
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Distributed Processes and Location

Failures

James Riely and Matthew Hennessy

Report 2/97 25 April 1997

Computer Science

School of Cognitive and Computing Sciences
University of Sussex

Brighton BN1 9QH

ISSN 1350–3170

Distributed Processes and Location Failures

JAMES RIELY AND MATTHEW HENNESSY

ABSTRACT. Site failure is an essential aspect of distributed systems; nonetheless its effect on

programming language semantics remains poorly understood. To model such systems, we define a

process calculus in which processes are run at distributed locations. The language provides operators

to kill locations, to test the status (dead or alive) of locations, and to spawn processes at remote loca-

tions. Using a variation of bisimulation, we provide alternative characterizations of strong and weak

barbed congruence for this language, based on an operational semantics that uses configurations to

record the status of locations. We then derive a second, symbolic characterization in which config-

urations are replaced by logical formulae. In the strong case the formulae come from a standard

propositional logic, while in the weak case a temporal logic with past time modalities is required.

The symbolic characterization establishes that, in principle, barbed congruence for such languages

can be checked efficiently using existing techniques.

1 Introduction

Many semantic theories have been proposed for concurrent processes [23, 20,

6]. Although these theories have been fruitfully applied to the analysis of some

distributed systems, for the most part they ignore an essential feature of such

systems, namely their distribution.

As a simple example consider two implementations of a client-server ap-

plication in which the client can demand an interactive service provided by the

server, such as previewing or updating a document. In one implementation (Sys-

tem A) the server spawns a process to handle the document at its own site, the

remote location, and the client previews the document remotely. In the other

(System B) the server sends a process, including the document, to the client site,

and the client previews the document locally. Using the semantic theories men-

tioned above it would be difficult to distinguish between these implementations,

as the only difference between them is the location at which activity occurs. We

aim to develop a useful extensional theory of systems which would take this type

of property into account.

In [8, 25, 11] such theories have been proposed. All of these theories, how-

ever, are based on a very strong assumption: that an observer, or user, can de-

termine the location at which every action is performed. Here we start from a

weaker premise: that in distributed systems sites are liable to failure. The model

of failure we have adopted is a fail stop model in which failures are indepen-

dent of each other and the number of failures that can occur is unbounded. In
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the conclusion, we discuss how our approach might be extended to other mod-

els. The assumption that sites may fail is clearly reasonable; indeed, much of

the difficulty in designing distributed systems stems from requirements for fault-

tolerance. Assuming that sites can fail, it is easy to see that Systems A and

B, outlined above, are indeed different: if, after the client has begun interaction

with the document, a failure occurs at the remote site, then in System A the client

deadlocks, while in System B it can continue operation unaffected.

Our work is motivated by the papers [3, 16]. In these papers, distributed

languages with location failures are defined and shown to be very expressive.

In both of these papers, the semantics is based on barbed equivalence, which re-

quires quantification over all program contexts and thus is difficult to use directly.

In each of the cited works, the authors provide a translation from their language

into a simpler (non-distributed) language and prove that the translations are ade-

quate or fully abstract in some sense. While these translations provide theoretical

results about the relative expressiveness of distributed and interleaving calculi,

they are sufficiently complicated to make reasoning about examples, even simple

ones, very difficult.

By restricting attention to an asynchronous language, Amadio [4] has re-

cently improved on the results of [3], providing simpler translations. Although

our work developed independently of [4], the language we study has much in

common with the language developed there. The main difference is that our lan-

guage has no value-passing, allowing us to concentrate on the effects of location

failure and simplifying the statement of many of our results. Since the issues

raised by failures and value passing are largely independent, this paper may be

seen as providing two extensional views of a language similar to Amadio’s; the

first of these is concrete, as is his translation, the second is more abstract.

In Section 2, we consider a simple language for located processes based on

pure CCS [23], with which we assume familiarity. For example [a:p1 +b:p2]
`

j

[a:q1 + c:q2]k is a system consisting of two processes, one located at ` and the

other at k. As in CCS, communication is binary. In the example, the first process

can perform the action a and the second can perform the complementary action

a; therefore, these processes can synchronize via the silent, or internal action τ
(which allows no further synchronization) and evolve to [p1]

`

j [q1]k. In addition

to the usual operators of CCS we have the following new operators:

� spawn(`; p), which spawns process p at location `.

� kill`:p, which, if location ` is alive, kills ` (with the result that any process

located at ` is deactivated) and then behaves as p. If ` is already dead, this

construct may silently evolve to p (that is, it behaves like τ:p).

� if ` then p else q, which silently evolves to either p or q, depending on

whether ` is alive or dead when the test is performed.
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We first give an operational semantics for this language in terms of a labelled

transition system. The judgments depend on a set L, of live locations, and are of

the form L.P α

7�! L0

.P0, where P and P0 are located processes and α is either a

visible action, which permits synchronization, or the internal action τ. Each of

the new operators in our language — spawning a process at some site, killing a

site, or querying the status of a site — are modelled as τ-transitions; this reflects

the fact that in a distributed system the implementation of these operators would

involve some computation and thus the passage of some time. Note that the op-

erational semantics does not record the location at which actions are performed.

Based on this labelled transition system, we wish to define an equivalence

between process terms which is appropriate for the language. It is immediately

apparent that standard equivalences, such as CCS bisimulation [23] are no longer

appropriate. For example the terms [a]
`

j [b]k and [a]k j [b]` would not be differ-

entiated by these equivalences although they can easily be distinguished by an

observer that has the capability of killing ` or k. In short, the standard semantic

equivalences are no longer preserved by all contexts in our language.

To decide on an appropriate equivalence we follow the approach advocated

in [29]. We define both strong and weak barbed equivalence between processes,

:

� and

:

�. These definitions are defined in terms of the reduction relation τ

7�!

and a basic observation predicate. We then dictate that the required equivalence,

which we refer to as barbed bisimulation equivalence, is defined (for example in

the weak case) as:

P �Q if and only if for every suitable context P[�],P[P]
:

�P[Q]

Although this may be reasonable, it is not a very useful definition; the reader is

invited to determine whether the following pairs of processes should be equiva-

lent or distinguished.

P1 =

�

[α]
`

j [α+ τ:a]k

�

nα
Q1 =

�

[α+ τ]
`

j [α:a]k

�

nα

P2 = ([α]
`

j [α:a]k)nα
Q2 = [spawn(k; a)]

`

The first main result of the paper is a characterization of these congruences

using a variation of bisimulation. In Section 3 we define two bisimulation-based

relations, strong and weak Located-Failure equivalence (LF-equivalence),' and

u, and show that these coincide with the indirectly defined barbed congruences.

Since both strong and weak LF-equivalence are defined using bisimulations,

the problem of deciding that two systems are semantically congruent can, in

principle, be solved using standard proof techniques associated with bisimulation

[23, 10]. However, constructing an LF-bisimulation requires that one consider
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the behavior of the systems under all possible sequences of kills, by both the

systems themselves and the environment. The number of states that must be

explored may be exponentially larger than the number needed to construct a CCS

bisimulation.

In Section 4 we use the ideas of [19] to give alternative symbolic charac-

terizations of LF-equivalence that can be decided using a much smaller state

space. The idea is to replace the operational judgments L.P α

7�! L0

.P0 with

judgments of the form P α

�!ϕ P0, where ϕ is a logical formula that describes the

circumstances under which the action α can be performed. In the strong case the

required logic is straightforward: a propositional logic that describes the state

(dead or alive) of the sites in the system. In the weak case, however, we require a

more complicated logic that can express statements of the form site ` was alive at

some point in the past. Using these symbolic transitions, the standard definition

of symbolic bisimulation [19] requires only minor modification to capture' and

u; hence the symbolic proof techniques and tools of [19] may be used to check

the new semantic equivalences proposed in this paper.

Up to now the paper has concentrated on a semantic theory for located pro-

cesses. In Section 5 we briefly show how the same framework can also be ap-

plied to basic processes; using a slight variation on LF-bisimulations we give a

characterisation of barbed congruence for basic processes.

2 The Language

2.1 Syntax

The language we adopt is based on CCS, extended with constructs to locate and

spawn processes, to kill locations, and to query the state of a location, that is, to

test whether a location is dead or alive.

The syntax of processes is parameterized with respect to several syntactic

sets. We assume a set Loc of locations k, `, m and a set PConst of process

constants A, used to define recursive processes. As in [3], we presume that the

set of locations includes a distinguished element ? 2 Loc, which represents an

unfailing or immortal location; this location behaves differently from all others

in that it cannot be killed. Of the results in the paper, only Theorem 5.1 depends

on the use of ?; it also simplifies some examples.

As usual for CCS, we also assume a set Act of communication actions a, b,

c, such that every action a 2 Act has a complement a 2 Act ( � is a bijection on

Act). The set of (strong) actions Actτ = Act[fτg includes also the distinguished

silent action τ. We use α to range over Actτ. (In examples, we often use α and β
for restricted communication actions, as in Pnα.) The formal syntax is given in

Table 1.

We have adopted a two-level syntax which distinguishes between basic pro-
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TABLE 1 Syntax of basic and located processes

p;q (2 BProc) ::= a:p τ:p A ∑i2I pi

spawn(`; p) kill`:p if ` then p else q

p jq pna ph f i

P;Q (2 LProc) ::= P jQ Pna Ph f i [p]
`

cesses p and located processes P. Intuitively, a basic process corresponds to

what one normally thinks of as a process: a collection of threads of computation

that must be run at a single site. A located process, instead, corresponds to a dis-

tribution of basic processes over several sites. A basic process p is located at `

using the construct [p]
`

. Located processes, then, may be combined using any of

the static operators of CCS: parallel composition (p jq), action restriction (pna)

and action renaming (ph f i). Note that many basic processes may be located at

a single site, and a basic process may share a private channel (unknown to other

basic processes running at the same site) with a remote process. Note also that

restriction and renaming operate only on actions, not locations. We make the

usual assumptions about the renaming function f : f (τ) = τ and f (a) = f (a).

Basic processes may be combined using static or dynamic operators. The

latter include all of the new constructs described in the introduction (spawn, kill

and query) and the dynamic operators of CCS: action prefixing (α:p), recursion

via process constants (A) and CCS choice (p+q).

As usual, we write the inactive process (∑?) as nil. In located process, we

sometimes write [nil]

`

as nil, dropping the location subscript; in basic processes,

we almost always drop final nil term, writing “a:nil” as “a”. We also use the

following abbreviations for query expressions:

if ` then p
def

= if ` then p else nil

if ` then p
def

= if ` then nil else p

The two-level syntax ensures that all of the operations in our language are

realistically implementable. For example, it disallows distributed choices such

as [a]
`

+ [b]k. (For technical reasons — Theorem 3.11 — we do allow infinite

choice; however, for sort-finite processes finite choice is sufficient.)

The location sort of a process term reports the set of location names that

occur in the term, regardless of behaviour of the term when considered as a

process. We define the function “locs” to map terms to their location sorts. For

example locs(if ` then nil) = f`g and locs([spawn(k; nil)]
`

) = f`;kg. If locs(P)

is finite, we say that P is location-finite.
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TABLE 2 (PART A) Transition system with configurations

(Act

c

)

` 2 L

L.

[a:p]
`

a

7�! L.

[p]
`

(Tau

c

)

` 2 L

L.

[τ:p]
`

τ

7�! L.

[p]
`

(Kill

c

)

` 2 L

L.

[killm:p]
`

τ

7�! L0

.

[p]
`

L0

=

�

Lnfmg ; if m 6= ?

L; otherwise

(Live

c

)

` 2 L m 2 L

L.

[if m then p else q]
`

τ

7�! L.

[p]
`

(Dead

c

)

` 2 L m 62 L

L.

[if m then p else q]
`

τ

7�! L.

[q]
`

(Spawn

c

)

` 2 L

L.

[spawn(k; p)]
`

τ

7�! L.

[p]k

(Sum

c

)

L.

[p j]
`

α

7�! L0

.

[p0j]k

L.

[∑i2I pi]
`

α

7�! L0

.

[p0j]k

j 2 I

(Def

c

)

L.

[p]
`

α

7�! L0

.

[p0]k

L.

[A]
`

α

7�! L0

.

[p0]k

A
def

= p

2.2 Operational semantics

The ability of a process to perform an action is dependent on the set of live

locations, and consequently the transition relation determining the operational

semantics is defined between configurations. A liveset L is any set of locations

that includes ?. Intuitively, a liveset keeps track of the set of live locations. A

configuration (L.P) is a pair comprising a liveset L and a located process term

P. The set of all configurations is Config, ranged over by C and D. When writing

livesets we almost always omit explicit references to ?. Thus “L = f`g” should

be read “L = f`;?g” and “L� Loc” should be read “f?g � L� Loc”.

In Table 2 we define the transition relation (

α

7�!) � Config�Config (the

symmetric rules for parallel composition have been omitted). The definition uses

the following simple structural equivalence on processes:

[p jq]
`

� [p]
`

j [q]
`

[pna]
`

� [p]
`

na [ph f i]
`

� [p]
`

h f i

Most of the rules in Table 2 are straightforward, being inherited directly from

CCS, modulo the constraint that the process [p]
`

can only move if ` is alive.
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TABLE 2 (PART B) Transition system with configurations (continued)

(Str

c

)

P� P0 L.P0

α

7�! L0

.Q0 Q0

�Q

L.P α

7�! L0

.Q

(Comm

c

)

L.P a

7�! L0

.P0 L.Q a

7�! L0

.Q0

L.P jQ τ

7�! L0

.P0

jQ0

(Par

c

)

L.P α

7�! L0

.P0

L.P jQ α

7�! L0

.P0

jQ

(Restr

c

)

L.P α

7�! L0

.P0

L.Pna α

7�! L0

.P0

na
α 62 fa;ag

(Ren

c

)

L.P α

7�! L0

.P0

L.Ph f i f (α)

7��! L0

.P0

h f i

Note that the three new operators — kill, spawn and query — are all deemed to

take some computational effort and thus are modelled using τ

7�!. For example,

let L = f`;kg and P =

��

a:(β j spawn(k; β:b))
�

nβ

�

`

. Then P can engage in the

following transitions:

L.P a
7�! L.

��

β j spawn(k; β:b)
�

nβ

�

`

� L.

�

[β]
`

j

h

spawn(k; β:b)
i

`

�

nβ
τ

7�! L.

�

[β]
`

j

h

β:b

i

k

�

nβ

Weak transitions are defined as usual:

ε

Z=)

def

= (

τ

7�!)

�

α

Z=)

def

= (

ε

Z=) �

α

7�! �

ε

Z=))

α̂ def

=

(

ε; if α = τ
α; otherwise

The function ˆ� relates the labels of strong transitions to those of the weak tran-

sitions. We also use standard abbreviations throughout the paper. For example,

we write C α

7�! to indicate that for some C0, C α

7�!C0.

2.3 Barbed equivalence

We now discuss the problem of defining an appropriate semantic equivalence for

located processes, based on the transition relation 7�!. An obvious possibility is

to adapt the bisimulation equivalences of CCS [23]. (Strong) CCS bisimulation

is the largest symmetric relation

:

�

ccs on configurations such that whenever C

:

�

ccs D and C α

7�!C0 there exists a D0 such that D α

7�! D0 and C0

:

�

ccs D0. A weak
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version of this relation,

:

�

ccs, can be obtained by adapting this definition, in the

usual way, to the weak transition relation.

To see that CCS bisimulation is not suitable for our language, for example

is not a congruence, consider the “suicide process” [kill`]

`

; this is strong CCS

bisimilar to [τ]
`

in isolation, but not in a context that can perform an action at `:

f`g

.

[kill`]

`

:

�

ccs

f`g

.

[τ]
`

f`g

.

[a]
`

j [kill`]

`

:

�

ccs

f`g

.

[a]
`

j [τ]
`

A more interesting example is the following:

P3 =

�

[α:a]
`

j [α]k

�

nα Q3 =

�

[α]
`

j [α:a]k

�

nα

f`;kg.P3

:

�

ccs

f`;kg.Q3 , but these processes can be distinguished by a context

that kills location ` — so long as the kill action is performed after the initial

communication on α.

The use of

:

�

ccs for CCS has been justified in [29] by the fact that it coincides

with the congruence obtained from a simple notion of observation called barbed

bisimulation. Similar results have been obtained for lazy and eager functional

languages [1, 18, 7], giving further evidence for the reasonableness of this ap-

proach. Roughly, two processes are barbed bisimilar if every silent transition

of one can be matched by a silent transition of the other in such a way that the

derived states are capable of exactly the same observable actions; in addition,

the derived states must also be barbed bisimilar. The observable actions are the

“barbs”, for which we adopt the following standard notation:

C#a
def

, C a

7�! C+a
def

, C
a

Z=)

DEFINITION 2.1 (BARBED BISIMILARITY). Weak barbed bisimilarity (

:

�) is

the largest symmetric relation over configurations such that whenever C

:

�D:

(a) C τ

7�!C0 implies 9D0 : D ε

Z=)D0 and C0

:

� D0

(b) 8a : C#a implies D+a

Strong barbed bisimilarity (

:

�) is obtained by replacing Z=) by 7�! and + by #

everywhere in the definition. �

Barbed bisimilarity is a very weak relation; for example, it is not preserved

by parallel composition. However, by closing over all contexts we can arrive at a

reasonable semantic equivalence that by definition enjoys an important property,

namely that it is a congruence. In our language we have two syntactic categories

— basic and located processes — which induce different relations.

DEFINITION 2.2 (CONTEXTS, BARBED EQUIVALENCE AND CONGRUENCE).

We say that P[�] is a located-process context if for any located process P, P[P]

is a located process. Similarly, P[�] is a basic-process context if for any basic

process p, P[p] is a located process.
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Barbed equivalence (�) relates located processes, barbed congruence (
c

�),

instead, relates basic processes. They are defined as follows:

P�L Q
def

, for every located-process context P[�], L.

P[P]
:

� L.

P[Q]

P� Q
def

, for every liveset L, P�L Q

p
c

�L q
def

, for every basic-process context P[�], L.

P[p]
:

� L.

P[q]
p

c

� q
def

, for every liveset L, p
c

�L q

If P�L Q we say that P and Q are barbed equivalent at L, and similarly for the

congruence.1 Strong barbed equivalence (�) and congruence (

c

�) are obtained

in the same manner from

:

�. �

Remark 2.3. Our terminology is inspired by that of [29, 5], in which barbed

equivalence is defined by closing over static contexts (that is, those contexts

built up using only parallel composition, restriction and renaming) and barbed

congruence is defined by closing over all contexts, including dynamic contexts

such as [�]+a.

As usual for bisimulation-based semantic theories,
c

� is strictly finer than �

which is strictly finer than

:

�. For most of the paper we concentrate on barbed

equivalence, turning to the full congruence in Section 5. �

Remark 2.4. Note that to check P � Q, it is sufficient to check that P �L Q

for every L � locs(P;Q), rather than for every L � Loc. Because our language

has no facility for the creation of new locations, the liveset cannot increase as

a configuration evolves; that is, if L.P α

7�! L0

.P0, then locs(P0

) � locs(P). In

addition, extraneous locations do not affect behaviour; that is, if ` 62 locs(P) then:

L.P α

7�! L0

.P0 if and only if Lnf`g.P α

7�! L0

nf`g

.P0

Both of these properties are easily established by rule induction. Given these, it

then follows immediately that:

Loc.P

:

� Loc.Q if and only if locs(P;Q)

.P

:

� locs(P;Q)

.Q

if and only if locs(P).P

:

� locs(Q)

.Q

In particular for location-finite processes, barbed equivalence and congruence

can be checked by considering only finite livesets. �

Although some results concerning translations between languages have been

obtained using the definition of barbed equivalence directly [3, 16], the relation

is obscure and difficult to use in practice because it requires quantification over

1We could also have defined � and
c

� directly. For example P � Q if for every context C [�] such

that C [P] and C [Q] are configurations, C [P]

:

� C [Q].
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all contexts. To show processes are distinguished it is neccessary to find a live

set and a context for which the resulting configurations are not barbed bisimular.

These can be found for the the processes P1 and Q1, given in the introduction,

and therefore they are distinguished by �. However P2 and Q2 are identified

though it is far from obvious why. Even worse, processes P6 and Q6 (given on

page 14) are related, although establishing this fact requires that one prove that

P1 and Q1 are related under the assumption that ` is alive at the time P1 and Q1

are compared, that is, ` is initially alive.

We end this section with some additional examples. The processes [a]
`

and

[a]k can be distinguished by a context that kills one of the two locations. The

same context can be used to distinguish the basic processes spawn(`; a) and

spawn(k; a), regardless of where they are located. These examples indicate that

although the locations at which actions are performed are not directly observable,

they do impinge on the behavior of processes.

The order in which kill actions are executed is also significant. For example

kill`:killk can be distinguished from killk:kill` using the process [a]
`

j [b]k. On

the other hand, only the first kill of a site is observable; thus, killk:(killk+ p) is

indistinguishable from killk:(τ+ p). The conditional exhibits a related property:

[if ` then p else q]
`

� [τ:p]
`

.

The spawn operator serves as a syntactic bridge between basic and located

processes; thus, it is not surprising that top-level spawns can be eliminated:

[spawn(`; p)]
`

� [τ:p]
`

[spawn(k; p)]
`

�

�

[α]
`

j [α:p]k

�

nα; if α does not occur in p

However, the interaction between spawn and parallel composition is quite subtle.

Consider the basic processes:

p4 = spawn(k; r) j spawn(k; s) q4 = spawn(k; r j s)

If [r]k Y� [s]k and ` 6= ? then [p4]
`

Y� [q4]
`

; these processes can be distinguished

by killing ` after p4 has spawned one subprocess but not the other. Immortal

locations are peculiar in this respect: [p4]
?

� [q4]
?

.

Within a site, parallelism can be reduced to nondeterminism; for example,

[a]
`

j [b]
`

� [a:b+b:a]
`

. However, this is not true across sites. Given the examples

thus far, we would expect to have [a]
`

j [b]k � a

`

:bk + bk:a`

, but the latter is not

a term in our language. While such a term is understandable as the result of an

interleaving law, it is difficult to understand computationally on its own right; we

have been careful to construct our language so that the terms correspond, at least

intuitively, to realistically implementable distributed systems.
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TABLE 3 Transition system with explicit kills

All rules but Kill
c

from Table 2, with α replaced by µ and 7�! replaced by �!.

(Kill1

k

)

` 2 L :fallibleL(m)

L.

[killm:p]
`

τ

�! L.

[p]
`

(Kill2

k

)

` 2 L fallibleL(m)

L.

[killm:p]
`

killm

���! Lnfmg. [p]
`

(Fail

k

)

fallibleL(m)

L.P failm

���! Lnfmg.P

3 Located-Failures equivalence

In this section and the next we provide alternate characterizations of barbed

equivalence for located processes. We start by giving an enriched configura-

tion semantics which, while not strictly necessary, greatly simplifies the notation

and sharpens many of the definitions. We then define both strong and weak

LF-equivalence. The main technical result of this section is that LF-equivalence

and barbed equivalence coincide. Through examples, we show that weak LF-

equivalence is somewhat weaker than one might expect — with some surprising

results.

3.1 Enriched configuration semantics

The examples at the end of Section 2.3 show that actions performed by the kill

operator are sometimes observable, albeit indirectly. For example, kill` is differ-

ent from τ if ` is alive, but it is the same otherwise. In Table 3 we introduce a

transition relation (�!) in which this distinction is manifest. The definition uses

the predicate “fallibleL”, defined as follows:

fallibleL(m)

def

, m 6= ? and m 2 L

This enriched relation uses explicit kill actions (kill`) and fail actions (fail`).2

Unless otherwise noted, we observe the following discipline when referring to

labels in transition graphs:

α ::= τ a

µ ::= α kill`

δ ::= µ fail`

2Whereas kill actions are essential in the definition of symbolic LF-equivalence that we present in

Section 4, fail actions are introduced purely for notational convenience.
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Also let KAct be the set Act[ fkill` j `2 Locg; thus µ normally ranges over

KActτ. For a summary of the notation used in the paper, see Appendix A.

Intuitively, a kill action marks an effective execution of the kill operator;

ineffective executions of the kill operator are modeled by τ-transitions. A fail

action marks the execution of an effective kill by the surrounding context. The

rule Fail says, in effect, that any location may fail at any moment. Note that

the rule does not depend on the process term, but only on the liveset; thus it is

sufficient to use µ, rather than δ, in the inductive rules such as Par.

The relationship between the two transition systems is given by the following

lemma.

LEMMA 3.1. C a

7�!C0 if and only if C a

�!C0

C τ

7�!C0 if and only if C τ

�!C0 or 9k : C killk

��!C0

Proof. Straightforward rule induction. �

Note that if L.P δ

�! L0

.P0, then L0 is determined by L and δ. To em-

phasize this, we adopt the following notation. For each action δ, the function

iafterδ(L) (immediately after δ) reflects the effect of action δ on L; for example,

iaftera(L) = L and iafterkill`(f`;kg) = fkg. The relations δ

�!

L
and

δ

=)

L
describe

the δ-transitions of a process under liveset L. Thus if P = [α:a]
`

j [α]k, then

P
a

===)

f`;kg

nil, but P has no a-transition under the liveset fkg. The formal defini-

tions are as follows:

iafterδ(L)

def

=

(

Lnfkg ; if δ = killk or δ = failk

L; if δ 2 Act[fτ;εg

P δ

�!

L
P0

def

, L.P δ

�! iafterδ(L).P0

P δ

=)

L
P0

def

, L.P δ

=) iafterδ(L).P0

3.2 Strong LF-equivalence

We would like to define LF-equivalence directly on process terms, rather than

configurations. It is not difficult to see that to do so, we will first have to define

an equivalence that is parameterized by the set locations that are dead (or con-

versely alive) at the time that the processes are reached. For example consider

the following processes:

P5 =

�

if ` then if ` then a

�

k
Q5 =

�

if ` then if ` then b

�

k

These processes are barbed equivalent, but establishing this fact relies on com-

paring the processes “if ` then a” and “if ` then b” under the assumption that `

is already dead. We are thus lead to a definition in two steps. First we define

a parameterized equivalence ('L) which compares located processes under the

Distributed Processes and Location Failures 13

assumption that the set of locations L are alive. In order to take into account

all possible initial contexts, we then quantify over all such livesets to define the

equivalence'.

DEFINITION 3.2 (STRONG LF-EQUIVALENCE). Let S = fSLgL�Loc be an in-

dexed family of relations on LProc. S is a strong LF-bisimulation if for every L,

SL is symmetric and whenever P SL Q:

P δ

�!

L
P0 implies 9Q0 : Q δ

�!

L
Q0 and P0

Siafterδ(L)

Q0

P and Q are strong LF-equivalent under L (P'L Q) if there exists a strong LF-

bisimulation S with P SL Q.

P and Q are strong LF-equivalent (P 'Q), if P'L Q for every L� Loc. �

The definition of LF-bisimulation is similar to the definition of CCS bisimulation.

Here, however, a kill action by P must be matched by exactly the same kill

action by Q; in CCS bisimulation kill actions could be matched by any silent

action. However, it is the use of fail actions that is more important; because

of fail actions, P and Q have the same behavior in the face of any kill actions

that the surrounding context might perform. The following lemma shows how

LF-bisimilarity may be defined without the explicit use of fail actions.

LEMMA 3.3. S is a strong LF-bisimulation if and only if for every L, SL is sym-

metric and whenever P SL Q:

(a) P µ

�!

L
P0 implies 9Q0 : Q µ

�!

L
Q0 and P0

Siafterµ(L) Q0

(b) for every k 2 L P SLnfkg Q

Proof. Immediate from the definitions. �

THEOREM 3.4. For all located processes, P'L Q if and only if P�L Q.

Proof. Similar to that of Theorem 3.11, which is more difficult. �

The following lemma demonstrates that the strong behavior of located pro-

cesses depends only on the set of locations that are known to be dead, and there-

fore for location-finite processes ' (which quantifies over all initial livesets) co-

incides with 'Loc (see Remark 2.4). Surprisingly, this property does not extend

to the weak case.

LEMMA 3.5. (a) Let P and Q be location-finite. Then P'L Q and M � L imply

P 'M Q. (b) If Loc is finite, then S is a strong LF-bisimulation if and only if for

every L, SL is symmetric and whenever P SL Q:

M � L and P µ

�!

M
P0 implies 9Q0 : Q µ

�!

M
Q0 and P0

Siafterµ(M)

Q0
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Proof. (a) follows from Lemma 3.3. (b) is immediate from the definition of

strong LF-bisimulation. �

3.3 Weak LF-equivalence

We start with an example. Consider the following processes under weak barbed

equivalence:

P6 =

�

�

b:β:α+b: (α+ τ)
�

`

j

�

β: (α+ τ:a)+α:a

�

k

�

nαnβ

Q6 =

�

�

b: (α+ τ)
�

`

j

�

α:a

�

k

�

nα

If ` is initially dead, P6 and Q6 are clearly equivalent: both are strong equivalent

to nil; if only k is initially dead, they are weak equivalent to b:nil. If ` and k are

both initially alive, however, the situation is not so clear. The questionable move

is P6’s b-transition to:

P1 '

�

[α]
`

j [α+ τ:a]k

�

nα

To match this move Q6 must perform a weak b-transition to:

Q1 '

�

[α+ τ]
`

j [α:a]k

�

nα

But P1 and Q1 are not barbed equivalent: if ` is dead, then P1 is capable of an

a-transition that Q1 cannot match. This would lead one to believe that P6 and Q6

are not barbed equivalent; however, they are.

Intuitively this is true because when P6 reaches P1, ` must be alive — if `

had been dead, the b-transition to P1 would have been impossible. Thus P1 and

Q1 need only be compared under the constraint that ` is initially alive. Once

this comparison has begun, the environment can distinguish P1 and Q1 only by

killing `, but it cannot control internal activity on the part of Q1 before ` is dead.

Killing k doesn’t help to distinguish the two processes. The relevant sections

of the transition systems are shown below. To improve readability, we have not

shown the transitions labelled failk; in addition, we have marked the states with

different symbols, each symbol indicating a set of bisimilar states.

f`;kg.P1

�
�

�

�

�

�

�

�
�

fail`

���

�

�

�

�

�

�

τ

��

a

��

τ

��

fail`
���

�

�

�

a ��

?

?

?

?

a

��

?

?

?

?

fail`���

�

�

�

τ

��

?

?

?

?

?

?

?

fail`

��

:

�

f`;kg.Q1

� �

�

�

�

�
�

fail`
���

�

�

�

�

�

�

τ

��

fail`
���

�

�

�

a ��

?

?

?

?

a

��

?

?

?

?

fail`���

�

�

�

τ

��

?

?

?

?

?

?

?

fail`

��
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DEFINITION 3.6 (WEAK LF-EQUIVALENCE). S is a weak LF-bisimulation if

for every L, SL is symmetric and whenever P SL Q:

P δ

�!

L
P0 implies 9Q0 : Q

δ̂

=)

L
Q0 and P0

Siafterδ(L)

Q0

We write � for weak LF-equivalence, and �L for weak LF-equivalence at L. �

We can also give the definition without fail actions, making the cases explicit:

LEMMA 3.7. S is a weak LF-bisimulation if and only if for every L, SL is sym-

metric and whenever P SL Q:

(a) P µ

�!

L
P0 implies 9Q0 : Q

µ̂

=)

L
Q0 and P0

Siafterµ(L) Q0

(b) for every k 2 L 9Q0 : Q
ε

=)

L

�

ε

===)

Lnfkg

Q0 and P SLnfkg Q0

Proof. Immediate from the definitions. �

The last clause of Lemma 3.7 is somewhat surprising. It says, in effect, that

if the environment kills a location k, then Q must be able to (silently) evolve to

a process Q0 that matches P; but in reaching Q0, Q may exploit the intermediate

states of the system (that is, k alive, then k dead). Unrolling the recursive defini-

tion, if k;m2 L then there must exist Q0

1 and Q0

2 equivalent to P under Lnfk;mg

such that

Q
ε

=)

L

�

ε

===)

Lnfkg

�

ε
====)

Lnfk;mg

Q0

1 and Q
ε

=)

L

�

ε

===)

Lnfmg

�

ε

====)

Lnfk;mg

Q0

2

and likewise for any subset of L.

It may also be surprising that in Lemma 3.7 we do not need to allow for

the possibility that a τ-transition is matched by a kill-transition. This fact is

explained by the following lemma.

LEMMA 3.8. P
killk

==)

L
P0 implies P

ε

=)

L

�

ε

===)

Lnfkg

P0

Proof. Immediate from the operational semantics. �

Remark 3.9. Letu0

L be the relation obtained by substituting P
δ̂

=)

L
P0 for P δ

�!

L
P0

in Definition 3.6. As usual with weak bisimulation relations,u0

L =uL. �

We now show that u is a congruence on located processes (in other words,

that u is substitutive in all static contexts) — LF-equivalence is also a congru-

ence for most operators on basic processes, as we will discuss in Section 5. We

then present the main result of this section: that barbed equivalence and LF-

equivalence coincide.
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THEOREM 3.10. Each relationuL, and thereforeu, is a congruence for located

processes. That is, if P uL Q and P[�] is a context such that P[P] and P[Q] are

located processes then P[P]uL P[Q].

Proof. By induction on the structure of contexts. Note that we must only con-

sider the operators for parallel composition, renaming and restriction. In all

three cases the argument is standard; for example, in the case of parallel com-

position we define a relation SL= fhP jR; Q jRi j PuL Qg and show that S is a

LF-bisimulation. �

THEOREM 3.11. For each L, P uL Q if and only if P�L Q.

The remainder of this section is devoted to the proof of this theorem, an obvious

corollary of which is that u=�.

One direction of Theorem 3.11 (uL ��L) follows immediately from the fact

that each uL is a congruence. In the other direction, we must show that P �L Q

implies P uL Q for each L. This involves constructing a collection of contexts

C

i; j
L — mapping located processes to configurations — such that the relation

SL
def

=

�

hP;Qi
�
�

9i; j : C

i; j
L [P]

:

� C

i; j
L [Q]

	

is a LF-bisimulation.

ASSUMPTION 3.12. To simplify the exposition, we will assume that Loc is fi-

nite. The theorem also holds if Loc is infinite, as we explain in Remark 3.14. �

The contexts are based on those of Sangiorgi [29]. We assume that the set

of action names is partitioned into sets Act1 and Act2 with all actions that appear

in process terms coming from Act1. For each a 2 Act1 we assume that there

is a corresponding action in Act2 that is different from all other actions in Act;

let a0 denote this action. We also assume that Act2 contains some other actions

— c, c0, fdi;d

0

i j 0 � ig and flive

`

j ` 2 Locg — and that all these actions are

unique. Given these assumptions, the required contexts are as follows. (We drop

parameters from C

i; j
L whenever they are unimportant or clear from context.)

LSensor

def

= ∏

`2Loc [live

`

]

`

LKiller

def

= (∑

`2Loc kill`:c

0

:LKiller)+ τ:d0

0

LCounti
def

= d0

i + c0:LCounti+1; i� 2

ASensor

def

=

�

∑a2Act1
a:c:c: (τ:a0+ τ:ASensor)

�

+ τ:d0 + τ:d1

ACount j
def

= d j + c:ACount j+1; j � 2

C

i; j
L

def

= L.

[�] jLSensor j [LKiller jLCounti jASensor jACount j]
?
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The contexts are designed so that if C [P] is barbed bisimilar to C [Q] and

C [P]

ε

Z=) C

0

[P0

] then there must be a Q0 such that C [Q]

ε

Z=) C

0

[Q0

] and C 0

[P0

]

:

� C

0

[Q0

]. Significantly, the context C 0

[�] must be the same for both processes;

that is, the structure of the context must be preserved through matching moves.

This is achieved by making “observable” — via barbs — any change in the state

of the context processes.

The processes ACount and ASensor are taken directly from [29, Theorem

3.3.2]. In C [P], ASensor identifies the communication actions performed by

P, whereas ACount controls the number of these actions that P can perform.

We refer the reader to [29] for more details on the use of these contexts. To

these we add three new processes, LKiller, LSensor and LCount. LSensor senses

kill actions performed by P (in addition to those performed by the context), in

much the same way as ASensor senses actions of P. LKiller mimics the manner

in which the context kills locations and LCount disciplines its use of LKiller,

preventing the context from engaging in infinite internal activity.3

The resulting contexts are strong enough to recover LF-equivalence from

barbed bisimilarity — specifically, they are strong enough to show that S is a

weak LF-bisimulation up to�. To prove this we first need the following Lemma:

LEMMA 3.13. If C [P]

ε

Z=)C, C [Q]

ε
Z=) D and C

:

� D, then C and D must have

exactly the same livesets.

Proof. Follows from the fact that LSensor offers a distinct communication for

each live location and is incapable of communication or silent transitions, within

the context C [�]. �

We now complete the proof of Theorem 3.11.

Proof of Theorem 3.11. We show that S is an LF-bisimulation up to �. We use

the characterization of LF-bisimulation given in Lemma 3.7. Suppose that P

SL Q and P α

�!

L
P0. We examine the three clauses of this Lemma in turn.

To satisfy the first clause, we must show that Q can perform the same action,

evolving to a matching state Q0. The proof can be copied directly from Sangiorgi,

using Lemma 3.13 to establish the only additional requirement: that the livesets

are unchanged during transitions of C [P] and C [Q].

On the other hand, suppose that P killk

��!

L
P0 and therefore C

i; j
L [P] τ

7�!

C

i; j

Lnfkg
[P0

]

def

= C0. This must be matched by a move C

i; j
L [Q]

ε

Z=) D0 such that

3There is a risk of such activity because once a site is dead any further attempts to kill it are

treated as τ-actions. LCount makes every move of LKiller visible, thus preventing it from internal

moves that would otherwise go unnoticed. We use separate counters for LKiller and ASensor so that

communication-transitions of P cannot be matched by kill-transitions.



18 J. Riely and M. Hennessy

C0

:

�D0. We show that D0 must be of the form C

i; j

Lnfkg
[Q0

], up to �. From Lem-

ma 3.13 it is easy to see that the liveset in D0 must be Lnfkg. To see that the rest

of the context must be unchanged, note that C0 can silently move to a state in

which the only d-actions possible are d0

0, d0

i , d0, and d j . D0 can only match this

state if D0

= C

i; j

Lnfkg
[Q0

] for some Q0. Therefore, although k has died, the context

could not have killed it (since the LKiller has not moved). Thus Q must have

killed k, and we have that Q
killk

==)

L

�

ε

===)

Lnfkg

Q0 and P0

SLnfkg Q0, as required.

We now turn to the final requirement of Lemma 3.7. We must show that

Q
ε

=)

L

�

ε

===)

Lnfkg

Q0 for some Q0 such that P0

SLnfkg Q0.

We know that C

i; j
L [P] τ

7�! �

τ

7�! C

i+1; j

Lnfkg
[P] = C0, by the context killing the lo-

cation k. Therefore it must be that C

i; j
L [Q] is able to silently reach a configuration

D0 that is barbed bisimilar to C0. Reasoning as before, we can show that D0 must

structurally equivalent to C

i+1; j

Lnfkg
[Q0

] for some Q0. The only question is: who

killed k? Q or the context? Consulting Lemma 3.8, however, the question proves

to be irrelevant. If Q killk

==)

L
Q0, then there exists a Q00 such that:

C

i; j
L [Q]

ε

Z=) C

i; j
L [Q00

]

ε

Z=) C

i+1; j

Lnfkg
[Q00

]

ε

Z=) C

i+1; j

Lnfkg
[Q0

]

Thus we have as required that Q
ε

=)

L

�

ε

===)

Lnfkg

Q0 and P0

SLnfkg Q0. �

Remark 3.14. To simplify the exposition we have assumed that Loc is finite;

however, the proof is only slightly more complicated if Loc is infinite. In this

case, we must change the contexts so that they do not include an infinite number

of processes. The culprit is LSensor which can be changed as follows:

LSensor

0

def

= (∑

`2Loc if ` then live

`

)+d0

1

The sole purpose of LSensor is to guarantee Lemma 3.13. Using LSensor

0, the

proof of Lemma 3.13 is only slightly more complicated. The summand d0

1 is

necessary to keep LSensor from moving in the case that all locations are dead.

Note that we could achieve the same result by sensing dead rather than live

locations. �

Remark 3.15. If we restrict the language, disallowing terms of the form killk:p

in which p 6= nil, the results do not change. To accommodate this language with

“asynchronous kills,” LKiller must be changed as follows:

LKiller

0

def

= ∑

`2Loc c0: (kill` jLKiller)

Using this definition, the result follows by extending the structural equivalence

with the following absorption law: nil j P � P. (This is necessary so that the

residual of the term kill`:nil in the context can be ignored.) The proof also makes

use of Lemma 3.8. �
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4 Symbolic characterizations

While LF-equivalence provide a great deal of insight into the meaning of barbed

congruence in distributed process description languages such as ours, it is un-

wieldy to use in practice. For a start it is based on an operational semantics

which uses configurations rather than processes. Moreover this operational se-

mantics needs to take into consideration not only all the kill actions which the

processes can perform but also the possible kills which can be carried out by the

environment. As a result the labelled transition systems associated with even the

simplest processes are very complex.

In this section, we define a symbolic transition system directly on located

process terms, then give characterizations of strong and weak LF-equivalence

using these symbolic transitions. As one should expect, the weak case is quite

a bit more subtle than the strong. By adapting the algorithms in [19], one could

derive an alternative method for automatically checking LF-equivalence on finite

state processes. But the symbolic characterizations are not only useful for auto-

mated proof; they also greatly simplify reasoning by hand. To begin with, the

symbolic graphs are typically an order of magnitude smaller than their concrete

counterparts.

We begin by giving the symbolic operational semantics.

ASSUMPTION 4.1. Throughout this section we will assume that Loc is finite.

The results can be generalized in to location-finite processes, but the notation

required is tedious. �

4.1 Symbolic semantics

The symbolic transition relation makes use of Boolean formulae π, ρ, in which

location names serve as the literals.

π;ρ ::= tt ` `

W

i2I πi π^ρ

Whereas literals are drawn from Loc, atoms are drawn from Loc[
�

` j ` 2 Loc

	

.

Positive atoms occur in Loc; whereas negative atoms occur in

�

` j `2 Loc

	

. We

say that π is a positive formula if it contains no instance of a negative atom;

negative formulae are defined similarly. If ` appears as an atom in π, we say that

` appears positively in ρ. If ` appears in π the ` appears positively in ρ. Thus tt

is both a positive and a negative formula.

Remark 4.2. We do not require full negation, although including it would not

pose any difficulties; we write ` for the negation of `. On the other hand, we

do allow infinitary disjunction; were we to restrict our attention to image-finite

processes, finitary disjunction would be sufficient. �



20 J. Riely and M. Hennessy

TABLE 4 Symbolic transition system

(Act

s

)

[a:p]
`

a

�!

`

[p]
`

(Tau

s

)

[τ:p]
`

τ

�!

`

[p]
`

(Kill1

s

)

[killm:p]
`

τ

��!

`^m [p]
`

(Kill2

s

)

[killm:p]
`

killm

���!

`^m [p]
`

(Live

s

)

[if m then p else q]
`

τ

��!

`^m [p]
`

(Dead

s

)

[if m then p else q]
`

τ

��!

`^m [q]
`

(Spawn

s

)

[spawn(k; p)]
`

τ

�!

`

[p]k

(Sum

s

)

[p j]
`

µ

�!π [p0j]
`

[∑i2I pi]
`

µ

�!π [p0j]`

j 2 I

(Str

s

)

P� P0 P0

µ

�!π Q0 Q0

�Q

P µ

�!π Q

(Def

s

)

[p]
`

µ

�!π [p0]
`

[A]
`

µ

�!π [p0]
`

A
def

= p

(Comm

s

)

P a

�!π P0 Q a

�!ρ Q0

P jQ τ

��!π^ρ P0

jQ0

(Par

s

)

P µ

�!π P0

P jQ µ

�!π P0

jQ

(Restr

s

)

P µ

�!π P0

Pna µ

�!π P0

na
µ 62 fa;ag (Ren

s

)

P µ

�!π P0

Ph f i f (µ)

��!π P0

h f i

Intuitively, a formula indicates a set of constraints on the status of locations

(dead or alive) at the time that the transition is enabled. For example, if P µ

��!

`^m P0

then P is capable of making an µ-transition to P0 if location ` is alive and m is

dead; that is, P µ

�!

L
P0 if ` 2 L and m 62 L. The semantics of the logic is given

with respect to live sets:

L � tt always L � π^ρ if L � π and L � ρ
L � ` if ` 2 L L �

W

i πi if 9 j : L � π j

L � ` if ` 62 L

In Table 4 we define the transition relation (

µ

�!π )� LProc�LProc (the sym-

metric rules for parallel composition have been omitted). The relationship be-

tween the two transition systems is summarized in the following lemma. We

defer examples to Section 4.3.

LEMMA 4.3 (STRONG TRANSITION LEMMA).

P µ

�!

L
P0 if and only if 9π : P µ

�!π P0 and L � π
Proof. By rule induction in both directions. �
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NOTATION. We use sets of locations L in logical formulae to denote the con-

junction of the literals in L. Similarly, L represents the formula

V

�

` j ` 2 L

	

. As

usual � is shorthand for

W

?. �

4.2 Strong symbolic bisimulation

The standard definition of symbolic bisimulation [19] requires that we define

entailment between formulae, which we do in the standard way:

π 
 ρ if and only if 8L : L � π implies L � ρ

Note that entailment is a preorder on formulae. If π
 ρ we say that π is stronger

than ρ. � is the strongest formula under 
, tt the weakest.

Remark 4.4. We write 
 rather than ` to emphasize that the relation is semantic

entailment (and because we have already used the symbol �). A proof system for


 can be found in any introductory book on logic. We use semantic entailment

throughout the paper because it is sufficient for our purposes, and we are not here

concerned with implementation issues. �

We must also identify a set of formulae suitable as parameters in the recursive

definition of symbolic equivalence, that is, the analogs of the parameters L in the

definition of LF-equivalence. Intuitively, when we say that P and Q are LF-

equivalent under L, we are limiting attention to a single possible world, namely

that in which exactly the sites in L are alive. The idea of symbolic equivalences,

instead, is to treat many possible worlds simultaneously (via entailment). In

the case of strong LF-bisimulation, where for location-finite processes P 'L Q

and M � L imply P 'M Q, this is achieved by restricting attention to negative

formulae in the recursive definition of symbolic equivalence.

We write neg(π) for the projection of π onto the set of negative formulae,

that is, the formula obtained by substituting tt for every occurrence of a positive

atom in π. For example, neg(`^ k) = tt^ k.

Suppose that P can take a µ-transition to P0 under the condition ρ and we are

attempting to show that P is symbolicaly equivalent to Q. The definition will

require a Q0 that is µ-reachable under the same condition. The definition also

determines the conditions under which we must subsequently compare P0 and

a potential Q0. These are determined by the transformations “afterµ” defined as

follows:

M � afterα(ρ) if and only if 9L : L � ρ and M � L

M � afterkillk(ρ) if and only if 9L : L � ρ and M � Lnfkg

Note that for any formula, afterµ(ρ) is unique up to a
. Since our logic is very

simple, it is straightforward to calculate afterµ(ρ); a step in this direction is the
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following:

afterµ(ρ) =
8
>
<

>
:

� if ρ
 �

neg(ρ)^ k if µ = killk

neg(ρ) otherwise

If ρ is unsatisfiable then afterµ(ρ) is simply �. Otherwise it corresponds to the

negative information in ρ; if the action performed is a kill action killk, then we

must also include the requirement that k be dead, that is, k.

We now have all the ingredients necessary to give our definition of strong

bisimulation equivalence.

DEFINITION 4.5 (STRONG SYMBOLIC BISIMULATION). Let S be a family of

relations on LProc indexed by negative formulae ϑ. S is a strong symbolic bisim-

ulation if for every ϑ, Sϑ is symmetric and whenever P Sϑ Q and P µ

�!π P0 then

there exist πi, ρi, and Qi such that for all i,

(a) ϑ^π

W

i ρi;

(b) ρi 
 πi;

(c) Q µ

�!πi
Qi; and

(d) P0

Safterµ(ρi)

Qi

We write P 's

ϑ Q to indicate that there exists a symbolic bisimulation S with P

Sϑ Q. �

One can read the definition as follows: If P '

s

ϑ Q and P µ

�!π P0, then there

must be a way to partition the set of possible worlds which satisfy ϑ^π (the ρi

provide the partitions) such that in each partition, Q can make a matching move.

Clauses (b) and (c) ensure that Q can move to the state Qi, and clause (d) ensures

that this state matches P0 under all possible worlds allowed by ρi.

Note that the definition implicitly quantifies over the index set I from which

the i are drawn. In particular, if ϑ = �, it is sufficient to let I = ?; therefore

for any P, Q we have that P '

s
�

Q. It is also true that strengthening formulae

preserves bisimilarity: P's

ϑ Q and ϑ0


 ϑ imply P's

ϑ0

Q.

We aim to show that 's

ϑ characterises LF-equivalence in the sense that P

'L Q if and only if there is some negative formula ϑ such that P '

s

ϑ Q and

L � ϑ. We examine the two implications separately.

PROPOSITION 4.6. P's

ϑ Q and L � ϑ imply P'L Q.

Proof. Let SK be defined as follows:

SK
def

= fhP;Qi j 9ϑ : K � ϑ and P's

ϑ Qg

If P 's

ϑ Q and L � ϑ then clearly P SL Q.
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We now show that SK is a LF-bisimulation using the characterization in Lem-

ma 3.5. Suppose that P SL Q and therefore:

L � ϑ and P's

ϑ Q (1)

Further suppose that P µ

�!

M
P0 for some M � L, and therefore by the Strong Tran-

sition Lemma, there must exist a π such that:

M � π and P µ

�!π P0 (2)

Since P's

ϑ Q, we know that there must be πi, ρi and Qi that satisfy the conditions

of Definition 4.5. Using (1), (2) and that fact that ϑ is negative, M � ϑ^π. Thus

by the definition of 's, there must be some j such that:

M � ρ j and ρ j 
 π j (3a)

Q µ

�!π j
Q j (3b)

P0

'

s

afterµ(ρ j)

Q j (3c)

We show that Q µ

�!

M
Q j and P0

Safterµ(M)

Q j .

From (3a), we know that M � πi. Then using the Strong Transition Lemma

and (3b) we arrive at Q µ

�!

M
Q j.

To show P0

Safterµ(M)

Q j, it sufficient — because of (3c) — to show that

iafterµ(M) � afterµ(ρ j); but this is immediate from (3a) and the definitions. �

PROPOSITION 4.7. P'L Q implies P's

LocnL
Q.

Proof. Let Sϑ be defined as follows:

Sϑ
def

= fhP;Qi j 8K : K � ϑ implies P'K Qg

If P 'L Q then, by Lemma 3.5, M � L implies P 'M Q. Further M � LocnL

implies M � L, and therefore P S

LocnL
Q.

We now show that Sϑ is a symbolic bisimulation. Suppose that P Sϑ Q and

therefore:

8K : K � ϑ implies P'K Q (4)

Further suppose that P µ

�!π P0. Enumerate Q’s symbolic µ-transitions as Q µ

�!πi

Qi, and for each i let ρi be the boolean determined by

M � ρi if and only if M � πi and P0

'iafterµ(M)

Qi (5)

We now show that these ρi satisfy the conditions for a symbolic bisimulation.

The requirements that Q µ

�!πi
Qi and that ρi 
 πi are met by definition. We must

only show that:

ϑ^π 

W

i ρi (6a)

8K : K � afterµ(ρi) implies P0

'K Qi (6b)
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For (6a), suppose that M � ϑ^π and therefore (using Equation 4) P 'M Q. We

show that for some j, M � ρ j . Using the suppositions that P µ

�!π P0 and M �

ϑ^π, we can apply the Strong Transition Lemma to conclude that P µ

�!

M
P0 and

therefore that there must exist some Q0 such that:

Q µ

�!

M
Q0 and P0

'iafterµ(M)

Q0

By the Strong Transition Lemma there must be some j such that Q0

= Q j and

M � π j. Because M � π j and P0

'iafterµ(M)

Q j , we can use (5) to conclude that

M � ρ j .

Finally we prove (6b). If K � afterµ(ρi) then by the definition of “after”,

there must be some L� K such that L � ρi. By (5), P0

'iafterµ(L) Qi. Again using

the definition of “after”, K � L; therefore we may use Lemma 3.5 to conclude,

as required, that P0

'K Qi. �

Combining these two Lemmas we obtain the following.

THEOREM 4.8. P 'L Q if and only if there exists a negative formulae ϑ such

that P's

ϑ Q and L � ϑ. In addition, (') = ('

s
tt

).

Proof. The first result follows immediately from the two previous propositions.

The result for ' follows from that for 'L. One direction is immediate while to

prove '�'s
tt

it is sufficient to take the disjunction of the ϑL for each L. �

4.3 Weak symbolic bisimulation

As a first attempt to define weak symbolic bisimulation, let us try simply replac-

ing the strong transitions in Definition 4.5 with weak edges defined by conjoining

formulae. For example, we would have P ε

=)
tt

P; also P a

==)π^ρ P0 if P ε

=)π �

a

=)ρ P0.

Unfortunately the equivalence resulting from this definition does not suffice.

Consider the processes P6 and Q6 defined in Section 3.3; their symbolic tran-

sition graphs are given below (where we have written µ

�!π as µπ

�! to improve

readability).

P6 =

�

�

b:β:α+b: (α+ τ)
�

`

j

�

β: (α+ τ:a)+α:a

�

k

�

nαnβ

Q6 =

�

�

b: (α+ τ)
�

`

j

�

α:a

�

k

�

nα

P6

�

P1

� �
�

Q1

�
�

�

b

`

{{w

w

w

w

τ

`^k

��

τ

`^k

{{x

x

x

τk

##

F

F

F

ak

��

b

`

��

4

4

4

4

4

4

4

τ

`^k

##

F

F

ak

��

τ

`

{{x

x

�

Q6

Q1

�
�

�

b

`

��

τ

`^k

##

F

F

ak
��

τ

`

{{x

x

Distributed Processes and Location Failures 25

We know from Section 3.3 that P6 �Q6. Thus we expect P6 and Q6 to be related

symbolically under the formula tt; however, using the first attempted definition

the relation does not hold.

The problem occurs when we try to
P1 =

�

[α]
`

j [α+ τ:a]k

�

nα
Q1 =

�

[α+ τ]
`

j [α:a]k
�

nα
match P6’s b-transition to P1 with Q6’s tran-

sition to Q1. In this case we end up com-

paring P1 and Q1 under the assumption tt,

which is equivalent to afterb(`^ k), yet we have already established that P1 and

Q1 are not LF-equivalent with respect to all live sets. As noted in Section 3.3, P1

and Q1 are only related under the positive assumption that ` is (initially) alive;

yet “afterµ” removes all positive information from a formula.

As a second attempt, we might simply change the recursive requirement of

the definition (in the case that the action µ being matched is not a kill) to read

P0

Sρi
Qi, allowing positive as well as negative information to carry over into the

next phase of the bisimulation. Whereas our first attempt produced an equiva-

lence that was too strong, the revised definition is too weak. For example, the

following processes would be identified though they are not barbed congruent.

P7 =

�

[α:a]
`

j [α]k

�

nα

P0

7

�

τ

`^k

��

a
`

��

Y�

Q7 =

�

[α]
`

j [α:a]k

�

nα

Q0

7

�

τ

`^k

��

ak

��

Using the second definition, P0

7 and Q0

7 would be compared under the formula

`^ k. This formula, however, says something more than we would like, namely

that ` and k remain alive until P0

7 and Q0

7 finish executing their first weak action.

Yet it is possible, for example, that the environment kills ` before P0

7 performs its

a-transition; Q0

7 is incapable of matching this sequence of events.

From these two examples, we can see that positive information must be car-

ried over into the recursive requirement of the symbolic version of weak LF-

bisimulation, but that the use of this information is more subtle than can be ex-

pressed in our propositional logic for locations. We require a logic that is capable

of expressing the changes in the liveset as weak actions are performed.

The next example, P8, shows that this logic must be able to express arbitrary

properties of the form “` and k must have been alive, then ` must have died,

and after that k must have died.” Notice that this sequence of requirements cor-

responds to the state marked R6 in the graph at the top of the next page. The

conditional construct (along with ?) allows us to express such a process graph in

the syntax of the language.
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Pick an arbitrary process, say [a]
?

. Under what
P8

� R1

� R2

R3 �

� R4

R5 R6

τ

`

���

�

�

�

τ

`

��

?

?

?

τk

���

�

�

�

τk

��

?

?

?

?

τ

`

���

�

�

�

τ

`
��

?

?

?

?

τk

���

�

�

�

τ
k

��

?

?

?

?

τk

���

�

�

�

τ
k

��

?

?

?

?

conditions is P8 equivalent to [a]
?

? The equivalence

holds if and only if each of the states Ri is equivalent

to [a]
?

. To capture this requirement in the definition

of symbolic bisimulation, we must find appropriate

logical formulae ϕi such that

W

i2I ϕi is a tautology

for I = f1; : : : ;6g, but not for any smaller set I. For

example, if Ri = [a]
?

for i � 5, but R6 = [b]
?

, then

clearly P8 is not equivalent to [a]
?

; this is due to the

behavior of P8 in the world in which ` and k are both initially alive and then both

die, ` first. To capture such possible worlds, our logic must capture properties of

sequences of livesets.

Our solution is to define weak symbolic edges using a past-time temporal

logic [22, 30]. Our notion of “time” is quite restrictive: time passes only when

a site fails; in addition, any two site failures must be temporally ordered — that

is, failures occur one at a time. This intuition is formalized in the notion of a live

sequence. For example, hf`g;?i is a live sequence, but hf`g; f`gi and hf`;kg;

?i are not.

DEFINITION 4.9 (LIVE SEQUENCE). A live sequence L is a finite nonempty

sequence of location sets hL1; : : :; Lni, such that for every i between 1 and n�1

there exists a location k such that Li+1 = Linfkg. �

NOTATION. We write jLj for the length of L, L
(i) for the ith element of L, and

L

hi; ji for the subsequence extending from the ith to the jth element inclusive. If

i� 1 or i � jLj then L
(i) is undefined, and similarly for L
hi; ji. L �L denotes the

live sequence obtained by prepending L to L. Finally, we write L
(�)

for L
(jLj)

,

that is, the last element of L. �

These sequences are used to give the semantics of temporal formulae ϕ, ψ,

which may include the past-time modalities�, �} and�.

L � tt always L �

W

i2I ϕi if 9 j 2 I : L � ϕ j

L � ` if `2 L
(�)

L ��ϕ if L
h1;jLj�1i � ϕ

L � ` if ` 62 L
(�)

L ��}ϕ if 9 j � jLj : L
h1; ji � ϕ

L � ϕ^ψ if L � ϕ and L � ψ L � �ϕ if 8 j � jLj : L
h1; ji � ϕ

We also adopt two abbreviations:

ϕ #π def

= π^�}ϕ “ϕ then π”

ϕ #1 π def

= π^�ϕ “ϕ then immediately π”

Note that we allow only Boolean formulae π on the right-hand side of these
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TABLE 5 Weak symbolic transitions

P
ε

=)
tt

P

P
ε

=)ϕ �

τ

�!π P0

P
ε

=====)

(ϕ^π)#tt

P0

P
µ

=)ϕ �

τ

�!π P0

P
µ

==)ϕ^π P0

P
ε

=)ϕ �

killk

��!π P0

P
killk

=====)

(ϕ^π)#1k
P0

P
ε

=)ϕ �

α

�!π P0

P
α

==)ϕ^π P0

operators. Thus they “associate to the right”; for example, ϕ # π #ρ = (ϕ # π) #ρ.4

The atomic proposition ` is interpreted to mean that ` is alive now, in state

L

(�)

, which is the final state of L; it therefore follows that ` must have been alive

at all points in the past. The proposition ` specifies that ` is now dead, although

it may have been alive in the past. �ϕ specifies that at all points up to now, ϕ has

been true. �}ϕ specifies that at some point — now or in the past — ϕ was true.

The formula ϕ #π specifies that ϕ was true in the past and π is true now. Note that

because live sequences must be strictly decreasing, ` #` is unsatisfiable; however

hf`g;?i � ` # `.

NOTATION. For the rest of the paper we will use the symbol � only for temporal

formula, whose models are live sequences. If we wish to refer to the satisfaction

relation for Boolean formulae, we will add a subscript: �b. �

The definition of weak symbolic transitions, which uses formulae from our

extended logic, is given in Table 5. Intuitively P
µ

=)ϕ P0 means that P can perform

the action µ to become P0 in an environment where the change in live sets satisfies

the formula ϕ. For example if ϕ1 = (`^ k) #` and ϕ2 = (`^ k) #k then P7 has the

symbolic transition
a

=)ϕ1
but not

a

=)ϕ2
, whereas for Q7 it is the opposite. Recall

that the definition of P7 and Q7 are as follows:

P7 =

�

[α:a]
`

j [α]k

�

nα Q7 =

�

[α]
`

j [α:a]k

�

nα

The definition of weak symbolic bisimulation is similar to that for the strong

case. Thus, as for the strong case, we must specify a collection of formulae with

which to parameterize the recursive definition as well as an operator on formulae

— corresponding to “afterµ” — for generating them. Note that, unlike in the

4The general form, ϕ #ψ def

= ψ^�}ϕ, is not associative, since:

(ϕ1 #ϕ2) #ψ1 = ψ^�}(ϕ2^�}ϕ1) 6a
 (ψ^�}ϕ2)^�}ϕ1 = ϕ1 # (ϕ2 #ψ1)

The inequality can be seen as deriving from the fact that �} does not distribute through ^. An

alternative is to use the “chop” operator of [26]. We have decided to use the standard operators

precisely because they are standard; they may also allow for more efficient decision procedures [28].
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strong case, the transformation function need not be parameterized by the action

µ since the relevant information is already encoded in the temporal formulae.

The formulae we choose as parameters to the relation are simply Boolean

formulae, but now interpreted on the initial liveset of a live sequence. Rather

than use two logics in the definition or introduce additional operators, we instead

define the function “initially” which converts Boolean formulae into temporal

formulae with this interpretation in mind. The transformation function for gen-

erating formulae, which we call “finally”, must then take a temporal formula and

transform it into a propositional one. The definitions (unique up to a
) are as

follows:

L � initially(π) if and only if L

(1) �b π
M �b finally(ϕ) if and only if 9L : L � ϕ and M = L

(�)

For example:

initially((`^ k)_m) = ((�}`)^ (�k))_�}m

finally((`^ k) # (m^n) #1 (m^ j)) = k^n^m^ j

The function “initially” is easy to calculate: on unsatisfiable formulae it is

�; on satisfiable formulae it is a homomorphism everywhere but for atoms;

on atoms, initially(`) = �}` and initially(`) = �`. The calculation of “finally”

is difficult in general; however, the results of this paper require only a well-

behaved subset of formulae. We discuss the calculation of “finally” further in

Appendix B.

DEFINITION 4.10 (WEAK SYMBOLIC BISIMULATION). Let S be a family of

relations on LProc indexed by Boolean formulae π. S is a weak symbolic bisim-

ulation if for every π, Sπ is symmetric and whenever P Sπ Q and P
µ̂

=)ϕ P0 then

there exist ϕi , ψi, and Qi such that for all i:

(a) initially(π)^ϕ 

W

i ψi;

(b) ψi 
 ϕi;

(c) Q
µ̂

=)ϕi
Qi; and

(d) P0

Sfinally(ψi)

Qi

We write P us

π Q to indicate that there exists a weak symbolic bisimulation S

with P Sπ Q.5 �

Before presenting the alternative characterization theorem, we first discuss

some of the examples. Consider P1 and Q1 . To show these two processes sym-

bolically bisimilar, there are two interesting transitions that must be matched.

5If one uses P µ

�!ρ P0 rather than P µ̂

=)ϕ P0 in the definition, then clause (a) becomes:

initially(π)^ (ρ #tt) 


W

i ψi; if µ = τ
initially(π)^ (ρ #

1 k) 

W

i ψi; if µ = kill k

initially(π)^ ρ 


W

i ψi; otherwise
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First, consider the transition Q1
ε

=)ϕ nil, where ϕ = ` # tt. To match this, we must

use two ε-transitions of P1: P1
ε

=)ϕ1
P1, where ϕ1 = tt and ψ1 = `^ k # tt, and

P1
ε

=)ϕ2

nil, where ϕ2 = `^k #tt and ψ2 = `^k #tt. These choices for the ψi, meet

all of the requirements for the definition, even if we take π = tt. In particular,

ϕ
 ψ1_ψ2, P1 u
s

finally(ϕ1)
nil where finally(ϕ1) = k, and nilu

s

finally(ϕ2)
nil where

finally(ϕ2) = tt.

Second, consider the transition P1
a

=)ϕ nil, for ϕ = k # k. Q1 cannot match

this transition at tt because Q1’s only a-transition is parameterized by `^ k # k

and k does not entail `^ k #k; however, the transitions can be matched under the

assumption π = ` since (�}`)^ k does entail `^ k #k.

P6 and Q6 then, are related at tt, since the definition ensures that P1 and Q1

are compared under the assumption that ` is alive. By the same token, P7 and Q7

can only be related at formulae that entail `_ k; P0

7 and Q0

7 are also related under

the assumption `^ k, but neither P7 nor Q7 can generate such a formula, due to

the weakening that happens in ε-transitions. Note that the construction of weak

symbolic edges, which differs for visible and non-visible actions, is crucial in

achieving the correct results for these examples.

THEOREM 4.11. P uL Q if and only if there exists a Boolean formula π such

that P us

π Q and L �b π. In addition, (u) = (u

s
tt

).

The result for u follows from that for uL. We devote the rest of this section

to the proof of this theorem. As a first step we must relate the symbolic moves

to (sequences of) concrete actions. This is achieved by defining concrete moves

which are parameterized by live sequences:

DEFINITION 4.12. For each live sequence L and µ̂ 2 KActε,
µ̂

Z=)

L

is the least

relation satisfying the following:

P
α̂

Z==)

hLi

P0 if P
α̂

=)

L
P0

P
killk

Z=====)

hL;Lnfkgi

P0 if P
killk

==)

L
P0

P
µ̂

Z==)

L�L

P00 if P
failk

==)

L

�

µ̂

Z=)

L

P0 and L
(1) = Lnfkg �

Note that this use of the symbol Z=) is entirely different from that of

Section 2.2. Also recall that P
failk

==)

L
P00 if and only if k 2 L and P

ε

=)

L

�

ε

===)

Lnfkg

P00.

In order to relate these transitions to weak symbolic transitions, we first provide

an alternate view of the symbolic transitions.
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LEMMA 4.13. (a) P
ε

=)ϕ P0 if and only if there exist Pi, πi and h such that 1� h,

P1 = P, Ph = P0, and the following hold:

for every 1� i < h, Pi
τ

�!πi
Pi+1; and

ϕ a
 π1 # : : : #πh�1 # tt

(b) P
µ

=)ϕ P0 if and only if there exist Pi, πi, h and n such that 1� h � n, P1 = P,

Pn+1 = P0, and the following hold:

for every 1� i� n, i 6= h, Pi
τ

�!πi
Pi+1; and

if µ = α then Ph
α

��!πh
Ph+1 and ϕ a
 π1 # : : :#πh�1 #πh ^ πh+1^ : : :^πn

if µ = killk then Ph
killk

��!πh
Ph+1 and ϕ a
 π1 # : : :#πh�1 #πh #

1 πh+1^ : : :^πn

Proof. The forward direction (only if) follows by rule induction. The reverse

direction follows by induction on n. �

LEMMA 4.14 (WEAK TRANSITION LEMMA).

P
µ̂

Z=)

L

P0 if and only if 9ψ : P
µ̂

=)ψ P0 andL � ψ
Proof. In both directions by induction on the definition of weak transitions, using

the Strong Transition Lemma and Lemma 4.13. �

The proof of the theorem depends on the following characterisation of LF-

bisimulation equivalence (compare Lemma 3.3).

LEMMA 4.15. S is a weak LF-bisimulation if and only if for every L, SL is sym-

metric and whenever P SL Q:

L

(1) = L and P
µ̂

Z=)

L

P0 imply 9Q0 : Q
µ̂

Z=)

L

Q0 and P0

S

L

(�)

Q0

Proof. Straightforward. �

We now prove the main theorem, treating each direction separately.

PROPOSITION 4.16. For any Boolean formula formulae π, if Pus

π Q and L�b π
then PuL Q.

Proof. Let SK be defined as follows: SK
def

= fhP;Qi j 9π : K �b π and Pus

π Qg.

If P us

π Q and L �b π then P SL Q.

Using the characterisation given above we now show that SK is an LF-

bisimulation. Suppose that P S
L

(1)

Q and therefore we fix a Boolean formula

π such that P us

π Q and L
(1) �b π, that is, L � initially(π). Further suppose that

P
µ̂

Z=)

L

P0. Using the Weak Transition Lemma, there must exist a ϕ such that:

L � ϕ and P
µ̂

=)ϕ P0 (7)
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Since Pus

π Q, we know that there must be some j such that:

L � ψ j and ψ j 
 ϕ j (8a)

Q
µ̂

=)ϕ j
Q j (8b)

P0

u

s

finally(ψ j)

Q j (8c)

From (8a), we know thatL � ϕi . Using the Weak Transition Lemma and (8b) we

may conclude that Q
µ̂

Z=)

L

Q j . It remains only to show that P0

S

L

(�)

Q j , but this

follows using (8c) and the definition of “finally” �

PROPOSITION 4.17. If PuL Q then Pus

L^LocnL
Q.

Proof. Let Sπ be defined as follows:

Sπ
def

=

�

hP;Qi j 8K : K �b π implies P us

K Q

	

If π = L^LocnL then clearly L �b π; thus if PuL Q then P Sπ Q.

We now show that Sπ is a symbolic bisimulation. Suppose that P Sπ Q; thus:

8K : K �b π implies P'K Q (9)

Further suppose that P
µ̂

=)ϕ P0. Enumerate Q’s symbolic µ̂-transitions as Q
µ̂

=)ϕi

Qi, and let ψi be the temporal formula characterised by

M � ψi if and only if M � ϕi and P0

'

M

(�)

Qi (10)

We now show that these ψi satisfy the conditions for a symbolic bisimulation.

The requirements that Q
µ̂

=)ϕi
Qi and that ψi 
 ϕi are met by definition. We must

only show that:

initially(π)^ϕ 


W

i ψi (11a)

8K : K �b finally(ψi) implies P0

'K Qi (11b)

For (11a), suppose thatM � initially(π)^ϕ and therefore, using (9), P'
M

(1)

Q.

We show that for some j, M � ψ j. Using the suppositions that P µ̂

=)ϕ P0 and
M � initially(π)^ϕ, we can apply the Weak Transition Lemma to conclude that

P
µ̂

Z=)

M

P0 and therefore, since P '
M

(1)

Q, that there exists some Q0 such that:

Q
µ̂

Z=)

M

Q0 and P0

'

M

(�)

Q0

By the Weak Transition Lemma there must be some j such that Q0

= Q j and

M � ϕ j . Because M � ϕ j and P0

'

M

(�)

Q j , we can use (10) to conclude that

M � ψ j.

Finally we prove (11b). Suppose that K �b finally(ψi). Then there must exist

some L such that L
(�)

= K and L � ψi. By (10), P0

'

L

(�)

Qi, and therefore we

have, as required, that P0

'K Qi. �
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5 Basic processes

In this section we turn our attention to the semantics of basic processes. In

order examine the behaviour of such processes using our operational semantics

we need to locate them at a specific site. Moreover it is rather obvious that

the choice of this site cannot be ignored. For example, if p = kill` j a, then the

meaning of [p]
`

is different from that of [p]k:

[kill` ja]
`

:

� [τ+a:τ]
`

Y

:

� [τ ja]
`

:

� [kill` ja]k

Another example of this is p = spawn(`; a) jb.

An interesting feature of basic processes is that they determine the semantics

of all located processes; any located process P can be translated into a primitive

processes p such that P uL [p]
?

. (For such a translation to hold generally, we

believe that the use of the immortal location is essential.) The translation is

defined as follows:

([p]
`

)

�

= spawn(`; p) (Pna)� = P�

na

(P jQ)

�

= P�

jQ�

(Ph f i)� = P�

h f i

THEOREM 5.1. For any L, PuL [P�

]

?

Proof. By induction on the structure of P. The proof uses the fact that for any L,

[spawn(`; p)]
?

uL [τ:p]
`

and [τ:p]
`

uL [p]
`

. �

This theorem suggests that it might be appropriate to define a semantic equiv-

alence between basic processes by comparing their behaviour at the immortal

site ?. However this would ignore important behaviour of processes, namely

what they can do when their principal site fails.

Instead we suggest that the semantics of basic processes should be defined

by comparing their behaviour at some arbitrary new locatiion, different from ?.

The following lemmas show that it the choice of new location does not matter.

First a lemma about weak symbolic bisimulation equivalence.

LEMMA 5.2. Suppose that ` 6= ?. Then Pus

ϑ Q implies Pfk

=`g u

s

ϑfk

=`g

Qfk

=`g.

Proof. The proof depends on the following properties of the symbolic opera-

tional semantics which are easily established by rule induction.

1. P µ

�!ϕ Q implies Pfk

=`g

µfk

=`g

���!

ϕfk

=`g

Qfk

=`g

2. Pfk

=`g

µ0
�!ϕ0

Q0 implies 9µ;ϕ;Q : P µ

�!ϕ Q where µ0 = µfk

=`g, Q0

= Qfk

=`g, and

ϕ0

= ϕfk

=`g.

It also uses the fact that ϕ 
 ψ implies ϕfk

=`g 
 ψfk

=`g, the proof of which can

be found in, for example, [22]. �
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As an immediate corollary we have the following:

COROLLARY 5.3. If ` and k are different from ? and neither appear in the basic

processes p;q then [p]
`

uL [q]
`

implies [p]k uL [q]k.

Proof. Follows from the previous lemma and Theorem 4.11. �

With this result we have a natural way in which to extend semantic equiva-

lences from located processes to basic processes:

DEFINITION 5.4. For any relationR on located processes, we extendR to basic

processes as follows:

p R q
def

, [p]
`

R [q]
`

; where ` 62 (locs(p)[ locs(q)) �

We examine two such equivalences,uL, parameterised on the live set L, and

u. It turns out that the former, which behave well on located processes, are

unsuitable for basic processes; they are preserved only by a very restricted class

of contexts:

LEMMA 5.5. Suppose that [p]
`

uL [q]
`

, then:

[τ:p]
`

uL [τ:q]
`

[if k then p]
`

uL [if k then q]
`

[spawn(k; p)]
`

uL [spawn(k; q)]
`

Proof. Immediate from the definitions. �

These equivalences are not preserved by other dynamic contexts, as we show

by examples. The examples are based on P1 and Q1 and their translations p1 and

q1 (via ( )

�):

Q1 =

�

[α+ τ]
`

j [α:a]k

�

nα q1 =

�

spawn(`; α+ τ) j spawn(k; α:a)
�

nα
P1 =

�

[α]
`

j [α+ τ:a]k

�

nα p1 =

�

spawn(`; α) j spawn(k; α+ τ:a)
�

nα

For L = f`;kg, we have already established that P1 uL Q1, and therefore the

same holds for [p1]
?

and [p2]
?

. It is also not difficult to show that [p1]m uL [p2]m

for some new location m. But [a:p1]m 6uL [a:q2]m. The reason for this is that the

environment can kill ` before a is executed, forcing the matching process to do

the same; thus p1 and p2 are compared under the liveset fkg, and they are clearly

different under this liveset. Thus uL is not preserved by action prefixing.

Exactly the same reasoning can be used to show that uL is not preserved by

the contexts kill`:[�] or if ` then [�]. Less obviously, we can adapt the example to

also show thatus

L is not preserved by contexts of the form if m then [�] else q. We
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consider the contextP[�]= if m then [�] else b. The graphs forP[p1] andP[q1] are

given below:

P[p1]

�p1

�
�

�

τm

��

bm

  

A

A

A

A

εk

�'

F

F

F

F

F

F

ak

��

ε

`^k

w�

x

x

x

x

x

x

6u

f`;k;mg

P[q1]

�q1

�
�

�

τm

��

bm

  

A

A

A

A

ε

`^k

�'

F

F

F

F

F

F

ak

��

ε

`

w�

x

x

x

x

x

x

Suppose that when comparing P[p1] and P[q1] under the liveset f`;k;mg,

location ` fails. After the failure of `, P[p1] still has available to it the action b,

in case m fails, and the action a, in case m remains alive. P[q1] cannot reach any

matching state. If it remains at P[q1], it loses the ability to perform the a action;

if it moves to q1, it loses the ability to perform the b.

The relationu is more suitable for basic processes.

LEMMA 5.6. Suppose that [p]
`

u [q]
`

, then:

[α:p]
`

u [α:q]
`

[if k then p else r]
`

u [if k then q else r]
`

[killk:p]
`

u [killk:q]
`

[if k then r else p]
`

u [if k then r else q]
`

[spawn(k; p)]
`

u [spawn(k; q)]
`

Proof. Straightforward calculations. �

Unfortunately u suffers from one of the standard problems of CCS bisimu-

lation: it is not preserved by choice, which is a context for basic processes. As

usual, however, a minor adjustment is sufficient to turn it into a congruence:

DEFINITION 5.7 (LF-CONGRUENCE). We say that P and Q are LF-congruent

at L (P
c

uL Q) if PuL Q and

P τ

�!

L
P0 implies 9Q0 : Q

τ

=)

L
Q0 and P0

uL Q0

Q τ

�!

L
Q0 implies 9P0 : P

τ

=)

L
P0 and P0

uL Q0

P and Q are LF-congruent (P
c

uQ) if for every L: P
c

uL Q. �

The following theorem shows that
c

u, when lifted to basic processes, is a

congruence and moreover it coincides with barbed congruence:

THEOREM 5.8. For location-finite processes, p
c

u q if and only if p
c

� q.

Proof. One can show that
c

u is a congruence by using standard techniques to

adapt Lemma 5.6. The interesting problem is to show that
c

� �

c
u, that is, for
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every liveset L,
c

� �

c

uL. The contexts are based on those of Section 3.3, which

we assume the reader has fresh in mind.

For finite set of locations K = fk1; : : : ;kng, write “if K then p” for “if k1 then

: : :if kn then p”. Let p and q have location sort J (that is, locs(p;q) � J). We

suppose some additional actions in Act2: finitialM jM � Jg and b. Let S be as

in Section 3.3, andP[�] be defined as follows:

P[�]

def

= ∑M�J if JnM then initialM : ([�]+b)

R

def

= fhp;qi jP[p] SL P[q]g

It is straightforward to show that R satisfies the conditions of Definition 5.7. �

6 Conclusions

In this paper we have proposed a new semantic theory for distributed systems

which takes into account the possibility of failures at sites. This theory is an

adaptation of standard bisimulation based theories [23] based on an operational

semantics for located processes. The new semantic equivalences are justified in

terms of barbed bisimulations [29]. We also give symbolic characterizations of

the new equivalences which means that the equivalence can be investigated using

the symbolic methods of [19].

The equivalences we have defined are quite robust in the sense that for

many variations of the operators in our language, barbed equivalence and LF-

equivalence coincide. For example, barbed equivalence does not change if we

remove the conditional from the language, nor if we strengthen the conditional

so that it does not perform an initial τ-action. It is also unchanged if one re-

moves the spawn operator but retains the conditional. Neither does it change if

we disallow terms of the form killk:p where p 6= nil. Further it is unaffected if

one allows distributed choices, using a syntax closer to that of [3].

RELATED WORK. Site failure has also played a role in languages studied in

[3, 4, 16]. In these papers abstract languages based on Facile [17] or the pi-

calculus [24, 5] are studied. The original motivation for this paper was to pro-

vide an alternative characterization of barbed equivalence for languages such as

these. Although we have not treated value passing or references, we postulate

that our results can be extended in a straightforward way to value-passing lan-

guages which retain the assumption that all failures are independent, such as

the languages in [3, 4]. More delicate is the extension to languages such as the

distributed join-calculus [16] in which the independence assumption is dropped.

In this case the logical language used for symbolic bisimulations must be ex-

tended to allow statements about the interdependence of locations; we leave this

to future work.

A number of location-based equivalences already exist in the literature [8,
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9, 25, 27, 11]; however, none of these theories addresses the possible failure of

sites. Their emphasis, rather, is to define a measure of the concurrency or dis-

tribution of a process: two processes are deemed equivalent only if, informally,

they have the same degree of concurrency. Indeed in all but the last two of these

papers the identity of locations is unimportant. In Appendix C we give a series

of counter-examples which show that u is incomparable with all of the equiva-

lences proposed in these papers.

IMPLEMENTATION ISSUES. For finite-state processes, one can check LF-bi-

simulation automatically, either by using the concrete semantics and a tool such

as the Concurrency Workbench [10], or by using the symbolic semantics and

adapting the algorithm given by Hennessy and Lin [19]. In implementing the

symbolic techniques, it would be convenient to have a decision procedure for en-

tailment between formulae. In the strong case, where the formulae are Boolean,

such decision procedures are well known. In the weak case, in which we use a

linear-time temporal logic, more work is required.

Since we allow only a restricted class of models for our temporal formulae,

the usual axiomatizations of linear-time temporal logic [22] do not directly ap-

ply. However, we speculate that a proof system for our logic (or a conservative

extension of it) can be derived from the standard axiomatization by adding three

axiom schemas: 1. if ` is dead, then it must be dead at all points in the future;

2. if ` is alive, then it must be alive at all points in the past; 3. at each increment

of time, exactly one site dies. One way to approach the implementation would be

to marry a tool for temporal logic, such as the StEP prover [15], to the existing

implementation of Hennessy and Lin’s algorithm.

OTHER MODELS OF FAILURE. We have assumed a simple model in which

failures are permanent and independent and the number of failures that can occur

is unbounded. Our approach can also be adapted to other models of failure.

For example, one may wish to consider a language in which multiple sites can

be killed simultaneously (for example, using an operator killL:p where L� Loc).

Such model may be of interest if communication links are subject to failure and

we wish our processes to be equivalent regardless of the network topology. In

the weak case, the induced equivalence is defined, using the concrete semantics,

by adapting Lemma 3.7, changing clause (b) to read:

for every K � L 9Q0 : Q
ε

=)

L

�

ε

==)

LnK
Q0 and P SLnK Q0

Using the symbolic semantics, we need simply enlarge the class of models for the

logic, relaxing the restriction that between two states in a live sequence exactly

one site must fail. Obviously this change in the definition of live sequences will

also change the entailment relation between formulae.

Perhaps a more interesting change would be to limit the number of failures

Distributed Processes and Location Failures 37

that can occur. Such models of failure are often used in the distributed-algorithms

literature. This model could be accommodated in the concrete semantics simply

by changing the definition of the predicate “fallible” given in Section 3. In the

symbolic case, one could again accommodate the new model by changing the

definition of live sequences (to contain a minimum number of locations), with a

corresponding change in the axiomatization of entailment.

The symbolic approach is particularly attractive because of its modularity. In

the concrete case, these models of failure require changes in the transition system

or in the definition of bisimulation, whereas in the symbolic semantics only the

proof system for entailment need be changed.

One might also wish to relax the assumption that failures are permanent,

replacing the kill operator with the operators pause and resume. In this case,

the induced equivalence is much finer than LF-equivalence. (For location-finite

processes we believe that it will be at least as fine as LF/LA-equivalence, which

we discuss in Appendix C.) We leave the precise characterization of barbed

congruence for such a language to future work.
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A Notations used

A x2.1 Process constants in PConst
k; `;m x2.1 Locations in Loc

K;L;M x2.2 Livesets in f?g � L� Loc
a;b;c x2.1 Actions in Act

α x2.1 Labels in Actτ = Act[fτg

µ x3.1 Labels in KActτ = Act[fτg[fkill` j ` 2 Locg

δ x3.1 Labels in FActτ = Act[fτg[fkill`; fail` j ` 2 Locg

p;q x2.1 Basic processes in BProc
P;Q x2.1 Located processes in LProc
C;D x2.2 Configurations L.P in Config

P[�] x2.3 Located-process contexts

P[�] x2.3 Basic-process contexts

C [�] x3.3 Configuration contexts
α

7�! x2.2 Transition relation (Config�Config)
δ

�! x3.1 Transition relation with explicit failures (Config�Config)
δ

�!

L

x3.1 Derived relation (LProc�LProc)

π;ρ x4.1 Boolean formulae
µ

�!π x4.1 Symbolic transition relation (LProc�LProc)
ϑ x4.2 Negative Boolean formulae
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ϕ;ψ x4.3 Temporal formulae
µ

=)ϕ x4.3 Weak symbolic transition relation (LProc�LProc)

K;L x4.3 Live sequence

jLj x4.3 Length of a live sequence

L

(i) x4.3 ith element of a live sequence

L

(�)

x4.3 Last element of a live sequence

L

hi; ji x4.3 Subsequence of a live sequence
µ

Z=)

L

x4.3 Compound transition relation (LProc�LProc)

:

� x2.3 Barbed bisimilarity

� x2.3 Barbed equivalence (congruence for LProc)
c

� x5 Barbed congruence (congruence for BProc)

' x3 Located-Failures equivalence

'

s

x4 Symbolic equivalence

B Computing “finally”

We remind the reader of the definition of “finally” and also define the auxiliary

transformation “neg”, which we use in this appendix:

M �b finally(ϕ) if and only if 9L : L � ϕ and M = L

(�)

M �b neg(ϕ) if and only if 9L : L � ϕ and M � L

(�)

(12)

Ignoring � for the moment, we might hope to compute “finally” using a

function f which is a homomorphism everywhere but for the temporal opera-

tors �} and �; for these operators f (�ϕ) = f (ϕ) and f (�}ϕ) = neg(ϕ). Such a

definition, however, will fail on the full logic, even for satisfiable formulae. For

example, if

ϕ1 = (k^�`)_ (`^ k^�}k) ϕ2 = (k^�`)_ (`^�}k)

then finally(ϕ1^ϕ2) = k^ `, whereas f (ϕ1^ϕ2) = (k^ `)_ (`^ k).

The problem is the full generality of conjunction. Fortunately, none of our

results require this generality; in particular, we can limit our attention (modulo

a
) to formulae generated by the following BNF:

ϑ ::= π ϑ #π

(ϑ^ `) #

1

(`^π); where ` does not appear in ϑ or π
ϕ ::=

W

i(ϑi^ initially(πi))

We call such formulae admissible.

To substantiate our claim that this set of formulae is sufficient, note that

all the formulae decorating weak symbolic edges are admissible, as are all

initial formulae. In addition, the formulae ψi used in the definition of weak

symbolic bisimulation (Definition 4.10) can be assumed to be admissible, as

we now demonstrate. These ψi are required to satisfy the property: M �
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ψi if and only if M � ϕi and P0

'

M

(�)

Qi, where ϕi decorates a transition and

therefore is admissible. Admissible ψi that satisfy this requirement can be found

as follows:

ψi =

_

�

ϑ j 9M : P0

'M Qi and ϑ = ϕi^LocnM^M and ϑ satisfiable

	

For admissible formulae, we can calculate “finally” — using the auxiliary

function “neg” — as follows. If ϑ is unsatisfiable, then finally(ϑ) = �, likewise

for formulae ϕ; otherwise:

finally(π) = π
finally(ϑ #π) = neg(ϑ)^π

finally((ϑ^ `) #

1

(`^π)) = finally(ϑ)^ `^π
finally(

W

ϑi^ initially(πi)) =

W

(finally(ϑi)^neg(πi))

“neg” is defined similarly, except that wherever π occurs on the right-hand side

it should be replaced by neg(π). (Recall from Section 4.2 that neg(π) replaces

all positive literals in π with tt.)

The proof that this calculation captures (12) follows (in each direction) by

induction on the structure of admissible formulae. For the final clause, one uses

the fact that L � ϑ implies L �L � ϑ.

C Comparison with other equivalences

In this appendix we show that LF-equivalence differs from all of the location-

and cause-based equivalences that we are aware of. The equivalences we discuss

have been characterized in many ways. The location-based equivalences have

been studied, for example, in [8, 2, 9, 25, 27, 11]; the cause-based equivalences

have appeared, for example, in [12, 13]. Comparisons between these approaches

appear in [21, 25, 14].

Most of these equivalences are defined for CCS, which does not have explic-

itly located processes. To apply these definitions to terms in our language, we

first perform an implicit syntactic transformation that removes explict location

references from the terms.

Below, we list the equivalences we consider; the interested reader should

refer to the original papers for further information.

� CCS interleaving equivalence [23] was defined in Section 2.3.

� Causal (C) equivalence [12] distinguishes processes based on the causality

of actions.

� Locations (L) equivalence [8] distinguishes processes based on the local

causality of actions.
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� Local/Global (LG) equivalence [21] distinguishes processes based on a com-

bination of their local and global causes; it is strictly finer than the intersec-

tion of the C- and L-equivalences.

� Located Action (LA) equivalence [27, 11] is a finer form of locations equiv-

alence in which location names appear in the syntax of the language, as they

do in our language.

� Located Failure (LF) equivalence is the relation studied in this paper.

� Located Failure/Located Action (LF/LA) is defined to be the intersection of

the LF- and LA-equivalences. A more explicit characterization of this equiv-

alence is easy to derive.

The relationships between these equivalences are summarized in the follow-

ing diagram, where an arrow A! B indicates that A is coarser than B. If there is

no arrow between two nodes, this indicates that the equivalences are unrelated.

LF=LA

LFLA

L

CCS

GL

C

__?

?

??

�

�

??

�

�

�

??

�

�

�

�

__?

?

?

?

__?

?

?

??

�

�

�

The closest of these equivalences to ours is LA equivalence because it is

the only one of these relations defined on a language with explicitly located

processes. The following example, due to Flavio Corradini, shows that two LF-

equivalent processes need not be LA-equivalent.

P9 =

�

�

b:α:a+b+β:α:a

�

`

j

�

α+β:b:α

�

k

�

nαnβ

Q9 =

�

�

b+β:α:a

�

`

j

�

β:b:α

�

k

�

nαnβ
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�
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τ

`^k

��

a

`

��

τ

`^k

��

4

4

4

4

4

bk

��

τ

`^k

��

a

`

��

u

Q9

� �
�

�
�

b

`

��












 τ

`^k

��

4

4

4

4

4

bk

��

τ

`^k

��

a

`

��

To compare these using the LA-equivalence, it is sufficient to erase all of the

subscripts from τ actions and then treat visible actions with different subscripts
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as distinct actions. From this view, the processes are not even trace equivalent

because P9
b

`

=)�

a

`

�! and Q9 has no matching pair of transitions. These processes

are also not L-equivalent.

The following processes P10 and Q10 are LF/LA-equivalent but not causally

equivalent.

P10 =

��

a:b

�

`

j

�

c:d

�

k

�

Q10 =

��

a:(α:b+b)
�

`

j

�

c:(α:d +d)
�

k

�

nα

The counterexample in the other direction is more obvious since LF-

equivalence is sensitive to the location of unguarded τ-actions, but none of

other equivalences are:

P11 =

��

α:a

�

`

j

�

α

�

k

�

nα

Q11 =

�

τ:a

�

`

These processes are equated by all of the location- and cause-based relations, but

distinguished by LF-equivalence.

Finally we note that it is important that in the definition of LF equivalence the

location which fails is observable. One could easily define an alternative equiva-

lence in which it is observable that a site failed, but not which one. The resulting

equivalence is strictly weaker than LF equivalence, as shown by the following

processes. P12 and Q12 would be related by such an equivalence, whereas they

are distinguished by LF equivalence.

P12 =

��

α

�

m

j

�

α:a

�

`

j

�

α:a

�

k

�

nα

Q12 =

��

α

�

m

j

�

α:a

�

`

j

�

nil

�

k

�

nα
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