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ABSTRACT. In wide area distributed systems it is now common for higher-order code to be trans-

ferred from one domain to another; the receiving host may initialise parameters and then execute the

code in its local environment. In this paper we propose a fine-grained typing system for a higher-

order π-calculus which can be used to control the effect of such migrating code on local environ-

ments. Processes may be assigned different types depending on their intended use. This is contrast

to most of the previous work on typing processes where all processes are typed by a unique con-

stant type, indicating essentially that they are well-typed relative to a particular environment. Our

fine-grained typing facilitates the management of access rights and provides host protection from

potentially malicious behaviour.

A process type is essentially an interface limiting the resources to which it has access, and the

types at which they may be used. Allowing resource names to appear both in process types and

process terms, as interaction ports, complicates the typing system considerably. For the development

of a coherent typing system, we use a kinding technique, similar to that used by the system F

<:, and

order-theoretic properties of our subtyping relation.

Various examples of this paper illustrate the usage of our fine-grained process types in the dis-

tributed systems.

1 Introduction

BACKGROUND In wide area distributed systems it is now common for higher-

order code to be transferred from one domain to another; the receiving host may

initialise some parameters and then execute the code in the local environment

[11, 20, 21]. Of course this is recognised as very dangerous and various schemes

have been put forward to ensure the integrity of systems in the presence of such

operations. In this paper we propose a new subtyping system which can be used

to control the effect of migrating code on local environments. Our investigation

is in terms of a higher-order π-calculus in which values, including process terms,

can be exchanged along communication channels [26, 32]. We believe that our

typing system based on fine-grained process types can be readily adapted to re-

lated location based distributed calculi such as those presented in [13, 8, 9, 27].

HIGHER-ORDER PROCESSES The language we consider, λπv, is essentially

a call-by-value λ-calculus [24] augmented with the π-calculus primitives [19].

Values may be sent and received along communication channels, as in the π-

calculus, but functions may also be applied to them, as in the λ-calculus. Thus

c?(x :τ) f x (1)
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is a process which inputs a value of type τ on channel c and applies to it the

function f . This process will be well-typed only in an environment in which

the channel c has the capability to input values of type τ, written c : (τ)I, and f

denotes a function of type (τ ! proc); here, as in [9, 22, 32], we use proc to

denote the type of processes.

As usual we allow as values arbitrary abstractions, but much of the descrip-

tive power of λπv comes from the ability to form values by abstracting over

processes. For example (unit! proc) is the type of thunked processes; we use

this type so frequently that we will abbreviate it to hproci. Values of this type,

of the form λ(x : unit):P, will also be abbreviated to hPi. Such values can be

exchanged between processes and subsequently executed, by applying the func-

tion λy:y(); again for the sake of clarity we use run to denote this function. So in

(1) above, if τ is the thunked type hproci and f is the function run, the process

may input a thunked process hPi on channel c and execute it.

In papers such as [22, 32, 23, 9] typing systems have been suggested which

ensure that programs written in λπv-related languages are well-behaved. The

main judgements normally take the form

Γ ` P : proc

indicating that the term P is a well-typed process relative to the typing environ-

ment Γ. Here Γ is a mapping from channel names or variables to input/output

capabilities or value types; Γ(c) determines the type of values which channel

c may transmit/receive. Thus the process above, (1), will be well-typed in any

environment Γ which allows c the input capability hproci, assuming of course

that f is also a well-typed expression of type hproci ! proc.

However such typing offers limited control to programs over the code which

they download for execution. To emphasise this point let us consider an example.

First we define the abstraction Fw

λx λy (� x?(z :int) y!hzi)

which repeatedly inputs some value of a type int on channel x and outputs it

immediately on y. If the channels a; b are assigned suitable types then both the

values hFw(ab)i and hFw(ba)i have type hproci and thus may be sent along

channel c to a process such as

c?(x : τ) run x (2)

But accepting these processes for execution confers on the incoming code very

different access rights. In the first case the incoming code is allowed to read

from channel a and write to channel b while in the second case these rights

are reversed. Typing systems in which code can only be assigned the undiffer-

entiated type proc does not provide any mechanism for limiting the effect of

executing incoming code.
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TYPING PROCESSES In this paper we extend the typing systems of [32, 22,

13] by allowing processes to have types which bound the resources which they

may use. The basic idea is straightforward. For processes in λπv we will allow

judgements of the form

Γ ` P : [∆ ]

where ∆ is a finite environment, mapping channel names to capabilities. Intu-

itively this means that relative to Γ the term P denotes a well-defined process

which uses at most the resources in the domain of ∆; moreover their use is in

accordance with the capabilities given in ∆. For example let ∆ab; ∆ba denote the

environments

fa : (int)I;b : (int)Og; fb : (int)I;a : (int)Og

respectively where (int)

I and (int)

O represent the input and output capabilities

of a type int. Then, for a suitable Γ we will be able to derive the judgements

Γ ` Fw(ab) : [∆ab ] and Γ ` Fw(ba) : [∆ba ]

These more discriminating types for processes allows processes to be, in turn,

more discriminating in the type of values which they will accept. Thus

c?(x : h∆abi) run x

indicates that it is only willing to accept processes for execution if they at most

read from resource a and write to b. Let us denote c!hPi for an output process

which sends a thunked process hPi to a channel c. Thus, for example, a process

c!hFw(ab)i j c?(x : h∆abi) run x

is well-typed while

c!hFw(ba)i j c?(x : h∆abi) run x

is not; the process hFw(ba)i is not acceptable along c as it does not conform to

the interface decreed by the host process, ∆ab.

This ability to constrain the effect of imported code means that hosts pro-

cesses can, for example, maintain the consistency of local resources. As a simple

example consider the process

c? (x : h∆ai) (run x jQ)

where h∆ai denotes ha : (int)Oi. This process knows that no matter what code

is downloaded the only read from the resource a will be carried out by the term

Q. For example if Q is Fw(ab) then, regardless of what code is downloaded, all

values sent to a will be forwarded to b.

The ability to nest these process types gives even further fine-grained control

over code behaviour. For example consider

�req?(y : h∆ci) (run y j c?(x : h∆ai) (run x j a?(z : int)P))
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where h∆ci denotes the type hc : h∆ai
O

i. The annotated types ensure that

� the code downloaded on the request channel req can only access the resource

c

� c can only be used to transmit code which can at most access resource a

� all communications to a will be serviced by the code a?(z :int)P.

CHANNEL ABSTRACTIONS In λπv processes are also allowed to download ab-

stracted code; code in which resource parameters may be instantiated by the host

process before the code is executed. A simple example is the abstractionFw used

above. Consider the server

� s?(z) z!hFwi
which continually supplies the abstraction Fw to requesting clients. (Note that

here we are omitting type annotations.) A specific client, such as R defined by

s!hci c?(y) (y a b);

can download the abstracted code Fw and instantiate it with particular channels,

such as a; b. Thus in the presence of the server R will evolve to a process which

should have a type of the form
[a : (int)I;b : (int)O; : : :]

where a is used for input and b for output. Other processes which instantiate Fw

differently will evolve to processes with different types. For example S defined

by

s!hci c?(y) (y b a);

will evolve to a process with a type

[b : (int)I;a : (int)O; : : :]

However it is difficult to see how to give a type to the abstraction Fw which

ensures that R and S are assigned such types. Within our current system of types

it would be natural to assign to Fw a functional type of the form

(int)

I

! (int)

O

! π

for some process type π. If π is the undifferentiated type proc then both R and

S would inherit this uninformative type. Otherwise π must assign some definite

capabilities to a and b and assuming that typing is preserved under Subject Re-

duction these capabilities would be inherited by R and S. That is, they would

have the same capabilities on the two resources a and b, contrary to our require-

ments.

Our solution is to introduce a new form of dependent functional type

(x :σ)! ρ
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Here σ is a channel type and we allow the type ρ to contain occurrences of the

channel variable x. (These occurrences of x in ρ are bound occurrences in the

dependent type (x :σ)! ρ.) Thus the abstraction Fw will be assigned the type

(x : (int)I)! (y : (int)O)! [x : (int)I;y : (int)O ]

where the result type of the process depends on the type of the abstracted vari-

ables.

Allowing channel variables to appear in process types complicates the typing

system considerably. The formal definition of what constitutes a valid term and

a valid type are interdependent and, as we will see, both in turn require a careful

definition of even a valid typing environment. An analogous, albeit somewhat

simpler, situation arises in subtyping for the polymorphic λ-calculus [6]; there

type variables appear in program terms whereas here channel variables appear in

terms and types. More precisely, here channels play two interdependent roles;

first they are used as interaction ports in terms as in the standard process calculi,

and at the same time they are used to represent types of processes.

We show in this paper that a typing system based on these ideas can be de-

veloped for λπv and moreover it can typecheck many sophisticated instances of

programs involving code abstraction and mobility.

OUTLINE OF THE PAPER Section 2 introduces the types and syntax of λπv,

together with a reduction semantics for the language; it also contains two ex-

ample descriptions of systems which illustrates the tractability of higher-order

code mobility in λπv. We also explain the order theoretic property FBC (finite-

bounded completeness) over the subtyping relation which will be required to

ensure that type inference is coherent. Section 3 proposes the new typing system

of λπv, explaining the various technical points in the formulation of the infer-

ence rules. Since channels appear freely in the process types, we use the kinding

technique analogous to the subtyping of system F [6]. Section 4 demonstrates

its expressiveness by typing the examples introduced in Section 2. In Section 5

we discuss the soundness of the typing system. We prove a Subject Reduction

Theorem and an elementary Type Safety Theorem. Section 6 shows one interest-

ing extension of our typing system, extending it to the distributed version of λπv,

discussed previously in [32]. Finally Section 7 concludes the paper with a dis-

cussion of the limitations of our typing system, further issues and related work.

Various auxiliary definitions and many of the proofs are routinely relegated to

the appendix.

2 A Higher-order Process Language

In this section we give the syntax and reduction semantics of λπv.
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(Type) α;β;γ; ::: (Abbreviation)

Term: ρ ::= π j σH

Base: σG ::= unit j nat j � � �

Process: π ::= [∆ ] j proc

HO Value: σH ::= σG j σH ! ρ j (x :σ)! ρ
Channel: σ ::= hS

I

;S

O

i

Value: τ ::= σH j σ
Sort: S ::= (τ1; :::;τn) j > j ?

input only: SI
def

= hS;?i

output only: SO
def

= h>;Si

input/output: SIO

def

= hS;Si

thunk type: h∆i def

= unit! [∆ ]

(Environment)

Channel: ∆ ::= /0 j ∆;u :σ
General: Γ ::= /0 j Γ;x :τ j Γ;a :σ

FIGURE 1. Types

TYPES The collection of types we use is a straightforward extension of that

from [32]; a process type, ranged over by π, can either be the constant proc, as

in [32], or take the form [∆ ], where ∆ is an environment. The formal definition

is given in Figure 1; this assumes a set of base types such as unit and nat,

an infinite set of channel or resource names N, ranged over by a;b; :::, and an

infinite set of variables V, ranged over by x;y; ::. For the sake of clarity we will

sometimes use X ;Y; : : : as variables, whenever we intend them to be substituted

specifically by higher order values rather than channels.

Channel types are as in [32], in turn an elaboration of the IO-types of [13, 22];

they take the form hS

I

;S

O

i, a pair consisting of an input sort S

I

and an output

sort S

O

; these input/output sorts are in turn either a general value type or >,

denoting the highest capability, or ?, denoting the lowest; as explained in [32]

the representation of IO-types as a tuple makes the integration with the arrow

types of the λ-calculus more natural. Moreover the IO-types of [22] can also be

represented as a special case of our IO-types, using the abbreviations given in

Figure 1.

There are three kinds of value types: base types, channel types as already

explained or HO-value types, ranged over by σH . These can be formed using

either of the functional type constructors, σH ! ρ or (x :σ)! ρ, where ρ in turn

is either a HO-value type or a process type. As already explained process types

can either be the constant proc, (also denoted ok in [22]) or a type environment

[∆ ] where ∆ is a mapping from N[V to channel types; the formation rules for

environments are also given in Figure 1.

EXAMPLE 2.1. (Types)
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(Term) (Identifier)

P;Q; ::: ::= V value

j 0 nil

j P jP parallel

j u!hV1; :::;VniP output

j u?(x1 :τ1; :::;xn :τn)P input

j �P replicator

j (νa :σ)P restriction

j PP application

u;v;w; ::: ::= l literal

j x;y;z; ::: variable

j a;b;c; ::: channel

(Value)

V;W; ::: ::= u;v;w; ::: identifier

j λ(x :τ)P abstraction

(Literal) (Abbreviations)

l; l0

; ::: ::= () unit hPi

def

= λ(x :unit)P thunk

j 1;2;3; ::: number run
def

= λ(x :unit! π)x () run

FIGURE 2. Syntax

(1) The empty process, with no capabilities, has the type [ ].

(2) A process which can output nat at a and input bool at b has the type

[a : (nat)O;b : (bool)I ].

(3) A higher order process which can output a thunked values of type (2) at c has

the type [c : ha : (nat)O;b : (bool)IiO ]

(4) A higher order identity function over thunked values of type (2) has the type

ha : (nat)O;b : (bool)Ii ! ha : (nat)O;b : (bool)Ii

(5) A dependent function which is applied to some name a and constructs a

process of type [b : (nat)I;a : (nat)O ] has the type

(x : (nat)O)! [b : (nat)I;x : (nat)O ]

It should be emphasised that, despite these examples, the formation rules al-

low the construction of many meaningless types, in particular process types. In

the next section we will introduce judgements which will constrain their forma-

tion, giving rise to well-formed types, and their use in well-formed environments.

SYNTAX The syntax for terms in the language λπv is given in Figure 2. It is

essentially the same as that used in [32] except that we use the more expressive

types, from Figure 1. From the λ-calculus, there are values, consisting of ba-

sic values and abstractions, together with application; from the π-calculus we

have input and output on communication channels, dynamic channel creation,

iteration and the empty process. We use the standard notational conventions, for
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(Reduction)

(β) (λ(x :τ)P)V �! PfV=xg (appr)
Q �! Q0

PQ �! PQ0

(appl)
P�! P0

PV �! P0V

(com) a?(x1 :τ1; :::;xn :τn)P j a!hV1; :::;VniQ �! PfV1; :::;Vn=x1; :::;xngj Q

(par) P �! P0

P jQ�! P0

jQ
(res) P �! P0

(νa :σ)P�! (νa :σ)P0

(str)
P � P0

�! Q0

� Q
P �! Q

(Structure Equivalence)

� P � Q if P �α Q.

� P jQ � Q jP (P jQ) jR � P j (Q jR) P j0 � P �P � P j �P

� (νa :σ)0 � 0 (νa :σ)P jQ � (νa :σ)(P jQ) if a 62 fn(Q)

(νa :σ)(νb :σ0

)P � (νb :σ0

)(ν a :σ)Q if a 62 fn(σ0

) and b 62 fn(σ)

FIGURE 3. Reduction

example ignoring trailing occurrences of the empty process 0 and omitting type

annotations unless they are relevant.

Nevertheless the use of more expressive types changes considerably the na-

ture of the language as both resource names and resource variables may appear

in types. This complicates the notions of free names and free variables, which

is required for the definition of substitution; this in turn is central to the reduc-

tion semantics. For completeness we give definitions of fn(P); fn(α) the free

names occurring in the term P and type α, and fv(P); fv(α), corresponding free

variables, in Figure 13, which is relegated to the appendix.

REDUCTION SEMANTICS The term P is called a program if it contains no free

variables, i.e. fv(P) = /0. The reduction semantics is given in terms of a binary

relation

P�! Q

between programs and follows the standard approach from [19, 22, 26]; the for-

mal definition is given in Figure 3 and should be understandable to those familiar

with either the π-calculus or the λ-calculus. It uses the standard structural equiv-

alence � of the π-calculus; the axioms for � is also given in Figure 3 and it is

also assumed to be preserved by the parallel composition “ j ” and restriction

operator “ν”. It has an associated reduction rule (str). We also use !! to denote

the multi-step reduction. There are also contains the standard congruence rules

for reduction, (app), (par), and (res). However the main rules are β-reduction,
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(β), and communication (com). Both these require a definition of substitution of

values for variable PfV=xg, which we have yet to define. Complications arise

when the value to be substituted V is a channel name and is best explained with

an example:

λ(x : (int)IO):λ(Y : hx : (int)I;a : (int)Oi)(run Y jx!h0i ja?(z) r!hzi) (3)

This function first takes some channel, say b, then takes a thunked process with

a b-capability and an a-capability, sets it running and interacts with it via a and

b. Suppose that it is applied to the specific channel b. Intuitively this means

substituting the value b for free occurrences of the bound variable x in the body

of the function. If the substitution ignores types in the body of the function, as is

standard, we get

λ(Y : hx : (int)I;a : (int)Oi)(run Y jb!h0i ja?(z) r!hzi)

which is not even a program; it contains an occurrence of the free variable x.

The proper definition of reduction requires that b is also substituted into the

types occurring in the body of the function, to give the program

λ(Y : hb : (int)I;a : (int)Oi)(run Y jb!h0i ja?(z) r!hzi)

This also makes sense as this now constrains the function to be only applied to

processes which have an appropriate b-capability.

The formal definition of value substitution into terms, PfV=xg, is defined

inductively on the structure of terms. We only show one instance, the input

process, in Figure 4; the remainder can be inferred by the reader. However this

instance uses the substitution of values into types, ρfV=xg. If V is anything other

than a channel name or variable this is the identity. So we need only define the

substitution ρfv=xg, where v is a channel or channel variable; this is also defined

in Figure 4. We will see later that when these substitutions are made to well-

defined terms and types, in well-defined environments, the results will also be

well-defined. Note also that substitution into types is essentially different from

that employed in the standard polymorphic λ-calculus [6] and the polymorphic

π-calculus [23]; there type variables are instantiated by types (say int) whereas

here channel variables occurring in types are instantiated by channels, not by

types.

The definition of substitution into types is for the most part straightforward,

with one exception which can be explained using the example function (3) above.

If this is applied to the name a we would expect to get the result

λ(Y : ha : (int)IOi)(run Y ja!h0i ja?(z) r!hzi)
since a is allowed to have an input/output capability (int)IO in the body. In other

words the substitution of the name a for x in the type hx : (int)I;a : (int)Oi
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(Terms)

(u?(x1 : τ1; : : :xn : τn) :P)fV=xg =

ufV=xg?(x1 : τ1fV=xg; : : :xn : τnfV=xg) :PfV=xg with x 6= xi

...

(Types) >fv=xg= >, ?fv=xg=?, σGfv=xg= σG, procfv=xg= proc

hS

I

;S

O

ifv=xg = hS

I

fv=xg;S

O

fv=xgi,

(τ1; :::;τn)fv=xg = (τ1fv=xg; :::;τnfv=xg)

(σH ! ρ)fv=xg = σHfv=xg! ρfv=xg

((y :σ)! ρ)fv=xg = (y :σfv=xg)! ρfv=xg with x 6= y

[∆ ]fv=xg = t[wfv=xg :σfv=xg ] with w :σ 2 ∆
FIGURE 4. Name Substitution into Terms and Types

should be ha : (int)IOi. This is reflected in the final clause in Figure 4:

[∆ ]fv=xg= t[wfv=xg :σfv=xg ] with w :σ2 ∆

Here t is an operator on types which intuitively acts like a (partial) least upper

bound with respect to, yet to be defined, a subtyping order on types. The formal

definition of t and the associated greatest lower bound operator u is given in

Figure 14 in the appendix. The following are simple examples of t on process

types, which may be sufficient to read this paper; roughly speaking, t calculates

the union of the accessibility rights of two processes.

[a : (int)I ]t [b : (int)O ] = [a : (int)I;b : (int)O ] and

[a : (int)I ]t [a : (int)O ] = [a : (int)IO ]

Now we can analyse the substitution on types in the above example by the fol-

lowing equations.

[x : (int)I;a : (int)O ]fb=xg = [xfb=xg : (int)I ]t [a : (int)O ]

= [b : (int)I;a : (int)O ] and

[x : (int)I;a : (int)O ]fa=xg = [xfa=xg : (int)I ]t [a : (int)O ]

= [a : (int)IO ]

The properties of t anduwill be discussed in the next section, when we consider

well-typed programs. Note that in general t is a partial operator and therefore

apriori substitution is not always defined. However we will see in the next section

that in properly typed environments it is always well-defined.

EXAMPLE 2.2. (Compute server, cf. [32]) A (specific) compute service is a

process which given some data and a return address, applies the specified opera-

tion to the data and returns the result to the address. To keep matters simple we
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B

Client

Client

A

req
Interface
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service 2
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FIGURE 5. Interface Server and Distributed Services

use integers as data and assume that we have a literal, such as succ, representing

the successor function, for the operation. Then for a given name a, let Succ(a)

represent the process �a?(y;z) z!hsucc(y)i, which we write as

Succ(a)(= �a?(y;z) z!hsucc(y)i

This represents a service (for succ) situated at a. It receives a value on y to be

processed together with a return channel z to which the processed data is to be

sent. It then calculates the successor of y and then returns it along the return

channel.

A successor-server, sServ, is a process which, on requests, sends to the client

the parameterised code, which the client can initialise locally to provide the ser-

vice:

sServ(req)(= � req?(r) r!hλ(x) Succ(x)i

Here the process receives a request on the channel req, in the form of a return

channel r, to which the abstraction λ(x) Succ(x) is sent. A client can now down-

load this code and initialise it using a locally generated channel a which will act

as the request channel for data processing:

Client(rec)(= (νr) req!hri r?(X) (νa)( X a ja!h1;c1i ja!h2;c2i ja!h3;c3i j � � �)

Now sServ(req) j Client(req) is reduced as:

sServ(req) j c1!h2i jc2!h3i j � � � j (νa)(Succ(a) ja!hn;cni j � � �)!! �� �

This interaction offers protection for the client against the server; the local ser-

vice point, a, is not revealed to the server. It also economises on client/server

interaction, in favour of local communication at the client site. If the former is

expensive or unreliable this represents a gain in efficiency or reliability.

EXAMPLE 2.3. (Interface server and mobile client code) A more general form
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of compute server is given diagrammatically in Figure 5. Here there is an Inter-

face (I) between clients and the collection of services or operations on offer. A

client may wish a number of operations to be performed on given data, perhaps

in a particular sequence, with some data for later operations depending on results

produced by earlier operations. Now instead of a client interacting directly with

the services a script is sent to the interface. This script is executed locally by

the interface, which interacts as necessary with the various services. This pro-

tocol puts the computational onus on the server and avoids repeated interactions

between clients and services.

For the sake of simplicity suppose there are only two services available, succ

as before and a similar one for the predecessor function, pred:

Pred(a)(= �a?(y; z) z!hpred(y)i

The server may then be defined by:

Server I(req; s; p)(= �req?(X) X s p

It takes in a script X , a process parameterised on service ports, and applies it

to the actual port names of the two services, in this case s and p. Note that

these actual names are not known to clients, thereby, in this case, affording some

security protection to the server from clients; all interaction between clients and

the server is through the interface portname req.

We give two examples of clients requesting services. Client (A) wants to in-

crement a number k twice, whereas the Client (B) wants to evaluate the successor

and the predecessor of two different numbers n and m on parallel.

ClientA(req) (= req!hλ(s; p) ((νc)s!hk;cic?(z) s!hz;ciFw(crA))i

ClientB(req) (= req!hλ(s; p) (νcc0

)(s!hn;ciFw(c r1B) j p!hm;c0

iFw(c0 r2B))i

The forwarders in their bodies are used to relay the final results to each client on

their result channels, rA for client A and r1B; r2B for client B respectively.

Putting the clients and server together we have the following parallel compo-

sition (Figure 5):

ClientA(req) j ClientB(req) j Server I(req;s; p) j Succ(s) j Pred(p)

After certain amount of reductions, k+2 is returned to Client A on the channel

rA, and n+1 and m�1 are returned to r1B and r2B, respectively.

3 The Fine-Grained Typing System

3.1 Well-formed Types and Environments

In Figure 6 we present a formal system with three forms of judgements, all in-

terrelated:
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Well-formed Environment

(e-nil) /0 ` Env (e-val)
Γ ` τ : tp u 62 dom(Γ)

Γ; u :τ ` Env

Well-formed Types

(t-base)

Γ ` Env

Γ ` > :tp; ? :tp; σG :tp; proc :tp; [ ] :tp

(t-sort)
Γ ` τi :tp

Γ ` (τ1; :::;τn) :tp

(t-absH)
Γ ` σH :tp; ρ :tp

Γ ` σH ! ρ : tp

(t-absN)
Γ;x :σ` ρ :tp

Γ ` (x :σ)! ρ : tp

(t-proc)

8u2 dom(∆): Γ ` Γ(u) � ∆(u)

Γ ` [∆ ] : tp

(t-chan) Γ ` S

I

� S

O

Γ ` hS

I

;S

O

i : tp

Subtyping

(s-id) (s-sort) (s-base)

Γ ` ρ : tp

Γ ` ρ� ρ etc.
Γ ` τi : tp

Γ `? � (τ1; :::;τn)� >

Γ ` [∆ ] :tp

Γ ` [∆ ]� proc

(s-absH) (s-absN)

Γ ` σ0

H � σH ; ρ� ρ0

Γ ` σH ! ρ� σ0

H ! ρ0

Γ ` σ2 � σ1 Γ;x :σ1 ` ρ1 � ρ2

Γ ` (x :σ1)! ρ1 � (x :σ2)! ρ2

(s-chan) (s-proc)

Γ ` S

I1 � S

I2; S

O2 � S

O1

Γ ` hS

Ii;SOii : tp (i = 1;2)

Γ ` hS

I1;SO1i � hS

I2;SO2i

Γ ` [∆1 ] : tp

8u 2 dom(∆2): Γ ` ∆1(u) � ∆2(u)

Γ ` [∆2 ]� [∆1 ]

FIGURE 6. Well-formed Types and Subtyping

Γ ` Env Γ is a well-formed environment

Γ ` α : tp α is a well-formed type in the environment Γ
Γ ` α� α0 α is less than α0 in the environment Γ

For convenience we use Γ ` J as a shorthand for any of the three allowed forms

of judgement. The first is designed to ensure that an identifier can only be used

in the construction of a type if it has already been declared in the environment.

For example one can not deduce

y : hx : (nat)Oi; x : (nat)O ` Env

because the variable x is used in the type associated with y before being intro-

duced. However if they are interchanged then this does constitute a valid envi-
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ronment:

x : (nat)O; y : hx : (nat)Oi ` Env

This emphasises the fact that our typing system will not have an interchange rule.

In general being able to form a judgement of the form

Γ; x : τ; y : τ0

; Γ0

` J

will not necessarily imply

Γ; y : τ0

; x : τ; Γ0

` J

When constructing well-formed environments only types which are currently

well-formed may be used. This is the purpose of the second form of judgement.

So for example we can not deduce

Γ; y : hy : (nat)Oi ` Env

To do so we would need to be able to deduce

Γ ` hy : (nat)Oi : tp

This in turn is not possible, basically because y is not in the domain of Γ.

The rules for valid type formation are very straightforward; one is only con-

strained to use identifiers which are already declared in the current environment.

In (t-chan), the condition S

I

� S

O

is necessary to ensure that readers of a channel

always receive at most the capabilities given by a sender. More details may be

found in [13, 32]. There are only two novelties. In the formation rule for depen-

dent types, (t-absN) the bound variable x is allowed to be used in the construction

of the result type ρ. Secondly the rule (t-proc) ensures a process always has a

type ∆ which does not exceed the current environment Γ.

Subtyping also plays a role in the formation of environments. For example

we can not deduce

a : (nat)O; y : ha : (nat)IOi ` Env

because the capability associated with a when forming the type associated with

y is not a subtype of that associated with a in the current environment. For no Γ
can we deduce

Γ ` (nat)

O

� (nat)

IO

The rules for subtyping are a straightforward extension of those given in [32,

22, 13], apart from the necessity to only use identifiers declared in the current

environment. Both function types are contravariant in their first arguments and

covariant in their second. Similarly in (s-chan) channel types are covariant in

the input capability and contravariant in the output. Again the only real novelty

is the sub-typing rule for process types, (s-proc); this means the the ordering of

process types is contravariant w.r.t. the ordering of [32, 22].



16 Nobuko Yoshida and Matthew Hennessy

There is almost an endless series of consistency lemmas which one may

prove about this system of judgements. Here we give a brief representative list

and we leave the proofs to the reader. They are invariably deduced by induc-

tion on the derivations in the standard manner. Remember informally X ;Y;Z; :::

denote variables with higher-order types, as opposed to channel types.

LEMMA 3.1.

(1) (Renaming) Suppose u 62 fv(Γ;v;τ;Γ0

). Then we have Γ; u:τ; Γ0

` J implies

Γ; v :τ; Γ0

fv=ug ` Jfv=ug.

(2) (Implied judgement) Γ; Γ0

` J implies Γ ` Env and

Γ; u :τ; Γ0

` Env implies Γ ` τ : tp.

(3) (HO-bound change) Γ; X :σH; Γ0

` J and Γ ` σ0

H : tp imply

Γ; X :σ0

H; Γ0

` J.

(4) (Weakening) Assume Γ; x:τ` Env and u 62 dom(Γ0

). Then Γ; Γ0

` J implies

Γ; u :τ; Γ0

` J.

(5) (Multiple weakening) Assume Γ; Γ00

` Env and dom(Γ0

)\dom(Γ00

) =

/0.

Then Γ; Γ0

` J implies Γ; Γ00

; Γ0

` J.

(6) (Bound weakening) Assume Γ ` τ0

� τ. Then Γ;u : τ;Γ0

` J implies

Γ;u :τ0

;Γ0

` J.

(7) (Implied judgement) Γ ` α� α0 implies Γ ` α :tp and Γ ` α0 :tp.

(8) (HO narrowing) Γ;X :σH;Γ0

` J implies Γ;Γ0

` J.

(9) (Exchange) Assume Γ;x0 : τ0

` Env. Then Γ;u : τ;u0 : τ0

;Γ0

` J implies

Γ;u0 :τ0

;u :τ;Γ0

` J.

Note that in general we can not replace X :σH with u :σ in the statements (3) and

(8) above since the channel u may appear freely in Γ and J. This underlines the

major technical difference between our system of types and those in the system

F

<:, [6]. Intuitively, here free names behave both as free term variables (since

they appear as free names in terms and are used as communication ports) and

free type variables (since they appear freely in process types). Hence several

lemmas for type variables in F

<: [6], such as the Bound Change and Narrowing,

do not hold for channels in our system.

We now turn our attention to the partial meet and join operators, which play

a crucial role in our definition of substitution.

DEFINITION 3.2. (FBC, cf. [13, 32]) We say that a partial order (S;v) is finite

bounded complete (FBC) for every finite nonempty subset S� S, if S has a lower

bound then S has a greatest lower bound. 2

PROPOSITION 3.3. Under an arbitrary well-formed environment, the subtyping

relation over types is a partial order and finite bounded complete.
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PROOF. Reflexivity (Γ ` α � α), anti-symmetry (Γ ` α � β and Γ ` β � α
implies α = β), and transitivity, (Γ ` α � β and Γ ` β � γ implies Γ ` α �

γ) are straightforward inductions on type inference. As an example we con-

sider one case of transitivity, when α is a process type. If this is proc then

one can show, again by induction on type inference that β, and therefore γ, is

also proc. So without loss of generality we can assume that these are of the

form [∆1 ]; [∆2 ]; [∆3 ] respectively. Then by (Implied judgement), Lemma 3.1,

Γ ` [∆1;2;3 ] : tp, then by (t-proc) and (s-proc), for all u 2 dom(∆1), we have Γ `

∆(u)� ∆3(u) � ∆2(u) � ∆1(u), hence by induction, we have Γ ` [∆1 ]� [∆3 ].

Now, as discussed in Definition 4.1 in [13], we have to show that there exist a

partial binary meet operator u and a partial join operator t which satisfy com-

mutativity and associativity, and the following conditions:

(A) Γ ` α� β and Γ ` α� γ imply βu γ defined and Γ ` α� βu γ
(B) Γ ` β� α and Γ ` γ � α imply βt γ defined and Γ ` βt γ � α
(C) βu γ defined implies Γ ` βu γ � β
(D) βt γ defined implies Γ ` β� βt γ

Parts (A) and (B) are proved simultaneously, by induction on the combined

length of the proof derivations. We consider here only one of the cases, when

α; β and γ are all non-trivial process types, say [∆ ]; [∆1 ] [∆2 ] respectively.

(A) Here we have the hypothesis Γ ` [∆ ] � [∆1 ]; [∆2 ] and we have to show

both that [∆1 ]u [∆2 ] exists and that we can derive the judgement Γ ` [∆ ]�

[∆1 ]u [∆2 ].

To show that it exists, by definition it suffices to show that ∆1(u)t∆2(u)

exists for every u in dom(∆1)\dom(∆2). From the hypothesis we have Γ `

∆i : tp and so from (t-proc) we have Γ ` [∆i(u) ] : tp for any such u. So

we may derive the judgements Γ ` ∆i(u) � h>;?i and now we may use

induction, applied to part (B) to conclude that ∆1(u)t∆2(u) exists.

To derive the required judgement Γ ` ∆1(w)t∆2(w) � ∆(w) for every

w in dom(∆). However for every such w, from the hypothesis we know that

Γ ` ∆1(w); ∆2(w) � ∆(w) and once more the result follows by induction

applied to part (B).

(B) Here the hypothesis is Γ ` [∆1 ]; [∆2 ] � [∆ ] and we must show both that

[∆1 ]t [∆2 ] exists and that we can derive the judgement Γ ` [∆1 ]t [∆2 ] �

[∆ ].

By definition [∆1 ]t [∆2 ] is [∆1u∆1 ] and therefore to show it exists it is

sufficient to prove ∆1(u)u∆2(u) exists for every u in dom(∆1)\ dom(∆2).

However from the hypothesis we have, for any such u, that Γ ` ∆(u) �

∆1(u); ∆1(u), from which the requirement follows by induction, this time
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on part (A).

To derive the judgement it is sufficient to prove that for any w in dom(∆1u

∆2), Γ ` ∆(w)� (∆1u∆2)(w). There are three possibilities for w; it is either

in dom(∆1)\dom(∆2), in dom(∆1)�dom(∆2) or dom(∆2)�dom(∆1). In

the first case we have, from the hypothesis, that Γ ` ∆(w) � ∆i(w) and we

may apply induction (on part (A)) to obtain Γ ` ∆(w) � ∆1(w)u∆2(w) and

the result follows, because in this case (∆1u∆2)(w) = ∆1(w)u∆2(w).

The other two possibilities for w are similar but simpler; the inductive

step is not required.

Parts (C) and (D) are also proved simultaneously, this time by simultaneous

induction on the definition of the operators u and t. The detailed proof is left

to the reader.

As an immediate Corollary we have the following useful properties of pro-

cess types:

COROLLARY 3.4. (Process types) Assume Γ ` π i : tp with i = 1;2. Then:

(1) π1tπ2 and π 1uπ 2 are always defined and Γ ` π1tπ2 : tp; π1uπ2 : tp

(2) π1tπ2 = proc implies either π1 = proc or π 2 = proc, and

π1uπ2 = proc implies π1 = proc and π2 = proc.

The next Lemma will be important in the proof of Subject Reduction. It

shows that, under certain circumstances, a variable can be replaced by an iden-

tifier throughout a judgement, although this replacement may also change the

environment of the judgement.

LEMMA 3.5. (Name substitution) Suppose Γ ` Γ(u) � σ. Then Γ;x :σ;Γ0

` J

implies Γ;Γ0

fu=xg ` Jfu=xg.

PROOF. By induction on the derivation of the judgement Γ;x :σ;Γ0

` J. For the

most part this proceeds as a standard Substitution Lemma for a typing system

(see [32]). But because names may now appear in types there some novel cases.

Here we examine one, when the judgement has the form Γ;x : σ;Γ0

` [∆ ] : tp.

This is only interesting when u;x2 dom(∆). Set ∆ = fv1 :σ1; ::::;vn :σn;x :σx;u :

σug with n� 0. Then by formulation of (t-proc) rule, we know:

Γ;x :σ;Γ0

` Γ(u)� σu and Γ;x :σ;Γ0

` σ� σx

First we note x 62 fn(σ;Γ(u)) by the formation rule of well-formed environment.

Hence we have σfu=xg = σ and Γ(u)fu=xg = Γ(u). Then by applying the in-

ductive hypothesis to the above sequents, respectively, we have:

Γ;Γ0

fu=xg`Γ(u)�σufu=xg (?) and Γ;Γ0

fu=xg`σ�σxfu=xg (??)
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Next by applying (Multiple weakening), Lemma 3.1 to the assumption Γ`Γ(u)�
σ, we have

Γ;Γ0

fu=xg ` Γ(u) � σ (�)

Now by transitivity, (??) and (�) imply:

Γ;Γ0

fu=xg ` Γ(u)� σxfu=xg

Then by FBC, (?) and the above judgement imply σufu=xguσxfu=xg is always

defined, and

Γ;Γ0

fu=xg ` Γ(u)� σufu=xguσxfu=xg

For vi 2 dom(∆)�fu;xg, by the inductive hypothesis, we also have:

Γ;Γ0

fu=xg ` Γ(vi) � σifu=xg : tp

Hence

[∆ ]fu=xg= [v1fu=xg :σ1fu=xg ]t� � �t [u :σufu=xg ]t [xfu=xg :σxfu=xg ]

= [v1 :σ1fu=xg; :::;vn :σnfu=xg;u : (σufu=xguσxfu=xg) ]

is well-formed under Γ;Γ0

fu=xg.

3.2 Type Inference

The typing system is given in Figure 7. The judgements are of the form:

Γ ` P :α a term P has a type α under the environment Γ

which uses a subsidiary judgement for identifiers:

Γ ` u :σ a name u has a type σ under the environment Γ

The latter essentially looks up the type associated with u in the environment Γ
(see rule (VAL)), although further inferences can be made using the subsumption

rule (SUBN ).

For convenience the inference rules in Figure 7 are divided into three groups.

The first, (Common), are elementary, although the subsumption rules (SUBH )

and (SUBN ) will play a major role in type inferences. The second, (Function),

are inherited from typing systems for the polymorphic λ-calculus. Here we have

two forms of functional types, each with its introduction and elimination rules.

The novelty occurs with abstraction over channel variables. Intuitively if a term

P has a type ρ, then a channel abstraction λ(x :σ)P is a function which becomes

Pfa=xg when it is applied to a name a with a type σ. Therefore, we will bind

free occurrences of x in ρ in the abstraction rule (ABSN ):

Γ;x :σ` P : ρ
Γ ` λ(x :σ)P : (x :σ)! ρ
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(Common)

(VAL)

` Γ;u :τ;Γ0 : Env

Γ;u :τ;Γ0

` u : τ (CON) ` Γ : Env

Γ ` 1 : nat

etc.

(SUBH )
Γ ` P : ρ Γ ` ρ� ρ0

Γ ` P : ρ0

(SUBN ) Γ ` u : σ Γ ` σ � σ0

Γ ` u : σ0

(Function)

(ABSH )
Γ;X :σH ` P : ρ

Γ ` λ(X :σH)P : σH ! ρ (APPH )
Γ ` P : σH ! ρ Γ ` Q : σH

Γ ` PQ : ρ

(ABSN )
Γ;x :σ ` P : ρ

Γ ` λ(x :σ)P : (x :σ)! ρ (APPN )
Γ ` P : (x :σ)! ρ Γ ` u : σ

Γ ` Pu : ρfu=xg

(Process)

(NIL)

` Γ : Env

Γ ` 0 : [ ]

(PAR)

Γ ` P1;2 : π
Γ ` P1 jP2 : π

(REP)

Γ ` P : π
Γ ` �P : π

(RES)

Γ; a :σ ` P : π
Γ ` (νa :σ)P : π=a

(OUT)

π `Γ u : (τ1; :::;τn)
O Γ ` P : π

Γ `Vi : τi τi = σi ) π `Γ Vi : σi

Γ ` u!hV1; :::;VniP : π

(IN)

π `Γ u : (τ1; :::;τn)
I

Γ;x1 :τ1; :::;xn :τn ` P : π ;x1 :τ1; :::;xn :τn

Γ ` u?(x1 :τ1; :::;xn :τn)P : π

FIGURE 7. Typing System for λπv

The corresponding elimination (APPN ) allows dynamic channel instantiation

into types during β-reduction. If a term P has a type (x : σ)! ρ, we can ap-

ply a name a whose type is less than σ to P. Then a is substituted for x in ρ.

Γ ` P : (x :σ)! ρ; Γ ` a : σ
Γ ` Pa : ρfa=xg

As an example of the use of this rule consider the channel abstraction

P � λ(x :nat)(x!h1i jb?(x :nat) 0) which in an appropriate environment can be

assigned the type ρ = (x : (nat)O)! [x : (nat)O;b : (nat)I ]. We examine the

following two applications to P.

Pc �! c!h1i j b?(x :nat) 0 and Pb�! b!h1i j b?(x :nat) 0

The former process will be assigned the type [c :(nat)O;b:(nat)I ]. But to calcu-

late the type of the latter recall that the general definition of substitution ρfa=xg

was defined using the partial join operator t in Figure 4. Thus by definition the

latter has the type

[x : (nat)O ]fb=xgt [b : (nat)I ] = [b : (nat)O ]t [b : (nat)I ] = [b : (nat)IO ]
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The final group, (Process), are based on the IO-Typing systems from [22, 13,

32]. However many of the rules are sufficient novel to warrant detailed explana-

tion.

THE empty RULE, (NIL): A process type [∆ ] of represents an upper bound on

the interface or interaction points of a process. Since an empty process 0 has no

interaction point, under any environment Γ it is typed as:

Γ ` 0 : [ ]

THE PARALLEL RULE, (PAR): To infer Γ ` P1 jP2 : π it is sufficient to infer

Γ ` Pi : π for each of the individual processes. However, in the presence of sub-

sumption, there is a much more informative derived version of this rule, which

will be frequently used:

Γ ` P1 : π1; Γ ` P1 : π1

Γ ` P1 jP2 : π1tπ2

A meta-result about our typing system ensures that, from the hypotheses we can

conclude Γ ` πi : tp. Thus from Corollary 3.4 we know that π1tπ2 exists and

Γ ` πi � π1 t π2. So two instances of subsumption and one of (PAR) justifies

this derived rule.

THE OUTPUT RULE, (OUT): Under what circumstances can we conclude

Γ ` a!hV iP : π? We require at least the following:

� The residual P should have the required type, Γ ` P : π

� The value V should have a type appropriate to the channel a. That is, there

should be some value type τ such that Γ `V : τ and

� the channel a should have the output capability at the type τ. However this

capability on a should be available from the overall interface of the process,

π. This can be represented by the judgement Γ ` [a : (τ)O ]� π .

However there may be a further requirement. If the value being output is actually

a channel, say b with a type τ = σ, then the capability being exported must also

be available from the process interface:

Γ ` [b :σ ]� π

The general statement of the rule, for multiple output values, is given in

Figure 7; it uses the notation

π `Γ u : σ

to mean that, relative to the environment Γ the interface, or process type, π can

provide at least the capability σ at u, that is Γ ` [u :σ ]� π .

As an example let ∆ab be the environment which maps b to the type (int)

O

and a to the type h∆bi
IO, allowing it to transmit thunked values of type ∆b; this
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is the process type which maps b to the same type (int)

O. Then with the output

rule, together with (NIL) and the abstraction rules, we can establish

∆ab ` b!h1i0 : [∆b ]

and therefore

∆ab ` a!hb!h1i0i0 : [a : h∆bi
O

]

THE INPUT RULE, (IN): The rule for prefixing is a straightforward generalisa-

tion of that in [32]:

π `Γ u : (τ)I Γ;x :τ` P : π;x :τ
Γ ` u?(x :τ) P : π

To deduce that the process a?(x :τ) P has the interface π we need to establish two

facts:

� The interface π can provide the correct capability for the channel u; that is

π `Γ u : (τ)I.

� The residual P, having input a value for the variable x, has the augmented

interface π;x : τ; however this can be established in the environment Γ aug-

mented by x; that is Γ;x :τ` P : π;x :τ.

Here we are using a notation defined by the following rules:

π;x :σ def

= πt [x :σ ] and

π;x :σH
def

= π

Note first in the above definition “π;x :τ” denotes “π” if τ is not a channel type.

In (IN), by the first sequent in the antecedent and (Implied judgement), Lemma

3.1, we know π is well-formed under Γ. Hence automatically x does not occur

in π. From this, if π takes the form [∆ ] for some ∆, then x 62 fv([∆ ]), and P has a

type [∆ ];x :σ def

= [∆;x :σ ] in the second assumption.

As an example let ∆c be the environment which maps c to the capability

(int

O

)

IO. Then we one can easily check that

∆c ` c?

�

z : (int)O
�

z!h1i : [∆c ]

It may seem strange that this process has been typed to have at most a capability

on the channel c; obviously when it receives an input on c it will immediately

gain some other capability. But this input will be sent by some other process, in

the presence of which the interface will be increased appropriately. For example

Let ∆cd be the extension of ∆c which maps d to the output capability, (int)O.

Then we have

∆cd ` c!hdi : [∆cd ]
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>=a = >, ?=a = ?, σG=a = σG, proc=a = proc

hS

I

;S

O

i=a = hS

I

=a;S

O

=ai

(τ1; :::;τn)=a = (τ1=a; :::;τn=a)

(σH ! ρ)=a = σH=a! ρ=a

((x :σ)! ρ)=a = (x :σ=a)! ρ=a

[∆ ]=a = [fu : (σ=a) j u :σ2 ∆ ^ u 6= ag ]

FIGURE 8. Name Erasing from Types

Now we can use the rule (PAR), or rather its derived variant, (together with a

version of Multiple Weakening) to deduce

∆cd ` (c?

�

z : (int)O
�

z!h1i j c!hdi) : [∆cd ]

THE RESTRICTION RULE, (RES): The restriction operator (νa)� reduces the

interface of a process. For example in an appropriate environment the process

a!h1i can be assigned the process type, or interface, [a : (nat)O ]. When we

restrict the channel a, to obtain the process (νa)a!h1i, all a capabilities will be

removed from the interface; the restricted process has the empty interface [ ].

The general rule is formulated as

Γ;a :σ ` P : π
Γ ` P : π=a

where π=a denotes the result of erasing all occurrences of a from π. This erasure

operator on types is defined formally in Figure 8. For example, [a : (nat)O ]=a =

[ ], and [b : ha : (nat)OiO ]=a = [b : h iO ]. Hence, in appropriate environments,

(νa)a!h1i has a type [ ] and (νa)b!ha!h1ii has a type [b : h iO ].

The main property of this operator on types is given by the following Lemma,

which is easily established:

LEMMA 3.6. (Channel narrowing) Γ;a :σ;Γ0

` J implies Γ;Γ0

=a ` J=a.

In the next section we give some examples of the use of the type system, which

we hope will also elucidate the various rules.

4 Examples

In this section we give some examples of the use of the type system, which we

hope will also elucidate the various rules.

EXAMPLE 4.1. (cf. x 2. CHANNEL ABSTRACTION) As a first example let us

consider the simple forwarder, already discussed in the Introduction, this time

with type annotations:

Fw(= λ(x : (int)I) λ(y : (int)O) (� x?(z :int) y!hzi)
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An application of the rule (OUT) gives the judgement

x : (int)I; y : (int)O;z : int ` y!hzi : [∆xy ]

where ∆xy denotes the interface fx : (int)I; y : (int)Og. An application of the

input rule (IN), followed by an application of (REP) now gives

x : (int)I; y : (int)O ` � x?(z :int) y!hzi : [∆xy ]

Now we may apply the channel abstraction rule (ABSN ) twice to obtain the fol-

lowing type for the forwarder:

` Fw : (x : (int)I)! (y : (int)O)! [∆xy ]

Let us now see how we can use this typing to assign a type to the process R, also

discussed in the Introduction:

R (= s!hci c?(y : τfw) (y a b)

For convenience τfw denotes the type assigned to the forwarder and let us define

∆R
def

= fa : (int)I;b : (int)O;c : (τfw)
I

;s : ((τfw)
I

)

IO

g

Then two applications of the rule (APPN ) gives

∆R; y : τfw ` y a b : [∆ab ]

where [∆ab ] is the obvious instantiation of the type [∆xy ], namely [a : (int)I; b :

(int)

O

]. We can also derive

∆R; y : τfw ` [∆ab ]� [∆R ]

and therefore using subsumption we have

∆R; y : τfw ` y a b : [∆R ]

An application of (IN) gives

∆R ` c?(y : τfw)(y a b) : [∆R ]

and finally an application of the output rule gives

∆R ` R : [∆R ]

Note that the companion term discussed in the Introduction

S (= s!hci c?(y) (y b a);

can be typed in a slight modified environment, where the capabilities of a and b

are interchanged. 2

EXAMPLE 4.2. (Typed compute server) We now revisit Example 2.2. In the

definition of Succ(a), a pair of values for input on a, an integer to be treated and
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a channel, on which the resulting integer is returned. So we annotate the code

with types as follows:

Succ(a)(= �a?(y :int;z : (int)O) z!hsucc(y)i

Note the process only receives the output capability on the return channel z. For

convenience let σI

s denote the type (int; (int)

O

)

I. Then the reader can check

that

Γ;x :σI

s ` Succ(x) : [x :σI

s ]
for any Γ such that Γ` Env. An application of (ABSN ) from Figure 7, then gives:

Γ ` λ(x :σI

s)Succ(x) : (x :σI

s)! [x :σI

s ]

which means that when x is instantiated by a channel a whose capability is dom-

inated by (that is, less than) σI

s , it becomes a process which can only offer input

at a.

To proceed with the typing of an annotated version of the server sServ let τλ
denote this abstracted type, (x :σI

s)! [x :σI

s ].

Then an application of (OUT) followed by one of IN gives

req: ((τλ)
O

)

IO

` req?(r : (τλ)
O

) r!hλ(x : σI

s ) Succ(x)i : [ req: ((τλ)
O

)

I

]

Note this code is simply a version of sServ(req), where the bound variables are

annotated with types.

Now let us examine the client Client. For convenience let P denote the body

( X a ja!h1;c1i j � � �), ∆c the environment fc1 : (int)O;c2 : (int)O; :::g, and σIO

s

the type (int; (int)

O

)

IO. An application of (SUBH ) and (PAR) enables us to

deduce

∆c;X :τλ; a :σIO

s ` P : [a :σIO

s ;∆c ]

However we require a more general environment. Let ∆ denote ∆c; req:((τλ)
O

)

IO.

Then we can also derive

∆; r : (τλ)
IO

; X :τλ; a :σIO

s ` P : [∆ ]; r : (τλ)
IO

; a :σIO

s

An application of (RES) now gives

∆; r : (τλ)
IO

; X :τλ ` (νa :σIO

s )P : [∆ ]; r : (τλ)
IO

An application of (IN), followed by (OUT), gives

∆; r : (τλ)
IO

` req!hri r?(X : τλ) (νa :σIO

s )P : [∆ ]; r : (τλ)
IO

and with one final application on of (RES) we obtain

∆ ` (νr : (τλ)
IO

) req!hrir?(X : τλ)(νa :σIO

s )P : [∆ ]

This code is an annotated version of Client(req).
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We can now type the combined system. By (s-proc) in Figure 6, we know:

∆ ` [ req: ((τλ)
O

)

I

] � [ req: ((τλ)
O

)

IO

;∆c ] and

∆ ` [ req: ((τλ)
O

)

I

;∆c ] � [ req: ((τλ)
O

)

IO

;∆c ]

Hence applying SUBN to sServ(req) and Client(req), we have:

∆ ` SqServ(req) j Client(req) : [ req: ((τλ)
O

)

IO

;∆c ]

Observe that the type τλ
def

= (x : σI

s )! [x : σI

s ] which annotates X in the client

prevents dangerous code being input via r. If we only have a constant process

type proc, as in the previous typing system of the process calculi [32, 22, 9],

then the client could input any function λ(x :σ)Q, where Q an arbitrary process;

such incoming code may harm the client’s resources. 2

EXAMPLE 4.3. (Interface server and mobile client code) We revisit Example

2.3, where clients send scripts to a general interface which acts as an interface

for a suite of services; results are returns on channels owned by the clients and

embedded in the scripts.

Let ∆r, be an environment defining these return channels; in this case it maps

rA; r1B and r2B to the same type (int)

O. Let σO

s be a type (int; (int)

O

)

O and τsc

be a type for scripts:

(s :σO

s )! (p :σO

s)! [s :σO

s ; p :σO

s ;∆r ]

So these are abstractions which, when applied to appropriate names, generate

processes which can at most use those names for output together with the return

channels, also for output only.

Using subsumption we can form the judgement

s :σO

s ; p :σO

s ;∆r ` PA : [ s :σO

s ; p :σO

s ;∆r ]

where PA denotes the body of the script sent by ClientA, namely

λ(s; p) ((νc)s!hk;cic?(z) s!hz;ciFw(crA))

By channel abstraction we therefore have

∆r ` λ(s :σO

s ; p :σO

s):PA : τsc

That is the value sent by the client can indeed be typed as a script.

Now let ∆cl denote the environment freq : (τsc)
O

; ∆rg. Then we can form the

judgement

∆cl `ClientA(req) : [∆cl ]

and a similar judgement can be made for ClientB.

This judgement gives detailed information about the resources known to the

clients. For example it says that the clients do not need to know the locations of
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the actual interfaces of the various services; indeed it only needs to know that of

the server, req, together with the return channels.

Typing the server is slightly different. Here we need to let ∆serv be

freq : (τsc)
I

; ∆r;s : σO

s ; p : σO

sg:

Then the reader can check that

∆serv ` Server I(req;s; p) : [∆serv ]

Thus the server requires knowledge of the locations of the service points, but

needs only to be able to send data to them. It also only send capabilities on the

return channels. 2

5 Type Soundness

In this section we show some technical properties of our typing system. The

main results are a Subject Reduction Theorem and a simple form of Type Safety.

5.1 Subject Reduction

Lemma 3.1 have natural generalisations to our typing system. These are included

in the following Lemma:

LEMMA 5.1.

(1) (Renaming) Suppose v 62 fv(Γ;u;τ;Γ0

). Then we have Γ; u : τ; Γ0

` P : α
implies Γ; v :τ; Γ0

fv=ug ` Pfv=ug : αfv=ug.

(2) (Weakening) Assume Γ; u : τ ` Env and u 62 dom(Γ0

). Then Γ; Γ0

` P : α
implies Γ; u :τ; Γ0

` P : α.

(3) (Multiple weakening) Assume Γ; Γ00

` Env and dom(Γ0

)\dom(Γ00

) =

/0.

Then Γ; Γ0

` P : α implies Γ; Γ00

; Γ0

` P : α.

(4) (Bound weakening) Assume Γ ` τ0

� τ. Then Γ;u : τ;Γ0

` P : α implies

Γ;u :τ0

;Γ0

` P : α.

(5) (Implied judgement) Γ ` P : α implies Γ ` α :tp.

(6) (HO narrowing) Assume X 62 fv(P). Then Γ;X : σH;Γ0

` P : α implies

Γ;Γ0

` P : α.

(7) (Channel narrowing) Assume a 62 fn(P). Then Γ;a : σ;Γ0

` P : α implies

Γ;Γ0

=a ` P : α=a.

(8) (Exchange) Assume Γ;u0 : τ0

` Env. Then Γ;u : τ;u0 : τ0

;Γ0

` P : α implies

Γ;u0 :τ0

;u :τ;Γ0

` P : α.

PROOF. See Appendix B.

The following result which states, informally, that well-typedness is preserved

by substitution of appropriate values for variables, is the key result underlying
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Subject Reduction; again it may be viewed as a generalisation of Lemma 3.5:

LEMMA 5.2. (Substitution Lemma) Assume Γ `V : τ. Then Γ;x : τ;Γ0

` P : α
implies Γ;Γ0

fV=xg ` PfV=xg : αfV=xg.

PROOF. Note that if x is a higher-order variable (that is a variable which does

not have a channel type) then Γ0

fV=xg and αfV=xg are simply Γ0 and α respec-

tively; in this case the proof is straightforward as it is similar to the corresponding

proofs in [30, 22, 13]. However when it is a channel variable this substitution,

of a channel name for a channel variable, may change the structure of α and the

proof is more delicate. See Appendix B for details.

As an aside this Lemma means that if P is typed under a well-formed envi-

ronment Γ, then the result of a well-typed substitution is always defined and the

result is always uniquely determined.

To prove Subject Reduction theorem, we also need to prove that typing is

closed under the structural rules for terms. Here again the order-theoretic prop-

erty, FBC, plays an essential role.

PROPOSITION 5.3. Γ ` P :π and P� P0 imply Γ ` P0 :π .

PROOF. By induction on the derivation of P � Q. As an example we examine

the scope opening axiom

(νa :σ)P jQ � (νa :σ)(P jQ) if a 62 fn(Q)

First suppose Γ ` (νa : σ)P jQ : π . We prove by induction on the derivation

of this judgement that Γ ` (νa :σ)(P jQ) : π .

If the last rule used in this derivation is subsumption then we may use induc-

tion, followed by an instance of subsumption, to obtain the required judgement.

So we may assume that an instance of the rule (PAR) was used. Then we have

that Γ `Q : π and Γ;a :σ` P : π 0 for some π 0 such that π 0

=a = π . Then we have

Γ;a :σ ` Q : π by (Weakening) in Lemma 5.1. Note, however, we can not apply

(SUBN ) to this sequent in order to get Γ;a :σ `Q : π 0 directly since we do not in

general have that Γ ` π 0

=a� π 0 (for example if we let π 0 denote [b : ha :σiIO ] it

is easy to find an instance of Γ; Q such that Γ;a :σ` π 0 but Γ 6` Q : π 0).

However, by Corollary 3.4 we know that π 0

=atπ 0 is always defined, and we

have π 0

� (π 0

=at π 0

) and π 0

=a � (π 0

=at π 0

). So we may apply subsumption

and the rule PAR to obtain Γ;a : σ ` P jQ : (π 0

=at π 0

). A simple calculation

gives (π 0

=atπ 0

)=a = π 0

=a = π and so we obtain, by the rule (RES) the required

Γ ` (νa :σ)(P jQ) : π .

The converse direction, proving Γ ` (νa : σ)(P jQ) : π implies Γ ` (νa :

σ)P jQ : π , is similar, although Channel narrowing, Lemma 5.1 is required.
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THEOREM 5.4. (Subject Reduction)

If Γ ` P : ρ and P �! P0, then Γ ` P0 : ρ.

PROOF. The proof is by induction on the derivation of P �! P0. The only non-

trivial cases are applications of the rules (β), (com) and (str) respectively. The

last follows from the previous Lemma and so we consider the first two.

Before considering the rule (β) directly we first show that

Γ ` v : σ0 and Γ ` λ(x :σ)P : (x :σ0

)! ρ implies Γ ` Pfv=xg : ρfv=xg (?)

This is proved by induction on the derivation of the latter judgement. There are

two cases.

First suppose the judgement was derived using the rule (ABSN ). Then we

have that σ and σ0 coincide and Γ;x : σ ` P : ρ. In this case we may apply

(Substitution lemma), Lemma 5.2, directly, to obtain the required result.

The second case is where the judgement was derived using subsumption,

the rule (SUBH ). In this case we know Γ ` λ(x : σ)P : (x : σ00

) ! ρ0 and Γ `

(x : σ00

)! ρ0

� (x : σ0

)! ρ. From the latter we can calculate Γ ` σ0

� σ00 and

therefore by subsumption we have Γ ` v : σ00. So we may apply induction to

obtain Γ ` Pfv=xg : ρ0

fv=xg: However we also know that Γ;x : σ0

` ρ0

� ρ and

so we apply (Name substitution), Lemma 3.5 to obtain Γ ` ρ0

fv=xg � ρfv=xg.

The required result now follows by an application of subsumption.

Now let us consider the rule (β). In fact we only consider the interesting

case, when the abstraction is over a channel type, Γ ` (λ(x :σ)P)v : ρ. We prove,

by induction on the derivation of this judgement, that Γ ` Pfv=xg : ρ. There are

two cases.

In the first, the derivation uses the rule ABSN . Here we know Γ ` λ(x :σ)P :

(x : σ0

)! ρ0, Γ ` v : σ0 and ρ has the form ρ0

fv=xg. So Γ ` Pfv=xg : ρ follows

directly from an application of (?).

In the second case the derivation uses an instance of subsumption. So Γ `

(λ(x : σ)P)v : ρ0 for some ρ0 such that Γ ` ρ0

� ρ. By induction we have Γ `

Pfv=xg : ρ0 an instance of subsumption gives the required result.

Now let us consider the rule (com). For simplicity we only treat the monadic

case; the extension to the polyadic case is straightforward. Moreover we assume

the value sent is a channel; for other values the calculations are simpler. So we

are examining the case

a?(x :σ) P ja!hviQ�! Pfv=xgjQ

and the hypothesis is Γ` a?(x :σ)P ja!hviQ : π . We need to show Γ`Pfv=xgjQ :

π . It is straightforward, using the hypothesis, to show Γ ` Q : π and so we con-

centrate on proving Γ ` Pfv=xg : π . If π is the undifferentiated type proc the

prove follows standard lines. So we assume it has the form [∆ ].
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a?(x1 :τ1; :::;xn :τn)P
Γ;π

�!err if Γ 6` [a : (τ1; :::;τn)
I

]� π.

a!hV1; :::;VniP
Γ;π

�!err if no τi s.t. Γ ` [a : (τ1; :::;τn)
O

]� π and Γ `Vi : τi.

P (Γ;a:σ);π

�����!err

(νa :σ)P Γ;(π=a)

����!err

P
Γ;π

�! or Q
Γ;π

�!

P jQ Γ;π

�!err

P Γ;π

�!err

� P Γ;π

�!err

FIGURE 9. Run-time errors

Analysing the hypothesis we obtain

Γ;x :σ` P : [∆1;x :σ ] with Γ;x :σ` [u : (σ)I ] � [∆1 ]� [∆ ] x 62 fv(∆1)

Γ ` Q : [∆2 ] with Γ ` [u : (σ0

)

O

;v :σ0

]� [∆2 ]� [∆ ]

Γ ` v : σ0.

Noting x 62 fv(σ), we can apply (Channel narrowing), Lemma 3.6, to obtain Γ `

[u : (σ)I ] � [∆1 ]. Then we have: Γ ` Γ(u) � ∆(u) � ∆1(u) � (σ)I and Γ `

Γ(u) � ∆(u)� ∆2(u)� (σ0

)

O, which imply Γ ` σ0

� σ.

Using subsumption we then have Γ ` v : σ and so we can apply (Substitution

Lemma), Lemma 5.2, to obtain Γ `Pfv=xg : [∆1;x :σ ]fv=xg. By calculation this

type is [∆1 ]t[v:σ ] and we have Γ` [∆1 ]t[v:σ ]� [∆1 ]t[v:σ0

]� [∆1 ]t[∆2 ]�

[∆ ]. Hence by subsumption we have the required Γ ` Pfv=xg : [∆ ].

5.2 Type Safety

Out typing system is an extension of that for the λ-calculus from [10] and that for

the π-calculus from [22]; consequently it guarantees the absence of the typical

run-time errors associated with these languages. Rather than duplicate the for-

mulation of these kinds of errors, which involves the development complicated

tagging notation, here we concentrate on the novel run-time type errors which

our typing system can catch.

Intuitively Γ ` P : π should mean that, assuming the environment Γ, the pro-

cess P satisfies the interface π. If π is the undifferentiated type proc then, viewed

as an interface, it provides no information. However if it has the form [∆ ] this

means that P can use at most the resources mentioned in ∆; moreover these re-

sources can only be used according to the capabilities they are assigned in ∆.

A simple formalisation of this intuitive idea is given in Figure 9, using a unary

predicate P Γ;π

�!err . The first two clauses are the most significant. The first says

that, relative to Γ, P violates the interface π if it can input on the channel a but the

interface π does not assign any input capability to a; the second is similar, but for

output. Combining these rules, we can also derive the following communication

runtime error between input and output processes:
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a?(x1 :τ1; :::;xn :τn)P j a!hV1; :::;VniQ
Γ;π

�!err

if no τ0

i such that Γ ` τ0

i � τi and Γ ` Vi : τ0

i. The meaning of the above error is

easily understood when we consider the following example:

a?(x : h∆i) P ja!hRiQ Γ;π

�!err if Γ 6` R : [∆ ].

This says if the input process gets the process R which does not conform the

interface “∆”, then a runtime error occurs.

THEOREM 5.5. (Type Safety) If Γ ` P : π then P 6 Γ;π�!err

PROOF. We prove the contrapositive, P Γ;π

�!err implies we can not derive Γ `

P : π , by induction on the derivation of P Γ;π

�!err. The last three cases follow

immediately by induction. For the first case it is sufficient to remark that the

hypotheses, Γ ` [a : (τ1; :::;τn)
I

] � π for no type τi ensures that the required

type judgements can not be formed. The output case is just similar.

6 Extensions

In this section we briefly indicate some further uses of our fine grained process

types.

6.1 Distributed Higher-Order π-calculus

In this subsection, we show that our typing system can be used to ensure various

kinds of host security; that is, protecting hosts from untrusted imported code.

To discuss this issue more explicitly, we add simple distributed primitives to the

core calculus, as in [32]. The term N kM represents two systems N; M running

at two physically distinct locations, while the process Spawn(P) creates a new

location at which the process P is launched. The details are in Figure 10.

The reduction semantics is extended straightforwardly; again this is outlined

in Figure 10. The first two rules are the most important, namely spawning of a

process at a new location (spawn) and communication between physically dis-

tinct locations (coms). The additional structural equivalence of systems is de-

fined by changing “ j” to “k ” and P;Q;R to M;N;N 0 in Figure 3.

EXAMPLE 6.1. Consider the following system:

a?(X) X c k (b?(z) Q ja!hλy:y!hb?(z) Qii jc?(X) run X)

It consists of two processes, residing at two distinct sites; the first services the

resource a while the second services both b and c. Note that the second location

has three distinct threads. One of these can send a process abstraction to the

other physical location, the site servicing a. This instantiates the abstraction,

which results in a thunked process being immediately returned to the original

location, where it is executed. 2
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Syntax: others from Figure 2.

System: M;N; ::: ::= P j N kM j (νa :σ)N j 0

Term: P;Q; ::: ::= Spawn(P) j � � � as in Figure 2

Distributed Reduction Rules:

(spawn) (� � �Q jSpawn(P))�! (� � �Q)kP

(coms) (u?(x1 :τ1; :::;xn :τn)P j � � �)k (u!hV1; :::;VniQ j � � �)

�! (PfV1; :::;Vn=x1; :::;xngj � � �)k (Q j � � �)

(pars)
M �!M0

M kN �!M0

kN
(ress)

N �! N 0

(νa :σ)N �! (νa :σ)N 0

(strs)
N � N 0

�!M0

� M
N �!M

Distributed Typing Rules:

(SPA) Γ ` P : π
Γ ` Spawn(P) : π (PARs )

Γ1;2 ` N1;2 : π1;2 Γ1 � Γ2

Γ1uΓ2 ` N1 kN2 : π1tπ2

(RESs )
Γ;a :σ`M : π

Γ ` (νa :σ)M : π=a

FIGURE 10. Syntax and Distributed Reduction, and Distributed Typing Rules

EXAMPLE 6.2. The following process can be considered to be a simple form

of compute server:

�req?(X : ha : (int)O;b : (bool)IOi) Spawn(run X)

It repeatedly receives thunked processes and sets them running at independent

locations. However the input type ensures that the spawned process will have

limited capabilities; namely it can at most output integers to channel a and

send/receive booleans on channel b. 2

Our type inference can be extended to these distributed systems using the

approach of local type-checking from [32]. The judgements take the form Γ `
N : π and they use the previous judgements, from Section 3, for processes. The

main rule is (PARs ), where we use Γ1 � Γ2 to denote that Γ1 u Γ2 is defined.

Note that, according to this rule subsystems can be typechecked independently.

Only when they are composed do we need to check the compatibility of their use

of resources.

We leave the reader to check:

PROPOSITION 6.3. (Subject reduction) If Γ`N : π and N !!M then Γ`M : π.
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Input Predicate:

a?(x1; :::;xn) P # aI

P # aI or Q # aI

(P jQ) # aI

P # aI a 6= b

(νb)P # aI

P # aI

�P # aI

N # aI or M # aI

(N kM) # aI

N # aI a 6= c

(νc)N # aI

Locality Error:

N # aI M # aI

(N kM)

lerr

�!

N
lerr

�!

(N kM)

lerr

�!

N
lerr

�!

(M kN)

lerr
�!

N
lerr

�!

(νc)N
lerr

�!

FIGURE 11. Locality Error

Note that here the judgements for systems could be rendered simply as Γ ` N :

sys, indicating that the system N is well-typed with respect to Γ; the more dis-

criminating types [∆ ] are not used for systems. However in the next subsection

they will play a role.

6.2 Locality in Distributed Higher Order Processes

Here we show that our typing system can easily be modified to ensure that sys-

tems preserve an important global invariance property, namely channel locality.

In [32] this required a complicated type system involving sendable types; here

the presence of fine-grained process types makes the modifications much more

straightforward.

The locality of channels means that every input channel is associated with

a unique location, which is a desirable constraint when we regard a receptor as

a resource or an object existing in the unique name space (cf. [3, 8, 15]). This

constraint is violated in, for example,

a?(y) P k (a?(z) Q jb?(x1) R1 jb?(x2) R2)

because the name a can receive input at two distinct locations. Note however that

the name b is located uniquely, although at that location a call can be serviced

in two different ways. Also in the system discussed in Example 6.1 all channels

are uniquely located.

A formal definition of this concept, or rather its negation locality error, is

given in Figure 11, using a predicate on systems, N
lerr

�!. Intuitively this means

that in the system N there is a runtime error, namely there is some channel a

which is ready to receive input at two distinct locations. The definition uses an

input predicate P # aI which means P can immediately perform input on name

a.
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(PARl )

Γi `l Ni : [∆i ] (i = 1;2)

Γ1 � Γ2 ∆1 �l

∆2

Γ1uΓ2 `l N1 kN2 : [∆1 ]t [∆2 ]

(SPAl )

Γ `
l

P : [u1 :SO1; :::;un :SOn ]

Γ `
l

Spawn(P) : [u1 :SO1; :::;un :SOn ]

(OUTd )

π `Γ u : (τ1; :::;τn)
O

Γ `
l

P : π
Γ `

l

Vi : τi

τi = σi ) σi = SOi ^ π `Γ Vi : SOi
Γ `

l

u!hV1; :::;VniP : π

(OUTl )

π `Γ u : h(τ0

1; :::;τ0

n); (τ1; :::;τn)i

Γ `
l

P : π
Γ `

l

Vi : τi

τi = σi ) π `Γ Vi : τi

Γ `
l

u!hV1; :::;VniP : π
Other rules are from Figures 7 and 10, replacing ` with `

l

.

FIGURE 12. Locality Typing System

A typing system which ensures the absence of such locality errors is given in

Figure 12. For processes we have to change the channel output rules , to (OUTd )

and (OUTl ). The former ensures that channels are only distributed to different

locations with output capabilities while the latter allows their transmission to the

current location with more capabilities. Similarly spawning a process is only

allowed if it contains no input capabilities. However the main rule is for the par-

allel composition of systems, (PARs) , when they are checked for composability.

In this rule ∆1 �l

∆2 means

if a : hS

Ii;SOii 2 ∆i with i = 1;2, then either S

Ii = > or S

Ii = >

If N1 kN2 is well-typed and N1 uses an input capability at a, then this capability

will occur in the interface of N1, namely [∆i ] . So the constraint ∆1 �l

∆2 ensures

that N2 is not allowed to use a as an active input point.

This typing system is considerably simpler than that in [32]; it is not neces-

sary to introduce additional typing constructs such as sendability. However it is

also more powerful. The process

a?(X) runX jb?(x) R k a!hb?(x) Qi

can be typed with the rules from Figure 12 but are not typable in [32]; similarly

for the system discussed in Example 6.1. These examples emphasise that run-

time errors, and mistypings, only occur the same input name is actually used in

two different locations.

THEOREM 6.4.

(1) (Subject Reduction for Locality)

If Γ `
l

N : [∆ ] and N !!M, then Γ `
l

M : [∆ ].
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(2) (Locality Safe) Γ `
l

N : [∆ ] and N !!M imply M 6

lerr

�!.

PROOF. For (1), we only have to consider the transmission of channels to dif-

ferent sites. Th proof is essentially similar to that of Theorem 5.4.

The proof of (2) relies on the fact that P # aI and Γ `P : [∆ ] imply that a has

an input capability in ∆, that is a : h(τ1; :::;τn);SOi 2 ∆ for some τi by Theorem

5.5.

We also remark that the extension to the more general channel constraints

studied by [27] is easily achieved by a simple modification of the definition of

composability of process types and distributed channel constraints (cf. [32]).

7 Conclusion

This paper developed a new type inference system for a higher-order π-calculus

in which the types of processes take the form of an interface; a mapping between

channel names and input/output capabilities. Both the operational semantics of

our calculus and its typing system are simple and straightforward extensions of

the semantics and type constructions for the π-calculus (e.g. [14, 30, 22, 23, 32])

and λ-calculus (e.g. [6, 10]).

In the literature on typed process calculi [14, 22, 23, 30], including exten-

sions to mobile processes [9, 8, 25, 13, 27, 32], all processes are typed by a

unique constant type, indicating essentially that they are well-typed relative to

a particular environment. In contrast, our fine-grained subtypes can be used to

manage access rights of distributed code and to provide host protection from

mobile code, as we have shown by examples of server-clients models. More

generally in our language we can view the process type of some higher-order

code as a proof that it will respect the constraints of a particular interface. We

believe our typing system offers a basic starting point for the study of various

static analysis techniques associated with code mobility, such as those found in

[20].

MORE TYPE CONSTRUCTORS We believe that it will be relatively straightfor-

ward to extend our set of types with many of the standard constructs from the

literature; these include recursive types [4, 30, 22], record types [10, 29], poly-

morphic types [6, 23], and dynamic types [2, 25]. A particularly useful exten-

sion would be linear/affine types, as in the π-calculus and the linear λ-calculus

[18, 5, 14, 31]. This would allow, for example, host sites to further control the

access to resources by mobile code, by restricting the number of times a channel

maybe used. An extension of our capability based typing systems to more ad-

vanced distributed primitives, especially to constructs involving security [1, 12]

would be more challenging.
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TYPED BEHAVIOURAL EQUALITY Types constrain the behaviour of processes

and their environments and consequently have an impact on when their behaviour

should be deemed to be equivalent. Typed behavioural equivalences have already

been investigated for various process calculi in papers such as [18, 22, 23, 31].

Similar techniques could be applied to our language, resulting in a new typed

equivalence, where equalities are influenced by the presence of fine-grained pro-

cess types. Investigation of such equivalences is an interesting research topic,

particularly in its application to the refinement of the context equality of [26];

we leave this for future work.

TYPE LIMITATIONS One limitation of our typing system is that, while name

variables in types can be abstracted by channel dependency types (x :σ)! ρ of

the channel λ-abstraction λ(x : σ)P, a similar abstraction is not allowed when

we bound name variables by input prefix a?(x :σ) P. The result is that there is a

loss of information in many of the types we can assign to processes. A typical

example is the process a?(x) b!hx!hvii. In the current system this can only be

assigned a process type in which b has the capability to output values of the

undifferentiated type hproci.

Clearly some form of channel abstraction would be needed to give a more

informative type but it is difficult to see how this might be formulated. One

problem here is that, unlike β-application, value reception is nondeterministic.

In the composed term

a?(x) b!hx!hvii j a!hci j a!hdi

the particular channel, c or d which is bound to x depends on which message is

delivered to the waiting process. Indeed the residual, after receiving an input,

may take one of the (incomparable) types [b : hc :σiO ] or [b : hd :σiO ].
There is a similar loss of information in typing restricted processes, (νa)P.

For example the process (νa)b!ha!h1ii can be assigned, in an appropriate envi-

ronment, the type [b : h iO ] which intuitively says that b can output a (thunked)

process which has the empty interface. This type is of limited interest when used

in context. For example consider

(νa)b!ha!h1ii jb?(X : τ) run X

Here essentially the only the possibility for τ is the type hproci.

Here we should be able to say that b can output a (thunked) process which

contains some unknown channel name of type (nat)

O, and the input type asso-

ciated with b should be able to accommodate such constraints. Some form of

existential quantification over types may be appropriate but integrating such a

construct into the current type language is a non-trivial task.

RELATED WORK We have already made reference to the extensive literature on

typing for the π-calculus and related processes. In developing our fine-grained
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type system we have been guided by the polymorphic λ-calculus [10, 6], where

type variables play an important role; as with our channel names they may ap-

pear, and be bound, both in terms and types. However there is an essential tech-

nical difference between our use of channels and the use of type variables in the

polymorphic λ-calculus. Name instantiation can result in dynamic changes to

the types annotating a term. Names are exchanged as values between processes

but they also appear as interaction points in the types of processes. This feature

necessitated the development of new concepts of well-formed type, subtyping,

well-formed substitution, etc., independent of those developed for the polymor-

phic λ-calculus.

Pierce and Sangiorgi [23] recently proposed a polymorphic π-calculus with

an existential quantifier over types and used a refined typed behavioural equiv-

alence to reason about encodings of the concurrent abstract data types. Since

their polymorphic types are based on those of the polymorphic λ-calculus (that

is they abstract over type variables via the operator 9), they are quite different

from ours. In particular they do not address the issue of assigning fine-grained

types to processes.

For sequential computations, Tofte and Talpin have developed the effect typ-

ing system [28] and this was recently applied to Facile by Kirh [16]; he showed

its usefulness in solving the marshalling problem in [17]. Again his typing sys-

tem is different from ours since he adds the original effect system to the arrow

types; hence all processes have the unique constant type Unit and a channel can-

not carry nested effects. More precisely, the region types in [28] are used to rep-

resent the region allocation of values during β-reduction, while our process types

are used to represent interaction effects between concurrent processes. Hence an

integration of the effect typing system of the λ-calculus and the IO-subtyping

system of the π-calculus would have difficulty in expressing the kind of con-

straints guaranteed by our typing system.

De Nicola, Ferrari and Pugliese studied a subtyping system for a language

based on Linda [7], and showed that it can be used to control the mobility of

mobile agents. In their language, each located process is equipped with different

capabilities (read, input, our, eval and newloc) rather than the unique process

type (i.e. proc), which is similar to our framework. However their calculus is

based on CCS rather than the π-calculus and our form of process types based on

IO-subtyping and λ-subtyping are not considered in their formulation.

A Auxiliary Definitions

B Proofs for Section 5

In this appendix we examine some of the results announced, but not proven, in

Section 5.



38 Nobuko Yoshida and Matthew Hennessy

(Free Names)

Terms:

fn(0) = fn(l) = fn(x) = /0 fn(a) = fag

fn(P jQ) = fn(PQ) = fn(P)[ fn(Q)

fn(�P) = fn(P)

fn(u?(x1 :τ1; :::;xn :τn)P)

= fn(u)[ fn(τ1)[ :::[ fn(P)�fx1; :::;xng

fn(u!hv1; :::;vniP)

= fn(u)[ fn(v1)[ :::[ fn(vn)[ fn(P)

fn((νa :σ)P) = fn(σ)[ fn(P)�fag

fn(λ(x :τ)P) = fn(τ)[ fn(P)�fxg

Types:

fn(>) = fn(?) = fn(unit)

= fn(σG) = fn(proc) =

/0

fn(hS

I

;S

O

i) = fn(S

I

)[ fn(S

O

)

fn((τ1; :::;τn)) = fn(τ1)[ :::[ fn(τn)

fn(σH ! ρ) = fn(σH)[ fn(ρ)

fn((x :σ)! ρ) = fn(σ)[ fn(ρ)�fxg

fn([∆ ]) = ffn(u)[ fn(σ) j u :σ 2 ∆g

(Free Variables) fv(α) and fv(P) are defined by fv(x) = fxg, fv(a) = /0, and

other rules replacing fn( ) by fv( ).

FIGURE 13. Free Names and Variables

First consider Lemma 5.1. All of these are proven by induction on the proof

of the judgements concerned. We give two examples.

Implied Judgement: Γ ` P : α implies Γ ` α :tp.

The proof is by induction on the inference of Γ ` P : α and examination of the

last inference rule used. Most cases are completely straightforward. For example

if the last rule used is subsumption, (SUBN ), the the result follows by induction

followed by an application of (Implied judgement), Lemma 3.1. We examine

two cases in detail.

Suppose the last case is (ABSH ); that is P has the form λ(x :τ)Q and

Γ` λ(x:τ)Q : σH ! ρ because Γ;X :σH `Q : ρ. By induction we have Γ;X :σH `

ρ : tp. Applying Lemma 3.1 (2), we have: Γ ` σH : tp. Then an application of

(t-absH) in Figure 6, gives Γ ` σH ! ρ, as required.

Suppose the last rule used is (APPN ); that is P has the form Q u and

Γ ` Q u : ρfu=xg because Γ ` Q : (x :σ)! ρ and Γ ` u : σ. Applying induction

to the first inference we obtain the judgement Γ ` (x : σ)! ρ : tp. In turn by

induction on the inference of this judgement one can show that for some σ0

;ρ0,

Γ;x :σ0

` ρ0

� ρ and Γ ` σ� σ0

An application of subsumption gives Γ ` u : σ0 and since this implies Γ ` Γ(u)�
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(o-base) αuα def

= αtα def

= α

(o->;?) ?uS
def

= Su?

def

= ?;>tS
def

= St>

def

= >,

?tS
def

= St?

def

= >uS
def

= Su>

def

= S.

(o-vec) (τ1; ::;τn)u (τ0

1; ::;τ

0

n)

def

= (τ1u τ0

1; ::;τnu τ0

n)

(τ1; ::;τn)t (τ0

1; ::;τ0

n)

def

= (τ1t τ0

1; ::;τnt τ0

n)
(o-absH) (σH ! ρ)u (σ0

H ! ρ0

)

def

= σH tσ0

H ! ρuρ0

(σH ! ρ)t (σ0

H ! ρ0

)

def

= σH uσ0

H ! ρtρ0

(o-absN) ((x :σ)! ρ)u ((x :σ0

)! ρ0

)

def

= (x :σtσ0

)! ρuρ0

((x :σ)! ρ)t ((x :σ0

)! ρ0

)

def

= (x :σuσ0

)! ρtρ0

(o-chan) hS

I

;S

O

ithS0
I

;S0
O

i

def

= hS

I

tS
I

;S

O

uS0
O

i

hS

I

;S

O

iuhS0
I

;S0
O

i

def

= hS
I

uS0
I

;S

O

tS0
O

i

if S

I

� S0
O

and S0
I

� S

O

else undefined.

(o-cenv) Γ1uΓ2
def

= Γ1=dom(Γ2)[Γ2=dom(Γ1)

[fu : (Γ1(u)uΓ2(u)) j u 2 dom(Γ1)\dom(Γ2)g

Γ1tΓ2
def

= fu : (Γ1(u)tΓ2(u)) j u 2 dom(Γ1)\dom(Γ2)g

(o-proc) [∆1 ]u [∆2 ]

def

= [∆1t∆2 ] [∆1 ]t [∆2 ]

def

= [∆1u∆2 ]

proctπ = proc procuπ = π

For sort types (but not value, term or channel types) we can ensure that both u

andt are total; in all cases of SuS0 (respectively StS0) not covered by the above

clauses (for example if they are structurally dissimilar or do not satisfy the IO

constraint), then we set SuS0

=? (respectively StS0

=>).

FIGURE 14. Partial Meet and Join Operators

σ0 we can apply Name Substitution, Lemma 3.5, to obtain

Γ ` ρ0

fu=xg � ρfu=xg

Now by Lemma 3.1 (7) again, we have: Γ ` ρfu=xg, as desired.

Channel narrowing: Assume a 62 fn(P). Then Γ;a : σ;Γ0

` P : α implies

Γ;Γ0

=a ` P : α=a.

Here the proof is by induction on the inference of the judgement Γ;a :σ;Γ0

` P :

α, together with an examination of the last inference rule used. We consider two

cases.

Suppose the last rule used is (ABSN ); that is P has the form λ(x:σ):Q, α is (x:
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σ)! ρ and we know Γ;a :σ0

;Γ0

;x :σ ` Q : ρ. Then by the inductive hypothesis,

we have Γ;Γ0

=a;x :σ=a` Q : ρ=a. However since we are assuming a 62 fn(P) we

know a 62 fn(σ), and hence σ=a = σ. Therefore we have Γ;Γ0

=a;x :σ ` Q : ρ=a.

We may now apply (ABSN ) to obtain

Γ;Γ0

=a ` λ(x :σ):Q : (x :σ)! ρ=a

as desired.

Suppose the last rule used is (IN); that is P has the form

u?(x1 :τ1; :::;xn :τn)Q and Γ;a :σ;Γ0

` u?(x1 :τ1; :::;xn :τn)Q : π . Then we have:

Γ;a :σ;Γ0

;x1 :τ1; :::;xn :τn ` Q : π and Γ;a :σ;Γ0

` [u : (τ1; :::;τn)
I

]� π . First by

reasoning similar to the above case, we have a 62 fn(τi) since a 62 fn(P). Then by

inductive hypothesis, we have: Γ;Γ0

=a;x1 : τ1; :::;xn : τn ` Q : π=a and Γ;Γ0

=a `

[u : (τ1; :::;τn)
I

]� π=a. We can now apply (IN) to obtain the required

Γ;Γ0

=a ` u?(x1 :τ1; :::;xn :τn)Q : π=a

To prove the Substitution Lemma it is convenient to first prove the following

simple instance:

LEMMA B.1. (Substitution into channel) Γ ` v : σ and Γ;x :σ;Γ0

` u : σ0 imply

Γ;Γ0

fv=xg ` ufv=xg : σ0

fv=xg.

PROOF. For convenience let σu denote (Γ;x :σ;Γ0

)(u). Then we know:

Γ;x:σ;Γ0

`σu�σ0 and therefore, by (Name substitution), Lemma 3.5, Γ;Γ0

fv=xg`

σufv=xg � σ0

fv=xg. There are now two cases.

First suppose x = u. Here we know σu and σ coincide and since x can not

occur in σ, σufv=xg is simply σ. It is easy to show Γ ` v : σ implies Γ;Γ0

fv=xg `

v : σ by (Multiple weakening), Lemma 3.5 and so an application of subsumption

rule gives the required Γ;Γ0

fv=xg ` v : σ0

fv=xg.

Now assume x 6= u. Here u is also in the domain of Γ;Γ0

fv=xg and

(Γ;Γ0

fv=xg)(u) = σufv=xg. So we have Γ;Γ0

fv=xg` u : σufv=xg and once more

by subsumption we have Γ;Γ0

fv=xg ` u : σ0

fv=xg

LEMMA B.2. (Substitution Lemma) Assume Γ `V : τ. Then Γ;x : τ;Γ0

` P : ρ
implies Γ;Γ0

fV=xg ` PfV=xg : ρfV=xg.

PROOF. By induction on why Γ;x : τ;Γ0

` P : ρ and as usual an examination of

the last inference rule used. Most cases are straightforward and we outline three

examples.

Suppose P has the form Qw and the last inference rule used is (APPN ). Then

we have:

Γ;x :σ;Γ0

` Q : (y :σ0

)! ρ0 and Γ;x :σ;Γ0

` w : σ0

for some σ0, and ρ0 such that ρ = ρ0

fw=yg; moreover we may assume that and
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y 6= x. By induction we have:

Γ;Γ0

fV=xg ` QfV=xg : (y :σ0

fV=xg)! ρ0

fV=xg

Moreover we also have

Γ;Γ0

fV=xg ` wfV=xg : σ0

fV=xg;

If τ is a channel type, and therefore V a channel identifier, this follows from the

previous lemma; otherwise if x = w, then the above sequent is Γ;Γ0

`V : σ it fol-

lows by inductive hypothesis. Noting ρ0

fw=ygfV=xg = (ρ0

fV=xg)fwfV=xg=yg

because x 6= y, and applying (APPN ) again, we have:

Γ;Γ0

fV=xg `QfV=xgwfV=xg : ρfV=xg

as required.

Suppose P is u!hV1; :::;VniQ and the last rule used is (OUT). Then we have:

Γ;x : σ;Γ0

` Q : π , Γ;x : σ;Γ0

` Vi : τi, Γ;x :σ;Γ0

` [u : (τ1; :::;τn)
O

] � π and

Γ;x :σ;Γ0

` [Vi :σi ]� π whenever τi is a channel type σi.

Then applying the inductive hypothesis, or the previous Lemma, we have:

Γ;Γ0

fV=xg ` QfV=xg : πfV=xg andΓ;Γ0

fV=xg `VifV=xg : τifV=xg

Applying (Name substitution), Lemma 3.5, again, we obtain:

Γ;Γ0

fV=xg ` [u0

fV=xg : (τ1fV=xg; :::;τnfV=xg)O ]� πfV=xg and

Γ;Γ0

fV=xg ` [vfV=xg :σifV=xg ]� πfV=xg

An application of OUT now gives the required result:

Γ;Γ0

fV=xg ` ufV=xg!hV1fV=xg; :::;VnfV=xgiQfV=xg : πfV=xg

The case (RES) is also a straightforward use of the inductive hypothesis, noting

that (π=a)fV=xg= (πfV=xg)=a whenever x and a are different.
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