
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Resource Access Control in Systems of

Mobile Agents

Matthew Hennessy and James Riely

Report 2/98 February 1998

Computer Science

School of Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QH

ISSN 1350–3170

Resource Access Control in Systems of Mobile

Agents

MATTHEW HENNESSY AND JAMES RIELY

ABSTRACT. We describe a typing system for a distributed π-calculus which

guarantees that distributed agents cannot access the resources of a system with-

out first being granted the capability to do so. The language studied allows agents

to move between distributed locations and to augment their set of capabilities via

communication with other agents. The type system is based on the novel notion

of a location type, which describes the set of resources available to an agent at a

location. Resources are themselves equipped with capabilities, and thus an agent

may be given permission to send data along a channel at a particular location

without being granted permission to read data along the same channel. We also

describe a tagged version of the language, where the capabilities of agents are

made explicit in the syntax. Using this tagged language we define access viola-

tions as runtime errors and prove that well-typed systems are incapable of such

errors.

1 Introduction

Mobile computation, where independent agents roam widely distributed net-

works in search of resources and information, is fast becoming a reality. A

number of programming languages, APIs and protocols have recently emerged

which seek to provide high-level support for mobile agents. These include Java

[27], Odyssey [14], Aglets [17], Voyager [22] and the latest revisions of the In-

ternet protocol [23, 2]. In addition to these commercial efforts, many prototype

languages have been developed and implemented within the programming lan-

guage research community — examples include Linda [7, 8], Facile [15], Obliq

[6], Infospheres [10], and the join calculus [12]. In this paper we address the

issue of resource access control for such languages.

Central to the paradigm of mobile computation are the notions of agent, re-

source and location. Agents are effective entities that perform computation and

interact with other agents. Interaction is achieved using shared resources such as

memory cells, M-structures, objects (with shared methods and state) or commu-

nication channels. The use of the term “mobile” implies that agents are bound

Research funded by CONFER II and EPSRC project GR/K60701.
Email: fjamesri,matthewhg@cogs.susx.ac.uk

2 M. Hennessy and J. Riely

to particular locations and that this binding may vary over time, i.e. agents can

move. Resources, on the other hand, are often fixed to a single location, although

proxies and mirrors may be set up in order to distribute their contents.

In open distributed systems, such as the internet, it is unwise to assume that

all agents are benign, and thus a certain amount of effort must be spent to ensure

that vital resources are protected from unauthorized access. This can be accom-

plished by using a system of capabilities and by predicating resource access on

possession of the appropriate capability. It is unreasonable, however, to expect

that every use of every resource in a system be thus verified dynamically; such a

requirement surely would degrade system performance unacceptably. Thus it is

attractive to develop static analyses, or typing systems that guarantee controlled

access to system resources.

We present a typed language for mobile agents which allows fine control

over the use of resources in a system. We also define a tagged version of the

language in which agents explicitly carry the sets of capabilities which they have

acquired. Using this tagged language, we capture resource access violations as

runtime errors and show that well-typed terms are incapable of such errors.

The language studied in this paper, called Dπ,1 is a distributed variant of the

π-calculus [21], and thus the resources of interest are channels which support

binary communication between agents. We take agents to be located threads,

which are simply terms of the ordinary polyadic π-calculus [20], extended with

primitives for movement between locations and for the creation of new locations.

The language is similar to that studied by Amadio [3, 1]. There are two major

differences: we ignore location failure and we restrict communication to be local.

The second of these differences is more important. In Amadio’s language and in

most other distributed versions of the π-calculus [26, 12], there are two forms of

movement: one for agents and another for messages, which can be seen as very

simple agents consisting only of a value that is to be communicated remotely.

Here we limit mobility to a single language construct, eliminating the possibility

of remote communication without explicit movement. The language is presented

in Section 2. We give several examples of its use in Section 3.

The type system is based on the notion of location types of the form:

locfa1:A1; :::;an:Ang

Here each ai is channel name, and each Ai is a channel type. The idea is that the

type of a location embodies the sets of capabilities that an agent has at that loca-

tion. If an agent knows of a location ` at type locfa:A;b:Bg, then the agent has

permission to use channels a and b at `, but not any other channels. Capabilities

are communicated through channels, and thus channel types may have the form

1The language is somewhat different from that of [25], although we use the same name.

Resource Access Control in Systems of Mobile Agents 3

chanhLi, which is the type for channels which communicate locations of type L.

Agents may restrict access to a resource by controlling the type of the channel

over which the name of the resource is sent. Thus if an agent sends the name `

over a channel of type chanhlocfa:A;b:Bgi, then the recipient gains access to

channels a and b at `. Instead, when the same name is communicated over a

channel of type chanhlocfa:Agi, the recipient gains access only to channel a at

`. Of course for such communication to be sound, the sender must have, for the

value it is sending, all of the capabilities that the channel requires. Otherwise

a sender could “forge” arbitrary capabilities. To formalize this requirement we

introduce a subtyping relation on types. On location types, the subtyping relation

is the same as traditional record or object subtyping:

locfa1:A1; :::;ak:Akg � locfa1:A1; :::;ak:Ak; :::;an:Ang

We develop the typing system in stages. In Section 4, we present a simple

typing system in which subtyping applies to locations, but not channels. Using

this type system we set up the major results of the paper: subject reduction and

type-safety. These results are repeated for subsequent typing systems as well.

In Section 5 we observe that the simple type system, while natural, is overly

restrictive. An important aspect of mobile agents is the ability to acquire capabil-

ities from multiple sources. For example, an agent located at ` may have a capa-

bility at k which allows it to acquire additional capabilities at k. To exercise this

right, the agent may spawn a “sub-agent” to go over to k, get the new capabilities,

then come back and report. The difficulty is that when the new capabilities are

received back at the original agent, they are received with respect to a separate

instance of the name k. In order to establish subject reduction, the simple type

system makes it impossible to use in concert capabilities acquired on different

instances of a location. Some examples which require this extra expressiveness

are given in Section 3. To overcome this limitation, we weaken the simple type

system by allowing capabilities to be merged from different instances of a loca-

tion name using a match (or equality) operator “if z = k then p”. Crucial to the

new type system and to the proof of its soundness is the fact that the subtyping

relation is bounded complete, i.e. whenever two types have a common subtype

they have a greatest common subtype.

In Section 6 we extend the improved type system to a language with channel

subtyping, based on read and write capabilities. The extended type system is

based on that of Pierce and Sangiorgi [24], who first studied channel subtyping

for π-calculi. Pierce and Sangiorgi’s definition of subtyping, however, is not

bounded complete. To rectify this, we use a type language and subtyping relation

which generalize those of [24]. In this section we also augment location types

with explicit capabilities for channel creation and agent movement.

The paper concludes with a discussion of related work and open issues.

4 M. Hennessy and J. Riely

2 The Language

In this section we describe Dπ, defining many auxiliary notations that are used

throughout the paper. Before describing the syntax and reduction semantics, we

first present an example which gives an overview of the features of the language.

A typical Dπ system is the following:

`JpK j (νa:fk:Ag) (`JqK j kJrK)

There are three agents running in parallel: `JpK and `JqK running at location ` and

kJrK running at location k. Moreover q and r share a private channel a, declared

at location k. Suppose that `JpK has the from:

`Jb?(x)p1 j c?(Y)p2K

This agent contains two subthreads, which when split will run in parallel. The

first subthread awaits input on channel b, whereas the second awaits input on

channel c. If agent kJrK has the form kJb!hdi r0K, one might expect that commu-

nication could occur between p and r on channel b. This is not the case, however.

The two instances of b refer to resources at different locations, even though they

have the same name.

To communicate with p, r must first move from k to ` and then use b at `.

We write such an agent as kJ` :: b!hdi r0K. This term can reduce to `Jb!hdi r0K,

enabling local communication between p and r. After the communication the

system is:

`Jp1fj
d
=xjgK j `Jc?(Y)p2K j (νa:fkg) (`JqK j `Jr0K)

The asynchronous form of this idiom (where r0 is nil) is used so frequently that

in Section 3 we introduce the notation “`:a!hVi” as shorthand for “` :: a!hVinil.”

In order for kJ` ::b!hdi r0K to be well-typed, it must be that the name d com-

municated is also located at `. To enable the communication of non-local names,

a different syntax must be used. Suppose that `JqK now wishes to send the pri-

vate name a (located remotely at k) to the agent `Jc?(Y)p2K. In this case we

must write `JqK as `Jc!hk[a]iq0

K. We motivate this syntactic distinction in our

discussion of types on page 6.

2.1 Syntax

The syntax of the language is given in Table 1. In defining the syntax, we pre-

suppose the existence of a set Var of variables, ranged over by x-z, and a set

Name of names, ranged over by a-m. Both variables and names are typed; how-

ever, since we consider different type systems in the course of the paper, we do

not report the syntax of types in Table 1. The type system used in Sections 4

and 5 is described on page 6. For the moment, suffice it to say that names are

assigned atomic types, E-G, which may be either channel types, A-C, and loca-

tion types, K-M. Variables may additionally be assigned one of the compound

Resource Access Control in Systems of Mobile Agents 5

TABLE 1 Syntax

Systems:

P-R ::= nil P jQ

(νa:Λ)P

(νm:M)P

`JpK

Threads:

p-r ::= nil p jq

(νa:A)p

(νm:M)p

u :: p

u!hVip u?(X:ζ)q

�p if u = v then p else q

Ids, Patterns, Values:

u-w ::=e x

X-Z ::=x z[ex] eX

U-W ::=u w[eu] eU

or value types, ranged over by ζ and ξ. To improve readability we usually use

k-m to range over names of location type and a-c for names of channel type; we

use e-g when the type of a name is unimportant. We also routinely drop type

annotations when they are not of interest.

Systems, Agents and Threads. The main syntactic category is that of a system

P. Intuitively, a system consists of a set of agents running independently in par-

allel. An agent `JpK is a located thread, where a thread is simply a term of the

thread language, described below. Systems are combined using the static combi-

nators of the π-calculus, namely parallel composition j and restriction (νe) . We

further discuss the form of the restriction operator below, after describing types.

The syntax of threads is similar to that of the synchronous polyadic π-

calculus [20], with some small extensions to deal with locations. First, locations

are names and thus many of the usual operators of the π-calculus apply to

them. In particular, new locations may be created using (ν`) , locations may be

compared using the conditional, and locations may be communicated using the

input and output constructs. Second, we introduce a move operator that allows a

thread to move from one location to another; for example, the thread k :: p must

move to location k before continuing to execute p. The move operator is also

studied by Amadio [1, 3], who writes “k :: p” as “spawn(k;p).”

All of the operators but “move” are well known from the π-calculus. These

include the static combinators j and (νe) , as well as constructs for output u!hVip,

input u?(X)q, (mis)matching if u = v then q else r and iteration �p (in the liter-

ature, iteration is usually written !p). Communication between agents occurs

along channels. As discussed in the example at the beginning of this section,

communication is purely local (unlike [3, 11, 26]) in that agents can only com-

municate with other agents at the same location, using channels that have been

allocated at that location.

In the concrete syntax, “move” has greater binding power than composition.

Thus ` :: p j q should be read (` :: p) jq. We adopt several standard abbreviations.

For example, we omit trailing occurrences of nil and often denote tuples and

6 M. Hennessy and J. Riely

other groups using a tilde; e.g. we may write ea instead of (a1:::an) and (νee:eE)p

instead of (νe1:E1) :::(νen:En)p. We also may write “if u = v then p” instead of

“if u = v then p else nil” and “if u 6= v then q” instead of “if u = v then nil else q.”

Types, Values and Patterns. We view knowledge of channel a at ` as a ca-

pability to use a at `. These capabilities are the basis of simple location types,

which are defined as follows:

K-M ::= locfea:eAg; ai distinct

A location type is simply a set of capabilities of the form a:A, where no two

capabilities refer to the same channel. We identify types up to reordering of

capabilities and drop empty capability sets, writing “loc” instead of “locfg”. We

also write “L;a:A” for the extension of the location type L with the new channel

a at type A. Thus locfa:A;a:A0

g is not a valid type, and if L = locfa:A;b:Bg then

L = locfb:B;a:Ag and L;c:C = locfa:A;b:B;c:Cg.

To ensure that well typing is preserved by reduction, we must ensure that

agents receive data at the type intended. The “intended” type is negotiated by

typing the channel upon which the data is communicated: sender and receiver

must agree on the type of the communication channel. Thus channel types have

the form

A-C ::= chanhζi

where ζ is the type of data transmitted over the channel. A typical example

might be chanhL;Ki, the type of a channel which can transmit a pair of objects,

the objects having the types L and K respectively. We write obj(A) to denote the

transmission type, or object type used in the channel type A, i.e. obj(chanhζi) =
ζ. For simplicity, we do not allow recursive types (but see our comments in the

conclusion of the paper).

It remains only to define the value types ζ. There are two basic forms of val-

ues: channels and locations. When a channel is communicated, it is assumed to

be local; when a location is communicated, nothing is assumed about its location

(i.e., it could be the current location or not). One choice, then, would be to allow

values that are tuples of channels and locations, i.e. of type eE, where E ::= A K.

In many cases, however, these types are not sufficiently expressive.

For example, consider a remote procedure call in which a thread at ` sends a

request to a procedure at k, then waits to receive a reply. Using this type system,

the example might be written:

`Jk :: a!h`i j r?(X)qK j kJa?(z:locfr:Cg) z :: r!hViK

Here the channel r is a response channel which the thread at k uses to reply to the

request. Note that r must be globally known to be available at `. This strategy

breaks down, however, if there are many concurrent requests to the same remote

Resource Access Control in Systems of Mobile Agents 7

procedure. In this case, one would like to be able to create a fresh response

channel for each request. One attempt is the following:

`J(νr)k :: a!h`; ri j r?(X)qK j kJa?(z:loc;x:B)z :: x!hViK

However, here we have violated the principle that channel communication is

local; i.e. channel r, when communicated at k, is not local to k, but rather to `.

The crucial link missing is the dependence of r on `. To express this depen-

dence, we write the communicated value as `[r] rather than (`; r). The example

can now be written as

`J(νr)k :: a!h`[r]i j r?(X)qK j kJa?(z[x]:loc[B]) z :: x!hViK

In standard terminology, we have introduced existential types, along with con-

structors and destructors for those types. Thus, one can read “z[x] : loc[B]” as

“z :9x:locfx:Bg”.

In summary, value types are of the form:

ζ ::= A K[eA] eζ

The syntax of values and patterns, given in Table 1, follows the structure of

these types, providing a constructor and destructor for every type. In values

and patterns, we treat u:L as shorthand for u[]:L[]. We sometimes use the term

existential location type to refer to types of the form L[A1:::An], particularly if

n > 0. By contrast, the term simple location type is reserved for types of the

form L (or L[]).

Name Creation. There are two forms of private name creation in threads, for

channels and locations respectively. (We use the terms “name creation” and

“name restriction” interchangeably.) The thread (νa:A)p creates a new private

channel a of type A, called the declaration type of a, and then executes the thread

p. This channel creation is handled in exactly the same way as name creation in

the π-calculus; use of the channel a is restricted to p, although during execution, p

may enlarge the scope of the restriction by outputting a. The creation of location

names is similar. The thread (νk:K)p, creates a new location k with type K and

continues with the execution of the continuation p.

These two forms of name creation are also applicable to systems in general.

However here we must record the location of a restricted channel. We allow a

general construct (νa:Λ)P that allows the channel name to be restricted at many

locations with different types. To do this we use finite partial maps Λ, ϒ from

locations to channel types (Λ : Loc * CType). The use of these maps will be

clear once we present the structural rule s-newc.

Binders and Substitution. We assume the standard notion of free and bound

occurrences of variables and names in systems and threads. Variables are bound

by the input construct, whereas names are bound by name creation. A term with

8 M. Hennessy and J. Riely

TABLE 2 Reduction Relation

(r-move) `Jk ::pK �! kJpK

(r-comm) `Ja!hVipK j `Ja?(X)qK �! `JpK j `JqfjV=XjgK

(r-eq
1

) `Jif e = e then p else qK �! `JpK

(r-eq
2

) `Jif e = d then p else qK �! `JqK if e 6= d

(r-new)
P�! P0

(νe)P�! (νe)P0

(r-str)
P�! P0

R jP�! R jP0

P� Q�! Q0

� P0

P�! P0

no free variables is closed. We write fn(P) for the function which returns the set

of free names occurring in P.

Note that channel names can appear in types and therefore they must be taken

into account in the definition of free names. So, for example the free names of

c?(X:ζ)p include the names which appear in ζ while those of (νa:Λ)P include

the domain of the map Λ.

We also assume the standard notions of alpha-equivalence,�α, and substitu-

tion, where Pfju=xjg denotes the capture-avoiding substitution of u for x in P. The

notation PfjV=Xjg generalizes this in an obvious way as a sequence of substitutions.

For fjV=Xjg to be well-defined, it must be that the structure of the X matches the

structure of V. No special provision is necessary for location values such as `[ea];

in substitution these are treated as simple tuples, e.g. Pfj`[a]

=z[x]jg= Pfj`=zjgfja=xjg.

We have been careful to define location types over channel names rather than

channel identifiers, so that substitution need not occur in types. This prevents

one from writing, for example, a?(z[x])b?(w[y]) (ν`:locfx;yg) . We discuss this

further in the conclusion.

In the sequel we identify terms up to alpha-equivalence.

2.2 Reduction Semantics

The reduction semantics, given in Table 2, is defined as a reduction relation

between systems; thus judgments are of the form

P�! P0

where P and P0 are (closed) system terms. Most of the rules are familiar from the

π-calculus, with a few changes to accommodate the fact that agents are explicitly

located.

The main new rule is that for code movement, r-move, which allows an agent

to move from one location to another, say from ` to k. In the semantics this is

represented by termination of the thread at ` and the initiation of a new thread

at k: `Jk ::pK �! kJpK. Note, however, that p carries with it to k all of the ca-

pabilities that were acquired by the original agent (via substitution of names for

Resource Access Control in Systems of Mobile Agents 9

TABLE 3 Structural Equivalence

(s-nil) `JnilK � nil

(s-split) `Jp jqK � `JpK j `JqK

(s-itr) `J�pK � `JpK j `J�pK

(s-newc) `J(νa:A)pK � (νa:f`:Ag)`JpK

(s-newl) `J(νk:K)pK � (νk:K)`JpK if k 6= `

(s-extr) Q j (νe)P � (νe) (Q jP) if e =2 fn(Q)

variables).

The rule r-comm for communication allows two agents running at the same

location ` to exchange a value V along a common channel a:

`Ja!hVipK j `Ja?(X)qK�! `JpK j `JqfjV=XjgK

It is worth emphasizing that the agents must be co-located for communication

to occur. As discussed at the beginning of this section, agents that wish to com-

municate on a remote channel must first move to the remote location using the

asynchronous “move” operation. If an agent does not wish to move, it may

spawn a new thread which “splits” from the agent and then performs the de-

sired move/communication. Information thus acquired may be returned to the

primary agent later via communication. We discuss this further in Example 4 of

Section 3.

The structural equivalence [4, 20], defined in Table 3, relates closed systems

(P� Q). The purpose of the structural equivalence is to abstract from the static

structure of terms, i.e. from the irrelevant details of the syntactic relation be-

tween composition (p jq), restriction ((νe)p) and location (`JpK). The structural

equivalence is defined to be the least equivalence relation that is closed under

composition and restriction, satisfies the monoid laws for composition,2 and sat-

isfies the axioms given in Table 3.3

In addition to the standard axiom for name extrusion (s-extr), the structural

equivalence includes axioms that allow restriction and composition to be lifted

from threads to systems. The most important of these is the rule s-split which

2The monoid laws are: P jnil� P, P jQ � Q jP, and P j (Q jR)� (P jQ) jR.
3The structural equivalence can be extended in various ways, although the given definition is suf-

ficient for our purposes. It may be worth mentioning that the standard “swap” rule for names

((νf)(νe)P � (νe)(νf)P if e 6= f) is somewhat more complicated in our setting. If one wished

to add the swap rule to the structural equivalence, it would look like this:

(s-swap
ll

) (ν`:L) (νk:K) P � (νk:K) (ν`:L) P if ` 6= k

(s-swap
cc

) (νa:Λ) (νb:ϒ) P � (νb:ϒ) (νa:Λ) P if a 6= b

(s-swap
lc1

) (ν`:L) (νa:Λ) P � (νa:Λ) (ν`:L) P if a =2 L and ` =2 Λ
(s-swap

lc2

) (ν`:L)(νa:(Λ;`:A))P � (νa:Λ)(ν`:(L;a:A))P

10 M. Hennessy and J. Riely

allows an agent to split into two independent agents (`JP jQK� `JPK j`JQK). The

rule s-nil allows for garbage collection of terminated agents, whereas s-itr pro-

vides a standard interpretation of iteration. Note that when a channel name is

extracted from a thread using s-newc (`J(νa:A)pK � (νa:f`:Ag)`JpK) it is nec-

essary to record in the “global” restriction the location at which the name was

defined.

3 Examples

In order to simplify the presentation of examples, we will assume a set of basic

datatypes such as integers and adopt a few notational conventions. In particular,

we will define threads using the notation

X(h;ey)(p

where the first parameter h stands for the initial location, or home, of the thread.

This allows us to write X(`;ev) as shorthand for the agent `JX(`;ev)K, i.e. the

agent with code X(`;ev) running at location `. We will also write `:a!hvip for the

message-sending thread ` :: a!hvinil jp; note that the “continuation” p is actually

asynchronous with respect to the sending of the message.

Example 1: A Counter. As a first example, we present a simple counter which

uses the global names up;dn and rd:

Count(h;n) ((νs:int) s!hni j �up?(z[y]) s?(x) (s!hx+1i j z:y!hi)

j �dn?(z[y]) s?(x) (s!hx�1i j z:y!hi)

j � rd?(z[y]) s?(x) (s!hxi j z:y!hxi)

This describes a simple counter, running at location h, and initialized to the value

n. The value of the counter is stored using a private channel s. There are three

public channels (or methods): up for incrementing the stored value, dn for decre-

menting it, and rd for retrieving it. The definition of the methods follows the style

typical of the asynchronous π-calculus: to invoke a method, a user creates a re-

sponse channel r, sends this response channel as argument to the method call,

then awaits an answer on r. For example, the rd method executes as follows.

Upon receiving a rd request, the method reads the local state s?(x) (thus locking

the object), then re-stores the state (releasing the lock) and sending a response

to the user with the value read. For the methods up and dn, no value is returned,

and thus the response simply indicates that the operation is complete.

Suppose that the counter is located at location cnt. Then a typical user might

be coded as follows:

U(h;cnt)((νr) cnt:up!hh[r]i

r?() cnt:up!hh[r]i

r?() (νt) cnt:rd!hh[t]i

t?(x)out!hxiU0

Resource Access Control in Systems of Mobile Agents 11

The user increments the counter twice, then reads its value, reporting the result

on the channel out located at h. We write the combined system as

U(k;cnt) j Count(cnt;0)

which is shorthand for:

kJU(k;cnt)K j cntJCount(cnt;0)K

After a certain amount of reduction the user agent of this system will be able to

perform the action out!h2i at location k.

Example 2: A Counter Server. A counter server, cS, for generating new

counters can be defined as

cS(h) (�req?(z[x]) (νcnt:L
c

) z:x!hcnti j cnt :: Count(cnt;0)

where L
c

= locfup:A
up

;dn:A
dn

; rd:A
rd

g is the appropriate type for a Counter.

Upon receiving a request, the server creates a new counter location cnt, spawns

the counter code at that location, initialized to 0, and then sends the name of the

counter location to the user. If the server is at location serv, then a client would

take the form:

cUi(h) ((νr) serv:req!hh[r]i j r?(z:L
c

) Ui(h; z)

Now consider two clients running in parallel with the server:

cU1(k1) j cS(serv) j cU2(k2)

After a request from each of the clients to the server the system can evolve to the

following state:

cS(serv) j (νcnt1)
�

U1(k1;cnt1) j Count(cnt1;0)
�

j (νcnt2)
�

U2(k2;cnt2) j Count(cnt2;0)
� (*)

Here each of the clients cUi has a copy of the counter running at a private location

cnti. Note that it would be an error if a user, say U1, were of the form:

U1(h; z)(z:compute prime factors!h10203i

Such as user should be considered to be erroneous because the method com-

pute prime factors is not declared at the counter; only calls to the declared meth-

ods up;dn; rd are allowed.

In addition, the use of types in the language allow users to manage access

to their private counters, e.g. sending the counter to other agents with only the

rd capability. Moreover these capabilities can be managed independently by the

two clients. U1, for example, may send to associates the name cnt1 with the only

method rd, while U2 may, more trustingly, send cnt2 with both methods rd and

up. This selective distribution of knowledge is accomplished by typed channels,

i.e. channels on which values of a restricted type may be transmitted.

12 M. Hennessy and J. Riely

To explain this, at least informally, suppose there are two additional agents

in the system presented in (*). Call these F1 and F2 as they are “friends” of U1

and U2 respectively. In addition, suppose that each friend Fi has a channel ai of

type chanhLii, where:

L1 = locfrd:A
rd

g

L2 = locfrd:A
rd

;up:A
up

g

Thus each channel ai is constrained to transmit values of type Li. So when a

location name is transmitted on a1, only the permission to use method rd at that

location is granted, whereas a2 also confers permission to use method up. Now

consider the system

P j F1(k1) j F2(k2)

where P is the system from (*), and users and their friends have the form:

Ui(h;cnt) (ai!hcnti

Fi(h) (ai?(z:Li) (νr) z:up!hh[r]i

Then, after receiving the counter, F1 should be forbidden from proceeding, as

it attempts to access the up method of cnt1 without sufficient permission. F2,

instead, should be allowed to proceed, as its use of up is justified by the permis-

sions it received for cnt2.

The general philosophy is that an agent should only use names, or resources,

in accordance with the capabilities/permissions that it has acquired for that

name. In the next section we consider two methods for imposing such con-

straints. The first is a type system which will reject the agent F1 as untypable.

The second is an augmented semantics which will report a runtime error when

F1 attempts to access the up method of cnt1.

Example 3: A Local Counter Server. It is also possible for the server to

start the counter code within a location specified by the user, rather than creating

a new location for this purpose. In this case, however, conflicts on the use of

the names up, etc. arise if many counters are created at the same location. To

solve this problem, the server may create fresh names for the methods of the

cell, rather than using the common names up;dn and rd. The following code

implements such a local counter server and client:

cS0

(h)(�req?(z[x]) z :: (νu;d; r) Countu;d;r(z;0)

j x!hu;d; ri

cU0

(h)((νr) serv:req!hh[r]i

j r?(u;d; r)U0

(h;u;d; r)

In this implementation, the user receives as a response not the name of a freshly

allocated location, but rather the names of three freshly allocated channels. (As

Resource Access Control in Systems of Mobile Agents 13

the names u, d and r are bound, we have put them as parameters to the definition

of Count.) Now let us consider the system consisting of the server and two co-

located clients.

cU0

(k) j cS0

(serv) j cU0

(k)

After servicing requests from both clients this can evolve to the following:

cS0

(serv) j (νu1;d1; r1)
�

U0

(k;u1;d1; r1) j Countu1 ;d1;r1
(k;0)

�

j (νu2;d2; r2)
�

U0

(k;u2;d2; r2) j Countu2 ;d2;r2
(k;0)

�

Here all of the agents, counters and users, are located at a single location k. Each

user has private access to its counter, however, due to the use of the restriction

operator.

Example 4: Remote Channel Creation. We now examine an implementation

issue. Dπ as defined allows an agent to create new channels only at its current

location. It is often useful, however, to be able to create channels remotely,

without having to move back and forth. First we consider the special case in

which an agent creates a new location, and would like to place some channels

at that location at the same time. We might introduce a new thread notation for

this, T(h)((ν`[a;b])p, which we take as shorthand for:

T(h)((ν`) ` :: (νa;b) h :: p

However this is best viewed as a specification; as an implementation method

it involves the transmission of the continuation thread P, which may be huge,

around the network. A more useful implementation would be:

T(h)((νr) (ν`) ` :: (νa;b) h :: r!h`[a;b]i

j r?(z[x;y])pfjz[x;y]=̀ [a;b]jg

Here the new location ` with associated channels are created, and then sent back

to the main agent at h; the sending of the potentially large continuation p across

the network is avoided.

This implementation schema can also be adapted to the generation of new

channels at an existing location, say `, simply by removing the restriction (ν`) :

T(h)(` :: (νa;b) h :: p

We use the notation (ν
`

(a;b))p to abbreviate this idiom. A lightweight imple-

mentation then might be:

T(h)((νr) ` :: (νa;b) h :: r!h`[a;b]i

j r?(z[x;y]) if z = ` then pfjz[x;y]=̀ [a;b]jg

This example raises some interesting issues concerning the type system which

are discussed at length in Section 5.

14 M. Hennessy and J. Riely

Example 5: Routed Forwarding. Finally, we develop a longer program. We

write a program Forwarder(h[in];d[s]) which establishes a connection between

the local channel in and the (possibly remote) channel s. By “connection” we

mean that messages sent into in should eventually find their way to the service

channel s at destination d. Such a program is trivial to write in Dπ:

�in?(x) d :: s!hxi

The unpleasant part of the problem specification is that we are not allowed to

assume that there is a direct connection from the current location to d. Instead,

the program must consult the local method route(d) which returns the name of

the neighboring location that is closest to d, i.e. somewhere between the current

location and d.

To make the program readable, we assume some additional syntactic conven-

tions, including recursive definitions, let-expressions and the notation for remote

channel creation introduced in the previous example. Recursive definitions are

known to be codeable using iteration (as long as the number of definitions is fi-

nite) [20]; the coding of let-expressions is straightforward (see e.g. [11]). The

Forwarder can be implemented as follows:

Forwarder(h[in];d[s]) (if h = d then

�in?(x) s!hxi

else

let n route(d)

in (νnc) n ::Forwarder(n[c];d[s])

�in?(x) n :: c!hxi

endif

When the Forwarder is started, it checks to see if the destination d is the same

as the current location h. If h and d are the same, then there is no need for

routing, and the program can simply set up a forwarding process from in to

s: “�in?(x) s!hxi”. If h and d are different, then the name of a neighbor n is

retrieved, where n is between h and d on the network. Then a new copy of the

code is started at n, and a forward process is set up between in and n.

Resource Access Control in Systems of Mobile Agents 15

4 Types

In this section we define a typing relation for the language presented in Section 2

and show that it is sound. To prove soundness, one normally proves two prop-

erties: subject reduction and type safety. Subject reduction says simply that

well-typedness is preserved by reduction; i.e. if P is well typed and P �! P0

then P0 is also well typed. Intuitively, type safety asserts that a well typed term

“does nothing bad”; combined with subject reduction it guarantees that a term

can never do the “bad” thing. What exactly is “bad” varies from one language

to another. In the lambda calculus, the bad thing may be to reach an irreducible

form that is not canonical; thus the type safety theorem states that if a term is

well typed, then either it is canonical or it can reduce.

In reactive languages which lack such canonical forms, such as the polyadic

π-calculus, the statement of type safety is more delicate. Milner [20] describes

type safety as freedom from arity mismatches. For example, the system

`Jc!ha;biK j `Jc?(z:loc) z :: qK

gives rise to a runtime error because the first thread sends a pair of channels,

whereas the second expects a singleton location. This definition of type safety is

related to that for the lambda calculus: arity matching is required for substitution

(and therefore the reduction rule r-comm) to be defined.

Type safety for π-calculi with capabilities was first studied by Pierce and

Sangiorgi [24]; we presented an alternative formulation in [25], which we now

recount. The basic idea is that every instance of a name is tagged with certain

capabilities and each instance may only be used as its capabilities allow; attempts

to use a name without the proper capability result in runtime error. For the simple

type language of Section 2.1, only locations need be tagged, and each instance

of a location must be tagged with the set of channel names available to that

instance. For example, the name `
fa;bg is an instance of location ` at which only

the channels a and b may be used. Thus, the term `

fa;bgJc!haiK would produce a

runtime error since c is used at ` without permission.

The key to such a tagged semantics is the rule for tagged communication.

The rule must capture the fact that when an instance of a name is communicated,

the permissions it carries may be reduced. Thus in the reduction

`

fcgJc!hk
fa;bgiK j `fcgJc?(z:locfa:Ag)qK�! `

fcgJqfj
k
fag
=zjgK

k is received with the capability to use only channel a; i.e. the tagged value k
fag is

substituted for z in q. The tag for channel b is removed since the receiving thread

has not explicitly requested a location with capability b, but rather a location z

of type locfa:Ag. Thus, if q has the form z :: b!hVi, then a runtime error would

occur when q attempts to communicate on b.

This form of error is related to errors which occur in untyped languages with

16 M. Hennessy and J. Riely

TABLE 4 Simple Types

Types: Subtyping:

LType: K ::= locfea:eAg; ai distinct locfea:eA;eb:eBg � locfea:eAg

CType: A ::= chanhζi A � A

Type: ζ ::= A eζ eζ � eξ if 8i : ζi � ξi

K[eA] K[

eA] � L[eA] if K� L

object or record types: if method b is requested of an object instance that does

not provide method b, a runtime error occurs. The tagged system is even more

discriminating, however, because it may be an error to request b even at objects

which do, in fact, provide b: it is also important that the particular agent request-

ing b have received the capability (or permission) to use b.

The section proceeds as follows. First, we describe the subtyping relation.

Section 4.2 then defines the typing relation and presents subject reduction. The

following subsection presents a series of examples displaying the use of types.

Section 4.4 describes the tagged language and proves type safety. The tagged

language improves on the one sketched above: rather than tag instances of names

with capabilities, we tag agents; thus as agents roam the system, their accumu-

lated capabilities are explicitly recorded.

4.1 Subtyping

Table 4 recalls the definition of simple types from Section 2.1 and presents the

definition of subtyping for these types (it is the least relation that satisfies the

four rules given). A location capability has the form a:A, i.e. a channel a of

type A. Then we say that L is a supertype of K if every capability of L is also

a capability of K. We use the obvious notation a:A 2 K to indicate that location

type K contains the capability a:A. Extending this view of location types as sets

of capabilities, subtyping can be expressed simply as reverse inclusion:

K� L if K� L

(Recall that we identify location types up to reordering of capabilities.) As an

example, note that locfa:A;b:Bg � locfa:Ag. For simplicity of exposition, in

this section there is no non-trivial subtyping on channel types; we study these in

Section 6. Subtyping on values is structural, in an obvious way.

It is easy to show that � forms a preorder on types (i.e. � is reflexive and

transitive). This subtyping relation also has an interesting property which will

play a crucial role in Section 5: it is finite bounded complete, or FBC .

DEFINITION 4.1. We say that a preorder (S;v) is finite bounded complete

(FBC) if for every finite nonempty subset S � S, if S has a lower bound then S

Resource Access Control in Systems of Mobile Agents 17

has a greatest lower bound. That is, there exists a partial meet operator u that

satisfies the following property. Let r 2 S and S � S, S finite and nonempty; if

for every si 2 S, rv si (i.e. r is a lower bound of S) then uS is defined and:

� uS v si, for all si 2 S and

� r v uS. �

To show that a preorder is finite bounded complete it suffices to define a par-

tial binary meet operator u that is commutative and associative and satisfies the

conditions of Definition 4.1 on pairs.4 The binary operator can then be lifted to

nonempty finite sets in the obvious way:

uS = s1u s2 u :::u sn where si 2 S

DEFINITION 4.2. We define a partial binary operator u over the types of

Table 4. The definition is by induction on the structure of types.

locfea:eAgu locfeb:eBg=

�

undefined if 9i; j : ai = bj and Ai 6= Bj

locfea:eA;eb:eBg otherwise

A u A = A
eζ u eξ = (ζ1uξ1; :::;ζnuξn)

K[ζ] u L[ξ] = (KuL)[ζuξ] �

The only non-trivial case in the definition is that for location types. For channel

types the meet is undefined except when the types are identical; AuB is un-

defined if A 6= B. At other value types it is simply a homomorphic extension,

strict in undefinedness. Note that the meet is only defined for types that have

the same structure and for which all constituent components have a meet. Thus

(A;B)u (A) is undefined, as is locfa:Agu locfa:Bg, if A 6= B.

PROPOSITION 4.3. The operator u defined above is a partial meet operator.

Proof. By induction on the structure of types (and thus on the definition of u),

it is straightforward to establish that u is commutative, associative and satisfies

the constraints of Definition 4.1 for all pairs of types. �

4.2 A Simple Type System

Type Environments. The primary judgments of the type system will be of the

form Γ ` P where Γ is a type environment and P is a system term; the judgment

4By commutativity, we mean: If ζu ξ is defined, then ξu ζ is defined and ζ 7 ξ, where 7 is the

kernel of � (ζ7 ξ iff ζ � ξ and ξ � ζ). Similarly, by associativity we mean: If (ζuξ)uη is defined

then ζu (ξuη) is defined and (ζu ξ)uη7 ζu (ξuη).

18 M. Hennessy and J. Riely

Γ ` P is read “the term P is well-typed with respect to environment Γ.” The pur-

pose of the type environment is to provide a type for all of the free identifiers in

P. Since the type system is static and therefore must be defined over open terms,

type environments must provide types for variables in addition to names. The

type environment thus provides a view of every free identifier, where the type

(indeed the existence) of a channel name or variable depends upon its location.

We allow variables to receive values other than simple names; so in addition to

channel and location types, a variable may have a tuple type eζ, or an existential

type L[(A1:::An)] (where n is greater than zero). Given these considerations, we

take type environments to be maps from identifiers to open location types, which

have the form locfeu:eζg. By contrast, the location types of Section 2.1 (locfea:eAg)

are referred to as closed. As an example, the following is a type environment:

∆ =

�

`:locfa:A;x:Bg; z:locfa:A0

g

	

We write Γ(w) to refer to the type of the location w in Γ, and Γ(w;u) to refer

to the type of the channel or variable u at location w. So for ∆ as defined above,

∆(z) = locfa:A0

g and ∆(`;x) = B, whereas ∆(z;x) is undefined.

We use the same metavariables (K-M) to range over both open and closed

location types. It is important to remember, however, that open types may only

appear in type environments; all types in terms are closed. Thus, substitution of

values into terms has no effect on the types that may appear in those terms.

The subtyping relation is extended in the obvious manner from closed to open

location types, using open location capabilities of the form u:ζ. Both subtyping

and the partial meet operator extend pointwise to environments. For subtyping

we have:

Γ� ∆ iff 8w2 dom(∆) : Γ(w) � ∆(w)

The partial meet operator ∆uΓ is undefined if ∆(w)uΓ(w) is undefined for some

w 2 dom(∆)\dom(Γ), otherwise:

∆uΓ = fw:L j ∆(w)uΓ(w) = Lg

[fw:L j ∆(w) = L and w =2 dom(Γ)g
[fw:L j Γ(w) = L and w =2 dom(∆)g

For example, if KuK0 is defined then:

f`:L;k:Kgu
�

k:K0

;m:M
	

=

�

`:L;k:KuK
0

;m:M
	

Environment Extension. We use Γ; w:K to represent the environment Γ aug-

mented by the new entry which maps the identifier w to the location type K; this

is only defined if w is new to Γ, i.e. w is not already in the domain of Γ.

We use a similar notation for identifiers at other types: Γ; wu:ζ augments the

type of w in Γ with the new capability u:ζ; to be defined w must already be in

Resource Access Control in Systems of Mobile Agents 19

the domain of Γ and u must be new to Γ(w). For example, taking ∆ as defined

previously, we have

∆ = f`:locfa:A;x:Bg; z:locfa:A0

gg

∆; zx:B0

= f`:locfa:A;x:Bg; z:locfa:A0

;x:B0

gg

whereas ∆;
`

x:B0 is undefined. This notation extends structurally to values.5 For

example, consider ∆ as above and let L = locfa:A00

g; then we have:

∆; z(x;w[y]):(B
0

;L[C]) = f`:locfa:A;x:Bg; z:locfa:A0

;x:B0

g;w:locfa:A00

;y:Cgg

In the new environment, z is augmented with the extra capability x:B0, and w is

introduced as a new location with capabilities a:A00 and y:C. By way of contrast,

consider:

∆; z(x;y):(B
0

;L[C]) = f`:locfa:A;x:Bg; z:locfa:A0

;x:B0

;y:L[C]gg

Here the existential location value y of type L[C] is not fully deconstructed. When

studying the type system, note that little can be done with identifiers such as y;

in fact they can only be used in output values.

Finally, recall from Section 2.1 that channel restriction at the system level is

written (νa:Λ)P, where Λ is a partial function from locations to channel types.

An example of such a term is (νa:f`:A;k:A0

g)P, which simply declares a new

channel a at locations ` and k, with the appropriate types. In the typing rules, we

will write Γ;Λa to denote the extension of Γ with the name a at the locations and

types declared by Λ. For example if Λ = f`:A;k:A0

g, then:

Γ;Λa = Γ;
`

a:A; ka:A0

Note that in order for Γ;Λa to be defined, all of the locations named in Λ must

be included in the domain of Γ.

The Typing System. The typing system is given in Table 5. The definition uses

auxiliary judgments for threads, identifiers and values. For threads, judgments

have the form Γ `w p, indicating that the thread p is well-typed to run at location

w, where w2 dom(Γ). This in turn uses judgments of the form Γ`w:L indicating

that in Γ, w has at least the capabilities specified by L. Finally, channels and other

values are typed using judgments of the form Γ `w V:ζ, which indicates that the

5 Formally, the definition is as follows. The definition makes use of the fact that we identify u:K

with u[]:K[]. Thus the first case does not apply if ζ is a simple location type K.

Γ; wu:ζ = Γufw:locfu:ζgg if w 2 dom(Γ) and u =2 dom(Γ(w))

Γ; w
eV :eζ = Γ; w(V1 :ζ1); :::; w(Vn:ζn)

Γ; w(u[ev]:K[

eA]) = Γ; u:K; uev:eA if u =2 dom(Γ)

Note that an environment cannot be extended with a location that is already defined. Also note that

for Γ; wV:ζ to be defined, w must already be defined in Γ. Thus Γ; ww[ea]:K[

eA] is undefined for any Γ
and w.

20 M. Hennessy and J. Riely

value V is well formed at w and has at least the capabilities specified by ζ. Recall

that in values, we treat u:L as shorthand for u[]:L[]. Location types, both simple

and existential, are independent of the location w at which they are typed.

The heart of the typing system are the rules for threads, and in particular

the rules for communicating terms, t-w
t

and t-r
t

. For example, to deduce that

u!hViq is well-typed to run at location w

Γ `w u!hViq

it is necessary to establish

� Γ `w V:ζ, i.e. V is a well formed value at w with capabilities specified by

some type ζ,

� Γ `w u:chanhζi, i.e. u is a channel at location w which may communicate

values of type ζ, and

� Γ `w q, i.e. q is well-typed to run at w.

The input construct is similar. To deduce Γ `w u?(X:ζ)q we must, as before,

establish that u is a channel of type chanhζi at location w, but in deducing that q

is well-typed we may use the augmented environment Γ; wX:ζ.

In the rule for code movement, t-move

t

, the location of the thread changes:

to type Γ `w u ::p one must ensure that p is well typed at u, not w; therefore the

premise is Γ `u p. The remaining rules for threads are straightforward. The rules

for (mis)matching are standard. The rules for name creation t-newl
t

, t-newc
t

simply augment the typing environment in the appropriate manner. The other

rules are purely structural.

The extension to systems is also straightforward. The only interesting rule is

t-run
s

for located threads, which has the same structure as t-move

t

. The remain-

ing rules are structural rules, similar to those for threads.

Properties of Typing. We now sketch some results related to the typing system

of Table 5. The following property is immediate from the definition of subtyping.

LEMMA 4.4 (TYPE SPECIALIZATION).

1. If Γ ` w:K and K� L then Γ ` w:L.

2. If Γ `w V:ζ and ζ� ξ then Γ `w V:ξ. �

The following Proposition states that well-typing is preserved when the typ-

ing environment is augmented; for the proof see Appendix A.

PROPOSITION 4.5 (WEAKENING). If Γ ` P and ∆� Γ then ∆ ` P.

In Lemma A.2 of Appendix A we show that the type environment may also be

diminished by removing identifiers that do not occur free in the term being typed.

Resource Access Control in Systems of Mobile Agents 21

TABLE 5 A Type System

Threads:

(t-r
t

)

Γ `w u:chanhζi Γ; wX:ζ `w q

Γ `w u?(X:ζ)q
(t-w

t

)

Γ `w u:chanhζi; V:ζ; p

Γ `w u!hVip

(t-eql
t

)

Γ `w u:L;v:L; p; q

Γ `w if u = v then p else q
(t-eqc

t

)

Γ `w u:A;v:A; p; q

Γ `w if u = v then p else q

(t-move

t

)

Γ `w u:loc Γ `u p

Γ `w u :: p
(t-newl

t

)

Γ; m:M `w p

Γ `w (νm:M)p

(t-str
t

)

Γ `w p; q

Γ `w nil Γ `w �p Γ `w p jq
(t-newc

t

)

Γ; wa:A `w p

Γ `w (νa:A)p

Systems:

(t-run
s

)

Γ ` u:loc Γ `u p

Γ ` uJpK
(t-newl

s

)

Γ; m:M ` P

Γ ` (νm:M)P

(t-str
s

)

Γ ` P; Q

Γ ` nil Γ ` P jQ
(t-newc

s

)

Γ;Λa ` P

Γ ` (νa:Λ)P

Identifiers and Values:

(t-sloc)
Γ(w) � L

Γ ` w:L
(t-id)

Γ(w;u)� ζ

Γ `w u:ζ

(t-eloc)
Γ ` u:L Γ `u ev:eA

Γ `w u[ev]:L[eA]

(t-tup)
8i : Γ `w Ui:ζi

Γ `w eU:eζ

THEOREM 4.6 (SUBJECT REDUCTION).

(a) If P� P0 then Γ ` P if and only if Γ ` P0.

(b) If Γ ` P and P�! P0 then Γ ` P0.

As is often the case, the proof of subject reduction depends heavily on a

substitution lemma.

LEMMA 4.7 (SUBSTITUTION).

If Γ `w V:ζ and Γ; wX:ζ `u p then Γ `
ufjV=Xjg

pfjV=Xjg.

There is no result for substitution in systems since substitution always occurs at

the level of threads. The proofs of these results are in Appendix A.

22 M. Hennessy and J. Riely

4.3 Examples

We now consider some simple type inferences. As a first example consider the

single agent:

P = `Jc?(z:K) z :: a!hViK

At location `, P receives location z on channel c, then moves to z and calls method

a. To be well-typed relative to Γ it is certainly necessary for Γ(`) to have the

form locfc:chanhlocfa:AV ; :::gi; :::g, where AV is the type chanhζVi, and ζV is

the type of V. This typing ensures that P does not cause a runtime error. For

example, let:

Q = kJ` ::c!hki j a?(X)qK

If Γ(k) has the form locfa:AV ; :::g, then the agents P and Q can communicate in

the combined system (P jQ). The first sub-agent of Q moves to ` and communi-

cates with P, the second sub-agent of Q waits at k for the response.

Here there is an a priori agreement between the two agents that any location

transmitted on c will have a publicly available channel a. It is often desirable to

generate new channels, as described in Example 3. Such an agent is the following

Q0:

Q0

= kJ(νb:AV) ` ::c!hk[b]i j b?(X)qK

Here a new channel b of the appropriate type is generated and the structured

value k[b] is transmitted. The corresponding version of the first thread is

P0

= `Jc?(z[x] : loc[AV]) z :: x!hViK

Rather than communicating over the public channel a, the threads use the private

channel b, which is bound to x in the receiver. The use of structured values (or

existential types, if you prefer) is essential to get P0 to be well typed; the analysis

of the thread z ::x!hVi is performed in an environment in which the identifier z is

known to contain the capability x:AV . Note that these agents may even be well

typed in an environment where k has no known capabilities (i.e. Γ(k) = loc).

A mixture of public and private channels is possible by combining the mech-

anisms of the previous two examples; for example:

P00

= `Jc?(z[x]:ζz) z :: (x!hVi j a?(y)p)K

Q00

= kJ(νb:AV) ` ::c!hk[b]i j b?(X) a!hXiqK

Suppose that ζz = locfa:AVg[AV]. Again a new channel b is generated and the

value V is bounced back and forth at k using b and the public channel a.

We finish with some examples of systems that cannot be typed. The simplest

case is the misuse of a channel. The system

`Jc?(x) x ::pK j kJ` ::c!ha;biqK

Resource Access Control in Systems of Mobile Agents 23

is not typable in any typing environment. The two agents make inconsistent re-

quirements on the type of the channel c at the location `. The first demands a type

of the form chanhloci while the second requires a type of the form chanhζa;ζbi.

A more interesting example is the following:

`Jc?(z[x]) (νa) d!hz[x;a]iK

This agent inputs a location z with channel x, then allocates a channel at ` and

then attempts to send z with the channels x and a. This term is clearly unsound

when a location other than ` is sent on c; i.e. channel a is not known to be

available at z. A similar problem occurs in the term:

`Jc?(z[x]) if x = a then q0

K

This term cannot be typed because the matching rule t-match

t

requires that the

two identifiers being compared (x and a) be located at `, and x is not known to

be located at `.

Finally, suppose Γ is a type environment in which Γ(k;c) = chanhlocfa:Agi.

Then the agent kJc?(z) z :: b!hViK cannot be typed relative to Γ. To do so it would

be necessary to type b!hVi at location z:locfa:Ag.

4.4 The Tagged Language and Type Safety

We now formalize a suitable notion of runtime error for our language and prove

that well-typed systems are free of such errors. To do so, the language must be

enriched with permissions; a runtime error occurs, then, when a name is used

without permission. In [25] we defined such an enriched language by placing

tags on every instance of a name. Here we take an alternative approach. Rather

than tag every instance of a name, we tag threads; thus as a thread evolves,

its accumulated capabilities are explicitly recorded. A runtime error occurs if

a thread attempts to use a name contrary to the limitations imposed by these

explicit capabilities.

The syntax and semantics of the tagged language are given in Table 6. The

syntax of threads and values is unchanged from that of Table 1; only the system

level is affected, and here only the clause for agents. Each agent of the original

language `JpK is tagged with a closed type environment Γ which represents the

capabilities (or permissions) of the agent.

`JpK
f`:locfa:A;b:Bg;k:locfa:A0

gg

has knowledge of resources a and b at ` and of resource a at k. In addition to

recording the names of available resources, the tag also records the permissions

that the agent has acquired for the use of that resource (the types A, B and A0).

This additional information allows fine control in the definition of runtime error.

The reduction semantics of Section 2.2 is adapted to show how tags evolve

over time. To avoid confusion, we write P 7�! P0 for tagged reduction. The

24 M. Hennessy and J. Riely

TABLE 6 The Tagged Language

Syntax for Systems (Threads, Ids, Patterns and Values from Table 1):

P ::= `JpKΓ nil P jQ (νa:Λ)P (νm:M)P

Reduction (rules r-str from Table 2):

(r

t

-move) `Jk :: pKΓ 7�! kJpKΓ
(r

t

-comm) `Ja!hVipKΓ j `Ja?(X:ζ)qK∆ 7�! `JpKΓ j `JqfjV=XjgK∆uf
`

V :ζg
(r

t

-eq
1

) `Jif e = e then p else qKΓ 7�! `JpKΓ
(r

t

-eq
2

) `Jif e = d then p else qKΓ 7�! `JqKΓ if e 6= d

Structural equivalence (rule s-extr from Table 3):

(s

t

-nil) `JnilKΓ � nil

(s

t

-split) `Jp jqKΓ � `JpKΓ j `JqKΓ
(s

t

-itr) `J�pKΓ � `JpKΓ j `J�pKΓ
(s

t

-newc) `J(νa:A)pKΓ � (νa:f`:Ag)`JpKΓ;

`

a:A

(s

t

-newl) `J(νk:K)pKΓ � (νk:K)`JpKΓ;k:K if k 6= `

Typing relation (all rules from Table 5 but t-run
s

):

(t

t

-run
s

)

∆ ` u:loc ∆ `u p

Γ
 `JpK∆
Γ� ∆

only non-trivial change is to the rule r-comm. Before discussing it, we briefly

describe the changes to the other rules. First consider the structural equivalence

reported in Table 6. In the rules s
t

-split and s

t

-itr, note that when an agent splits,

each of the newly created “child” agents takes a copy of the capabilities provided

by the “parent”; e.g. `Jp jqKΓ � `JpKΓ j `JqKΓ. Note also that when a “private”

name becomes “public” (s
t

-newc and s

t

-newl) the agent is given the capability

to use the once private name.

In the reduction rules r
t

-move and r

t

-eq, agents preserve their capabilities as

they reduce. Only in rule r

t

-comm are capabilities modified. The rule uses the

notation “f
`

V :ζg” which defines a type environment in which the names in V are

assigned the types in ζ at `. For example:6

f

`

(a;k[b]):(A; locfc:Cg[B])g = f`:locfa:Ag;k:locfc:C;b:Bgg

6 The notation f

`

V :ζg is defined by induction on V similarly to the definition of Γ; wV:ζ given on

page 19. As there, the first case of the definition applies only if ζ is not a simple location type K.

f

`

u:ζg = f`:locfu:ζgg
f

`

eU:eζg = f

`

U
1

:ζ
1

gu �� �u f

`

Un:ζng

f

`

w[eu]:K[

eA]g = fw:Kgufweu:eAg

Some properties of this definition are stated in Lemma A.6 of Appendix A.

Resource Access Control in Systems of Mobile Agents 25

In the rule r

t

-comm, which states

`Ja!hVipKΓ j `Ja?(X:ζ)qK∆ 7�! `JpKΓ j `JqfjV=XjgK∆uf
`

V :ζg

there are two agents at `: one willing to send the value V, and the other wait-

ing to receive a value into X. Recall that obj(A) denotes the transmission type,

or object type used in the channel type A, i.e. obj(chanhζi) = ζ. The capabil-

ities offered by the sender are determined by obj(Γ(`;a)), i.e. the type that the

sender assigns to channel a. The capabilities expected by the receiver are de-

termined by the reception type ζ, which must be a supertype of obj(∆(`;a)). If

the sender is unwilling to send sufficient capabilities to satisfy the receiver (i.e.

obj(Γ(`;a)) � ζ), then a runtime error will occur; we discuss this later. Other-

wise the communication proceeds and, after receiving the value V, the receiver’s

capability set is augmented with the capabilities specified by V and ζ at `.

As an example, let ζ = locfg[C] in the following tagged system:

`Ja!hk[c]i pK
f:::; k:locfb:B;c:Cgg

j `Ja?(z[x]:ζ) qK
f:::; k:locfd:Dgg

After the communication the system is:

`JpK
f:::; k:locfb:B;c:Cgg

j `Jqfjk[c]=z[x]jgK
f:::; k:locfd:D;c:Cgg

The receptor has gained capabilities through this communication, as mediated

through the reception type ζ.

The typing system is extended to the tagged language simply by changing the

rule t-run
s

, as shown in Table 6. To help distinguish tagged and untagged sys-

tems, we use the symbol
 when writing typing judgments for tagged systems.

(On threads and values the syntax and typing systems are identical.) To infer

Γ
 `JpK∆ it must be the case that Γ� ∆ and ∆ `
`

p. The first requirement simply

verifies that the tags are consistent with the global types specified in Γ. The sec-

ond requirement guarantees that the agent uses the resources in the system only

as it is allowed. Consider:

kJa!hiK
f:::; k:locfc:Cgg

Here the agent is attempting to use the channel a at k, which it is not permitted to

do. This term cannot be well-typed, even under a type environment that defines

channel a at k.

THEOREM 4.8 (TAGGED SUBJECT REDUCTION).

If Γ
 Q and Q 7�! Q0 then Γ
 Q0.

The proof of subject reduction is similar to the proof for the untagged language;

the details are in Appendix A.

Before describing runtime error, we establish that tagged and untagged re-

duction are closely related. To do this, we define a function “tagΓ” which takes

26 M. Hennessy and J. Riely

a (closed) system in the untagged language and returns the set of tagged terms

which can safely be derived from it using Γ. Throughout the rest of this dis-

cussion we will use P to range over untagged terms and Q to range over tagged

terms. The function “tagΓ” is defined on the structure of systems as follows:

tagΓ(nil) = fnilg
tagΓ(`JpK) = f`JpK∆ j Γ� ∆ and ∆ `

`

p g

tagΓ(P1 jP2) = fQ1 jQ2 j Qi 2 tagΓ(Pi) g

tagΓ((νm:M)P) = f(νm:M)Q j Q 2 tag
(Γ;m:M)

(P) g

tagΓ((νa:Λ)P) = f(νa:Λ)Q j Q 2 tag
(Γ;Λa)

(P) g

The definition of tagΓ(P) is adapted directly from the rules for typing tagged

systems, therefore the following Lemma can be trivially verified:

LEMMA 4.9.

(a) tagΓ(P) is nonempty if and only if Γ ` P.

(b) If Q 2 tagΓ(P) then Γ
 Q. �

Note that a well-typed system can be regarded as a tagged system in which

the tags on threads can be intuitively, and automatically, inferred from the typing.

If we know that the system is well-typed with respect to Γ, then the function

“tagΓ” can be determinized, thus providing a method for generating such a term.

To do so, we need only simplify the rule for agents to tagΓ(`JpK) = f`JpKΓg. We

will write “tagΓ(P)” to refer to this determinized version of the function.

The following Proposition shows that tagged and untagged reduction can be

considered interchangeable.

PROPOSITION 4.10. Suppose Q 2 tagΓ(P), then

(a) P�! P0 implies 9Q0 : Q0

2 tagΓ(P
0

) : Q 7�! Q0

(b) Q 7�! Q0 implies 9P0 : Q0

2 tagΓ(P
0

) : P�! P0

Proof. In both cases, one must first establish a similar result for the structural

equivalence, using the subject reduction results for the structural equivalence.

The main results can then be verified. The proof is by induction on the definition

of reduction, using the Subject Reduction Theorems for the tagged and untagged

semantics. The proof is simple and tedious and left to the interested reader. �

Resource Access Control in Systems of Mobile Agents 27

TABLE 7 Runtime Errors

(e-eql) `Jif k = m then p else qKΓ
err
7�! if k =2 Γ or m =2 Γ

(e-eqc) `Jif a = b then p else qKΓ
err
7�! if a =2 Γ(`) or b =2 Γ(`)

(e-snd) `Ja!hVipKΓ
err
7�! if Γ

`

(V) � obj(Γ(`;a))
(e-rcv) `Ja?(X:ζ)qK∆

err
7�! if obj(∆(`;a)) � ζ

(e-comm) `Ja!hVipKΓ j `Ja?(X:ζ)qK∆
err
7�! if obj(Γ(`;a))� obj(∆(`;a))

(e-new)
P err
7�!

(νe)P err
7�!

(e-str)
P err
7�!

P jR err
7�!

P� Q Q err
7�!

P err
7�!

Runtime Errors. Intuitively, a runtime error occurs whenever an agent uses a

name contrary to the capabilities it has acquired for that name. This informal

idea is readily formalized in the tagged language. The definition is given in

Table 7 as a unary predicate over tagged systems P err
7�!. We write P err

7�X�! for

:(P err
7�!). For example, the rule e-eqc states that it is in an error for an agent to

attempt to compare two channel names that do not belong at the current location.

There is no rule for the move operator, because in the current context there are

no errors associated with that operator (but see Section 6).

The most interesting axioms are for communication. These use the notation

Γ
`

(V) to denote the least type, if any, which the typing environment Γ can assign

to the value V at `. Γ
`

(V) is defined inductively on the structure of V:

Γ
`

(a) = Γ(`;a)
Γ

`

(k[V]) = Γ(k)[Γk(V)]

Γ
`

((V1:::Vn)) = (Γ
`

(V1):::Γ
`

(Vn))

As usual, Γ
`

(V) is strict in undefinedness; for example, if a =2 dom(Γ(`)), then

Γ
`

((a;b)) is undefined. One can easily check the following Lemma.

LEMMA 4.11. For any value V, if Γ `
`

V:ζ then Γ
`

(V) is defined and Γ
`

(V)� ζ,

and therefore by Lemma 4.4 Γ `
`

V:Γ
`

(V). �

The simplest form of communication error is an arity mismatch, i.e. the sent

value V cannot be typed at the reception type ζ. As discussed in Section 4.3,

such errors in our setting include senders which communicate values without

sufficient permission, or receivers that attempt to secretly “bump up” the capa-

bilities on a received name. A simple rule for communication errors is thus:

`Ja!hVipKΓ j `Ja?(X:ζ)qK∆
err
7�! if Γ(V) � ζ

This rule requires that the sender have all of the permissions on V that the re-

ceiver requests (via ζ). While this rule prevents senders from “making up” capa-

28 M. Hennessy and J. Riely

bilities, it doesn’t keep receivers from doing so. For example, let

A = chanhlocfb:Bgi C = chanhAi

and suppose Γ(`;c) = chanhAi. Then using the rule proposed above, the system

`J(νa:A) c!hai a!hkiKΓ j `Jc?(x:A) x?(z:locfb:B;d:Dg) qK∆

will not produce an error, as long as ∆(k) actually has the b and d capabilities.

However, the receiving agent has clearly gained more capabilities at k than the

sender intended (indeed, more capabilities the sender has itself), namely access

to d. The problem here is that the intermediary role of channel a is ignored. Thus

we are led to the refined rules given in Table 7. Using these rules (in particular

e-rcv), the agent

`Jc?(x:A) x?(z:locfb:B;d:Dg) qK∆

will produce an error after its first input.

With this motivation, let us discuss each of the rules in turn. There are three

different reasons why a runtime error might occur due to communication.

� The sender attempts to forge capabilities. Rule e-snd says that V may not

be sent on a if a requires more capabilities than available at V. Thus an

error occurs if the sender’s view the value to be sent does not satisfy the

requirements of (the sender’s view) of the communication channel a. Note

that this includes the possibility that Γ(`;a) is not defined, i.e. the sender has

no a capability at `.

� The receiver attempts to forge capabilities. Rule e-rcv says that a sender may

not assign a received value more capabilities than are allowed by a. Thus

an error occurs if the receiver’s view of the value to be received exceeds the

capabilities of (the receiver’s view) of the values communicated on channel

a. Again this includes the case when ∆(`;a) is undefined.

� The sender and receiver cannot agree on the use of a. Rule e-commprecludes

this possibility. Thus an error occurs if the sender’s view of channel a is

incompatible with the receiver’s view.

The interested reader is invited to check that the examples of systems which

cannot be typed, given at the end of the last section, can all formally give rise to

runtime errors.

Taken together, the rules say that in order for the system

`Ja!hVipKΓ j `Ja?(X:ζ)qK∆

to avoid runtime error, each of the following constraints must be satisfied:

Γ(V) � obj(Γ(`;a))� obj(∆(`;a)) � ζ

Resource Access Control in Systems of Mobile Agents 29

THEOREM 4.12 (TYPE SAFETY). Γ
 Q implies Q err
7�X�!.

Proof. We prove the contrapositive, namely Q err
7�! implies that for no Γ can we

prove Γ
 Q. The proof proceeds by induction on the definition of Q err
7�!. For

the rule involving the structural equivalence, we the Subject Reduction Theo-

rem, which states that if Q � Q0 then Γ ` Q iff Γ ` Q0. The other cases are all

straightforward. We present a representative case, e-snd. The rule states:

`Ja!hVipKΓ
err
7�! if Γ

`

(V) � obj(Γ(`;a))

By way of contradiction, assume that ∆
 `Ja!hVipKΓ. We show that from this

premise we may conclude Γ
`

(V) � obj(Γ(`;a)), leading to a contradiction.

Using the premise and the rule t

t

-run
s

, we have that Γ `
`

a!hVip. This

judgment can only be achieved using t-w
t

, and therefore we have that Γ `
`

a:chanhζi;V:ζ for some ζ. Using Lemma 4.11, we therefore may conclude

that Γ
`

(V) � ζ. Using similar reasoning, we have chanhζi = Γ(`;a), and thus

ζ = obj(Γ(`;a)). We therefore may conclude that Γ
`

(V) � obj(Γ(`;a)), as de-

sired. �

The Type Safety and Subject Reduction Theorems ensure that well-typed

systems do not give rise to runtime errors. Specifically if Γ ` P then we can

take P to represent the tagged term tagΓ(P). Proposition 4.10 ensures that

P and tagΓ(P) have essentially the same reduction sequences. Moreover, if

tagΓ(P) 7�!
� Q0 then Q0

err
7�X�!. This later property follows from a more general

corollary:

COROLLARY 4.13.

(a) If Γ ` P and P�!� P0 then tagΓ(P
0

) is nonempty.

(b) Q0

2 tagΓ(P
0

) implies Q0

err
7�X�!.

(c) If Q 2 tagΓ(P) and Q 7�!� Q0 then Q0

err
7�X�!.

Proof. (a) follows from Proposition 4.10, since Γ ` P implies that tagΓ(P) is

nonempty. (b) follows from Lemma 4.9b and Theorem 4.12. (c) follows from

Lemma 4.9b, Theorem 4.8 (using induction on 7�!�) and Theorem 4.12. �

30 M. Hennessy and J. Riely

5 An Improved Typing System

Here we argue that the typing system of the previous section is too restrictive

and suggest a simple modification which enables a much larger class of systems

to be typed.

Consider the following thread:

a?(z1[x1]:ζ1) b?(z2[x2]:ζ2) z1 ::d!hx1;x2i

This thread cannot be typed, and reasonably so, as it can easily give rise to run-

time errors. The thread receives location z1 with private channel x1 and location

z2 with private channel x2. The variables z1 and z2 may, of course, be bound

to different locations at runtime; nonetheless, the thread attempts to use x2 as

though it were local to z1 providing the potential for a runtime error.

If the use of x2 at z1 is guarded by the condition z1 = z2, however, no such

runtime error can occur:

r
def
= a?(z1[x1]:ζ1) b?(z2[x2]:ζ2) if z1 = z2 then z1 :: d!hx1;x2i (*)

Assuming that for some Ei, the types ζi satisfy the constraints

ζ1 � locfd:chanhE1;E2ig[E1] ζ2 � loc[E2] (**)

then this term (more formally, a tagged version of it) can never give rise to a

runtime error. The output on d is only ever executed when it has been established

that the two received channels are at the same location. Nonetheless, our type

system will reject it. The reason is that the rule for matching takes no notice of a

match:

Γ `w u:E;v:E; p; q

Γ `w if u = v then p else q

To type “if u = v then p else q” the subterms p and q must be well-typed with

respect to the original type environment Γ.

Consider the thread r given in (*). Suppose that we are attempting to prove

that ∆ `
`

r, where the ζi which appear in r are the greatest types that satisfy (**)

(i.e., take the inequations in (**) to be equations). Then when typing the subterm

“d!hx1;x2i” of r we are obliged to show

∆; z1:locfd;x1g; z2:locfx2g `z1
d!hx1;x2i

but this clearly is not provable since x2 is undefined at z1.

There are safe ways to type such terms, however. One approach would be

to augment the type environment with an equivalence relation between types.

The solution we adopt extends the definition of the typing relation (Table 5)

with one additional rule, given in Table 8. We write Γ `0 P to indicate that P is

well-typed using this slightly weaker typing system; similarly we write Γ
0 Q,

Resource Access Control in Systems of Mobile Agents 31

TABLE 8 An Improved Type System

All rules from Table 5 except t-eql
t

.

(t-eql0
t

)

Γ `0 u:K;v:L Γ `0w q Γufu:L;v:Kg `0w p

Γ `0w if u = v then p else q

if Q is tagged. Whereas the use of an equivalence relation in the type system

is somewhat more general, our approach has the advantage of simplicity and is

sufficient for all of the examples we have found.

The new typing system improves over the old by replacing t-eql
t

with the

new rule t-eql0
t

for matching locations. In the old type system, matching is “a

no-op” in the sense that the fact that two identifiers have been found to be equal

provides no “advantage” to the thread that makes the match. The new rule allows

the system to type threads that do take advantage of a match.

t-eql0
t

states that the thread if u = v then p else q is well-typed to run at w,

relative to Γ if u and v are locations, q is well-typed with respect to Γ and p is

well-typed with respect to the augmented environment which equates the capa-

bilities of u and v. The weaker requirement on p is reasonable because after the

match u = v these locations are known to be identical. Note that location types

all have a common supertype “loc”, and therefore the rule t-eql0
t

can be applied to

any match between location names simply by taking L and K to be loc, although

in this case there is no advantage to using t-eql0
t

over the old rule t-eql
t

. We have

not added a rule for channels because subtyping on channel types is trivial, and

therefore the original rule t-eqc
t

is sufficient.

The new type system would be useless if it weren’t sound. All of the results

from Section 4.2 and Section 4.4 also apply to the improved type system. We

state only subject reduction and type safety below. For proofs see Appendix A.

THEOREM 5.1 (SUBJECT REDUCTION, TYPE SAFETY).

(a) If Γ `0 P and P�! P0 then Γ `0 P0.

(b) If Γ
0 P and P 7�! P0 then Γ
0 P0.

(c) Γ
0 P implies P err
7�X�!.

Examples. Revisiting example (*), we see that to derive ∆ `0
`

r it is sufficient to

establish:

∆; z1:locfd;x1g; z2:locfx2g `
0

`

if z1 = z2 then z1 ::d!hx1;x2i

Now using the new rule t-eql0
t

this can be reduced to

∆; z1:locfd;x1;x2g; z2:locfd;x1;x2g `
0

`

z1 :: d!hx1;x2i

which is straightforward to establish, assuming the constraints of (**).

32 M. Hennessy and J. Riely

The augmented type system is also needed in order to type the “remote chan-

nel creation” code reported in Example 4 of Section 3. There we presented an

encoding of

T(h)(` :: (νa;b) h :: p (†)

as:

T(h)((νr) ` :: (νa;b) h :: r!h`[a;b]i

j r?(z[x;y]) if z = ` then pfjz[x;y]=̀ [a;b]jg

(‡)

Using the type system of Section 4.2, the fact that (†) is well-typed does not

guarantee that (‡) is well-typed; using t-eql0
t

, however, this property can be es-

tablished. The “routed forwarding” example (Example 5) also requires the im-

proved type system.

In fact there are many cases in which it is useful for an agent to accumulate

knowledge of the capabilities of a location as computation proceeds. This ap-

pears to be essential for coding certain types of programs in a language such as

ours where access to distributed resources is controlled using explicit capabili-

ties.

As a particularly simple example, consider a server agent that provides infor-

mation about a freshly created location piecemeal:

kJ(νa;b;c) (ν`:locfa;b;cg) d!h`[a]i e!h`[b]i f !h`[c]iK

Here the server creates a new location ` with three local methods a, b and c and

gradually exports knowledge of ` and its resources, one at a time, on the public

channels d, e and f . A client of such a server, knowing to expect this trickle of

information, might take the form:

kJd?(z1[x1]) e?(z2[x2]) if z1 = z2 then f ?(z3[x3]) if z1 = z3 then qK

As communication with the server agent proceeds, the client gets more and more

capabilities at `.

In this case, it might be nice to have a type system in which the dynamic

checks were unnecessary, i.e. in which the dependency between the zi could be

expressed statically. We discuss this further in the conclusion.

Resource Access Control in Systems of Mobile Agents 33

6 Type Extensions

In this section we show how to extend our results to a richer type system with

non-trivial subtyping on channel types. Following Pierce and Sangiorgi [24],

channel subtyping is defined using read and write capabilities. Our requirement

that all types be FBC, however, forces us to follow a more general approach than

that of [24]. Examples of the use of these extended types may be found towards

the end of the section.

Types and Subtyping. The definition of extended pre-types is given in Table 9,

where we explicitly introduce syntactic categories for location capabilities κ-λ
and channel capabilities α-β. We define types below, after discussing subtyping.

In the extended language we will require explicit capabilities to perform op-

erations on locations; thus the set of location capabilities is extended from that

of Section 4. The new capabilities are:

� move, the ability to move to the location, and

� newc, the ability to create a new local channel.

In other languages, such as that considered in [25] other capabilities might be

defined, such as the capability to halt or migrate a location or the ability to create

sublocations.

Since we allow subtyping on channel types the definition of subtyping on

location types must generalize that of previous sections. There, subtyping corre-

sponded to reverse subset inclusion on capabilities. For the extended type sys-

tem, we have that K � L if for every capability λ 2 L there exists a capability

κ2 K which is “at least as good”, i.e. κ� λ. Here the location capabilities κ and

λ are compared inductively using the associated types, e.g. a:A� a:B if A� B.

We also define capabilities for channels, which may be interpreted as follows:

� rhζi grants permission for an agent to receive values V from a channel and

then to use each V with at most the permissions specified by ζ; and

� whξi grants permission for an agent to send values V into a channel, as long

as that agent has, on each V sent, at least the permissions specified by ξ.

Subtyping for channels is just as for locations: A� B if for every capability

β 2 B there exists a capability α 2 A such that α� β. But the subtyping relation

on channel capabilities is more interesting:

rhζi � rhζ0

i if ζ � ζ0

whξi � whξ0

i if ξ0

� ξ
As one should expect from the intuitive descriptions given above, the read capa-

bility is covariant, whereas the write capability is contravariant. Thus a receiver

can always take fewer capabilities than specified by ζ, whereas a sender can

always send more capabilities than specified by ξ.

34 M. Hennessy and J. Riely

TABLE 9 Extended Pre-Types

Capabilities: Subtyping:

κ ::= move newc κ � κ
a:A a:A � a:B if A� B

α ::= rhζi rhζi � rhζ0

i if ζ � ζ0

whξi whξi � whξ0

i if ξ0

� ξ
Pre-Types:

K ::= locf

eκg K � L if 8λ2 L : 9κ 2 K : κ� λ
A ::= chanf

eαg A � B if 8β2 B : 9α 2 A : α� β
ζ ::= A eζ eζ � eξ if 8i : ζi � ξi

K[

eA] K[

eA] � L[eB] if K� L and eA� eB

DEFINITION 6.1 (EXTENDED TYPES).

(a) A location pre-type K is a type if a:A 2 K and a:A0

2 K imply A = A0.

(b) A channel pre-type A is a type if:

rhζi 2 A and rhζ0

i 2 A imply ζ = ζ0

whξi 2 A and whξ0

i 2 A imply ξ = ξ0

rhζi 2 A and whξi 2 A imply ξ� ζ

(c) Pre-types of the form eζ and K[

eA] are types if their constituent components

are types. �

As before, location types are allowed at most one capability for each channel.

Channel type are also constrained to have at most one read and one write ca-

pability. The final constraint on channel types is a consistency requirement. It

prevents agents from “fabricating” capabilities. For example, it prevents an agent

from sending a value at type locfa:Ag and then receiving the same value at type

locfa:A;b:Bg. We discuss this further after presenting the Soundness Theorem

for the typing system.

Note that locfg is a supertype of every simple location type and chanfg is a

supertype of every channel type.

Simple and “PS” Types. The extended types include the “simple” types stud-

ied in Sections 4 and 5. The simple channel type chanhζi is here identified with

the type chanfrhζi;whζig. On simple types, the subtyping relation of Table 9 de-

generates to that of Table 4. To establish chanfrhζi;whζig � chanfrhξi;whξig,
it is required that both ζ� ξ and ξ� ζ; therefore ζ and ξ must be identical.

Readers that are familiar with [24] will notice that Pierce and Sangiorgi’s

channel types — “PS” types — are also representable in our type system (ig-

noring recursion). The PS read type [ζ]r is identified with chanfrhζig, the PS

Resource Access Control in Systems of Mobile Agents 35

write type [ζ]w is identified with chanfwhζig, and the PS read/write type [ζ]rw is

identified with chanfrhζi;whζig. For these PS types, our definition of subtyping

coincides with that of Pierce and Sangiorgi.

Our channel types include many types that are not definable using the system

of Pierce and Sangiorgi, however. For example, the type

C = chanfrhlocfa:Agi;whlocfa:A;b:Bgig

is not expressible as a PS type. Nonetheless, it is easy to see how such types

arise when agents are granted different permissions on the names in a system.

Say that agent P has a channel c at type C. The type of the channel allows P to

use channel a at locations that it reads from c. Other agents, however, may have

been granted additional permissions on c. For example, agent Q may be able to

use both channels a and b at locations read from c. Thus, if P wishes to send a

location k on c, it is required that P know that both a and b are defined at k; thus

P must have permissions for both a and b at k. This is true even though P itself

cannot read k from c into a variable z and then immediately use channel b at z.

Finite Bounded Completeness. Before we can adapt the typing rules of Table 8

to this new language for types or describe the tagged language, we must first

define a partial meet operator u and thus prove that the subtype relation is FBC.

Because the type system has a contravariant operator, the definition of meet u

requires that the type language also have a join t.

The definitions of the partial meet and join operators are given in Table 10. To

make the definitions more readable, we write types simply as sets of capabilities,

dropping the chan and loc. We also write “a: – =2 K” as shorthand for “there

exists no A such that a:A 2 K.” Similarly, “rh–i =2 A” is shorthand for “there

exists no ζ such that rhζi 2 A.” Also, let γ range over the set fmove;newcg of

primitive capabilities.

The definition is long, but it is not complicated, simply rather tedious. Intu-

itively, the meet of two types takes the union of their capabilities, whereas the

join takes the intersection. In the case that two types have conflicting capabili-

ties, the meet is undefined. On the other hand, the join simply ignores conflicting

capabilities, leaving them out. For example, suppose that we are looking at two

incompatible channel types, one of which has a capability to read pairs and the

other which has a capability to read triples. The meet is undefined; it is not pos-

sible have a channel that can read both pairs and triples. The join is defined, but

does not include a read capability.

36 M. Hennessy and J. Riely

TABLE 10 Partial Meet and Join Operators for Extended Types

For location types, KuK0 is undefined if there exists an a such that a:A 2 K and

a:A0

2 K0 and AuA0 is undefined. Otherwise:

KuK0

= fγ j γ 2 K or γ 2 K0

g

[fa:A j a:A 2 K and a: – =2 K0

g

[fa:A0

j a: – =2 K and a:A0

2 K0

g

[fa:A00

j a:A 2 K and a:A0

2 K0 and A00

= AuA0

g

For channel types, AuA0 is undefined if any of the following hold:

rhζi 2 A and rhζ0

i 2 A0 and ζuζ0 undefined

whξi 2 A and whξ0

i 2 A0 and ξtξ0 undefined

rhζi 2 A and whξ0

i 2 A0 and ξ0

� ζ
whξi 2 A and rhζ0

i 2 A0 and ξ � ζ0

Otherwise the definition is:

AuA0

= f rhζi j rhζi 2 A and rh–i =2 A0

g

[f rhζ0

i j rh–i =2 A and rhζ0

i 2 A0

g

[f rhζ00

i j rhζi 2 A and rhζ0

i 2 A0 and ζ00

= ζuζ0

g

[f whξi j whξi 2 A and wh–i =2 A0

g

[f whξ0

i j wh–i =2 A and whξ0

i 2 A0

g

[f whξ00

i j whξi 2 A and whξ0

i 2 A0 and ξ00

= ξtξ0

g

The join on location types (KtK0) and on channel types (AtA0) is always de-

fined:

KtK0

= fγ j γ 2 K and γ 2 K0

g

[f a:A00

j a:A 2 K and a:A0

2 K0 and A00

= AtA0

g

AtA0

= f rhζ00

i j rhζi 2 A and rhζ0

i 2 A0 and ζ00

= ζtζ0

g

[f whξ00

i j whξi 2 A and whξ0

i 2 A0 and ξ00

= ξuξ0

g

For other types, u and t are defined by strict homomorphic extension as in

Definition 4.2. (Both meet and join are undefined on types that structurally dis-

similar.)

Resource Access Control in Systems of Mobile Agents 37

On channels, in order for frhζi;whξig u frhζ0

i;whξ0

ig to be defined, the

types must satisfy the following constraints. (In the figure, arrows indicate in-

clusion in the subtype relation, i.e. “ξ! ζ” means “ξ� ζ.”)

ξ ξ0

ζ ζ0

SS'

'

KK

�

�

::

v

v

v

v

v

v

ddH

H

H

H

H

H

As an example of the use of these operators, consider the following:

L = locfmove;a:A;b:Bg A = chanfwhlocfd:D;e:Egi; rhlocfd:Dgig

K = locfmove;a:A0

;c:Cg A0

= chanfwhlocfd:D; f :Fgig

Then we have:

L u K = locfmove;a:(AuA0

);b:B;c:Cg

L t K = locfmove;a:(AtA0

)g

A u A0

= chanfwhlocfd:Dgi; rhlocfd:Dgig

A t A0

= chanfwhlocfd:D;e:E; f :Fgig

PROPOSITION 6.2. The operator u defined in Table 10 is a partial meet opera-

tor.

Proof. By induction on the definition of u one can establish that u and t are

commutative and associative. Therefore, to establish the result we need only

show that for every type ζ, ξ, η:

(a) η � ζ and η� ξ imply ζuξ defined and η � ζuξ
(b) ζ� η and ξ� η imply ζtξ defined and ζtξ � η
(c) ζuξ defined implies ζuξ � ζ
(d) ζtξ defined implies ζ � ζtξ

First note that �, u and t are only defined for structurally similar types. The

properties (a)-(d) may therefore be established using structural induction. (a)

and (b) must be proved together as a single induction hypothesis; likewise (c)

and (d). The most interesting case is for channels. We describe this case for each

of the four properties.

(a) Suppose that A00

� A and A00

� A0. We must show that AuA0 is defined and

that A00

� AuA0. The proof proceeds by case analysis on the capabilities in

A and A0. We treat the most difficult case, in which A and A0 each contain

both read and write capabilities; the other cases can immediately be derived

from this one. Let:

A = chanfrhζi; whξig
A0

= chanfrhζ0

i; whξ0

ig

A00

= chanfrhζ00

i;whξ00

ig

38 M. Hennessy and J. Riely

Using the assumption (A00

! A and A00

! A0), the induction hypothesis and

the fact that A00 is a type, we have:

ξtξ0 ζuζ0

ξ ζ

ξ0 ζ0

ξ00 ζ00

induction
//

assumption

''

O

O

O

O

O

O

O

O

O

O

assumption

77

o

o

o

o

o

o

o

o

o

o

A00 a type
//

induction
//

assumption
77

o

o

o

o

o

o

o

o

o

o

assumption
''

O

O

O

O

O

O

O

O

O

O

(*)

One can easily check that the conditions for definedness of meet at channel

types (Table 10) are satisfied for AuA0, and thus:

AuA0

= chanfrhζuζ0

i;whξtξ0

ig

From (*) it follows that rhζ00

i � rhζu ζ0

i and whξi � whξt ξ0

i. Thus A00

�

AuA0, as required.

(b) Assume that A � A00 and A0

� A00. We must show that At A0

� A00; i.e.

if α 2 A00 then there exists a β 2 AtA0 such that β � α. Suppose that A00

contains a read capability rhζ00

i. Then by the assumption we have that for

some ζ and ζ0:

rhζi 2 A ζ � ζ00

rhζ0

i 2 A0 ζ0

� ζ00

By induction, ζtζ0 is defined and ζtζ0

� ζ00. Therefore rhζtζ0

i 2 AtA0.

Using the definition of capability subtyping, we also have rhζt ζ0

i � rhζ00

i,

as required.

The argument is similar when A00 contains a write capability whξ00

i.

(c) Suppose that Au A0 is defined. We show that AuA0

� A. Suppose that

whξi 2A; we must show that AuA0 has a write capability dominated by whξi.
There are two possibilities to consider. (1) First, suppose that A0 contains no

write capability (wh–i =2 A0). Then, by definition whξi 2 AuA0, and the proof

is done. (2) Otherwise it must be that for some ξ0, whξ0

i 2 A0. Since AuA0

is defined, it must be that ξt ξ0 is defined, and therefore whξt ξ0

i 2 AuB.

By induction, ξ� ξtξ0 and thus whξtξ0

i � whξi, as required.

The argument is similar when A contains a read capability rhξi.

(d) Suppose that At A0 is defined. We show that A � At A0. Suppose that

whξ00

i 2 AtA0. Therefore it must be that for some ξ, ξ00:

ξ00

= ξtξ0

whξi 2 A whξ0

i 2 A0

By induction, ξtξ0

� ξ. Thus, whξi � whξtξ0

i, as required.

The argument is similar when AtA0 contains a read capability rhζ00

i. �

Resource Access Control in Systems of Mobile Agents 39

We now demonstrate that no partial meet operator exists for PS types. To

make the counterexample readable, let us use the following abbreviations:

rhζi = chanfrhζig whζi= chanfwhζig rwhζi = chanfrhζi;whζig

There are three PS types of the form iohi, where io is an “i/o tag” (io ::= r w rw).

These are ordered by subtyping as follows, where we drop the final empty brack-

ets, writing “io” instead of “iohi”:

rw

r w

__?

?

?

??

�

�

�

Next, consider types of the form iohio0

hii:

rhwi

rhrwi

rhri whri

whrwi

whwi

rwhri

rwhrwi

rwhwi

??

�

�

__?

?

??

�

�

__?

?

__?

?

??

�

�

PP NN

ggO

O

O

O

QQ

Already here we can see that the type system is not FBC. For example the types

rhri and whrwi have lower bounds, but they have no greatest lower bound: rwhri

and rwhrwi are incomparable.

The Typing System. The typing relation Γ `00 P is defined in Table 11. The

new typing system has exactly the same rules for values (and most of the same

rules for systems) as Table 5. The new rules for input, output, movement and

channel creation are stronger than the old rules: they require explicit capabilities

for each of these actions. Because restriction is treated structurally, we must also

strengthen the rule for channel creation at the system level. (Without the stronger

rule, subject reduction fails for the structural equivalence.) The rule for matching

location names is as in the previous section. This approach is extended to channel

names in the obvious way (rule t-eqc00
s

); the rule is useful since channel names

support non-trivial subtyping, unlike the previous section.

The extended typing system has a corresponding notion of extended runtime

error, presented in Table 12. Here we use the partial functions “robj” and “wobj”

which, given a channel type, return the types of the objects that may read or

written on the channel, if these capabilities are defined:

robj(A)

def
= ζ; if rhζi 2 A wobj(A)

def
= ξ; if whξi 2 A

Finally, to define tagged reduction we must also make a small change to the

40 M. Hennessy and J. Riely

TABLE 11 Extended Typing System

Threads (rules t-str
t

and t-newl
t

from Table 5):

(t-r00
t

)

Γ `00w u:chanfrhζig Γ; wX:ζ `00w q

Γ `00w u?(X:ζ)q
(t-w00

t

)

Γ `00w u:chanfwhζig; V:ζ; p

Γ `00w u!hVip

(t-eql00
t

)

Γ `00 u:K;v:L Γ `00w q Γufu:L;v:Kg `00w p

Γ `00w if u = v then p else q

(t-eqc00
t

)

Γ `00w u:A;v:B Γ `00w q Γuw:fu:B;v:Ag `00w p

Γ `00w if u = v then p else q

(t-move

00

t

)

Γ `00 u:locfmoveg Γ `00u p

Γ `00w u :: p

(t-newc00
t

)

Γ `00 w:locfnewcg Γ; wa:A `00w p

Γ `00w (νa:A)p

Systems (rules t-run
s

, t-str
s

and t-newl
s

from Table 5):

(t-newc00
s

)

8w2 dom(Λ) : Γ `00 w:locfnewcg Γ;Λa `
00 P

Γ `00 (νa:Λ)P

Identifiers and Values as in Table 5.

structural equivalence on tagged terms, in line with the change to the typing rules

for systems. (No changes are required to the definition of reduction for untagged

terms.) The agent `J(νa:A)pKΓ is only allowed to create a at ` if it has the newc

permission at `; therefore, the rule s-newc is replaced with the following version

which includes this requirement as a side condition:

(s-chan00) `J(νa:A)pKΓ � (νa:f`:Ag)`JpKΓ;

`

a:A if Γ(`)� locfnewcg

Using these definitions we have the standard subject reduction and type safety

theorems, which are proved in Appendix A.

THEOREM 6.3 (SOUNDNESS).

(a) If Γ `00 P and P�! P0 then Γ `00 P0.

(b) If Γ
00 Q and Q 7�! Q0 then Γ
00 Q0.

(c) Γ
00 Q implies Q err00
7�X�!.

The requirement that read and write capabilities on a channel must not con-

flict (if both are defined) is essential for the validity of the theorem. Suppose

two agents share a channel c at ` with type C = chanfrhA
rw

i;whA
w

ig, where

A
rw

= chanfrhζi;whζig and A
w

= chanfwhζig for some ζ. Note that this is not

Resource Access Control in Systems of Mobile Agents 41

TABLE 12 Extended Runtime Errors

Rules e-eql, e-eqc and e-str from Table 7.

(e-move

00

) `Jk :: pKΓ
err00
7��! if Γ(k) � locfmoveg

(e-subc00) `J(νa)pKΓ
err00
7��! if Γ(k) � locfnewcg

(e-snd00) `Ja!hViqKΓ
err00
7��! if Γ

`

(V) �wobj(Γ(`;a))
(e-rcv00) `Ja?(X:ζ)pK∆

err00
7��! if robj(∆(`;a))� ζ

(e-comm

00

) `Ja!hVipKΓ j `Ja?(X:ζ)qK∆
err00
7��! if wobj(Γ(`;a))� robj(∆(`;a))

a valid type (and thus are not allowed by our type system) because the read and

write capabilities conflict (A
rw

� A
w

). If we did allow such types, however, then

we could find Γ, Y and q such that:

Γ `00 `Jc!(a)K
f:::;`:locfc:C;a:A

w

;:::gg

j `Jc?(x:A
rw

)x?(Y)qK
f:::;`:locfc:Cgg

But it is easy to see that this tagged term leads to a runtime error due to rule

e-comm

00; the type of the sent value and the type of the received value do not

match. It is appropriate that an error should occur here. The result of the com-

munication, `Ja?(Y)qK
f:::;`:locfc:C;a:A

rw

gg

, is clearly undesirable, since the read

capability on a has been fabricated. Note that if Γ(a) = A
w

, then subject reduc-

tion also fails as a result of this communication.

Example. As an example of the use of these extended types, consider a server

for read/write (get/put) cells similar to the counter server from Section 3.

S(h) (�req?(z[y]) (νcell:L
cell

) z:y!hcelli j cell ::Cell(cell;0)

Here “Cell” represents the code for the cell, for example:

Cell(h;n)((νs:int) s!hni j �g?(z[y]) s?(x) (s!hxi j z:y!hxi)

j �p?(z[y];v) s?(x) (s!hvi j z:y!hi)

Let us use the abbreviations for PS types introduced above. The allocation type

L
cell

of the cell location cell can then be written:

L
cell

= locfmove;newc;g:rwhζ
g

i;p:rwhζ
p

ig

ζ
g

= locfmoveg[whinti]

ζ
p

= (locfmoveg[whi]; int)

Location cell must be given at least the type L
cell

in order for the cell code to

typecheck (it may also be given a subtype). Note that the channels g and p

must be declared with both read and write capabilities as the server reads from

them and a user must be able to write to them. The cell requires only the write

capability on the response channels it receives on p and g.

42 M. Hennessy and J. Riely

The user’s capabilities on the cell are determined by the transmission type

ζ
req

of channel req (which must have type rwhζ
req

i). If one takes

ζ
req

= locfmoveg[whL0

cell

i]

L0

cell

= locfmove;g:whζ
g

i;p:whζ
p

ig

then this type ensures that a cell user cannot “redefine” the methods p or g (by

intercepting messages sent on these channels), nor can it create new channels at

the cell location.

To emphasize this point consider the following user:

U(h)((νr) serv:req!hh[r]i j r?(z) U0

(h; z)

U requests a cell using the response channel r. Then the system S(serv) j U(k)

can reduce to

S(serv) j (νcell:L
cell

) U0

(k;cell) j Cell(cell)

If ζ
req

is as above, then one can be sure that the agent U(k;cell) has restricted

access to cell in this system. For example, if U0 has the form

U0

(h;cell)(cell ::p?(X) :::

then U(k) will be untypable. Viewed as a tagged system, one can see this defi-

nition of U0 will also cause a runtime error. After receiving the cell, the tagged

user is of the form

kJcell :: p?(X) :::K
f

:::;cell:locfrun;g:whζ
g

i;p:whζ
p

ig

g

Clearly this agent will produce a runtime error when it attempt to read on p.

We should point out that this typing also affords some level of protection

to the user. The response channel r is sent to the server with write capability

only; thus the server may not intercept other messages that the user may wish

to receive on r. Perhaps more important, the user’s location is sent without the

privilege to create new channels there, keeping the server from performing any

computation at the users location.

Resource Access Control in Systems of Mobile Agents 43

7 Conclusions

Summary. We have presented a typing system for controlling the use of re-

sources in languages that describe mobile agents. The typing system has been

developed for a distributed version of the π-calculus in which agents are located

terms of the ordinary π-calculus and resources are channels which agents use to

communicate. A central assumption of the type system is that every resource is

fixed to a particular location, whereas agents are free to move from one location

to another. This assumption has lead us to define the notions of location type and

location subtyping which we believe to be novel.

We have developed the typing system in stages. The first typing system used

a language of simple types in which the only non-trivial types were locations.

The second typing system was also defined over simple types, but was more per-

missive than the first, allowing agents to use simultaneously capabilities acquired

from disparate sources. The third and final typing system used an extended type

language which supported subtyping on resource types (aka channel types).

Crucial in the development of the typing systems has been the presence of

a partial meet operator at all types. The need for such an operator forced us to

abandon the notion of resource types proposed by Pierce and Sangiorgi [24] in

favor of more general types.

The usefulness of the typing systems has been shown by introducing a tagged

language in which agents are annotated with their capability sets. The tagged

language and the associated reduction relation appear to be novel.

Related Work. There are numerous languages now in the literature for describ-

ing distributed systems; Dπ is perhaps closest in spirit to [12, 3, 26, 5] which also

take as their point of departure the π-calculus, although with each there are sig-

nificant differences. For example in the join calculus [12] message routing is

automatic as the restricted syntax ensures that all channels have a unique loca-

tion at which they are serviced. In Dπ, to send a message to a remote location,

an agent must first spawn a sub-agent which moves to that location; locations are

more visible in Dπ. In addition, several of these languages [12, 26, 5] adopt lo-

cation movement as the mechanism for agent mobility. We describe this further

when we discuss open issues, below.

Many channel-based typing systems for π-calculi and related languages have

been proposed. For example in [24], discussed at length in Section 6, Pierce

and Sangiorgi define a type system for the π-calculus with read and write ca-

pabilities on channels. Sewell [26] generalizes the type system of [24] to dis-

tinguish between local communication, which can be efficiently implemented,

and non-local communication. Fournet et al. [13] have developed an ML-style

typing system for the join calculus where channels are allowed a certain amount

of polymorphism. Amadio [3] has presented a type system that guarantees that

44 M. Hennessy and J. Riely

channel names are defined at exactly one location, whereas the type system of

Kobayashi et al. [19] ensures that some channels are used linearly.

The work closest to ours is that of de Nicola, Ferrari and Pugliese [9]. Their

goals are the same as ours, but the specifics of their solution are quite different.

They work with a variant of Linda [8] with multiple “tuple spaces”. Tuple spaces

correspond to locations in our setting, and tuples (named data) correspond to

resources. The type system of [9] controls access to tuple spaces, rather than to

specific tuples, and thus provides coarser-grained control of resource access than

that provided by our typing system.

Static analyses for proving various security properties of programs have also

been proposed by several authors; two recent references are [18, 16].

Open Issues

Partially-Typed Systems. The π-calculus [21] itself is a language for resource

access control, using the mechanisms of restriction and scope extrusion to reg-

ulate the availability of resources. Distributed π-calculi such as Dπ inherit the

same mechanisms, so one might wonder why location types are needed at all.

The ultimate goal of our work is to provide a semantics for “partially-typed” sys-

tems in which locations need only consider local resources when type-checking

incoming agents. Obviously, to define such a system, the notion of local re-

source must be clearly understood, leading us to define location types. In this

paper, we have attempted to fully explore the properties of location types using

various type systems and examples. Although we have not here defined a typing

system that fully meets our goals, we have laid the foundation for one.

Recursive Types. To simplify the definitions and results of paper, we have not

included recursive types in any of the typing systems we have presented. We

speculate that the extension to recursive types, however, will be smooth. To do

so, one would need to replace every instance of type equality in the paper with

a weaker relation such as bisimilarity [28] or equality up to unfolding [26]. We

do not expect that the proofs of subject reduction and type safety would be much

effected by this change; nor do we foresee any difficulty in extending the proof

of finite bounded completeness. Note that without recursive types, many inter-

esting systems cannot be expressed. These include encodings of recursive data

structures, such as lists, and encodings of other calculi, such as the λ-calculus

[24]; a toy example is a!hai.

Linear Types. At the end of Section 5, we described a server which creates a

location with three channels and then communicates the names of these channels,

one at a time. In order for a client to use these channels in concert, matching is

required to guarantee that all of the channels received are located at a single

Resource Access Control in Systems of Mobile Agents 45

site. In many cases, it may be possible to establish this requirement statically,

thus making the dynamic matching redundant; however, our type system is not

powerful enough to do so. Suppose that we extend the language with a type for

“channels at w”: @wchanfζg. Consider the threads:

p = a?(z:loc) b?(x:@zchan)

q = (ν`[c]) a!h`i b!hci

The thread q creates a location ` with channel c, sends ` and then sends c. The

thread p, instead, waits to receive a location z and then to receive a channel x

at z. This code can be statically checked to guarantee that when x is received, x

is indeed located at z (i.e. `). However, if we have two copies of p running in

parallel with q and another thread, r,

r = (νk[d]) a!hki b!hdi

then it is no longer guaranteed that each copy of p will receive a matching lo-

cation and channel. To eliminate such problems, one might adopt the notion of

linear channels [19] and require that channels such as a and b have at most one

sender.

Type Extrusion. One limitation of our language is that names can be extruded,

but types cannot. To show this we study a modification of the counter server

described in Example 2 of Section 3. The counter server cS relies on the fact that

the names up, dn and rd are public. It is also possible to restrict these names,

ensuring that they are fresh. In this case it is necessary to export the names

before they can be used outside the scope of the restriction. For example, one

may wish to export these names so that a remote location, outside the restriction,

can also create counters. Recall that counters are represented as locations of type

L
c

= locfup:A
up

;dn:A
dn

; rd:A
rd

g. The modified server supports two methods:

creq for counter requests and sreq for server requests. The method sreq responds

with names up, dn and rd. Using these, a user can set up its own counter server

and thus create its own counters.

cS(h)((νup;dn; rd) �creq?(z[x]) (νcnt:L
c

) z:x!hcnti j cnt :: Count(cnt;0)

j �sreq?(z[x]) z:x!hup;dn; rdi

We would then hope to write a user as:

U(h)((νr) serv:sreq!(h[r])

r?(up;dn; rd)

(νreq) �req?(z[x]) (νcnt:L
c

) :::

j (νs) req!hh[s]i :::

This user, however, is not a term in our language. The problem is the term

(νcnt:L
c

) ::: where the user creates its own counter. In this occurrence of the

type L
c

, the identifiers up, dn and rd are variables rather than names, and this

46 M. Hennessy and J. Riely

is not allowed by our syntax; we require all types to be closed. We might hope

for a cleverer solution, such as the following, where the original server sends a

thread to the client that can create new counters.

cS(h) ((νup;dn; rd) �creq?(z[x]) :::

j �sreq?(z[req]) z ::�req?(z[x]) :::

U(h) ((νreq) serv:sreq!(h[req])

j (νs) req!hh[s]i :::

However, this solution is also problematic. The value returned on the response

channel s is a counter, and thus the type L
c

must be used in the type of s (and

therefore in the type of the request channel req). However, this user is not within

the scope of the original server’s restriction on up, dn and rd, and therefore, the

rules of restriction guarantee that this server and user cannot be typed together

(the names up, dn and rd in the server will be alpha-converted).

There are various ways of rewriting the code so that type-checking fails in

a different place, but the basic problem is always the same. To address this

shortcoming, one might relax the restriction that types be closed. This cannot

be done naively, however, without losing subject reduction. For example, the

term a?(z[x])b?(w[y]) (ν`:locfx:A;y:Bg)p might reduce to (ν`:locfa:A;a:Bg)p,

which is not a well-formed term in our language if A 6= B. A suitable restriction

might be that all variables in a type be co-located. An alternative approach would

be to allow communication of types.

Location Movement. Finally, the reader will have noticed that “locations”, as

we have presented them, are rather abstract entities, which are not meant to rep-

resent physical machines. This is most apparent when considering the restriction

operator, by which an agent can dynamically create an arbitrary number of new,

independent locations. In this respect the language is similar to Obliq [6], were

“sites” are not directly represented in the language and instead are discussed as

an auxiliary or “meta” concept.

A more satisfying account of physical distribution is obtained using a hierar-

chical representation of locality as in the join calculus [12], the ambient calculus

[5] and some distributed π-calculi [25, 26]. In a hierarchical model, machines

can be viewed as locations which contain objects (which are locations), which

contain sub-objects, and so on. In such languages, it is locations which move,

rather than threads, and thus agents are identified with locations, rather than

threads. This has the advantage that agents may be multi-threaded, and thus

agents that may move “at any time” are easier to express.

While location movement is in some sense more general than code movement

(at least if the language is enriched with other operators of sufficient power [5]),

we have chosen to concentrate on code movement because it is supports a clear

distinction between resource and agent which is well understood from decades

Resource Access Control in Systems of Mobile Agents 47

of work in concurrency theory; it is also a “special case” of extreme practical

importance.

The language of this paper can be considered “minimal” in the sense that

there is only one form of movement: code movement. We are also interested

in type systems for languages in which the only form of movement is location

movement. However, location movement, in a simple language such as Dπ, is not

powerful enough to express interaction between agents. This is because all inter-

action occurs within a location, and therefore interaction between locations is not

possible without some extension to the language. In variants of the distributed

join calculus [12, 26, 25], in addition to location movement, code movement is

allowed, often in the restricted form of message movement — i.e. the move op-

erator is of the form ` :: a!hVi rather than ` :: p.7 In the ambient calculus [5], an

open operator is introduced: open(`) dissolves location ` (or, if you prefer, the

boundary around location `) causing all of the threads in ` to move to `’s parent.

Thus code movement is “hidden” inside the open operator. Using the open oper-

ator in conjunction with location movement, one can encode channels and other

forms of (non-local) interaction.

It is not clear how a useful type system for static resource access control

could be developed for the join or ambient calculi. While resources are located

in the join calculus, the location of a resource is only significant for message

movement, not for location movement. Thus location types in the join calculus

would only be useful for reasoning about the movement of messages, which are

too fine-grained to be thought of as agents. On the other hand the ubiquity of the

powerful open operator in the ambient calculus makes static typing untenable

without the introduction of additional structure to the language. The definition

of a useful typed language with hierarchical location movement remains an in-

teresting and open problem.

Acknowledgements

We would like to thank INRIA Sophia Antipolis for their hospitality while con-

ducting this research. We have benefited from conversations with (and criticisms

from) Alan Jeffrey, Peter Sewell and Luca Cardelli, among others. Example 5

was originally presented to us by Alan Jeffrey in the context of active networks;

we have adapted the example to our language. The “type extrusion” example,

given in the conclusion, was developed during a discussion with Peter Sewell.

7In fact, in the languages of [12, 26], ` ::a!hVi is written simply as a!hVi. Since every channel name

can be used by at most one location, the explicit use of “move” is unnecessary.

48 M. Hennessy and J. Riely

A Proofs

A.1 Proofs from Section 4.2

We first prove the Weakening Lemma. The result for systems, stated in the text,

relies on similar results for threads and values.

PROPOSITION (4.5).

(a) If Γ ` P and ∆� Γ then ∆ ` P.

(b) If Γ `w p and ∆� Γ then ∆ `w p.

(c) If Γ `w V:ζ and ∆� Γ then ∆ `w V:ζ.

Proof. All three results are proved, in a straightforward manner, by judgment

induction (i.e. by induction on the length of the type inference). We give one

example for each result.

(a) (t-run
s

) Suppose Γ ` `JpK because Γ ` `:loc and Γ `
`

p. Using the auxiliary

results we obtain ∆ ` `:loc and ∆ `
`

p. Using t-run
s

, we have ∆ ` `JpK.

(b) (t-r
t

) Suppose Γ `w u?(X:ζ)p because:

Γ `w u:chanhζi and Γ; wX:ζ `w p

Since we identify terms up to alpha-equivalence, the variables in X can also

be chosen to be new to ∆, in which case ∆; wX:ζ is well-defined, and it is easy

to see that (∆; wX:ζ) � (Γ; wX:ζ). So we may apply induction to the above

two statements to obtain:

∆ `w u:chanhζi and ∆; wX:ζ `w p

The rule t-r
t

may now be employed to infer ∆ `w u?(X:ζ)p as required.

(c) (t-id) Suppose Γ `w u:ζ because Γ(w;u)� ζ. Since ∆� Γ then by transitivity

we have ∆(w;u)� ζ. Using t-id, one can the infer ∆ `w u:ζ, as required. �

As corollaries we immediately have the following:

COROLLARY A.1. (a) If Γ ` P then Γ; wV:ζ ` P.

(b) If Γ; wV:ξ ` P and ζ� ξ then Γ; wV:ζ ` P. �

Proposition 4.5 states that well-typing is preserved when the typing envi-

ronment is augmented. It is also preserved when the typing environment is de-

creased by omitting all occurrences of identifiers that do not occur free in the

system being typed. Let Γ n u denote the result of eliminating u from Γ, i.e.

(Γ n u)(u) is undefined and (Γ n u)(w;u) is undefined for every w. For any syn-

tactic element t, let “fid(t)” return the free identifiers in t.

Resource Access Control in Systems of Mobile Agents 49

LEMMA A.2 (RESTRICTION).

(a) If Γ ` P and u =2 fid(P) then Γnu ` P.

(b) If Γ `w p and u =2 fid(p) [fwg then Γnu `w p.

(c) If Γ `w U:ξ and u =2 fid(U)[fwg then Γnu `w U:ξ.

Proof. In each case the result follows by a straightforward judgment induction.

We leave the details to the interested reader. �

As a corollary we have that typing is preserved by scope extrusion:

COROLLARY A.3. Suppose e does not appear free in Q. Then Γ ` (νe) (Q jP)

if and only if Γ ` Q j (νe)P

Proof. We examine the case when e is a channel; the case in which e is a location

is similar. Suppose Γ ` (νa:Λ) (Q jP). Then using t-newc
s

and t-str
s

, we have

that Γ;Λa `Q and Γ;Λa ` P. Applying Lemma A.2 to the first of these we obtain

(Γ;Λa) n a ` Q, i.e. Γ ` Q since a is new to Γ. Applying t-newc
s

to the second

statement we obtain Γ ` (νa:Λ) and therefore t-str
s

gives Γ ` Q j (νa:Λ)P.

The converse uses the same arguments, in the reverse direction. �

As a step toward proving subject reduction, note that closed terms are pre-

served by reduction.

LEMMA A.4. If P is closed and P�! P0 then P0 is closed.

Proof. By induction on the judgment P�! P0. �

The proof of subject reduction for the typing system depends, as is often

the case, on a substitution lemma. However in this case before the appropriate

version can be proved we need the following technical Lemma.

LEMMA A.5.

(a) If Γ ` k:K and Γ; z:K; zX:ζ `w p then Γ; kX:ζ `
wfj

k
=zjg

pfjk=zjg.

(b) If Γ ` k:K and Γ; z:K; zX:ζ `w U:ξ then Γ; kX:ζ `
wfj

k
=zjg

Ufjk=zjg:ξ.

Proof. For both results the proof is similar. Informally the proof proceeds, in the

case of threads, by taking a derivation of the judgment Γ; z:K; zX:ζ `w p, substitut-

ing k for z throughout and thereby obtaining a derivation of Γ; kX:ζ `
wfj

k
=zjg

pfjk=zjg.

Formally it is a straightforward induction on type judgments. We omit the de-

tails. �

Proof of the Substitution Lemma

We present the proof for the extended type system of Section 6. For this proof

only, we write ` as shorthand for `00. The proofs for the other type systems are

somewhat simpler.

50 M. Hennessy and J. Riely

LEMMA (4.7). For any closed value V:

(a) If Γ `v V:ζ and Γ; vX:ζ `w p then Γ `
wfj

V
=Xjg

pfjV=Xjg.

(b) If Γ `v V:ζ and Γ; vX:ζ `w U:ξ then Γ `
wfj

V
=Xjg

UfjV=Xjg:ξ.

Note that there is no corresponding substitution result for systems, because

values must be typed at a specific location.

Throughout the proof we use primes to indicate terms in which the substitu-

tion has been performed; i.e. for t an element of any syntactic category, t0 denotes

tfjV=Xjg.

We first prove the result (b) for values. The proof proceeds by induction on

the structure of X. There are four cases: X may be w, X may be some identifier

other than w, or X may have the the form eX or z[ex].

First, suppose that X = w. Because X = w it must be that w0

= V = k for

some k. We proceed by induction on U to show that Γ `k U0:ξ.

� Suppose that U = w and therefore U0

= V = k. The second premise may

be written Γ; vw:ζ `w w:ξ. Here we know that ζ� ξ and therefore the result

follows by applying weakening to the first premise (Γ ` k:ζ).

� Suppose that U = u 6= w. The second premise may be written Γ; vw:ζ `w u:ξ.

There are two possibilities. If ξ is a location type, we must have that Γ(u)� ξ
and thus Γ `

k
u:ξ. Otherwise ζ must be of the form locfu:ξ0

; :::g where ξ0

� ξ.

Since Γ `v k:ζ we can therefore conclude that Γ `k u:ξ.

� In the other cases, U =

eU:eξ and U = `[b]:L[eB], the result follows using the

innermost induction.

Suppose, instead, that X = x 6= w. In this case it must be that w0

= w. Again

we proceed by induction on U to show that Γ `w U0:ξ.

� Suppose that U = x and therefore U0

= V. Either ξ is a location type and so

by the first premise Γ ` V:ξ, or ξ is another type and so v must be equal to w

and again the first premise give the required result Γ `w V:ξ.

� Suppose that U = u 6= x. The result is immediate by applying the Restriction

Lemma (Lemma A.2) to the second premise.

� Again, the other cases follow by straightforward induction.

Suppose X =

eX:eζ. Therefore V must have the form eV and by assumption we

have that:

Γ `v eV :eζ and Γ; v
eX:eζ `w U:ξ

Resource Access Control in Systems of Mobile Agents 51

We can rewrite this as:

Γ `v V1:ζ1; :::;Vn:ζn and Γ; vX1:ζ1; :::; vXn:ζn `w U:ξ

Using induction we have:

Γ; vX1:ζ1; :::; v(Xn�1:ζn�1) `wfj

Vn
=Xn jg

UfjVn
=Xnjg:ξ

Repeating this process n times yields Γ `w0 U0:ξ, as desired.

Finally, suppose X = z[ex]:K[eA]. Therefore V must have the form k[ea] and by

assumption we have that:

Γ `v k[ea]:K[ea] and Γ; vk[ea]:K[ea] `w U:ξ

We can rewrite this as:

Γ ` k:K and Γ `k ea:eA and Γ; z:K; zex:eA `w U:ξ

Using Lemma A.5 we have:

Γ; kex:eA `
wfj

k
=zjg

Ufjk=zjg:ξ

Applying induction yields Γ `w0 U0:ξ, as desired.

Having established the result for values, we now prove the result (a) for

threads:

Γ `v V:ζ and Γ; vX:ζ `w p imply Γ `w0 p0

Again we proceed by induction on the structure of X. The inductive cases are as

before, so we only present the base case where X is an identifier x. This case is

established by a secondary induction on the judgment Γ; vX:ζ `w p. Most of the

cases in the secondary induction are straightforward, the exceptions being the

cases for input and channel restriction. We show these two cases.

First consider the case for t-r00
t

. Our proof obligation is to show:

Γ `v V:ζ and Γ; vx:ζ `w u?(Y :ξ)q imply Γ `w0 u0?(Y :ξ)q0 (*)

There are two cases to consider, x = w and x 6= w. First suppose that x = w. Here

ζ must be a location type, say K and therefore V must be a location name, say k.

The premises in (*) may therefore be written:

Γ ` k:K and Γ; w:K `w u?(Y :ξ)q

From t-r00
t

we have:

Γ; w:K `w u:chanfrhξig and Γ; w:K; wY :ξ `w q

Using Lemma A.5 twice, we obtain:

Γ `k u0:chanfrhξig and Γ; kY :ξ `k q0

52 M. Hennessy and J. Riely

Finally, t-r00
t

can be applied to arrive at the desired conclusion, Γ `
k

u0?(Y :ξ)q0.

Continuing the case for t-r00
t

, suppose x 6= w. This case is a standard appli-

cation of induction. The details are as follows. Using the second premise of (*)

and t-r00
t

, we can conclude that:

Γ; vx:ζ `w u:chanfrhξig and Γ; vx:ζ; wY :ξ `w q

Note that since w 6= x, we may rewrite the above as:

Γ; vx:ζ `w u:chanfrhξig and Γ; wY :ξ; vx:ζ `w q

Now we may use the inner induction to conclude:

Γ `w u0:chanfrhξig and Γ; wY :ξ `w q0

Therefore using t-r00
t

we have, as desired, Γ `w u0?(Y :ξ)q0.

Now consider the case for channel restriction t-newc00
t

. In this case the proof

obligation is:

Γ `v V:ζ and Γ; vx:ζ `w (νa:A)q imply Γ `w0 (νa:A)q0 (**)

Using the second premise of (**) and t-newc00
t

, we can conclude that:

Γ; vx:ζ; wa:A `w q (***)

At this point we must consider two cases, either x 6= w or x = w. First suppose

that x 6= w. Then (***) can be rewritten as Γ; wa:A; vx:ζ `w q and we can apply

induction to get Γ; wa:A `w0
q0 and then t-newc00

t

to get Γ`w0
(νa:A)q0, as required.

On the other hand if x = w, then we must use Lemma A.5. Since x = w, it

must be that V is a location name and thus V = k and ζ = K for some k, K. We

can therefore rewrite the first premise of (**) and the statement (***) as:

Γ ` k:K and Γ; w:K; wa:A `w q

These can be applied to Lemma A.5 to yield Γ; ka:A`k q0 and thus, using t-newc00
t

,

Γ `k (νa:A)q0, as required.

Proof of the Subject Reduction Theorem

THEOREM (4.6).

(a) If P� P0 then Γ ` P if and only if Γ ` P0.

(b) If P�! P0 then Γ ` P implies Γ ` P0.

The first statement is proved by induction on the proof of P� P0. The main

axiom, scope extrusion s-extr, is covered by the Corollary A.3. The other axioms

and rules are straightforward calculations left to the interested reader.

The second statement is proved by induction on the proof of P �! P0. The

rule r-str follows from the first part the remaining rules are, again, straightfor-

ward calculations. We give two examples.

Resource Access Control in Systems of Mobile Agents 53

� r-move states `Ju ::pK �! kJpK. By supposition Γ ` `Ju ::pK. Then using

t-run
s

we have Γ `
`

u :: p. Then using t-move

t

, Γ `k p and therefore by t-run
s

Γ ` kJpK.

� r-comm states `Ja!hVipK j `Ja?(X:ζ)qK �! `JpK j `JqfjV=XjgK. Suppose

Γ ` `Ja!hVipK j `Ja?(X:ζ)qK. To satisfy the proof obligation, it is suffi-

cient to show that Γ `
`

p and Γ `
`

qfjV=Xjg. The first is easy to establish from

the hypothesis, which entails Γ `
`

a!hVip. Using the hypothesis and the rules

for typing it must also be that:

Γ `
`

V:ζ Γ `
`

a:chanhζi Γ `
`

a:chanhζi Γ;
`

X:ζ `
`

q

Note here that V is a closed value. We can apply the Substitution Lemma to

obtain Γ `
`

qfjV=Xjg, as required.

A.2 Proofs from Section 4.4

In this subsection we prove the Subject Reduction Theorem for the tagged lan-

guage. We first present a lemma characterizing the definition f
`

V :ζg given on

page 24.

LEMMA A.6.

(a) f
`

V :ζg `
`

V:ζ
(b) Ξ `

`

V:ζ implies Ξ� f
`

V :ζg.
Proof. By induction on V, using the definition of typing for values and the defi-

nition of the notation “f
`

V :ζg” given on page 24. �

THEOREM (4.8). For all tagged systems

(a) If P� P0 then Γ
 P if and only if Γ
 P0.

(b) If P 7�! P0 then Γ
 P implies Γ
 P0.

As in Theorem 4.6, the proof of (a) is straightforward by induction on the deriva-

tion of P� P0. We show the argument for the rule s

t

-newc, which states

`J(νa:A)pK∆ � (νa:f`:Ag)`JpK∆;

`

a:A

Suppose Γ
 `J(νa:A)pK∆, and therefore Γ � ∆ and ∆

`

(νa:A)p. Then using

t-newc
t

∆;
`

a:A

`

p. From which we obtain from t-run
t

that ∆;
`

a:A
 `JpK.

Since Γ;
`

a:A � ∆;
`

a:A we can apply the new typing rule for tagged agents,

t

t

-run
s

, to obtain Γ;
`

a:A
 `JpK∆;

`

a:A and an application of t-newc
s

gives the

required Γ
 (νa:f`:Ag)`JpK∆;

`

a:A. The argument in the other direction is much

the same.

The proof of (b) is by induction on why P 7�! P0. The only non-trivial case

is the communication rule for tagged threads, r
t

-comm. So suppose

Ξ
 `Ja!hVipKΓ j `Ja?(X:ζ)qK∆;

54 M. Hennessy and J. Riely

that is, Γ

`

a!hVip, ∆

`

a?(X:ζ) q and Ξ� Γ; Ξ� ∆. We must show

Ξ
 `JpKΓ j `JqfjV=XjgK∆0

where ∆0 denotes ∆u f
`

V :ζg. Thus our proof obligations are three: we must

show that Γ

`

p, ∆0

`

qfjV=Xjg and Ξ� ∆0.

Most of the required work has already been carried out in Theorem 4.6. The

proof of Γ `
`

p is identical, thus satisfying the first obligation.

Since Ξ�Γ and Ξ� ∆ it follows that Γ(`;a) and ∆(`;a) must coincide at the

type chanhζi (because there is no subtyping on channels). Using Lemma A.6b

we have f
`

V :ζg `
`

V:ζ, and therefore ∆0

`

`

V:ζ, by weakening (Proposition 4.5).

The hypothesis also implies ∆;
`

X:ζ `
`

q and thus, again by weakening we have

∆0

;

`

X:ζ `
`

q. We can now use the Substitution Lemma to obtain the second obli-

gation, ∆0

`

`

qfjV=Xjg.

Using the premise and type rules we have Γ `
`

V:ζ; thus by weakening we

have Ξ `
`

V:ζ and therefore Ξ� f
`

V :ζg, by Lemma A.6a. Using this and the fact

that Ξ� ∆ we obtain the third obligation, Ξ� ∆0

A.3 Proofs from Section 5

The proofs of the following results extend immediately to the improved type

rules: type specialization (Lemma 4.4), weakening (Proposition 4.5), substitu-

tion (Lemma 4.7, and tagged/untagged reduction (Proposition 4.10).

THEOREM (5.1).

(a) If Γ `0 P and P�! P0 then Γ `0 P0.

(b) If Γ
0 P and P 7�! P0 then Γ
0 P0 .

(c) Γ
0 P implies P err
7�X�!.

Proof. The new type rules do not affect terms that can be shown to be structurally

equivalent and therefore the results for the structural equivalences follow from

Theorem 4.6 and Theorem 4.8. The proof of (c) is also unchanged from that of

Theorem 4.12.

Both (a) and (b) follow by induction on the definition of reduction. The

argument is much as in Theorem 4.6 and Theorem 4.8. The only case which

changes is that for successful matching location names. We treat the untagged

case; the tagged case is similar. The reduction rule r-eq
1

states:

`Jif k = k then p else qK �! `JpK

So suppose Γ `0 `Jif k = k then p else qK. This must be typed using t-eql0
t

, thus

we have that for some Ki, Γ `0 k:K1, Γ `0 k:K2 and Γufk:K1;k:K2g `
0

`

p. This

must mean that Γ(k) � K2 and Γ(k) � K1; thus Γ(k) � K1uK2. It follows from

weakening (Proposition 4.5) that Γ `0 `JpK. �

Resource Access Control in Systems of Mobile Agents 55

A.4 Proofs from Section 6

The proofs of the following results extend immediately to the extended type sys-

tem: type specialization (Lemma 4.4), weakening (Proposition 4.5), substitution

(Lemma 4.7, and tagged/untagged reduction (Proposition 4.10).

THEOREM (THEOREM 6.3).

(a) If Γ `00 P and P�! P0 then Γ `00 P0.

(b) If Γ
00 Q and Q 7�! Q0 then Γ
00 Q0.

(c) Γ
00 Q implies Q err00
7�X�!.

Proof. The proof of the result for the structural congruence in Theorem 4.6 ex-

tends directly to both the tagged and untagged language.

The proofs of (a) and (b) are, as usual, by induction on the definition of

reduction. We discuss the untagged case. The only interesting case is r-comm,

which states:

`Ja!hVipK j `Ja?(X:ζ)qK�! `JpK j `JqfjV=XjgK

Suppose Γ `00 `Ja!hVipK j `Ja?(X:ζ)qK. To satisfy the proof obligation, it is

sufficient to show that Γ `00
`

p and Γ `00
`

qfjV=Xjg. The first is easy to establish from

the supposition, which entails Γ `00
`

a!hVip. Using the supposition it must also be

that for some ξ:

Γ `00
`

V:ξ Γ `00
`

a:chanfwhξig Γ `00
`

a:chanfrhζig Γ;
`

X:ζ `00
`

q

By the rules on valid types it must be that ξ � ζ. And therefore by weakening,

Γ `00
`

V:ζ. We can now apply the Substitution Lemma to obtain Γ `00
`

qfjV=Xjg, as

required.

To prove (c), we proceed as in Theorem 4.12, proving the contrapositive (that

Q err00
7��! implies for no Γ can we prove Γ
00 Q) by induction on the definition of

Q err00
7��!. As before each of the cases is straightforward, the new rules in Table 7

presenting no additional difficulty. We omit the details. �

56 M. Hennessy and J. Riely

References

[1] R. Amadio and S. Prasad. Localities and failures. In Proc. 14th Foundations of Software

Technology and Theoretical Computer Science, volume 880 of Lecture Notes in Computer

Science. Springer-Verlag, 1994.

[2] R. Amadio and S. Prasad. Modelling IP mobility. Internal Report 244, Laboratoire

d’Informatique de Marseille, 1997.

[3] Roberto Amadio. An asynchronous model of locality, failure, and process mobility. In COOR-

DINATION ’97, volume 1282 of Lecture Notes in Computer Science. Springer-Verlag, 1997.

[4] Gérard Berry and Gérard Boudol. The chemical abstract machine. In Conference Record of

the ACM Symposium on Principles of Programming Languages, pages 81–94, San Francisco,

January 1990. ACM Press.

[5] L. Cardelli and A. D. Gordon. Mobile ambients, 1997. Draft, Available from http://www.

cl.cam.ac.uk/users/adg/.

[6] Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27–59, January

1995. A preliminary version appeared in Proceedings of the 22nd ACM Symposium on Prin-

ciples of Programming.

[7] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444–458,

1989.

[8] N. Carriero, D. Gelernter, and L. Zuck. Bauhaus Linda. In Object-Based Models and Lan-

guages for Concurrent Systems, number 924 in Lecture Notes in Computer Science, pages

66–76. Springer-Verlag, 1995.

[9] Rocco De Nicola, GainLuigi Ferrari, and Rosario Pugliese. Coordinating mobile agents via

blackboards and access rights. In COORDINATION ’97, volume 1282 of Lecture Notes in

Computer Science. Springer-Verlag, 1997.

[10] K. Mani Chandy et al. A world-wide distributed system using java and the internet. In IEEE

International Symposium on High Performance Distributed Computing. IEEE, August 1996.

[11] C. Fournet and G. Gonthier. The refliexive CHAM and the join-calculus. In Conference Record

of the ACM Symposium on Principles of Programming Languages, Paris, January 1996. ACM

Press.

[12] C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A calculus of mobile agents. In

U. Montanari and V. Sassone, editors, CONCUR: Proceedings of the International Conference

on Concurrency Theory, volume 1119 of Lecture Notes in Computer Science, pages 406–421,

Pisa, August 1996. Springer-Verlag.

[13] Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy. Implicit typing à la ml for

the join-calculus. In CONCUR: Proceedings of the International Conference on Concurrency

Theory, Lecture Notes in Computer Science, Warsaw, August 1997. Springer-Verlag.

[14] General Magic Inc. Agent technology. hhtp://www.genmagic.com/html/agent_

overview.html, 1997.

[15] A. Giacalone, P. Mishra, and S. Prasad. A symmetric integration of concurrent and functional

programming. International Journal of Parallel Programming, 18(2):121–160, 1989.

[16] Nevin Heintz and Jon G. Riecke. The SLam calculus: Programming with secrecy and integrity.

In Conference Record of the ACM Symposium on Principles of Programming Languages, San

Diego, January 1998. ACM Press.

[17] IBM Corp. The IBM aglets workbench. http://www.trl.ibm.co.jp/aglets/, 1996.

[18] Günter Karjoth, Danny B. Lange, and Mitsuru Oshima. A security model for aglets. IEEE

Internet Computing, 1(4), 1997.

[19] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus. In

Resource Access Control in Systems of Mobile Agents 57

Conference Record of the ACM Symposium on Principles of Programming Languages, Paris,

January 1996. ACM Press.

[20] Robin Milner. The polyadic π-calculus: a tutorial. Technical Report ECS-LFCS-91-180, Lab-

oratory for Foundations of Computer Science, Department of Computer Science, University of

Edinburgh, UK, October 1991. Also in Logic and Algebra of Specification, ed. F. L. Bauer, W.

Brauer and H. Schwichtenberg, Springer-Verlag, 1993.

[21] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, Parts I and

II. Information and Computation, 100:1–77, September 1992.

[22] ObjectSpace Inc. Objectspace voyager. http://www.objectspace.com/voyager, 1997.

[23] C. Perkins. IP mobility support. RFC 2002, 1996.

[24] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Mathe-

matical Structures in Computer Science, 6(5):409–454, 1996. Extended abstract in LICS ’93.

[25] James Riely and Matthew Hennessy. A typed language for distributed mobile processes. In

Conference Record of the ACM Symposium on Principles of Programming Languages, San

Diego, January 1998. ACM Press.

[26] Peter Sewell. Global/local subtyping for a distributed π-calculus. Technical Report 435, Com-

puter Laboratory, University of Cambridge, August 1997.

[27] Sun Microsystems Inc. Java home page. http://www.javasoft.com/, 1995.

[28] David Turner. The Polymorphic Pi-Calculus: Theory and Implementation. PhD thesis, Edin-

burgh University, 1995.

