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Abstract

A simple untyped language based on CML, Concurrent ML, is de�ned and analysed. The

language contains a spawn operator for initiating new independent threads of computation and

constructs for the exchange of data between these threads. A denotational model for the language

is presented where denotations correspond to computations of values rather than simply values. It

is shown to be fully abstract with respect to a behavioural preorder based on contextual testing.

1 Introduction

The language Concurrent ML (CML), [18], is one of a number of recent languages which seeks to

combine aspects of functional and concurrent programming. Standard ML, [19], is augmented with the

ability to spawn o� new independent threads of computation. Further constructs are added to enable

these threads to synchronise and exchange data on communication channels. As it includes higher-

order objects, which can be exchanged between threads as data, new channel name generation, and the

ability to form abstractions over communication behaviours using the concept of event types, CML

is a sophisticated language. Although it has been implemented there has been very little work on its

semantic foundations.

There have been a number of attempts at giving an operational semantics, usually in terms of a

reduction relation, to core subsets of the language. For example in [18, 2] the core language �

cv

is given

a two-level operational semantics which results in a reduction relation between multi-sets of language

expressions. We aim to extend this type of work in order to build more abstract semantic theories,

encompassing both behavioural equivalences and denotational models.

As a �rst step in this direction we consider in this paper a relatively simple language which never-

theless contains some of the key features of CML. It is a language for the evaluation of simple untyped

expressions based on the standard construction let x = e

1

in e

2

to which is added a spawn operator for

introducing new threads of computation. To enable these threads to cooperate a range of constructs,

based on those of CCS, for receiving and sending values is also added. The resulting language is more

powerful than the fork calculus, [7], and the language considered in [1] as computation threads have

the ability to exchange data. It is also more powerful than the value-passing process algebra of [9] as

not only can expressions exchange values as data but the evaluation of expressions can terminate in the

production of values. More importantly in [9] the calculation of values is computationally trivial and

does not a�ect the communication behaviour of expressions whereas with our present language both

these are mutually dependent.

In Section 3 we give the syntax of our language and an operational semantics. This is more general

than the corresponding reduction relations of [18, 2], as it also determines the communication potentials

of expressions and their ability to produce values; the operational semantics is given in terms of an

extended labelled transition system. This would enable us to de�ne a notion of bisimulation equivalence

for expressions but instead in this paper we consider a Morris style observational preorder, [15], based

on the ability to guarantee the production of values.

Properties of the operational semantics are investigated in Section 4. These are encapsulated in

the de�nition of value production systems, extensions of labelled transition systems by new actions

representing the production of values. These new actions are incorporated into the operational semantics

�
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in such a way that the naturalmonadic laws suggested in [14] for the let : : : in : : : construct are satis�ed

and furthermore the spawn operator can be explained in terms of a parallel construct.

A behavioural preorder based on a natural notion of observations is de�ned in Section 5. Expressions

in the language are still designed to evaluate to, or produce values. So the basic observation of an

expression is that it guarantees the production of a value and we then de�ne e

1

<

�

e

2

if every observation

which can be made of e

1

can also be made of e

2

. The remainder of the paper is devoted to building a

fully-abstract denotational model for this preorder. In Section 6 we �rst outline the general structure

which any reasonable denotational model should have, which we call a Natural interpretation. There

are two independent sources for requirements. The �rst, viewing expressions as representing processes,

simply suggests a domain of processes on which the standard processes constructors can be interpreted.

The second, viewing expressions as representing computations of values, suggests a monadic structure

as in [14]. The requirements resulting from the latter view are expressed in terms of a degenerate form

of Kliesli triples.

We then proceed, in Section 7, to construct a particular Natural Interpretation. The starting point

is the value passing version of Acceptance Trees, [8], considered in [9] which is extended to a new model

D to take into account the ability of expressions to produce values. However, as pointed out above, the

key point is the recognition that elements of the model correspond not to values but to computations of

values and in order to obtain a monadic interpretation, [14], it is necessary to consider a retract of D,

called E. This is is shown to be fully-abstract with respect to

<

�

in Section 8 and we end with a brief

comparison with related work.

2 Mathematical Preliminaries

In this section we review the mathematical constructions and notations used in the remainder of the

paper. We recommend the reader to skip this section and to refer to it only when necessary.

We refer to algebraic cpos, [6], in which every non-empty directed set has a least upper bound as

a predomain. If in addition it has a least element it is a domain; equivalently this means that every

directed set has a least upper bound. If D is a predomain then D

?

is the domain obtained by adjoining

a least element and �d 2 D:d

?

denotes the obvious injection.

A function f :D �! E from the predomain D to the predomain E is continuous if it preserves lubs

of directed sets. We use [D �! E] to denote the set of continuous functions. Ordered pointwise it is

also a predomain and even a domain whenever E has a least element, i.e is a domain. If f : [D

n

�! E],

where D and E are predomains we use up(f): [(D

?

)

n

�! E

?

] to denote its obvious strict extension.

More generally for any set X and predomain D the set of functions from X to D, (X �! D), is

also a predomain when ordered pointwise and a domain if D has a least element. For any continuous

function f :D

k

�! D let f

X

: (X �! D)

k

�! (X �! D) be de�ned by f

X

(g)x = f(g

1

(v); : : : ; g

k

(v)).

We use (X *

f

D) to denote the set of partial functions from X to D with a non-empty �nite

domain. This is ordered by

f � g if f(x) �

D

g(x) for every x 2 domain(g),

which makes it into a predomain. Generalising functions from D

k

to D to functions from (X *

f

D)

k

to (X *

f

D) is somewhat more complicated and requires an extra function as parameter; we only

consider the case k = 2. For any h: [D

2

�! D] let h

+

: (X *

f

D)

2

�! (X *

f

D) be de�ned by

h

+

(f; g)x =

8

<

:

h(f(x); g(x)) x 2 domain(f) \ domain(g)

f(x) x 2 domain(f) � domain(g)

g(x) x 2 domain(g) � domain(f):

This function h

+

is not necessarily continuous but we do have:

Lemma 2.1 If h(x; y) � x and h(x; y) � y then

� h

+

is continuous

�

+

itself is continuous when con�ned to such functions. 2

We often denote h

+

(f; g) by f +

h

g.

A convenient method for isolating sub-domains of a given domain is by the use of retracts.
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De�nition 2.2 A domain retract over a domain D is a a strict continuous function r: [D �! D]

satisfying

1. r � r = r

2. r(k) is compact for every compact k 2 D.

2

If r is a domain retract let kernel(r) denote the set of its �xpoints, kernel(r) = f d 2 D j r(d) = d g.

This also coincides with the image of r.

Proposition 2.3 If r is a domain retract then kernel(r) is a domain. 2

Finally we recall some notation on acceptance sets , [8]. If A is a non-empty �nite collection of �nite

subsets of a set X it is called an acceptance set (over X) if it satis�es

1. A;B 2 A implies A [B 2 A

2. A;B 2 A and A � C � B implies C 2 A.

We use j A j to denote the basis of the acceptance set A, i.e. [fA j A 2 Ag and A(X) to denote the

set of all acceptance sets over X; ordered by reverse subset inclusion it is a predomain. We use three

binary operators over A(X). For A;B 2 A(X) let

1. A ^ B be c(A [ B) where c(C) is the smallest acceptance set containing the non-empty collection

of �nite subsets C

2. A _ B be the acceptance set de�ned by fA [B j A 2 A; B 2 B g

3. A

p

B, where

p

is a distinguished element of X, be c(C [ B) where C = fA j A 2 A;

p

62

A g [ f (A� f

p

g) [B j A 2 A;

p

2 A; B 2 B g.

These three operators are continuous over the predomain consisting of A(X) ordered by reverse set

inclusion.

3 The Language and its Operational Semantics

In this paper we consider a very simpli�ed version of CML. It is based on a sequential language for

evaluating expressions over some datatype, such as the Natural Numbers, whose main syntactic construct

is the construction let x = e

1

in e

2

Thus all notions of types are ignored and higher-order constructs are

not considered. Nevertheless our language will incorporate some of the non-trivial features of CML .

Parallelism can be introduced into a sequential language for evaluating expressions by adding a new

operator called spawn which can initiate a new computational thread. An abstract syntax for such a

language could be given by the following:

e ::= d j op(d) j let x = e in e j b 7! e; e j spawn(e)

d ::= v j x

Here v ranges over a set of basic values Val which we assume contains a distinguished value null, x

over a set of variables Var and op over a set of function or operator symbols Op. We also assume the

existence of a set of boolean expressions BExp ranged over by b.

The intended meaning of these constructs should be apparent but note that for convenience we only

allow expressions of the form op(e) when each e

i

has one of the simple forms x or v. The e�ect of op(e)

for more general e

i

can be obtained using the expression let x

1

= e

1

in let x

2

= e

2

in : : :op(x

1

; : : : ; x

k

).

Thus the let construct is used in the language to make more explicit the order in which sub-expressions

are evaluated.

The language as it stands is very limited. Although multiple evaluation threads can be activated, in

expressions such as let x = spawn(e

1

) in e

2

, independent threads can not co-operate or share information.

So we add to the language untyped versions of the communication primitives of CML,
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� n?�x:e, input a value along the communication channel n and apply the function �x:e to it

� n!v:e

2

, output the value v along the channel n and then evaluate e

2

,

and an untyped choice operator e

1

+e

2

, meaning carry out the evaluation associated with the expression

e

1

or that associated with e

2

.

In addition to these operators which have their direct counterparts in CML we add a parallel operator

e

1

j e

2

, meaning carry out the evaluation of e

1

and e

2

concurrently. Such an operator does not appear

in the syntax of CML but it enables us to express directly in the syntax of the language the states which

are generated as the evaluation of an expression proceeds.

The complete abstract syntax of our language is given by the following:

e ::= d j op(d) j let x = e in e j b 7! e; e j spawn(e)

j n?�x:e j n!d:e j e + e j e j e

j local n in e end j � j e� e j let rec P in e j P

d := v j x

The constructs not explained are

� local n in e end { meaning that n is a local channel name for the evaluation of e,

� � { an evaluation which can no longer proceed,

� e

1

� e

2

{ an internal or spontaneous choice between the evaluation of e

1

and e

2

� let rec P in e { recursive de�nitions using a set of prede�ned expression names P 2 PN.

The two constructs e

1

� e

2

and � are not essential as they can be de�ned using the other operators but

they have proved to be convenient in the development of process algebras,[10, 8]. On the other hand

local n in e end does have a counterpart in CML although in our language we only have a prede�ned set

of channel names N , over which n ranges, as opposed to the channel name generation facility of CML.

Finally the facility for recursive de�nitions is modelled on that used in process algebras as recursion in

CML is achieved using functional types.

We use PExp to denote the set of expressions generated by this abstract syntax and CPExp to denote

the set of closed expressions; the standard de�nitions of free and bound occurrences of variables and

process names apply and an expression is closed if it contains no free occurrence of a variable or a

process name.

We now consider an operational semantics for CPExp. For the sake of simplicity we ignore the

evaluation of boolean expressions. That is we assume that for each closed boolean expression b there is

a corresponding truth value [[b]] and more generally for any boolean expression b and mapping � from

variables to values there is a boolean value [[b]]�. We also assume that for each operator symbol op 2 Op

we have an associated function [[op]] over the set of values Val of the appropriate arity. The operational

semantics for CML, in papers such as [7, 18, 2], are given in terms of a reduction relation between

multisets of closed expressions, but because we have introduced the parallel operator j our reduction

relation is expressed simply as a binary relation

�

�! over closed expressions; e

�

�! e

0

means that in one

step the closed expression e can be reduced to e

0

. Also these papers use a two-level approach to the

operational semantics, the lower-level expressing reductions of individual expressions and the upper-

level using these lower-level relations to de�ne reductions between multisets of expressions. Instead, as

is common for process algebras, we use auxiliary relations

n?v

�! and

n!v

�! to de�ne our reduction relation

�

�!.

There is one further ingredient. A sequence of reductions should eventually lead to the production

of a value which in normal sequential languages also means that the computation has terminated. We

use a special relation

p

�! to indicate the �nal production of a value. Thus the rule

v

p

�! v

may be used to capture the idea that the simple expression v terminates in the production of the value

v while the two rules
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(V T ) v

p

v

�! �; op(v)

p

w

�! � where [[op]](v) = w

(PT )

e

2

p

v

�! e

0

2

e

1

j e

2

p

v

�! e

1

j e

0

2

(BT )

e

p

v

�! e

0

; [[b]] = true

b 7! e

p

v

�! e

0

(LT )

e

p

v

�! e

0

local n in e end

p

v

�! local n in e

0

end

Figure 1: Operational semantics: value production rules

e

1

�

�! e

0

1

implies let x = e

1

in e

2

�

�! let x = e

0

1

in e

2

e

1

p

�! v implies let x = e

1

in e

2

�

�! e

2

[v=x]

could adequately describe the semantics of local declarations of variables.

However the correct handling of the spawn construct requires some care. This is best discussed in

terms of a degenerate form of local declarations; let e

1

; e

2

be a shorthand notation for let x = e

1

in e

2

where x does not occur free in e

2

. We could therefore derive from above the natural rules:

e

1

�

�! e

0

1

implies e

1

; e

2

�

�! e

0

1

; e

2

e

1

p

�! v implies e

1

; e

2

�

�! e

2

.

Intuitively spawn(e

1

); e

2

should proceed by creating a new processor to handle the evaluation of e

1

which could proceed at the same time as the evaluation of e

2

. However this requires a reinterpretation

of the sequential composition operator ; as in [1]; e

1

; e

2

no longer means when the evaluation of e

1

is

�nished start with the evaluation of e

2

. Instead we interpret e

1

; e

2

as \start the evaluation of e

2

as soon

as an initialisation signal has been received from e

1

". This initialisation signal is of course a

p

-move

and the above judgement can be inferred if we allow the inferences

spawn(e)

p

�! e

e

1

p

�! e

0

1

implies e

1

; e

2

�

�! e

0

1

j e

2

.

In the second rule e

2

is initiated and its evaluation runs in parallel with that of the continuation, e

0

1

, of

e

1

.

This discussion indicates a potential conict between the two uses of the predicate

p

, one to produce

values and the other to produce continuations. However this conict can be resolved if we revise

p

so

that it has the type

p

�! � CPExp � (Val�CPExp):

When applied to a term it produces both a value and a continuation, for which we use the notation

e

p

v

�! e

0

. The revised rule for simple values now becomes

v

p

v

�! �

where � is the \deadlocked evaluation " .

Local declarations are now interpreted as follows:

e

1

�

�! e

0

1

implies let x = e

1

in e

2

�

�! let x = e

0

1

in e

2

e

1

p

v

�! e

0

1

implies let x = e

1

in e

2

�

�! e

1

j e

2

[v=x].
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(LtI)

e

1

p

v

�! e

0

1

let x = e

1

in e

2

�

�! e

0

1

j e

2

[v=x]

(SI) spawn(e)

�

�! e

0

j null

(ECI)

e

1

p

v

�! e

0

1

e

1

+ e

2

�

�! e

0

1

j v

e

2

p

v

�! e

0

2

e

1

+ e

2

�

�! e

0

2

j v

(Com)

e

1

n?v

�! e

0

1

; e

2

n!v

�! e

0

2

e

1

j e

2

�

�! e

0

1

j e

0

2

e

1

n!v

�! e

0

1

; e

2

n?v

�! e

0

2

e

1

j e

2

�

�! e

0

1

j e

0

2

(IC) e

1

� e

2

�

�! e

1

e

1

� e

2

�

�! e

2

(Rec) let rec P in e

�

�! e[let rec P in e=x]

(ECA1)

e

1

�

�! e

0

1

e

1

+ e

2

�

�! e

0

1

+ e

2

e

2

�

�! e

0

2

e

1

+ e

2

�

�! e

1

+ e

0

2

Figure 2: Operational semantics: main reduction rules

Using these rules one can check that the evaluation of spawn(e

1

); e

2

can proceed by initiating a thread

for the evaluation of e

1

and then at any time launch a new thread which evaluates e

2

.

The de�ning rules for the operational semantics are given in Figures 1,2,3. The �rst contains the

rules for the relations

p

v

�! while the second contains the most important rules for the reduction relation

�

�!. The �nal Figure contains the rules for the external actions

n?v

�!;

n!v

�! and routine rules for the

reduction relation

�

�!. Here � ranges over the set of actions Act

�

which denotes Act [ f�g, where Act

denotes the set of external actions fn?v j n 2 N; v 2 Val g [ fn!v j n 2 N; v 2 Valg.

Most of these rules have either already been explained or are readily understood. However it is worth

pointing out the asymmetry in the termination rule for parallel, (PT). In the expression e j e

0

only e

0

can

produce a value using a

p

action. Of course e can evaluate independently and indirectly contribute to

this production by communicating with e

0

using the rule (Com). Also the rule for external choice (ECI)

might be unexpected. It implies, for example, that if e

1

can produce a value v with a continuation e

0

1

then the external choice e

1

+ e

2

can evolve to a state where the value v is available to the environment

while the evaluation of continuation e

0

1

proceeds. Both these rules are designed to reect the evaluation

of CML programs as explained in [18].

4 Value Production Systems

The operational semantics ofPExp determines a labelled transition system with a number of special prop-

erties. These are encapsulated in our de�nition of a value production system. First in the present circum-

stances it is reasonable to de�ne a labelled-value-transition system as a collection hE;Val;Act

�

;�!;

p

�!i

where

� E is a set of (closed) expressions

� Val is a set of values such that Val � E

� �!� E � Act

�

� E

�

p

�!� E � Val� E.
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(ECA2)

e

1

a

�! e

0

1

e

1

+ e

2

a

�! e

0

1

e

2

a

�! e

0

2

e

1

+ e

2

a

�! e

0

2

(PA)

e

1

�

�! e

0

1

e

1

j e

2

�

�! e

0

1

j e

2

e

2

�

�! e

0

2

e

1

j e

2

�

�! e

1

j e

0

2

(BoolA)

e

1

�

�! e

0

1

; [[b]] = true

b 7! e

1

; e

2

�

�! e

0

1

e

2

�

�! e

0

2

; [[b]] = false

b 7! e

1

; e

2

�

�! e

0

2

(LcA)

e

�

�! e

0

; chan(�) 6= n

local n in e end

�

�! local n in e

0

end

(LtA)

e

1

�

�! e

0

1

let x = e

1

in e

2

�

�! let x = e

0

1

in e

2

(SA)

e

�

�! e

0

spawn(e)

�

�! spawn(e

0

)

(In) n?x:e

n?v

�! e[v=x] for every value v

(Out) n!v:e

n!v

�! e

Figure 3: Operational semantics: Auxiliary rules

The operational semantics of PExp determines a labelled-value-transition system but it satis�es some

additional properties.

De�nition 4.1 A value production system, vps, is a collection system hE; �;Val;Act

�

;�!;

p

�!i where

1. hE;Val;Act

�

;�!;

p

�!i is a labelled-value-transition system

2. � is a deadlocked expression, i.e. �

�

6�! for every � 2 Act

�

and �

p

6�!

3. the only move from the expression v is v

p

v

�! �, and v

�

6�! for every � 2 Act

�

and v

p

w

�! e implies

e = � and v = w

4. single-valuedness: If e

p

v

�! e

0

then e

0

p

w

�! for no w.

5. value-determinacy: e

p

v

�! e

0

and e

p

w

�! e

00

implies e

0

is e

00

and v = w

6. forward commutativity: If e

�

�! e

1

and e

p

v

�! e

2

then there exists an e

3

such that

e

�

-

e

1

e

2

p

v

?

�

-

e

3

p

v

?

7



7. backward commutativity: If e

p

v

�! e

1

and e

1

�

�! e

2

then there exists e

3

such that

e

p

v

-

e

1

e

3

�

?

p

v

-

e

2

�

?

2

Theorem 4.2 The operational semantics of the previous section determines a vps with PExp as the set

of expressions.

Proof: The �rst three conditions are straightforward and the four others can be proved by rule

induction on the operational semantics. As an example we outline the proof of backward commutativity.

So suppose e

p

v

�! e

1

and e

1

�

�! e

2

. The proof is by induction on the derivation of the transition e

p

v

�! e

1

and their are four cases, (VT), (PT), (BT) and (LT). As an example consider the second, (PT), when

e = f

1

jf

2

; e

1

= f

1

jf

0

2

and f

2

p

v

�! f

0

2

. There are three possibilities for the derivation e

1

�

�! e

2

.

Case f

0

2

�

�! f

00

2

and e

2

is f

1

j f

00

2

: Since f

2

p

v

�! f

0

2

then by induction there exists f

000

2

such that f

2

�

�!

f

000

2

p

v

�! f

00

2

which implies f

1

jf

2

�

�! f

1

jf

000

2

p

v

�! f

1

jf

00

2

.

Case f

1

�

�! f

0

1

and e

2

is f

0

1

jf

0

2

: Then obviously f

1

jf

2

�

�! f

0

1

jf

2

p

v

�! f

0

1

jf

0

2

.

Case f

1

a

�! f

0

1

; f

0

2

a

�! f

00

2

and e

2

is f

0

1

j f

00

2

: This is a combination of the previous three cases.

2

We can now investigate properties of the operational semantics of PExp by deriving properties of an

arbitrary vps. First we should point out that the single-value condition in the de�nition has considerable

rami�cations when considered in conjunction with the other conditions. Intuitively it says that if e

p

v

�! e

0

then not only will e

0

be unable to produce any value but neither will any of its future derivatives; thus

in any particular computation at most one value will ever be produced. Let P

E

denote the set of pure

processes,

P

E

= f e 2 E j 8s 2 fAct

�

g

�

; e

s

=) e

0

implies e

0

p

6�!g:

Lemma 4.3 In any vps if e

p

v

�! e

0

then e

0

2 P

E

.

Proof: Follows from single-valuedness and backward commutativity. 2

However the main aim of this section is to show that our operational semantics endows the let

construct with the intuitive properties one expects of it in the setting of a functional language and that

the spawn operator can be modelled in a straightforward manner using the parallel construct. To this

end note that the rules (PT), (Com) and (PA) can be used to de�ne an operator j over any vps and

in the sequel we only consider those vps which are closed with respect to this property, i.e. for every

e; e

0

2 E there is some expression e j e

0

2 E whose behaviour is determined by these rules.

One consequence of the axioms de�ning a vps is that whenever e

p

v

�! e

0

the behaviour of e is the

same as e

0

j v, at least up to strong bisimulation. A suitable de�nition of strong bisimulation is as

follows:

8



De�nition 4.4 A symmetric relation R � E�E is called a strong bisimulation if it satis�es: he; e

0

i 2 R

implies that

1. e

�

�! e

1

implies e

0

�

�! e

0

1

for some e

0

1

such that he

1

; e

0

1

i 2 R

2. e

p

v

�! e

1

implies e

0

p

v

�! e

0

1

for some e

0

1

such that he

1

; e

0

1

i 2 R.

Let e � e

0

if he; e

0

i 2 R for some strong bisimulation R. 2

Theorem 4.5 In any vps if e

p

v

�! e

0

then e � e

0

j v.

Proof: Let

R = f he; e

0

j vi j e

p

v

�! e

0

g [ f he; (e j �)i j e 2 P

E

g:

Using forward commutativity, value-determinacy and single-valuedness one can show that R is a strong

bisimulation. 2

This theorem demonstrates that values can only be produced by expressions in PExp in a very

restricted manner. Essentially values can only be o�ered to the environment and subsequent behaviour

can not depend on the value being absorbed by the environment. An immediate corollary of this is that

the production of a value can not lead to an expression diverging; we say e diverges, written e * if there

is an in�nite sequence of derivations

e

�

�! e

1

�

�! e

2

�

�! : : : : : :

�

�! e

k

�

�! : : : : : :

Corollary 4.6 If e

p

v

�! e

0

and e

0

* then e *. 2

We now turn our attention to the properties of the let construct. At the abstract level of value

production systems this is best studied by assuming there is a set of functions F from Val to E with

the property that for each e 2 E there is an element let x = e in f(x) whose actions are determined by

the appropriate versions of the rules (LtI) and (LtA):

e

p

v

�! e

0

let x = e in f(x)

�

�! e

0

j f(v)

e

�

�! e

0

let x = e in f(x)

�

�! let x = e

0

in f(x)

In the case of the vps for the language PExp the set F consists of all functions �v 2 Val:e[v=x] where e

ranges over expressions in PExp which have at most x as a free variable.

One can easily show that in the abstract setting of a vps that the let construct satis�es properties

such as

let x = e

1

j e

2

in f(x) � e

1

j let x = e

2

in f(x):

But unfortunately to obtain more interesting properties we have to work with respect to a slightly

weaker equivalence than strong bisimulation.

De�nition 4.7 A symmetric relation R � E �E is called a mild bisimulation if it satis�es: he; e

0

i 2 R

implies that

1. for every a 2 Act e

a

�! e

1

implies he

1

; e

0

1

i 2 R for some e

0

1

such that e

0

a

�! e

0

1

or e

0

�

�!

a

�! e

0

1

2. e

p

v

�! e

1

implies he

1

; e

0

1

i 2 R for some e

0

1

such that either e

0

p

v

�! e

0

1

or e

0

�

�!

p

v

�! e

0

1

3. e

�

�! e

1

implies either he

1

; e

0

1

i 2 R for some e

0

1

such that e

0

�

�! e

0

1

or e

1

� e

0

.

Let e �

m

e

0

if he; e

0

i 2 R for some mild bisimulation R. 2

Theorem 4.8 In any vps

1. let x = e in Id(x) �

m

e where Id is the identity function

2. let x = v in f(x) �

m

f(v) for every value v

9



3. let x

2

= (let x

1

= e in f(x

1

)) in g(x

2

) � let x

1

= e in (�v:(let x

2

= f(v) in g(x

2

)))(x

1

).

Proof: In each case it is a matter of constructing a particular mild-bisimulation containing the required

pairs.

For the �rst result we use

R

1

= fhlet x = e in Id(x); eig [ f he; e

0

i j e � e

0

g

and to prove it is a mild-bisimulation one needs to know that e � e j � whenever e 2 P

E

.

For the second result the required mild-bisimulation is

R

2

= fhlet x = v in f(x) ; f(v)ig [ Id;

while for the third we use

R

3

= fhlet x

2

= (let x

1

= e in f(x

1

)) in g(x

2

) ; let x

1

= e in (�v:(let x

2

= f(v) in g(x

2

)))(x

1

)ig [

fhlet x = e j e

0

in g(x) ; e j let x = e

0

in g(x)ig

2

If we translate these results for the particular vps for PExp it means that any behavioural equivalence

contained in �

m

satis�es the following axioms:

let x = e in x = e

let x = v in e = e[v=x]

let x

2

= (let x

1

= e

1

in e

2

) in e

3

= let x

1

= e

1

in (let x

2

= e

2

in e

3

)

provided x

1

62 fv(e

3

).

Note that Proposition 4.5 is crucial for the �rst law to hold and in the operational semantics this is

ensured by the rules (ECI) and (SI). If in place of the former we had

e

1

p

v

�! e

0

1

e

1

+ e

2

p

v

�! e

0

1

and its symmetric counterpart then the two expressions v + n!v:� and let x = v + n!v:� in x would not

even be weakly bisimular , [13].

We end this section with a straightforward relationship between the spawn and parallel operators.

Again let us assume that that for every expression e in a vps there is an expression spawn(e) whose

semantics is determined by the rule (SI) in Figure 2. The proof of the following result is left to the

reader.

Proposition 4.9 In any vps spawn(e) �

m

e j null 2

5 An Observational Preorder on Processes

We intend to construct a denotational model for the language but �rst, in this section, we present

the behavioural preorder which we would wish the model to faithfully represent. It is based on the

contextual preorder originally de�ned in [15] for the �-calculus. The general method to construct a

contextual preorder is to consider a set of observations appropriate to the language at hand and to say

that the program fragment p is re�ned by q if in all contexts C[ ] for which observations can be made

of C[p] and C[q], every successful observation of C[p] is also a successful observation of C[q]. We will

restrict ourselves to the use of �nite contexts, i.e. contexts which do not use the recursion operator

of the language. This restriction is really only to make the proofs of our results manageable and we

conjecture that they remain true if this restriction were lifted.
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For our language a reasonable notion of observation is the production of values but in view of the

inherent nondeterminism of the language there are are least two reasonable adaptions, based loosely on

the may and must testing of [8]. We concentrate on the latter which informally can be viewed as being

based on the ability of expressions to guarantee the production of values.

A computation of a closed expression e is any maximal sequence (i.e. it is �nite and cannot be

extended or it is in�nite) of � derivations from e. Let Comp(e) be the set of computations of e. For any

c 2 Comp(e) let c

i

denote the ith component of c. Then for any v 2 V al we say that e must v if for all

c 2 Comp(e) there exists some i such that c

i

p

v

�!.

De�nition 5.1

For closed terms e

1

; e

2

2 CPExp let e

1

<

�

e

2

if for all contexts C[]; C[e

1

] must w impliesC[e

2

] must w

where w is a new distinguished value. 2

Although this preorder looks quite similar to themust testing of [8, 9] there is an important di�erence.

In those papers a process term e is tested by running it in parallel with a testing process T . Thus the

only testing contexts allowed were of the form [ ] j T which makes the analysis of the preorder more

tractable. Here the testing contexts can be constructed using any of the operators of the language,

although, for simplicity, the use of recursion in the contexts is not allowed. This change brings the

preorder more in line with the original idea of contextual preorders, as suggested by Morris, [15] but

the requirement that the value being guaranteed, w, being new is important. For example without this

we would have


 j v

6<

�




just by taking the empty context. Since according to the above de�nition 
 j v must v and obviously


must6 v. However these two terms are identi�ed in the model presented later. The present formulation

leads to a more tractable semantic theory but we hope to examine natural variations in future work.

Contextual preorders are not very easy to work with and

<

�

is no exception. Accordingly we de�ne an

alternative characterisation which is more amenable to investigation. This alternative characterisation

is quite similar to that used in [9] but there are important di�erences. Moreover the characterisation

theorem is considerably more di�cult to prove in view of the use of arbitrary contexts as tests. First

some notation. Recall that Act

�

denotes the set of actions Act[f�g. This style of notation is extended

by letting Act

V al

�

denote the set of actions Act together with � and

p

v for every value v, and Act

V al

this

set minus � . Recall from Lemma 4.3 that in a given computation expressions can only produce at most

one value. So the set of sequences of actions a process can perform is a subset of S = Act

�

[ f s

1

p

vs

2

j

v 2 V al; s

1

; s

2

2 Act

�

g. To associate such sets with expressions we use the standard notation for

transition systems:

�

=) denotes

�

�!

�

, for a 2 Act

V al

a

=) denotes the weak relation

�

�!

�

�

a

�! �

�

�!

�

and for any s 2 S

s

=) is its obvious extension.

For closed terms e let

De�nition 5.2

L(e) = f s j e

s

=)g - the language of e

S(e) = f c? j e

c?v

=) for some v g [

f c! j e

c!v

=) for some v g [

f

p

j if e

p

v

=) for some v g - the successors of e

SA(e; s) = f S(e

0

) j e

s

=) e

0

�

6�!g - the acceptances of e after s:

2

We also need to extend the notation on divergent computations. Recall that e * means e can diverge.

We use e + to be the negation of this, namely e has no divergent computations, and this is generalised

to sequences in the following way:

e + " if e +

e + �:s if e + and e

�

=) e

0

implies e

0

+ s where � 2 Act

V al

:

With this notation we are now ready to de�ne the alternative characterisation.
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De�nition 5.3 For closed terms e

1

; e

2

2 CPExp let e

1

� e

2

if for every s 2 S; e

1

+ s implies

1. e

2

+ s

2. for all B 2 SA(e

2

; s) there exists A 2 SA(e

1

; s) such that A � B.

2

The remainder of this section is devoted to proving that for all closed expressions e

1

; e

2

e

1

<

�

e

2

if and only if e

1

� e

2

: (1)

The proof in one direction,

<

�

��, is similar in structure to the corresponding proof in [9], Proposition

2.8; three classes of contexts are de�ned which, in turn, can be used to test for, and indeed characterise

the relevant properties underlying the de�nition of �. Moreover the three classes are quite similar to

those used in [9] but the proofs that they do indeed characterise the properties is considerably more

subtle.

Let C

con

[:](s) be de�ned by

C

con

[:](s) = let x = [:] in b!x:� j con(s) for fresh b; x

where cons(s) is de�ned by

con(") = � + w

con(a?v:s) = a!v:con(s) + w

con(a!v:s) = a?x:(x = v 7! con(s); w) + w

con(

p

v:s) = b?x:(x = v 7! con(s); w) + w:

Note that for any closed expression e if C

con

[e]

�

=) e

0

then e

0

p

w

=), because of the construction of C

con

[ ].

Therefore C

con

[e] must w if and only C

con

[e] +; thus the interest in next Proposition, in particular the

third statement.

Proposition 5.4 For every e 2 CPExp

1. For s 2 Act

�

; e + s implies e j con(s) +.

2. For s 2 S; e

p

v

=) e

0

and e + s implies (e

0

j b!v:�) j con(s) +.

3. For s 2 S; e + s implies C

con

[e](s) +.

Proof:

In each case the proof is by induction on the length of s. But the proof of the second statement

relies on the �rst and the third relies in turn on the second.

2

Proposition 5.5 For every e 2 CPExp and s 2 S, e + s if and only if C

con

[e](s) must w.

Proof: One direction follows from the third part of the previous Lemma while the converse direction

follows from

e * s implies C

con

[e](s) *

which is easily established using induction on s. 2

Two more types of contexts are required. The �rst tests the inability of an expression to produce

the sequence of actions s�. where � 2 Act

V al

and s 2 S. Let C

rej

[:](s; �) denote

12



C

rej

[:](s; �) = let x = [:] in b!x:� j rej(s; �) for fresh b; x

where rej(s; a) is de�ned as

rej("; a?v) = a!v:� + w

rej("; a!v) = a?x:(x = v 7! �; w) +w

rej(";

p

v) = b?x:(x = v 7! �; w) +w

rej(a?v:s; �) = a!v:rej(s; �) +w

rej(a!v:s; �) = a?x:(x = v 7! rej(s; �); w) +w

rej(

p

v:s; �) = b?x:(x = v 7! rej(s; �); w) +w:

The second tests for the presence of acceptance sets of a certain form. Let R = fa

1

� � �a

k

g be a �nite

subset of Act [ f

p

g and s a sequence from S. Then de�ne C

acc

[:](s;R) by

C

acc

[:](s;R) = let x = [:] in b!x:� j acc(s;R) for fresh b; x

where acc(s;R) is de�ned as

acc(";R) = acc(R)

acc(a?v:s;R) = a!v:acc(s;R) +w

acc(a!v:s;R) = a?x:(x = v 7! acc(s;R); w) +w

acc(

p

v:s;R) = b?x:(x = v 7! acc(s;R); w) +w

and where acc(R) is de�ned by

acc(R) =

P

f acc(a) j a 2 Rg

acc(a?) = a!w:w

acc(a!) = a?x:w

acc(

p

) = b?x:w:

Lemma 5.6

1. If e + s� then s� =2 L(e) if and only if C

rej

[e](s; �) must w.

2. If e + s then acc(s;R) must w if and only if A \R 6= ; for every A 2 SA(e; s).

Proof: Similar to the corresponding results in Proposition 2.8 in [9], although the proofs are somewhat

more delicate. 2

Proposition 5.7 For e

1

; e

2

2 PExp; e

1

<

�

e

2

implies e

1

� e

2

.

Proof: The proof strategy is the same as Proposition 2.8 in [9] but using the contexts C

con

[ ]( ); C

rej

[ ]( );

and C

acc

[ ]( ). 2

The converse is considerably more di�cult to establish and let us see why this is so. Suppose e� e

0

and C[e] must w. In order to establish C[e

0

] must w it is necessary to prove that in every computation

from C[e

0

],

C[e

0

]

�

�! c

1

�

�! c

2

�

�! : : :

�

�! c

k

�

�! : : :

there is some c

i

such that c

i

p

w

�!. In [9] the only possible form for C[e] is e j p for some term e

and consequently each c

i

also has the form e

i

j p

i

. This means that every computation from e j p

can be decomposed into two sub-derivations, one from e

0

and one from p. Using e � e

0

a su�ciently

similar sub-derivation can be obtained from e which can be recomposed with that from p to construct

a computation from e j p. This, together with e j p must w, is su�cient to guarantee some c

i

which can

perform the required w.

Here, because of the use of arbitrary contexts, computations can not be easily decomposed, into

the contribution from e and the corresponding contribution from the context C[ ] and subsequently

recomposed. To do so we have to develop an operational semantics for contexts using the idea of action

transducers as in [12] and prove appropriate decomposition and recomposition theorems for sequences

of actions from C[e] in terms of sequences of actions from e and sequence transductions from C[ ]. All

of this, which accumulates in the proof of

13



Proposition 5.8 For closed expressions e� e

0

implies e

<

�

e

0

,

is relegated to Appendix A.

Combining these two results we have

Theorem 5.9 For all closed expressions e; e

0

; e� e

0

if and only if e

<

�

e

0

. 2

6 Natural Interpretations

In the section we outline the general requirements on a model in order to interpret the language.

If we consider the core language introduced �rst in Section 3 there are two essential features, one

based on spawn, for introducing concurrency, and the other the let construct common to functional

programming languages. We discuss in turn the requirements imposed by these features on the notion

of a suitable semantic domain.

As can be seen from the operational semantics, and Proposition 4.9, we use the parallel operator j

in order to explain the behaviour of this process, and the behaviour of the parallel operator in turn can

be explained in terms of the other operators we have introduced into the language, such as the input

and output pre�xes and choice. In short the concurrent aspect of the language can be catered for in

any model which supports an interpretation of these operators. For convenience let � denote this set

of operators:

� the constant �

� a unary symbol n!v, for each n 2 N and each v 2 Val

� a unary symbol local n in � end, for each n 2 N

� the binary symbols +; �; j.

To interpret recursive terms over this alphabet we use a �-domain which consists of a domain D

together with a continuous function f

D

over D for each operator symbol f . To interpret input pre�xing

we require, for each channel n 2 N a continuous function of type [[Val �! D] �! D].

Thus far the requirements are very similar to those used in [9] but we also need to interpret the

let construct. Expressions in CPExp produce, or evaluate to, values from Val but because of their

concurrent nature many signi�cantly di�erent evaluations can lead to the same value. Thus it is appro-

priate to think of elements of the domain D as computations of values from Val and the let construct

as a mechanism for manipulating computations rather than values. A general denotational theory of

programming languages based on the idea that programs denote computations rather than values has

been developed in [14] using monads and we follow this approach. Indeed Theorem 4.8 indicates that

any reasonable semantic interpretation can be viewed, at least intuitively, in terms of monads. Here we

rely on their presentation as Kliesli triples, although because our language has on one datatype we will

only require a degenerate form of these, based on two functions:

1. a function �

D

which associates with each value v a trivial computation �(v) for producing this

value

2. a continuous functional

�

D

which extends a function f from values to computations to a function

f

�

D

from computations to computations.

De�nition 6.1 An Interpretation for the language PExp consists of a 4-tuple hD; in

D

; �

D

;

�

D

i where

1. D is a �-domain

2. in

D

:Chan �! (Val �! D) �! D

3. �

D

:Val �! D

4.

�

D

: [(Val �! D) �! [D �! D]].

2
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Given such an interpretation a denotational semantics for the language can be given as a function

D[[ ]] : PExp �! [Env

V al

�! [Env

D

�! D]];

where Env

Val

denotes the set of Val environments, i.e. mappings from the set of variables Var to the

set of values Val and Env

D

is the set of D environments, mappings from the set of process names PN

to the domain D. This is de�ned by structural induction on expressions:

i) D[[x]]�� = �(�(x))

ii) D[[v]]�� = �(v)

iii) D[[op(d)]]�� = �([[op]](�(d)))

iv) D[[f(e)]]�� = f

D

(D[[e]]��) for each f 2 �

v) D[[let rec P in e]]�� = Y ��:D[[e]]��[�=P ]

vi) D[[b 7! e

1

; e

2

]]�� = D[[e

1

]]�� if [[be]]�� = T

D[[e

2

]]�� if [[be]]�� = F

vii) D[[n?x:e]]�� = in

D

n �v:D[[e]]�[v=x]�

viiii) D[[let x = e

1

in e

2

]]� = (�v:D[[e

2

]]�[v=x])

�

D

[[e

1

]]�

ix) D[[spawn(e)]]� = [[e]]� j

D

null

where Y is the least-�xpoint operator for continuous functions over D.

One can check that this this semantic function satis�es the standard \substitution lemma":

Lemma 6.2 D[[e]]�[v=x] = D[[e[v=x]]]�. 2

However there are some reasonable requirements on the interpretation of the let construct which

are best expressed as properties of the functions � and

�

D

; these are derived directly from the monad

laws given in [14].

De�nition 6.3 An Interpretation is Natural if

1. (�

D

)

�

D

= id

D

2. f

�

D

� �

D

= f for every f :Val �! D

3. f

�

D

� g

�

D

= (f � g

�

D

)

�

D

for every f; g:Val �! D.

2

These properties ensure that the interpretation of the let construct has some expected properties:

Proposition 6.4 If D is a Natural Interpretation then

1. D[[let x = e in x]] = D[[e]]

2. D[[let x = v in e]] = D[[e[v=x]]]

3. D[[let x

2

= (let x

1

= e

1

in e

2

) in e

3

]] = D[[let x

1

= e

1

in (let x

2

= e

2

in e

3

)]] provided x

1

62 fv(e

3

).

Proof: Each of these is a direct consequence of the corresponding constraint on Natural Interpretations,

given in the previous de�nition. As an example we outline the proof of the second property and for
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convenience we abbreviate D[[ ]] to [[ ]].

[[let x = v in e]]� = (�v:[[e]]�[v=x])

�

D

[[v]]

= (�v:[[e]]�[v=x])

�

D

�

D

(v)

= ((�v:[[e]]�[v=x])

�

D

� �

D

)(v)

= (�v:[[e]]�[v=x])(v) from condition 2 in De�nition 6.3

= [[e[v=x]]]� from the previous Lemma.

2

The aim of this paper is to provide a Natural Interpretation which is fully-abstract with respect to

the behavioural preorder

<

�

, i.e. which satis�es

D[[e

1

]] � D[[e

2

]] if and only if e

1

<

�

e

2

for all expressions e

1

; e

2

.

7 Acceptance Trees

Here we �rst review the version of Acceptance Trees, [8], used in [9] to model a value-passing process

language. We then discuss how it might be modi�ed so as to interpret PExp.

Acceptance trees are models of processes where the branches are labelled by the actions a process

can perform and each node represents the set of possible states a process can reach after the sequence

of actions labelling the path from the root of the tree to the node. The nondeterministic behaviour of

processes is represented by acceptance sets, see Section 2, attached to the nodes. In order to accom-

modate value-passing these trees are modi�ed so that the branches from a node do not lead directly to

another node but rather to a function from values to trees which represent the functional behaviour of

the process on reception or transmission of a value along a channel.

We now de�ne a recursive domain equation whose solution, in the category of domains with embed-

dings [17], is a formal representation of these trees. If N is the set of communication channels let cN

represent the set fn?; n! j n 2 N g; nodes in the trees will be represented by acceptance sets over cN.

Let I be a domain representing the sequel of a process after performing an input, and O a corresponding

domain for output. Then H

P

(N; I;O) denotes the set of pairs hA; fi which satisfy:

� A is an acceptance set over cN, i.e. A 2 A(cN),

� f is a function from cN to the disjoint union of I and O, i.e. f : cN *

f

I + O, such that

domain(f) =j A j

� f(�) 2 I whenever � = n? for some channel n

� f(�) 2 O whenever � = n! for some channel n

Elements of H

P

(N; I;O) can be ordered by:

hA; fi � hB; gi if B � A and f � g, i.e. f(�) � g(�) for every � in the domain of g.

If both I and O are predomains then one can check that so is H

P

(N; I;O). Moreover H

P

can be

used to induce a functor in the category of predomains with continuous functions as morphisms. So we

can solve the domain equation

P = H

P

(N; I;O)

?

I = Val �! P

O = Val*

f

P:

in the category of domains with embeddings as morphisms, [17]. The domain representing the input

sequels is the set of functions from values to processes. Operationally processes can only output a �nite
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number of di�erent values on any given channel and therefore the set of �nite non-empty functions from

values to processes is used for output sequels. Note that O is a predomain rather than a domain.

In addition to the input and output of values expressions from PExp can produce values, i.e. perform

p

actions. Therefore to model PExp we need to modify the functor H

P

by adding an extra component

to handle the production of values. Let T be a domain of sequels to

p

. Then H

D

(N; I;O; T ) is the

set of pairs hA; fi where now A is an acceptance set over cN [ f

p

g and f is as above except that in

addition it satis�es

� f(

p

) is in T whenever it is de�ned.

We also need to decide on a suitable component of the domain equation for the sequel to

p

. The

production of values is very similar to the output of values but there are di�erences. We know from

Section 4 that an expression will produce at most one value. This means that when a value is produced

the sequel will never again produce a value; instead the sequel will behave like a process, an element of

the domain P. Therefore we can use as a model the initial solution to the domain equation

D = H

D

(N; I;O;T)

?

I = Val �!D

O = Val*

f

D

T = Val*

f

P:

Intuitively the previous domain P can be seen as a sub-domain of D, simply the subset of elements

of D which contain no occurrence of

p

in any acceptance set. This can be expressed formally in terms

of a domain retract, see Section 2, over P which eliminates all occurrences of

p

. This domain retract

is de�ned as the least �xpoint of a functional, Y �X:E where for each X: [D �! D] the expression E

represents a function in [D �!D]. This expression E is in turn de�ned in terms of a \tree manipulation"

functional R: [[D �!D] �! [H

D

�! H

D

]], where H

D

is an abbreviation for H

D

(N; I;O;T), de�ned

by

R X hA; fi = hAn

p

; X � fi

where An

p

= fA � f

p

g j A 2 Ag. Here, and in the sequel, we are using the convention that an

expression of the form hB; gi, where the domain of g may be a superset of j B j, actually represents

the element hB; gd

jBj

i of H

D

. Thus R when applied to a tree eliminates any occurrences of

p

from the

acceptance set decorating the root and then applies the \recursion variable" X to the sequels. Now if

fold and unfold are the isomorphisms associated with the domain equation for D then

�X:fold � up(R X) � unfold

has the type [ [D �!D] �! [D �!D] ]. So we can de�ne elim

p

:D �!D to be its least �xpoint, i.e.

elim

p

= Y (�X:fold � up(RX) � unfold)

Theorem 7.1

1. elim

p

is a domain retract

2. The kernel of elim

p

, i.e. f d 2D j elim

p

(d) = d g is a domain which is isomorphic to P. 2

Proof:

1. It is easy to see that elim

p

satis�es the conditions of De�nition 2.2.

2. The obvious injection mapping from P to elim

p

(D) gives the required isomorphism.

2

In subsequent developments we tend to identify P with its injection into D.
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Most of the operators in PExp have been interpreted over the domainP and they are easily modi�ed

to D. For example constant � is interpreted as foldhf;g; ;i and the input operator

in

D

:Chan �! [Val �!D] �!D

is de�ned by

in

D

n f = fold hffn?gg; n? 7! fi

?

:

As another example we give the de�nition of �

D

. We use the notation for partial functions explained in

Section 2. Also when describing an element hA; fi of H

D

the function f can be decomposed into three

components, some of which may be empty; f

?

, the restriction of f to elements of j A j of the form n?,

f

!

, the restriction to elements of the form n! and f

p

, the e�ect of f on

p

if it is de�ned. Consequently

we can de�ne f by giving its three components (f

?

; f

!

; f

p

).

The function �

D

is also interpreted as a least �xpoint, Y �X:E where this time �X:E has the type

[ [D

2

�! D] �! [D

2

�! D] ]. This functional has much the same structure as that used to de�ne the

retract elim

p

; it has the form �X:fold � up(I X) � unfold where I is a \tree manipulating function" of

type [D

2

�!D] �! [H

2

D

�! H

D

]. It is de�ned by

IX(hA; fi; hB; gi) = hA ^ B; (f

?

+

X

V al g

?

; f ! +

X

+ g

!

; f

p

+

X

+ g

p

)i:

Given two trees hA; fi; hB; gi it constructs a new tree whose root is labelled by A^B and whose sequels

are obtained by applying the binary \recursion variable" X in a systematic manner to the sequels of

the pair of inputs. Thus we de�ne �

D

to be Y (�X:fold � up(I X) � unfold).

The interpretation of the external choice operator +

D

is simpler in that it uses �

D

to merge the

sequels of actions but it combines the initial acceptance sets in a slightly di�erent manner. Let +

D

be

fold � up(E) � unfold where E:H

2

D

�! H

D

is the \tree manipulation function given by:

E(hA; fi; hB; gi) = hA _ B; (f

?

+

�

V al g

?

; f ! +

�

+
g

!

; f

p

+

�

+
g

p

)i:

The interpretation of the remaining operators from � are similar in nature and are given in Appendix B.

It remains to discuss the interpretation of the let construct and as explained in the previous section

two functions are required. The �rst is straightforward. Let �

D

:Val �!D be de�ned by letting �

D

(v)

be the tree

foldhff

p

gg;

p

7! (v 7! �

D

)i

?

:

However the de�nition of

�

D

is considerably more complicated and we give it in two stages.

Let H

p

denote the predomain consisting of all elements hA; fi of H

D

such that

p

2j A j. Intuitively

we wish to de�ne an operation tr which takes a function k:H

p

�! D and a \tree" d 2 D and modi�es

it by nondeterministically factoring in k(n) at each node n at which the action

p

occurs. The extension

functional

�

D

will be de�ned using a special instance of the function k. The nondeterministic factoring

is carried out by another binary choice operator, a variation on +

D

. Let �

D

denote fold � up(S) � fold

where S:H

2

D

�! H

D

is a minor variation of E above, given by

S(hA; fi; hB; gi) = hA

p

B; (f

?

+

�

V al g

?

; f ! +

�

+
g

!

; f

p

+

�

+
g

p

)i:

It will also be convenient to have a notation for conditionally applying a binary operator. If 4 is any

in�x binary operator and p is a predicate we use

e4

p

e

0

to denote the expression e4 e

0

if p evaluates to true and e if it evaluates to false.

For each k: [H

p

�! D] the function tr k is de�ned as the least �xed point of a functional, Y �X:E

where again �X:E is a functional of type [ [D �! D] �! [D �! D] ] and has the structure �X:fold �

up(TR k X) � unfold where TR is a \tree manipulation" function of type

TR: [H

p

�!D] �! [D �!D] �! [H

D

�! H

D

]

de�ned by

TR k XhA; fi = hA; X � fi

?

�

p

2jAj

k(hA; fi):

Thus when applied to a tree TR applies the recursion variable X to the sequels and if the acceptance

set at the root contains an occurrence of

p

it factors in an application of the function k. We leave the

reader to check:
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Lemma 7.2 TR is continuous. 2

Therefore for any function k from [H

p

�!D]

�X:TR k X : [[D �! D] �! [H

D

�! H

D

]]

and

fold � (�X:up(TR k X)) � unfold: [[D �! D] �! [D �! D]]:

So we can de�ne tr k to be Y (�X:TR k X).

We now look at the application of tr to a particular class of functions generated by those in

(Val �!D). For such an f let f

v

:H

p

�!D be de�ned by

f

v

hA; gi =

X

� f g

p

(v) j

D

f(v) j v 2 domain(g

p

) g:

where here

P

� represents the repeated application of �

D

to a �nite non-empty set of elements of D.

De�nition 7.3 For any f :Val �! D let f

�

D

denote tr f

v

. 2

We have now shown how to interpret each of the constructs fromPExp in the domainD and therefore

we have an Interpretation for PExp. Unfortunately it is not a Natural Interpretation as the requirement

�

�

D

D

= id

D

is not satis�ed. The problem occurs because there are many compact elements in the domainD which

are not denotable under this interpretation by expressions in PExp. A typical example is any d element

of the form hfn!;

p

g; fi

?

where f(

p

) = �

D

. One can check that �

�

D

D

d has the form fold hA; gi

?

where

f

p

g 2 A and therefore this must be di�erent from d. However we can use a domain retract to cut down

the model D so as to get a Natural Interpretation.

We have seen in Section 4 that the operational behaviour of expressions is constrained in that the

properties of Value Production Systems are satis�ed. To de�ne a Natural Interpretation we need to

isolate a subdomain of D which satis�es the semantic counterparts to these properties. To do so we use

the function �

�

D

D

.

Proposition 7.4

1. �

�

D

D

(d�

D

d

0

) = �

�

D

D

(d)�

D

�

�

D

D

(d

0

)

2. �

�

D

D

is a domain retract. 2

Proof: The proofs are straightforward but tedious and outlines may be found in [4]. 2

Let E denote the kernel of �

�

D

D

which we know from Section 2 is a domain. This can be viewed as

an Interpretation by using the functions already de�ned over D. Speci�cally

1. for each symbol f 2 � let f

E

be de�ned as �

�

D

D

� (f

D

)d

E

,

2. the input function is de�ned as before, in

E

n f = fold hffn?gg; n? 7! fi

?

3. �

E

= �

D

d

E

4. for f 2 [Val �! E] let f

�

E

= (f

�

D

)d

E

.

With these de�nitions we have:

Proposition 7.5 E is a Natural Interpretation. 2

The main result of the paper is:

Theorem 7.6 The Natural Interpretation based on E is fully-abstract, i.e. for all expressions e; e

0

2

CPExp; E[[e]] � E[[e

0

]] if and only if e

<

�

e

0

.

The next section of the paper is devoted entirely to the proof of this theorem.
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8 Relating Behavioural and Denotational Interpretations

In this section we outline the proof of full-abstraction:

For all closed expressions e

1

; e

2

; e

1

<

�

e

2

if and only if E[[e

1

]] � E[[e

2

]].

We have already shown in Section 5 how

<

�

can be represented by the alternative characterisation �.

In fact we can reformulate the ordering on elements of D in much the same way. This new ordering,

also denoted by �, is internally fully-abstract with respect to � on D.

The de�nition of� is a slight modi�cation of the de�nition given in [9] for V PL. For each � 2 Act

V al

we de�ne an in�x partial function

�

�! by

T

�

�! T

0

if i) � is a!v; unfold(T ) = hA; fi and T

0

is f(c!)(v)

or ii) � is a?v; unfold(T ) = hA; fi and T

0

is f(c?)(v)

or iii) � is

p

v; unfold(T ) = hA; fi and T

0

is f(

p

)(v)

Secondly we can de�ne A(T; s) the acceptance sets of T after s as

1. A(T; ") =

�

A if unfold(T ) = hA; fi

; otherwise.

2. A(T; �s) =

�

A(T

0

; s) if T

�

�! T

0

; otherwise

Finally let + s for s 2 S be the least relation on trees satisfying the following rules.

1. T + " if T 6= ?

2. T + �s if T + " and T

�

�! T

0

implies T

0

+ s.

With these constructs we are ready to de�ne the alternative characterisation.

De�nition 8.1 For T; U , let T � U if for every s 2 S; T + s implies

1. U + s

2. A(U; s) � A(T; s).

2

Theorem 8.2 (Internal Full-Abstraction) In D; T � U if and only if T � U .

Proof: We refer the reader to the proof of Theorem 3:5:3 in [11], page 107, which is virtually identical.

2

Recall that E is sub-domain of D and therefore it is su�cient to show that for closed terms

e

1

� e

2

if and only if E[[e

1

]] � E[[e

2

]]: (2)

To establish this it is su�cient to prove the two statements:

e + s if and only if [[e]] + s: (3)

and

e + s implies A([[e]]; s) = c(A(e; s)): (4)

The proof of these two require the use of head normal forms, or hnfs, and it is here that the proof diverges

from that of the corresponding result in [9]; here we use head normal forms which are considerably more
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complex. So we �rst de�ne the required notion of hnf , show that convergent terms can always be

transformed in one, and then show how they can be used in the proof of the two statements above.

Because of the complexity of hnfs we need to introduce some notation before they can be de�ned. For

the remainder of this section we use Pre to denote the set of pre�xes, i.e. objects of the form c!d or

c?�x, where d is a data expression, and we use �; �; ; : : : to act as typical pre�xes. A sum form is

then any closed expression of the form

X

I

f�

i

:e

i

g

for some �nite subset I of pre�xes; if I is the empty set then this sum denotes �.

De�nition 8.3 [Base Standard Forms] Suppose A is a non-empty set of subsets of cN and that for

each a 2j A j there is an expression e

a

satisfying

1. If a = c? then e

a

has the form c?�x:e

0

2. If a = c! then e

a

has the form

P

f c!v:f(v) j v 2 dom(f) g where f 2 (V al *

f

CPExp).

Then

X

� f e

A

j A 2 Ag

is a basic standard form if each e

A

is the sum form

P

f e

a

j a 2 A g: Here

P

� denotes the application of

the operator � to a non-empty set of expressions. 2

These more or less correspond to the head normal forms used in [9] but here we have, in addition, to

take into account the ability of expressions to produce values.

De�nition 8.4 [Value Standard Forms] If V is a �nite non-empty set of values and for each v 2 V; e

v

is a basic standard form then

X

� f e

v

j v 2 V g

is a value standard form. 2

These value standard forms are used as the \

p

-derivatives" in the following de�nition of head normal

forms, which is a generalisation of De�nition 8.3.

De�nition 8.5 [Head Normal Forms] Suppose A is a non-empty set of subsets of cN [ f

p

g and that

for each a 2j A j there is an expression e

a

satisfying

1. if a = c? then e

a

has the form c?�x:e

0

2. if a = c! then e

a

has the form

P

f c!v:f(v) j v 2 dom(f) g where f 2 (V al *

f

CPExp).

3. if a =

p

then e

a

is a value standard form.

Then

X

� f e

A

j A 2 Ag

is a hnf if each e

A

is a sum form

P

f e

a

j a 2 A g. 2

If e is a hnf then its structure is determined by a non-empty set of subsets A(e) and with each a in

j A(e) j we can associate the subterm e

a

as given in the above de�nition. Also if

p

2j A(e) j then e

p

has the form

X

� f e

v

j v 2 V g

for some non-empty set of values V , where each e

v

is a basic standard form. Here we use V (e) to denote

this set of values V so that for each v 2 V (e) we have an associated basic standard form e

v

. Notice

that the parallel operator j may appear in head normal forms. Indeed their presence is essential; an

expression such as c?�x:e j v has no semantically equivalent term not involving j.

The proof system we use for transforming expressions is given in Figure 4 and the associated equations

and axiom schemas are outlined in Figures 5, 6, 7. It should be pointed out that these do not necessarily

represent the most useful equations for manipulating expressions; they are simply the most convenient

for the present purpose. The proof system is designed to produce judgements of the form e = e

0

or e v e

0
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e v e

e v e

0

; e

0

v e

00

e v e

00

e

i

v e

0

i

f(e) v f(e

0

)

for each f 2 �

0

c!v:e = c!v:e

c?x:e = c?y:(e[y=x])

y =2 fv(e)

e v e

0

e� v e

0

�

for every equation e v e

0

let rec P in e = e[let rec P in e=x]

[[b]] = true

b 7! e; e

0

= e

[[b]] = false

b 7! e; e

0

= e

0

Figure 4: Proof System.

where both e and e

0

are closed expressions and we use the notation e =

A

e

0

; e v

A

e

0

respectively when

such judgements can be made. The equations in Figure 5 are all very standard from [8] while those

in Figure 6 are additions required for this language. Also, as might be expected a quite complicated

interleaving law is required. In fact there are two, the �rst coinciding with that from [9], while the

second is required because of the presence of values in head normal forms.

Most of the equations in the proof system are valid forD also. However the second Let equation and

the last two Parallel equations in Figure 6 are only true in E because D does not model the preemptive

power of the

p

action in the presence of +.

Lemma 8.6 If e; e

0

are hnfs then each of the expressions e � e

0

; e + e

0

and local n in e end can be

transformed in the proof system to hnfs.

Proof: [Outline] The proof can be divided into four parts.

1. Using standard techniques from [8, 9], one can show that if e; e

0

are sum forms then the expressions

e � e

0

; e + e

0

and local n in e end can all be transformed into hnfs.

2. A value-sum form is any term of the form e j v where e is a sum form. Using the equations one

can also show that if e; e

0

are value sum forms then e � e

0

; e + e

0

and local n in e end can be

transformed into hnfs.

3. Using the �rst two parts one can now show that if e; e

0

are hnfs then e � e

0

can be transformed

into a hnfs.

4. The result now follows for the remaining operators since every hnf can be transformed into a term

of the form

P

� f e

i

j i 2 I g for some non-empty set I, where each e

i

is either a sum form or a

value-sum form.

2

Proposition 8.7 For every closed term e, if e + then there is a hnf hnf(e) such that e =

A

hnf(e).

Proof: [Outline] The proof follows the structure of the corresponding result in [9], Proposition 4.3. In

particular we need to use induction over a complicated well-ordering on expressions, in order to be able

to apply induction after an application of the interleaving laws and the �nal let law in Figure 6. 2
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Testing equations:

X � (Y � Z) = (X � Y )� Z (�1)

X � Y = Y �X (�2)

X �X = X (�3)

X � Y v X (S)

X + (Y + Z) = (X + Y ) + Z (+1)

X + Y = Y +X (+2)

X +X = X (+3)

X + � = X (+4)

local n in X + Y end = local n in X end+ local n in Y end (+5)

local n in �:X end =

�

�:local n in X end; if n not in �

�; otherwise

X � Y v X + Y (+ � 1)

�:X + �:Y = �:(X � Y ) where � 2 Pre (+ � 2)

c?�x:X + c?�x:Y = c?�x:X � c?�x:Y (+ � 3)

c!d:X + c!d

0

:Y = c!d:X � c!d

0

:Y (+ � 4)

X � (Y + Z) = (X � Y ) + (X � Z) (+ � 6)

Structural equations:

local n in X � Y end = local n in X end� local n in Y end

let x = X � Y in Z = let x = X in Z � let x = Y in Z

(X � Y ) j Z = (X j Z) � (Y j Z)

X j (Y � Z) = (X j Z) � (Y j Z)

X + (Y � Z) = (X + Y ) � (X + Z)

Figure 5: Standard Equations

Many of the operators on E behave the same as their counterparts on D when restricted to elements

of E. For example if e

1

; e

2

are elements of E then e

1

�

D

e

2

= e

1

�

E

e

2

. This is a simple consequence

of the de�nition of �

E

and Proposition 7.4. The same is true for the input and output operators which

have the same de�nition for both D and E. This property is not true for +

E

or j

E

because of the

preemptive nature of value production in these contexts. However we do have the following results:

E[[

X

f e

a

j a 2 A g]] =

X

D

fE[[e

a

]] j a 2 A g where

p

=2 A

and

E[[e j v]] = E[[e]] j

D

E[[v]]:

It is also not di�cult to show:

Proposition 8.8 Suppose e is a term in sum-form, and e

p

is a term in value-standard form, then

E[[e+ e

p

]] = (E[[e]] +

D

E[[e

p

]])�

D

E[[e

p

]]:

2

We are now ready to prove the two required results above, (3) and (4). As a �rst step towards the

proof of the �rst we have:

Lemma 8.9 For every closed expression e, e + if and only if E[[e]] +.
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Let equations:

Suppose X =

P

i2I

�

i

:X

i

and x 62 fv(�

i

),

let x = X in Y =

P

i2I

�

i

:(let x = X

i

in Y )

Suppose X =

P

i2I

�

i

:X

i

; x 62 fv(�

i

) and Y =

P

j2J

�

j

:Y

j

for �

i

; �

j

2 Pre.

let x = X + (Y j v) in Z = (

P

i2I

�

i

:(let x = X

i

in Z) + (Y j Z[v=x]))� (Y j Z[v=x])

Parallel equations:

spawn(X) = X j null

X j (Y j Z) = (X j Y ) j Z

v j X = X

Suppose X =

P

i2I

�

i

:X

i

; Y =

P

j2J

�

j

:Y

j

and Z =

P

k2K



k

:Z

k

for �

i

; �

j

; 

k

2 Pre, then

(X + (Y j v)) j Z = ((X + Y )� Y ) j Z

(X j v) + (Y j w) = (X j v) � (Y j w)

Figure 6: New Equations

Proof: First suppose e +. Then e has a hnf hnf(e) and since E is a model of the proof system we

have E[[hsf(e)]] = E[[e]] and therefore it su�ces to show E[[hnf(e)]] 6= ?. By the structure of the hnf 's

and the previous Proposition and remarks we can "push" E[[ ]] through hnf(e) so that at the top-level

at least, the operators are those on D. That E[[hsf(e)]] 6= ? is now obvious from the de�nitions of

+

D

; �

D

; j

D

, etc..

Conversely suppose that E[[e]] +. We only outline the proof that e + as it is very similar to the

corresponding proof, in Lemma 4.5 of [9]. If E[[e]] + then there is a �nite approximation e

0

of e such that

E[[e

0

]] +. Recall from [9] that a �nite approximation of an expression e can be obtained by unwinding

instances of recursion and substituting 
 for any sub-term. Consequently it is straightforward to show

that e

0

� e. So e + will follow if we can show e

0

+.

In fact we can show that for any �nite expression e

0

, i.e. any expression not involving the recursion

construct, that D[[e

0

]] + implies e

0

+. (Since �

�

D

D

is strict it will also follow that E[[e

0

]] + implies e

0

+.)

We add to the proof system in Figure 4 the equations


 v X

X + 
 v 


local n in 
 end = 


(X + 
) j Y = 


X j (Y +
) = 


let x = 
 in Y = 


let x = X in 
 = 


and let us write e

1

=

A


e

2

if e

1

= e

2

can be derived in this extended system. Then one can show,

by structural induction, that if e

0

is any �nite expression either e

0

=

A



 or there is an expression in

head normal form hnf(e

0

) such that e

0

=

A


hnf(e

0

). Now if e

0

+ the former can not be true since all

the equations are satis�ed by �. It therefore follows that D[[e

0

]] 6= ? since all hnfs are interpreted as

non-bottom elements in D. 2
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Suppose X =

P

i2I

�

i

:X

i

; Y =

P

j2J

�

j

:Y

j

and Z =

P

k2K



k

:Z

k

for �

i

; �

j

; 

k

2 Pre.

X j Y =

�

ext(X;Y ) if comms(X;Y ) = ;

(ext(X;Y ) + int(X;Y )) � int(X;Y ) otherwise

X j (Z + (Y j w)) = (ext

v

(X;Z; Y j w) + int

v

(X;Z; Y j w)) � int

v

(X;Z; Y j w)

where

ext(X;Y ) =

P

f a

i

:(X

i

j Y ) j i 2 I g+

P

f b

j

:(X j Y

j

) j j 2 J g

int(X;Y ) =

P

� fX

i

[v=x] j Y

j

j a

i

= c?x; b

j

= c!v g

�

P

� fX

i

j Y

j

[v=x] j a

i

= c!v; b

j

= c?x g

ext

v

(X;Z; Y j w) =

P

f a

i

:(X

i

j (Z + (Y j w))) j i 2 I g

+

P

f b

j

:(X j (Y

j

j w)) j j 2 J g

+

P

f c

k

:(X j Z

k

) j k 2 K g

int

v

(X;Z; Y j w) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(X j Y ) j w if comms(X;Y )[

comms(X;Z) = ;

(X j Y ) j w otherwise

�

P

� fX

i

[v=x] j (Y

j

j w) j a

i

= c?x; b

j

= c!v g

�

P

� fX

i

j (Y

j

[v=x] j w) j a

i

= c!v; b

j

= c?x g

�

P

� fX

i

[v=x] j Z

k

j a

i

= c?x; c

k

= c!v g

�

P

� fX

i

j Z

k

[v=x] j a

i

= c!v; c

k

= c?x g

Figure 7: Interleaving Laws

An important consequence of the de�nition of head-normal forms in [11] is that they form an exact

syntactic representation of elements of the model, at least at the top-level. A Corollary of this is that

hnf(e)

a

�! q if and only if [[hnf(e)]]

a

�! [[q]]:

The head-normal forms used in our setting do not enjoy this property, but but we do have a weaker

correspondence:

Lemma 8.10 For every a 2 Act

V al

and head normal form e

1. If e

�

�!

�

a

�! if and only if E[[e]]

a

�!;

2. E[[e]]

a

�! T implies T = E[[

P

� f e

00

j e

�

�!

�

a

�! e

00

g]].

Proof: [Outline] The proof of both properties follows by examining the structure of D[[e]] when e is a

hnf and then using Proposition 8.8, and the remarks preceding it, to relate this to E(e). 2

With this relationship between the syntactic and semantic behaviour of head normal forms we can

generalise Lemma 8.9:

Proposition 8.11 For all closed expressions e + s if and only if E[[e]] + s.
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Proof: The proof follows by induction on the structure of s. The base case is an immediate consequence

of Lemma 8.9 so assume s = a:s

0

for some a 2 Act

V al

.

Suppose e + s. Since the proof system is sound for E, we can assume that e is in head normal form.

To prove E(e) + s it is su�cient to prove that T + s

0

where T is such that E[[hnf(e)]]

a

�! T . By the

previous Lemma we know that T has the structure E[[

P

� f e

0

j e

�

�!

�

a

�! e

0

g]]. From e + s it follows

that e

0

+ s

0

for all e

0

such that e

�

�!

�

a

�! e

0

; this in turn implies that

P

� f e

0

j e

�

�!

�

a

�! e

0

g + s

0

and so

by induction T + s

0

.

Conversely suppose E[[e]] + s. To show that e + s it is su�cient to prove e

0

+ s

0

for any e

0

such that

e

�

�!

�

a

�! e

0

. By the previous Lemma E[[hnf(e)]]

a

�! T where T = E[[

P

� f e

0

j e

�

�!

�

a

�! e

0

g]]. Since

T + s and T � E[[e

0

]] we have E[[e

00

]] + s

0

and now e

00

+ s

0

follows by induction. 2

Proposition 8.12 For all closed expressions and for every s 2 S, e + s implies A(E[[e]]; s) = c(A(e; s)).

Proof: The proof is by induction on the structure of s. Since e + s we may assume e is in hnf and we

can use again the technique of pushing E[[ ]] through e so that the top-level is expressed in terms of

operators on D.

� Suppose s = ".

We need to show that c(A(e; ")) = A(E[[e]]; "). Note that in [11] this result is an immediate

corollary of the de�nition of head-normal forms. Here we need to take into account the e�ect of

the retract �

�

D

D

.

The interesting case here is when

p

2j A(e) j. Suppose e =

P

� f e

A

j A 2 Ag; e

p

=

P

� e

v

j v

where each e

v

is of the form

P

� f e

B

j B 2 B

v

g and suppose A = fA

1

; � � � ; A

n

g. Let Q be de�ned

by

Q =

[

fB

v

_ f

p

gg:

Rearranging A so that

p

=2 A

i

for 1 � i � j and

p

2 A

i

for j < i � n and setting

R = A

1

[ � � � [A

j

[ ((A

j+1

n f

p

g _Q) [Q) [ � � � [ ((A

n

n f

p

g _Q) [Q)

it is easy to show that A(E[[e]]; s) = c(R), from the de�nition of �

D

;+

D

; j

D

and the interaction

of c with [ and _. So to establish the base case it is now su�cient to show that R � c(A(e; s))

and A(e; s) � c(R).

To establish R � c(A(e; s)) we need to show that whenever X 2 R then there exists e

0

such that

e

"

=) e

0

and S(e

0

) = X; as an example consider X = A

k

n f

p

g [ B [ f

p

g where B [ f

p

g 2 Q

and j < k � n. From the structure of e we know that e

"

=) e

A

k

+ e

B

j v and S(e

A

k

+ e

B

j v) =

A

k

n f

p

g [B [ f

p

g.

To show the converse, that A(e; s) � c(R), �rst it is easy to check that S(e) � c(R) and therefore

it is su�cient to prove that S(e

0

) 2 R for any e

0

such that e

"

=) e

0

�

6�!. This follows easily from

the structure of the two possibilities for e

0

;

P

f e

a

j a 2 A g with

p

=2 A or

P

f e

b

j b 2 B g j v.

This completes the base case.

� Suppose s = a:s

0

. We argue as follows

c(A(e; s)) = c(

[

fA(e

0

; s

0

) j e

�

�!

�

a

�! e

0

g)

= c(A(

X

� f e

0

j e

�

�!

�

a

�! e

0

g; s

0

)))

= A(T; s

0

) by induction and Lemma 8.10

where E[[e]]

a

�! T

= A(E[[e]]; a:s

0

)

= A(E[[e]]; s):
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2

By composing all of the results in this section we obtain a proof of Theorem 7.6:

Theorem 8.13 The model E is fully-abstract with respect to the testing preorder

<

�

, i.e. for all closed

expressions e

<

�

e

0

if and only if E[[e]] � E[[e

0

]]. 2

9 Related Work

There has already been a number of attempts at giving an operational semantics for CML , or rather

core subsets of CML but as far as we are aware very few of these have been used to develop a semantic

theory or denotational model for the language. For example in [18, 2] the core language �

cv

is given

a two-level operational semantics which results in a reduction relation between multisets of language

expressions. Although this gives a formal semantics which may be referenced by implementors it is

insu�cient as the basis of a behavioural theory. A similar approach is taken in [7] where a hierarchy

of languages is de�ned and each is given a bisimulation semantics. Starting with a CCS like language

in which the parallel operator has been replaced with a fork operator for process creation, restriction,

guarded choice and �nally private channel names are added. This last re�nement produces a language

which is more reminiscent of the � � calculus and in particular it does not include any notion of the

production of values.

More recently in [3] an operational semantics is given to a language called FPI which has many of the

programming constructs of CML. However it lacks any spawn or fork construct and indeed later in the

same thesis the author notes that in order to accommodate such an operator the operational semantics

would have to be modi�ed considerably. Furthermore the operational semantics of value production

within the context of the parallel operator in not consistent with that of CML in [18]. In the same

thesis a denotational semantics, based on Acceptance Trees, is given for a language very similar to �

cv

.

However this is not in the style of a semantic function

D:�

cv

�!D

where D is a semantic domain; instead there is an extra parameter which is de�ned in terms of a notion

of \dynamic types". There is also no result corresponding to the previous Theorem, the full-abstraction

result, as there is no behavioural semantics given for �

cv

.

There has also been some related work on higher-order processes languages such as CHOCS , [20]

and FACILE , [5]. Again here the main theoretical emphasis has been on the development of operational

semantics in terms of labelled transition systems and to a certain extent the investigation of appropriate

versions of bisimulation equivalence for these languages. Another strand of research has been on the

development of type systems for these kinds of languages, [16], and we will certainly need to build on

such work if we are to extend our results to languages which include more of the features of CML.

A Operational Semantics for Contexts

In this appendix we develop the operational semantics for contexts which is necessary for the proof of

Proposition 5.8.

We can de�ne contexts using the following grammar:

C ::= e; e 2 CPExp j [ ] j let x = C in C j b 7! C;C

0

j

spawn(C) j n?�x:C j n!d:C j C + C j

C � C j C j C j local n in C end

We say C is a context, often written as C[ ], if it can be generated from the this grammar and

in addition it contains at most one occurrence of [ ]. Throughout the remainder of this appendix we

assume that all e; e

0

; : : : are closed expressions from PExp and all contexts are closed, i.e contain no free

occurrences of variables.
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We can give an operational semantics to contexts using the notion of action transducer as de�ned

in [12]. Transitions are of the form C

�

�!

�

C

0

, where � 2 Act

V al

�

and � 2 Act

�

, and intuitively this

can be interpreted as: whenever e

�

�! e

0

then C[e]

�

�! C

0

[e

0

]. However sometimes in a move of an

expression of the form C[e] there are no contributions from e and therefore in addition we have moves

of the form C

�

�!

�

C

0

to indicate that C[e]

�

�! C[e] for any expression e.

The rules de�ning these transitions are given in Figure 1, where � ranges over Act

�

; � over Act

V al

�

and  over Act

V al

�

[ f�g; for convenience some obvious symmetric rules for + have been omitted.

We �rst state some elementary properties of these transitions. Let C[ ] #

[ ]

denote that [ ] occurs

beneath some pre�x in C and C[ ] "

[ ]

the converse.

Lemma A.1

1. If C[ ]

�

�!

�

C

0

[ ] then � = �; C

0

[ ] is C[ ] and C[ ] "

[ ]

2. If C[ ]

�

�!

�

0

C

0

[ ] then C[ ] "

[ ]

and C

0

[ ] "

[ ]

.

3. C "

[ ]

and e

�

�! e

0

implies C[e]

�

�! C[e

0

]

Proof: The �rst two statements are proved by rule induction while the last is by induction on the

structure of C[ ]. 2

We now show that these transitions are consistent with the operational semantics for expressions

given in Section 3. This consists in the ability to decompose a move from an expression of the form C[e]

into a transition from the context C[ ] and an associated move from e, and a corresponding composition

result, composing a transition from C[ ] and an appropriate move from the expression e into a move

from the expression C[e].

Lemma A.2 (Move Composition) For every e 2 CPExp

1. C[ ]

�

�!

�

C

0

[ ] implies C[e]

�

�! C

0

[e].

2. C[ ]

�

�!

�

0

C

0

[ ] and e

�

0

�! e

0

implies C[e]

�

�! C

0

[e

0

]:

Proof: By induction on the proof of the transitions C[ ]

�

�!

�

C

0

[ ] and C[ ]

�

�!

�

0

C

0

[ ] respectively. 2

Lemma A.3 (Move Decomposition) If C[e]

�

�! e

00

then e

00

has the form C

0

[e

0

] for some context

C[ ] and expression e

0

such that either

1. C[ ]

�

�!

�

C

0

[ ] and e is e

0

, or

2. C[ ]

�

�!

�

0

C

0

[ ] and e

�

0

�! e

0

.

Proof: By structural induction on C[ ]. 2

These two results about single transitions are now generalised to composition and decomposition

results about sequences of transitions. Their exact formulation are complicated by the fact that in the

proof of Proposition 5.8 we will only be able to match up weak sequences of derivations.
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[ ]

�

�!

�

[ ]

e

�

�! e

0

e

�

�!

�

e

0

C[ ]

p

v

�!



C

0

[ ]

e j C[ ]

p

v

�!



e j C

0

[ ]

C[ ]

p

v

�!

�

C

0

[ ]

let x = C[ ] in e

�

�!

�

C

0

[ ] j e

C[ ]

�

�!



C

0

[ ]

let x = C[ ] in e

�

�!



let x = C

0

[ ] in e

C[ ]

�

�!

�

C

0

[ ]

spawn(C[ ])

�

�!

�

spawn(C

0

[ ])

spawn(C[ ])

�

�!

�

C[ ] j null

e

p

v

�! e

0

e +C[ ]

p

v

�!

�

e

0

C[ ]

p

v

�!

�

C

0

[ ]

e +C[ ]

p

v

�!

C

0

[ ]

C[ ]

�

�!

�

C

0

[ ]

C[ ] + e

�

�!

�

C

0

[ ] + e

e

�

�! e

0

C[ ] + e

�

�!

�

C[ ] + e

0

C[ ]� e

�

�!

�

C[ ] C[ ]� e

�

�!

�

e

n?�x:C[ ]

n?v

�!

�

C[ ][v=x] n!v:C[ ]

n!v

�!

�

C[ ]

C[ ]

�

�!



C

0

[ ]; n not in �

local n in C[ ] end

�

�!



local n in C

0

[ ] end

C[ ]

n?v

�!

�

C

0

[ ]; e

n!v

�! e

0

C[ ] j e

�

�!

�

C

0

[ ] j e

0

C[ ]

n!v

�!

�

C

0

[ ]; e

n?v

�! e

0

C[ ] j e

�

�!

�

C

0

[ ] j e

0

Table 1: Operational Rules for Contexts

Proposition A.4 (Derivation Composition) Suppose C

0

[ ]; C

1

[ ]; � � � ; C

k

[ ] is a sequence of contexts

such that either C

i

[ ]

�

i

�!



i

C

i+1

[ ] or C

i

[ ] is C

i+1

[ ]. Furthermore suppose e

0

; e

1

; � � � ; e

k

is a sequence of

closed terms such that
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1. C

i+1

[ ] is C

i

[ ] implies C

i

[ ] "

[ ]

and e

i

�

�! e

i+1

.

2. C

i

[ ]

�

i

�!

�

C

i+1

[ ] implies e

i+1

is e

i

.

3. C

i

[ ]

�

i

�!

�

0

i

6=�

C

i+1

[ ] implies e

i

�

0

i

�! e

i+1

.

4. C

i

[ ]

�

i

�!

�

C

i+1

[ ] implies e

i

�

�! e

i+1

or e

i+1

= e

i

.

Then

C

0

[e

0

]

�

0

�! C

1

[e

1

] � � �

�

k�1

�! C

k

[e

k

]

is a derivation, where some

�

i

�! may actually be the identity relation.

Proof: The proof is by induction on k. If k = 0 then C

0

[e

0

] is trivially a derivation. So suppose

k = i+ 1, by induction

C

0

[e

0

]

�

0

�! C

1

[e

1

] � � �

�

k�1

�! C

i

[e

i

]

is a derivation and we examine the transition C

i

[ ]

�

i

�!



i

C

i+1

[ ]. There are four cases:

1. Suppose C

i+1

[ ] is C

i

[ ]. In this case by premise 1 C

i

"

[ ]

and e

i

�

�! e

i+1

. By Proposition A.1.3

C

i

[e

i

]

�

�! C

i

[e

i+1

] which completes the derivation.

2. Suppose C

i

[ ]

�

i

�!

�

. By premise 2, e

i+1

is e

i

. By LemmaA.2.1C

i

[e

i

]

�

i

�! C

i+1

[e

i

] which completes

the derivation.

3. Suppose C

i

[ ]

�

i

�!

�

0

i

6=�

C

i+1

[ ]. By premise 3, e

i

�

i

�! e

i+1

and by Lemma A.2.2 C

i

[e

i

]

�

i

�! C

i+1

[e

i+1

]

and the derivation is completed.

4. Finally suppose C

i

[ ]

�

i

�!

�

C

i+1

[ ] in which case by premise 4 either e

i

�

�! e

i+1

and by Lemma

A.2.2 C

i

[e

i

]

�

i

�! C

i+1

[e

i+1

], or else e

i

is e

i+1

. By Proposition A.1.1 C

i

[ ] is C

i+1

[ ] in which case

the transition

�

i

�! is the identity and in both cases we have extended the derivation.

2

Proposition A.5 (Derivation Decomposition) Suppose C

0

[e

0

]

�

0

�! e

0

1

�

1

�! � � �

�

k�1

�! C

k

[e

k

] is a

derivation. Then for all 0 � i � k � 1 there exists a context C

i

[ ], an expression e

i

and a 

i

such

that e

0

i

has the form C[e

i

]; C

i

[ ]

�

i

�!



i

C

i+1

[ ] and

1. 

i

= � and e

i+1

is e

i

, or

2. or 

i

6= � and e

i



i

�! e

i+1

.

Proof: By induction on k using Lemma A.2. 2

We are now ready to present the main result of the Appendix:
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Theorem A.6 Suppose e� e

0

and C[e] must w, where w does not occur in e; e

0

. Then C[e

0

] must w.

Proof: Consider an arbitrary computation from C[e

0

]

C[e

0

] � C

0

[e

0

0

]

�

�! e

00

1

�

�! � � �

�

�! e

00

k

�

�! : : : : : : (5)

First let us assume that this is a �nite computation, i.e. there exists some n such that e

00

n

�

6�!. We need

to show that there exists 0 � i � n such that e

00

i

p

w

�!. The basic idea of the proof is to decompose

this computation into a contribution from e

0

and a contribution from the context C[ ], use the fact that

e� e

0

to �nd a similar contribution from e and recombine it with the contribution from C[ ] to obtain

a computation from C[e] which uses exactly the same contexts. This will ensure that e

00

i

[ ]

p

w

�! for some

i.

Applying the Derivation Decomposition result, Proposition A.5, to (5) we get sequences C[ ]; e

0

i

,

for 0 � i � n � 1, such that e

00

i

has the form C

i

[e

0

i

]; C

i

[ ]

�

�!



i

C

i+1

[ ], with corresponding properties

for e

0

i

. We will show that there is a maximal computation from C[e] which uses only the contexts C[ ],

thereby ensuring that C

i

[ ]

p

w

�!

�

for some i. There are two cases, according to whether or not the entire

computation is independent of e

0

.

1. 

i

= � for all 0 � i � n � 1. This includes the case when n = 0, i.e. C

0

[e

0

0

]

�

6�!. By repeated

application of the Move Composition result Lemma A.2.1, we get

C[e] � C

0

[e]

�

�! � � �

�

�! C

n

[e]

which also implies that e

0

"

n

is e

0

. However this derivation may not be maximal but we show that

it can always be extended to a maximal computation using exactly the same contexts.

Here we know that each e

0

i

coincides with e

0

and therefore since C

n

[e

0

]

�

6�! we can assume that

C

n

[ ] "

[ ]

; e

0

�

6�! and C

n

[ ]

�

�!

�

for no � 2 S(e

0

). There are two sub-cases:

(a) e * so that e

�

�! e

1

�

�! e

2

� � �. By Proposition A.1.3 we have

C

n

[e]

�

�! C

n

[e

1

]

�

�! � � �

which is an in�nite computation of the required form; i.e. it only uses the contexts C

i

[ ] and

since C[e] must w there exists 0 � i � n� 1 such that C

i

[e]

p

w

�!.

(b) e +. Since e

0

�

6�! and e � e

0

we know that there exists g such that e

"

=) g

�

6�! and

S(g) � S(e). Again by Proposition A.1.3 we have

C

n

[e]

�

�! � � �

�

�! C

n

[e

0

]

�

6�!

We therefore, again, have a maximal computation of the required form and the result follows

because C[e] must w.

2. There exists i such that 

i

6= �. Let t denote the sequence of elements in 

0

� � �

n�1

which are

di�erent from � and let s the result of removing all � actions from t. There are two possibilities

(a) e * s in which case

e = e

0

�

0

�! e

1

�

1

�! � � �e

m�1

�

m�1

�! e

m

*

where �

0

� � ��

m�1

is a pre�x of t. There are two further sub-cases:

i. m = 0. Let i be the smallest index such that 

i

6= �, which is guaranteed to exist. By

repeated use of the Move Composition result, Lemma A.2.1, we get the sequence

C

0

[e]

�

�! � � �

�

�! C

i

[e]:

Since C

i

[ ]

�

�!



i

where 

i

is di�erent from � Proposition A.1.2 ensures that C

i

[ ] "

[ ]

and

by Lemma A.1.3 we get the in�nite computation
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C

i

[e]

�

�! C

i

[e

1

]

�

�! � � �

which again is of the required form.

ii. m > 0. Here without loss of generality we may assume �

m�1

6= � . We can almost build

a computation from C[e], except that some � steps in �

0

� � ��

m�1

and 

0

� � �

n�1

may

not match. We can identify two possibilities:

A. for some j; C

j

[ ]

�

�!



j

C

j+1

[ ] where 

i

6= � and e

j

�

�

�! e

0

j



j

�! e

j+1

. By Lemma A.1.2

C

j

[ ] "

[ ]

and therefore we can construct the sequence of moves

C

j

[e

j

]

�

�! � � �

�

�! C

j

[e

0

j

]

�

�! C

j+1

[e

j+1

]

using Lemma A.1.3.

B. for some j; C

j

[ ]

�

�!

�

C

j+1

[ ] but e

j

�

6�!. In this case we can let e

j+1

= e

j

, since by

Proposition A.1.1 C

j

[ ] is C

j+1

[ ].

Repeating these steps where necessary we can build a sequence of contexts D

0

[ ] � � �D

m

[ ]

where for each i; 0 � i � m there exists j; 0 � j � n � 1 such that D

i

[ ] � C

j

[ ] and

a sequence of closed terms e

0

� � � e

m

both of which satisfy the premises of Derivation

Composition result Proposition A.4. In which case we have a derivation

C[e] � D

0

[e

0

]

�

�! � � �

�

�! D

m

[e

m

]:

Since �

m�1

6= � then by LemmaA.1.2 we have that D

m

[ ] "

[ ]

which implies that, because

e

m

*, we can construct the in�nite sequence

D

m

[e

m

]

�

�! D

m

[e

1

m

]

�

�! � � �

This again means we have constructed a maximal computation of the required form from

C[e].

(b) e + s. Here we know e

0

+ s and there exists some e

n

such that e

s

=) e

n

; e

n

�

6�! and

S(e

n

) � S(e

0

n

).

Therefore we can proceed as in the previous sub-case to construct a maximal computation

of the required form:

C[e] � C

0

[e]

�

�! � � �

�

�! C

n

[e

n

].

It remains to consider the case when the initial computation, (5), is in�nite. However our context

have been de�ned to be �nite, i.e. have no occurrence of the recursion operator, and therefore one can

show that there must exist some n such that for all k > n the k

th

element of the computation has the

form C

n

[e

k

] where e

k�1

�

�! e

k

. In particular this means that e

n

*. The argument now proceeds as in

case 2 (a) above. 2

B De�nition of Operators on D

This appendix describes the remaining continuous functions op

D

over domain D which were omitted in

Section 7.

Local

De�ne local n in end

D

:D �!D by Y �X:� where

� = fold � up(R X) � unfold and

R X hA; fi = hA n fn!; n?g; X � f j

Anfn!;n?g

i

Output

De�ne out

D

: Chan� V al �D �!D by

out

D

n v d = foldhffn!gg; fv 7! dgi
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Tick

This operator is introduced only to give a more succinct de�nition of j

D

.

De�ne

p

: V al �!D �!D by

p

v d = fold(hff

p

gg; fv 7! dgi)

Parallel

De�ne j

D

:D�D �!D by Y �X:� where

� = fold(up(R X)) and

R(hA; fi; hB; gi) =

X

� fT

AB

j A 2 A; B 2 B g

where

t

AB

= if INT (A;B) = ;

then sumext(A;B)

else (sumext(A;B) + sumint(A;B)) � sumint(A;B)

and

sumext(A;B) =

X

fEXT (A;B)g

sumint(A;B) =

X

� fINT (A;B)g

INT (A;B) = fX(f(n?)(v); g(n!)(v) j n? 2 A; n! 2 B; v 2 dom(g(n!)) g [

fX(f(n!)(v); g(n?)(v) j n! 2 A; n? 2 B; v 2 dom(f(n!)) g

EXT (A;B) = f in

D

(n; �v:X(f(n?)(v); d

2

) j n? 2 A g [

f in

D

(n; �v:X(d

1

; g(c?)(v)) j n? 2 A g [

f

p

(v;X(d

1

; g(

p

)(v)) j

p

2 B; v 2 dom(g(

p

)) g [

f out

D

(n; v;X(f(n!)(v); d

2

)) j n! 2 A; v 2 dom(f(n!)) g [

f out

D

(n; v;X(d

1

; g(n!)(v))) j n! 2 B; v 2 dom(g(n!)) g
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