Γ;∆;n;R; � v3 �
Π;n
o

�

v2 : σ

so by weakening and definition of �Π
o
�

we have:

Γ;∆;n;R; � v1 �
Π;n
o

�

v2 : σ

so by substitutivity on values we obtain:

Γ;∆;n;R;W0

� t1[v1=x]�Π;n
o

�

t2[v2=x] : σ

By by Lemma 5.5 and weakening, Π;n are passive in Γ;x : σ;∆;n;R;W0

` t2 : σ0 and

Γ;∆;n;R; ` v2 : σ, so by weakening and Proposition 5.1, we know that Π;n are passive

in Γ;∆;n;R;W0

` t2[v2=x] : σ. This means that by Lemma 5.8:

Γ;∆;n;R;W0

� t2[v2=x] �Π;n
o νn : t2[v2=x] : σ0

Therefore, by weakening and definition of �Π
o
�

, we can conclude:

Γ;∆;R;W0

� t1[v1=x]�Π
o

� νn : t2[v2=x] : σ0

Case: d1 is r := n0 : d3.

In must be the case that:

Γ;∆;R;W[r � r := n0 : d3:v1
[

�

Π0

o
�

r := n0 : d4:v3 �
Π
o

�

d2:v2 : σ

By Lemma 5.7 we have:

d2:v2 � r := n0 : d5:v2 Γ;∆;R[r;W[r n r � d4:v3 �
Π
o

�

d5:v2 : σ

We can therefore apply the induction hypothesis to obtain:

Γ;∆;R[r;Wn r[W0

� d3:t1[v1=x]�Π
o

�

d5:t2[v2=x] : σ0

From here we use weakening and the definition of �Π
o
�

to get:

Γ;∆;R;W[W0

� r := n0 : d3:t1[v1=x]�Π
o

�

r := n0 : d5:t2[v2=x] : σ0

which is exactly what we require.

Case: d1 is νn0 : d3.

We can decompose the Howe relation in two ways so we take each in turn. Firstly, suppose:

Γ;∆;n0;R;W[r � d3:v1 �
Π0

o

�

t0 : σ Γ;∆;R;W[r � νn0 : t0 �
Π
o

�

d2:v2 : σ

and suppose, without loss of generality that t0 is actually a prevalue, d4:v3. By Lemma 5.6,

there are two subcases to consider:

22

1. d2:v2 � νn0 : d5:v4 and Γ;∆;n0;R;W[r � d4:v3 �
Π
o
�

d5:v4 : σ.

In this case, Lemma 5.4 gives us:

Γ;∆;n0;R;W[r � d3:v1 �
Π
o

�

d5:v4 : σ

so by induction:

Γ;∆;n0;R;W[W0

� d3:t1[v1=x]�Π
o

�

d5:t2[v4=x] : σ0

which gives us:

Γ;∆;R;W[W0

� νn0 : d3:t1[v1=x] d�Π
o
� νn0 : d5:t2[v4=x]� d2:t2[v2=x] : σ0

and so we can use the definition of �Π
o
�

to conclude.

2. Γ;∆;n0;R;W[r � d4:v3 �
Π;n0
o

�

d2:v2 : σ.

In this case, Lemma 5.4 gives us:

Γ;∆;n0;R;W[r � d3:v1 �
Π;n0
o

�

d2:v2 : σ

so by induction:

Γ;∆;n0;R;W[W0

� d3:t1[v1=x]�Π;n0
o

�

d2:t2[v2=x] : σ0

and so:

Γ;∆;R;W[W0

� νn0 : d3:t1[v1=x] d�Π
o
� νn0 : d2:t2[v2=x]�Π

o

�

d2:t2[v2=x] : σ0

(where the latter equivalence holds since n0 does not occur free in d2:t2[v2=x]) and so

we can use the definition of �Π
o
�

to conclude.

Alternatively, suppose that we have the decomposition

Γ;∆;n0;R;W[r � d3:v1 �
Π;n0
o

�

t0 : σ Γ;∆;R;W[r � νn0 : t0 �
Π
o

�

d2:v2 : σ

and suppose, without loss of generality that t0 is actually a prevalue, d4:v3. Again, by

Lemma 5.6, there are two subcases to consider:

1. d2:v2 � νn0 : d5:v4 and Γ;∆;n0;R;W[r � d4:v3 �
Π
o
�

d5:v4 : σ.

In this case, Lemma 5.4 gives us:

Γ;∆;n0;R;W[r � d3:v1 �
Π;n0
o

�

d5:v4 : σ

so by induction:

Γ;∆;n0;R;W[W0

� d3:t1[v1=x]�Π;n0
o

�

d5:t2[v4=x] : σ0

and since:

νn0 : d5:t2[v4=x]� d2:t2[v2=x]

and we can use the definition of �Π
o
�

to conclude.

23

2. Γ;∆;n0;R;W[r � d4:v3 �
Π;n0
o

�

d2:v2 : σ.

In this case, Lemma 5.4 gives us:

Γ;∆;n0;R;W[r � d3:v1 �
Π;n0
o

�

d2:v2 : σ

so by induction:

Γ;∆;n0;R;W[W0

� d3:t1[v1=x]�Π;n0
o

�

d2:t2[v2=x] : σ0

and so:

Γ;∆;R;W[W0

� νn0 : d3:t1[v1=x] d�Π
o
� νn0 : d2:t2[v2=x]�Π

o

�

d2:t2[v2=x] : σ0

(where the latter equivalence holds since n0 does not occur free in d2:t2[v2=x]) and so

we can use the definition of �Π
o
�

to conclude. 2

We can then show that �� is a bisimulation up to (�;=) [19], from which it is routine to show

that overt bisimulation, and hence bisimulation, is a congruence.

Proposition 5.10 On ref-closed terms, �o
� is an overt bisimulation up to (�;=).

Proof: Take ∆; ;W � t �Π
o
�

u : σ. It is fairly easy to see that the latter two conditions for being

an overt bisimulation are satisfied, and we concentrate on showing that any transition of t can be

matched by a transition of u.

We will show a slightly more general result, which is that if:

∆; r;Wn r � t �Π
o

�

u : σ (∆; ;W ` r := n : t : σ)

α
-

(∆;∆0; ;W ` t 0 : σ)

then we can find u0 such that:

∆;∆0; ;W � t 0 ��Π
o

�

u0 : σ0

(∆; ;W ` r := n : u : σ) ===

α̂
) (∆;∆0; ;W ` u0 : σ0

)

In particular, note that we can take r to be empty and get the desired result.

We proceed by induction on the proof of �Π
o
�

. For most of the cases this is a completely

standard rule induction so we only detail the situations which vary from the usual approach.

In fact, we shall prove this property for a variant transition system, where we add extra tran-

sitions (∆;R ` v : σ)

id

-

(∆;R ` v : σ). It is easy to see that adding these transitions makes no

difference to the semantic theory, and it makes this proof slightly easier.

Case: Suppose the transition in question is:

(∆; ;W ` r := n : νn0 : t : σ)

ι:νn0
-

(∆;n0; ;W ` r := n : t 0 : σ0

)

derived from:

(∆;n0; r;Wn r ` t : σ)

ι:n0
-

(∆;n0; r;Wn r ` t 0 : σ0

)

We know that ∆; r;W n r � νn0 : t �Π
o
�

u : σ so we consider how this could be. There are

two evident ways of establishing these terms to be in the �Π
o
�

relation, the latter of which

applies when the private name n0 is passive. This of course is not the case here so it must

be that:

∆;n0; r;Wn r � t �Π0

o

�

t0 : σ ∆; r;Wn r � νn0 : t0 �
Π
o

�

u : σ

24

Since we have:

(∆;n0; ;W ` r := n : t : σ)

ι:n0
-

(∆;n0; ;W ` r := n : t 0 : σ0

)

we can apply induction to get that:

∆;n0; ;W � r := n : t 0 ��Π
o

�

t 00 : σ0

and

(∆;n0; ;W ` r := n : t0 : σ) ===

ι:n0
) (∆;n0; ;W ` t 00 : σ0

)

so:

(∆; ;W ` r := n : νn0 : t0 : σ)� (∆; ;W ` νn0 : r := n : t0 : σ) ===

ι:νn0
) (∆;n0;W ` t 00 : σ0

)

and since ∆; r;Wn r � νn0 : t0 �
Π
o
�

u : σ we can find u0 such that:

∆;n0; ;W � t 00 �
Π
o u0 : σ0

(∆; ;W ` r := n : u : σ) ===

ι:νn0
) (∆;n0; ;W ` u0 : σ0

)

We use Lemma 5.4 to finish.

Case: Suppose we have the transition:

(∆; ;W ` r := n : νn0 : t : σ)

γ
-

(∆;∆0; ;W ` r := n : νn0 : t 0 : σ0

)

derived from:

(∆;n0; r;Wn r ` t : σ)

γ
-

(∆;n0;∆0; r;Wn r ` t 0 : σ0

)

and suppose that ∆; r;Wn r � νn0 : t �Π
o
�

u : σ arises from:

∆;n0; r;Wn r � t �Π;n0
o

�

t0 : σ ∆; r;Wn r � νn0 : t0 �
Π
o

�

u : σ

Since we have:

(∆;n0; ;W ` r := n : t : σ)

γ
-

(∆;n0;∆0; ;W ` r := n : t 0 : σ0

)

we can apply induction to get that:

∆;n0;∆0; ;W� r := n : t 0 ��Π;n0
o

�

t 00 : σ0

and

(∆;n0; ;W ` r := n : t0 : σ) ===

γ
) (∆;n0;∆0; ;W ` t 00 : σ0

)

so:

(∆; ;W` r := n : νn0 : t0 : σ)� (∆; ;W` νn0 : r := n : t0 : σ) ==

γ
) (∆;∆0; ;W` νn0 : t 00 : σ0

)

and since ∆; r;Wn r � νn0 : t0 �
Π
o
�

u : σ we can find u0 such that:

∆;∆0; ;W� νn0 : t 00 �
Π
o u0 : σ0

(∆; ;W ` r := n : u : σ) ===

γ
) (∆;∆0; ;W ` u0 : σ0

)

Using the second rule for the Howe relation gives:

∆;∆0; ;W � r := n : νn0 : t 0 � νn0 : r := n : t 0 ��Π
o

�

u0 : σ0

and so we have the desired result.

25

Case: Suppose (∆; ;W ` r := n : t : σ)

τ
-

(∆; ;W ` t 0 : σ). The most interesting case occurs

when this is an instance of the let block β-reduction, that is:

(∆; ;W ` r := n : let x = d1:v1 in t1 : σ)

τ
-

(∆; ;W ` r := n : d1:t1[v1=x] : σ)

We know, by definition of the Howe relation, that there exists some t0; t2 such that:

∆; r;W0

[r0 � d1:v1 �
Π0

o

�

t0 : σ0 x : σ0;∆; r[r0;W00

� t1 �
Π0

o

�

t2 : σ
∆; r;Wn r � let x = t0 in t1 �

Π
o u : σ

for some Π0

�Π, and W0

[W00

= Wn r. Since:

(∆; ;W0

[r0 ` r := n : d1:v1 : σ0

)

id

-

(∆; ;W0

[r0 ` r := n : d1:v1 : σ0

)

by induction we can find d2 and v2 such that:

(∆; ;W0

[r0 ` r := n : t0 : σ0

) ===

id

) (∆; ;W0

[r0 ` d2:v2 : σ0

)

and

∆; ;W0

[r0 � r := n : d1:v1 ��
Π0

o

�

d2:v2 : σ0

and so:

(∆; ;W ` r := n : let x = t0 in t1 : σ) � (∆; ;W ` let x = r := n : t0 in t1 : σ)

) (∆; ;W ` let x = d2:v2 in t1 : σ)

τ
-

(∆; ;W ` d2:t1[v2=x] : σ)

and so we can find a u0 such that:

∆; ;W � d2:t1[v2=x]�Π
o u0 : σ0

(∆; ;W ` r := n : u : σ)) (∆; ;W ` u0 : σ)

We can now apply Proposition 5.9 to observe that:

∆; ;W � r := n : d1:t1[v1=x]��Π0

o

�

d2:t2[v2=x]�Π
o u0 : σ

and we use Lemma 5.4 to finish.

Case: We demonstrate how the Howe relation is preserved by structural congruence. In fact, we

know by Lemma 4.1 that we need only consider the heating rules and show that if t V t 0

and t �o
� u then t 0 �o

� u also. We use the following case as a typical example. Suppose:

(∆;R;W ` r := n : let x = t in t 0 : σ)V (∆;R;W ` let x = r := n : t in t 0 : σ)

We know that there is some t0 such that:

∆;R[r;Wn r � let x = t in t 0 �Π0

o

�

t0 : σ ∆;R;W � r := n : t0 �
Π
o

�

u : σ

where Π0

�Π. We decompose the former further to obtain terms t 00 and t 000 and W;W00 such

that W0

[W00

= W and:

∆;R[r;W0

n r � t �Π00

o

�

t 00 : σ0 x : σ;∆;R[r;W00

� t 0 �Π00

o

�

t 000 : σ
∆;R[r;Wn r � let x = t 00 in t 000 �

Π0

o

�

t0 : σ

26

We observe that �o is easily seen to be congruent with respect to assignment so we can

obtain:

∆;R;W � let x = r := n : t in t 0 �

Π00

o

�

let x = r := n : t 00 in t 000

� r := n : let x = t 00 in t 000

�

Π0

o

�

r := n : t0

�

Π
o
�

u : σ

and so we are finished. 2

Corollary 5.11 �

� is a congruence for the νref-calculus.

5.4 Comments

Earlier in the paper we described the logical relations of [14] as an overt proof technique for

ν-calculus. We can see now that there are similarities between our overt bisimulation and the

logical relations. In particular, both techniques make use of a predicate to track the private names

of terms under test. In the logical relations the predicate takes the form of a partial injection

between the free names of terms—secret names are those not in the domain (or range) of this

injection.

The key point is that when a new name is to be generated, in both overt bisimulation and

logical relations, it must be guessed whether the name will be active or passive. Where the two

approaches differ greatly however is in the tests allowed in the @v transitions. Logical relations

allow the environment to use secrets passively, even though, morally, they have no knowledge of

them. Overt bisimulations forbid this and insist that a secret is a secret and, until the environment

knows it, no testing can be made with it at all. It would be interesting to show that these two

approaches coincide for the νref-calculus. In light of Proposition 5.1 there is strong evidence to

suggest that they do, but we leave this as an open problem.

Appendix : Passivity is preserved by substitution

Let us first generalise the notion of passivity to allow a restriction on the names used for testing.

This will enable us to express our proof invariant precisely. We say that n are passive from Θ in

∆; ;W ` t : σ if for all sequences of transitions (∆; ;W ` t : σ) ===

γ
) ∆;∆0; ;W ` t 0 : σ0

) such that

f n(γ)\∆ �Θ, there is no transition (∆;∆0; ;W ` t 0 : σ0

) ===

ι:n
) . This says that no matter how a

term is provoked using only names from Θ (or fresh names), the term will not release the identity

of the name n.

We then lift this definition of passivity to open terms by defining n are passive from Ψ � Θ
in (Γ;∆;R;W ` t : σ) if for all closing value instantiations Ψ;∆0;R[R0;` [v=x] : Γ and all

Ψ;∆0

` r := n0 : R and Θ;∆0

` r0 := n0
0 : R0 we have n passive from Θ in

(∆;∆0; ;R[R0

[W ` r := n0 : r0 := n0

0 : t[v=x] : σ):

We note immediately that the notion of passivity introduced earlier is simply an instance of

this general definition in that n are passive in (Γ;∆;R;W ` t : σ) if and only if n are passive from

∆� ∆ in (Γ;∆;R;W ` t : σ).

27

Extend the definition of passivity from terms to capture-free evaluation contexts E with typ-

ing:

Γ;∆;R0;W0

` � : σ0

Γ;∆;R;W ` E[�] : σ

Define n are passive from Ψ�Θ in E iff n are passive from Ψ�Θ in Γ;∆;∆0;R;W` E[t] : σ for

any Γ;Ψ;∆0;R0;W0

` t : σ0.

A partial equivalence relation (PER) on names R is a transitive, symmetric relation. We shall

write R : n$n whenever n is the domain of R.

Given a PER R: n$ n, define the passive bisimulation �R to be the type-indexed relation

given by:

� If n are passive from Ψ �Θ in (Γ;∆;R;W ` t : σ)

then Γ;Ψ�Θ� ∆;R;W � t �R t : σ.

� If Γ;Ψ �Θ� ∆;R;� v�R v0 : σ and Γ;x : σ;Ψ�Θ� ∆;R;W � t �R t 0 : σ0

then Γ;Ψ�Θ� ∆;R;W � t[v=x]�R t 0[v0=x] : σ0.

� If Γ;Ψ �Θ;n� ∆;n;R;W � t �R t 0 : σ
or Γ;Ψ�Θ� ∆;n;R;W � t �R t 0 : σ
then Γ;Ψ�Θ� ∆;R;W � νn : t �R νn : t 0 : σ.

� If E is an evalutation context with n passive from Ψ �Θ with typing:

Γ;∆;R0;W0

` � : σ0

Γ;∆;R;W ` E[�] : σ

and Γ;Ψ�Θ� ∆;R0;W0

� t �R t 0 : σ0

then Γ;Ψ�Θ� ∆;R;W � E[t]�R E[t 0] : σ.

� If Γ;Ψ �Θ� ∆;R;W � t �R t 0 : σ and [n0

=n]� R is a bijective substitution

then Γ;Ψ�Θ� ∆;R;W � t �R t 0[n=n0

] : σ.

We can now give a proof of the main proposition, using properties of �R we will show later.

Proposition A.1 If Π is passive in (Γ;∆;R; ` v : σ) and in (Γ;x : σ;∆;R;W ` t : σ0

) then Π is

passive in (Γ;∆;R;W ` t[v=x] : σ0

).

Proof: Assume without loss of generality that Γ and R are empty. Let Π0 be fresh names, and let

R : (Π;Π0

)$ (Π;Π0

) be the PER generated by equating Π and Π0. We can use Proposition A.3

to complete the diagram: (note that the Ψ and Θ component of the type index are initially both

∆).

(∆;∆0; ;W ` t[v=x] : σ0

)

�

�R
-

(∆;∆0; ;W ` t[v[Π0

=Π]=x] : σ0

)

�

γ
�

w

w

w

w

w

w

w

w

w

28

(where Π;Π0 are not free in γ) as:

(∆;∆0; ;W ` t[v=x] : σ0

)

�

�R
-

(∆;∆0; ;W ` t[v[Π0

=Π]=x] : σ0

)

�

γ
�

w

w

w

w

w

w

w

w

w

�

�R
-

�

γ
�

w

w

w

w

w

w

w

w

w

so by Proposition A.2 we have that Π is passive in t[v=x]. 2

This proof relies on the fact that if t �R u then t cannot perform a n transition for any n in the

domain of R:

Proposition A.2 For any R : n$n, if ∆;R;W � t �R u : σ and (∆;R;W ` t : σ)

ι:n
- then n 62 n.

Proof: A straightforward induction on the proof of �R. 2

It now suffices to show that passive bisimulation is a strong bisimulation. We do this by intro-

ducing an auxiliary one-step passive bisimulation relation �1
R defined on closed terms such that

if Ψ�Θ� ∆;R;W � t �1
R u : σ then:

1. Ψ �Θ� ∆;R;W � t �R t : σ, and

2. we can complete the following diagram:

(Ψ �Θ� ∆;R;W ` t : σ)

�

�

1
R
-

(Ψ �Θ� ∆;R;W ` u : σ)

(Ψ �Θ;∆0

� ∆;∆0;R;W ` t 0 : σ)

α

?

as

(Ψ �Θ� ∆;R;W ` t : σ)

�

�

1
R
-

(Ψ �Θ� ∆;R;W ` u : σ)

(Ψ �Θ;∆0

� ∆;∆0;R;W ` t 0 : σ)

α

?

�

�R
-

(Ψ �Θ;∆0

� ∆;∆0;R;W ` u0 : σ)

α

?

when n are not free in α.

and on open terms as:

Γ;Ψ�Θ� ∆;R;W � t �1
R u : σ

iff for all Ψ �Θ� ∆;R; � [v=x]�1
R [w=x] : Γ

we have Ψ �Θ� ∆;R;W � t[v=x]�1
R u[w=x] : σ

We shall show that one-step passive bisimulation coincides with passive bisimulation, and hence

that passive bisimulation is a strong bisimulation:

29

Proposition A.3 If Γ;Ψ�Θ� ∆;R;W � t �R u : σ then Γ;Ψ �Θ� ∆;R;W � t �1
R u : σ.

Proof: We proceed by induction on the proof of �R and notice that the type index Ψ �Θ plays

only a small, but crucial, role in this proof so we will leave it implicit for the sake of readability

and only draw attention to it in the appropriate places.

Case: n are passive in (Γ;∆;R;W ` t : σ), and t = u, so we use Proposition A.4.

Case: t = t 0[v=x] and u = u0

[w=x] where Γ;∆;R; � v �R w : σ0 and Γ;∆;R;W � t 0 �R w : σ0. By

induction, we get that Γ;∆;R; � v�1
R w : σ0 and Γ;∆;R;W� t 0�1

R w : σ0, so by the definition

of �1
R on open terms, we have that Γ;∆;R;W � t 0[v=x]�1

R u0

[w=x] : σ, as required.

Case: t = νn : t 0 and u = νn : u0 where Γ;Ψ � Θ0

� ∆;n;R;W � t 0 �R u0 : σ with Θ0 possibly

containing n. The induction hypothesis ensures that Γ;Ψ �Θ0

� ∆;n;R;W � t 0 �1
R u0 : σ.

We notice that any transition from νn : t 0 must originate from t 0 thus u0 and hence νn : u0

will match such a transition. In the case in which the transition is actually a νn transition

we can assume that n is contained in the testable name set Θ.

Case: t = E[t 0] and u = E[u0

] for some E satisfying the required properties for�R. In particular,

we have that Γ;∆;R0;W0

� t 0 �R;R0 u0 : σ and so by induction Γ;∆;R0;W0

� t 0 �1
R u0 : σ. We

then apply Proposition A.5 to finish.

Case: u = u0

[n0

=n] and Γ;∆;R;W � t �R u0 : σ for some bijective substitution [n0

=n]. By induc-

tion, Γ;∆;R;W � t �1
R u0 : σ, and the result follows from Proposition A.6.

The result follows. 2

We now have a number of technical propositions left to prove.

Proposition A.4 If n are passive from Ψ �Θ in (Γ;∆;R;W ` t : σ), and R : n$n then

Γ;Ψ�Θ� ∆;R;W ` t �1
R t : σ:

Proof: We have to show that for any ∆;R; � [v=x]�1
R [w=x] : Γ we can complete the diagram:

(Ψ �Θ� ∆;R;W ` t[v=x] : σ)

�

�R
-

(Ψ �Θ� ∆;R;W ` t[w=x] : σ)

(Ψ �Θ;∆0

� ∆;∆0;R;W ` t 0 : σ)

α

?

as

(Ψ �Θ� ∆;R;W ` t[v=x] : σ)

�

�R
-

(Ψ �Θ� ∆;R;W ` t[w=x] : σ)

(Ψ �Θ;∆0

� ∆;∆0;R;W ` t 0 : σ)

α

?

�

�R
-

(Ψ �Θ;∆0

� ∆;∆0;R;W ` u0 : σ)

α

?

when f n(α)\∆ �Θ. The interesting cases are:

30

Case: t = x, so the result follows by the definition of �1
R.

Case: (∆;R;W ` t[v=x] : σ)

α
-

(∆;R;W ` t 0 : σ0

) is given from some open transition:

(Γ;∆;R;W ` t : σ)

α
-

�

(Γ;∆;∆0;R;W ` t 00 : σ0

)

where t 0 = t 00[v=x]. By Proposition A.11 n are passive in (Γ;∆;∆0;R;W ` t 00 : σ0

), so we

have:

(∆;R;W ` t[v=x] : σ)

�

�R
-

(∆;R;W ` t[w=x] : σ)

(∆;∆0;R;W ` t 00[v=x] : σ)

α

?

�

�R
-

(∆;∆0;R;W ` t 00[w=x] : σ)

α

?

Case: The transition is a β-reduction of the form:

(∆;R;W ` E[x(v0)][v=x] : σ)

τ
-

(∆;R;W ` E[t0[v0=x0]][v=x] : σ)

where x[v=x] = λx0 : σ0 : t0 and E has typing:

Γ;∆;∆0;R0;W0

` � : σ0

Γ;∆;R;W ` E[�] : σ

Let u0 be such that x[w=x] = λx0 : σ0 : u0. Since v�1
R w, by Proposition A.12 we have:

x0 : σ0;∆;R; � t0 �R u0 : σ0

and by β-reduction we have:

(∆;R;W ` E[x(v0)][w=x] : σ)

τ
-

(∆;R;W ` E[u0[v0=x0]][w=x] : σ)

By Proposition A.7 n are passive in E and that n are passive in v0. So, we have

Γ;∆;R0;W0

� v0 �R v0 : σ0

which means that we can use the definition of �R to get:

∆;R;W � E[t0[v0=x0]][v=x]�R E[u0[v0=x0]][w=x] : σ

as required.

Case: The transition is a reduction of the form:

(∆;R;W ` E[x = n][v=x] : σ)

τ
-

(∆;R;W ` E[b][v=x] : σ)

where x[v=x] = n0. By Proposition A.2 n0

62 n, and since v�1
R w, we have x[w=x] = n0, so

(∆;R;W ` E[x = n][v=x] : σ)

τ
-

(∆;R;W ` E[b][v=x] : σ)

By Proposition A.11 n are passive in Γ;∆;R;W ` E[v][n0

=x] : σ, so

∆;R;W � E[b][v=x]�R E[b][w=x] : σ

as required.

31

Case: The transition is a reduction of the form:

(∆;R;W ` E[x = x0][v=x] : σ)

τ
-

(∆;R;W ` E[b][v=x] : σ)

which is handled similarly to the previous case.

Case: The transition is a reduction of the form:

(∆;R;W ` E[if x then t1 else t2][v=x] : σ)

τ
-

(∆;R;W ` E[t1][v=x] : σ)

where x[v=x] = true. Again we notice that, x[w=x] = true and by Proposition A.11 we

know that n are passive in Γ;∆;R;W ` E[t1][true=x]. The result follows easily from this

and a similar argument applies when x[v=x] = false.

Case: The transition is a reduction of the form:

(∆;R;W ` E[fst x][v=x] : σ)

τ
-

(∆;R;W ` E[v1][v=x] : σ)

where x[v=x] = (v1;v2). This follows by noticing that n are passive in

Γ;y : σ1; z : σ2;∆;R;W ` E[(y; z)=x][y]:

We know that v �1
R w so we have x[w=x] = (w1;w2) with vi �R wi for i = 1;2. Therefore

we know that Γ; z : σ2;∆;R;W � E[(v1; z)=x][v1] �R E[(w1; z)=x][w1] : σ. This guarantees

that

(∆;R;W ` E[fst x][w=x] : σ)

τ
-

(∆;R;W ` E[w1][w=x] : σ)

provides the matching transition. A similar argument follows for snd also.

Case: We write Vhti to be a term of the grammar

V hti ::= (v;Vhti) j (V hti;v) j t

So suppose the transition is of the form:

(∆;R;W ` d:Vhxi[v=x] : σ1�σ�σ2)
ι:γ
-

(∆;∆0;R;W ` d:Vht 00i[v=x] : σ1�σ0

�σ2)

derived from a transition:

(∆;R; ` x[v=x] : σ)

γ
-

(∆;∆0;R; ` t 00 : σ0

)

so since v �1
R w we have:

(∆;R; ` x[w=x] : σ)

γ
-

(∆;∆0;R; ` u00 : σ0

) ∆;∆0;R; � t 00 �1
R u00 : σ0

which means:

(∆;R;W ` d:Vhxi[w=x] : σ1�σ�σ2)
ι:γ
-

(∆;∆0;R;W ` d:Vhu00

i[w=x] : σ1�σ0

�σ2)

By Propositions A.10, A.9 and A.8 we have n passive in:

(Γ;x0 : σ0;∆;∆0;R;W ` d:Vhx0i : σ1�σ0

�σ2)

so

∆;∆0;R;W � d:Vht 00i[v=x]�R d:Vhu00

i[w=x] : σ1�σ0

�σ2)

as required. 2

32

Proposition A.5 For any E with n passive typed:

Γ;∆;R0;W0

` � : σ0

Γ;∆;R;W ` E[�] : σ

if Γ;∆;R0;W0

� t �1
R t 0 : σ0 then Γ;∆;R;W � E[t]�1

R E[t 0] : σ.

Proof: Similar to the proof of Proposition A.4 with the addition of two cases which arise as an

interaction between E and t.

Case: E is E1[r := v : [�]] and t is E2[?r] so that

Γ;∆;R0

; r;W0

� E2[?r] �R E
0

2[?r]

with r not assigned to in E2;E 0

2. We observe that v cannot be a name in n and we easily get

Γ;∆; ;� v�R v. By definition of �R it follows that

Γ;y : name;∆;R0

; r;W0

� E2[y]�R E
0

2[y]

because any n which can be instantiated for y can be supplied to ?r using a closing assign-

ment. Given this it is a simple matter to use the definition of �R to yield

Γ;y : name;∆;R;W0

� E[E2[y]�R E[E
0

2[y]

and the result follows.

Case: E is E 0

[let x = [�] in u] and t is d1:v1 so that Γ;∆;R0;W0

� d1:v1 �R d2:v2. We use

Proposition A.10 to observe that Γ;∆;∆0;R0

;R00;� v1 �R v2 for appropriate ∆0

;R00. It is easy

to see that the hypothesis tells us that n are passive in Γ;x : σ0;∆;R;W ` E 0

[u] therefore

Γ;∆;∆0;R;R00

;W � E
0

[u[v1=x]]�R E
0

[u[v2=x]:

We use the definition of �R to obtain

Γ;∆;R;W � d1:E
0

[u[v1=x]�R d2:E
0

[u[v2=x]

and structural congruence to finish. 2

Proposition A.6 If Γ;∆;R;W � t �1
R t 0 : σ and [n0

=n]� R : n$n is a bijective substitution then

Γ;∆;R;W � t �1
R t 0[n0

=n] : σ.

Proof: For closed terms, this goes through immediately, since transitions are invariant under

bijective substitutions.

For open terms, consider any substitutions ∆;R; � [v=x] �1
R [w=x] : Γ. Since v and w are

closed, we have that:

∆;R; � [v=x]�1
R [w[n=n0

]=x] : Γ

and so since Γ;∆;R;W � t �1
R t 0 : σ we have:

∆;R;W � t[v=x]�1
R t 0[w[n=n0

]=x] : σ

and again we have closed terms, so:

∆;R;W � t[v=x]�1
R t 0[w[n=n0

]=x][n0

=n] = t 0[n0

=n][w=x] : σ

as required. 2

33

Proposition A.7 If n are passive from Ψ �Θ in Γ;∆;R;W ` E[x(v)] : σ then n are passive from

Ψ �Θ in E and Γ;∆;R0;` v : σ0.

Proof: Firstly, we can suppose that x does not appear freely in E or v. This is no real restriction

because if this were the case then we could instantiate two occurrences with a function built using

a fresh reference, for example:

λx:if ?r = n0 then r := n1 : f x else gx

This function will act, in the context r := n0, like f for the first time it is applied and g thereafter.

We shall prove the result for E and v closed, since the result for open E and v follows directly.

To show the former statement we simply observe that any instantiation t for E could be

attained by instantiating E[xv] with λz:t with z 62 t. The latter is harder to demonstrate. We aim for

a contradiction by supposing that for some n 2 n we have transitions (∆; ;` v : σ0

) ===

γ
) ===

ι:n
)

with f n(γ)\∆ � Θ. It is not too difficult to see that, using Theorem 4.2, one can build a value

Θ; ; ; r ` wγ : σ0

! σ00 such that

(∆; ;` wγv : σ00

)) (∆; ;` d:r := n : v0 : σ00

)

for some canonical value v0 of the appropriate type and fresh r. We then observe that, since

reduction in this language is terminating,

(∆; ;W ` E[wγv])) (∆; ;W ` d:r := n : p)

for some prevalue p which does not assign to r. We can now discard and read from r to realise

a transition
n
- . Notice that the free names of wγ may contain names from Θ which are not

necessarily in Ψ. This would prevent us getting our contradiction to the passivity of n in E[xv],

were it not for the fact that x : σ0

!σ00 has function type and the restriction to only instantiatiating

names from Ψ may be circumvented at higher types by means of references. To see this we simply

use a fresh reference for each name n 2 ΘnΨ and replace any occurrence of these names in wγ
with a read on the corresponding reference. The closing initialisation of these new references

actually allows us to use names from Θ, thus each of these references can be initialised with the

name which they represent. 2

Proposition A.8 If n are passive in Γ;∆;R;W` t : σ then n are passive in Γ;Γ0;∆;∆0;R;W` t : σ.

Proposition A.9 If n are passive in Γ;∆;R;W ` (v1;v2) : σ1�σ2 then n are also passive in both

Γ;∆;R;W ` vi : σi for (i = 1;2).

Proposition A.10 If n are passive from Ψ � Θ in Γ;∆;R;W ` d:p then n are also passive from

Ψ �Θ in Γ;∆;∆0;R0;W0

� p for suitable ∆0

;R0

;W0.

Proof: Straightforward. 2

Proposition A.11 If n are passive from Ψ �Θ in (Γ;∆;R;W ` t : σ) and

(Γ;∆;R;W ` t : σ)

α
-

�

(Γ;∆;∆0;R;W ` t 0 : σ0

)

then n are passive from Ψ �Θ;∆0 in (Γ;∆;∆0;R;W ` t 0 : σ0

).

34

Proof: This is simple for all cases save

(Γ;∆;R;W ` t : σ)

ι:νn
-

�

(Γ;∆;n;R;W` t 0 : σ0

):

Suppose for contradiction that we could find a closing instantiation Ψ;∆00;R0;W ` [v=x] : Γ, as-

signments Ψ;∆00

` r := n0 : R, and Θ;n;∆00

` r0 := n0

0 : R0 (notice the essential use of Ψ here) such

that, for some n0

2 n we get

(∆;∆00; ;W ` r := n0 : r0 := n0

0 : t 0[v=x]) ===
γ
) ===

ι:n0

)

such that f n(γ)\∆;n � Θ;n. We cannot use these transitions to contradict passivity of n in t

immediately because γ may contain n and the initialisation assignments to R0 may also contain n.

However, by assumption we can ensure that n is leaked to the environment first, thus permitting

the contradictory tests. Note that t must be a prevalue of the form νn : d:w, so

(Γ;∆;R;W ` t)
copy

-

�

(Γ;∆;R;W ` νn : d:(w;w))

and

(Γ;∆;R;W ` νn : d:(w;w))

l:ι:νn
-

�

(Γ;∆;n;R;W ` d:(w0

;w))

for some w0. At this point we use assignment transitions to ensure that any of the initialising

assignments to R0 which contain n are made and we follow this with the sequence of γ transitions

tagged with the r: identifier. Thus we obtain a
r:ι:n0

- transition to give a contradiction. 2

Proposition A.12 If Γ;Ψ�Θ� ∆;R � λx : σ : t �1
R λx : σ : u : σ! σ0 then

Γ;x : σ;Ψ�Θ� ∆;R � t �R u : σ0

:

Proof: Straightforward enough, but notice that the converse does not hold in general as Ψ �Θ.

Any value supplied to the latter term can be supplied to the former by using an apply transition

but not vice-versa. 2

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus. Re-

search Report 149, Digital Equipment Corporation Systems Research Center, 1998. To

appear in Information and Computation.

[2] K.L. Bernstein and E.W. Stark. Operational semantics of a focussing debugger. In Proc.

MFPS 95. Springer-Verlag, 1995. Vol 1. Electronic Notes in Comp. Sci.

[3] G. Berry and G. Boudol. The chemical abstract machine. In Proc. 17th Ann. Symp. Princi-

ples of Programming Languages, 1990.

[4] L. Cardelli and A. Gordon. Mobile ambients. In Proc. FoSSaCS ’98, LNCS. Springer-

Verlag, 1998.

[5] W. Ferreira, M. Hennessy, and A.S.A Jeffrey. A theory of weak bisimulation for core CML.

In Proc. ACM SIGPLAN Int. Conf. Functional Programming. ACM Press, 1996. To appear

in J. Functional Programming.

35

[6] A. Gordon. Bisimilarity as a theory of functional programming. In Proc. MFPS 95, num-

ber 1 in Electronic Notes in Comp. Sci. Springer-Verlag, 1995.

[7] A. Gordon. Nominal calculi for security and mobility. In Proc. DARPA Workshop on

Foundations for Secure Mobile Code, pages 10–14, 1997.

[8] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, Massachusetts, 1988.

[9] F. Honsell, I.A. Mason, S. Smith, and C. Talcott. A variable typed logic of effects. Infor-

mation and Computation, 119(1):55–90, 1995.

[10] Douglas Howe. Equality in lazy computation systems. In Proc. LICS ’89, pages 198–203.

IEEE Computer Society Press, 1989.

[11] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I + II. Information

and Computation, 100(1):1–77, 1992.

[12] E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92,

1991.

[13] A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that dynam-

ically create local names, or: What’s new? In Proc. MFCS 93, pages 122–141. Springer-

Verlag, 1993. LNCS 711.

[14] A. M. Pitts and I. D. B. Stark. On the observable properties of higher order functions that

dynamically create local names (preliminary report). In Workshop on State in Programming

Languages, Copenhagen, 1993, pages 31–45. ACM SIGPLAN, 1993. Yale Univ. Dept.

Computer Science Technical Report YALEU/DCS/RR-968.

[15] A.M. Pitts and I.D.B. Stark. Operational reasoning for functions with local state. In A.D.

Gordon and A.M. Pitts, editors, Higher Order Operational Techniques in Semantics, pages

227–273. Cambridge University Press, 1998. Publications of the Newton Institute.

[16] J. Reppy. Higher-Order Concurrency. PhD thesis, Cornell University, June 1992. Technical

Report TR 92-1285.

[17] M.Tofte, R.Milner and R.Harper. The Definition of Standard ML. MIT Press, 1990.

[18] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms. PhD thesis, University of Edinburgh, 1993.

[19] D. Sangiorgi and R. Milner. On the problem of ‘weak bisimulation up to’. In W.R. Cleave-

land, editor, Proceedings CONCUR 92, Stony Brook, NY, USA, volume 630 of Lecture

Notes in Computer Science, pages 32–46. Springer-Verlag, 1992.

[20] P. Sewell. From rewrite rules to bisimulation congruences. In D. Sangiorgi and R. de Si-

mone, editors, Proceedings CONCUR 98, Nice, volume 1466 of Lecture Notes in Computer

Science, pages 269–284. Springer-Verlag, 1998.

[21] I.D.B. Stark. Names and Higher-Order Functions. PhD thesis, University of Cambridge,

1994. Also published as Computer Laboratory Tech. Report 363.

[22] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Tech-

nical Report TR91-160, Rice University, 1991.

36

