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Abstract

In this set of notes we give an overview of a particular approach to describing

timed concurrent systems. The starting point is a well{developed semantic theory

of process algebras based on testing. This consists of an operational semantics

for a \time{free" process description language, a behavioural equivalence based

on testing and an algebraic characterisation of this equivalence. We add to this

language one timing construct, a time{out operator, and show how the theory can

be extended to this time enriched language.

This extended language is certainly restricted in its ability to describe timing

phenomena but in the last section we show how it may be used as the basis for

more expressive timed process description languages.
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1 Labelled Transition Systems

In this series of lectures we will be interested in the extending an existing semantic theory

of standard process algebras to encompass at least some aspects of timed systems. Ac-

cordingly in this �rst section we will review the situation for standard \untimed process

algebras".

In general a process algebra may be viewed as a speci�cation or description language

for communicating concurrent systems which emphasises their conceptual structure. Es-

sentially a process algebra consists of a collection of combinators for constructing new

descriptions from existing ones together with a set of laws or equations for manipulating

these descriptions. A large number of process algebras have by now been proposed in the

literature; we will try to avoid getting embroiled in the details of these individual lan-

guages, each with their own advantages and disadvantages, by simply choosing to work

with our favourite, CCS, [Mil89]; however most of what we say is equally applicable to

other process calculi such as CSP and ACP. We will also work as much as possible at

the more abstract level of intensional operational semantics.

We describe concurrent systems in terms of their ability to perform actions. For the

most part the nature of these actions will be unspeci�ed and we will simply assume a

set of possible actions Act; typically these are some form of synchronisations with other

concurrent systems. But we will have need for a special action symbol � , which we

assume is not in Act, to represent internal synchronisations or activity of a system. For

convenience we use Act

�

to represent Act[f�g, ranged over by �, while a ranges over the

external actions Act. The ability of a concurrent system to perform these uninterpreted

actions can be conveniently represented in terms of labelled transition systems:

De�nition 1.1 A labelled transition system is a triple < P;Act

�

;�!> where

P is a set of process states

Act

�

is, as already explained, a set of external actions Act and special action �

�! is a subset of P � Act

�

� P ; we write p

�

�! q instead of (p; �; q) 2�!

2

Intuitively p

�

�! q means that in the state p the process may perform the action � and

thereby be transformed into the the state q.

An arbitrary process algebra may be given an intensional semantics by interpreting

it as a labelled transition system. A standard method for doing so is by structural oper-

ational semantics, [Plo81]. The simplest way to explain this is to consider an example,

the language CCS. In CCS communication or synchronisation is a binary operation, i.e.

it involves only two participants, one sending the synchronisation signal and the other

receiving it. Accordingly we assume that Act is equipped with a complementation oper-

ation a and informally we view a as the action of sending a synchronisation signal on a

virtual communication channel a while the action a represents its receipt.

The terms of the language are de�ned by

p ::= 
 j nil j P j �:p

j p+ p j p j p

j p[S] j pnA; A � Act
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We have the constant processes nil which can do no actions and 
 which can only diverge

and we are allowed the use of process identi�ers such as P which will have associated

with them a de�nition of the form

P(= t:

The combinators of the language are

action pre�xing: �:p is a process which can perform the action � and then become the

process p

choice: p+ q is the process which can act like p or q

parallel : p j q is the process which consists of two subprocesses p and q running in

parallel

restriction: pnA is a process which acts like p except that all actions in A and their

complements are local to p

renaming: p[S] is a process which acts like p except that the actions performed are

relabelled using the relabelling function S; it is assumed that S is a function over

Act which preserves complementation and which is almost everywhere the identity.

We will also assume that S(� ) = � .

When writing terms in this language we will observe the usual rules of precedence between

the operators,

nA = [S] > pre�xing > j > +

and we will usually omit trailing occurrences of nil.

This informal description of the intended meaning of the combinators is made pre-

cise by providing the language with an operational semantics. This involves de�ning a

relation

�

�! between process terms for each action �. To do so we assume the existence

of a declaration, i.e. a set of de�nitions of the form

P(= p;

one for each identi�er; the term associated with an identi�er in a declaration D will be

referred to as its body, and denoted by D(P ); for convenience we will assume that each

occurrence of any identi�er in the bodies of a declaration are guarded, i.e. are contained

within terms of the form �:q. This is not necessary but is will make various de�nitions

more straightforward as we will not have to deal with suspect de�nitions such as

P(= P

or

P(= P j a:

Assuming some declaration we can de�ne the relations

�

�! as the least relations which

satisfy the rules given in Figure 1. The obvious symmetric counterparts to (Op2) and

(Op3) are omitted and the predicate admits used in (Op4) has the obvious de�nition:

A admits � unless � or � 2 A.

With this de�nition we can now view CCS as a labelled transition system where
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(Op1) �:p

�

�! p

(Op2) p

�

�! p

0

implies p + q

�

�! p

0

(Op3) p

�

�! p

0

implies p j q

�

�! p

0

j q

(Op4) p

�

�! p

0

implies pnA

�

�! p

0

nA

provided A admits �

(Op4) p

�

�! p

0

implies p[S]

S(�)

�! p

0

[S]

(Op5) D(P )

�

�! p

0

implies P

�

�! p

0

(Op6) p

a

�! p

0

; q

a

�! q

0

implies p j q

�

�! p

0

j q

0

(Op7) 


�

�! 


Figure 1: Operational semantics of CCS

the process states consists of all the terms in the language

the next-state relations

�

�! are de�ned in Figure 1.

Alternatively we can view every process term p as a labelled transition system obtained

by restricting the set of process states to those accessible from p; note that this labelled

transition system is rooted. Not much distinction will be made between these two slightly

di�erent views of the intensional semantics of CCS. We will also generally consider the

process states of a transition system as simply processes.

As an example of a process description consider the de�nition

VM (= coin:(VM

t

+ VM

c

)

VM

t

(= tea:VM

VM

c

(= co�ee:VM

This is a simple vending machine which when given a coin will perform exactly one of

the actions tea or co�ee. It has slightly di�erent behaviour than the vending machine

de�ned by

VM

i

(= coin:(�:VM

t

+ �:VM

c

)

VM

t

(= tea:VM

VM

c

(= co�ee:VM
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When given a coin this machine will also provide either tea or co�ee but, in contrast

to VM there is no knowing which will be provided. The di�erence between these two

machines can be seen by putting them in parallel with a user such as

User

t

(= coin:tea:happy

One can check that the process (User

t

j VM)nA, where A = fcoin; tea; co�eeg will always

reach the happy state, i.e. will always perform the action happy. On the other hand the

process (User

t

j VM

i

)nAmay or may not reach this state depending on what the vending

machine chooses to provide.

The intensional semantics of a process algebra as expressed in a labelled transition

system gives a relatively abstract view of how a process behaves in terms of the actions

it performs. However two processes, or process descriptions, could have very di�erent

representations as labelled transition systems and still be considered to be extensionally

equivalent in the sense of providing more or less the same behaviour to any potential

user. For example the process descriptions (User

t

j VM)nA and happy:nil yield di�erent

labelled transition systems but one can argue that they should be considered to be ex-

tensionally equivalent. Much research has been carried out into what exactly extensional

equivalence should mean and a number of viable alternatives have emerged. In these

lectures we will concentrate on one possibility, called testing equivalence [Hen88], where

informally two processes are deemed to be extensionally equivalent if there is no test

which can possibly distinguish between them.

This can be formalised at the level of labelled transition systems. We can view a

given labelled transition system as providing processes to be experimented upon while

the experimenters are also furnished by a labelled transition system. To keep things

simple we just assume that these two labelled transition systems are actually the same

so that we have processes experimenting upon themselves. A process proceeds by a series

of interactions between the process and the experimenter and is considered a success if

the experimenter eventually reaches a success state. Success can be formalised in a

number of ways but let us just decide that Success = f e j for all � 2 Act e 6

�

�!g. The

interactions between the experimenter and the process, or more generally the progress of

an experiment, can be formalised as a binary relation over pairs of processes. But we have

already seen an operator which captures this form of interaction, namely j. Admittedly

it was de�ned as part of the syntax of CCS but we can easily imagine j as being de�ned

over an arbitrary labelled transition system, or even pairs of labelled transition systems

provided their set of actions match properly. For our purpose it is su�cient to consider it

as an operator which takes an arbitrary labelled transition system and constructs a new

labelled transition system whose process states consists of pairs of process states from

the original labelled transition system and whose next state relation is determined by

the rules (Op3), with � equal to � , and (Op6). However we will not be interested in how

the interaction takes place and to emphasise that these moves are part of an experiment

we use the slightly di�erent notation

e j p 7! e

0

j p

0

to mean that e j p

�

�! e

0

j p

0

. An application of e to p is then given as a maximal

computation of the form:

e j p � e

0

j p

0

7! e

1

j p

1

: : : 7! e

n

j p

n

7! : : :
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that is, it is either in�nite or has a maximal element e

m

j p

m

from which no further

derivation can be made. Such an application is considered to be successful if the exper-

imenter reaches a successful state, i.e. there is a k such that e

k

2 Success. We then say

that p guarantees e if every application of e to p is successful. Finally we have

For all processes p; q we write p

<

�

q if p guarantees e implies q guarantees e

for every experimenter e.

The associated equivalence relation, the kernel of

<

�

, is denoted by '.

This extensional equivalence has been studied in depth in [Hen88] and it has been

applied to the process algebra CCS in particular in [DH84]. It is this equivalence and

its associated theory which we wish to develop for timed process algebras.

2 Timed labelled Transition Systems

There are a large number of proposals in the literature for adding time to process al-

gebras; to such an extent that it is very di�cult to compare and contrast the often

competing schemes. Some of the abundance is due to the profusion of di�erent process

algebras but if we abstract to the level of intensional operational semantics in terms

of labelled transition systems then the situation is somewhat better. At this level of

abstraction the diversity is caused primarily by the decision as to how to model the pas-

sage of time. The approach which we take is essentially the same as many researchers,

[NS90, Wan91, MT90, Han91, BB92], although there are di�erences in the details of the

individual languages used and some of the assumptions about time. In this exposition

we will gloss over many of the technical details which may be found in [Reg92, HR91].

Part of the success of process algebras is due to the fact that they describe processes

at a relatively abstract level of detail. We do not know if processes will ever actually

perform the actions they are capable of nor indeed is any knowledge presupposed about

the nature of these actions; for example whether they are instantaneous, all take the

same length of time or are variable. It is precisely because no commitments have been

made on these questions that process algebras can be used in many di�erent applications

and have a reasonable mathematical theory. However now that we wish to add some

notion of time to these process descriptions it is necessary to be at least a little more

speci�c. Nevertheless we wish to remain as abstract as possible and to deviate as little as

necessary from standard process algebras. In this way we can at least hope to continue

to reap their bene�ts.

Our proposal is to simply add to labelled transitions systems a new special action

called � to model the passage of time. More generally one could envisage adding an

arbitrary number of such special actions, �

1

; �

2

; : : : , each one representing the passage

of time relative to a particular clock as in [BG88]. However at least for the moment let

us keep things simple by just assuming that there is only one clock in existence.

De�nition 2.1 A t-labelled transition system is a triple < P;Act

��

;�!> where

P is a set of process states

Act

��

is a set of actions of the form Act[f�; �g where �; � are two special action symbols

not in Act
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�! is a subset of P � Act

��

� P

2

Of course � can not be considered simply as any old action; it represents the passage of

time and presumably has at least some characteristics di�erent from standard synchro-

nisation actions. Indeed much of the proliferation of timed process algebras is due to

the properties which researchers deem this action should have. Rather than discussing

these properties in the abstract let us see an example of a t-labelled transition system

obtained by extending CCS with a timing construct. The syntax of the new language,

which we call TPL, is de�ned by adding one new clause:

p ::= bpc(p):

Intuitively this is a time-out operator; the process bpc(q) acts like the process p before

a clock signal arrives. But if it can do nothing before this event then when the signal

arrives it subsequently behaves like q.

This is formalised by giving an operational semantics to the language TPL. Underly-

ing this semantics is a particular informal view of the nature of CCS descriptions which

may not be to everybodys liking. This view is captured by the informal assumptions:

a process is determined by its ability to perform actions or synchronisations

all actions, apart from � are assumed to be instantaneous

a process will wait inde�nitely until it can engage in a synchronisation

once a process can engage in a synchronisation it will do so without delay

The de�nition of operational semantics is given in two phases. The �rst de�nes the

relations

�

�! for � 2 Act

�

. This is straightforward as one simply adds to the rules of

Figure 1 the new rule

(Op8) p

�

�! p

0

implies bpc(q)

�

�! p

0

:

The second phase de�nes the relation

�

�! between arbitrary processes in TPL. The

rules determining

�

�! are given in Figure 2. Most of these rules are inuenced by the

properties we wish to associate with the passage of time; other viewpoints would lead to

di�erent rules. For example (W1) which says that for any external action a the process

a:p can wait:

a:p

�

�! a:p:

This is because we think of a process as idling until such time as its environment provides

an opportunity to synchronise. However if one wishes to envisage processes which are

insistent in the sense that they require immediate synchronisations then this rule would

not form part of the operational semantics. We will return to this point later, in the

�nal section. Note that �:p can not wait as the � represents some unknown opportunity

to synchronise and we wish to enforce our intuitive assumption that synchronisations

should happen as soon as they are possible. For the same reason we insist in (W3) that

p j q can only delay if p and q can not synchronise. Again if one had a di�erent view of

processes then this rule would need to be changed.
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(W1) a:p

�

�! a:p

nil

�

�! nil

(W2) p

�

�! p

0

; q

�

�! q

0

implies p+ q

�

�! p

0

+ q

0

(W3) p

�

�! p

0

; q

�

�! q

0

;

p j q 6

�

�! implies p j q

�

�! p

0

j q

0

(W4) p

�

�! p

0

implies pnA

�

�! p

0

nA

(W5) p

�

�! p

0

implies p[S]

�

�! p

0

[S]

(W6) p 6

�

�! implies bpc(q)

�

�! q

(W7) D(P )

�

�! p

0

implies P

�

�! p

Figure 2: The passage of time in TEPL

It is worth examining in detail the behaviour of the timeout construct. In bpc(q)

if p can perform any action � then it will do so and the \exception" process q will be

discarded. If on the otherhand no opportunity for synchronisation is forthcoming, and

this includes the supposition that p 6

�

�! , then when the clock tick arrives the new residual

will be q, i.e. under those assumptions bpc(q)

�

�! q. Thus (a:p j ba:qc(r))nfag can only

perform a � move to (p j q)nfag while (b:p j ba:qc(r))nfa; bg, under the assumption that

a 6= b, can only wait by performing a � move and become (b:p j r)nfa; bg. Notice that

the language does not have a simple delay construct. But it can be implemented as

bnilc(p); this process can do nothing until the �rst time cycle when it becomes p. Since

this delay construct will be frequently used we introduce an abbreviation for it.

De�nition 2.2 We use �:p to denote the term bnilc(p). This notation should be intuitive

because the only action it can perform is � to become p. 2

With these rules we now have an interpretation of the language TPL as a t-labelled

transition system where the process states consists of the terms from TPL and the next-

state relations

�

�! are de�ned by the rules just outlined. In order to illustrate these

rules we now consider a simple example, again a vending machine.

VM

d

(= coin:�:VM

t

VM

t

(= btea:VM

d

c(VM

c

)

VM

c

(= bco�ee:VM

d

c(VM

d

)

The vending machine will accept a coin as before and then after a time cycle will be

in the state VM

t

. Here it will produce tea if requested or after another time cycle

will produce co�ee. The next time cycle will bring the machine back to the original

state VM

d

where it will produce nothing until it receives another coin. Although its
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behaviour is somewhat more complicated than the original vending machine it can still

be used successfully by users who want a particular drink. For example (User

t

j VM)nA,

where as before A = fcoin; tea; co�eeg, will always reach the happy state and the same

is true of User

c

de�ned by

User

c

(= coin:co�ee:happy:nil

However users have to be a little careful of how long they wait before accepting their

drink. For example the user User

2

t

de�ned by

User

2

t

(= coin:�

2

:tea:happy:nil;

where �

2

:p is an abbreviation for �:�:p, will not reach the happy state although the

corresponding user who wants co�ee will have no problem.

We now reconsider various properties that one might want to associate with the

special action �. Each of the following lemmas refer to the particular t-labelled transition

system determined by TPL.

Lemma 2.3 (Time-determinism) If p

�

�! q and p

�

�! r then q and r are syntactically

identical.

This is a natural property to associate with the passage of time although there are process

algebras which do not have this property, [Gro90].

Lemma 2.4 (Maximal progress) If p

�

�! then p 6

�

�!

This is the formal counterpart to our fourth informal assumption about the nature of

processes. Again there are timed process algebras which do not satisfy this property,

[NS90, MT90]. One advantage of assuming maximal progress is that one can easily

describe processes in which particular actions are forced to happen; if p can perform the

action a then when placed in the context (a:nil j [ ])nA it will be forced to synchronise.

Lemma 2.5 (Patience) If p 6

�

�! then p

�

�!

This is the formal counterpart to our second informal assumption about the nature of

processes which says that a process will idle until such time as it can synchronise. It is not

an especially popular assumption. For example it is not satis�ed in [NS90, MT90, BB92]

as they have insistent actions but it does have its proponents, [Wan91]. Typically if a

process algebra does not take on board the maximal progress assumption then it also

does not satisfy patience as some way of enforcing actions to happen is required.

Lemma 2.6 (Persistence) If p 2 CCS then p

a

�! q and p

�

�! r implies r

a

�! q.

This property is not enjoyed by all processes in the language; a simple example is

ba:pc(nil). It is not present in most of the proposed timed process algebras; as we

will see it leads to a certain lack in descriptive power. However a form of it occurs in

[Wan91].

The extensional equivalence of the previous section can be generalised to this timed

setting by working with t-labelled transition systems instead of the standard transition

systems. Here the process being tested, p, and the experimenter e are assumed to be
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Figure 3: The security costs protocol

states in a t-labelled transition systems and the interaction relation 7! is de�ned

in exactly the same way; a parallel operator is de�ned between arbitrary t-labelled

transition systems using the rules (Op3) with � equal to � , (Op6) and (W3) and e j p 7!

e

0

j p

0

if e j p

�

�! e

0

j p

0

or e j p

�

�! e

0

j p

0

. This leads as before to a semantic preorder

de�ned by:

in a t-labelled transition system p

<

�

t

q if p guarantees e implies q guarantees e

for every experimenter e,

and the associated equivalence relation is denoted by '

t

.

Question: Design two tests which show that the processes VM and VM

d

are incompa-

rable with respect to

<

�

t

. 2

We aim to show that this new semantic equivalence between timed systems enjoys

many of the desirable properties of the original testing equivalence'. In particular it has

a reasonable mathematical theory and an associated proof system based on equational

rewriting.

We end this section with a slightly more extended example of a timed process de-

scription using TPL. We view it as a pro-typical example of the potential use of TPL;

only one process involved uses a timing construct and the remainder are described using

the syntax of standard CCS. Thus the timing considerations are restricted to a very

small part of the system.

The \security costs protocol" , shown diagramatically in Figure 3, describes a simple

method for sending a message between two distributed ports which we call A and B

where transmission of a message across a reliable medium is considered expensive. The

sender, A, initially sends the message across an unreliable medium only resending across

the reliable medium if an acknowledgement has not arrived before a \time-out" occurs.

To keep the example simple we assume that acknowledgements always use the reliable

medium.

This reliable medium is de�ned by

RM(= m

r

:m

rb

:RM+ ack

b

:ack:RM
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It accepts a message destined for it, called m

r

and sends it on to B in the form of

the action m

rb

. Alternatively it acts as conduit for acknowledgements from B to A: it

accepts an acknowledgement from B in the form of the action ack

b

and passes it on as

ack to A. The unreliable medium is de�ned by

UM(= m

u

:(�:UM+ �:m

ub

:UM)

It accepts a message and then nondeterministically decides to either lose it and return to

the original state UM or to send it on to B in the form of the action m

ub

. The receiver

B is de�ned by

B(= m

rb

:b:ack

b

:B + m

ub

:ack

b

:b:ack

b

:B:

It can accept a message from the reliable medium, m

rb

, in which case it immediately

transmits the message, modelled here by the the action b and sends an acknowledgement

to A to say that the message has been transmitted and so that A can accept another

input. Alternatively it can accept a message from the unreliable medium in which case it

immediately acknowledges that the message has successfully come across the unreliable

medium and then proceeds as before. Finally the sender A is de�ned by

A(= a:m

u

:back:ack:Ac(m

r

:ack:A):

This is the only place where timing enters the description. A accepts a message for

transmission, modelled by the action a, and initially sends it to the unreliable medium. It

awaits an acknowledgement that the message has successfully made it across the medium

and then awaits another acknowledgement, in this case acknowledging that the message

has been transmitted, before accepting new input. However if no acknowledgement is

forthcoming when the clock cycle comes the message is resent over the reliable medium

and A waits for an acknowlegdement of transmission before accepting new input.

The entire system is modelled by

SYS(= (A j RM j UM j B)nI

where I is the set of all the actions used by the processes except the input and output,

a; b.

Later on we hope to show that SYS is equivalent to the speci�cation

SPEC(= a:(�:�:b:SPEC+ �:b:SPEC)

which is exactly the behaviour one would expect of the system.

Question: If the sender A is replaced by

a:m

u

:(ack:ack:A+ �:m

r

:ack:A)

does the extensional behaviour of the system remain the same ? 2

Question: Show that for the protocol to work it is essential for A to wait an ac-

knowlegdement that B has transmitted the message before accepting a new message for

transmission. 2
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3 Acceptances and Barbs

In this section we investigate the properties of processes which determine their ability

to guarantee tests. This is essential if we are going to develop a theory of '

t

; it is easy

to demonstrate that two processes are not extensionally equivalent as one only has to

provide a test which distinguishes them but to show that they are equivalent we must

establish that they guarantee exactly the same set of tests. Rather than consider the

reaction of processes with respect to all tests we extract the relevant behaviour of their

operational semantics which in e�ect determines which equivalence class of '

t

a process

belongs to.

Before we start we need some de�nitions which are given relative to an arbitrary t-

labelled transition system although they apply equally well to labelled transition systems

since the latter may be considered as t-labelled transition systems where the relation

�

�!

is empty. For any s 2 (Act

�

)

�

let the relations

s

=) be de�ned in the obvious way:

1. p

"

=) p

2. p

�

�! p

0

; p

0

s

=) q implies p

�:s

=) q

3. p

�

�! p

0

; p

0

s

=) q implies p

s

=) q

4. p

s

=) p

0

; p

0

�

�! q implies p

s

=) q.

Let S(p) denote the set f a 2 Act j p

a

=)g and we say that p is stable if p 6

�

�! . Finally we

say that p diverges if there exists an in�nite sequence p

�

�! p

1

�

�! : : :

�

�! p

k

�

�! : : : ;

we use p * to denote divergence and p + to denote the converse, convergence.

We �rst recapitulate on the situation for untimed calculi, testing in an arbitrary

labelled transition system. Here the crucial property of a process is the set of its ac-

ceptances; these consists of a sequence of actions s together with a �nite set of actions

which it is ready to accept after having performed the sequence s. Formally

1. 
 is an acceptance

2. A is an acceptance if A is a �nite subset of Act

3. aa is an acceptance if a is an acceptance and a 2 Act

�

.

So an acceptance has the form sX where s is a sequence from Act

�

�

and X is either 


or a �nite subset of Act. Acceptances are compared in the following way: let�

a

be the

least relation between acceptances which satis�es


�

a

a for any acceptance a

A�

a

A

0

if A � A

0

aa�

a

aa

0

if a�

a

a

0

One can check that �

a

is actually a partial order between acceptances and it may be

characterised by saying

sX �

a

tY

if either X is 
 and s is a pre�x of t or s = t and X and Y are both �nite subsets of Act

with X � Y . This partial order is generalised to a preorder between sets of acceptances

by letting S �

a

T if for each a 2 T there exists an a

0

2 S such that a

0

�

a

a. The

acceptance sX is generated by the process p if p

s

=) q for some q such that

12



if X is 
 then q *

if X is a �nite subset of Act then q is stable and X = S(q).

We use Acc(p) to denote the set of acceptances generated by p.

These de�nitions enable us to state a condition which is su�cient to ensure that

processes in an arbitrary labelled transition system are related extensionally. Of course

in a labelled transition system acceptances have no occurrence of the timed action �.

Theorem 3.1 In any labelled transition system Acc(p)�

a

Acc(q) implies p

<

�

q.

Proof: See [Hen88]. 2

The converse depends essentially on the expressive power of the labelled transition

system in question. For example if in the labelled transition system every process which

can do an a action can also do a b action with the same e�ect then the two processes

a:nil + b:nil and �:a:nil + b:nil will not be distinguishable; but they will in a labelled

transition system which has a process which can not do a b action but can do an a

action to a terminated state. We will not go detail about the exact expressive power

necessary. Instead let us just say that a labelled transition system is su�ciently expres-

sive if it contains a denotation for every �nite term in fCCSseq, i.e. terms in CCS which

only use the combinators nil; + and pre�xing by actions in Act

�

.

Theorem 3.2 In a su�ciently expressive �nitely branching labelled transition system

p

<

�

q implies Acc(p) �

a

Acc(q).

Proof: See [Hen88]. 2

Question: Is this true if the condition on �nite branching is dropped ? 2

This is the situation, which is well-known, for testing in labelled transition systems.

Let us now consider t-labelled transition systems. In fact we will restrict our attention to

particular kinds of t-labelled transition systems, essentially those having the properties

of TPL discussed in the previous section.

De�nition 3.3 A t-labelled transition system is called regular if it satis�es

1. (Time-determinism) If p

�

�! q and p

�

�! r then q = r

2. (Maximal progress) If p

�

�! then p 6

�

�!

3. (Patience) If p 6

�

�! then p

�

�!

2

One can easily show that the characterisation of testing in terms of acceptances for

labelled transition systems is no longer true when we consider regular t-labelled transition

systems.

13



Example 3.4 Let p; q denote the terms a + �:b; �:a + �:(a + b) respectively. Then

Acc(p)�

a

Acc(q) but p

6<

�

t

q; they can be di�erentiated by the test �:(a:fail+ b). This is

guaranteed by p because when the clock tick happens all possible synchronisations will

have occurred, in particular all � actions, and so only b is possible. However in q when

the clock tick occurs a is also possible and using it to synchronise with the tester leads

to the terminal unsuccessful state fail j nil. 2

So in order to characterise testing in regular t-labelled transition systems we need to take

into account more information about processes than that contained in their acceptances.

But before tackling this problem another aspect of the example deserves comment. Both

p and q are terms in CCS and are extensionally equivalent for untimed testing, i.e. p ' q

in the labelled transition system determined by CCS, but when considered as timed

processes, i.e. as terms of TPL, they are not equivalent, p 6'

t

q. This is because although

they are untimed processes which can not be distinguished using untimed tests there is

a timed test which can tell them apart!. A more striking example of this phenomenon,

taken from [Lan89], is given by the two processes

coin:(tea+ hit:tea) + coin:(co�ee+ hit:co�ee)

and

coin:(tea+ hit:co�ee) + coin:(co�ee+ hit:tea)

whose behaviour as labelled transition systems are given in Figure 4. They have exactly

the same acceptances, namely

�ffcoingg

coinfftea; hitgg coinffco�ee; hitgg

coin:teaf;g

coin:co�eef;g

coin:hit:ffteagg coin:hit:ffco�eegg

coin:hit:tea:f;g

coin:co�ee:tea:f;g

But they can be distinguished by the timed test coin:(tea: + �:hit:tea). This test says

that if you can not do a tea action immediately after doing a coin action then you will

be able to do so after performing a hit action.

This phenomenon may strike the reader as odd but on reection it is not unnatural.

These processes are really timed systems which when viewed as labelled transitions

systems have their timing features abstracted away to such an extent that they can

no longer be distinguished. Moreover this abstraction from time is consistent in the

sense that so long as we only test using similarly abstracted processes then this level

of abstraction can be maintained and we obtain coherent theory of \time-free" process

descriptions. But once tests with timing information are allowed this level of abstraction

is fractured and we must consider all the timing features of the process descriptions.

In fact it will be instructive as a �rst step to characterise timed testing as it applies

to these apparently \time-free" processes. Again we do wish to work directly with the

particular languages CCS and TPL but instead work at the level of transition systems.
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Figure 4: Langerak's Vending Machines

The appropriate notion of a \time-free" process in an arbitrary t-labelled transition

system is given by the following de�nition.

De�nition 3.5 In any t-labelled transition system a process p is called

1. �-constant whenever p

�

�! p if and only if p 6

�

�!

2. and h-�-constant (for hereditarily �-constant) whenever it is �-constant and if

p

�

�! q for any � in Act

��

then q is also h-�-constant.

1

2

One can check that in the t-labelled transition system of TPL all the processes from

the sublanguage CCS are h-�-constant and informally one can argue that it is precisely

this property which enables them to be viewed abstractly as labelled transition systems

as for h-�-constant processes the timing information is completely schematic.

As a �rst step we characterise testing in a regular t-labelled transition system for h-

�-constant processes. The required generalisation of acceptances is the notion of barbs.

They can be de�ned by adding one clause to the de�nition of acceptances:

1. 
 is a barb

2. A is a barb if A is a �nite subset of Act

3. �b is a barb if b is a barb and � 2 Act

�

4. Ab is a barb if b is a barb and A is a �nite subset of Act

1

Note that strictly speaking we should de�ne the set of h-�-constant processes as the largest set of

processes all of whose elements satisfy these two conditions.
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A barb therefore has the form

s

1

A

1

s

2

A

2

:::s

k

X

where each s

i

2 (Act [ �)

�

, each A

i

is a �nite subset of Act and the �nal X is either


 or again a �nite subset of Act. This barb is generated by the process p if there is a

derivation of the form

p

s

1

=) p

1

s

2

=) p

2

: : :

s

k

=) p

k

where each p

i

is stable, for 1 � i < k S(p

i

) = A

i

and if the �nal X is 
 then p

k

* and

otherwise p

k

is also stable with S(p

k

) equal to X. We use Barb(p) to denote the set of

barbs generated by p. Barbs are ordered in much the same way as acceptances: �

b

is

the least relation over barbs which satis�es


�

b

b for any barb b

A�

b

A

0

if A � A

0

ab�

b

ab

0

if b�

b

b

0

Ab�

b

A

0

b

0

if b�

b

b

0

and A � A

0

and is lifted to sets of barbs in exactly the same way as acceptances.

Theorem 3.6 In any regular t-labelled transition system if p and q are h-�-constant

then Barb(p)�

b

Barb(q) implies p

<

�

t

q. 2.

Question: Which of the clauses in the de�nition of regular t-labelled transition system

can be dropped while maintaining this result ? 2

Once again the converse depends on the expressive power of the t-labelled transition

system in question and let us say that it is su�ciently expressive if it contains a deno-

tation for every term in the language de�ned using nil; + and pre�xing by every action

in Act

��

. We then obtain

Theorem 3.7 In any �nite branching regular t-labelled transition system if p and q are

h-�-constant then p

<

�

t

q implies Barb(p)�

b

Barb(q). 2

This means that for a large class of t-labelled transition systems barbs capture exactly

the ability of \time-free" processes to guarantee tests. Is the same true for arbitrary

processes ? Unfortunately the answer is no.

Example 3.8 Let p; q be the processes �:(b+ �:a) + �:(a+ c) and a+ b. We will soon

be able to check that p

<

�

t

q but their barbs are not properly related. The barb fa; bga

is generated by q but p can not generate any comparable barb, i.e. any barb b such that

b�

b

fa; bga. 2

So although barbs are satisfactory for processes whose timing behaviour is very simple

they are too discriminating for arbitrary timed processes. We need to restrict attention

to standard barbs, i.e. barbs of the form

s

1

A

1

�s

2

A

2

�s

3

:::s

k

X

where each s

i

is in Act

�

i.e. they do not contain occurrences of �. Let SBarb(p) be the

standard barbs associated with the process p.
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Theorem 3.9 In any su�ciently expressive �nite-branching regular t-labelled transition

system p

<

�

t

q if and only if SBarb(p) �

b

SBarb(q). 2

Question: De�ne a closure operator, C, on sets of barbs with the property thatB �

b

B

0

if and only if C(B

0

) � C(B). 2

Question: A t-labelled transition system is divergence free if it contains no in�nite �

derivations. De�ne a closure operator C

0

on barbs with the property C

0

(B) is �nite if B is

�nite and which satis�es Barb(p) �

b

Barb(q) if and only if C

0

(Barb(p)) � C

0

(Barb(q)),

for p; q in a �nite-branching divergence free t-labelled transition system. 2

4 Equations

Here we show that the extensional equivalences can be captured by sets of equations or

more generally inequations. The motivation for this work is that these equations form

the basis for a proof system or syntactic transformation system for proving di�erent de-

scriptions extensionally equivalent. The results in this section are necessarily dependent

on the particular process algebra we have chosen to work with and indeed the ability

to obtain a simple equational characterisation of the extensional relations is a useful

criterion when comparing di�erent formalisms.

For the moment let us con�ne our attention to �nite terms i.e. terms which do not use

any process identi�ers; we call these sublanguages fCCS and fTPL. Consider the proof

system in Figure 5. It essentially allows rewriting of sub-terms using a set of equations

E. Let us write t �

E

u to denote that t � u can be derived in this proof system. The

idea is to �nd a set of inequations E with the property that two �nite processes, p; q are

extensionally ordered if and only if p �

E

q. The inequations E consist of pairs of terms

which may be written as

t � t

0

where both t and t

0

are allowed to use the operators of the language in question together

with variables. So for example

x+ y � y + x

is certainly a reasonable inequation for fCCS. We will also use the equation

t = t

0

as a shorthand notation for the two inequations t � t

0

and t

0

� t. Note that the proof

system in general manipulates open terms, i.e. terms containing variables, while the lan-

gauges in which we are interested, fCCS and fTPL are variable-free. But the proof system

allows instantiation of variables using Rule 4 and so inequalities involving variable-free

terms or process terms can be derived. Note also that we only require the proof system

to capture the extensional preorder between process terms and not open terms. The

latter would be a much more di�cult requirement.

We �rst review the situation for fCCS and untimed testing which is well-known from

[DH84]. The �rst problem is that by de�nition the relation�

E

is preserved by all contexts

whereas this is not the case for

<

�

. The standard example is a

<

�

�:a but b+ a

6<

�

b+ �:a

as b+ a guarantees the test b. The plus operator of CCS creates this problem for many

of the usual extensional preorders and the standard response is to replace

<

�

with the

relation

<

�

+

de�ned by
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1: Reflexivity

t � t

2: T ransitivity

t � t

0

; t

0

� t

00

t � t

00

3: Substitution

t � t

0

f(t) � f(t

0

)

for every operator f

4: Instantiation

t � t

0

t� � t

0

�

for every substitution �

5: Inequations

t � t

0

for every inequation

t � t

0

in E

6: 
�Rule


 � t

Figure 5: The Proof System

p

<

�

+

q if for some action a not occurring in p; q; a+ p

<

�

a+ q.

One can show that

<

�

is preserved by all the operators of CCS and moreover is the

largest such relation contained in

<

�

. Accordingly we transfer our attention to giving

an inequational characterisation for

<

�

+

and the related congruence '

+

.

Question: Show that for any p; q; r the following is true:

((�:p + �:q) j r)nA '

+

�:(p j r)nA+ �:(q j r)nA

(a:p j a:q j r)nfag '

+

�:(p j q j r)nfag

2

Many of the required equations are not of any particular interest and are relegated

to the appendix; these simply state obvious properties of restriction, renaming, 
 and

+, most of which are discussed at length in [Mil89]. Here we will concentrate on two

aspects of the equational system, the interleaving law which relates parallel composition

to nondeterminism and the laws governing � . The �rst is given in Figure 6 and applies

only to terms of the form

P

I

�

i

:x

i

j

P

J

�

j

:y

j

. This parallel term can be rewritten to

a nondeterministic term which essentially has a pre�x for each of the possible actions

which x and y can perform either individually or together. The � laws, of which there

are �ve, are given Figure 7.

Let E

1

denote the collection of all these inequations.

Theorem 4.1 For all p; q in fCCS p

<

�

+

q if and only if p �

E

1

q.
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For x =

P

I

�

i

:x

i

and y =

P

J

�

j

:y

j

x j y =

P

I

�

i

:(x

i

j y) +

P

J

�

j

:(x j y

j

) +

P

�

i

=�

j

�:(x

i

j y

j

) (I1)

Figure 6: Interleaving Law for CCS

Proof: See [DH84]. 2

Instead of �nding directly an equational characterisation for

<

�

t

over fTPL let us

�rst consider the sublanguage CCS. Again we have to consider

<

�

t

+

in place of

<

�

t

and

so we want to �nd a set of equations E

2

with the property that for all �nite CCS terms

p

<

�

t

q if and only if p �

E

2

q. The obvious place to start is with the set E

1

. It turns out

that all the equations in the appendix are still valid as is the interleaving law; we only

have to modify the � -laws. The �rst two remain true for

<

�

t

+

but the remaining three

are in general false. The equation (�3) is still true if � is equal to � but for external

actions it is false in general. For example

a:b+ �:a:c

6<

�

t

�:(a:b+ a:c):

The test �:a:c distinguishes them or alternatively the barb fagab of �:(a:b+ a:c) can not

be properly matched by any barb of a:b+ �:a:c. We have already seen in the previous

section the essential reason why (�4) is not true:

a+ �:b

6<

�

t

�:(a+ b)

because of the test �:(a:fail+ b). Finally the equation (�5) is true of

<

�

t

but not of

<

�

t

+

because the same reasoning as in the previous case will show that

a+ �:b

6<

�

t

(a+ b):

�:x+ �:y � �:x (�1)

�:x+ �:y = �:(�:x+ �:y) (�2)

�:x+ �:(�:y + z) = �:(�:x+ �:y + z) (�3)

x+ �:y � �:(x+ y) (�4)

�:x � x (�5)

Figure 7: � Laws for CCS
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�:x+ �:y � �:x (�N1)

�:x+ �:y = �:(�:x+ �:y) (�N2)

�:x+ y = �:(�:x+ y) + �:x (�N3)

�:x+ �:y � �:(x+ y) (�N4)

�:x � �:x+ x (�N5)

Figure 8: The new � laws

The new � laws are given in Figure 8. The least two inequations, (�4) and (�5)

survive in the slightly weaker form of (�N4) and (�N5) but (�3) disappears entirely to

be replaced by a new law (�N3) which is only concerned with � s. If we let E

2

denote

this revised set of equations we now have

Theorem 4.2 For every pair of �nite CCS processes p

<

�

t

+

q if and only if p �

E

2

q. 2

When we move to the full language, fCCS, then we have to add equations for the extra

operator b c( ). The interaction with the operators 
; nA and [S] are straightforward

and given in the appendix. There is an interesting interplay between delay and the two

operators nil and pre�xing captured by the equations

nil = bnilc(nil) (�1)

a:x = ba:xc(a:x) (�2)

These follow because all processes de�nable in TPL are patient. There are two further

laws governing the behaviour of b c( ):

bbxc(y)c(z) = bxc(z) (�3)

bxc(y) + buc(v) = bx+ uc(y + v) (�4)

The �rst reect the fact that in bpc(q) the arrival of the time cycle preempts all the

activity of p including possible � moves it is capable of while the second is true because

the passage of time is deterministic. There are also three laws governing it's interaction

with � :

b�:xc(y) = �:x (��1)

�:bxc(y) = �:bxc(�:y) (��2)

x+ �:byc(z) � �:bx+ yc(z) (��3)

Finally we must add a new interleaving law. The existing one (I1) can only be used for

terms in sum forms, i.e. terms of the form �

1

:t

1

+ : : : + �

k

:t

k

but with the new time-

out operator it is obvious that not all terms can be reduced to these forms. The new

interleaving law is given in Figure 9; it is very similar in style to the previous one except

that it now applies to terms of the form btc(u) where t is a sum form.

Let E

3

denote this new revised set of equations which must include (I1) as it can not

be derived from the more general (I2).
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For x = b

P

I

�

i

:x

i

c(x

�

) and y = b

P

J

�

j

:y

j

c(y

�

)

x j y = b

P

I

�

i

:(x

i

j y) +

P

J

�

j

:(x j y

j

) +

P

�

i

=�

j

�:(x

i

j y

j

)c(x

�

j y

�

) (I2)

Figure 9: The new interleaving law

Theorem 4.3 For any pair of terms in fTPL; p

<

�

t

+

q if and only if p �

E

3

q. 2

This completes the story for �nite terms and the moral is that there is very little

di�erence between the untimed and timed languages; in essence one gets a slightly more

complicated interleaving law and the � laws need to be changed. It should however be

pointed out that the choice of timing construct, b c( ) originally de�ned in [NS90], was

not arbitrary. For example one would have problems if the less general construct �:�

were used instead as it would be di�cult to �nd a useful interleaving law. The problem

is that a process such as a j �:b is not persistent. It can initially perform an a action to

nil j �:b but after the time click it becomes the process a j b which can no longer do an a

action to a similar state. All processes de�nable in the �nite language without parallel

and with the time-out replaced by �:� are persistent. It therefore follows that there

can be no interleaving law which will eliminate the parallel construct j from the process

a j �:b. The time-out construct enables us to de�ne non-persistent processes which occur

naturally in the presence of parallelism.

We end this section with a brief survey of how recursive de�nitions are treated in the

proof system. The �rst obvious rule, which we call (Rec), is that recursive de�nitions

may be unwound:

P = D(P )

Another more complicated rule is called Recursion Induction:

If fP

i

(= D

i

j i 2 I g is a declaration and for each i 2 I there is a process q

i

such that D

i

fq=P g � q

i

then, for each i 2 I; P

i

� q

i

.

To prove the soundness of this rule is not straightforward. It relies essentially on the fact

that if a process p guarantees a test e then there is a �nite approximation to p, a �nite

term obtained by unwinding the de�nitions used in p to some arbitrary depth, which

also guarantees e.

Recursion Induction together with the equations will not however give a complete

proof system; neither will stronger forms of induction such as Scott Induction. The

essential reason is that ' is not even partially recursive but the set of theorems in a

proof system is r.e.. However one way to say that \recursion + equations" is complete

for the entire language is to introduce an in�nitary form of induction which in [Hen88] is

called !-induction. One can then show for arbitrary terms in CCS that p

<

�

t

+

q if and only

if p � q can be derived using the inequations E

1

together with (Rec) and !-induction.

It is interesting to note that the corresponding result is not true for TPL; it is because

all processes are patient. For example

a:nil

<

�

t

A
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where A is de�ned by A(= bac(A) and this can not be proved by the equations even

with the help of !-induction!. We need to add one more rule, called the Stability rule,

to the proof system:

P

i2I

�

i

:t

i

� S

where S is de�ned by S(= b

P

i2I

�

i

:t

i

c(S).

A quite useful form of induction is called Unique Fixpoint Induction. The form is

identical that of Recursion Induction but the inequality is replaced by equality.

If fP

i

(= D

i

j i 2 I g is a declaration and for each i 2 I there is a process q

i

such that D

i

fq=P g = q

i

then for each i 2 I; P

i

= q

i

Unfortunately it is unsound for the standard extensional equivalences including '

and '

t

. However for a large class of de�nitions it is sound and it is the rule which tends

to be most used in the literature. If we ensure it is used only for de�nitions where in the

bodies all occurrences of process names are all guarded by external actions and do not

occur within occurrences of j then we will not run into di�culty.

Question: Show that if we allow process names to be guarded by � then Unique

Fixpoint Induction becomes unsound.

Give an example which shows that if we allow occurrences of process names within j,

even if they are guarded by external actions, then the rule is also unsound. 2

5 An Example Proof

In this section we discuss how one might use the proof system to prove properties of of

timed systems. We use as an example the security costs protocol of section two.

As in the untimed case the proof methodology consists in using the proof system

as the basis for a transformation system for manipulating process descriptions. The

most common use of the resulting transformation system is to transform a description

of a high-level speci�cation of a system into a more detailed description of a proposed

implementation. Refering to the example in section two this means transforming SPEC

into SYS. Since the proof system is complete in some sense in theory one should be able to

transform any two behaviourally related processes into each other using the inequations.

But is practice it is virtually essential to augment the set of equations with more useful

transformations. For example

x j y = y j x

x j nil = nil j x

(x j y) j z = x j (y j z)

are all sound and are not derivable in the complete proof system. Two other interesting

transformations involving parallel are

((�:x

1

+ �:x

2

) j y)nA = �:(x

1

j y)nA + �:(x

2

j y)nA

(a:x j a:y j z)nA = �:(x j y j z)nA if a 2 A
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However the most useful transformation rule is a generalisation of the interleaving law to

the case where an arbitrary number of processes are running in parallel and a restriction

is in force. The timed expansion theorem is a straightforward generalisation of the

corresponding theorem for CCS, [Mil89]:

Let P denote a process of the form (P

1

j : : : j P

n

)nA where n � 1. Then

P = b immc(delay) ( EXP )

where

imm =

X

f�

i

:(P

1

j : : : j P

0

i

j : : : j P

n

)nA j P

i

�

i

�! P

0

i

; A admits �

i

g

+

X

f �:(P

1

j : : : j P

0

i

j : : : j P

0

j

j : : : j P

n

)nA j P

i

a

�! P

0

i

; P

j

a

�! P

0

j

g

and

delay =

X

f (P

�

1

j : : : j P

�

n

)nA j P

i

�

�! P

�

i

g

This is quite a powerful rule although somewhat complicated. However there are simpler

versions when P has particular properties. For example, using the same notation, we

have

If P

�

�! then P = imm ( EXP� )

If P is �-constant, i.e. P

�

�! P , then P = imm ( EXP�)

Note that in each of these cases the transformation is identical to that of the untimed

case, in [Mil89].

Syntactic versions of the expansion theorem can be obtained by assuming that each P

i

has a particular form. For example if each P

i

is a �-form, i.e. has the form

P

j2I

i

bQ

ij

c(P

�

i

)

then the calculation of imm leads to

f�

ij

:(P

1

j : : : j Q

0

ij

j : : : j P

n

)nA j Q

ij

�

i

�! Q

0

ij

; A admits �

i

g

+

P

f �:(P

1

j : : : j Q

ij

j : : : j Q

kl

j : : : j P

n

)nA j �

ij

= �

kl

g

while delay remains the same. If each P

i

is a sum-form, i.e. has the simpler form

P

j2I

i

fQ

ij

g then we obtain

P = imm

where imm is calculated syntactically as above.

Let us now see how to use the expansion theorem together with the other equations

to prove SPEC = SY S where these processes are de�ned in section 2. This will follow

immediately by Unique Fixpoint Induction if we can prove

SY S = a:(�:�:b: SY S + �:b: SY S):

Note that this represents a sound application of Unique Fixpoint Induction since in the

body all occurrences of SY S are guarded.
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Let us start by manipulating SY S. By unwinding each of the recursive de�nitions,

applying EXP� and rewinding we obtain

SY S = a:(A

1

j RM j UM j B)nI

where A

1

is m

u

:b ack: ack:Ac(m

r

: ack:A). This procedure of unwinding de�nitions, ap-

plying some form of the expansion theorem and rewinding some of the resulting processes

is a very frequently used proof tactic. In fact the unwinding and rewinding of de�nitions

is so persuasive we will not mention it in future; instead we only indicate the variety of

expansion theorem used. The next application is ( EXP� ) from which we obtain

SY S = a:(A

2

j RM j UM

1

j B)nI

where A

2

is b ack: ack:Ac(m

r

: ack:A) and UM

1

is �: UM + �:m

ub

: UM: By applying

the rule

((�:x

1

+ �:x

2

) j y)nA = �:(x

1

j y)nA + �:(x

2

j y)nA

we obtain

SY S = a:(�:S

1

+ �:S

2

)

where S

1

; S

2

denote (A

2

j RM j UM j B)nI; (A

2

j RM j m

ub

: UM j B)nI respectively.

1. We show S

1

= �:�:b: SY S

Applying ( EXP ) we obtain

S

1

= bnilc((m

r

: ack:A j RM j UM j B)nI):

The proof proceeds by �ve more applications of various forms of the expansion

theorem:

S

1

= �:(m

r

: ack:A j RM j UM j B)nI ( EXP�)

= �:�:( ack:A j m

rb

: RM j UM j B)nI ( EXP� )

= �:�:�:( ack:A j RM j UM j b: ack

b

:B)nI ( EXP� )

= �:�:�:b:( ack:A j RM j UM j ack

b

:B)nI ( EXP�)

= �:�:�:b:�:( ack:A j ack: RM j UM j B)nI ( EXP� )

= �:�:�:b:�:�:(A j RM j UM j B)nI ( EXP� )

Using the equation (�N2) one can prove

�:x = �:�:x

and by its repeated application we obtain S

1

= �:�:�:b: SY S and one further

application gives the required S

1

= �:�:b: SY S.

2. We show S

2

= �:b: SY S:

The approach is very similar. The expansion theorem is applied repeatedly to

obtain a skeleton of the behaviour and then simpli�cation laws, usually based on

the elimination of � s, are applied. With four applications of the expansion theorem

we obtain

S

2

= �:�:(b:�:S

3

+ �:S

4

)
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where S

3

represents ( ack:A j RM j UM j ack

b

:B)nI and S

4

the process ( ack:A j

RM j UM j b: ack

b

:B)nI. One application of ( EXP�) gives S

4

= b:S

3

so we now

have

S

2

= �:�:(b:�:S

3

+ �:b:S

3

):

On the other hand three applications of ( EXP� ) gives

S

3

= �:�:�:SY S:

which leads to

S

2

= �:�:(b:�:�:�:�: SY S + �:b:�:�:�: SY S):

The same � -reduction rule, �:x = �:�:x, reduces this to

S

2

= �:(b: SY S + �:b: SY S):

Another derived equation is x+ �:x = �:x which when applied gives the required

S

2

= �:b: SY S:

Combining these two sub{proofs we now have

SY S = a:(�:�:�:b: SY S + �:b: SY S)

Applying the equation (��2) we obtain the required

SY S = a:(�:�:b: SY S + �:b: SY S)

This completes the proof that SY S = SPEC and as we have seen it consists

of a large number of applications of the expansion theorem with periodic interventions

using � -reduction rules. The proof is no di�erent in style than corresponding proofs for

time-free processes. In other words we can apply the techniques originally developed for

standard process algebras to prove properties of at least some types of time dependent

systems. Performing such proofs is undoubtedly tedious but they are eminently suited to

mechanical assistance. Software systems have already been developed which help in the

development of these proofs, [Lin91, MV89], and they can easily be extended to handle

TPL. For example the above proof has been carried out by the system PAM, [Lin91].

6 Extensions

The language we have investigated is somewhat simple and is best viewed as the core of

more extensive and more useful timed languages. This core can be extended in many ways

and the choice is probably best made in the light of intended applications. Here we briey

sketch two possibilities; one concentrates on the passage of time and introduces more

constructs for the manipulation of the implicit time variable underlying the operational

semantics while the other adds urgent or insistent actions.
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Manipulating Time

To make descriptions in the language more compact one can easily extend the syntax

with a variety of notational conventions; a large number may be found in [NS90]and here

we will examine a small selection. For any k � 0 �

k

:p can be viewed as a shorthand for

�: : : : �:p which means delay for k+1 time-cycles before continuing like p. More generally

we can de�ne a delay start operator, bpc

k

(q). Intuitively bpc

k

(q) behaves like p provided

p can perform an action within k clock cycles and otherwise, after the k

th

occurrence of

the clock tick, it behaves like q. As an example of its use consider

VM (= coin:VM

0

VM

0

(= b�

2

:tea:VM+ �

3

:co�ee:VMc

30

(VM)

After receiving a coin tea is ready in two clock cycles while co�ee takes three and after

thirty seconds the machine reverts to its original state and the coin is lost.

There are two ways of viewing the extension of the language with the operator b c

k

( ).

In the �rst the syntax of the language is actually extended by adding an in�nite set of

new operators, b c

k

( ), one for each k � 0. The operational semantics of the language

must now be also extended to cover processes which use the new operators; this amounts

to adding extra clauses to the structural operational rules in Figure 2. The appropriate

rules, which reect our intuition, are

p

�

�! p

0

implies bpc

k

(q)

�

�! p

0

p 6

�

�! implies bpc

0

(q)

�

�! q

p

�

�! p

0

implies bpc

k+1

(q)

�

�! bp

0

c

k

(q)

One can show that with this extension one still obtains a regular t-labelled transition

system and therefore the characterisation of testing in terms of barbs also applies to this

language. However it is necessary to check that the behaviour preorder is preserved by

the new operator, i.e. p

<

�

t

p

0

; q

<

�

t

q

0

implies bpc

k

(q)

<

�

t

bp

0

c

k

(q

0

). Finally one must �nd

equations which capture entirely the behaviour of the new operator, i.e. equations which

when added to the set given in section four provide a complete axiomatisation for the

extended language. In this case the required equations are

btc

0

(u) = btc(u)

bbtc(u)c

k+1

(r) = btc(buc

k

(r))

The other approach is simply to view b c

k

( ) as a notational convention or a convenient

shorthand for writing more complicated terms. In this case one need to supply the

translation from btc

k

(u) into the core language for each possible k; t and u. The essence

of this translation is provided by the above equations because as it happens every process

can be transformed into the form bpc(q) for some p and q.

Question: Given an operational semantics for a watchdog operator d e

k

( ) where

intuitively dpe

k

(q) acts like p until the k

th

clock cycle; from then on it acts like q.

Show that

<

�

t

is preserved by this operator and give a set of characterising equations

for it. 2
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In the de�nition of these type of operators constants over the time domain are used.

In [Wan91] a further step is taken, namely the introduction of time-variables. In order

to take advantage of their presence syntactic constructs need to be generalised also. So

parameterised de�nitions of the form

P (t)(= p

are now allowed where t is a time-variable which may occur in p. The behaviour of the

process p should in general depend on the value assigned to the occurrences of its time-

variables and one way of ensuring this is to introduce a construct such as b c

t

( ) or more

generally b c

e

( ) where e is some time-expression, i.e. an expression which evaluates to a

time when all its variables are instantiated. We will continue to use �

e

:p as a shorthand

for bnilc

e

(p). Moreover we can allow special kinds of input actions which may read in the

values to be associated with these variables. These take the form c?t which intuitively

means \read in the value of the time-variable t from the channel c". For the sake of

symmetry we should also allow output actions of the form c!e. As an example consider

the de�nition

T

0

(= settime?t:T

1

(t)

T

1

(= �

t

:T

2

T

2

(= timeout:T

0

Initially this process is ready to input a time which is used to instantiate the variable t.

So for example the time can be set to 30 by the action

T

0

settime?30

�! T

1

(30):

The process T

1

(30) can only perform thirty consecutive � actions and then perform a

timeout to arrive at its original state.

In [Wan91] a further form of action pre�xing is allowed, a@t:p, which enables the

behaviour of a process to depend on the length of delay before the action is performed.

This is still a patient process and so can delay inde�nitely, i.e. perform � actions. But

whenever one is performed the value associated with the variable t is increased. Since

we are assuming discrete time this means that we have the the rule

a@t:p

�

�! a@t:(p[t+ 1=t]):

When it does get around to performing the action a the variable t is instantiated to

zero,

a@t:p

a

�! p[0=t];

so that in e�ect in a move of the form

a@t:p

�

�! : : :

�

�!

a

�! p

0

the term p

0

is obtained by instantiating the variable t in p to the number of clock cycles in

the sequence

�

�! : : :

�

�!. A simple example of its use is in the de�nition of a stop-watch.

S (= start:G

G (= stop@t:D(t)

D(t) (= display!t:S

27



The possible computations from S are of the form

S

start

�! G

�

�! : : :

�

�!

stop

�!

display!k

�! S

where k is the amount of lapsed time, i.e. the length of the sequence

�

�! : : :

�

�!.

A slightly more complicated form of timer may be de�ned by

W (= settime?t:S(t)

S(t) (= start:G(t)

G(t) (= b stop@u:S(t� u)c

t

( timeout:W )

Here W can receive a time, say 10, and then be started to become G(10). In this

state it awaits 10 clock cycles and then performs the timeout action. But while

waiting it can also be stopped. For example after 6 clock cycles it is in the state

b stop@u:S(10� (u+ 6))c

t

( timeout:W ) where it can perform the action stop to the

state S(4). In this state it can be restarted at will and the remaining 4 clock cycles will

be counted down - unless it is stopped once more.

Recapitulating the language in question now looks like

p ::= 
 j nil j P j �:p j j p + p j p j p

j p[S] j pnA; A � Act

bpc

e

(p) j a@t:p j a?t:p j a!e:p

where t ranges over a set of time-variables and e over some language for time expressions

and of course further timing constructs of interest may be added. We will not formally

de�ne the operational semantics as it can easily be constructed from the outline given

above. It does once more lead to a regular t-labelled transition system and therefore the

basic results about the behavioural preorder carry over.

However when extending the equational theory of TPL to this new language consid-

erable care needs to be taken. This is because both forms of pre�xing, a?t and a@t act

like binders for the time-variable t; for example for the term a?t:p all occurrences of t

in the subterm p are bound. Terms with free occurrences of variables, i.e. occurrences

which are not bound, can not directly be given an operational semantics as their be-

haviour will in general depend on how these variables are instantiated. So let us call a

term with no free variables a process. Then the operational semantics and the resulting

testing preorder applies to directly to processes. However the preorder can be extended

to arbitrary terms in a standard way by de�ning

p

<

�

t

q if for every instantiation of time-variables � the processes p�; q� are

related, i.e. p�

<

�

t

q�.

Thus the presence of variables brings us outside the standard theory of equational alge-

bras as presented in, say, [Gue81]. As a simple example the validity of a statement such

as

bpc

e

(q) '

+

bp

0

c

e

0

(q

0

)

depends on the relationship between the two time-expressions e and e

0

. However instead

of getting involved in this issue we �nish the subsection with an example of the use of

the language. The reader interested in the treatment of values is refered to [HI91].
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We describe a simple distributed implementation of the vending machine using a

timer and a separate unit for brewing the drinks. The timer is de�ned as follows:

T (= settime?t:W (t)

W (t) (= b reset:T c

t�1

(T

0

)

T

0

(= timeout:T + reset:T

while the independent unit for brewing the tea and co�ee is given by:

C (= coin:settime!4:B

B (= �

2

:tea:F + �

3

:co�ee:F + timeout:C

F (= reset:C

Let the implementation be de�ned by

I (= (C j T )nA

where A is the set f settime; timeout; resetg. The behaviour of this system is slightly

di�erent than the other vending machines we have seen. In particular it has some

genuinely nondeterministic behaviour. After the fourth clock tick one may still obtain a

drink but this is not guaranteed. The complete behaviour is de�ned by

S (= coin:S

0

S

0

(= b�

2

: tea:S + �

3

: coffee:Sc

3

( tea:S + coffee:S + �:S)

We now outline a proof that I is an implementation of S, i.e. I '

+

S, by showing

how to transform one into the other using a proof system based on that in section four.

This involves a use of Unique Fixpoint Induction; we will show that

I = coin:I

0

I

0

= b�

2

: tea:I + �

3

: coffee:Ic

3

( tea:I + coffee:I + �:I)

for some term I

0

, from which the result will then follow. It is quite straightforward to

discover the required term I

0

. By two applications of an interleaving law we obtain

I = coin:�:(B j W (4))nA:

So let I

0

denote the term (B j W (4))nA. Using � -absorption we obtain

I = coin:I

0

and therefore it remains to show

I

0

= b�

2

: tea:I + �

3

: coffee:Ic( tea:I + coffee:I + �:I)

By expanding out recursive de�nitions and doing some rearrangements I

0

may be rewrit-

ten to a form susceptible to an expansion theorem:

((bnilc(�: tea:F + �

2

: coffee:F + timeout:C)) j (b reset:T c

3

(T

0

)))nA:
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On applying the theorem we obtain

I

0

= �:I

1

where

I

1

is ((�: tea:F + �

2

: coffee:F + timeout:C) j (b reset:T c

2

(T

0

)))nA:

Repeating this procedure we obtain

I

1

= �:I

2

where

I

2

is (( tea:F + �

1

: coffee:F + timeout:C) j (b reset:T c

1

(T

0

)))nA:

This time the expansion theorem gives

I

2

= b tea:Y c(I

3

)

where

Y is (F j b reset:T c

1

(T

0

)

and

I

3

is (( tea:F + coffee:F + timeout:C) j (b reset:T c

0

(T

0

)))nA:

One application of the theorem gives Y = �:I which together with another application

gives

I

3

= b tea:�:I + coffee:�:Ic(I

4

)

where I

4

stands for (( tea:F + coffee:F + timeout:C) j T

0

)nA: With a �nal application

we obtain

I

4

= tea:�:I + coffee:�:I + �:I:

Recapitulating we have shown that

I

0

= �

2

:b tea:�:Ic(b tea:�:I + coffee:�:Ic( tea:�:I + coffee:�:I + �:I))

and by using � -absorption this reduces to

I

0

= �

2

:b tea:Ic(b tea:I + coffee:Ic( tea:I + coffee:I + �:I):)

However by using the axioms (�1� �4) this can easily be rearranged to the required

I

0

= b�

2

: tea:I + �

3

: coffee:Ic

3

( tea:I + coffee:I + �:I):

Although the description of the system is in the language extended with time-

variables they did not appear very much in this proof. Indeed the only appearance

is hidden in the �rst application of an expansion theorem to I

0

; the rest of the proof is

entirely within the sub-language free of time-variables. However the example was care-

fully chosen. If the time was set at a large number such as 100 then we would need a

hundred applications of the expansion theorem and an inordinate amount of syntactic

manipulation. Clearly it would be preferable to have rules which are uniformly applica-

ble regardless of actual values associated with time-variables, i.e. are schematic in some

sense. If the use of time-variables was more sophisticated, such rules would be essential.

It should be possible to adapt those in [Hen91] for general value{passing processes.

30



Insistent Actions

Throughout these notes we have assumed that processes in our language are patient in

that they satisfy the condition

if p 6

�

�! then p

�

�!

which means that processes will wait inde�nitely until they can perform a synchroni-

sation. This gives a particular avour to the language and its theory. It is certainly

necessary in order to obtain the simple alternative characterisation of testing in terms of

barbs but it also necessitates the introduction of the Stability rule into the proof system.

Here we discuss briey the e�ect of relaxing this condition.

In the operational semantics patience is enforced by the rule (W1) for pre�xing

a:p

�

�! a:p

which is in addition to the standard rule (Op1)

�:p

�

�! p:

This means that we have built into the language a patient form of pre�xing. Let us now

extend the language with insistent pre�xing denoted by � : p. The operational semantics

for this construct is given by the one standard rule

� : p

�

�! p:

Because of the absence of a rule corresponding to (W1) this means that in � : p the action

� can not be delayed until the next clock cycle. For example if a is not the complement

of b then the process a : p j b:q can not delay, i.e. can not perform a � action; it must

perform either the action a or the action b. In the process (a : p j b:q)nfbg the action a

is forced to happen while the process (a : p j b:q)nfa; bg is both deadlocked, i.e. can not

perform a synchronisation action, and also can not delay, i.e. can not perform �. Note

that none of these processes satisfy the condition of patience.

Although the use of patient pre�xing often makes process descriptions simpler some-

times insistent pre�xing is very useful. A typical instance of its use is when describing

a one place bu�er which intuitively waits inde�nitely for input but when it contains a

datum insists on outputing it immediately. Using both kinds of pre�xing such a bu�er

could be described by

B (= in:B

1

B

1

(= out : B

This bu�er has two \states", B which is a patient state and B

1

an insistent state. We

can connect k of these bu�ers together, as in [Hoa85], to obtain a bu�er of size k but as

is turns out most of the states of this bu�er are insistent. For example let B2 be de�ned

by

B2 (= B � B
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where � is the chaining operator from [Hoa85]. In general X � Y is de�ned to be the

process (X[S

l

] j Y [S

r

])nf midg where mid is a special channel, S

l

is the renaming which

is the identity except that out is mapped to mid while S

r

maps in to mid; in e�ect �

connects the out port of X to the in port of Y and internalises the resulting connection.

One can show that the process B � B obtained by joining two of these kinds of bu�ers

together is testing equivalent to the speci�cation S de�ned by

S (= in:S

1

S

1

(= in : S

2

+ out : S

S

2

(= out : S

Note that here all of the states except the initial one are insistent. However the time

behaviour of these bu�ers can be designed at will by introducing appropriate occurrences

of �.

The addition of insistent pre�xing adds considerable descriptive power to the but it

also alters considerably the resulting theory of testing. For a start standard barbs no

longer characterise the testing preorder as they are not su�ciently expressive. As a simple

example a : nil and a:nil have exactly the same barbs but they can be distinguished by

the test �:a. Nevertheless it is possible to extend the notion of barb so as to capture

testing for the extended language.

Question: Rede�ne SBarb and the partial order between them, �

b

, so that p

<

�

t

q

if and only if SBarb(p) �

b

SBarb(q) for every pair of processes p; q in the extended

language. 2

An equational characterisation can also be found and in some ways the resulting

algebraic theory is simpler. The Stability rule is no longer necessary as patient pre�xing

can be expressed in terms of insistent pre�xing and the time{out operator. We have the

equation

a:t = ba : tc(a : t):

In some sense insistent pre�xing always takes higher priority over the patient variety.

For example we have the laws

a:t j b : u = a : t j b : u

a:t+ b : u = a : t+ b : u

However the development of the algebraic theory of the language with insistent pre�xing

is outside the scope of these lecture notes.

Question: Formulate a sound interleaving law for insistent sum terms. 2
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A The standard laws

The �rst set of equations deal with nondeterminism:

x+ x = x (+1)

x+ y = y + x (+2)

x+ (y + z) = (x+ y) + z (+3)

x+ nil = x (+4)

The next set deal with restriction and renaming:

nilnA = nil (res1) nil[S] = nil (ren1)

a:xnA = nil (res2) (�:x)[S] = S(�):x[S] (ren2)

if a or a 2 A

�:xnA = �:(xnA) (res3) (x+ y)[S] = x[S] + y[S] (ren3)

if � and � 62 A

(x+ y) n a = x n a+ y n a (res4)

The �nal set essentially says that all the operators apart from pre�xing by an external

action are strict.

�:
 = 
 (
1) 
 n a = 
 (
4)

x+ 
 = 
 (
2) 
[S] = 
 (
5)

x j 
 = 
 (
3)

When the language is extended with the time-out construct b c( ) we also need the

obvious laws:

b
c(x) = 
 (
5)

(bxc(y))nA = bxnAc(ynA) (res5)

(bxc(y))[S] = bx[S]c(y[S]) (ren4)
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