
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Combining the typed λ­calculus with

CCS

W. Ferreira

M. Hennessy

A.S.A. Jeffrey

Report 2/96 May 1996

Computer Science

School of Cognitive and Computing Sciences
University of Sussex

Brighton BN1 9QH

ISSN 1350–3170

Combining the typed λ-calculus with CCS

W. FERREIRA, M. HENNESSY and A.S.A. JEFFREY

ABSTRACT. We investigate a language obtained by extending the typed call-by-value λ calculus

with the communication constructs of CCS. The language contains two interrelated syntactic classes,

processes and expressions. The former are defined using the CCS constructs of choice, parallelism,

and action prefixing of expressions, where these expressions come from a syntactic class which also

includes the standard constructs from the call-by-value λ-calculus.

We define a higher order bisimulation equivalence and prove that it is a congruence for ex-

pressions; when modified in the standard manner to take into account initial τ moves it is also a

congruence for processes. We then show that when applied to expressions this semantic theory is

a generalisation of the theory of equality for the call-by-value λ calculus while when applied to

processes it is an extension of the theory of bisimulation congruence of CCS.

1 Introduction

CCS is an abstract process description language whose study and understanding,

[7], has been of great significance in the development of the theory of concur-

rency. An algebraic view is taken of processes in that their description is in terms

of a small collection of primitive constructors, such as choice +, parallelism k

and action prefixing a?; a!. These action prefixes designate the sending and re-

ceiving of a synchronisation impulse along a virtual channel a. Communication

is deemed to be the simultaneous occurrence of these two events and is denoted

by the special action τ. So CCS expressions describe processes in terms of their

synchronisation or communication potentials and the algebraic theory, expressed

as equations over the constructors, is validated in terms of behavioural equiva-

lences defined using the these potentials.

Much research has been carried out on extending this elegant theory to more

expressive process descriptive languages. Here we are concerned with languages

in which the synchronisation is replaced by the exchange of data, where the ab-

stract actions a? and a! are instantiated to a?x and a!v, the reception and sending

of data. In papers such as [5, 9], and even in [7], such extensions are consid-

ered but the domain of transmittable values is taken to have no computational

significance. All data expressions denote a unique value and the computation

of this value is not of concern. Here we are interested in situation in which the

data space may be computationally complex and their evaluation may effect the

behaviour of processes which use them.

This work was partially supported by the EU EXPRESS Working Group and the Royal Society.



2 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

A typed λ-calculus, based on some primitive set of data types, provides a

non-trivial example of such a data space. It is also a very useful example as

there are various existing programming languages, such as CML [10], Facile

[3], which are based on different methods for combining the communication

primitives of CCS with the typed λ-calculus.

In this paper we try, where possible, to unify CCS directly with the typed

call-by-value λ-calculus, to find a communicate-by-value concurrent language.

However, it is not possible to fully unify the process language with the functional

language, due to the behaviour of CCS summation. The operational semantics

for β-reduction includes:

(λ():e) () τ

�! e

If we were to allow function applications in + contexts we would therefore have:

a!1+(λ():b!1) () τ

�! b!1 a!1+b!1 =6=) b!1

and so we would have:

(λ():e) () 6= e

We consider this to be an undesirable property of a functional language, and so

we will distinguish between processes (which may be placed in + contexts) and

expressions (which may not). For expressions, weak bisimulation is a congru-

ence, and we have:

(λ():e) () � e

For processes, we have to use observational equivalence, and we have:

τ:p 6= p

In this paper we distinguish syntactically between processes and expressions: in

languages such as CML and Facile this distinction is made by the type system.

In Section 2 we describe a language λcon
v which combines the call-by-value

λ-calculus expressions with communicate-by-value CCS processes.

In Section 3 we then develop a variation of weak bisimulation equivalence,

based on higher-order bisimulations. As is to be expected the resulting equiv-

alence is not preserved by choice contexts. However when it is adjusted in the

standard manner, [7], the resulting higher order bisimulation congruence is pre-

served by all λcon
v contexts. We also show the resulting theory is both a general-

isation of the standard theory of CCS and call-by-value λ-calculus, and that all

closed expressions can be converted to head normal form.

In Section 4 we discuss possible extensions, such as the use of symbolic

techniques, and the call-by-name variant of the language.

Combining the typed λ-calculus with CCS 3

2 The Language

This section is divided into three parts. The first outlines the syntax and oper-

ational semantics of a call-by-value λ-calculus, the second provides a commu-

nicate-by-value process language based on CCS [7], and the third combines the

languages together as far as possible.

2.1 A call-by-value λ-calculus

The language we use is typed, the types been given by the grammar:

A ::= unit j bool j int j A! A

Here int is used as an example of a basic type and we can easily incorporate

others. For each type A we assume an infinite set of variables, VarA, ranged over

by xA, and some (indefinite) set of constants for manipulating values of the basic

types, a typical example being succ the successor function over int. However

to increase readability we will omit the typing information from variables and

constants unless absolutely necessary.

The syntax of the language is given by the following grammar:

e; f : : :2 Exp ::= v j ce j if e theneelsee j letxA=e ine j ee

v;w; : : :2 Val ::= l j µxA!B:(λyA:e) j xA

l 2 Lit ::= true j false j () j 0 j 1 j : : :

The main syntactic category is Exp but a sub-category of value expressions is

also defined. The only non-trivial value expressions are function abstractions, or

more accurately recursively defined function abstractions. Informally µx:(λy:e)

denotes a recursively defined function whose definition could also be rendered

as:

x(= λy:e

If x does not occur in e then we will often abbreviate µx:(λy:e) to λy:e.

Function abstraction and let are the only variable binding construct in the

language. This leads to the standard definition of free and bound occurrences of

variables, open and closed expressions, α-equivalence, =α, and of substitution.

However we only ever require substitutions of the form e[v=x], i.e. the substitu-

tion of a value v for all free occurrences of a variable x in an expression e.

We can associate with every expression at most one type. The typing judge-

ments have a very simple form ` e : A and the rules for inferring types are given

in Figure 1. Of course we also need inference rules for the literals of any extra

basic types used. We use λv; (λv

�

) to denote the set of all closed (open) well-

typed expressions.

Intuitively every expression of type A should denote a value of this type and

the operational semantics describes, in an abstract form, a procedure for evalu-



4 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

` true : bool ` false : bool

` () : unit ` n : int
[n 2 f0;1; : : :g]

` e : A ` f : B

` letxA=e in f : B

` e : B

` µxA!B:(λyA:e) : A! B

` e : A

` ce : B

[c : A ! B]

` e : A! B ` f : A

` e f : B

` e : bool ` f : A ` g : A

` if e then f elseg : A ` xA : A

FIGURE 1. Type Rules for λ expressions.

ating expressions to values in a call-by-value manner; of course because of the

presence of recursion this evaluating procedure may never terminate. Formally

the operational semantics is given in terms of two relations between closed ex-

pressions. The first, e τ

�!e e0, means that in one reduction step the evaluation of

e can be reduced to that of e0. For example to evaluate the expression letx=e in f

we first evaluate e, using the rule:

e τ

�!e e0

letx=e in f τ

�!e letx=e0 in f

When e produces a value v then the evaluation proceeds evaluating the expression

f [v=e]. In order to express this formally we need a second relation, e

p

v

�!e which

tells when an expression e has produced a value v (the reason for the non-standard

notation will become clear when we unify the expression and process languages

in Section 2.3). The evaluation of letx= : : : in : : : expressions is captured by the

additional rule:
e

p

v

�!e

letx=e in f τ

�!e f [v=x]

Similarly to evaluate an application e f , the expression e is evaluated until we

reach a value e τ

�!

�

e

p

v

�!e. Since e is well-typed this value v must be of the form

µx:(λy:g) and the evaluation proceeds by evaluating lety= f ing[v=x]; this is cap-

tured by the rule:
e

p

µx:(λy:g)

������!e

e f τ

�!e lety= f ing[µx:(λy:g)=x]

The application of constants ce is handled in a similar manner; e is evaluated to

a value v and then the value produced by cv depends on the constant in question.

The effect of constants can be expressed in terms of a function δ, which given

a constant and a value returns the corresponding expression. For example the

behaviour of the constant succ is given by δ(succ;n) = n+1.

Combining the typed λ-calculus with CCS 5

Values:

v

p

v

�!e

Reductions:
e

p

µx:(λy:g)

������!e

e f τ

�!e lety= f ing[µx:(λy:g)=x]

e

p

v

�!e

letx=e in f τ

�!e f [v=x]
e

p

true

���!e

if e then f elseg τ

�!e f

e

p

false

���!e

if e then f elseg τ

�!e g
e

p

v

�!e

ce τ

�!e δ(c;v)

Context Rules:

e τ

�!e e0

ce τ

�!e ce0

e τ

�!e e0

e f τ

�!e e0 f

e τ

�!e e0

if e then f elseg τ

�!e if e0 then f elseg

e τ

�!e e0

letx=e in f τ

�!e letx=e0 in f

FIGURE 2. Operational Semantics for λv

The two relations are defined to be the least ones which satisfy the rules given

in Figure 2. The main properties of the operational semantics is captured in the

following proposition, whose proof we leave to the reader:

Proposition 2.1 (Subject Reduction). For every closed expression e in λv such

that ` e : A:

1. if e τ
�!e e0 then ` e0 : A

2. if e

p

v

�!e then ` v : A 2

In addition, we can show that reduction of expressions is deterministic:

Proposition 2.2 (Determinacy). For every closed expression e in λv:

1. if e τ

�!e e0 and e τ

�!e e00 then e0 = e00

2. if e

p

v

�!e and e

p

v0

�!e then v = v0 2

2.2 A communicate-by-value process calculus

In the previous section we presented a language λv for sequential computation.

We now present a language for concurrent computation, where the data commu-



6 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

` 0 : π

` v : A; ` p : π

` kA!v: p : π

` p : π

` kB?xB: p : π

` p : π ` q : π

` p+q : π

` p : π ` q : π

` p k!q : π

FIGURE 3. Type Rules for processes.

nicated on channels are values taken from λv. In the next section we will show

how these two languages can be combined to give a concurrent λ-calculus.

The syntax of the process language is given by the following grammar:

p;q : : :2 Proc ::= p k!p j p+ p j 0 j τ:p j kA?xA: p j kA!v: p

The process p k!q represents two computation threads running concurrently—

in this language p and q are treated symmetrically, but in the next section we

introduce the notion of main thread of computation, so we use an asymmetric

notation for parallel composition.

From CCS we adopt process summation +, the deadlocked process, τ prefix,

and two constructs for the transmission and reception of values along channels,

k?x:p and k!v:p; we assume that for each type A, kA ranges over an infinite set

of channels ChanA. The input prefix is a variable binding operator in that in the

expression k?x: p all free occurrences of x in p are bound.

Processes are typed with judgements ` p : π, given in Figure 3.

We now discuss the operational semantics of processes. We have three pos-

sible reductions for a process, based on the labelled transition system for CCS:

� p τ

�!p p0, meaning, as before, that one evaluation step reduces p to p0. How-

ever here, τ

�!p will model communication between independent evaluation

threads. For example we will have k!v:e k!k?x: f τ

�!p e k! f [v=x].

� We have the new relation p kA!v

��!p p0, meaning that a first possible step in the

evaluation of the expression p consists of the emission of a value v, along the

channel kA and the computation can subsequently proceed by evaluating the

expression p0. Communication between threads is synchronous and so this

computation thread can only proceed if there is another concurrent thread

which wishes to input a value along this channel.

� The final relation is of the form p kA?

�!p λxA: p0, meaning that the computation

thread corresponding to e can input a value along the channel kA. This value

is of type A and is represented by the free variable xA in p0. In the terminology

of [9] this represents a late operational semantics.

In fact the relation k?A

�!p will be defined indirectly, in terms of more tech-

Combining the typed λ-calculus with CCS 7

Communication Rules:

k!v: p k!v

�!p p k?x:e k?x

�!p e

p k!v

�!p p0 q k?x

�!p q0

p k!q τ

�!p p0 k!q0[v=x]

p k?x

�!p p0 q k!v

�!p q0

p k!q τ

�!p p0[v=x] k!q0

Dynamic rules:

p µ

�!p p0

p+q µ

�!p p0

q µ

�!p q0

p+q µ

�!p q0

Context Rules:

p µ

�!p p0

p k!q µ

�!p p0 k!q

p µ

�!p p0
p k!q µ

�!p p k!q0

FIGURE 4. Operational Semantics for processes

nically convenient relation kA?xA

���!p, defined as p kA?xA

���!p p0 iff p kA?

�!p λxA: p0.

These relations are defined to be the least relations over closed processes which

satisfy the rules given in Figure 4. In these rules we use:

a ::= kA!v j kA?xA µ ::= a j τ

We have the following Subject Reduction property:

Proposition 2.3 (Subject Reduction). For every process p such that ` p : π

1. p τ

�!p p0 implies ` p0 : π

2. p kB!v

��! p0 implies ` v : B and ` p0 : π

3. p kB?xB

���! p0 implies ` p0 : π

Proof By rule induction on the relations involved. 2

2.3 Merging the λ and process calculi

In this section we unify the two languages considered in the previous sections.

There are numerous ways in which one can conceive of such an unification. For

example, as has been pointed out in [1], the language Facile, [3], may be con-

sidered as a call-by-value λ-calculus, such as λv, extended with an extra type

process. The syntax of expressions is then extended by various primitives for

expressions of this new type, such as a parallel operator k, operators for input

and output on communication channels, and λv is used to provide values which

are transmitted and received by objects of this type. Thus in Facile, in partic-

ular in the abstract version studied in [1], there is a clear distinction between



8 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

processes, expressions of type process, and the expressions in the underlying λ-

calculus. For example the parallel operator k can only be applied to processes,

i.e. expressions of type process.

By contrast, in CML [10] every expression is considered to be a thread of

computation, and expressions can spawn concurrent threads. At any one time

there is a main thread of computation, whose result will be returned if that thread

terminates. We represent this using the asynchronous parallel operator p k!q,

which specifies that q is the main thread of computation. For example true k!1

will return the result 1 and discard the result true. This is reflected in the typing

of our extended language; the type of e k! f is given by that of f .

In CML there is still a distinction between processes (which can be placed

in + contexts) and expressions (which cannot). This is given by the event type

constructor. In this paper for simplicity we will use a separate syntactic category

for processes rather than a separate type—the full story is given in [2].

We extend the language of expressions by including all processes, and paral-

lel composition of expressions:

e ::= v j ce j if e theneelsee j letxA=e ine j ee (as before)

j p j e k!e (new)

We extend the language of processes by allowing any expression to be used as a

process as long as it is prefixed:

p ::= p k!p j p+ p j 0 (as before)

j τ:e j kA?xA:e j kA!v:e (new)

For example true is not a valid process, but τ:true is. The restriction on the use of

expressions in processes is to ensure that weak bisimulation will be a congruence

for expressions.

Note that output is restricted to being of values kA!v:e rather than expressions

kA!e: f . We can define an expression for arbitrary output as syntactic sugar:

k!e: f = letx=e ink!x: f

but note that this is an output expression rather than an output process, so cannot

be placed in + contexts.

The typing judgements for the new constructs are given in Figure 5.

We use λcon
v to denote the set of well-typed closed expressions in the new

syntax and as before use (λcon
v )

� to denote the open expressions.

The operational semantics for λcon
v is given by unifying the previous opera-

tional semantics, and using a labelled transition system with labels:

a ::= kA!v j kA?xA µ ::= a j τ l ::= µ j

p

v

In particular, expressions can spawn subprocesses before returning a value, so

Combining the typed λ-calculus with CCS 9

` 0 : A

` v : B; ` e : A

` kB!v:e : A

` e : A

` kB?xB:e : A

` p : A ` q : A

` p+q : A

` e : A ` f : B

` e k! f : B

FIGURE 5. Type Rules for the merged language

p

v

�! transitions now have to have a residual, for example:

p k!true

p

true

���! p k!0

These residuals have to be accommodated in other reductions, for example:

if p k!truetheneelse f τ

�! p k!0 k!e

We have the following Subject Reduction Theorem:

Theorem 2.4 (Subject Reduction). For every e in λcon
v such that ` e : A

1. e τ

�! f implies ` f : A

2. e

p

v

�! f implies ` v : A and ` f : A

3. e kB!v

��! f implies ` v : B and ` f : A

4. e kB?

�! f implies ` f : B! A

Proof By rule induction on the relations involved. 2

We end this section by examining the properties of value production, the relation

p

v

�!.

Proposition 2.5. The operational semantics of λcon
v satisfies the following prop-

erties:
� single-valuedness: If e

p

v

�! e0 then e0
p

w

�! for no w.
� value-determinacy: e

p

v

�! e0 and e

p

w

�! e00 implies e0 = e00 and v = w

� forward commutativity:

e
µ

! e1

e2

p

v

#

implies

e
µ

! e1

e2

p

v

#

µ

! e3

#

p

v



10 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

Values:

v

p

v

�! 0

Communication Rules:

k!v:e k!v

�! e k?x:e k?x

�! e

e k!v

�! e0 f k?x

�! f 0

e k! f τ

�! e0 k! f 0[v=x]

e k?x

�! e0 f k!v

�! f 0

e k! f τ

�! e0[v=x] k! f 0

Dynamic rules:

p µ

�! p0

p+q µ

�! p0

q µ

�! q0

p+q µ

�! q0

Reductions:

e

p

µx:(λy:g)

������! e0

e f τ

�! e0 k!lety= f ing[µx:(λy:g)=x]

e

p

v

�! e0

letx=e in f τ

�! e0 k! f [v=x]

e

p

true

���! e0

if e then f elseg τ

�! e0 k! f

e

p

false

���! e0

if e then f elseg τ

�! e0 k!g

e

p

v

�! e0

ce τ

�! e0 k!δ(c;v)

Context Rules:

e µ

�! e0

ce µ

�! ce0

e µ

�! e0

if e then f elseg µ

�! if e0 then f elseg

e µ

�! e0

letx=e in f µ

�! letx=e0 in f

e µ

�! e0

e f µ

�! e0 f

e µ

�! e0

e k! f µ

�! e0 k! f

f µ

�! f 0

e k! f µ

�! e k! f 0

f

p

v

�! f 0

e k! f

p

v

�! e k! f 0

FIGURE 6. Operational Semantics for λcon
v

� backward commutativity:

e

p

v

! e1

e2

#

µ implies

e

p

v

! e1

e3

µ

#

p

v

! e2

#

µ

Combining the typed λ-calculus with CCS 11

Proof Routine induction on the syntax. 2

These special properties of

p

v

�! imply that in some sense the production of values

is asynchronous; we will later show, using these properties, that if e

p

v

�! e0 then e

is semantically equivalent to the expression e0 k!v. This latter term can produce

the value v but no subsequent behaviour can depend on its production.

3 A Semantic Theory

In this section we develop a semantic equivalence for λcon
v based on bisimulations.

A typical semantic equivalence, �, is defined by abstracting in some manner

from the operational semantics and is usually a relation over closed expressions,

in our case over λcon
v . This is extended in the standard way to a relation �� over

open terms by letting e �� e0 if eρ � e0ρ for all closed substitutions ρ, i.e. type-

respecting functions from variables to closed values.

In this section, we will define two semantic equivalences �h and =

h such

that:

� �

h is a congruence for λcon
v expressions, and =

h is a congruence for λcon
v

processes,

� �

h generalises the standard theory of equality of the call-by-value λ-calculus,

� =

h generalises Milner’s observational congruence, [7], originally developed

for CCS.

In the first subsection we explain the definition of higher-order bisimulation

equivalence while some of its properties are investigated in the remainder.

3.1 Higher Order Bisimulations

Recall from [7] that that a relation R (over closed expressions from λcon
v ) is is

a (strong) simulation if the following diagram, representing a transfer property,

can be completed:

e1 R e2 e1 R e2

as

e01

l

#

e01

l

#

R e02

l

#

A semantic equivalence between expressions� can then be defined as the largest

symmetric simulation. There are many reasons why � is inadequate as the basis

of a semantic theory for λcon
v ; some of these are quite general while others are

due to the nature of the language λcon
v .

First in order to take into account the fact that τ

�! actions are unobservable



12 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

we will require that the move e1
l

�! e01 be matched by a weak action e2
l̂

=) e02,

where

�

ε

=) is the reflexive transitive closure of τ

�!

�

l

=) is ε

=)

l

�!

�

l̂

=) is ε

=) if l = τ and l

=) otherwise.

In order to ensure that only closed expressions of the same type are related we

consider typed-indexed relations R , i.e. families of relations RA indexed by types

A.

The requirement that an l-action be matched by one with exactly the same la-

bel is too strong. For example, the expressions kA!(λx:1):0 and kA!(λx: succ0):0

are differentiated although it would be difficult to conceive of a context which

can distinguish them. The appropriate definition of simulation should compare

not only expressions but also labels. To this end, for any type-indexed relation

R , define its extension to labels R l by:

τ R l
A τ

v RA w

p

v R l
A

p

w k?B R l
A k?B

v RB w

k!Bv R l
A k!Bw

We only require labels to be matched up to R l rather than up to syntactic identity.

Unfortunately, the resulting equivalence now identifies all terms in normal

form, since all a normal form can do is tick with its own value. We add the extra

requirement that R be structure preserving, i.e.:

1. if v1 RA!B v2 then for all closed values ` w : A we have v1 w RB v2 w

2. if v1 RA v2 where A is a base type then v1 = v2.

Definition 3.1. (Higher-Order Weak Simulation) A type-indexed relation R

over extended λcon
v is a higher-order weak simulation if it is structure-preserving

and the following diagram can be completed:

e1 R e2 e1 R e2

as where l1 R l l2

e01

l1

#

e01

l1

#

R e02

l̂2

�
w
w
w
w
w
w
w
w

2

Let�h be the largest symmetric higher-order weak simulation. Since the identity

relation I is a higher-order simulation and R R is whenever R is, it follows that

�

h is an equivalence relation.

However, as is usual for weak bisimulations and CCS, the choice construct

+ is not preserved by �h. For example τ:0�h 0 but kA!1:0+τ:0 6�h kA!1:0+0.

Combining the typed λ-calculus with CCS 13

Fortunately we can adapt the usual remedy of Milner’s observational equiva-

lence, [7], to λcon
v .

Definition 3.2. (Higher-Order Observational Equivalence) Let =h be the

smallest symmetric relation such that the following diagram can be completed:

e1 =

h e2 e1 =

h e2

as where l1 �

hl
l2

e01

l1

#

e01

l1

#

�

h e02

l2

�
w
w
w
w
w
w
w
w

2

Theorem 3.3. =

h is a congruence for λcon
v processes, and �h is a congruence

for λcon
v expressions.

Proof It is easy to establish that it is an equivalence relation and that it is pre-

served by operators such as + and the various forms of action prefixing. How-

ever it is more difficult to prove that it, or indeed�h, is preserved by the parallel

construct, i.e. ei �

h fi implies e1 k! f1 �
h e2 k! f2. For example if ei is kA?x:gi

where g1 �

h g2 and fi are of the form kA!vi:0 where v1 �

h v2 then we need to

establish g1[v1=x]�h g2[v2=x].

The proof uses Howe’s technique, [6], and is relegated to the Appendix. 2

Theorem 3.4. =

h is the largest congruence for λcon
v processes contained in �h.

Proof Let� be any congruence on λcon
v processes contained in �h. To show � is

contained in =

h it is sufficient to prove that if p� q and p τ

�! p0 then q τ

=) q0 for

some q0 such that p0 �h q0. Since � is a congruence, we have p+ k!0� q+ k!0

(for fresh k) and since p+ k!0 τ

�! p0 we have q+ k!0 =) q0 and p0 �h q0. Since

p0 cannot perform k, neither can q0, so we must have q τ

=) q0. The result follows.

2

It follows immediately that

Corollary 3.5. In λcon
v :

� e �h f implies µ:e =h µ: f

� e �h f implies e =h f or τ:e =h f or e =h τ: f . 2

3.2 Properties of λcon
v expressions

We first examine λcon
v as a call-by-value λ-calculus, by considering λcon

v expres-

sions up to weak bisimulation.

It is straightforward to show

(λx:e)v �h e[v=x]



14 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

(µx:(λy:e))v �h e[µx:(λy:e)=x][v=y]

letx=v ine �h e[v=x]

lety=(letx=e in f ) ing �h

letx=e in(lety= f ing) where x 62 f v(g)

The last two are the left unit and associativity axioms of the monadic meta-

language of [8]. The third unit equation:

letx=e inx = e

is more difficult to establish. Indeed as pointed out in [2] this is not true in

arbitrary labelled transition systems, as can be seen from the following example:

e 6�

h

letx=e inx

	�

�

�

�

k!()

@

@

@

@

p

v

R 	�

�

�

�

k!()

@

@

@

@

τ

R

0 0 0 0 k!v

0

p

v

?

However in the labelled transition system generated by extended λcon
v we have:

Proposition 3.6. If e

p

v

�! e0 then e =h e0 k!v.

Proof The following is a higher-order bisimulation:

f(e;e0 k!v) j e

p

v

�! e0g[f(e0;e0 k!0) j e

p

v

�! e0g

Establishing this requires Proposition 2.5. 2

Corollary 3.7. e�h

letx=e inx

Proof Using the previous Proposition one can show that

f(e; letx=e inx)g[�h

is a higher-order bisimulation. 2

These identities all involve the equivalence �h but using the first part of Corol-

lary 3.5 they can be turned into identities for =h. So for example we have

τ:e =h τ:letx=e inx:

The second part of this Corollary indicates that by analysing the initial τ actions

we can sometimes come up with slightly stronger identities. Examples of these

Combining the typed λ-calculus with CCS 15

are:

(λx:e)v =

h τ:e[v=x]

letx=v ine =

h τ:e[v=x]

We leave the reader to transform the other identities for �h given above to iden-

tities for =h.

3.3 Properties of λcon
v processes

We now turn our attention to the language viewed as a process algebra. The es-

sential features of a process algebra such as CCS are a choice operator, a parallel

operator and a notion of action prefixing. All of these appear in λcon
v . We can

take the syntactic expressions of the form kA!v: ; kA?x: ; τ: to be action prefixes,

ranged over by µ. Note that even if µ:e is a closed expression e may be open.

The following two τ-law of CCS, [7], are valid:

p+ τ:p =

h τ:p
µ:e =

h µ:τ:e

The third τ-law

µ:(p+ τ:q) = µ:q+µ:(p+ τ:q)

is not in general true; but this is as expected as we have used a late operational

semantics, [9], and this law does not hold in value-passing CCS for such a se-

mantics. It is only satisfied for the τ prefix, and in this case it is derivable from

the first law.

The choice operator satisfies the expected laws, those of a commutative

monoid:

0+ p =

h p

p+ p =

h p

(p1 + p2)+ p3 =

h p1 +(p2 + p3)

p1 + p2 =

h p2 + p1

The parallel operator does not quite satisfy all the laws of CCS. It does satisfy:

0 k!e =

h e

(e1 k!e2) k!e3 =

h e1 k!(e2 k!e3)

(e1 k!e2) k!e3 =

h

(e2 k!e1) k!e3

It is not in general symmetric because of its interaction with the production of

values; for example 1 k!0 =

h 0 but 0 k!1 =

h 1.

In CCS every closed expression is semantically equivalent to a sum-form, i.e.



16 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

an expression of the form

∑
i2I

µi:ei

In λcon
v we can also show that every expression (resp. process) is equivalent, up

to �h (resp. =h), to a such a form. This is the subject of the next subsection.

3.4 A head normal form for closed finite expressions

Here we outline a characterisation of =h in terms of equations and proof rules.

The characterisation is restricted to closed finite expressions from the language

λcon
v , i.e. closed expressions in which for all occurrences of µx:(λy:e) x does

not occur free in e; as already explained in Section 2 such expressions will be

denoted by λy:e.

The characterisation can be viewed as an extension of the equational charac-

terisation of finite CCS expressions, [7]. These equations are given in Figure 7

although the third τ-law from [7] is missing because we are dealing with a late

behavioural equivalence, together with the usual structural rules for equational

reasoning.

The syntax of λcon
v is larger than that of CCS and we need extra equations for

each of the new syntactic constructs. These are given in Figure 8 and are of five

kinds. The first gives the properties of parallelism as an associative operator with

left units. The second gives the β-reduction rules for each of the operators. The

others show how the process operators (parallelism, summation and prefixing)

distribute through the functional operators (if, let and application).

Let ` e = f denote that e = f can be deduced in the resulting proof system.

We leave the reader to check that this is sound, i.e. ` e = f implies e =

h f . We

will show that any closed finite expression can be converted into head normal

form, that is:

∑
i

µi:ei or (∑
i

µi:eik!)v

Note that we cannot use this directly to show completeness of the proof system,

since the terms ei may be open, and we can only normalize closed terms. A com-

plete proof system would require techniques taken from symbolic bisimulation

[5], which is left for future work.

Proposition 3.8. For every closed finite expression e there is a head normal form

f such that ` e = f .

Proof (Outline) Show by induction on syntax that any process can be con-

verted to the form ∑i µi:ei and that any expression can be converted to the form

(∑i µi:ei) [ k!v], where [ k!v] denotes an optional occurrence of k!v. The equa-

tional properties of k! given by the ‘parallelism’ and ‘process spawning’ rules

are needed only in the case of expressions whose head normal form is of the

Combining the typed λ-calculus with CCS 17

Summation:

p+0 = p

p+ p = p

p+q = q+ p

p+(q+ r) = (p+q)+ r

p+ τ:p = τ:p
µ:e = µ:τ:e

Interleaving law:

Let p; q denote ∑i µi:ei; ∑ j ν j: f j , where f v(µi)\ f v(ν j) = /0.

p k!q = ∑
i

µi:(ei k! f )+∑
j

ν j:(e k! f j)

+ ∑
µi=k!v;ν j=k?x

τ:(ei k! f j[v=x])

+ ∑
µi=k?x;ν j=k!v

τ:(ei[v=x] k! f j)

FIGURE 7. Equations for CCS

form p k!v. 2

4 Conclusions

In this paper we have described one method for combining the concurrency fea-

tures of CCS with those of the typed λ-calculus. The resulting semantic theory

can be viewed as an extension of the theory of bisimulation congruence of CCS,

when restricted to the syntactic class of processes, and when applied to expres-

sions as an extension of the theory of equality for call-by-value λ-calculus.

In section 3.4 we have briefly investigated a syntactic characterisation of this

semantic theory using a combination of process algebra equations and those from

the theory of equality for call-by-value λ-calculus. It is not surprising that these

equations are incomplete even for expressions without recursion as the values

being communicated may be higher-order abstractions. However even the intro-



18 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

Concurrency:

0 k!e = e

v k!e = e

(e k! f ) k!g = e k!( f k!g)

(e k! f ) k!g = (g k!e) k!g

Reduction:

if truetheneelse f = τ:e

if false theneelse f = τ: f

letx=v ine = τ:e[v=x]

(λx:e)v = τ:e[v=x]

cv = τ:δ(c;v)

Process spawning:

if (e k!e0) then f elseg = e k!(if e0 then f elseg)

letx=(e k!e0) in f = e k!(let x=e0 in f )

(e k!e0) f = e k!(e0 f )

c (e k!e0) = e k!(ce0)

Choice:

if (p+ q) then f elseg = (if p then f elseg)+(if q then f elseg)

letx=(p+q) in f = (letx=p in f )+(letx=q in f )

(p+q) f = (p f )+ (q f )

c (p+q) = (c p)+(cq)

Prefixing:

if µ:e then f elseg = µ:(if e then f elseg)

letx=µ:e in f = µ:(letx=e in f )

(µ:e) f = µ:(e f )

c (µ:e) = µ:(ce)

FIGURE 8. Extra equations

Combining the typed λ-calculus with CCS 19

duction of rules such as

for all v, (λx:e1)v = (λy:e2)v

λx:e1 = λy:e2

for all v, (λx:e1)v = (λy:e2)v

kA?x:e1 = kA?y:e2

will not lead to a complete characterisation. The problem is that the behaviour of

a process such as kA?x:e of type B depends on the behaviour of (λx:e)v where

v ranges over all values of type B. However B may be any type, and in partic-

ular a type which has A as a sub-type, and therefore the proof rules above are

not of great help in establishing judgements of the form kA?x:e1 = kA?y:e2. In

order to obtain a complete syntactic characterisation the proof system needs to

be generalised to open expressions, where the symbolic techniques of [5] may be

applicable.

We have concentrated on a communicate-by-value paradigm because this is

the approach taken in languages such as CML and Facile. However in HOπ, [11],

and CHOCS, [12], actual text or code is transmitted between processes, much in

the same way as with standard β-reduction in the λ-calculus. In CML there

is also a mechanism, using Event types, for this kind of data exchange and in

Facile scripts are used in a similar manner. To study this form of communication

an alternative to λcon
v , say λcon

n , could be designed with reductions such as:

(λx:e1)e
τ

�! e1[e=x]; kA!e:e1 k!kA?x:e2
τ

�! e1 k!e2[e=x]

We conjecture that in this language �h and =

h are still congruences for ex-

pressions and processes respectively. Nevertheless it is known from [12] that

higher-order bisimulation congruence is not preserved by all CHOCS contexts,

the reason being that in CHOCS no distinction is made between processes and

expressions. In λcon
v , and the hypothetical λcon

n , variables are expressions and may

only be instantiated by expressions. If however λcon
n were further extended to al-

low variables to be instantiated by processes, and therefore the communication of

processes, then�h

;=

h would no longer be preserved by all contexts. As a coun-

terexample consider the two processes p1; p2 defined by kA!0:0; kA!(τ:0):0 re-

spectively. These two processes send the processes 0; τ:0, respectively, along the

channel kA and it is straightforward to verify p1 =

h p2. However C[p1] 6=

h C[p2]

where C is the context kA?x: (x+ l!0:0) k!C[ ].

This phenomenon also occurs in CML and is studied in [2]. A suitable mod-

ification of higher-order bisimulations equivalence called hereditary bisimula-

tions is proposed and shown to be preserved by all CML contexts. This seems

to be the most appropriate form of bisimulation for λcon
n extended with process-

communication. However we leave this for further study.



20 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

A Appendix: Congruence proofs

We prove Theorem 3.3 using a variant of Howe’s [6] technique, and following

Gordon’s [4] presentation. The proof follows closely that in Section 5 of [2] and

here we merely state the required propositions.

One-level deep contexts are defined by:

D ::= x j l j c �1 j if �1 then �2 else �3 j letx=�1 in �2 j �1 �2 j µx:(λy: �1)

kA?x: �1 j kA!�1: �2 j �1 + �2 j �1 k!�2 j τ:�1
Let Dn range over restricted one-level deep contexts: one-level deep contexts

which do not use +.

For any pair of relations R = (R n

;R s

) with R s

�R n, let its compatible

refinement, bR be defined by:

bR
n

= f(Dn[~e];Dn[
~f ]) j ei R n fig[

bR
s

bR
s

= f(D[~e];D[

~f ]) j ei R s fig

[f(µx:(λy:e);µx:(λy: f )) j e R n fg

[f(τ:e;τ: f ) j e R n fg

[f(k?x:e;k?x: f ) j e R n fg

[f(k!v:e;k!w: f ) j e R n f ; v R n wg

The following proposition is easily established, using induction on contexts.

Proposition A.1. If R is an equivalence and bR � R , then R s is a congruence

on processes and R n is a congruence on expressions

Proof The proof is by structural induction on contexts. The definitions of bR
n

and bR
s

are intended to reflect the syntactic interplay between expressions and

processes; two weakly bisimilar expressions become weakly congruent when

guarded, or ‘thunked’. For example, if e R n f , and C = kA?x: �1+ p, then C[e]R n

C[ f ] because even though C is not a restricted context, we have C[e] bR
s
C[ f ] and

bR
s

�

bR
s

�R n. 2

For any R , its compatible closure, R �, is given by:

e dR � e0 R � e00

e R � e00

This definition of R � is specifically designed to facilitate simultaneous inductive

proof on syntax (since the definition involves one-level deep contexts) and on

reductions (since the definition involves inductive use of R �). This form of

induction is precisely what is required to show the desired congruence results.

Its relevant properties are given in the three following Propositions. Their

Combining the typed λ-calculus with CCS 21

proofs are simple variants of the corresponding theorems in [4, 6] and are nearly

identical to those in Section 5 of [2].

Proposition A.2. If R � is a preorder then R � is the smallest relation satisfy-

ing:

1. R �R �

� R �,

2. dR �

� R �, and

3. R �

� R �. 2

Proposition A.3. If R is a preorder then for any v R �

n w: if e R �

n f then

e[v=x] R �

n f [w=x].

Proof Suppose v R �

n w; since bR
s

�

bR
n
, the proof is a by a mutual induction on

the following two statements:

1. e R �

n f implies e[v=x] R �

n f [w=x], and

2. e R �

s f implies e[v=x] R �

s f [w=x].

These are shown by structural induction on e. 2

Proposition A.4. If R is an equivalence then R �

� is symmetric. 2

We need one specific property of the compatible closure of bisimulation:

Proposition A.5. When restricted to closed expressions, �h� is a simulation,

and if e =h� f and e l1

�! e0 then f l2

=) f 0 where l1 �

h� l2 and e0 �h� f 0.

Proof Very similar to the proof of Proposition 4.4 of [2]. 2

We now have all the information we need to prove Theorem 3.3.

Theorem A.6. =

h is a congruence for λcon
v processes, and �h is a congruence

for λcon
v expressions.

Proof Follows from Propositions A.2, A.5 and A.4. 2

References

[1] Roberto Amadio. From a concurrent λ-calculus to the π-calculus. In FCT’95. Springer–Verlag,

1995.

[2] W. Ferreira, M. Hennessy, and A. Jeffrey. A Theory of Weak Bisimulation for Core CML.

Technical Report 5/95, COGS, University of Sussex, 1995.

[3] A. Giacalone, P. Mishra, and S. Prasad. A symmetric integration of concurrent and functional

programming. International Journal of Parallel Programming, 18(2):121–160, 1989.

[4] A. Gordon. Bisimilarity as a theory of functional programming. In Proceediings of MFPS95,

number 1 in Electronic Notes in Computer Science. Springer–Verlag, 1995.

[5] M. Hennessy and H. Lin. A proof system for value passing processes. In Proc. of CONCUR’93,

number 715 in Lecture Notes in Computer Science, pages 202–216, 1993. To appear in Acta

Informatica.



22 W. Ferreira, M. Hennessy and A.S.A. Jeffrey

[6] D. Howe. Equality in lazy computation systems. In Proceedings of LICS89, pages 198–203,

1989.

[7] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[8] Eugenio Moggi. Notions of computation and monad. Information and Computation, 93:55–92,

1991.

[9] J. Parrow and D. Sangiorgi. Algebraic theories for value-passing calculi. Technical report,

University of Edinburgh, 1993. Also Technical Report from SICS, Sweeden.

[10] J. H. Reppy. A higher-order concurrent language. In Proceedings of the ACM SIGPLAN 91

PLDI, number 26 in SIGPLAN Notices, pages 294–305, 1991.

[11] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms. Phd thesis, Edinburgh University, Scotland, 1992.

[12] B. Thomsen. Higher order communicationg systems theory. Information and Computation,

116:38–57, 1995.


