
Characterizing Bisimulation Congruence

in the �{Calculus

�

Xinxin Liu

School of Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QH

England

Janurary 1994

Abstract

This paper presents a new characterization of the bisimulation congru-

ence and D{bisimulation equivalences of the �{calculus. The characteriza-

tion supports a bisimulation{like proof technique which avoids explicit case

analysis by taking a dynamic point of view of actions a process may per-

form, thus providing a new way of proving bisimulation congruence. The

semantic theory of the �{calculus is presented here without the notion of

�{equivalence.

1 Motivation

The �{calculus, introduced in [MPW92a], presents a model of concurrent computa-

tion based upon the notion of naming. It can be seen as an extension of the theory

of CCS [Mil89] (and other similar process algebras) in that names (references) are

the subject of communication. This introduces mobility into process algebras. Such

an extension allows us to clearly express many fundamental programming features

which could at best be described indirectly in CCS.

The theory of CCS has been quite successful for specifying and verifying con-

current systems. The success is due to a solid equality theory based on the notion

of bisimulation [Par81, Mil89]. Bisimulation has many nice properties. It induces

a congruence relation for CCS constructions, thus supporting compositionality. It

admits a very pleasant proof technique based on �xed point induction [Par81]. The

proof technique not only provides a means of establishing the equality theory but

also opens up a direct way of program veri�cation.

�

This work has been supported by the SERC grant GR/H16537

1

Corresponding to the bisimulation equivalence in CCS, there are two main equal-

ities in the �{calculus: ground bisimulation equivalence and bisimulation congru-

ence. The notion of ground bisimulation is a natural generalization of that of

bisimulation in CCS with a pleasant proof technique. However, ground bisimula-

tion equivalence is not a congruence relation for �{calculus constructions, because

now names are subject to substitution and ground bisimulation equivalence is not

preserved under substitution of names. To obtain a congruence relation, bisimu-

lation congruence is de�ned such that two processes are related just in case they

are ground bisimilar under all substitutions. Although this immediately gives us a

congruence relation, this de�nition does not suggest any direct proof technique to

establish congruence between processes other than tedious exhaustive case analysis.

Thus, in extending CCS to the �{calculus, the nice feature of proof technique is

somewhat lost for bisimulation congruence | the more important relation between

�{calculus processes. In fact there is a whole series of distinction bisimulation

equivalences such that two processes are D{bisimilar just in case they are ground

bisimilar under all substitutions respecting D, where D is the so called distinc-

tion which tells that some pairs of names should not be substituted into the same

name. Here the general de�nition of D{bisimilarity again is quanti�ed over cer-

tain substitutions, and therefore it does not provide any proof technique to check

D{bisimilarity between processes. Notice that bisimulation congruence is a par-

ticular instance of D{bisimulation equivalence where D poses no constraint upon

substitutions, and ground bisimulation equivalence is a particular instance of D{

bisimulation equivalence where D distinguishes any pair of names.

The purpose of this paper is to introduce a proof technique for bisimulation

congruence of �{calculus. We characterize bisimulation congruence by an alterna-

tive de�nition based directly on the operational behaviour of processes. The new

de�nition is in a style of bisimulation without explicit case analysis, thus providing

a bisimulation like proof technique for congruence. Generally, we will �nd that

we cannot do this for the bisimulation congruence alone, we have to do it for D{

bisimulation equivalences all together. Thus the proof technique can be used to

establish D{bisimulation equivalences for any distinction D.

Here we roughly illustrate the idea behind our approach. Let us write � for

bisimulation congruence, �

D

for D{bisimulation equivalence, and

:

� for ground

bisimulation equivalence. A basic fact we can exploit in proving congruence of two

processes is the following:

P � Q if and only if P �

fx;yg

Q and Pfy=xg � Qfy=xg

where x; y are two di�erent given names, fx; yg is the distinction which tells that

x and y must not be substituted into the same name, and Pfy=xg means the term

obtained by substituting y for free occurrences of x in P . This fact holds for the

following reason. Because P � Q means P�

:

� Q� for any substitution �, P �

fx;yg

Q means P�

:

� Q� for those substitution � that x� 6= y�, and Pfy=xg � Qfy=xg

means Pfy=xg�

:

� Qfy=xg� for any substitution � or equivalently P�

:

� Q� for

any substitution � that x� = y�. Thus for two given names x; y, P � Q just in

case P �

fx;yg

Q and Pfy=xg � Qfy=xg. Using this fact, if we choose properly x

2

and y, we can make a step forward by reducing the problem of proving P � Q into

two subproblems of proving P �

fx;yg

Q and Pfy=xg � Qfy=xg.

As a simple example let us prove the following

xj�y + xj�x � x:�y + �y:x+ xj�x

According to the above discussion, this can be reduced to proving both of the

following

xj�y + xj�x �

fx;yg

x:�y + �y:x+ xj�x

and

xj�x+ xj�x � x:�x+ �x:x+ xj�x

Now in the �rst equivalence, the distinction fx; yg requires that any pairs of dif-

ferent free names of the processes must be distinct under substitution. So the �rst

equivalence is guaranteed by xj�y + xj�x

:

� x:�y + �y:x + xj�x. A similar argument

concludes that the second equivalence is guaranteed by xj�x+xj�x

:

� x:�x+ �x:x+xj�x,

and now we can use the proof technique for

:

�. In the general case, we may have

to further reduce the subproblems before

:

� would guarantee D{bisimilarity of two

processes.

In fact here we are doing case analysis to divide the substitution set into smaller

subsets until

:

� can solve the subproblems. This cannot be a satisfactory proof

strategy in the general case. Because on many occasions, in order to conclude

congruence between processes, it is unnecessary to do case analysis until ground

bisimulation can come into play. The most obvious example is to prove P �

P for whatever complicated P . The aim of the paper is to introduce a proof

technique which allows us to do the necessary case analysis implicitly and to keep

it to minimum. A key point is to adopt a dynamic point of view of names by

introducing conditional commitment. The approach here is inspired by the work of

symbolic bisimulation of [HL92], where the idea of dividing a value space is used

in a proof technique to establish bisimulation equivalence between value passing

processes. In fact this paper applies the main idea in [HL92] while taking advantage

of the primitive structure of the �{calculus.

As another contribution, this paper demonstrates that the core of the theory

of �{calculus can be presented without using the notion of �{equivalence. Tra-

ditionally, �{equivalence, or \syntactic identity modulo �{conversion", plays a

very important role in theories in which variables can be bound. However it is

also well known that proofs involving this notion are very tedious. A desirable

approach is that the basic semantic results are worked out independent of this no-

tion. Of couse, afterwards the semantics should be shown to behave properly in

the presence of �{equivalence. Previous works on the theory of �{calculus, like

[MPW92a, MPW92b, San93], all employ the notion of �{equivalence in the seman-

tic de�nition, thus the following development of the semantic theory su�er from

the complication caused by �{equivalence. In this paper, by using the notion of

simultanous substitution introduced in [Sto88], we show that the semantics of �{

calculus can be de�ned on the much simpler notion of syntactic identity instead

3

of �{equivalence. This gives a considerable advantage in the development of the

theory.

The next section presents the basic algegbraic theory of the �-calculus. The sec-

tion follows that presents the alternative characterization of bisimulation congru-

ence and D-bisimulation equivalence. Section 4 concludes with a short discussion

about some related work.

2 The �{Calculus

This section is a presentation of the basic algebraic theory of the �{calculus de-

veloped in [MPW92a, Mil91]. The presentation here is tailored to �t the new

characterization of bisimulation congruence to be introduced in the next section.

The reader is referred to the original papers for a general account of the motivation

and background of the �{calculus.

2.1 Agents

The �{calculus presented here is a simpli�ed version of that in [Mil91]. The prim-

itive entity in the �{calculus is a name which has no structure. We assume that

we have an in�nite set of names N , and we use x; y; : : : to range over it. The main

entity in the �{calculus is an agent, which can be a process, an abstraction, or a

concretion. We use P;Q; : : : to range over processes, F;G; : : : over abstractions,

C;D; : : : over concretions, and A;B; : : : over agents. These are built from names

by the syntax in Figure 1.

P ::= 0 j �:P j x:P j �x:P j x:F j �x:C j P + P

0

j P jP

0

j !P j �xP

F ::= (x)P j F jP j P jF j �xF

C ::= [x]P j CjP j P jC j �xC

A ::= P j F j C

Figure 1: Agents of the �{calculus

We assume that the reader has some familiarity with CCS [Mil89]; here we give

an informal description of the above constructions and the intended meaning by

comparing the process constructions here with those in CCS. Roughly speaking,

�{calculus is a generalization of value passing CCS in that names may be passed

in communication between processes. 0; �:P; x:P; �x:P; P +Q;P jQ are the construc-

tions inherited from CCS. �xP is Pnx in CCS notation, which restricts the use of

the name x to P . So, �x binds free occurrences of x in P . A concretion C consists

of two parts: a process and a name. The name part of [x]P is a free name x while

4

that of �x[x]P is a bound name x. These are the two standard or normal forms

of concretion. Later we will see that any concretion can be normalized to one of

these forms. A negative pre�x �x:C now corresponds to the output pre�x in CCS,

which outputs the name part of C at port x and then continue with the process

part of C. In its standard form, an abstraction (x)P is in fact a function which

for each name y gives a process Pfy=xg, where we use the notation Pfy=xg to

describe the syntactic substitution of y for all free occurrences of x in P . Thus free

occurrences of x in P are bound by (x). Also we will see later that any abstraction

can be normalized to such a form. Now a positive pre�x x:(y)P corresponds to

the input pre�x in CCS, which receives a name z at port x and then behaves like

Pfz=yg. Finally the replication !P means P jP j : : : which plays the role of recursion.

The pure synchronization structures x:P; �x:P are not essential. They are included

for the bene�t of writing simple expressions in examples. Moreover �:0 is often

abbreviated to � (we have already used this abbreviation in the earlier examples).

To summarize whether a name is free or bound in an expression A, we give the

following de�nition.

De�nition 2.1 We write fn(A) for the set of free names of A | names which are

neither bound by abstraction nor by restriction. fn(A) is de�ned inductively on

the structure of A:

fn(0) = ;;

fn(�:P) = fn(!P) = fn(P)

fn(P + P

0

) = fn(P) [fn(P

0

)

fn(P jA) = fn(AjP) = fn(P) [fn(A)

fn(x:A) = fn(�x:A) = fxg [fn(A)

fn([x]P) = fxg [fn(P)

fn((x)P) = fn(P)� fxg

fn(�xA) = fn(A)� fxg

Sometimes we will write fn(A;B) as an abbreviation for fn(A) [fn(B).

2.2 Simultaneous Substitution

We have informally used notation Pfy=xg for the substitution of y for all free

occurrences of y in P . It need to be clari�ed what this substitution exactly means,

as there are possiblely bound names in a term, we have to be careful to avoid

name clash when making such substitutions. In this paper we take the approach

of simultaneous substitution introduced by Alan Stoughton [Sto88] for the lambda

calculus. The de�nition below is a specialized version of that in [Sto88] in the sense

that a name may only be substituted by another name in the �{calculus while a

variable may be substituted by a term in the lambda calculus.

We assume that there is a function fresh which for a given set N of names

will produce a name fresh(N) such that fresh(N) 62 N (or we can assume some

5

proper ordering on N and take fresh(N) to be the smallest one which is not inN).

Now, substitution and its application to agents is formally given by the following

de�nition.

De�nition 2.2 A substitution is a function from N to N . We use �; � to range

over substitutions, and post�x substitutions in application. For a given substitution

�, �fy

i

=x

i

g

1�i�n

denotes the following updated substitution of �:

x�fy

i

=x

i

g

1�i�n

=

8

<

:

y

i

if x = x

i

for 1 � i � n

x� otherwise

For two substitutions �; �, we write ��� for the composition of � with �, which is the

substitution such that for x 2 N ; x� �� = (x�)� (note since we post�x substitution

in application, the order of composition is the reverse of that in normal function

composition).

For any substitution � and name x, as a convention we let �x� = x� and �� = � ,

thus extending the domain and range of substitutions to the set of all actions. We

write A� for the agent obtained by applying the substitution � to agent A. It is

de�ned on the structure of A:

0� � 0

(�:A)� � ��:A�

(P + P

0

)� � P� + P

0

�

(P jA)� � P�jA�

(AjP)� � A�jP�

(!P)� � !P�

(�xA)� � �zA�fz=xg z = fresh(fy� j y 2 fn(A)� fxgg)

((x)P)� � (z)P�fz=xg z = fresh(fy� j y 2 fn(P)� fxgg)

([x]P)� � [x�]P�

In the above, z is chosen to avoid name clash by using fresh.

As demonstrated in [Sto88], this simultaneous substitution is easier to work with

than standard single substitution. The e�ect of single substitution of x for y in P

is now obtained by applying simultaneous substitution �fx=yg on P , where � is the

identity map. So, from now on, we will write P�fx=yg for single substitution instead

of Pfx=yg. The following conventions are adopted to avoid ambiguity without

writing too many brackets. We assume that substitution (post�xed) has the highest

precedence. Pre�xed operators [x]; (x); �x; !; �: have higher precedence than in�xed

operators + and j. And j has higher precedence than +. Thus �z[z]P�fz=xgmeans

�z[z](P�fz=xg). Throughout the paper, � is used for syntactic identity. One of the

main advantages of simultaneous substitution is to enable us to work with syntactic

identity, avoiding the troublesome �{equivalence.

The following are some properties enjoyed by this approach of substitution.

6

Lemma 2.3 Let A be an agent, �; � be two substitutions. If � and � agree on

fn(A), that is 8x 2 fn(A):x� = x�, then A� � A�.

Proof Induction on the structure of A. 2

Corollary 2.4 Let A be an agent, �; � be substitutions, w; x; z be names.

If z 62 fy� j y 2 fn(A)� fxgg then A(� � �)fw=xg � A�fz=xg � �fw=zg.

Proof Because z 62 fy� j y 2 fn(A)� fxgg implies that �fz=xg � �fw=zg and

(� � �)fw=xg agree on fn(A). 2

This corollary will be repeatedly used in the rest of the paper, sometimes with

� = � or � = �.

Lemma 2.5 fn(A�) = fx� j x 2 fn(A)g.

Proof Induction on the structure of A. 2

By this lemma, it is easy to see that fn((A�)�) = fn(A� � �), because the left

hand side fy� j y 2 fn(A�)g = fy� j y 2 fx� j x 2 fn(A)gg equals to the right hand

side which is fx� � � j x 2 fn(A)g = fn(A� � �). Using this fact, we can prove the

following stronger result.

Lemma 2.6 Let A be an agent, �; � be two substitutions. Then (A�)� � A� � �.

Proof Induction on the structure of A. As an example we show

((�xP)�)� � (�xP)� � �

By de�nition 2.2,

(�xP)� � � � �zP (� � �)fz=xg

where z = fresh(fn((�xP)� � �)) (using lemma 2.5). By de�nition 2.2 and the

induction hypothesis,

((�xP)�)� � (�vP�fv=xg)� � �w(P�fv=xg)�fw=vg � �wP�fv=xg � �fw=vg

where w = fresh(fn((�vP�fv=xg)�)) = fresh(fn(((�xP)�)�)) and

v = fresh(fy� j y 2 fn(P)�fxgg). As we have argued that by Lemma 2.5 w = z.

Moreover, because v 62 fy� j y 2 fn(P)� fxgg, by Corollary 2.4

�zP�fv=xg � �fz=vg � �zP (� � �)fz=xg

hence ((�xP)�)� � (�xP)� � �. 2

7

2.3 Normalization and Pseudo{Application

We have said earlier that abstractions and concretions have certain standard (nor-

mal) forms. Now we de�ne the standard form of an abstraction and that of a

concretion. The idea to deal with standard forms �rst appeared in [Mil91].

De�nition 2.7 An abstraction is in normal form if it is of form (x)P . For any

abstraction F , its normal form norma(F) is de�ned inductively on the structure of

F as follows:

1. norma((x)P) � (x)P ,

2. if norma(F) � (y)P , then

norma(F jQ) � (z)(P�fz=ygjQ) norma(QjF) � (z)(QjP�fz=yg)

norma(�xF) �

8

<

:

(y)P x 62 fn(F)

(x)�yP �fx=y; y=xg x 2 fn(F)

where z = fresh(fn(F;Q)).

In clause 2. above, it seems that (y)�xP would be a simpler de�nition for norma(�xF)

when x 2 fn(F). Our de�nition swaps x; y in (y)�xP , which obviously does not

change the semantics of the abstraction. However, our choice here is essential for

the equivalences in the following Lemma 2.10. If we use the simpler version, those

equivalences will only hold for in the sense of �{equivalence.

De�nition 2.8 A concretion is in normal form if it is of form [x]P or �x[x]P . For

any concretion C, its normal form normc(C) is de�ned inductively on the structure

of C as follows:

1. normc([x]P) � [x]P ,

2. if normc(C) � [y]P , then

normc(CjQ) � [y](P jQ) normc(QjC) � [y](QjP)

normc(�xC) �

8

<

:

�x[x]P x = y

[y]�xP x 6= y

3. if normc(C) � �y[y]P , then

normc(CjQ) � �z[z](P�fz=ygjQ) normc(QjC) � �z[z](QjP�fz=yg)

normc(�xC) �

8

<

:

�y[y]P x 62 fn(C)

�x[x]�yP �fx=y; y=xg x 2 fn(C)

where z = fresh(fn(C;Q)).

8

Again we swap the places of x; y in clause 3. in order to be able to prove the

following Lemma 2.10.

Lemma 2.9 For any abstraction F , concretion C the following hold

fn(F) = fn(norma(F)) fn(C) = fn(normc(C))

Proof It is easy by induction on the structure of F and C. 2

Lemma 2.10 For any abstraction F , concretion C, substitution � the following

hold

norma(F�) � (norma(F))� normc(C�) � (normc(C))�

Proof Here we only prove the abstraction part. The proof is similar for the con-

cretion part. It is proved by induction on the structure of F . The basic case is

that F is in normal form, so norma(F) � F . In this case F� is also in normal

form. Thus norma(F�) � F� � (norma(F))�. For the inductive step suppose

norma(F�) � (norma(F))� for any � we will show that

norma((�xF)�) � (norma(�xF))�

norma((F jQ)�) � (norma(F jQ))�

norma((QjF)�) � (norma(QjF))�

We only show the �rst equivalence. Let norma(F) � (y)P . By the induction

hypothesis, for a given name z

norma(F�fz=xg) � (norma(F))�fz=xg � ((y)P)�fz=xg � (w)P (�fz=xg)fw=yg

where w = fresh(fn(((y)P)�fz=xg)) = fresh(fn(F�fz=xg)). So

norma((�xF)�)

� norma(�zF�fz=xg)

�

8

<

:

(w)P (�fz=xg)fw=yg z 62 fn(F�fz=xg)

(z)�wP (�fz=xg)fw=yg � �fw=z; z=wg z 2 fn(F�fz=xg)

where z = fresh(fn((�xF)�)), w = fresh(fn(F�fz=xg)). It is clear that z 2

fn(F�fz=xg) implies x 6= y, so in this case norma((�xF)�) � (z)�wP�fw=x; z=yg.

We now need to discuss the following two cases.

The �rst case is x 62 fn(F). In this case

(norma(�xF))� � ((y)P)� � (w

0

)P�fw

0

=yg

where w

0

= fresh(fn(((y)P)�)) = fresh(fn(F�)). Because x 62 fn(F) implies

fn(F�) = fn(F�fz=xg), so w = w

0

in this case. Moreover, in this case either

x 62 fn(P) or x = y, each of which guarantees P (�fz=xg)fw=yg � Pfw=yg. So

norma((�xF)�) � (norma(�xF))�.

9

The second case is x 2 fn(F). In this case x 6= y

(norma(�xF))�

� ((x)�yP �fx=y; y=xg)�

� (z

0

)(�yP �fx=y; y=xg)�fz

0

=xg

� (z

0

)�w

0

P�fx=y; y=xg � �fz

0

=x;w

0

=yg

� (z

0

)�w

0

P�fw

0

=x; z

0

=yg

where z

0

= fresh(fn(((x)�yP �fx=y; y=xg)�)) and

w

0

= fresh(fn((�yP �fx=y; y=xg)�fz

0

=xg)). Now we only need to show w =

w

0

and z = z

0

in order to establish norma((�xF)�) � (norma(�xF))� in this

case. It is not di�cult to work out that fn((x)�yP �fx=y; y=xg) = fn(�xF) and

fn(�yP �fx=y; y=xg) = fn(F), which guarntee w

0

= w and z

0

= z. 2

In normal forms, it is clear that an abstraction is ready to receive a name, and

a concretion is ready to give a name. In [Mil91], a pseudo{application operator

� is introduced to describe the result of the action of passing the name part of a

concretion to an abstraction.

De�nition 2.11 Pseudo{application � is a binary operator between abstractions

and concretions de�ned as follows,

1. If norma(F) � (x)P and normc(C) � [y]Q then

F � C is de�ned to be P�fy=xgjQ

2. If norma(F) � (x)P and normc(C) � �y[y]Q then

F � C is de�ned to be �z(P�fz=xgjQ�fz=yg)

where z = fresh(fn(F;C)).

In the above, when the name part of the concretion is a free name, this name is

passed by simply substituting all free occurrences of x in P . To pass a bound name

means to let the internal name be known by the process which receives the name,

but it should not be known by other processes. So by passing a bound name, the

scope of the restriction is extended to include the process receiving it. This is called

scope extrusion.

Lemma 2.12 The following equivalence holds for any substitution �

(F � C)� � F� � C�

10

Proof If norma(F) � (x)P and normc(C) � [y]Q, then the conclusion directly

follows from Lemma 2.10. Here we show that it is true when norma(F) � (x)P and

normc(C) � �y[y]Q. In this case we have

(F � C)�

� (�z(P�fz=xgjQ�fz=yg))�

� �w(P�fz=xgjQ�fz=yg)�fw=zg

� �w(P�fz=xg � �fw=zgjQ�fz=yg � �fw=zg)

where w = fresh(fn((�z(P�fz=xgjQ�fz=yg))�)), and z = fresh(fn(F;C)). By

Lemma 2.10,

norma(F�) � (norma(F))� � ((x)P)� � (u)P�fu=xg

normc(C�) � (normc(C))� � (�y[y]Q)� � �v[v]Q�fv=yg

where u = fresh(fn(F�)); v = fresh(fn(C�)). Thus

F� � C� � �w

0

(P�fu=xg � �fw

0

=ugjQ�fv=yg � �fw

0

=vg)

where w

0

= fresh(fn(F�;C�)). By Lemma 2.9,

fn(F�;C�) = fn(norma(F�); normc(C�)) = fn(((x)P)�; (�y[y]Q)�)

Thus w = w

0

because fn((�z(P�fz=xgjQ�fz=yg))�) = fn(((x)P)�; (�y[y]Q)�). For

the rest we only need to show that �fz=xg ��fw=zg and �fu=xg � �fw=ug agree on

free names of P , and �fz=yg � �fw=zg and �fv=yg � �fw=vg agree on free names of

Q. It is obvious that �fz=xg � �fw=zg and �fu=xg � �fw=ug agree on x, because

both give w. Suppose t is a free name of P other than x, then it must be the

case that t 2 fn((x)P) = fn(F). Thus t 6= z and t� 6= u. So in this case both

t�fz=xg � �fw=zg and t�fu=xg � �fw=ug gave t�. In the same way we can show

that �fz=yg � �fw=zg and �fv=yg � �fw=vg agree on free names of Q. 2

2.4 Commitments

To formally describe the semantics of agents, we adopt the notion of commitment

introduced in [Mil91]. A commitment�:A consists of an action � and a continuation

A which is an agent. There are three kinds of �'s: internal action � , input action x

via a name x, and output action �x via a name x. Now the behaviour of a process

can be described by its commitments. The way it is formalized is to de�ne the

relation

P � �:A

between processes and commitments. It is clear that the set of commitments of

P + Q should be the union of that of P and Q. The relation � is de�ned by the

rules shown in Figure 2. Most of the rules explain themselves. Communication

happens between two parallel components only when one wants to output a name

11

and the other wants to receive a name on the same name prot. The result of

communication may \twist" the parallel components because of the de�nition of

pseudo{application. We can avoid this by introducing another pseudo{application

operator. But this is unnecessary since in any case j will turn out to be a symmetric

operator. Restriction �x disallows any communication on the name x. In the rule

name(�) gives a singleton set fxg when � is x or �x and gives ; when � is � . Note

that in the rule, the identity substitution � seems to be unnecessary. However �

may change bound names. Thus although A and A� are �-equivalent they are not

necessaryly identical. Use of � here ensures that Rest will not spoil the following

Lemma 2.14.

Act

�:A � �:A

Sum

P � �:A

P +Q � �:A

Q � �:A

P +Q � �:A

Intl

P � �:A

P jQ � �:AjQ

Q � �:A

P jQ � �:P jA

Sync

P � x:P

0

Q � �x:Q

0

P jQ � �:P

0

jQ

0

P � �x:P

0

Q � x:Q

0

P jQ � �:P

0

jQ

0

Com

P � x:F Q � �x:C

P jQ � �:F � C

P � �x:C Q � x:F

P jQ � �:F � C

Rest

P � �:A

�xP � �:(�xA)�

x 62 name(�)

Rec

P j !P � �:A

!P � �:A

Figure 2: Inference Rules for Commitments

Lemma 2.13 If P � �:A then name(�) � fn(P) and fn(A) � fn(P).

Proof This is to show a property of the relation � which is generated by the rules

in Figure 2, thus we only need to show that all the rules preserve this property. As

12

an example here we check this for Rest. Suppose the property holds for the premiss,

that is to say

name(�) � fn(P) and fn(A) � fn(P)

we have to show that the property also holds for the conclusion, that is to say

name(�) � fn(�xP) and fn(�xA) � fn(�xP)

This immediately follows from the side condition that x 62 name(�). 2

Lemma 2.14 If P � �:A then P� � ��:A� for any substitution �.

Proof Again we only need to show that all the rules in Figure 2 preserve this

property. Here we only show this for Com and Rest.

For Com, suppose for any substitution � the following implication hold

P � x:F) P� � x�:F�

Q � �x:C) Q� � �x�:C�

we will show that for any substitution �,

P jQ � �:F � C) (P jQ)� � ��:(F �C)�

Notice that �x� = x�, �� = � , and by Lemma 2.12 (F � C)� � F� � C�. Thus

(P jQ)� � ��:(F � C)� follows immediately from rule Com.

For Rest, suppose P � �:A implies P� � ��:A� for any �, we will show that

�xP � �:(�xA)� implies (�xP)� � ��:(�xA)� for any substitution �. Take any �,

and let z = fresh(fy� j y 2 fn(�xP)g). By the induction hypothesis we have

P�fz=xg � ��fz=xg:A�fz=xg

Since Rest is applicable, it follows that x 62 name(�) and thus ��fz=xg = ��.

Because z = fresh(fn((�xP)�)), and by the previous lemma name(�) � fn(�xP).

Thus z 62 name(��), and we can apply Rest to obtain

�zP�fz=xg � ��:(�zA�fz=xg)�

By our choice of z, it is clear that (�xP)� = �zP�fz=xg. Now we only need to

show (�xA)� = (�zA�fz=xg)� in order to establish the case. The presence of �

guarantees this. 2

2.5 Ground Bisimulation and Congruence

We now go on to de�ne an equivalence relation for agents. Let us �rst look at

some expected properties of this equivalence relation. For two equivalent processes,

every commitment of a process should be matched by an equivalent commitment

of the other process. Thanks to the normalization of abstraction and concretion,

two equivalent abstractions should gave equivalent processes for any name. Two

13

equivalent concretions should have equivalent name parts as well as equivalent

process parts. Every thing is quite straightforward until we compare two concretions

with bound name parts. In this case what particular bound names are used is not

important. What is important is that each of them is always di�erent from any free

name. Thus in order for two such concretions to be equivalent, it would be su�cient

for the process parts to be equivalent whenever the bound names are replaced by

any name di�erent from the free names occuring in the concretions. We can de�ne

such an equivalence by the standard notion of bisimulation.

De�nition 2.15 A strong simulation S is a binary relation between agents such

that for all (A;B) 2 S, one of the following must hold:

1. (A;B) is a pair of processes (P;Q) such that whenever P � �:A

0

then

Q � �:B

0

for some (A

0

; B

0

) 2 S,

2. norma(A) � (x)P; norma(B) � (y)Q; and for every name z 2 N

(P�fz=xg; Q�fz=yg) 2 S

3. normc(A) � [x]P; normc(B) � [y]Q;x= y; and

(P;Q) 2 S

4. normc(A) � �x[x]P; normc(B) � �y[y]Q; and for some z 62 fn(A;B)

(P�fz=xg; Q�fz=yg) 2 S

A binary relation S is a (strong) bisimulation if both S and its inverse are strong

simulations. We say that A is strong ground bisimilar to B if there exists a bisim-

ulation S such that (A;B) 2 S. In this case we write A

:

� B.

It is routine to show that

:

� is an equivalence relation. However it is not pre-

served by substitution. As a simple counter{example

�x:0jy:0

:

� �x:y:0+ y:�x:0

but obviously

(�x:0jy:0)�fy=xg 6

:

� (�x:y:0+ y:�x:0)�fy=xg

because the process on the left has the commitment �:0 while the process on the

left has not. So

(x)(�x:0jy:0) 6

:

� (x)(�x:y:0+ y:�x:0)

Thus

:

� is not a congruence.

Lemma 2.16 If A

:

� B and w 62 fn(A;B), then A�fw=zg

:

� B�fw=zg.

Proof Similar to the proof in [MPW92a]. 2

The following de�nition gives us a congruence.

14

De�nition 2.17 Two agents A;B are strongly congruent, written A � B, if

A�

:

� B� for all substitutions �.

Theorem 2.18 � is a congruence.

Proof Along the lines in [MPW92a]. 2

Theorem 2.19 For any abstraction F and any concretion C

F � norma(F) C � normc(C)

Proof First, for any abstraction F and any concretion C

F

:

� norma(F) C

:

� normc(C)

This is because I [f(F; norma(F))g and I[f(C; normc(C))g are two bisimulations,

where I = f(A;A) jA is an agentg. Now it follows that for any substitution �

F�

:

� norma(F�) C�

:

� normc(C�)

By Lemma 2.10, norma(F�) � (norma(F))� and normc(C�) � (normc(C))�. Thus

for any substitution �

F�

:

� (norma(F))� C�

:

� (normc(C))�

That is

F � norma(F) C � normc(C)

2

2.6 Distinctions

Now we will see that a spectrum of equivalences can be de�ned parameterized by

distinctions.

De�nition 2.20 A distinction is a symmetric irreexive relation between names.

We shall let D range over distinctions. A substitution � respects a distinction D,

written � j= D, if for all (x; y) 2 D;x� 6= y�.

By this de�nition, � respects any distinction. Here we use some abbreviations

introduced in [MPW92a]. We will sometimes write a set of names A for the dis-

tinction f(x; y) j x; y 2 A;x 6= yg which keeps all members of A distinct from each

other. Also for a distinction D and a name x, we de�ne

Dnx = D � (fxg �N [N � fxg)

This removes any constraint in D upon the substitution for x. Also, for any set

A � N of names, we de�ne DdA = D \ (A�A), and for any substitution � which

respects D, we de�ne D� = f(x�; y�) j (x; y) 2 Dg.

15

De�nition 2.21 Two agents A and B are D{bisimilar, written A �

D

B, if

A�

:

� B� for all substitutions � respecting D.

It is easy to see that �

D

is an equivalence relation for any D, and that �

D

��

D

0

just in caseD

0

� D. In this sense, ground bisimulation equivalence and bisimulation

congruence are two extreme cases of D{bisimulations

:

�=�

N

and �=�

;

To �nish this section, we prove some properties of D{bisimulation which are

important later in �nding an alternative characterization of it.

Lemma 2.22 If P �

D

Q then P �

Ddfn(P;Q)

Q.

Proof Along the lines in [MPW92a]. 2

Proposition 2.23 If [x]P �

D

[x]Q then P �

D

Q.

Proof We have to show that P�

:

� Q� whenever � respects D. Because [x]P �

D

[x]Q, so ([x]P)�

:

� ([x]Q)�. That is [x�]P�

:

� [x�]Q�. By de�nition 2.15 this

implies P�

:

� Q�. 2

Proposition 2.24 If (x)P �

D

(y)Q and z 62 fn((x)P; (y)Q), then

P�fz=xg �

Dnz

Q�fz=yg

Proof We will show that (P�fz=xg)�

:

� (Q�fz=yg)� if � respects Dnz.

As a �rst step we will show ((x)P)�

:

� ((y)Q)�. Because z 62 fn((x)P; (y)Q),

so Dnz � Ddfn((x)P; (y)Q) thus � respects Ddfn((x)P; (y)Q). On the other hand

(x)P �

D

(y)Q implies (x)P �

Ddfn((x)P;(y)Q)

(y)Q, so ((x)P)�

:

� ((y)Q)�.

Now consider ((x)P)�

:

� ((y)Q)�. By de�nition 2.2

(u)P�fu=xg

:

� (v)Q�fv=yg

where u = fresh(fw� jw 2 fn(P)�fxgg); v = fresh(fw� jw 2 fn(Q)�fygg). By

de�nition 2.15 this implies (P�fu=xg)�fz�=ug

:

� (Q�fv=yg)�fz�=vg. Thus follows

from Lemma 2.6 that

P�fu=xg � �fz�=ug

:

� Q�fv=yg � �fz�=vg

Now because u 62 fw� j w 2 fn(P)� fxgg, by Corollary 2.4

P�fz�=xg � P�fu=xg � �fz�=ug

Likewise Q�fz�=yg � Q�fv=yg � �fz�=vg. So P�fz�=xg

:

� Q�fz�=yg. Now

because �fz�=xg = �fz=xg � � and �fz�=yg = �fz=yg � �, we have

(P�fz=xg)�

:

� (Q�fz=yg)�

2

16

Proposition 2.25 If �x[x]P �

D

�y[y]Q and z 62 fn(�x[x]P; �y[y]Q), then

P�fz=xg �

D[D

0

Q�fz=yg

where D

0

= fzg � fn(�x[x]P; �y[y]Q)[fn(�x[x]P; �y[y]Q)� fzg.

Proof Let � respect D [D

0

, we will show that (P�fz=xg)�

:

� (Q�fz=yg)�.

As the �rst step we show that there exists w 62 fn((�x[x]P)�; (�y[y]Q)�) such

that

P�fw=xg

:

� Q�fw=yg

We start from (�x[x]P)�

:

� (�y[y]Q)� since it is obvious that � respects D. By

de�nition 2.2

�u[u]P�fu=xg

:

� �v[v]Q�fv=yg

where u = fresh(fw� j w 2 fn(P) � fxgg); v = fresh(fw� j w 2 fn(Q) � fygg).

By de�nition 2.15 this implies

(P�fu=xg)�fw=ug

:

� (Q�fv=yg)�fw=vg

for some w 62 fn((�x[x]P)�; (�y[y]Q)�). Because u 62 fw� j w 2 fn(P) � fxgg, by

Corollary 2.4 P�fw=xg � (P�fu=xg)�fw=ug, and Q�fw=yg � (Q�fv=yg)�fw=vg.

So P�fw=xg

:

� Q�fw=yg.

As the second step we show that

P�fz�=xg

:

� Q�fz�=yg

If w = z� it directly follows from the last step. So in the following we as-

sume w 6= z�. Because � respects D

0

, and with lemma 2.6 it is not di�cult to

see that this implies z� 62 fn((�x[x]P)�; fn(�y[y]Q)�). Because � and �fw=xg

agree on fn(�x[x]P), so by Lemma 2.3 (�x[x]P)� � (�x[x]P)�fw=xg, and likewise

(�y[y]Q)� � (�y[y]Q)�fw=yg. Calculation according to lemma 2.6 gives

fn((�x[x]P)�fw=xg; (�y[y]Q)�fw=yg) = fn(P�fw=xg; Q�fw=yg)� fwg

Thus we have z� 62 fn(P�fw=xg; Q�fw=yg) � fwg. Because we assume w 6= z�,

so z� 62 fn(P�fw=xg; Q�fw=yg), then applying lemma 2.16 on the result of the

second step we get

(P�fw=xg)�fz�=wg

:

� (Q�fw=yg)�fz�=wg

It is clear that w 62 fv� j v 2 (fn(P) � fxgg and w 62 fv� j v 2 (fn(Q)� fygg, so

by corollary 2.4, P�fz�=xg

:

� Q�fz�=yg.

Now to �nish the proof, since �fz�=xg = �fz=xg�� and �fz�=yg = �fz=yg��,

thus (P�fz=xg)�

:

� (Q�fz=yg)�. 2

17

3 Symbolic D{Bisimulations

This section presents the proof technique for the bisimulation congruence. We in-

troduce a notion of symbolic D{bisimulation supported by a proof technique. We

then show that the symbolic D{bisimulation coincides with D{bisimulation. Thus

the proof technique can be used to show D{bisimulation equivalence of processes,

with bisimulation congruence as a special case. The symbolic D{bisimulation in-

troduced here is inspired by symbolic bisimulation introduced in [HL92].

The operational semantics introduced in the last section treated free names

as constants. This can be seen through the following example. Consider P jQ

when P � x:F and Q � �y:C. If x and y are di�erent names, then the rules

of � cannot infer any communication between the components (assuming that

the components have no other actions). Thus the possibility of communication

between these two components when x and y are substituted by the same name

is not considered by the relation �. When names are subject to substitution, it

is not su�cient to consider only the � relation. To adjust this constant point

of view of free names, we introduce conditional commitment. We write P �

�

�:A for conditional commitment which means a commitment under substitution �.

Conditional commitments are de�ned by the rules in Figure 3. The rules basically

say that conditional commitments are caused by two complementary commitments

of parallel components, and that they propagate over the constructions. In the side

condition of C-Rest, x is � clean means 8y 2 N :x = y� , x = y. This notation is

taken from [Jef92].

Lemma 3.1 If P �

�

�:A then � = �fx=yg for some x; y 2 N . Moreover, if

� = �fx=yg where x 6= y then � = � .

Proof Easy to check that all the rules in Figure 3 preserve this property. Notice

that � = �fx=xg for any x 2 N . 2

This lemma shows checking for the side condition in rule C-Rest is not di�cult

at all; the relation �

�

thus de�ned is not much more complex than �. Now we

show some desired properties of this relation.

Lemma 3.2 If P �

�

�:A then P� � ��:A�.

Proof This is to show a property about the relation �

�

generated by the rules in

Figure 3, we only need to show that all the rules preserve this property. Here we

only show this for C-Com and C-Rest.

For the rule

P �

�

x:F Q �

�

�y:C

P jQ �

�fx=yg

�:F � C

suppose the premisses have the property, that is to say P� � x�:F � and Q� � �y�:C�,

we need to show that the conclusion also has the property. From P� � x:F � and

Q� � �y:C�, by Lemma 2.14, it follows that

P�fx=yg � x�fx=yg:F �fx=yg and Q�fx=yg � �y�fx=yg:C�fx=yg

18

C-Act

�:A �

�

�:A

C-Sum

P �

�

�:A

P +Q �

�

�:A

Q �

�

�:A

P +Q �

�

�:A

C-Intl

P �

�

�:A

P jQ �

�

�:AjQ

Q �

�

�:A

P jQ �

�

�:P jA

C-Sync

P �

�

x:P

0

Q �

�

�y:Q

0

P jQ �

�fx=yg

�:P

0

jQ

0

P �

�

�y:P

0

Q �

�

x:Q

0

P jQ �

�fx=yg

�:P

0

jQ

0

C-Com

P �

�

x:F Q �

�

�y:C

P jQ �

�fx=yg

�:F � C

P �

�

�y:C Q �

�

x:F

P jQ �

�fx=yg

�:F � C

C-Rest

P �

�

�:A

�xP �

�

�:(�xA)�

x 62 name(�), x is � clean

C-Rec

P j !P �

�

�:A

!P �

�

�:A

Figure 3: Inference Rules for Conditional Commitments

Notice that �y�fx=yg = x�fx=yg, and (F �C)�fx=yg � F�fx=yg�C�fx=yg by Lemma

2.12, it follows immediately that (P jQ)�fx=yg � �:(F �C)�fx=yg.

For C-Rest, suppose the premis has the property, that is to say P� � ��:A�, we

will show that the conclusion also has the property, that is (�xP)� � ��:(�xA)�.

So we start from P� � ��:A�. Let z = fresh(fn(P�)). By Lemma 2.14,

(P�)�fz=xg � (��)�fz=xg:(A�)�fz=xg. Because � is x clean, � � �fz=xg = �fz=xg.

Thus P�fz=xg � ��fz=xg:A�fz=xg. Since x 62 name(�), ��fz=xg = ��. More-

over, by Lemma 2.13, name(��) � fn(P�), so z 62 name(��). Then apply

Rest �zP�fz=xg � ��:(�zA�fz=xg)�. That is (�xP)� � ��:(�xA)�, because

(�xP)� � �zP�fz=xg, and it is not di�cult to see that (�xA)� � (�zA�fz=xg)�.

2

The following lemma shows that conditional commitments provide us with a

means to analyze commitments of P�.

Lemma 3.3 For a process P and substitution �, P� � �:A if and only if P �

�

�:A

0

19

with A � A

0

�, � = ��, and for some �

0

, � = � � �

0

.

Proof The direction \if" follows directly from Lemma 3.2 and Lemma 2.14. The

other direction can be proved by induction on the depth of inference and a case

analysis of the last rule applied. We only show a key case here.

If (P jQ)� � �:A, then there are the following possibilities:

1. P� � �:B;A � BjQ�.

2. Q� � �:B;A � P�jB.

3. P� � x:P

0

; Q� � �x:Q

0

; A � P

0

jQ

0

.

4. P� � �x:P

0

; Q� � x:Q

0

; A � P

0

jQ

0

.

5. P� � x:F;Q� � �x:C;A � F � C.

6. P� � �x:C;Q� � x:F;A � F � C.

In the �rst case, by the induction hypothesis, P �

�

�:B

0

with � = ��;B � B

0

�,

and for some �

0

, � = � � �

0

. So P jQ �

�

�:(B

0

jQ) by C-Intl, and moreover we have

BjQ� � B

0

�jQ� � (B

0

jQ)�.

In the �fth case, by the induction hypothesis, P �

�

�:F

0

with x = ��; F � F

0

�,

and for some �

0

, � = ���

0

. In this case � = y for some name y, otherwise �� = � . So

by Lemma 3.1 � = �, and thus �

0

= �. For the same reason Q �

�

�z:C

0

with x = z�,

C � C

0

�. It is clear that F

0

; C

0

must be abstraction and concretion respectively,

thus by C-Com P jQ �

�fy=zg

�:(F

0

�C

0

). Moreover in this case F �C � (F

0

�C

0

)� and

� = �fy=zg � �.

Other cases can be proved similarly. 2

Now let P �

D

Q, how can we characterize this operationally in terms of the

commitments of P and Q? More speci�cally, if P � �:A for some A, what Q

should be able to do in order to have the relation P �

D

Q? Follow the de�nition

of bisimulation, one may want to say the following:

(1) Whenever P � �:A, thenQ � �:B for someB such that A �

D

B: : :

However this is too strong for D{bisimulation. Let us look at the following two

processes P and Q

P � �:(xj�y) + �:(x:�y + �y:x) + �:(xj�x)

Q � �:(x:�y + �y:x) + �:(xj�x)

It is easy to see that P � Q. But for P � �:(xj�y) there is no Q

0

such that

Q � �:Q

0

and Q

0

� xj�y. A closer look reveals that in this case P � �:(xj�y) is

actually matched by di�erent commitments of Q according to whether x and y are

the same name. Since xj�y �

fx;yg

x:�y+�y:x, if x 6= y then P � �:(xj�y) can be matched

by Q � �:(x:�y + �y:x). If x = y, then it can be matched by Q � �:(xj�x). Thus Q

20

can match P � �:(xj�y) indirectly by using the fact that xj�y �

fx;yg

x:�y + �y:x and

xj�x � xj�x. In the following, we will introduce a relation �

D

S

to express this indirect

match, where D is a (assumed) distinction and S includes some (presupposed, or to

be established) D-bisimulation relation. Thus in the case of P and Q here we will

write Q �

;

S

(xj�y), where S = fxj�y �

fx;yg

x:�y + �y:x; xj�x � xj�xg and ; is the empty

distinction. Then we give the characterization of �

D

with the help of �

D

S

.

De�nition 3.4 Let S be a set of triples of the form (A;D;B) where A;B are

agents, D is a distinction. Then �

S

is the smallest set of triples of process, distinc-

tion, and commitment such that for (P;D;�:A) 2�

S

, which we will write P �

D

S

�:A

from now on, then P is a process, D is a distinction, and �:A is a commitment,

and moreover, one of the following must holds:

1. P � �:B for some B with (A;D;B) 2 S, or

2. P has two free names x; y such that (x; y) 62 D and P �

D[fx;yg

S

�:A and

P�fy=xg �

D�fy=xg

S

��fy=xg:A�fy=xg.

Lemma 3.5 If P �

D

S

�:A, then for every � j= D there exist D

0

; B such that

P� � ��:B�; � j= D

0

and (A;D

0

; B) 2 S.

Proof This is proved by induction on the number of pairs (x; y) 62 D such that x; y

are di�erent free names of P . If there is no such pair, then by the above de�nition

it must be the case that P � �:B with (A;D;B) 2 S. Thus P� � ��:B� and the

fact holds by taking D

0

to be D. If there is (x; y) 62 D with x; y 2 fn(P), then

either we have P � �:B with (A;D;B) 2 S as above, or by the de�nition of �

S

we have P �

D[fx;yg

S

�:A and P�fy=xg �

D�fy=xg

S

��fy=xg:A�fy=xg. Now if x� 6= y�,

then � j= D[fx; yg, and because P �

D[fx;yg

S

�:A by the induction hypothesis there

exists D

0

; B such that P� � ��:B�; � j= D

0

and (A;D

0

; B) 2 S. When x� = y�,

we use P�fy=xg �

D�fy=xg

S

��fy=xg:A�fy=xg and the argument is similar. 2

The relation �

S

is not very easy to understand by its de�nition. The following

theorem characterizes it in the important case when S is the largest distinction

bisimulation.

Theorem 3.6 When S = f(A;D;B) j A �

D

Bg, the following conditions are

equivalent

1. P �

D

S

�:A

2. for all � j= D, there exists B such that P� � ��:B and B

:

� A�.

Proof 1) 2 : Suppose P �

D

S

�:A. If � j= D, according to Lemma 3.5, there exist

D

0

; B such that P� � ��:B�; � j= D

0

and A �

D

0

B, thus A�

:

� B�. So whenever

� j= D there exists B

0

such that P� � ��:B

0

and B

0

:

� A�.

2) 1 : We prove this by induction on the number of pairs (x; y) 62 D such that

x 6= y and x; y 2 fn(A;P). The base case is that there is no such pair of names,

21

so whenever x; y 2 fn(A;P) and x 6= y then (x; y) 2 D. Because � respects D,

so in this case P � �:B for some B with B

:

� A. We can show that for this B,

(A;D;B) 2 S, that is A �

D

B, by the following series of implications:

A

:

� B) A �

N

B) A �

Ndfn(A;B)

B) A �

Ndfn(A;P)

B) A �

D

B

where the last two implications follow from Ndfn(A;B) � Ndfn(A;P) � D. So

in this case P �

D

S

�:A.

Now suppose x; y 2 fn(A;P); x 6= y, and (x; y) 62 D. It is easy to see that the

following holds:

1. for all � j= D[fx; yg, there exists B such that P� � ��:B and B

:

� A�, and

2. for all � j= D such that x� = y�, there exists B such that P� � ��:B and

B

:

� A�.

Thus by the induction hypothesis the �rst implies

P �

D[f(x;y);(y;x)g

S

�:A

The second implies for all � j= D�fy=xg, there exists B such that

P�fy=xg� � ��:B and B

:

� A�fy=xg�

and by the induction hypothesis this implies

P�fy=xg �

D�fy=xg

S

��fy=xg:A�fy=xg

So by the de�nition of �

S

, P �

D

S

�:A. 2

Now we can give the de�nition of symbolic D{bisimulation.

De�nition 3.7 A symbolic simulation, S, is a set of triples of the form (A;D;B)

where A;B are agents, D is a distinction, such that whenever (A;D;B) 2 S, one

of the following must hold:

1. (A;B) is a pair of processes (P;Q) such that whenever P �

�

�:A

0

for � j= D

then Q� �

D�

S

��:A

0

�,

2. norma(A) � (x)P; norma(B) � (y)Q; and for some z 62 fn(A;B)

(P�fz=xg;Dnz;Q�fz=yg) 2 S

3. normc(A) � [x]P; normc(B) � [y]Q;x= y; and

(P;D;Q) 2 S

4. normc(A) � �x[x]P; normc(B) � �y[y]Q; and for some z 62 fn(A;B)

(P�fz=xg;D [fzg � fn(A;B) [fn(A;B)� fzg; Q�fz=yg) 2 S

22

A set S of triples is a symbolic bisimulation if both S and its inverse S

�

are symbolic

simulations. Two agents A;B are said to be symbolicly D{bisimilar if there exists

a symbolic bisimulation S such that (A;D;B) 2 S.

In the above de�nition, we use a set of triples instead of a family of D{indexed

sets in order to avoid dealing with set of sets. Theorem 3.6 suggests that Q �

D

S

�:A

0

matchs P � �:A

0

in order that P �

D

Q, hence clause 1. In clause 2. z should

be viewed as a place holder for any name. A simpler solution would be to choose

a z which does not appear free in A;B; and D. However sometimes we may have

trouble in choosing such a z: consider (x)0 �

N

(y)0, we cannot �nd z 62 N .

However, the set of free names of A and B is always �nite and any name which

appears in D but does not appear free in either A or B is immaterial (Lemma

2.22). With these consideration, clause 2. seems to be workable. In clause 4. z

is intended to be a common internal name which takes the place of x in P and y

in Q. Thus, not only z should be chosen di�erent from all free names in A and B

but also this di�erence should be remembered in the subsequent reasoning. This is

achieved by extending the distinction with the information that z is distinct from

all free names in A and B.

Later we will prove that symbolicD-bisimulation coincides with D-bisimulation.

The de�nition of symbolic D-bisimulation is based on the commitments of the

processes. Thus it provides us a bisimulation like technique to proveD-bisimulation:

in order to prove P �

D

Q, trying to establish a symbolic D-bisimulation S such

that (P;D;Q) 2 S. Take the following two processes as given in an earlier example,

P � �:(xj�y) + �:(x:�y + �y:x) + �:(xj�x)

Q � �:(x:�y + �y:x) + �:(xj�x)

we can prove that P � Q by verifying that the following relation B is a symbolic

bisimulation

f(P; ;; Q); (xj�y; fx; yg; x:�y+ �y:x); (0j�y; fx; yg; �y); (xj0; fx; yg; x); (0j0; fx; yg;0)g[I

where I = f(A;D;A) j agent A and distinction Dg. In verifying that the above is

indeed a symbolic bisimulation, an intersting case is to match P � �:(xj�y) with

Q �

;

B

�:(xj�y) which is the consequence of Q�fy=xg �

;

B

��fy=xg:(xj�y)�fy=xg and

Q �

fx;yg

B

�:(xj�y).

In the rest of this section we will prove that the symbolicD{bisimulation indeed

characterizes D{bisimulation equivalence.

Theorem 3.8 If A and B are D{bisimilar, then they are symbolicly D{bisimilar.

Proof Let

S = f(A;D;B) jA �

D

Bg

Because �

D

is symmetric, in order to show S is a symbolic bisimulation it is

su�cient to show that S is a symbolic simulation. Take (A;D;B) 2 S, that is to

say A �

D

B. Because � j= D, so A

:

� B. Thus there are the following four cases.

23

First consider the case that (A;B) is a pair of processes (P;Q). We will show

that whenever P �

�

�:A

0

for � j= D then Q� �

D�

S

��:A

0

�. For that, suppose

P �

�

�:A

0

and � j= D, by Theorem 3.6, we show that for all � j= D� there

exists B such that (Q�)� � (��)�:B and B

:

� (A

0

�)�. This is guaranteed by the

following:

1. � j= D� implies � � � j= D, and thus

2. P� � �

:

� Q� � �, and moreover

3. P �

�

�:A

0

implies P� � ��:A

0

� by Lemma 3.2, which implies

P�� � ���:A

0

�� by Lemma 2.14.

Now consider the case norma(A) � (x)P; norma(B) � (y)Q. We will show that

in this case there exists z 62 fn(A;B) such that

(P�fz=xg;Dnz;Q�fz=yg) 2 S

By Theorem 2.19 A �

D

B implies (x)P �

D

(y)Q, thus by proposition 2.24,

P�fz=xg �

Dnz

Q�fz=yg for any z 62 fn(A;B). Thus take any z 62 fn(A;B) (such z

certainly does exist) we have (P�fz=xg;Dnz;Q�fz=yg) 2 S.

Next for the case normc(A) � [x]P; normc(B) � [x]Q, we will show

(P;D;Q) 2 S

Again by Theorem 2.19 [x]P �

D

[x]Q. Thus the above follows directly from propo-

sition 2.23.

Now consider the case normc(A) � �x[x]P; normc(B) � �y[y]Q. We will show

that there exists z 62 fn(A;B) such that

(P�fz=xg;D [D

0

; Q�fz=yg) 2 S

whereD

0

= fzg�fn(A;B)[fn(A;B)�fzg. Because in this case �x[x]P �

D

�y[y]Q,

and by proposition 2.25 P�fz=xg �

D[D

0

Q�fz=yg for any z 62 fn(A;B). Thus such

z can be found. 2

Theorem 3.9 If A and B are symbolicly D{bisimilar, then they are D{bisimilar.

Proof Suppose S is a symbolic bisimulation. We will show that

B = f(A�;B�) j (A;D;B) 2 S; � j= Dg

is a simulation. It is exactly the same to show that B

�

is also a simulation. So it

follows that B is a bisimulation.

Suppose (A�;B�) 2 B with D as witness, i.e. (A;D;B) 2 S and � j= D. We

have to cover the following cases.

If (A;B) is a pair of processes (P;Q), then (A�;B�) is a pair of processes of the

form (P�;Q�). Suppose P� � �:A

0

, by lemma 3.3 � = � � �

0

such that P �

�

�:A

00

for some �; �;A

00

with � = �� and A

0

� A

00

�. Because (P;D;Q) 2 S, to match

24

P �

�

�:A

00

, by the de�nition of �

�

, Q must satisfy Q� �

D�

S

��:A

00

�. Because

� � �

0

= � j= D, it is not di�cult to see that �

0

j= D�. Then by Lemma 3.5, there

exist D

0

; B

00

such that Q� � �

0

� �� � �

0

:B

00

�

0

; �

0

j= D

0

and (A

00

�;D

0

; B

00

) 2 S. So we

�nd Q� � �:B

00

�

0

with (A

00

� � �

0

; B

00

�

0

) 2 B.

If norma(A) � (x)P; norma(B) � (y)Q, then norma(A�) � (u)P�fu=xg and

norma(B�) � (v)Q�fv=yg by Lemma 2.10 and the de�nition of substitution, where

u = fresh(fz� j z 2 fn(P)�fxgg) and v = fresh(fz� j z 2 fn(Q)�fygg). In this

case we have to show that for any name w 2 N

((P�fu=xg)�fw=ug; (Q�fv=yg)�fw=vg) 2 B

Now because (A;D;B) 2 S and S is a symbolic bisimulation, so

(P�fz=xg;Dnz;Q�fz=yg) 2 S

for some z 62 fn(A;B). For � j= D, it must be the case that �fw=zg j= Dnz. Thus

((P�fz=xg)�fw=zg; (Q�fz=yg)�fw=zg) 2 B.

If normc(A) � [x]P; normc(B) � [x]Q, then by Lemma 2.10

normc(A�) � [x�]P� and norma(B�) � [x�]Q�. Because (A;D;B) 2 S, thus

(P;D;Q) 2 S. In this case obviously (P�;Q�) 2 B.

If normc(A) � �x[x]P; normc(B) � �y[y]Q, then normc(A�) � �u[u]P�fu=xg

and normc(B�) � �v[v]Q�fv=yg by Lemma 2.10 and the de�nition of substitution,

where u = fresh(fz� j z 2 fn(P)� fxgg) and v = fresh(fz� j z 2 fn(Q)� fygg).

In this case we have to show that for some w 62 fn(A;B)

((P�fu=xg)�fw=ug; (Q�fv=yg)�fw=vg) 2 B

Because (A;D;B) 2 S, it follows that

(P�fz=xg;D [fzg � fn(A;B) [fn(A;B)� fzg; Q�fz=yg) 2 S

by the de�nition of symbolic D{bisimulation. Now let w 62 fx� j x 2 fn(A;B)g,

then it is clear that �fw=zg j= D [fzg � fn(A;B) [fn(A;B) � fzg. Thus

((P�fz=xg)�fw=zg; (Q�fz=yg)�fw=zg) 2 S. 2

4 Conclusion and Related Work

This paper presents a new characterization of the bisimulation congruence and D{

bisimulation equivalences of the �{calculus. The new characterization supports a

bisimulation like proof technique which avoids explicit case analysis, thus providing

a new way of proving bisimulation congruence.

The proof technique resembles the symbolic bisimulation for value passing pro-

cesses introduced by Hennessy and Lin [HL92]. In their work, symbolic bisimu-

lation of value passing processes is de�ned in terms of symbolic transition of the

form T

b;a

�! T

0

, where T; T

0

are process terms (may have free variables), a is some

action, b is a boolean expression. This can be read as \under condition b, T may

25

perform a and ivolve into T

0

". Then in order to match a symbolic transition, a

�nite collection of boolean expression B is to be found such that _B = b for some

boolean b. However, there is not an e�ective method in general to �nd such B.

In this paper, due to the simplicity of dealing with names which is a very simple

form of value, similar thing is achieved by introducing the relation �

D

S

which is

constructively de�ned.

In [Ama92], Amadio introduced uniform strong bisimulation for �-calculus. The

de�nition of uniform strong bisimulation is very similar to the de�nition of sym-

bolic D-bisimulation in this paper without the more involved part of �

D

S

. The

result is that the resulting equivalence get is strictly stronger than the bisimulation

congruence.

In [San93], Sangiorgi introduced the notion of open bisimulation. The equiv-

alence resulting from open bisimulation is a congruence for �-calculus, and it is

strictly stronger than the bisimulation congruence in this paper. He then gave an

e�ective characterization for open bisimulation. His characterization is very similar

to the characterization of D-bisimulation by symbolic D-bisimulation, except that

the complication of �

D

S

is not necessary for open bisimulation.

A di�erent approach to prove bisimulation congruence is taken in [PS93], where

an axiom system is presented for �{calculus processes. Unlike our approach where

we work with all D{bisimulation equivalences at the same time, they stay within

the bisimulation congruence by extending the conditional expression with negation

and disjunction. This allows any general condition like true to be split into a

logically equivalent disjunctive formula , which achieves the e�ect similar to �

D

S

.

The work carried out in the paper focuses on the the congruence induced by

the late version of bisimulation equivalence. It would be interesting to see whether

a similar characterization can be found for the early version. This is not obvious

since in the symbolic de�nition is very close to that of late bisimulation. Also we

leave out the match construction [x = y]P of the �{calculus of [MPW92a]. The

match construction does not give the �{calculus extra power. The theory developed

here can cope with inclusion of this construction by introducing compound boolean

expression in the conditional commitment. These could be a topic for further

research.

Acknowledgements The author would like to thank Matthew Hennessy for read-

ing a draft of the paper and for many insiteful comments and suggestions. The au-

thor would also like to thank Alan Je�rey and Huimin Lin for inspiring discussions

on the topic of the paper.

References

[Ama92] R. Amadio. A uniform presentation of chocs and �{calculus. Technical

Report Rapport de recherche 1726, INRIA-Lorraine, Nancy, 1992.

26

[HL92] M. Hennessy and H. Lin. Symbolic bisimulation. Technical Report

Technical Report 1/92, School of Congnitive and Computing Sciences,

University of Sussex, 1992.

[Jef92] A. Je�rey. Notes on a trace semantics for the �{calculus. 1992.

[Mil89] R. Milner. Communication and Concurrency. Prentice{Hall, 1989.

[Mil91] R. Milner. The polyadic �{calculus: a tutorial. The Proceedings of the

International Summer School on Logic and Algebra of Speci�cation,

1991.

[MPW92a] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,

(parts i and ii). Information and Computation, 100, 1992.

[MPW92b] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes.

Theoretical Computer Science, 1992. to appear.

[Par81] D. Park. Concurrency and automata on in�nite sequences. Lecture

Notes In Computer Science, Springer Verlag, 104, 1981. Proceedings

of 5th GI Conference.

[PS93] J. Parrow and Davide Sangiorgi. Algebraic theories for value{passing

calculi. Technical report, Department of Computer Science, University

of Edinburgh, 1993. Forthcoming.

[San93] D. Sangiorgi. A theory of bisimulation for �{calculus. Technical report,

University of Edinburgh, 1993. Forthcoming.

[Sto88] Allen Stoughton. Substitution revisited. Theoretical Computer Science,

59:317{325, 1988.

27

