
Computer Science Report

Location and Link Failure in a
Distributed π-calculus

Adrian Francalanza
Matthew Hennessy

Report 2005:01 January 2005

Department of Informatics
University of Sussex
Brighton BN1 9QH

ISSN 1350–3170

Location and Link Failure in a Distributed
π-calculus
A F and M H

A. We develop a behavioural theory of distributed systems in the presence of failures. The
framework we use is that of Dπ, a language in which located processes, or agents, may migrate
between dynamically created locations. These processes run on a distributed network, in which
individual nodes may fail, or the links between them may be broken. The original language, Dπ, is
extended by a new construct for detecting and reacting to these failures together with constructs that
induce failure.

We define a bisimulation equivalence between these systems, based on labelled actions which
record, in addition to the effect actions have on the processes, the actual state of the underlying net-
work and the view of this state known to observers. We prove that the equivalence is fully abstract, in
the sense that two systems will be differentiated if and only if, in some sense, there is a computational
context, consisting of a network and an observer, which can see the difference.

Contents
1 Introduction . 1
2 Dπ with location failure . 4
3 Location and Link Failure . 19
4 Full-Abstraction . 39
5 Conclusions . 60
A Notation . 63
B Auxilliary Proofs . 66

1 Introduction

It is generally accepted that location transparency is not attainable over wide-
area networks, [4], large computational infrastructures which may even span the
globe. Because of this, various location-aware calculi and programming lan-
guages have arisen in the literature; not only do these emphasise the distributed
nature of systems but they also assume that the various system components, pro-
cesses or agents, are aware of their location in the network, and perhaps, also
aware of some aspect of the underlying network topology. In these languages,
computations take place at distinct locations, physical or virtual, and processes
may migrate between the locations of which they are aware, to participate in
such computations.

It is also argued in [4] that failures, and the ability to react to them, are also an
inevitable facet of these infrastructures, which must be taken into account when
designing languages for location-aware computation. The purpose of this paper
is to:

2 Adrian Francalanza and Matthew Hennessy

• invent a simple framework, a distributed process calculus, for describing
computations over a distributed network where individual nodes and links
between the nodes are subject to failures.

• use this framework to develop a behavioural theory of distributed systems
where these failures are taken into account.

Variants of this problem have already been addressed in a number of papers, such
as the pioneering [2, 1] and subsequently [16]. In [2, 1] they seek to understand
the behavioural effects of site failure by translating a location-aware calculus in
which site failure is explicitly represented, into a location-free calculus while in
[16], they seek to develop a behavioural theory directly in terms of the location-
aware calculus itself. Our work can be seen as an extension of [16] where we
treat more general forms of failure.

Our framework is an extension of the distributed calculus Dπ [11], in which
system configurations now take the form

Π . N

where Π is a representation of the current state of the network, and N describes
the current state of the (software) system executing in a distributed manner over
the network. There is, of course, an enormous range of possibilities for Π, de-
pending on which aspects of networks we wish to model. Here, we treat two
representative examples: In this first, Π simply records the status of nodes in the
network, that is, whether they are alive or dead; this corresponds more or less
to the framework used in [2, 1] and [16]. In the second, we consider in addition
the connectivity between nodes; again there are numerous possibilities to choose
from, and as an example we consider symmetric links, rather than uni-directional
links. In this case Π will record, in addition to the status of nodes, the status of
the connections (links) between these nodes.

On the other hand, N will be more or less a standard system description from
Dπ, consisting of a collection of communicating located processes, which also
have the ability to create new locations (and their links in the network), and
to migrate between them. We will also augment the language with a construct
for reacting to network failures. We believe that this results in a succinct but
expressive framework, in which many of the phenomena associated with network
failures can be examined.

The behavioural theory is takes the form of (weak) bisimulation equivalence,
[14] based on labelled actions of the form

Π . N
µ
−→ Π′ . N′ (1)

where the label µ represents the manner in which an observer, also running on
the network Π, can interact with the system N. This interaction may change the

Location and Link Failure in a Distributed π-calculus 3

state of the system, to N′ in the usual manner, but it may also affect the nature
of the underlying network. For example, an observer may extend the network
by creating new locations; we also allow the observer to kill sites, or in the
second framework, break links between sites, thereby capturing changes in the
behaviour of N in response to dynamic failures.

In the framework with link failures, the definition of these actions turns out
to be relatively sophisticated. Intuitively, the action (1) above is meant to simu-
late the interaction between an observer and the system. However, even though
the system and the observer may initially share the same view of the underlying
network, interactions quickly give rise to situations in which these views diverge.
In general, observers may not be aware of the status of all the nodes and links
in a network because they might be unreachable; the system, on the other hand
may reach such nodes through the knowledge of scoped names. So in (1) above,
the network representation Π needs to record the actual state of the underlying
network, together with the observers partial view of it. This in turn will require
developing variations on the actions (1) above, where the actual network repre-
sentations Π, are replaced by more abstract representations.

In Section 2 we treat the case of location failure. We define the language
DπLoc, an extension of Dπ 1 [11], with an additional operator ping l.PdQe, for
checking the accessibility of a location l. We also allow in the language a con-
struct for directly killing a location; although one would not expect to program
using this construct, it’s presence means that contextual equivalences will take
into account the effect of location failure on system behaviour.

The reduction semantics, in Section 2.2 is given relative to a network repre-
sentation in which locations may be alive or dead; thus effectively ping l.PdQe,
running on any site, determines whether the site l is alive or dead. This is fol-
lowed, in § 2.3, by a labelled transition system (lts) for DπLoc, which seeks to
capture the interactions between a user and a system, running on a joint net-
work. The choice of actions in this lts is justified by the first main result in the
paper, Theorem 2.3.8, which states that the resulting (weak) bisimulation equiva-
lence coincides with a naturally defined contextual equivalence, called reduction
barbed congruence. This is a variation on the contextual equivalence originally
defined for CCS, [14], in [17], proposed in [13], and adapted to Dπ in [8]. This
result may be considered to be a generalisation of the work in [16], which treated
a simple distributed version of CCS with no dynamic location creation, to Dπ.

In Section 3, the truly novel part of the paper, we add permanent link fail-
ure. The resulting language, DπF, is essentially the same as DπLoc, except that
it also contains a construct for breaking links between nodes. However, the re-

1For convenience, we ignore most of the type system developed for Dπ, as it is orthogonal to the
issues addressed in this paper

4 Adrian Francalanza and Matthew Hennessy

duction semantics is now given relative to network configuration, ranged over
by ∆, which record both the status of nodes and their connectivity. Interestingly,
ping l.PdQe executed on site k, now checks whether l is accessible from k; it
may not be accessible either because l is dead or because the link between l and
k is broken. Moreover, in DπF, node creation is more complicated, since one
must also specify the connectivity of a new node; in DπF this is achieved using
a simple type system.

In § 3.3 we present a variation of the actions (1) above for DπF. It turns out
that much of the information in the network representations ∆ is irrelevant; for
example if a node k is dead, then it does not matter whether or not it contains a
link to another node l. We argue that actions must be expressed as

Σ . N
µ
−→ Σ′ . N′ (2)

where Σ, Σ′ are structures which provide sufficient information to determine
both:

• the aspects of the actual networks ∆, ∆′ relevant to users.

• the user’s (partial) knowledge of the actual network.

The resulting bisimulation equivalence can be used to demonstrate equiva-
lencies between systems. At this point we show, through a series of examples,
that in general, this bisimulation is too discriminating. We therefore revise the
definition of these actions in § 3.4, essentially by abstracting from internal in-
formation present in the action labels, such that the resulting equivalence again
coincides with contextual equivalence. The proof, which is quite technical, is
then elaborated in Section 4.

The paper ends with a section on conclusions, suggestions for further re-
search, and a description of related work.

2 Dπ with location failure

In this section we present an extension to Dπ called DπLoc, in which fail-stop
location failure can be expressed.

2.1 DπLoc syntax

The syntax of DπLoc is given in Table 1 and assumes a set of variables, V,
ranged over by x, y, z, . . ., and a separate set of names, N, ranged over by
n,m, This latter set is divided into locations, L, ranged over by l, k, . . .
and channels, C, ranged over by a, b, c, We use u, v, . . . to range over
the set of identifiers, consisting of variables and names. When new names are
created, they have associated with them a type, indicating whether they are to be
used as a channel, ch, or as a location, loc[S] with state S, which can either be
alive,a, or dead, d. A priori, there is not much sense in declaring a dead location,

Location and Link Failure in a Distributed π-calculus 5

Table 1. Syntax of typed DπLoc

Types
T, U ::= loc[S] | ch S, R ::= a | d

Processes
P,Q ::= u!〈V〉.P | u?(X).P | ∗ u?(X).P | if v=u.PdQe | P|Q

| (ν n :T)P | go u.P | kill | ping u.PdQe | 0

Systems
M,N,O ::= l[[P]] | N|M | (ν n :T)N

but the presence of this construct will facilitate the definition of the reduction
semantics.

There are three syntactic categories in DπLoc. The first, local processes
ranged over by P,Q, includes the standard π-calculus constructs for communica-
tion, a!〈V〉.P and a?(X).P, replicated input, ∗a?(X).P, name restriction (ν n :T)P,
where T types n as a channel or a location name, comparison if v = u.PdQe, in-
action, 0, and parallel composition, P|Q. The values transmitted as part of a
communication, ranged over by V , consist of tuples of identifiers. When input
on a channel, they are deconstructed using patterns, ranged over by X; patterns
are simply tuples of variables, each having a unique occurrence.

The major innovation is a programming construct which allows processes to
react to perceived faults in the underlying communication network. In addition to
the Dπ migration construct go l.P, [11], we add a testing construct, ping l.PdQe,
inspired from [2, 1, 16]. This constructs acts as a conditional, based on the
perceived state of the location l; thus if l is reachable, it launched process P,
otherwise it launches Q.

As explained in the introduction, we also wish to consider the behaviour of
systems under dynamic network faults. To simulate these instances, we also
add to the language a construct for inducing faults, kill; even though this should
not be considered part of the core language, its inclusion means that contextual
equivalences will compare system behaviour in the presence of dynamic fail-stop
[18] location failure.

The second syntactic category, ranged over by N,M, systems, is similar to
that category in Dπ. They consist of located processes, terms of the form l[[P]],
which can be composed together with the parallel operator N | M and scoped
to share private names as (ν n : T)N. Note that, as with local processes, scoped
names always have associated types; in the case of locations, these type carry the

6 Adrian Francalanza and Matthew Hennessy

state of the scoped location (dead or alive).
In contrast to Dπ, DπLoc uses also an additional third level of configurations.

At this level, we have a representation of the network on which the system is
running. A typical configuration takes the form

Π . N

where Π represents the network state. This network representation is made up of
two components 〈N ,D〉:

• N is a set of all the free names used in the system N of the configuration.
It contains both channel and location names and thus satisfies the condition
N ⊆ N.

• D is referred to as a deadset, representing resources that cannot be used
because a fault occurred to them. Since in DπLoc we only consider location
failure,D is a set of dead location names,D ⊆ loc(N), where loc(N) denotes
the location names in N .

For an arbitrary Π we use ΠN and ΠD to refer to its individual components.

Notation 2.1.1. The input constructs are binders for variables, while the scoping
constructs (ν n : T)N and (ν n : T)P are binders for names. We assume the usual
concepts of free and bound occurrences, and the associated notation, such as α-
conversion and capture avoiding substitution of names for variables. Terms with
no occurrences of free variables are called closed, and in the sequel, we will
assume that all system level terms and configurations are closed.

Throughout the report a number of abbreviations are used to improve the
readability of code. We often omit occurrences of 0 in synchronous constructs
like input, output and conditional constructs. Thus, a?(X), a!〈V〉, if n = m.P
and ping l.dQe are shorthand for a?(X).0, a!〈V〉.0, if n=m.Pd0e and ping l.0dQe
respectively. Similarly, the abbreviation if n , m.P is stands for if n = m.0dPe.
Also a?().P denotes an input where the binding variable does not occur in P and
a!〈〉.P denotes an output where no value is sent. We also write go l1, . . . , ln.P
as an abbreviation to the nested moves go l1.(. . . (go ln.P)). Finally we will also
omit occurrences of types from terms, unless they are relevant to the discussion
at hand. �

2.2 The reduction semantics of DπLoc

The reduction semantics of DπLoc is defined as a binary relation between well-
formed configurations.

Definition 2.2.1 (Well-Formed Configurations). A configuration Π . N is said
to be well formed if every free name occurring in N is in ΠN . �

Location and Link Failure in a Distributed π-calculus 7

Table 2. Local Reduction Rules for DπLoc

Assuming Π ` l :alive

(r-comm)

Π . l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ Π . l[[P]] | l[[Q{V/X}]]

(r-rep)

Π . l[[∗a?(X).P]] −→ Π . l[[a?(X).(P| ∗ a?(X).P)]]

(r-eq)

Π . l[[if u=u.PdQe]] −→ Π . l[[P]]

(r-neq)

Π . l[[if u=v.PdQe]] −→ Π . l[[Q]]
u , v

(r-fork)

Π . l[[P|Q]] −→ Π . l[[P]] | l[[Q]]

The judgements of the reduction semantics are therefore of the form

Π . M −→ Π′ . M′

where Π . M, Π′ . M′ are well-formed configurations. The relation is defined to
be the least one which satisfies the set of of rewriting rules in Table 2, Table 4
and Table 3. In the first batch of reduction rules (Table 2) we adapt the standard
axioms for reduction in Dπ from [10]. The main change is all reductions, such as
communication in the rule (r-comm) and testing for equality between identifiers,
(r-eq) and (r-neq), require the location of the activity be alive in the network; there
is the global requirement that Π ` l :alive, which formally means that l must not
be in ΠD. Throughout the paper we use various notation for checking the status
of a network, or updating it; this will be explained informally as it is introduced,
with the formal definitions relegated to the appendix.

The rules for the novel constructs are in Table 3. Code migration is still
asynchronous, but is now subject to the current state of the network: (r-go) says
that if the destination location k is accessible from the source location l, denoted
as Π ` k← l, then the migration will be successful; otherwise, if k is inaccessible
from l, Π 0 k← l, then (r-ngo) states that the migration fails and the migrating
code is lost. Similarly, the ping construct, continues as P at l if k is accessible
from the current location but branches to Q at l if k is inaccessible. We note that
in DπLoc, the only way for k to be inaccessible from l, is when the former is
dead; later on in the paper, accessibility will also depend on the links between

8 Adrian Francalanza and Matthew Hennessy

Table 3. Network Reduction Rules for DπLoc

Assuming Π ` l : alive

(r-go)

Π . l[[go k.P]] −→ Π . k[[P]]
Π ` k← l

(r-ngo)

Π . l[[go k.P]] −→ Π . k[[0]]
Π 0 k← l

(r-ping)

Π . l[[ping k.PdQe]] −→ Π . l[[P]]
Π ` k← l

(r-nping)

Π . l[[ping k.PdQe]] −→ Π . l[[Q]]
Π 0 k← l

(r-new)

Π . l[[(ν n :T)P]] −→ Π . (ν n :T) l[[P]]

(r-kill)

Π . l[[kill]] −→ (Π − l) . l[[0]]

locations. Dynamic network faults are engendered in the obvious manner by (r-
kill), and finally (r-new), allows us to export locally generated new names to the
system level, as in Dπ.

The rules in Table 4 are adaptations of standard rules for the π-calculus. For
instance, the first rule, (r-str), states that the reduction semantics is defined up to
a structural equivalence, defined in the usual manner, as the least equivalence
relation on systems which satisfies the set of rules and axioms in Table 5. The
remaining reduction rules in Table 4 state that reduction is preserved by parallel
composition and name scoping operations on configurations. But note that the
rule for scoping, (r-ctxt-rest), uses an obvious notation Π + n : T for extending
network representations with new names, which is formally defined in the Ap-
pendix. Note also that this rule needs to allow for the type of the scoped name
to change; this is because types for locations actually carry dynamic state in-
formation, namely whether they are alive or dead, as explained in the following
example.

Example 2.2.2. Consider the following system

Π . k[[go l.a?(x).P]] | l[[(ν k0 :loc[a])(a!〈k0〉.Q | go k0.kill)]] (3)

where Π is the network representation 〈{l, k, a}, ∅〉, consisting of the two live
locations l, k; the addition of the construct go k0. kill indicates that we wish to
consider the newly created location k0, as defective, and thus it may become
faulty some time in the future.

Location and Link Failure in a Distributed π-calculus 9

Table 4. Contextual Reduction Rules for DπLoc

(r-str)
Π . N′ ≡ Π . N Π . N −→ Π′ . M Π′ . M ≡ Π′ . M′

Π . N′ −→ Π′ . M′

(r-ctxt-rest)
Π + n : T . N −→ Π′ + n : U . M
Π . (ν n : T)N −→ Π′ . (ν n : U)M

(r-ctxt-par)
Π . N −→ Π′ . N′

Π . N|M −→ Π′ . N′|M
Π . M|N −→ Π′ . M|N′

Π ` M

Table 5. Structural Rules for DπLoc

(s-comm) N|M ≡ M|N
(s-assoc) (N|M)|M′ ≡ N|(M|M′)
(s-unit) N|l[[0]] ≡ N
(s-extr) (ν n :T)(N|M) ≡ N|(ν n :T)M n < fn(N)
(s-flip) (ν n :T)(νm :U)N ≡ (νm :U)(ν n :T)N
(s-inact) (ν n :T)N ≡ N n < fn(N)

As in Dπ, an application of (r-go), based on the fact that both k and l are alive,
and (r-par-ctxt) on (3), yields

Π . l[[a?(x).P]] | l[[(ν k0 :loc[a])a!〈k0〉.Q | go k0.kill]]

which can be followed by an application of (r-fork), (r-new) (and (r-par-ctxt)) to
launch a new location k0 and get

Π . l[[a?(x).P]] | (ν k0 :loc[a])(l[[a!〈k0〉.Q]] | l[[go k0.kill]])

At this point, we can perform a communication on channel a using (r-par-comm),
thereby enlarging the scope of (ν k0 : loc[a]) through the structural rule (s-extr)
and obtain

Π . (ν k0 :loc[a])(l[[P{k0/x}]] | l[[Q]] | l[[go k0.kill]]) (4)

At this point we can analyse the novel reductions in DπLoc. In (4) the fault
inducing process go k0.kill can move to k0 since k0 is described as alive by the
type loc[a], thereby obtaining

Π . (ν k0 :loc[a])(l[[P{k0/x}]] | l[[Q]] | k0[[kill]]) (5)

10 Adrian Francalanza and Matthew Hennessy

Finally, (r-kill), followed by (r-ctxt-par), can be used to kill k0 and derive

(Π + k0 :loc[a]) . l[[P{k0/x}]] | l[[Q]] | k0[[kill]] −→

(Π + k0 :loc[d]) . l[[P{k0/x}]] | l[[Q]] | k0[[0]]

where the type of k0 changes from loc[a] to loc[d], and thus, an application of
(r-ctxt-rest) reduces (5) to

Π . (ν k0 :loc[d])(l[[P{k0/x}]] | l[[Q]] | k0[[0]]) (6)

�

This example also serves to illustrate another important point that we shall
refer to repeatedly in this report. In general, in a configuration

Π . N

Π denotes the network representation on which the system N is running. But
there may be subsystems of N which are running on extended (internal) net-
works. For example in (3) above, the subsystem l[[a!〈k0〉.Q]] is running with
respect to the network represented by (Π + k0 :loc[a]), while in (6) the subsys-
tem l[[Q]] is running with respect to (Π + k0 :loc[d]).

Reduction barbed congruence

In view of the reduction semantics, we can now adapt the standard approach
[9, 8] to obtain a contextual equivalence for DπLoc; we use the variation first
proposed in [12]. We wish to compare the behaviour of systems running on the
same network; consequently we use the following framework, borrowed from
[8]:

Definition 2.2.3 (Typed Relation). A typed relation over systems is a family of
binary relations between systems, R, indexed by network representations. We
write Π |= M R N to mean that systems M and N are related by R at index Π,
that is M RΠ N, and moreover Π . M and Π . N are valid configurations. �

The definition of our equivalence hinges on what it means for a typed relation
to be contextual, which must of course take into account the presence of the
network. Our definition has two requirements:

• systems running on the network Π must be considered equivalent by all ob-
servers also running on Π

• systems must remain equivalent when the network is extended by new loca-
tions.

First let us define what kinds of observing systems are allowed to run on a given
network.

Location and Link Failure in a Distributed π-calculus 11

Definition 2.2.4 (Observers). The intuition of valid observer system O in a dis-
tributed setting Π, denoted as Π `obs O, is that O originates from some live
fresh location k0, migrates to any location in loc(ΠN) to interact with (observe)
processes there and then returns back to the originating fresh location k0 to com-
pare its observations with other observers. For convenience, we often omit the
mentioning of the fresh locations k0 and place observing code immediately at
locations in loc(ΠN). We note that, according to the definition of the reduction
rule (r-ngo), observing code can never reach dead locations and we therefore have
to encode this in our definition of Π `obs O. For convenience, we also disallow
observer to be located at scoped dead loactions, denoted as Π `obs T and defined
in the Appendix. Π `obs O is recursively defined as:-

• Π `obs l[[P]] if fn(P) ⊆ ΠN and Π ` l : alive

• Π `obs (ν n :T)N if Π `obs T and (Π + n :T) `obs N

• Π `obs M | N if Π `obs M and Π `obs N �

Definition 2.2.4, defining allowed observer systems, determines the defini-
tion of contextuality given below.

Definition 2.2.5 (Contextual typed relations). A typed relation R over config-
urations is contextual if:

(Parallel Systems)

•
Π |= M R N

and Π`obs O
implies

− Π |= M|O R N|O
− Π |= O|M R O|N

(Network Extensions)

•
Π |= M R N

and Π`obs T, n fresh
implies Π+n :T |= M R N

�

Definition 2.2.6 (Reduction barbed congruence). First we define the adapta-
tion of the other standard relations required to define reduction barbed congru-
ence.

• Π . N ⇓a@l denotes an observable barb exhibited by the configuration Π . N,
on channel a at location l. Formally, it means thatΠ.N −→∗ Π′ .N′ for some
Π′ . N′ such that N′ ≡ M|l[[a!〈V〉.Q]] and Π ` l : alive. Then, we say a typed
relation R over configurations is barb preserving whenever Π |= N R M and
Π . N ⇓a@l implies Π . M ⇓a@l.

• A typed relation R over configurations is reduction closed whenever Π |=
N R M and Π . N −→ Π′ . N′ implies Π .M −→∗ Π′ .M′ for some I′ .M′

such that Π′ |= N′ R M′.

12 Adrian Francalanza and Matthew Hennessy

Then �, called reduction barbed congruence, is the largest symmetric typed
relation over configurations which is:

• barb preserving

• reduction closed

• contextual �

We leave the reader to check that pointwise � is an equivalence relation.

Example 2.2.7. Consider the systems onePkt and twoPkt defined as:

onePkt⇐ l[[go k.(a!〈〉|b!〈〉)]]

twoPkt⇐ l[[go k.a!〈〉]] | l[[go k.b!〈〉]]

They represent two different strategies for sending the messages a!〈〉|b!〈〉 from
l to k. The first system, onePkt, transfers the two messages as one unit (one
packet), whereas the second system, twoPkt, uses a distinct packet for every
message. In a calculus with no network failure, it would be hard to distinguish
between these two systems.

The two configurations are however not reduction barbed congruent in our
calculus when run over the network Πlk = 〈{l, k, a, b}; ∅〉, in which l, k are alive.
This is formally stated as

Πlk |= onePkt 6� twoPkt

and the reason why they are not is because they can exhibit different behaviour
when l is subject to failure during the transfer of the packets. Formally, we
can examine the behaviour of systems under this situation by considering their
behaviour in the context

C[−] = [−] | l[[kill]]

By Definition 2.2.6, if we assume that Πlk |= onePkt � twoPkt , then contextu-
ality of � would imply

Πlk . onePkt | l[[kill]] � Πlk . twoPkt | l[[kill]]

But we can show directly that the latter cannot be true, thereby contradicting our
assumption. For example, using the reduction rules of Tables 2, 4 and 3 we can
derive the following sequence of reductions for Πlk . twoPkt | l[[kill]]:

Πlk . l[[go k.a!〈〉]] | l[[go k.b!〈〉]] | l[[kill]] −→ Πlk . k[[a!〈〉]] | l[[go k.b!〈〉]] | l[[kill]]

−→ Πk . k[[a!〈〉]] | l[[go k.b!〈〉]]

−→ Πk . k[[a!〈〉]]

where Πk is the network representation in which l is dead, that is 〈{l, k, a, b}; {l}〉

Location and Link Failure in a Distributed π-calculus 13

We also note that

Πk . k[[a!〈〉]] ⇓a@k

Πk . k[[a!〈〉]] 6⇓b@k

However the left hand side, Πlk . onePkt | l[[kill]] can never reduce to a configura-
tion with such barbs. Formally, there is no configuration Π . N such that

Πlk . l[[go k.(a!〈〉|b!〈〉)]] | l[[kill]] −→∗ Π . N

where Π . N ⇓a@k and Π . N 6⇓b@k. �

Example 2.2.8. Consider the two systems:

nonDet1⇐ (ν k :loc[a]) k[[kill]] | k[[go l.a!〈〉]]

nonDet2⇐ (ν b :ch) l[[b!〈〉]] | l[[b?()]] | l[[b?().a!〈〉]]

Both systems exhibit a barb a@l depending on different forms of non-deterministic
internal choices; the internal choice used by nonDet1 is based on a scoped loca-
tion k that may fail while the internal choice used by nonDet2 is based on two
inputs competing for a single scoped output on channel b.

It turns out that these two systems are observationally equivalent when run
over the simple network Πl = 〈{l, a}, ∅〉, formally stated as

Πl |= nonDet1 � nonDet2

Nevertheless, Definition 2.2.6 exhibits a major limitation at this point, because
it makes it quite hard to prove such an equivalence. Such a complication arises
from the fact that the definitions of reduction barbed congruence requires us to
reason about the behaviour of the two configurations under all possible contexts,
which are infinite. �

Example 2.2.9. Here we consider three implementations of a simple (abstract)
server, executing on a network Π = 〈{l, k1, k2, serv, ret}; ∅〉 where three locations
l, k1 and k2 are alive. The first is the most straightforward:

server⇐ (ν data :ch)(l[[req?(x, y).data!〈x, y〉]] | l[[data?(x, y).y!〈 f (x)〉]])

It simply takes in a request at the port req consisting of an argument, x, and a re-
turn channel on which to return the answer of the request, y. The server proceeds
by forwarding the two parameters, x and y to an internal database, denoted by the
scoped channel data; intuitively, the database looks up the mapping of the value
x using some unspecified function f () and returns the answer, f (x), back onport
y. The key aspect of this server is that all the processing is performed locally
at location l. A typical client for such a server would have the following form,
sending the name l as the value to be processed and ret as the return channel:

client⇐ l[[req!〈l, ret〉]]

14 Adrian Francalanza and Matthew Hennessy

By contrast, the next two server implementations introduce a degree of dis-
tribution, by processing the request across a number of locations:

srvDis⇐ (ν data :ch)

(
l[[req?(x, y).go k1.data!〈x, y〉]]
| k1[[data?(x, y).go l.y!〈 f (x)〉]]

)

srv2Rt⇐ (ν data :ch)



l



req?(x, y).(ν sync :ch)


go k1.data!〈x, sync〉
| go k2, k1. data!〈x, sync〉
| synch?(x).y!〈x〉







| k1

[[
data?(x, y).

(
go l. y!〈 f (x)〉
go k2, l. y!〈 f (x)〉

)]]



Both servers, srvDis and srv2Rt, distributed the internal database remotely at
location k1. Server srvDis thus receives a client request at l, migrates directly
to k1 and queries the database; the database then returns to l and reports back
the processed value, f (x), on the requested return channel y. The other server,
srv2Rt, accepts a client request at l, but attempts to access the unique remote
database located at k1 through two different routes, one directly from l to k1 and
the other indirectly from l through the intermediate node k2 and then finally to
k1 where the database resides; similarly, the internal database of srv2Rt returns
the answer f (x) on y along these two routes. In a scenario where no fault occurs
to k1 and k2, srv2Rt will receive two answers back at l. To solve this, the orig-
inal requests are sent with a scoped return channel sync; a process waiting for
answers on this channel at location l chooses non-deterministically between any
two answers received and relays the answer on the original channel y.

We leave the reader to check that the local server, server and remote imple-
mentations, srvDis and srv2Rt, are different, that is:

Π |= server 6� srvDis and Π |= server 6� srv2Rt

because of their behaviour in the context

C2[−] = [−] | k1[[kill]]

However, it turns out that the two remote server implementations are reduction
barbed congruent in DπLoc:

Π |= srvDis � srv2Rt

Unfortunately, Definition 2.2.6 makes it hard to prove this statement because it
uses quantification over all possible contexts. �

Due to the problems associated with Definition 2.2.6, we need an inductive
definition of behavioural equivalence that is easier to prove but still consistent
with reduction barbed congruence. In the remainder of this section we define
a bisimulation equivalence which allows us to relate DπLoc configurations in

Location and Link Failure in a Distributed π-calculus 15

Table 6. Operational Rules(1) for DπLoc

Assuming Π ` l :alive

(l-out)

Π . l[[a!〈V〉.P]]
l:a!〈V〉
−−−−−→ Π . l[[P]]

(l-in)

Π . l[[a?(X).P]]
l:a?(V)
−−−−−→ Π . l[[P{V/X}]]

V ⊆ ΠN

(l-in-rep)

Π . l[[∗a?(X).P]]
τ
−→ Π . l[[a?(X).(P | ∗a?(Y).P{Y/X})]]

(l-eq)

Π . l[[if u=u.PdQe]]
τ
−→ Π . l[[P]]

(l-neq)

Π . l[[if u=v.PdQe]]
τ
−→ Π . l[[Q]]

u , v

(l-fork)

Π . l[[P | Q]]
τ
−→ Π . l[[P]] | l[[Q]]

a tractable manner. It will turn out that this bisimulation equivalence coincides
with reduction barbed congruence.

2.3 A bisimulation equivalence for DπLoc

We start by defining the labelled transition system on which we base our defini-
tions of bisimulation equivalence.

Definition 2.3.1 (A labelled transition system for DπLoc). This consists of a

collection of actions Π . N
µ
−→ Π′ . N′, where µ takes one of the forms:

• τ, representing internal action

• (ñ : T̃)l : a?(V), representing the input of the value V along the channel a,
located at l. Here ñ : T̃ denotes the fresh names ñ and their respective state
information T̃, introduced by an observer (context) as part of this action.

• (ñ : T̃)l : a!〈V〉, the output of the value V along the channel a, located at
l. Here ñ : T̃ represented the names ñ which are exported to an observer
(context) as part of this action, together with their associated new state infor-
mation T̃.

• kill : l, representing the killing of location l by an observer (context). �

The transitions in the lts for DπLoc are defined as the least relations satisfying
the axioms and rules in Tables 6, 8 and 7. Table 6 contains standard operational

16 Adrian Francalanza and Matthew Hennessy

Table 7. Operational Rules(2) for DπLoc

(l-open)

Π + n :T . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ Π′ . N′

Π . (ν n :T)N
(n:T, ñ:̃T)l:a!〈V〉
−−−−−−−−−−−→ Π′ . N′

l, a , n ∈ V

(l-weak)

Π + n :T . N
(ñ:̃T)l:a?(V)
−−−−−−−−→ Π′ . N′

Π . N
(n:T, ñ:̃T)l:a?(V)
−−−−−−−−−−−→ Π′ . N′

l, a , n ∈ V

(l-rest)

Π + n :T . N
µ
−→ Π′ + n :U . N′

Π . (ν n :T)N
µ
−→ Π′ . (ν n :U)N′

n < fn(µ)

(l-par-ctxt)

Π . N
µ
−→ Π′ . N′

Π . N|M
µ
−→ Π′ . N′|M

Π . M|N
µ
−→ Π′ . M|N′

Π ` M

(l-par-comm)

Π . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ Π′ . N′ Π . M

(ñ:̃T)l:a?(V)
−−−−−−−−→ Π′′ . M′

Π . N|M
τ
−→ Π . (ν ñ : T̃)(N′|M′)

Π . M|N
τ
−→ Π . (ν ñ : T̃)(M′|N′)

rules inherited from distributed π-calculi such as Dπ; note, however, that actions
can only occur at live locations. The rules in Table 7 are also adaptations of the
standard rules for actions-in-context from [9] together with the rule (l-par-comm),
for local communication. Here, we highlight the rule (r-weak), dealing with the
learning of the existence of new location names and their state as a result of
an input from the context; this rule was adopted from a variant used already in
[9, 8]. Note also the general form of (l-rest), where the type of n may change
from T to U; this phenomena is inherited directly from (r-ctxt-rest) of Table 4 in
the reduction semantics and explained in Example 2.2.9.

The rules dealing with the new constructs of DπLoc, are contained in Table 8,
most of which are inherited from the reduction semantics. The only new one is
(l-halt), where the action kill : l represents a failure induced by an observer. This
is in contrast with the rule (l-kill), where l is killed by the system itself and the
associated action is τ.

Location and Link Failure in a Distributed π-calculus 17

Table 8. Operational Rules(3) for DπLoc

Assuming Π ` l : alive

(l-kill)

Π . l[[kill]]
τ
−→ (Π − l) . l[[0]]

(l-halt)

Π . N
kill:l
−−−→ (Π − l) . N

(l-new)

Π . l[[(ν n :T)P]]
τ
−→ Π . (ν n :T)l[[P]]

(r-go)

Π . l[[go k.P]]
τ
−→ Π . k[[P]]

Π ` k← l

(r-ngo)

Π . l[[go k.P]]
τ
−→ Π . k[[0]]

Π 0 k← l

(r-ping)

Π . l[[ping k.PdQe]]
τ
−→ Π . l[[P]]

Π ` k← l

(r-nping)

Π . l[[ping k.PdQe]]
τ
−→ Π . l[[Q]]

Π 0 k← l

The first sanity check we prove about our lts is the property that in an action

Π . N
µ
−→ Π′ . N′

were µ is an external action, the residual network Π′ is completely determined
by the network Π and the external action µ.

Definition 2.3.2 (Action residuals). The partial function after from tuples of
network representations Π and external actions µ to network representation is
defined as:

• Π after (ñ : T̃)l : a!〈V〉 is defined as Π + ñ : T̃

• Π after (ñ : T̃)l : a?(V) is defined as Π + ñ : T̃

• Π after kill : l is defined as Π − l �

Proposition 2.3.3. If Π . N
µ
−→ Π′ . N′ where µ is an external action, then Π′

coincides with Π after µ

Proof. A straightforward induction on the inference of Π . N
µ
−→ Π′ . N′. �

18 Adrian Francalanza and Matthew Hennessy

The second sanity check is that the actions are indeed well-defined relations
over configurations.

Proposition 2.3.4. The lts defined in Definition 2.3.1 forms a binary relation

between well-defined configurations. That is, if Π . N
µ
−→ Π′ . N′ and Π ` N

then Π′ ` N′.

Proof. By induction on the derivation of the action Π . N
µ
−→ Π′ . N′. Note

that if µ is an external action then Proposition 2.3.3 gives the precise form of Π′.
Moreover if it is the internal action τ then it is possible to prove that Π′ either
coincides with Π or takes the form Π − l for some l live in Π. �

Using the lts of actions we can now define, in the standard manner, weak
bisimulation equivalence over configurations. Our definition uses the standard

notation for weak actions, namely
µ
=⇒ denotes =⇒

µ
−→=⇒, and

µ̂
=⇒ denotes

•
τ

−→∗ if µ = τ

•
µ
=⇒ otherwise.

Definition 2.3.5 (Weak bisimulation equivalence). This is denoted as ≈, and is
defined to be the largest typed relation over configurations such that if Π |= M ≈
N then

• Π . M
µ
−→ Π′ . M′ implies Π . N

µ̂
=⇒ Π′ . N′ such that Π′ |= M′ ≈ N′

• Π . N
µ
−→ Π′ . N′ implies Π . M

µ̂
=⇒ Π′ . M′ such that Π′ |= M′ ≈ N′ �

Equipped with our bisimulation definitions, we revisit some equivalence ex-
amples introduced in § 2.2 and show that they can be tractably proved to be
equivalent. But before, we prove a useful result that allows us to give bisimula-
tions up-to structural equivalence.

Proposition 2.3.6 (Structural equivalence and bisimulation). Let us define
structural equivalence over configurations in the obvious way, overloading the
symbol ≡, that is:

Π . M ≡ Π . N iff M ≡ N and Π ` M,N

Similar to any typed relation so far, we abbreviateΠ.M ≡ Π.N toΠ |= M ≡ N.
We now can state that structural equivalence over configurations is a bisimulation
relation. Stated otherwise, ≡ ⊆ ≈

Proof. We proceed by defining the R as:

R = {Π |= M R N | Π |= M ≡ N}

Location and Link Failure in a Distributed π-calculus 19

It is clear that R is a typed relation; we only have to show that R it is a bisimula-
tion. The proof proceeds by induction on the structure of Π . M and Π . N. �

Example 2.3.7. We recall that in Example 2.2.8, we claimed that Πl . nonDet1
was equivalent to Πl . nonDet2. We here show that they are bisimilar, by giving
the relation R defined as:

R =

{
〈Πl . M , Πl . N〉
〈Πl − l . M , Πl − l . N〉

〈M,N〉 ∈ Rsys

}

where:

Rsys =



〈nonDet1 , nonDet2〉
〈(ν k :loc[a]) k[[kill]] | l[[a!〈〉]] , (ν b :ch) l[[b?()]] | l[[a!〈〉]]〉
〈(ν k :loc[d]) l[[a!〈〉]] , (ν b :ch) l[[b?()]] | l[[a!〈〉]]〉
〈(ν k :loc[d]) k[[go l.a!〈〉]] , (ν b :ch) l[[b?().a!〈〉]]〉
〈(ν k :loc[a]) k[[kill]] , (ν b :ch) l[[b?()]]〉
〈(ν k :loc[d]) k[[0]] , (ν b :ch) l[[b?()]]〉


�

Of course we need to justify the use of bisimulations to relate systems. This
is provided by the following result:

Theorem 2.3.8 (Soundness and Completeness for DπLoc). In DπLoc, Π |=
N≈M if and only if Π |= N � M. �

We omit the proof, as the result can be derived from the second characterisa-
tion result of the paper Theorem 4.1.10.

3 Location and Link Failure

In this section we extend the network representation to describe the state of phys-
ical links between sites. As explained in the Introduction, in such a setting we
can then represent connectivity failures, resulting from faults in links between
locations. Moreover, the liveness of such links affects in turn the semantics of
ping, the construct used to detect faults.

The core language remains the same, although we need to add a new con-
struct to induce link faults. With this extended notion of a network we redo the
previous section, obtaining similar results; however the development is consid-
erably more complicated.

3.1 DπF syntax

The syntax of DπF is a minor extension to that of DπLoc; Table 9 highlights the
novelties. The main one is that new types are required for locations. Now when
a new location is declared, in addition to its live/dead status, we have to also

20 Adrian Francalanza and Matthew Hennessy

Table 9. Syntax of DπF

Types

T, U, W ::= ch | loc[S, C]
S, R ::= a | d
C, D ::= {u1, . . . , un}

Processes
P,Q ::= . . . | break l

Systems
N,M ::= . . .

describe the live connections to other locations. Thus, in DπF, a location type is
denoted as loc[S, C], where the first element S is inherited from Section 2, and
the second element C is a set of locations {l1, . . . , ln}. If a new k location is de-
clared at this type, then it is intended to be linked in the underlying network with
each of the locations li, although there will be complications; see Example 3.2.1.
The only other modificiation to the syntax is the addition of the process construct
break l, which breaks a live connection between the location hosting the process
and location l. Contextual equivalences then take into account the effect of link
faults on system behaviour, in the same manner as the presence of kill takes node
faults into account.

The final major extension in the DπF syntax is in the network representa-
tion; in a setting where not every node is interconnected, the network represen-
tation needs also to represent which nodes are connected apart from their current
alive/dead status.

Definition 3.1.1 (Network representation). First let us introduce some notation
to represent the links in a network. A binary relation L over locations is called a
link set if it is:

• symmetric, that is, 〈l, k〉 ∈ L implies 〈k, l〉 is also in L

• reflexive, that is, 〈l, k〉 ∈ L implies 〈l, l〉 and 〈k, k〉 are also in L.

The latter property allows the smooth handling of the degenerate case of a pro-
cess moving from a site l to l itself. Also for any linkset L we let dom(L) denote
its domain; that is the collection of locations l, such that 〈l, l〉 ∈ L.

Then a network representation ∆ is any triple 〈N ,D,L〉 where

• N is a set of names, as before; we now use loc(N) to represent the subset of
N which are locations

Location and Link Failure in a Distributed π-calculus 21

• D ⊆ loc(N) represents the set of dead locations, as before.

• L ⊆ loc(N) × loc(N) represents the set of connections between locations �

As with DπLoc network representations, we use the notation ∆N , ∆D and
∆L to refer to the individual components of ∆. We will also have various nota-
tion for checking properties of DπF network representations, and updating them;
these will be explained informally, with the formal definitions relegated to the
Appendix.

3.2 Reduction Semantics of DπF

The definition of well-formed configurations, Definition 2.2.1 generalises in a
straightforward manner: we say ∆ . M is a well-formed configuration if every
free name occuring in M is also in ∆N . Then the judgements of the reduction
semantics take the form

∆ . M −→ ∆′ . M′

where ∆ . M and ∆′ . M′ are well-formed configurations. This is defined as
the least relation which satisfies the rules in Table 2 and Table 4 (substituting
∆ for Π) , all inherited from the reduction rules for DπLoc, together with the
new reduction rules of Table 10, which we now explain. We note that, as usual,
all of these rules require that the location where the activity is to occur is alive,
∆ ` l : alive.

The most subtle but important changes to the network reductions rules are
those concerning the constructs go and ping. Even though the general intuition
remains the same to that of § 2.2, the former notion of k being accessible from l,
used by rules such as (r-go) and (r-nping), and still denoted as ∆ ` k← l, changes;
for k to be accessible from l, two conditions must hold, namely that k is alive
and that the link between l and k is alive as well. If any of these two conditions
do not hold, then k is deemed to be inaccessible from the point of view of l,
denoted as before as ∆ 0 k← l. The more complex network representation has
also an impact on the information that can be gathered by the construct ping; in
DπLoc, if ping reduced using (r-nping), it meant that the location being tested for
was dead; in DπF however, such a reduction merely means that the destination
is inaccessible, which could be caused by a dead destination location, a broken
link to the destination location or both.

At this point we note that, in DπF, since not every node is interconnected, it
makes more sense to talk about reachability rather accessibility between nodes.
A node k is reachable from l in ∆, denoted as ∆ ` kf l, if it is accessible using
one or more migrations; the formal definition is relegated to the Appendix.

The other main change in Table 10 is the rule for creating new locations, (r-
newl); here, the links to the new location k need to be calculated and the network
∆ updated. This is achieved by the function inst(T, l,∆), the formal definition

22 Adrian Francalanza and Matthew Hennessy

Table 10. New Network Reduction Rules for DπF

Assuming ∆ ` l : alive

(r-go)

∆ . l[[go k.P]] −→ ∆ . k[[P]]
∆ ` k← l

(r-ngo)

∆ . l[[go k.P]] −→ ∆ . k[[0]]
∆ 0 k← l

(r-ping)

∆ . l[[ping k.PdQe]] −→ ∆ . l[[P]]
∆ ` k← l

(r-nping)

∆ . l[[ping k.PdQe]] −→ ∆ . l[[Q]]
∆ 0 k← l

(r-newc)

∆ . l[[(ν c :ch) P]] −→ ∆ . (ν c :ch) l[[P]]

(r-newl)

∆ . l[[(ν k :loc[S, C]) P]] −→ ∆ . (ν k :loc[S, D]) l[[P]]
loc[S, D] = inst(loc[S,C], l,∆)

(r-kill)

∆ . l[[kill]] −→ (∆ − l) . l[[0]]

(r-brk)

∆ . l[[break k]] −→ (∆ − l↔k) . l[[0]]
∆ ` l↔k

Table 11. New Structural Rules for DπF

. . .

(s-flip-1) (ν n :T)(νm :U)N ≡ (νm :U)(ν n :T)N n < fn(U)
(s-flip-2) (ν n :T)(νm :U)N ≡ (νm : U−n)(ν n : T+m)N n ∈ fn(U)
. . .

of which is relegated to the Appendix; intuitively inst(loc[S, C], l,∆) returns the
location type loc[S, D], where the set of locations D, is the subset of locations
in C ∪ {l} which are reachable from l; this construction is further explained in
Example 3.2.1 below. The final new rule in Table 10 is (r-brk), simulating the
breaking of a link; the intuition behind the network updating function ∆ − l↔ k
should be obvious.

To complete the reduction semantics of DπF we need to revise slighlty the

Location and Link Failure in a Distributed π-calculus 23

rules in Table 5, defining the structural equivalence. The revision is detailed in
Table 11; the rule (s-flip) is replaced by the two rules (s-flip-1) and (s-flip-2). This
enables us to flip two successively scoped locations even if the first is used in the
type of the second, that is there is a link between the two scoped locations.

Example 3.2.1. Consider the system:

launchNewLoc⇐ l3[[a!〈l1〉]] | l3[[a?(x).(νk : loc[a, {x, l2, l4, l5}])P]]

running on a network ∆ consisting of four locations l1..l5, all of which are alive
except l4, with l2 connected to l1 and l3, and l3 connected to l4. Diagrammatically
this is easily represented as:

d d t

d d

- -� �

A
AAU

A
AAK

l1

l2 l3 l4

l5

where, open nodes (◦) represent live locations and closed ones (•) dead locations;
we systematically omit reflexive links in these network diagrams. Formally de-
scribing ∆ is more tedious:

• ∆N is {a, l1, l2, l3, l4, l5}

• ∆D is {l4}

• the link set ∆L is given by
{
〈l1, l1〉, 〈l2, l2〉, 〈l3, l3〉, 〈l4, l4〉, 〈l5, l5〉,
〈l1, l2〉, 〈l2, l3〉, 〈l3, l4〉, 〈l2, l1〉, 〈l3, l2〉, 〈l4, l3〉

}

Clearly there is considerable redundancy in this representation of link sets; ∆L
can be more reasonably represented as:

∆L = {l1↔ l2, l2↔ l3, l3↔ l4, l5↔ l5}

where l↔k denotes the pair of pairs 〈l, k〉, 〈k, l〉 together with the reflexive pairs
〈l, l〉, 〈k, k〉; in such cases, a reflexive bi-direcitional link l ↔ l would be used
for completely disconnected nodes such as l5. When we apply the reduction
semantics to the configuration ∆ . launchNewLoc, the rule (r-comm) is used first
to allow the communication of the value l1 along a, and then (r-newl) can be
used to launch the declaration of k to the system level. However, the evaluation
of inst(l2, loc[a, {l1, l2, l4, l5}],∆) at launching turns out to be loc[a, {l1, l2, l3}]
because:

24 Adrian Francalanza and Matthew Hennessy

• the location from where the k is launched, that is l3, is automatically con-
nected to k.

• l1 and l2 are reachable from the location where the new location k is launched,
that is ∆ ` l1, l2f l3; l2 is directly accessible from l3 while l1 is reachable
indirectly through l2

• l4 and l5 are not reachable from l2; l4 is dead and thus it is not accessible from
any other node; l5 on the other hand, is completely disconnected.

So the resulting configuration is:

∆ . (ν k : loc[a, {l1, l2,3 }]) l3[[P{l1/x}]]

The network∆ of course does not change, but if we focus on the system l2[[P{l1/x}]],
we see that it is running on the internal network represented by:

d d t

d dd

- -� �

A
AAU

A
AAK

�
���

�
���

-�

Q
Q

Q
Qs

Q
Q

Q
Qk

l1

l2 l3 l4

l5k

�

This distinction between the internal networks used by different subsystems
has already occurred in the semantics of DπLoc; see the discussion of Exam-
ple 2.2.2. Nevertheless, we warn to the reader that there will be more serious
consequences for DπF, due to the complex nature of reachability that comes into
play.

Reduction barbed congruence

The definition of Reduction barbed congruence, Definition 2.2.6, originally de-
veloped for DπLoc configurations, can be adapted to apply also to DπF. The
formal definition is delayed to Section 4, but let us use the the same notation,

∆ |= M � N (7)

to indicate that the systems M and N are equivalent relative to the network ∆; the
discussion in the section only relies on an intuitive understanding of this concept.

Let us now reconsider the three implementations of a client server discussed
in Example 2.2.9, but this time running on a network with explicit links. For con-

Location and Link Failure in a Distributed π-calculus 25

venience, in this and later examples, we systematically omit channel names from
network representations. Moreover, we abbreviate the location type loc[a, C] to
loc[C] when the status of location is understood to be alive.

Example 3.2.2. Let ∆ represent the following network:

d

d

d-�

�����1

�����)

PPPPPi

PPPPPq

l

k2

k1

Formally ∆ is determined by letting ∆N be {l, k1, k2}, ∆D be ∅ and ∆L be {l↔
k1, l↔k2, k1↔k2}.

The distributed server implementations, srvDis and srv2Rt, presented earlier
in Example 2.2.9, are no longer reduction barbed congruent relative to ∆, as in
this extended setting, the behaviour of systems is also examined in the context
of faulty links. It is sufficient to consider the possible barbs in the context of a
client such as l[[req!〈l, ret〉]] and a fault inducing context:

C3 = [−] | l[[break k1]]

which breaks the link l↔ k1. Stated otherwise, if the link l↔ k1 breaks, srv2Rt
will still be able to operate normally and barb on ret@l; srvDis, on the other
hand, may reach a state where it blocks since migrating back and forth from l
to k1 becomes prohibited and as a result, it would not be able to barb ret@l.
However consider the alternative remote client srvMtr, defined as:

srvMtr ⇐ (ν data)



l



req?(x, y).(νsync)


go k1. data!〈x, sync〉
|monitor k1dgo k2, k1.data!〈x, sync〉e
| sync?(x).y!〈x〉







| k1

[[
data?(x, y).

(
go l. y!〈 f (x)〉
|monitor ldgo k2, l.y!〈 f (x)〉e

)]]



where the macro monitor kdPe, is a process that repeatedly tests the accessibil-
ity of a location k from the hosting location, and launches P when k becomes
inaccessible. It is formally defined as:

monitor kdPe ⇐ (ν test :ch)(test!〈〉 | ∗ test?().ping k. test!〈〉dPe)

It turns out that ∆ |= srv2Rt � srvMntr but once again, it is difficult to
establish because of the formulation of reduction barbed congruence. �

In the next example we examine the interplay between dead nodes and dead
links.

26 Adrian Francalanza and Matthew Hennessy

Example 3.2.3. Consider the following three networks,

∆1 = ∆l + k :loc[d, {l}] = d t� -
l k

∆2 = ∆l + k :loc[d, ∅] = d t
l k

∆3 = ∆l + k :loc[a, ∅] = d d
l k

These are the effective networks for the system l[[a!〈k〉]] in the three configura-
tions ∆l . Ni, where Ni are defined by

N1 ⇐ (ν k : loc[d, {l}]) l[[a!〈k〉]]

N2 ⇐ (ν k : loc[d, ∅]) l[[a!〈k〉]]

N3 ⇐ (ν k : loc[a, ∅]) l[[a!〈k〉]]

and ∆l is the simple network with one live location l:

∆l = 〈{l, a}, ∅, {l↔ l}〉

Intuitively, no observer can distinguish between these three configurations;
even though some observer might obtain the scoped name k via the channel a
at l, it cannot determine the difference in the state of the network. From rule (l-
nmove) we conclude that any attempt to move from l, where the observer would
be located, to k will fail. However, such a failure does not yield the observer
enough information to determine the exact nature of the fault causing the failure:
the observer holding k does not know whether the inaccessibility failure to k was
caused by a node fault at k, a link fault between l and k or both. As we shall see
later, we will be able to demonstrate ∆l |= N1 � N2 � N3. �

3.3 A labelled transition system for DπF

It would be tempting to mimic the development of Section 2.3 and define a bisim-
ulation equivalence based on actions of the form

∆ . M
µ
−→ ∆′ . M′

Here we argue that this would not be adequate, at least if the target is to charac-
terise reduction barbed congruence.

Example 3.3.1. Let ∆l be the network in which there is only one node l which
is alive, defined earlier in Example 3.2.3, and consider the system:

M1 ⇐ (ν k1 : {l}) (ν k2 : {k1}) (ν k3 : {k1, k2}) l[[a!〈k2, k3〉.P]]

Note that when M1 is running on ∆l, due to the new locations declared, the code

Location and Link Failure in a Distributed π-calculus 27

l[[a!〈k2, k3〉.P]] is effectively running on the following internal network:

d d

d

d

-�
���*

����

HHHj
HHHY

6

?

l k1

k3

k2

(8)

Let us now see to what knowledge of this internal network can be gained by an
observer O at site l, such as l[[a?(x, y).O(x, y)]]. Note, that prior to any interaction,
O is running on the network ∆l, and thus, is only aware of the unique location l.
By inputting along a, it can gain knowledge of the two names k1 and k2, thereby
evolving to l[[O(k2, k3)]]. Yet, even though it is in possession of these two names,
it cannot discover the link between them, due to the fact that it is not aware of
the local name k1; in other words, it cannot discover the full extent of the internal
network (8) above.

This means that, there is now a difference between the actual network being
used by the system, (8), and the observer’s view of that network. Even worse, the
formalism of our current network does not allow us to represent this (external)
observer view of the network. �

An lts semantics will have to record the differences between the network and
the observers view of networks. This requires extra information being recorded
in network representations.

Definition 3.3.2 (Effective network representations). An effective network rep-
resentation Σ is a triple 〈N ,O,H〉, where:

• N is a set of names, as before, divided into loc(N) and chan(N),

• O is a linkset, denoting the live locations and links that are observable by the
context.

• H is another linkset, denoting the live locations and links that are hidden (or
unreachable) to the context.

The only consistency requirements are that:

1. dom(O)⊆ loc(N) (the observable live state concerns locations in N)

2. dom(H)⊆ loc(N) (the hidden live state concerns locations in N)

3. dom(O)∩dom(H)=∅ (live state cannot be both observable and hidden) �

28 Adrian Francalanza and Matthew Hennessy

The intuition is that an observer running on a network representation Σ,
knows about all the names in ΣN and has access to all the locations in dom(O);
as a result, it knows the state of every location in dom(O) and the live links
between these locations. The observer, however, does not have access to the
live locations in dom(H); as a result, it cannot determine the live links between
them nor can it distinguish them from dead nodes. Dead nodes are encoded in
Σ as loc(N)/dom(O ∪H), that is, all the location names in N that are not men-
tioned in either O or H ; these are conveniently denoted as the deadset ΣD . We
also note that the effective network representation Σ does not represent live links
where either end point is a dead node, since these can never be used nor ob-
served. Summarising, Σ hold all the necessary information from the observer’s
point of view, that is, the names known,N , the state known, O, and the state that
can potentially become known in future, as a result of scope extrusion,H .

As usual we use notation such as ΣN , ΣO and ΣH to access the fields of Σ
and note that any network representation ∆ can be translated into an extended
network representation Σ(∆) in the obvious manner:

• the set of names remains unchanged, Σ(∆)N = ∆N

• the accessible state and connections, Σ(∆)O, is simply ∆L less the dead nodes
and links to these dead nodes, thus denotes as ∆L/∆D.

• the hidden state, Σ(∆)H , is simply the empty set, since ∆ does not encode any
inaccessible live locations to the observer.

There is also an obvious operation for reducing an extended network repre-
sentation Σ into a standard one, yielding: ∆(Σ):

• ∆(Σ)N is inherited directly from Σ.

• ∆(Σ)D is ΣD, which is obtained indirectly from loc(ΣN)/dom(ΣO∪H) as
stated earlier.

• ∆(Σ)L is simply ΣO ∪ ΣH

We note two properties about the operation ∆(Σ); firstly, it does not represent any
links to and between dead nodes in ∆(Σ)L; secondly, it merges the accessible and
inaccessible state into one single accessible state. Whenever we wish to forget
about the distinction between the live accessible nodes and links in Σ and those
unknown to the observer, we can transform Σ into the Σ(∆(Σ)); this we denote by
↑ (Σ).

For a discussion on how extended network representations allow us to ac-
commodate the observers view in the example just discussed in Example 3.3.1,
see Example 3.3.7 below.

Location and Link Failure in a Distributed π-calculus 29

Our lts for DπF will be defined in terms of judgements which take the form

Σ . M
µ
−→ Σ′ . M′ (9)

where the actions µ are the same as those used in the previous section, and both
Σ . M (and Σ′ . M′) is an effective configuration, that is all the free names in
M occur in ΣN . As stated earlier, in the configuration Σ . M, where Σ is the
effective network 〈N ,O,H〉, only the information in N and O is available to an
external observer, while the extra information inH is only available internally to
the system M. This division makes more complicated the various operations for
extracting information from, and extending networks. As usual, all the formal
definitions are relegated to the Appendix, but it is necessary to go into some
detail as to how effective networks are augmented with a new location. This
will have to take into account the type of the new location, and in particular the
existing locations to which it will be linked. For instance, the declaration of the
new location k : loc[a, C], requires adding to the network a new live location k,
linked to every live location in C.

To simplify the task of defining effective network augmentations, we first de-
fine a special form of linkset called components together with its related notation,
and then express network augmentations in terms of this definition.

Definition 3.3.3 (Component Linksets). We start by adapting the notion of
reachability in a network, ∆ ` kf l, to linksets, now denoted as L ` kf l. Thus
for any linkset L:

• L ` k← l
def
= 〈l, k〉 ∈ L

• L ` kf l
def
= L ` k← l or ∃ k′ such that L ` k′← l andL ` kfk′

Based on this intuition, a component linkset (or component), denoted by K , is a
linkset that is completely connected, that is:

∀ l, k ∈ dom(L) we have L ` kf l

We note that any linkset L can be treated as the union of one or more compo-
nents, that is:

L =

n⋃

i=1

Ki

According to such treatment, a location l ∈ dom(L) can be used to identify a
particular componentK in the linkset L. We use Lf l to denote the component
in L identified by a location l and this formally is defined as:

Lf l
def
= {〈k, k′〉 | 〈k, k′〉∈L and L ` kf l}

Similarly, a set of locations {l1, . . . , ln} can identify a number of components in

30 Adrian Francalanza and Matthew Hennessy

L, denoted and defined as:

Lf {l1, . . . , ln}
def
=

n⋃

i=1

Lf li

Finally, if C = {k1, . . . , kn} is a set of locations representing connections, and
l is a location such that l < C, then l↔C denotes the component defined as:

l↔C
def
= {〈k, l〉, 〈l, k〉, 〈k, k〉 | k ∈ C} ∪ {〈l, l〉}

where locations in C are symmetrically related to l, while l is also related to itself.
In the resultant component l↔C, all the locations in C in the component l↔C
are connected as a star formation to l and as a result, all locations are reachable
from one another in at most two accesses by going through the central node l.
Using previous shorthand notation, we could have alternatively defined l↔C as:

l↔C
def
= {l↔k, | k ∈ C}

�

Lemma 3.3.4 (Subtracting a Component from a Linkset). For any linkset L
and component K such that K ⊆ L, the set L/K is also a linkset.

Proof. Immediate from the fact that L can be expressed as
⋃n

i=1Ki where K
must be equal to one Ki. Thus, if K = K j, the set

⋃n
j,i=1Ki, which translates to

L/K , would still be a linkset. �

We now revert our discussion back to effective network representation, and
show how the definition of components facilitates the procedure for extending
networks.

Definition 3.3.5 (Augmenting effective networks). Let n be fresh to the net-
work Σ and C be a set of locations such that C ⊆ dom(ΣO). Then we define the
operation Σ + n :T as:

• Σ + n : ch
def
= 〈ΣN ∪ {n}, ΣO, ΣH 〉

• Σ + n : loc[d, C]
def
= 〈ΣN ∪ {n}, ΣO, ΣH 〉

• Σ + n : loc[a, C]
def
=

Case C ∩ dom(ΣO) = ∅ then 〈ΣN ∪ {n}, ΣO, H ′〉
where: H ′ = ΣH ∪ (l↔C)

C ∩ dom(ΣO) , ∅ then 〈ΣN ∪ {n}, O′, H ′〉
where: O′ = ΣO ∪ (l↔C) ∪ (ΣHfC)

and H ′ = ΣH/(ΣHfC) �

Location and Link Failure in a Distributed π-calculus 31

In the above definition, extending a network with a fresh channel is trivial;
adding a fresh dead node is similarly simple, due to the fact that Σ does not repre-
sent dead nodes or links to dead nodes explicitly. The only subcase that deserves
some explanation is that of adding fresh live nodes. A fresh live location is added
to either ΣO or ΣH depending on its links. If it is not linked to any observable
location, C ∩ dom(ΣO) = ∅, then the new fresh location is not reachable from
the context and is therefore added to ΣH . If, on the other hand, it is linked to an
observable location, C∩dom(ΣO) , ∅, then it becomes observable as well. There
is also the case where the fresh location is linked to both observable and hidden
locations, still represented above by the case where C ∩ dom(ΣO) , ∅; in such a
case, the fresh location, together with any components in the hidden state linked
to it, that is ΣHfC, become observable and thus transfered from ΣH to ΣO. The
following example elucidates this operation for extending effective networks.

Example 3.3.6. Consider the effective network Σ, representing six locations
l, k1, . . . , k5:

Σ = 〈{l, k1, k2, k3, k4, k5}, {l↔ l}, {k1↔k2, k2↔k3, k4↔k4}〉

Accroding to Definition 3.3.2, l is the only observable location by the context;
locations k1..4 are alive but not reachable from any observable location while the
remaining location, k5, is dead since it is not in dom(ΣO ∪ H). Moreover, the
linkset representing the hidden state, ΣH , can be partitioned into two compo-
nents, K1 = {k1 ↔ k2, k2 ↔ k3} and K2 = {k4 ↔ k4} whereas the linkset rep-
resenting the observable state, ΣO, can only be partitioned into one component,
itself.

The operation Σ+k0 :loc[a, {l}] would make the fresh location, k0, observable
in the resultant effective network since it is linked to, thus reachable from, the
observable location l. On the other hand, the operation Σ + k0 : loc[a, ∅] would
make k0 hidden since it is a completely disconnected node, just like k4. The
operation Σ+k0 :loc[a, {k1}] would still make k0 hidden in the resultant effective
network, since it is only link to the hidden node k1. Finally, the operation Σ +
k0 : loc[a, {l, k1}] intersects with both ΣO and ΣH . This means that k0 itself
becomes observable, but as a side effect, the components reachable through it,
that is ΣH f {l, k1} = K1, becomes observable as well. Thus, according to
Definition 3.3.5, the updated network translates to:

Σ + k0 :loc[a, {l, k1}] =
〈 ΣN ∪ {k0}, ΣO ∪ (k0↔{l, k1}) ∪ (ΣHf {l, k1}), ΣH/(ΣHf {l, k1}) 〉
〈 ΣN ∪ {k0}, ΣO ∪ {k0↔ l, k0↔k1} ∪ K1, ΣH/K1 〉

〈 ΣN ∪ {k0}, {l↔k0, k0↔k1, k1↔k2, k2↔k3}, {k4↔k4} 〉

�

32 Adrian Francalanza and Matthew Hennessy

Table 12. Network Operational Rules(2) for DπF

Assuming Σ ` l : alive

(l-kill)

Σ . l[[kill]]
τ
−→ (Σ − l) . l[[0]]

(l-brk)

Σ . l[[break k]]
τ
−→ Σ − (l↔k) . l[[0]]

Σ ` l↔k

(l-halt)

Σ . N
kill:l
−−−→ (Σ − l) . N

Σ `obs l : alive

(l-disc)

Σ . N
l=k
−→ Σ − (l↔k) . N

Σ `obs l↔k

(l-go)

∆ . l[[go k.P]]
τ
−→ ∆ . k[[P]]

∆ ` k← l

(l-ngo)

∆ . l[[go k.P]]
τ
−→ ∆ . k[[0]]

∆ 0 k← l

(l-ping)

∆ . l[[ping k.PdQe]]
τ
−→ ∆ . l[[P]]

∆ ` k← l

(l-nping)

∆ . l[[ping k.PdQe]]
τ
−→ ∆ . l[[Q]]

∆ 0 k← l

(l-newc)

∆ . l[[(ν c :ch) P]]
τ
−→ ∆ . (ν c :ch) l[[P]]

(l-newl)

∆ . l[[(ν k :loc[S, C]) P]]
τ
−→ ∆ . (ν k :loc[S, D]) l[[P]]

loc[S, D] = inst(loc[S,C], l,∆)

Let us now return to the defintion of our lts for DπF. The transitions between
effective configurations (9) are determined by the rules and axioms already given
in Table 6 from Section 2.3, together with the new rules in Table 12 and Table 13.
Most of the rules in Table 12 are inherited directly from their counterpart reduc-
tion rules in Table 10. The new rule is (l-disc) which introduces the new label
l= k and models the breaking of a link from the observing context, in the same
fashion as (l-fail) in Table 8 models external location killing. Both of these rules
are subject to the condition that the location or link where the fault is injected is
observable by the context.

The more challenging rules are found in Table 13. Most of these are slightly
more subtle versions of the corresponding rules for DπLoc in Table 8; the sub-

Location and Link Failure in a Distributed π-calculus 33

Table 13. Contextual Operational Rules(3) for DπF

(l-open)

Σ+n :T . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ Σ′ . N′

Σ . (ν n :T)N
(n:U, ñ:̃T)l:a!〈V〉
−−−−−−−−−−−→ Σ′ . N′

l, a , n ∈ V, U = T/ΣD

(l-weak)

Σ+n :T . N
(ñ:̃T)l:a?(V)
−−−−−−−−→ Σ′ . N′

Σ . N
(n:T, ñ:̃T)l:a?(V)
−−−−−−−−−−−→ Σ′ . N′

l, a , n ∈ V, (Σ + ñ :̃T) `obs T

(l-rest)

Σ+n :T . N
µ
−→ Σ′+n :U . N′

Σ . (ν n :T)N
µ
−→ Σ′ . (ν n :U)N′

n < fn(µ)

(l-rest-typ)

Σ+k :T . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ (Σ+ñ : Ũ) +k :U . N′

Σ . (ν k :T)N
(ñ:̃U)l:a!〈V〉
−−−−−−−−→ Σ+ñ : Ũ . (ν k :U)N′

l, a , k ∈ fn(T̃)

(l-par-ctxt)

Σ . N
µ
−→ Σ′ . N′

Σ . N|M
µ
−→ Σ′ . N′|M

Σ . M|N
µ
−→ Σ′ . M|N′

Σ ` M

(l-par-comm)

↑ (Σ) . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ Σ′ . N′ ↑ (Σ) . M

(ñ:̃T)l:a?(V)
−−−−−−−−→ Σ′′ . M′

Σ . N|M
τ
−→ Σ . (ν ñ : T̃)(N′|M′)

Σ . M|N
τ
−→ Σ . (ν ñ : T̃)(M′|N′)

tleties are required to deal with the interaction between scoped location names
and their occurrence in location types. For instance, the rule (l-open) filters the
type of scope extruded locations by removing links to locations that are already
dead and that will not affect the effective network Σ; this is done through the
operation T/ΣD defined in the Appendix. A side condition is added to (l-weak),
(Σ + ñ : T̃) `obs T, limiting the types of imported fresh locations to only contain

34 Adrian Francalanza and Matthew Hennessy

locations which are externally accessible, since intuitively, the context can only
introduce fresh locations linked to locations it can access. The internal commu-
nication rule (l-par-comm) also changes slightly from the one given earlier for
DπLoc; communication is defined in terms of the system view (↑ (Σ)) rather than
the observer view dictated by Σ. The intuition for this alteration is that internal
communication can still occur, even at locations that the observer cannot access,
thus we denote the ability to output and input of systems with respect to the
maximal observer view ↑ (Σ). Finally, a completely new rule is (l-rest-typ), which
restricts the links exported in location types if one endpoint of the link is still
scoped. The utility of this rule is illustrated further in the following example.
The rules (l-rest) and (l-par-ctxt) remain unchanged for DπLoc.

Example 3.3.7. Let us revisit Example 3.3.1 to see how the effect of the ob-
server O on M1, running on the effective network Σl having only one location l
which is alive, that is Σ(∆l). This effectively means calculating the result of M1

performing an output on a at l.
It is easy to see that an application of (l-out), followed by two applications of

(l-open) gives

Σl + k1 : {l} . M′1
α
−→ Σl + k1 : {l} + k2 : {k1} + k3 : {k1, k2} . l[[P]] (10)

where M′1 is (ν k2 : {k1})(ν k3 : {k1, k2})l[[a!〈k2, k3〉.P]] and α is the action (k2 :
{k1}, k3 : {k1, k2})l : a!〈k2, k3〉. Note that (l-rest) can not be applied to this judge-
ment, since k1 occurs free in the action α. However (10) can be re-arranged to
read

Σl + k1 : {l} . M′1
α
−→ Σl + k2 :∅ + k3 : {k2} + k1 : {l, k1, k2} . l[[P]]

moving the addition of location k1 in the reduct to the outmost position. At this
point, (l-rest-typ) can be applied, to give

Σl . M1
β
−→ Σl + k2 :∅ + k3 : {k2} . (ν k1 : {l, k1, k2})l[[P]]

where β is the action (k2 : ∅, k3 : {k2})l : a!〈k2, k3〉 ,that is α filtered from any
occurrence of k1 in its bounded types. Note that the residual network representa-
tion, Σl + k2 : ∅ + k3 : {k2} has a non-trivial internal network, not available to the
observer. It evaluates to

〈{l, k2, k3}, {l↔ l}, {k2↔k3}〉

Location and Link Failure in a Distributed π-calculus 35

and may be represented diagramatically by:

d

d

d

6

?

l

k3

k2

where the links of hidden components are denoted with dashed lines. �

With these actions we can now define in the standard manner a bisimulation
equivalence between configurations, which can be used as the basis for contex-
tual reasoning. Let us write

Σ |= M ≈wrong N

to mean that there is a (weak) bisimulation between the configurations Σ .M and
Σ . N using the current actions. This new framework can be used to establish
positive results. For example, for Σl,k = 〈{a, l, k}, {l↔k}, ∅〉, one can prove

Σl,k |= l[[ping k. a!〈〉d0e]] ≈wrong k[[go l.a!〈〉]]

by giving the relation R defined as:

R =



〈Σl,k . M , Σl,k . N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−l . M , Σl,k−l . N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−k . M , Σl,k−k . N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−l↔k . M , Σl,k−l↔k . N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−l, l↔k . M , Σl,k−l, l↔k . N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−k, l↔k . M , Σl,k−k, l↔k . N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−l, k . M , Σl,k−l, k . N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−l, k, l↔k . M , Σl,k−l, k, l↔k . N〉 | 〈M,N〉 ∈ Rsys



where

Rsys =



〈l[[ping k. a!〈〉d0e]] , k[[go l.a!〈〉]]〉
〈l[[a!〈〉]] , l[[a!〈〉]]〉
〈l[[0]] , l[[0]]〉



However we can argue, at least informally, that this notion of equivalence
is too discriminating and the labels too intentional, because it distinguishes be-
tween systems running on a network, where the differences in behaviour are
difficult to observe. Problems arise when there is an interplay between hidden
nodes, links and dead nodes.

36 Adrian Francalanza and Matthew Hennessy

Example 3.3.8. Let us consider a slight variation on the system M1 used in
Example 3.3.1 and Example 3.3.7:

M2 ⇐ (ν k1 : {l})(ν k2 : {k1})(ν k3 : {k1})l[[a!〈k2, k3〉.P]]

again running on the simple (extended) network Σl. Note that here the code
l[[a!〈k2, k3〉.P]] is effectively running on the following internal network,

d d

d

d

-�
���*

����

HHHj
HHHY

l k1

k3

k2

a slight variation on that for M1. It turns out that

Σl |= M1 6≈wrong M2

because the configurations give rise to different output actions, on a at l. The
difference lies in the types at which the locations k2 and k3 are exported; in
Σl . M1 the output label is µ1 = (k2 :∅, k3 : {k2}) l : a!〈k2, k3〉 while with Σ . M2 it
is µ2 = (k2 : ∅, k3 : ∅)l : a!〈k2, k3〉 - there is a difference in the type associated to
the scope extruded location k3.

However if k1 does not occur in P, (for example if P is the trivial process
0) then k1 can never be scope extruded to the observer and thus k2 and k3 will
remain inaccessible in both systems. This means that the presence (or absence)
of the link k2↔ k3 can never be checked and thus there should be no observable
difference between M1 and M2 running on Σ. �

Problems also arise when dealing with the presence of dead nodes.

Example 3.3.9. Let us reconsider the three configurations Σl . Ni for i = 1..3
from Example 3.2.3. We have already argued that these three configurations
should not be distinguished. However, our lts specifies that all three configura-
tions perform the output with different scope extrusion labels, namely:

Σl . N1
(k:loc[d,{l}])l:a!〈k〉
−−−−−−−−−−−−−→ 〈{l, k}, {l↔ l}, ∅〉 . l[[0]]

Σl . N2
(k:loc[d,∅])l:a!〈k〉
−−−−−−−−−−−−−→ 〈{l, k}, {l↔ l}, ∅〉 . l[[0]]

Σl . N3
(k:loc[a,∅])l:a!〈k〉
−−−−−−−−−−−−−→ 〈{l, k}, {l↔ l}, {k↔k}〉 . l[[0]]

Therefore they will be distinguished by the bisimulation equivalence which uses
these actions. �

Location and Link Failure in a Distributed π-calculus 37

In order to obtain a bisimulation equivalence which coincides with reduction
barbed congruence it is necessary to abstract away from some of the information
contained in the types of newly exported location names.

3.4 A bisimulation equivalence for DπF

We first outline the revision to our labelled actions. Currently these are of the
form T = ch or loc[A, {k1, . . . kn}], where the latter indicates the liveness of a
location and the nodes ki to which it is linked. We change these to new types of
the form L, K = {l1↔k1, . . . , li↔ki}where L, K are components. Intuitively, these
represent the new live nodes and links, which are made accessible to observers
by the extrusion of the new location. Alternatively, this is the information which
is added to the observable part of the network representation, ΣO, as a result of
the action. We have already developed the necessary technology to define these
new types, in Definition 3.3.5.

Definition 3.4.1 (A (derived) labelled transition system for DπF). This con-

sists of a collection of actions Σ . N
µ
7−→ Σ′ . N′, where µ takes one of the forms:

• (internal action) - τ

• (bounded input) - (ñ : L̃)l : a?(V)

• (bounded output) - (ñ : L̃)l : a!〈V〉

• (external location kill) - kill : l

• (external link break) - l=k �

The transitions in the derived lts for DπF are defined as the least relations
satisfying the axioms and rules in Table 6 of Section 2.3, Tables 12 and 13 given
earlier in this section and Table 14. The rules (l-deriv-2) and (l-deriv-3) transform
the types of bound names using the function lnk(ñ : T̃,Σ) defined below in Defi-
nition 3.4.2.

Definition 3.4.2 (Link Types). Let us first define the function lnk() for single
typed names n :T and then extend it to sequences of typed names ñ : T̃. Recalling
Definition 3.3.5 for augmenting networks, the only case where Σ+n :T adds any-
thing to the observable state of the effective network, ΣO, is when T = loc[a, C]
where C ∩ dom(ΣO) , ∅. In such a case, we add the new location n with all
its live connections denoted as l↔ C, and any components that were previously
unreachable but have become reachable from ΣO as a result of n, denoted as
ΣHfC.

When C∩dom(ΣO) = ∅, then the node added is unreachable to the observing
contexts and we add n and its live links to ΣH but nothing to ΣO; if T = loc[d, C]

38 Adrian Francalanza and Matthew Hennessy

Table 14. The derived lts for DπF

(l-deriv-1)

Σ . N
µ
−→ Σ′ . N′

Σ . N
µ
7−→ Σ′ . N′

µ ∈ {τ, kill : l, l=k}

(l-deriv-2)

Σ . N
(ñ:̃T)l:a!〈V〉
−−−−−−−−→ Σ′ . N′

Σ . N `
(ñ:̃L)l:a!〈V〉
−−−−−−−−→ Σ′ . N′

L̃ = lnk(ñ :̃T,Σ)

(l-deriv-3)

Σ . N
(ñ:̃T)l:a?(V)
−−−−−−−−→ Σ′ . N′

Σ . N `
(ñ:̃L)l:a?(V)
−−−−−−−−→ Σ′ . N′

L̃ = lnk(ñ :̃T,Σ)

then we do not add anything to either ΣO or ΣH as is the case for T = ch. Based
on this definition of Σ+n :T, we give the following definition for lnk(n :T,Σ):

lnk(n :T,Σ)
def
=

{
(n↔C) ∪ (ΣHfC) if T=loc[a, C] and C∩loc(ΣO),∅
∅ otherwise

This function is extended to sequences of typed names in the obvious man-
ner:

lnk(n, ñ :T, T̃,Σ) = lnk(n :T,Σ), lnk(ñ : T̃,Σ′)

where Σ′ denotes Σ + n : T. �

These revised actions give rise to a new (weak) bisimulation equivalence over
configurations, ≈, defined in the usual way, but based on derived actions. We use

Σ |= M ≈ N

to mean that the configurations Σ . M and Σ . N are bisimilar.

Example 3.4.3. Here we re-examine the systems in Example 3.3.8 and Exam-
ple 3.3.9. We recall that in Example 3.3.8 we had the following actions with
respect to the original lts: -

Σl . M1
µ1
−→ Σ + k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3}) l[[P]]

Σl . M2
µ2
−→ Σ + k2 :∅ + k3 :∅ . (ν k1 : {l, k2, k3}) l[[P]]

But Σl contains only one accessible node l; extending it with the new node k2,
linked to nothing does not increase the set of accessible nodes. Further increasing
it with a new node k3, linked to the inaccessible k2 (in the case of Σ . M1) also
leads to no increase in the accessible nodes. Correspondingly, the calculations
of lnk(k2 :∅,Σ) and lnk(k3 : {k2}, (Σ + k2 :∅)) both lead to the empty link set.

Location and Link Failure in a Distributed π-calculus 39

Formally, we get the derived action

Σ . M1
α
7−→ Σ + k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3}) l[[P]]

where α is (k2 :∅, k3 :∅)l : a!〈k2, k3〉. Similar calculations gives exactly the same
derived action from M2:

Σ . M2
α
7−→ Σ + k2 :∅ + k3 :∅ . (ν k1 : {l, k2, k3}) l[[P]]

Furthermore, if P contains no occurrence of k1, we can go on to show

Σ+k2 :∅+k3 : {k2} . (ν k1 : {l, k2, k3})l[[P]] ≈ Σ+k2 :∅+k3 :∅ . (ν k1 : {l, k2, k3})l[[P]]

On the other hand, if P is a!〈k1〉, the subsequent transitions are different:

((Σ + k2 : ∅) + k3 : {k2}) . (ν k1 : {l, k2, k3})l[[P]]
β1
7−→ . . .

((Σ + k2 : ∅) + k3 : ∅) . (ν k1 : {l, k2, k3})l[[P]]
β2
7−→ . . .

where

β1 is (k1 : {k1↔k2, k1↔k3, k2↔k3})l :a!〈k1〉

β2 is (k1 : {k1↔k2, k1↔k3})l :a!〈k1〉

We note that the link type associated with β1 includes the additional component
{k2↔ k3}, that was previously hidden, but is now made accessible as a result of
scope extruding k1; β2 on the other hand, does not have this information in its
link type. Based on this discrepancy between β1 and β2 we have

Σl |= M1 6≈ M2

Revisiting Example 3.3.9, the three different actions of Σl .N1, Σl .N2 and

Σl.N3 now abstract to the same action Σl.Ni
α
7−→ l[[0]] for i = 1..3 where α

is the label (k : ∅)l : a!〈k〉. Thus we have

Σl |= Ni ≈ N j where i, j = 1..3

as required. �

4 Full-Abstraction

The purpose of this section is to show that our revised bisimulation equivalence
is the correct one, in the sense that it coincides with some contextual equivalence
appropriate to DπF; we need a generalisation of Theorem 2.3.8. This means
developing a notion of reduction barbed congruence for DπF, similar to that in
Definition 2.2.6 for DπLoc.

40 Adrian Francalanza and Matthew Hennessy

4.1 Reduction barbed congruence for DπF

The key to the definition is the isolation of the externally observable information
in an extended environment. We use I to range over knowledge representations,
pairs 〈N ,O〉 where

• N is a set of names, as usual divided into loc(N) and chan(N),

• O is a linkset overN .

These can be obtained from effective networks in the obvious manner:

I(Σ)
def
= 〈ΣN ,ΣO〉

The key property of this subset of the information in a network representation is
that it is preserved by derived actions:

Definition 4.1.1 (Action residuals). We overload the partial function after from
Definition 2.3.2 so that now it ranges over knowledge representations I and ex-
ternal derived actions µ. The newly defined partial function returns knowledge
representation, defined as:

• I after (ñ : L̃)l : a!〈V〉 is defined as I + ñ : L̃

• I after (ñ : L̃)l : a?(V) is defined as I + ñ : L̃

• I after kill : l is defined as I − l

• I after l=k is defined as I − l↔k �

Proposition 4.1.2. If Σ .N
µ
7−→ Σ′ .N′ where µ is a derived external action, then

I(Σ′) coincides with I(Σ) after µ

Proof. A straightforward induction on the inference of Σ . N
µ
7−→ Σ′ . N′. �

We find appropriate to use I as a means to define the right circumstances,
necessary to allow an action µ to happen. Thus, we define the following predi-
cate.

Definition 4.1.3 (Action Conditions). The predicate allows is defined over
knowledge representations and action labels as:

• I allows τ is always true

• I allows (ñ : L̃)l :a!〈V〉 is true whenever I ` l : alive

• I allows (ñ : L̃)l : a?(V) is true whenever I` l : alive, V ⊆IN and dom(L̃) ⊆
(dom(IO)∪ñ)

• I allows kill : l is true whenever I ` l : alive

• I allows l=k is true whenever I ` l : alive, k : alive �

Location and Link Failure in a Distributed π-calculus 41

The following proposition states that the definition of allows is adequate with
respect to our derived actions.

Proposition 4.1.4 (Adequacy of Allows). If Σ.N
µ
7−→ Σ′.N′ thenI(Σ) allows µ.

Proof. By induction on the derivation of Σ . N
µ
7−→ Σ′ . N′. �

We next establish that external actions of a configuration Π .N are a function
of the system N and the knowledge representation I(Σ). Before we prove this,
we prove a lemma relating actions with the structure of the systems.

Lemma 4.1.5 (Derived Actions and Systems).

• if Σ . N `
(ñ:̃L)l:a!〈V〉
−−−−−−−−→ Σ+ñ : T̃ . N′ where L̃ = lnk(ñ : T̃,Σ) then

– N ≡ (ν ñ : T̃)(ν m̃ : Ũ)M|l[[a!〈V〉.P]]

– N′ ≡ (ν m̃ : Ũ)M|l[[P]]

• if Σ . N `
(ñ:̃L)l:a?(V)
−−−−−−−−→ Σ+ñ : T̃ . N′ where L̃ = lnk(ñ : T̃,Σ) then

– N ≡ (ν m̃ : Ũ)M|l[[a?(X).P]]

– N′ ≡ (ν m̃ : Ũ)M|l[[P{V/X}]]

• if Σ . N
τ
7−→ Σ′ . N′ where Σ ` l : alive and Σ′ 0 l : alive then

– N ≡ N′|l[[kill]]

• if Σ . N
τ
7−→ Σ′ . N′ where Σ ` l↔k and Σ′ 0 l↔k then

– N ≡ N′|l[[break k]] or N ≡ N′|k[[break l]]

Proof. A straightforward induction on the inference of Σ . N
(ñ:̃L)l:a!〈V〉
−−−−−−−−→ Σ′ . N′,

Σ . N
(ñ:̃L)l:a?(V)
−−−−−−−−→ Σ′ . N′ and Σ . N

τ
−→ Σ′ . N′. �

Proposition 4.1.6. If Σ . N
µ
7−→ Σ′ . N′ where µ is an external action, and

I(Σ′′) allows µ for some Σ′′, then Σ′′ . N
µ
7−→ Σ′′′ . N′ for some Σ′′′

Proof. By induction on the inference of Σ . N
µ
7−→ Σ′ . N′, using Lemma 4.1.5

to infer the structure of N from µ. �

These lemmas indicate that these knowledge representations are the appro-
priate level of abstractions at which to generalise Definitions 2.2.3, 2.2.5 and
2.2.6 to DπF.

42 Adrian Francalanza and Matthew Hennessy

Definition 4.1.7 (Typed Relations for DπF). A typed relation over extended
configurations is a binary relation between such configurations with the property
that

Σ.M R Σ′.N implies I(Σ) = I(Σ′)

We can mimic the notation in Definition 2.2.3 by writing

I |= Σ.M R Σ′.N

to mean that systems Σ . M and Σ′ . N are related by R and that both I(Σ) and
I(Σ′) coincide with I. �

The definition of contextuality depends on what a given I allows to be ob-
servable; for this we adapt Definition 2.2.4.

Definition 4.1.8 (Observables). For any I let:

• I ` l : alive, if l is in dom(IO); this implies that l is not only alive, but in the
accessible part of any Σ such that I(Σ) coincides with I.

• I ` l↔ k, if l↔ k ∈ IO; this implies that the link l↔ k is not only alive, but
in the accessible part of any Σ such that I(Σ) coincides with I.

• I ` T if T is either ch or loc[a, C] such that C ⊆ dom(IO).

We can now define the relation I ` O as:

• I ` l[[P]] if fn(P) ⊆ IN and I ` l : alive

• I ` (ν n :T)N if I ` T and (I + n :T) `obs N

• I ` M | N if I ` M and I ` N

We can now adapt the notation of Definition 2.2.4 as:

∆ `obs l :alive, l↔k, T, O
def
= I(Σ(∆)) ` l :alive, l↔k, T, O

Σ `obs l :alive, l↔k, T, O
def
= I(Σ) ` l :alive, l↔k, T, O

The intuition of ∆ `obs O and Σ `obs O are still the same as that of Defini-
tion 2.2.4: an observer O is restricted to the observable network. However, the
updated definition reflects the fact that the observable network is now not only
defined in terms of live nodes but live, reachable nodes. �

As a result of this adaptation, we can carry forward to the section the def-
inition of contextual typed relations, defined earlier in 2.2.5. However, before
we go on an define reduction barbed congruence for DπF terms, we need also to
update the notion of a barb; a barb is observable by the context in DπF, if the
location at which the barb occurs is alive and observable.

Location and Link Failure in a Distributed π-calculus 43

Definition 4.1.9. Σ . N ⇓a@l denotes an observable barb exhibited by the con-
figuration Σ .N, on channel a at location l. Formally, it means that ∆(Σ) .N −→∗

∆(Σ′) .N′ for some Σ′ .N′ such that N′ ≡ M|l[[a!〈V〉.Q]] and IΣ `obs l : alive. �

With these modifications, Definition 2.2.6 can be applied to obtain a defini-
tion of reduction barbed congruence for DπF, which we denote by

I |= Σ1.M1 � Σ2.M2 whenever I(Σ1) = I(Σ2)

Note that this enables us to compare aribtrary configurations, Σ1 .M1 and Σ2 .

M2, but it can be specialised to simply comparing systems running on the same
network. Let us write

Σ |= M � N

to mean that I(Σ) |= Σ.M � Σ.N. Then, for example, the informal notation (7)
used in Section 3.2 can be taken to mean

Σ(∆) ` M � N

The second main result of the paper can now be stated:

Theorem 4.1.10. Suppose I(Σ1) = I(Σ2) = I, for any effective configurations
Σ1.M1, Σ2.M2 in DπF. Then:

I |= Σ1.M1 � Σ1.M1 if and only if Σ1.M1 ≈ Σ2.M2

This general result can also be specialised to the notation for comparing systems
relative to a given network:

Corollary 4.1.11. In DπF, Σ |= N � M if and only if Σ |= N ≈ M. �

The proof of the general theorem , which is quite complex, is detailed in the
following two sections. The first section outlines the proof for soundness, that
is, the adequacy of the derived action bisimulation as a means show that two
configurations are reduction barbed congruent:

Σ1.M1 ≈ Σ2.M2 implies I |= Σ1.M1 � Σ1.M1

The second section outlines the proof for completness, that is, for any two con-
figurations that are reduction barbed congruent, we can give a derived action
bisimulation to show this:

I |= Σ1.M1 � Σ1.M1 implies Σ1.M1 ≈ Σ2.M2

4.2 Soundness

The main task in proving that derived action bisimulation is sound is showing
that ≈ is contextual. In addition to this, we also need to prove some preliminary
results relating our lts with the reduction semantics of DπF.

44 Adrian Francalanza and Matthew Hennessy

We start by proving that the derived lts is closed over well formed effective
configurations. We prove this with the aid of the following lemma, stating that
there is also a special relationship between silent actions and residual networks.

Lemma 4.2.1. Internal transitions do not change the state of the network, un-
less a kill or a break l process in the configuration itself is consumed. Stated

otherwise, if Σ . N
τ
7−→ Σ′ . N′ then Σ′ is either:-

1. Σ

2. Σ − l

3. Σ − l↔k

Proof. A straightforward induction on the inference of Σ . N
τ
7−→ Σ′ . N′. �

Proposition 4.2.2 (Closure). The derived lts given in Definition 3.4.1 forms a
binary relation between well-defined effective configurations. Stated otherwise,

if Σ ` N and Σ . N
µ
7−→ Σ′ . N′ then Σ′ ` N′.

Proof. By case analysis on the form of µ. We use Proposition 4.1.2 when µ is
an external action and Lemma B.0.1 in sub-cases where we need to show that
Σ + n :T is still a valid effective network. When µ is an internal action, µ = τ, we
use Lemma 4.2.1. �

The next important sanity check for our lts is that our formulation of internal

activity, namely
τ
7−→, is in agreement, in some sense, with the reduction seman-

tics.

Proposition 4.2.3 (Reductions correspond to τ-actions).

• Σ . N −→ Σ′ . N′ implies Σ . N
τ
7−→ Σ′ . N′′ for some N′′ ≡ N′

• Σ . N
τ
7−→ Σ′ . N′ implies Σ . N −→ Σ′ . N′

Proof. The proof for the first clause is by induction on why Σ . N −→ Σ′ . N′.
The proof for the second clause is also by induction. Since the internal transition
rule (l-par-comm) is defined in terms of input and output actions, we make use of
Lemma 4.1.5 in our induction. �

We now embark on the main task of this section, that of showing that our
bisimulation, ≈, is contextual. This proof relies heavily on the Composition and
Decomposition Lemmas stated below, explaining how actions can be composed
of, or decomposed into, other actions. Both Composition and Decomposition
Lemmas make use of the following (specific) lemma, which is a slight variation
on Proposition 4.1.6; we note that we could not have used Proposition 4.1.6 in
this case because the type of the bound input action changes as shown below.

Location and Link Failure in a Distributed π-calculus 45

Lemma 4.2.4 (Input actions and the maximal observer view).

• If Σ . N `
(ñ:̃K)l:a?(V)
−−−−−−−−→ Σ′ . N′ then ↑ (Σ) . N `

(ñ:̃L)l:a?(V)
−−−−−−−−→ Σ′′ . N′ where K̃ =

L̃/dom(ΣH).

• If ↑ (Σ).N `
(ñ:̃L)l:a?(V)
−−−−−−−−→ Σ′ .N′ and I(Σ) ` l :alive then Σ.N `

(ñ:̃K)l:a?(V)
−−−−−−−−→ Σ′′ .N′

where K̃ = L̃/dom(ΣH).

Proof. The proof uses Lemma 4.1.5 to infer the structure of N and the progresses
by induction on the structure of N, similar to the proof for Proposition 4.1.6. �

Lemma 4.2.5 (Composition).

• Suppose Σ.M
µ
7−→ Σ′ .M′. If Σ ` N for arbitrary system N, then Σ.M|N

µ
7−→

Σ′ . M′|N and Σ . N|M
µ
7−→ Σ . N|M.

• Suppose Σ . M `
(ñ:̃L)l:a!〈V〉
−−−−−−−−→ Σ′ . M′ and Σ . N `

(ñ:̃K)l:a?(V)
−−−−−−−−→ Σ′′ . N′ where

K̃ = L̃/dom(ΣH). Then

– Σ . M|N
τ
7−→ Σ . (ν ñ : T̃)M′|N′ where L̃ = lnk(ñ : T̃,Σ)

– Σ . N|M
τ
7−→ Σ . (ν ñ : T̃)N′|M′ where L̃ = lnk(ñ : T̃,Σ)

Proof. The proof for the first clause is trivial, by using (l-par-ctxt). We here out-
line the proof for the second clause. From the hypothesis

Σ . M `
(ñ:̃L)l:a!〈V〉
−−−−−−−−→ Σ+ñ : T̃ . M′ (11)

and Proposition 4.1.4 we know I(Σ) allows (ñ : L̃)l : a!〈V〉 and thus I(Σ) ` l :
alive. It is obvious that I(↑ (Σ)) ` l :alive as well and hence

I(↑ (Σ)) allows (ñ : L̃)l : a!〈V〉 (12)

From (11), (12) and Proposition 4.1.6 we derive

↑ (Σ) . M `
(ñ:̃L)l:a!〈V〉
−−−−−−−−→↑ (Σ)+ñ : T̃ . M′

and from (l-deriv-2) we conclude

↑ (Σ) . M
(ñ:̃T)l:a!〈V〉
−−−−−−−−→↑ (Σ)+ñ : T̃ . M′ (13)

From the hypotheses Σ.N `
(ñ:̃K)l:a?(V)
−−−−−−−−→ Σ′′.N′ and K̃ = L̃/dom(ΣH) and Lemma 4.2.4

we immediately derive

↑ (Σ) . N `
(ñ:̃L)l:a?(V)
−−−−−−−−→↑ (Σ)+ñ : T̃ . N′

and by (l-deriv-3) we derive

↑ (Σ) . N
(ñ:̃T)l:a?(V)
−−−−−−−−→↑ (Σ)+ñ : T̃ . N′ (14)

46 Adrian Francalanza and Matthew Hennessy

Hence, by (13), (14), (l-par-comm) and (l-deriv-1) we conclude

Σ . M|N
τ
7−→ Σ . (ν ñ : T̃)M′|N′

Σ . N|M
τ
7−→ Σ . (ν ñ : T̃)N′|M′

as required. �

Lemma 4.2.6 (Decomposition). Suppose Σ . M|N
µ
7−→ Σ′ . M′ where Σ `obs M

or Σ `obs N . Then, one of the following conditions hold:

1. M′ is M′′|N, where Σ . M
µ
7−→ Σ′ . M′′.

2. M′ is M|N′ and Σ . N
µ
7−→ Σ′ . N′.

3. M′ is (ν ñ : T̃)M′′|N′, µ is τ, Σ′ = Σ and either

• Σ . M `
(ñ:̃L)l:a!〈V〉
−−−−−−−−→ Σ′′ . M′′ and Σ . N `

(ñ:̃K)l:a?(V)
−−−−−−−−→ Σ′′′ . N′

• Σ . M `
(ñ:̃K)l:a?(V)
−−−−−−−−→ Σ′′ . M′′ and Σ . N `

(ñ:̃L)l:a!〈V〉
−−−−−−−−→ Σ′′′ . N′

where K̃ = L̃/dom(ΣH)

Proof. The proof progressed by induction on the derivation of Σ . M|N
µ
7−→

Σ′ . M′. We focus on the case where µ = τ, and the last two rules used in our
derivation were (l-deriv-1) and (l-par-comm). From the inductive hypothesis of
(l-par-comm) we derive

Σ′ = Σ (15)

M′ is (ν ñ : T̃)M′|N′ (16)

↑ (Σ) . M
(ñ:̃T)l:a!〈V〉
−−−−−−−−→↑ (Σ)+ñ : T̃ . M′ (17)

↑ (Σ) . N
(ñ:̃T)l:a?(V)
−−−−−−−−→↑ (Σ)+ñ : T̃ . N′ (18)

or viceversa. From (17), (18), (l-deriv-2) and (l-deriv-3) we get

↑ (Σ) . M `
(ñ:̃L)l:a!〈V〉
−−−−−−−−→↑ (Σ)+ñ : T̃ . M′ (19)

↑ (Σ) . N `
(ñ:̃L)l:a?(V)
−−−−−−−−→↑ (Σ)+ñ : T̃ . N′ (20)

From the assumption that Σ `obs M or Σ `obs N we derive Σ `obs l :alive meaning

I(Σ) ` l :alive (21)

From (21) we derive

I(Σ) allows (ñ : T̃)l : a!〈V〉 (22)

and by (19), (22) and Proposition 4.1.6 we deduce

Σ . M `
(ñ:̃L)l:a!〈V〉
−−−−−−−−→ Σ′′ . M′

Location and Link Failure in a Distributed π-calculus 47

Moreover, by (20), (21) and Lemma 4.2.4 we deduce

↑ (Σ) . N
(ñ:̃K)l:a?(V)
−−−−−−−−→↑ (Σ)+ñ : T̃ . N′

where K̃ = L̃/dom(ΣH) as required. �

We now turn our attention to the actual proof for the main proposition of this
section, namely that bisimulation, ≈, is contextual. We prove this by inductively
defining the largest contextual relation whose base element are bisimilar config-
urations and then show its closure with respect to our derived actions. Based
on such a proof, we still require three (specific) lemmas to help us stitch up this
proof and guarantee closure. The first lemma is prompted by the first two condi-
tions of the Decomposition Lemma 4.2.6, namely that observing code may alter
the state of the network by inducing failure. We thus need the following lemma
to guarantee closure.

Lemma 4.2.7. Suppose Σ1.M1 ≈ Σ2.M2. Then there exists some M′2,M
′′
2 such

that:

• Σ2 . M2

τ̂

|==⇒ Σ2 . M′2 and (Σ2 − l) . M′2
τ

|==⇒ (Σ2 − l) . M′′2
such that (Σ1 − l) . M1 ≈ (Σ2 − l) . M′′2

• Σ2 . M2

τ̂

|==⇒ Σ2 . M′2 and (Σ2−l↔k) . M′2
τ

|==⇒ (Σ2−l↔k) . M′′2
such that (Σ1−l↔k) . M1 ≈ (Σ2−l↔k) . M′′2

Proof. We here prove the first clause and leave the second similar clause for the
interested reader. If Σ1 0 l : alive then Σ1 − l is simply Σ1 and the result is trivial.

Otherwise Σ1 . M1
kill:l
7−→ Σ1 − l . M1 and hence Σ2 . M2

kill:l
|==⇒ Σ2 − l . M′′ for

some Σ2 − l . M′′ such that Σ1 − l . M1 ≈ Σ2 − l . M′′. By expanding our the

derivation Σ2 .M
kill:l
|==⇒ (Σ2 − l) .M′′ we get the required missing M′ to complete

the proof. �

The next two proofs concern observing code. In the definition of contextual
relations, we validate observer code, O, with respect to the external view of a
network Σ, that is Σ `obs O. We here prove that such a relationship is preserved
by actions and network extensions that may involve revealing more hidden com-
ponents to the observer.

Lemma 4.2.8 (Observers and Actions). If Σ `obs O and Σ.O
µ
7−→ Σ after µ.O′

then (Σ after µ) `obs O′.

Proof. The proof is similar to that of Proposition4.2.2. We use Lemma 4.1.5
to infer the structure of O, O′ from µ and Lemma 4.1.2 to infer the structure of
Σ after µ and then show that (Σ after µ) `obs O′. �

48 Adrian Francalanza and Matthew Hennessy

Lemma 4.2.9 (Observers and Network extensions). If Σ+n : U `obs O where
Σ `obs U, that is n is only linked to locations in the observable part of Σ and thus
no hidden state is revealed as a result of the extension, then Σ+n : T `obs O for
any T where U = T/dom(ΣH).

Proof. The proof progresses by a simple induction on the structure of O. �

We are finally in a position to prove that our bisimulation, ≈, is a contextual
relation, according to Definition 2.2.5.

Proposition 4.2.10 (Contextuality of Behavioural Equivalence). If two con-
figurations are bisimilar, they are also bisimilar under any context. Stated oth-
erwise, I |= Σ1 .M1 ≈ Σ2 .M2 implies that for I ` O, T and n fresh in I we
have:

• I |= Σ1.M1|O ≈ Σ2.M2|O and I |= Σ1.O|M1 ≈ Σ2.O|M2

• I+n :T |= Σ1+n :T.M1 ≈ Σ2+n :T.M2

Proof. The proof progresses by the inductive definition a relation R as the largest
typed relation over configurations satisfying:

R=



〈Σ1 . M1, Σ2 . M2〉 | Σ1 . M1≈Σ2 . M2

〈Σ1 . M1|O, Σ2 . M2|O〉
〈Σ1 . O|M1, Σ2 . O|M2〉

∣∣∣∣∣∣ Σ1 . M1RΣ2 . M2

〈Σ1+n :T . M1|O, Σ2+n :T . M2|O〉

∣∣∣∣∣∣
I |= Σ1 . M1 R Σ2 . M2,

I ` T and n is fresh

〈Σ1 . (ν n :T)M1, Σ2 . (ν n :U)M2〉 | Σ1+n :T.M1RΣ2+n :U.M2



and showing that R ⊆≈; since ≈ is the biggest possible relation, this would
mean that it is contextual. We note that our definition of contextual relations,
Definition 2.2.5, would amount to a special case of the contexts defined for R
because it is only defined in terms of the second and third cases of the relation
R, namely contexts involving more systems in parallel and contexts involving
a bigger network. The fourth and last context case, that of name scoping, is
required to ensure the closure of R. All this is fairly standard with the exception
that the type at which names are scoped in the fourth case may not be the same
because of the potentially different hidden states in Σ1 and Σ2.

Before we delve into the actual proof we also note that Lemma 4.2.7 can be
easily extended from ≈ to R as:

Location and Link Failure in a Distributed π-calculus 49

Lemma 4.2.11. If Σ1.M1 R Σ2.M2, then there exist some M′2,M
′′
2 such that:

• Σ2.M2
τ̂
=⇒ Σ2.M′2 and Σ2−l.M′2

τ
=⇒ Σ2−l.M′′2 , where Σ1−l.M1RΣ2−l.M′′2

• Σ2 .M2
τ̂
=⇒ Σ2.M′2 and Σ2−l↔ k . M′2

τ
=⇒ Σ2−l↔ k . M′′2 , where Σ1−l↔

k.M1 R Σ2−l↔k.M′′2

The proof for the above is by induction on why Σ1.M1RΣ2.M2; the base case
follows from Lemma 4.2.7 and the three inductive cases are straightforward.

To prove that R is a bisimulation, we take an arbitrary I |= Σ1 .M1 R Σ2 .M2

and any action Σ1 . M1
µ
7−→ Σ′1 . M′1; we then have to show that Σ2 . M2 can

match this move by performing a weak action Σ2 . M2

µ̂

|==⇒ Σ′2 . M′2 such that
I′ |= Σ′1 . M′1 R Σ′2 . M′2. The proof progress by induction on why I |=
Σ1 .M1 R Σ2 .M2; The first case, that is if I |= Σ1 .M1 ≈ Σ2 .M2 is immediate;
the remaining three cases require a bit more work. We here focus on the second
case, where

Σ1 . M1|O R Σ2 . M2|O because I|= Σ1 . M1 R Σ2 . M2 and I ` O (23)

which is also the most involving and leave the remaining two cases for the inter-
ested reader.

We thus assume Σ1 .M1|O
µ
7−→ Σ′1 .M′1. We decompose this action using the

Decomposition Lemma 4.2.6 and focus on the most difficult case, where

M′1 is (ν ñ : T̃)M′1|O
′, µ is τ and Σ′1 = Σ1 (24)

Σ1 . M1 `
(ñ:̃L)l:a!〈V〉
−−−−−−−−→ Σ1+ñ : T̃ . M′1 (25)

Σ1 . O `
(ñ:̃K)l:a?(V)
−−−−−−−−→ Σ1+ñ : Ũ . O′ where Ũ = T̃/dom(Σ1H) (26)

From (23) and (25) we derive the matching weak action

Σ2 . M2

(ñ:̃L)l:a!〈V〉
|==⇒ Σ′2+ñ : W̃ . M′2 R Σ1+ñ : T̃ . M′1 (27)

where we note the different types T̃ and W̃ at which the two networks Σ1 and
Σ2 are updated; there are updates to the hidden part of the networks which we
abstract away in the linktype L̃. From (27) and the hypothesis of (l-deriv-2) we
obtain

Σ2 . M2
(ñ:̃W)l:a!〈V〉
=⇒ Σ′2+ñ : W̃ . M′2

50 Adrian Francalanza and Matthew Hennessy

which can be decomposed as

Σ2 . M2 =⇒ Σ′′2 . M′′2 (28)

Σ′′2 . M′′2
(ñ:̃W)l:a!〈V〉
−−−−−−−−→ Σ′′2 +ñ : W̃ . M′′′2 (29)

Σ′′2 +ñ : W̃ . M′′′2 =⇒ Σ′2+ñ : W̃ . M′2 (30)

From (28), I ` O and (l-par-ctxt) we get

Σ2 . M2|O =⇒ Σ
′′
2 . M′′2 |O (31)

From the fact that I(Σ1) = I(Σ2) and I(Σ1+ ñ : T̃) = I(Σ′2+ ñ : W̃) from (27) we
know that the visible part of Σ′′2 and Σ′2 did not change as a result of the silent
transitions in (28) and (30) and thus

I(Σ′′2) = I(Σ′2) = I(Σ2) = I(Σ1) (32)

and by (32), (26) and Lemma 4.1.6 we get

Σ′′2 . O
(ñ:̃U)l:a?(V)
−−−−−−−−→ Σ′′2 +ñ : Ũ . O′ where Ũ = W̃/dom(Σ′′2 H) (33)

At this point we note that from (32) and (23) we derive

Σ′′2 `obs O (34)

and from (33), (34), Lemma 4.2.8 and Lemma 4.2.9 we obtain

I(Σ′′2 +ñ : Ũ) ` O′ and I(Σ′′2 +ñ : W̃) ` O′ (35)

Combining the derived action of (29) using (l-deriv-2), the derived action of (33)
using (l-deriv-3), (34), and the Composition Lemma 4.2.5, we obtain

Σ′′2 . M′′2 |O
τ
−→ Σ′′2 . (ν ñ : W̃)M′′′2 |O

′ (36)

From (30), (35) and (l-par-ctxt) we obtain

Σ′′2 +ñ : W̃ . M′′′2 |O
′ =⇒ Σ′2+ñ : W̃ . M′2|O

′

and by applying (l-rest) we get

Σ′′2 . (ν ñ : W̃)M′′′2 |O
′ =⇒ Σ′2 . (ν ñ : W̃)M′2|O

′ (37)

and thus by combining (31), (36) and (37) and then applying (l-deriv-1) we obtain
the matching move

Σ2 . M2|O
τ

|==⇒ Σ′2 . (ν ñ : W̃)M′2|O
′ (38)

The only thing remaining is to show that the two residuals are in R, that is

Σ1 . (ν ñ : T̃)M′1|O
′ R Σ′2 . (ν ñ : W̃)M′2|O

′

From (27) we know

I′ |= Σ1+ñ : T̃ . M′1 R Σ
′
2+ñ : W̃ . M′2 (39)

Location and Link Failure in a Distributed π-calculus 51

and from (35) and (39) we deduce I′ ` O′ and thus from the definition of R we
obtain

I′ |= Σ1+ñ : T̃ . M′1|O
′ R Σ′2+ñ : W̃ . M′2|O

′

and again from the last case of the definition of R

I |= Σ1 . (ν ñ : T̃)M′1|O
′ R Σ′2 . (ν ñ : W̃)M′2|O

′

as required. �

We now conclude this section by showing that bisimulation is sound with
respect to reduction barbed congruence.

Proposition 4.2.12 (Soundness).

I |= Σ1 . M1 ≈ Σ2 . M2 implies I |= Σ1 . M1 � Σ2 . M2

Proof. To prove the above statement, it is sufficient to check that ≈ satisfies the
defining properties of �. It is obviously reduction closed, from the relationship
between τ-actions and the reduction semantics given in Proposition 4.2.3. Barb
preserving is also straightforward, from Proposition 4.2.3 and the direct relation-
ship between barbs and output actions. Finally, Proposition 4.2.10 proves that ≈
is also contextual. �

4.3 Completness

In this section we prove that our bisimulation is also complete with respect to
reduction barbed congruence. This entails showing that reduction barbed con-
gruence is preserved by actions, based on the proof developed earlier in [9, 8].
At the heart of this proof, we show that the effect of each external action can be
mimicked precisely by a specific context, a concept we refer to as definability.

We start this section by proving an obvious, though not explicit, property
stating that reduction babrbed congruence is preserved by scoping.

Proposition 4.3.1 (Scoping and reduction barbed congruence). If two con-
figurations are reduction barbed congruent, scoping a channel or location name
on both sides would still yield two reduction barbed congruent configurations.
Stated otherwise,

(ΣM + n :T) . M � (ΣN + n :U) . N implies ΣM . (ν n :T)M � ΣN . (ν n :U)N

Proof. We define the relation R as:

R =
{
〈ΣM . (ν n :T)M, ΣN . (ν n :U)N〉 (ΣM + n :T) . M � (ΣN + n :U) . N

}

and prove that R has the defining properties of �. It is clearly reduction closed
using (r-ctxt-res); it is also easy to show it is barb preserving since ΣM . (ν n :

52 Adrian Francalanza and Matthew Hennessy

T)M ⇓a@l implies (ΣM + n :T) . M ⇓a@l. Finally, contextuality is also trivial. As
an example, assume I(ΣM) ` O and we have to show that

ΣM . O | (ν n :T)(M) R ΣN . O | (ν n :U)N.

It is clear that ΣM + n :T `obs O and ΣN + n :U `obs O and thus by contextuality
of �, we have (ΣM + n : T) . O |M � (ΣN + n : U) . O |N from which the result
follows. �

Our external actions can affect both the system part of our configuration as
well as the network representation and the main differences between the defin-
ability proofs presented here and those in [9, 8] lie in the effects an action has on
the network representation. In the following proofs, we model an action’s effect
on a network using two different kinds of new construct introduced in DπF; the
first kind of constructs induce faults as changes in the network representation
and these include kill and break l; the second kind observe the current state of
the network and the only example is the ping l.PdQe construct. The first lemma
we consider, establishes a relationship between the labels kill : l and l=k and the
constructs inducing faults in the observable network representation; this proof is
complicated by the asynchronous nature of the constructs kill and break l.

Lemma 4.3.2 (Inducing faults).

• Suppose Σ `obs l : alive. Then:

– Σ . N
kill:l
7−→ Σ′ . N′ implies Σ . N|l[[kill]] −→ Σ′ . N′

– Σ . N|l[[kill]] −→ Σ′ . N′, where Σ′ 6`obs l :alive implies

Σ . N
kill:l
7−→ Σ′ . N′′ such that N′ ≡ N′′

• Suppose Σ `obs l↔k. Then:

– Σ . N `
l=k
−−−→ Σ′ . N′ implies Σ . N|l[[break k]] −→ Σ′ . N′

– Σ . N|l[[break k]] −→ Σ′ . N′, where Σ′ 6`obs l↔k implies

Σ . N `
l=k
−−−→ Σ′ . N′′ such that N′ ≡ N′′

Proof. The first clause for the action kill : l is proved by induction on the deriva-

tion Σ.N
kill:l
−→ Σ′ .N′. The second clause uses induction on the structure of Σ.N,

with a subsidiary induction on the derivation of Σ . N|l[[kill]] −→ Σ′′ . N′′. The
proof for the two clauses of the action l=k is similar. �

In the next lemma we show that for any network Σ, the context can de-
termine the exact state of the observable network ΣO. We define the process
verStatIk (x) that runs at a location k, which should be connected to all observ-
able locations in a network Σ. It returns an output on the parameterised channel

Location and Link Failure in a Distributed π-calculus 53

x if and only if I(Σ) = I. Its implementation is based on the state observing
construct ping l.PdQe; the sub-process, verObsIk (x), first checks that all inacces-
sible locations in I, expressed as I′ + l : ∅ below, are indeed inaccessible and
then checks that the accessible locations, expressed as I + l : L where L , ∅,
satisfy the state declared in I, using the sub-process verLock(x, y1, y2, z). This
last subprocess, goes to the parameterised location x and checks that all its live
connections and dead connections correspond to y1 and y2 respectively, return-
ing a output on channel z if it is the case. The following lemma formalises the
intuition that when run at an appropriate location, verStatIk (x) does satisfy the
intended behaviour.

verStatIk (x)⇐ (ν sync)



verObsIk (sync)
| verNObs(loc(IN)/dom(IO), sync)
| sync?(). . . . sync?()︸ ︷︷ ︸

|loc(N)|

.x!〈〉



verObs〈∅,∅〉k (x)⇐ 0
verObsI+n:∅

k (x)⇐ verObsIk (x) | ping l.dy!〈〉e
verObsI+l:L

k (x), L,∅ ⇐ verObsIk (x) | verLock(l, dom(L), loc(IN)/dom(L), x)

verLock(x, y1, y2, z)⇐ (ν sync)go x.



∏

l∈y1

go l.go x.sync!〈〉

|
∏

l∈y2

ping l.dsync!〈〉e

| sync?(). . . . sync?()︸ ︷︷ ︸
|loc(IN)|

.go k.z!〈〉



Lemma 4.3.3 (Observable Network). If for arbitrary network representation Σ:

Σ+ = Σ + k0 :loc[a, dom(ΣO)] +  :ch

Then,

Σ+ . k0[[verStatIk0
()]] −→∗ Σ+ . k0[[!〈〉]] iff I = I(Σ)

Proof. We prove this lemma by contradiction. We analyse all the possible cases
why I , I(Σ) and then show that for each of these cases,

Σ+ . k0[[verStatIk0
()]] 6−→∗ Σ+ . k0[[!〈〉]] �

We are now in a position to prove definability for every external action in
DπF. We use bn(µ) to denote the bound names (and their corresponding types)
in the action µ; note this is empty for all actions apart from bound input and

54 Adrian Francalanza and Matthew Hennessy

bound output. In order to complete the proof, we also require the following
lemma.

Lemma 4.3.4. Σ + n : T . N −→ Σ′ + n : T . N′ where n < fn(N) iff Σ ` N and
Σ . N −→ Σ′ . N′

Proof. The proofs are by induction on the structure of N for Σ ` N and by
induction on the derivations of Σ . N −→ Σ′ . N′ and Σ + n : T . N −→ Σ′ + n :
T . N′. �

Proposition 4.3.5 (Definability). Assume that for an arbitrary network repre-
sentation Σ, the network Σ+ denotes:

Σ+ = Σ + k0 :loc[a, dom(ΣO)],  :ch,  :ch

where k0,  and  are fresh to ΣN . Thus, for every external action µ and
network representation Σ, every non-empty finite set of names Nm where ΣN ⊆
Nm, every fresh pair of channel names ,  < Nm, and every fresh location
name k0 < Nm connected to all observable locations in ΣO, there exists a system
T µ(Nm, , , k0) with the property that Σ+ `obs T µ(Nm, , , k0), such
that:

1. Σ . N
µ
−→ Σ′+bn(µ) . N′ implies

Σ+ . N | T µ(Nm, , , k0) =⇒ Σ′+ . (ν bn(µ)) N′ | k0[[!〈bn(µ)〉]]

2. Σ+ . N | T µ(Nm, , , k0) =⇒ Σ′+ . N′,
where Σ′+ . N′ ⇓@k0 , Σ

′
+ . N′ 6⇓

@k0
implies that

N′ ≡ (ν bn(µ))N′′|k0[[!〈bn(µ)〉]] for some N′′

such that Σ . N
µ
=⇒ Σ′+bn(µ) . N′′.

Proof. We have to prove that the above two clauses are true for all of the four
external actions. If µ is the bound input action (ñ : L̃)l : a?(V), where L̃ = lnk(ñ :
T̃,Σ) for some T̃, the required system is

(ν ñ : T̃)(l[[a!〈V〉.go k0.?().!〈〉]] | k0[[!〈〉]])

For the output case where µ is (ñ : L̃)l : a!〈V〉, the required T µ(Nm, , , k0)

Location and Link Failure in a Distributed π-calculus 55

is

k0[[!〈〉]] |

l





a?(X).(ν sync)



m∏

i=1

if xi<Nm.sync!〈〉 |
|X|∏

j=m+1

if x j=v j.sync!〈〉

| sync?()..sync?()︸ ︷︷ ︸
|X|

.go k0.(νc)


verNwStatIk0

(x1..xm, c)

| c?(x).

(
?().!〈x1..xm〉

| go x..kill

)








such that

verNwStatIk0
(x1 . . . xm, y)⇐ (ν k′ :Tk′)go k′.(νd)

(
verStatI+(x1 ..xm:K̃)

k′ (d)
| d?().go k0.y!〈k′〉

)

and Tk′ = loc[a,Nm∪{x1..xm}], K̃ = L̃{x1..xm/̃ n}

For the sake of presentation ,we assume that the first v1 . . . vm in V = v1 . . . v|V | in
µ are bound, and the remaining vm+1 . . . v|V | are free; a more general test can be
construct for arbitrary ordering of bound names in V using the same principles
used for this test. We also use the conditional if x<Nm.P as an abbreviation for
the obvious nested negative comparisons between x and each name in Nm.

The test works in two stages. Similar to the tests in [9, 8], the first stage
performs the appropriate test for every input variable xi, releasing sync!〈〉 if the
test is successful; if xi is expected to be a bound name in µ, then we make sure
it is fresh to Nm; otherwise xi is matched with the corresponding free name.
Another process waits for input on |V | successful tests, that is |V | inputs on the
scoped channel sync and then releases the code for the second stage.

The second stage deals with the verification of any new live connections and
locations that become reachable as a result of the fresh names inputted. To avoid
complicated routing to reach these new locations, verNwStatIk0

(x1 . . . xm, y) cre-
ates a new location k′ from the location k0, with a location type that attempts to
connect to any name in Nm together with the fresh bound names just inputted
x1 . . . xm; recalling Example 3.2.1, we note that the purpose of this procedure
is to short-circuit our way to the newly reachable locations. We afterwards run
verStatI+(x1..xm :K̃)

k′ (c) from this new location k′, to verify that the new observable
network state is indeed I+ ñ : L̃. If this is the case, we signal on the continuation
channel d the fresh location k′, which triggers a process that goes back to loca-
tion k0 and signals once again on another continuation channel, denoted by the
variable y, but eventually parameterised by the scoped channel c in the testing
context above. This triggers two parallel processes; the first one consumes the
barb  and releases an output on  with the bound names x1 . . . xm, whereas
the second one goes back to k′ and kills it for cleaning up purposes.

In addition to bound input and bound output, we have two non-standard ac-

56 Adrian Francalanza and Matthew Hennessy

tions kill : l and l=k and the test required for these actions are :

l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]]

and

l[[break k]] | k0[[!〈〉]] | (ν sync)


l[[ping k.ping k.dgo k0.sync!〈〉e]]
| k[[ping l.ping l.dgo k0.sync!〈〉e]]
| k0[[sync?().sync?().?().!〈〉]]



respectively.
Since inducing faults is an asynchronous operation, the actual killing of a

location or breaking of a link is independent of its observation. The observation
of a kill at l is carried out from k0 by two successive pings, first observing that
l is alive and subsequently observing that l has become dead. The observation
of a link break between l and k is slightly more complicated, because it needs
to be tested from one of the connected locations l and k. The test is carried out,
as in the previous case, through two successive pings; the first ping determines
that k is accessible from l (or viceversa) while the second determine that it is
not anymore. However, k (or viceversa l) can become inaccessible because it
died and not because the link broke; to ensure that k (or l) became inaccessible
because of a link failure, we perform the test from both endpoints, l and k, and
synchronise at k0.

We next give an outline of the proof for one of the non-standard actions,
kill : l; the proof of definability for l= k is similar, whereas the proof for the
remaining two actions can be extracted from [9, 8]. For the first clause, from

Σ . N `
kill:l
−−−→ Σ′ . N′ we know that Σ `obs l : alive, thus Σ+ `obs l : alive, which

means we can perform the reduction involving a positive ping:

Σ+ . N | l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]] −→
Σ+ . l[[kill]] | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]]

(40)

From Σ . N
kill:l
−→ Σ′ . N′, I(Σ+) allows kill : l and Proposition 4.1.6 we derive

Σ+ . N
kill:l
−→ Σ′+ . N′ where Σ+ `obs l :alive and Σ′+ 6`obs l :alive (41)

and from (41) and Lemma 4.3.2 we get

Σ+ . N | l[[kill]] −→ Σ′+ . N′

and (r-par-ctxt) we derive

Σ+ . N | l[[kill]] | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] −→
Σ′+ . N′ | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]]

(42)

Location and Link Failure in a Distributed π-calculus 57

Subsequently we derive the sequence of reductions

Σ′+ . N′ | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] −→
Σ′+ . N′ | k0[[!〈〉]] | k0[[?().!〈〉]] −→

Σ′+ . N′ | k0[[!〈〉]]
(43)

Combining the reductions in (40), (42) and (43) we prove the first clause.

For the second clause, the set of barbs Σ′+ . N′ ⇓@k0 , Σ
′
+ . N′ 6⇓

@k0
can

only be obtained through the sequence of reductions

Σ+ . N | l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]] =⇒ (44)

Σ1
+ . N1 | l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]] −→

Σ1
+ . N1 | l[[kill]] | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] =⇒ (45)

Σ2
+ . N2 | l[[kill]] | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] −→ (46)

Σ2
+ − l . N2 | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] =⇒ (47)

Σ3
+ − l . N3 | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] −→

Σ3
+ − l . N3 | k0[[!〈〉]] | k0[[?().!〈〉]] =⇒ (48)

Σ4
+ − l . N4 | k0[[!〈〉]] | k0[[?().!〈〉]] −→

Σ4
+ − l . N4 | k0[[!〈〉]] =⇒ (49)

Σ′+ . N′ | k0[[!〈〉]]

From (46) and Lemma 4.3.2 we deduce

Σ2
+ . N2 | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] `

kill:l
−−−→

Σ2
+ − l . N2 | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]]

and by the inductive hypothesis of (l-par-ctxt), the fact that I(Σ2) allows kill : l
and Proposition 4.1.6, we derive

Σ2 . N2 kill:l
−→ Σ2 − l . N2 (50)

From (44), (45), (47), (48) and (49) and (r-par-ctxt) obtain

Σ+ . N =⇒ Σ1
+ . N1 =⇒ Σ2

+ . N2

Σ2 − l+ . N2 =⇒ Σ3
+ . N3 =⇒ Σ4

+ . N4 =⇒ Σ+ . N′
(51)

and from (51) and Lemma 4.3.4 we obtain

Σ . N =⇒ Σ1 . N1 =⇒ Σ2 . N2

Σ2 − l . N2 =⇒ Σ3 . N3 =⇒ Σ4 . N4 =⇒ Σ′ . N′
(52)

Finally, using Proposition 4.2.3 to convert the reductions in (52) into weak silent
actions and merging these with (50) we obtain as required

Σ . N
kill:l
|==⇒≡ Σ′ . N′ �

58 Adrian Francalanza and Matthew Hennessy

The result of Proposition 4.3.5 means that intuitively we can provoke the ac-

tion Σ . N
µ
=⇒ Σ′ . N′ by extending Σ with a fresh location k0 and fresh channels

 and  and placing N in parallel with T µ(Nm, , , k0) for a suitably
chosen Nm. But in the case of actions where bn(µ) , ∅ we do not get pre-
cisely the residual Π′ . N′ but instead Σ′′+ . (ν bn(µ)) N | k0[[!〈bn(µ)〉]]where
Σ′′ + bn(µ) = Σ′. We therefore state and prove a variant the extrusion lemma in
[9, 8], which enables us to recover the residual Σ′ . N′ from Σ′′+ . (ν bn(µ))N |
k0[[!〈bn(µ)〉]]; this lemma uses the preliminary lemma below, which we
chose to extract as an important step of the proof.

Lemma 4.3.6. Suppose δ, k0 are fresh to the systems M, k[[P(X)]]. Suppose also
that k ∈ C. Then:

Σ |= (ν ñ : T̃)(M | k[[P(ñ)]]) �
(ν ñ : T̃)(ν δ :ch)(ν k0 :loc[a, C])(M | k0[[δ!〈ñ〉]] | k0[[δ?(X).go k.P(X)]])

Proof. We note that the left hand system can be obtained from the right hand
system in two reductions, communication on δ and migrating from k0 to k, that
cannot be interfered with by any context. It is easy to come up with a bisimula-
tion proving that the two systems are reduction barbed congruent. �

Lemma 4.3.7 (Extrusion). Suppose , , k0 are fresh to the network rep-
resentations ΣM , ΣN , M and N. Then

I |= ΣM
+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] � ΣN

+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]]
implies ΣM + ñ : T̃ . M � ΣN + ñ : Ũ . N

Proof. We define the relation R as:

R =

{
〈ΣM + ñ : T̃ . M,ΣN + ñ : Ũ . N〉

∣∣∣∣∣∣
ΣM
+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] �

ΣN
+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]]

}

and show that R satisfies the defining properties of �. It is obviously reduc-
tion closed. We here outline the proof for the barb preserving and contextuality
properties.

Suppose ΣM+ñ : T̃.M R ΣN+ñ : Ũ.N and ΣM+ñ : T̃.M ⇓a@l; we have to show
ΣN + ñ : Ũ . N ⇓a@l. If l, a < ñ this is straightforward since in this case ΣM

+ . (ν ñ :
T̃)M|k0[[!〈ñ〉]] ⇓a@l, by barb preserving, ΣN

+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]] ⇓a@l

which can only be because ΣN + ñ : Ũ . N ⇓a@l. So suppose, as an example, that
a ∈ ñ. Even though we no longer have that ΣM

+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] ⇓a@l, the
restricted name a can be extruded via  through the system:

Ta ⇐ k0[[?(X).mv l(Xa?().go k0.δ!〈〉)]]

where δ is a fresh channel and Xa is the variable xi where a is bound on input.

Location and Link Failure in a Distributed π-calculus 59

Since ΣM . M ⇓a@l it follows that

ΣM
+ + δ :ch . (ν ñ : T̃)M|k0[[!〈ñ〉]] | Ta ⇓δ@k0

From the definition of �, we know

ΣM
+ + δ :ch . (ν ñ : T̃)M|k0[[!〈ñ〉]] | Ta � Σ

N
+ + δ :ch . (ν ñ : Ũ)N|k0[[!〈ñ〉]] | Ta

and by barb preservation we conclude

ΣN
+ + δ :ch . (ν ñ : Ũ)N|k0[[!〈ñ〉]] | Ta ⇓δ@k0

which only be because ΣN . N ⇓a@l as required.
The case for when n = l is similar, only that instead of Ta we use the system:

Tl ⇐ k0[[?(X).(ν k : (dom(I′O)∪Xl))go k, Xl.a?().go k, k0.δ!〈〉]]

This system is similar to Ta with the exception that a specific location k is created
so that we short-circuit our route to l, similar to the procedure we used earlier in
the definability proof of bound outputs (see Proposition 4.3.5).

We still have to show that R is contextual. As an example we show that
it is preserved by parallel system contexts and leave the simpler case, that for
network extensions, to the interested reader. Suppose I |= ΣM . M R ΣN . N;
we have to show that for arbitrary k[[P]] such that I ` k[[P]] then we have I |=
ΣM . M | k[[P]] R ΣN . N | k[[P]].

By definition of R, we have I |= ΣM . M R ΣN . N because

I′ |= ΣM
+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] � ΣN

+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]] (53)

We define the system

Tk[[P]] ⇐ k0[[?(X).go k′0.δ!〈X〉 | (X)go k.P]]

where δ, k′0 are fresh names and (X)go k.P substitutes all occurrences of ñ in
go k.P by the appropriate variables xi ∈ X. From I ` k[[P]] we deduce that
I′′ ` Tk[[P]] for I′′ = I′ + δ : ch + k′0 : loc[a, dom(I′

O
)] and subsequently, by

contextuality of � and (53), we obtain

I′′ |= ΣM
++ . M′ | Tk[[P]] � Σ

N
++ . N′ | Tk[[P]] (54)

where

M′ = (ν ñ : T̃)M | k0[[!〈ñ〉]]

N′ = (ν ñ : Ũ)N | k0[[!〈ñ〉]]

ΣM
++ = Σ

M
+ + δ :ch + k′0 :loc[a, dom(I′O)]

ΣN
++ = Σ

N
+ + δ :ch + k′0 :loc[a, dom(I′O)]

From (54) and Proposition 4.3.1 we deduce that we can scope  and k0 to
obtain

I′ |= ΣM
+ . (ν , k0)M′ | Tk[[P]] � Σ

N
+ . (ν , k0)N′ | Tk[[P]] (55)

60 Adrian Francalanza and Matthew Hennessy

and by Lemma 4.3.6 and we get

I′ |= ΣM
+ . (ν ñ : T̃)M | k[[P]] | k′0[[δ!〈ñ〉]] � ΣN

+ . (ν ñ : T̃)N | k[[P]] | k′0[[δ!〈ñ〉]] (56)

from which, by definition of R, we derive I |= ΣM . M|k[[P]] R ΣN . N|k[[P]] as
required. �

Proposition 4.3.8 (Completness).

I |= Σ1 . M1 � Σ
2 . M2 implies I |= Σ1 . M1 ≈ Σ

2 . M2

Proof. Suppose Σ1 .M1
µ
7−→ Σ1

1 .M′1; we must find a move Σ2 .M2

µ̂

|==⇒ Σ2
1 .M′2

such that Σ1
1.M

′
1 � Σ

2
1.M

′
2. If µ is an internal move then the matching move is ob-

tained from the fact that � is reduction closed, together with Proposition 4.2.3. If
µ is an external action, then by choosing Nm so that it contains all the free names
in IN and choosing fresh , , k0, from the first part of Proposition 4.3.5

and the assumption Σ1 . M1
µ
7−→ Σ1

1 + bn(µ) . M′1 we obtain

Σ1
+ . M1|T

µ(Nm, , , k0) =⇒ Σ1
1+ . (ν bn(µ))M′1 | k0[[!〈bn(µ)〉]]

By contextuality and reduction closure of �, we know that there is a matching
move

Σ2
+ . M2|T

µ(Nm, , , k0) =⇒ Σ . N

for some Σ . N such that Σ1
1+ . (ν bn(µ))M′1 | k0[[!〈bn(µ)〉]] � Σ . N. This

in turn means that Σ . N ⇓@k0 and Σ . N 6⇓
@k0

and so the second part of
Proposition 4.3.5 now gives that Σ . N ≡ Σ2

1+ . (ν bn(µ))M′2 | k0[[!〈bn(µ)〉]]

for some Σ2
1+, M′2 such that Σ2 . M2

µ

|==⇒ Σ2
1 + bn(µ) . M′2. This is the required

matching move, since the Extrusion Lemma 4.3.7, gives us the required

Σ1
1 + bn(µ) . M′1 � Σ

2
1 + bn(µ) . M′2 �

5 Conclusions

We have presented a simple extension of Dπ, in which there is an explicit repre-
sentation of the underlying network on which processes execute, exhibiting both
node and link failures. Our main result is a fully-abstract bisimulation equiva-
lence with which we can reason about the behaviour of systems in the presence
of dynamic network failures. To the best of our knowledge, this is the first time
system behaviour in the presence of link failure has ever been investigated.

Our starting point was the work by Hennessy and Riely [16] on bisimulation
techniques for a distributed variant of CCS with location failure. We adapted
this work to Dπ and defined a reduction semantics to describe the behaviour of
systems in the presence of node and link failures; a core aspect of this adaptation

Location and Link Failure in a Distributed π-calculus 61

is the encoding of node status and connections as type information. We then ap-
plied techniques for actions dependent on the observer’s knowledge, developed
for the π-calculus in [9] and Dπ in [8], to characterise a natural notion of barbed
congruence.

It is often argued that a theory of node failure only would be sufficient to
study link failure; intuitively link failure could be simulated by introducing a
new intermediate node for each link, and movement via a link could be modelled
in two steps, to and from the intermediate node. Such an approach, however,
goes against our wish, expressed earlier in the Introduction. We would prefer to
develop a theory in terms of the calculus itself, rather than indirectly via a trans-
lation to a lower-level calculus, since the resulting bisimulations, encoded in
terms of these intermediate nodes, would be much more complex to express and
cumbersome to work with. Moreover, we think that it is unlikely that the result-
ing theory would be fully-abstract due to the fact that, in the encoding proposed
above, we would be decomposing atomic actions such as location migration into
two or more sub-actions; it is well-known that, even for a simple calculus such
as CCS, bisimulation equivalence is not preserved by translating actions a into
sub-actions begin-a followed by end-a; see [7].

Rather than being a body of work that could be directly applied to real case
scenarios, we believe our work is best viewed as a succinct well-founded frame-
work from which numerous variations could be considered. For example links
between sites could be uni-directional, rather than symmetric, or ping l.PdQe
could test for a path from the current site to l, rather than a direct connection.
One could also limit the use of the fault inducing actions kill : l and l = k;
for instance, disallowing them in the definition of the contextual equivalences
would give a behavioural theory between systems running on static but possibly
defective networks; allowing only n occurrences would lead the way to a theory
of fault-tolerance. More generally, one could allow the recovery of failures, in
which dead nodes, or broken links may randomly be restored. Adapting our lts
and the resulting bisimulation equivalence to such scenarios are in some cases
straightforward, and in others, serious undertakings; a typical example of the
former is the introduction of uni-directional links, while failure recovery would
probably fall into the latter.

Having said this, we feel that our framework, as it currently stands, lends
itself well for analysing routing problems and studying the interplay between
faults at the network level and their observation at the system level. In our more
immediate research, we should be able to demonstrate the applicability of our
bisimulations to establish the correctness of systems in the presence of failures;
we intend to use our approach to develop a theory of fault-tolerance and to apply
it to example systems from the literature.

62 Adrian Francalanza and Matthew Hennessy

Related work: There have been a number of studies on process behaviour in the
presence of permanent node failure only, in addition to our starting point [16].
That closest to our work is the already cited [2, 1]; as already mentioned, their
approach to developing reasoning tools is also quite different from ours. Rather
than develop, justify and use bisimulations in the source language of interest, in
their case πl and π1l, they propose a translation into a version of the π-calculus
without locations, and use reasoning tools on the translations. But most impor-
tantly, they do show that for certain π1l terms, it is sufficient to reason on their
translations. Elsewhere, permanent location failure with hierarchical dependen-
cies have been studied by Fournet, Gonthier, Levy and Remy in [6]. Berger [3]
was the first to study a π-calculus extension that models transient location failure
with persistent code and communication failures, while Nestmann, Merro and
Fuzzatti [15] employ a tailor made process calculus to express standard results
in distributed systems, such as [5].

Location and Link Failure in a Distributed π-calculus 63

A Notation

Here we give the formal definitions for the various notation we have introduced
for extracting information from network representations, and for updating them.

A.1 DπLoc Notation

Recall that for DπLoc a network repsresentation Π consists of the tuple 〈N ,D〉,
where N is a set of names known and D is the set of dead locations. We thus
define the following judgements:

Π ` a :ch
def
= a ∈ ΠN (valid channels)

Π ` l :loc[d]
def
= l ∈ ΠN ∧ l ∈ ΠD (valid dead location)

Π ` l :loc[a]
def
= l ∈ ΠN ∧ l < ΠD (valid live location)

Π ` l : alive
def
= Π ` l :loc[a] (live locations)

Π ` k← l
def
= Π ` k :alive, l :alive (k accessible from l)

Π ` M
def
= fn(M) ∈ ΠN (valid systems)

We also define the following operations:

Π + a :ch
def
= 〈ΠN∪{a},ΠD〉 (adding fresh channel)

Π + l :loc[a]
def
= 〈ΠN∪{l},ΠD〉 (adding fresh live location)

Π + l :loc[d]
def
= 〈ΠN∪{l},ΠD∪{l}〉 (adding fresh dead location)

Π − l
def
=

{
〈ΠN ,ΠD∪{l}〉 if l ∈ ΠN
Π otherwise

(killing a location)

A.2 DπF Notation

Network representations in DπF are based on the notion of linksetsL. We define
the following operations and judgements, using a set of locations C:

L/C
def
= {〈k1, k2〉 | 〈k1, k2〉 ∈ L and neither k1, k2 < C} (filtering)

L`k← l
def
= 〈l, k〉 ∈ L (accessibility)

L`kf l
def
= L ` k← l or∃k′.L ` k′← l andL ` kfk′ (reachability)

l↔C
def
= {l↔k | k ∈ C} (component creation)

Lf l
def
= {k↔k′ | k↔k′ ∈ L andL ` kf l} (component reference)

For DπF we have two kinds of network representations, ranged over by ∆

64 Adrian Francalanza and Matthew Hennessy

and Σ. We define the following operations on them:

∆ − l
def
= 〈∆N , ∆D ∪ {l}, ∆L〉 (location killing)

Σ − l
def
= 〈ΣN , ΣO/{l}, ΣL/{l}〉 (location killing)

∆ − l↔k
def
= 〈∆N , ∆D, ∆L/{〈l, k〉, 〈k, l〉}〉 (link breaking)

Σ − l↔k
def
= 〈ΣN , ΣO/{〈l, k〉, 〈k, l〉}, ΣL/{〈l, k〉, 〈k, l〉}〉 (link breaking)

∆ + a :ch
def
= 〈∆N∪{a}, ∆D, ΣL〉 (adding a channel)

Σ + a :ch
def
= 〈ΣN∪{a}, ΣO, ΣH 〉 (adding a channel)

∆ + l :loc[d, C]
def
= 〈∆N∪{l}, ∆D∪{l}, ΣL∪l↔C〉 (adding a location)

∆ + l :loc[a, C]
def
= 〈∆N∪{l}, ∆D, ΣL∪l↔C〉

Σ + l :loc[d, C]
def
= 〈ΣN∪{l}, ΣO, ΣH 〉 (adding a location)

Σ + l :loc[a, C]
def
=

Case C ∩ dom(ΣO) = ∅ then 〈ΣN ∪ {n}, ΣO, H ′〉
where: H ′ = ΣH ∪ (l↔C)

C ∩ dom(ΣO) , ∅ then 〈ΣN ∪ {n}, O′, H ′〉
where: O′ = ΣO ∪ (l↔C) ∪ (ΣHfC)

and H ′ = ΣH/(ΣHfC)

We next define translations from one network representation to the other, to-
gether with the definition of the observer network knowledge for every represen-
tation.

Σ(∆)
def
= 〈∆N , ∆L/∆D, ∅〉 (from∆ toΣ)

∆(Σ)
def
= 〈ΣN , (loc(ΣN)/dom(ΣO∪ΣH)), ΣO∪ΣH 〉 (fromΣ to∆)

I(Σ)
def
= 〈ΣN , ΣO〉 (observer knowledge)

I(∆)
def
= I(Σ(∆))

Finally, we define judgements made using the various network representa-
tions. Ideally we would like that distinct network representations that have the
same semantic interpretations yield the same judgements as shown below.

Location and Link Failure in a Distributed π-calculus 65

Σ` l :alive
def
= l ∈ dom(ΣO ∪ ΣH) (live locations)

Σ` l↔k
def
= l↔k ∈ ΣO ∪ ΣH (live link)

Σ`T
def
= fn(T) ⊆ ΣN (valid types)

Σ`n :T, ñ : T̃
def
= Σ ` T and Σ + n :T ` ñ : T̃

Σ`N
def
= fn(N) ⊆ ΣN (valid systems)

Σ`k← l
def
= ΣO `k← l or ΣO `k← l (accessibility)

Σ`kf l
def
= ΣO `kf l or ΣO `kf l (reachability)

∆` l :alive, l↔k, T, N
def
= Σ(∆)` l :alive, l↔k, T, N

I+n :L
def
= 〈IN∪{n}, IO∪L〉 (updates)

I` l :alive
def
= l ∈ dom(IO) (live locations)

I` l↔k
def
= l↔k ∈ IO (live link)

I`T
def
= fn(T) ⊆ dom(IO) (valid types)

I` l[[P]]
def
= fn(P) ⊆ IN and l ∈ dom(IO) (valid systems)

I` (ν n :T)N
def
= I`T andI+n : T ` N

I`N|M
def
= I`N andI`M

∆`obs l :alive, l↔k, T, N
def
= I(∆) ` l :alive, l↔k, T, N (external judgments)

Σ`obs l :alive, l↔k, T, N
def
= I(Σ) ` l :alive, l↔k, T, N

Finally we outline a number of operations on types used in reduction rules and
transition rules.

ch/{l1, .., ln}
def
= ch (type filtering)

loc[C]/{l1, .., ln}
def
= loc[C/{l1, .., ln}]

inst(loc[C], l,∆)
def
= loc[{k | k ∈ C and∆`kf l}] (instantiate)

inst(loc[C], l,Σ)
def
= loc[{k | k ∈ C andΣ`kf l}]

lnk(n :T,Σ)
def
=

(n↔C) ∪ (ΣHfC)
if T=loc[a, C] and C∩loc(ΣO),∅
∅ otherwise

(link types)

66 Adrian Francalanza and Matthew Hennessy

B Auxilliary Proofs

We here prove a lemma that is used to show that our lts of § 3.3 is closed over
valid effective configurations.

Lemma B.0.1 (Valid Effective Network Updates). If Σ is a valid effective net-
work, n is fresh in Σ and the type T is a valid type with respect to Σ, denoted as
Σ ` T (see Appendix for definition) then Σ + n :T is a valid effective network.

Proof. The cases where T = ch and T = loc[d, C] are trivial so we focus our
attention to the case where T = loc[d, C]; at this point, according to Defini-
tion 3.3.5, we have two possible subcases:

• If C ∩ dom(ΣO) = ∅ then Σ + n :loc[a, C] has the form 〈ΣN ∪ {n}, ΣO, H ′〉
where H ′ = ΣH ∪ (l↔ C). To prove that this resultant network is a valid
effective network, we have to show that it adheres to the three consistency
requirements, defined earlier in Definition 3.3.2:

1. dom(ΣO) ⊆ loc(ΣN ∪ {n}). This is immediate from the fact that Σ is valid
and thus dom(ΣO) ⊆ loc(ΣN).

2. dom(H ′) ⊆ loc(ΣN ∪ {n}) and that H ′ is a linkset. The inclusion is
obtained from the fact that dom(ΣH) ⊆ loc(ΣN) and the assumption that
loc(loc[a, C]) ⊆ loc(ΣN). The fact that H ′ = ΣH ∪ l↔ C is a linkset is
immediate from the fact that l↔C is a component.

3. dom(ΣO) ∩ dom(H ′) = ∅. This is immediately obtained from the as-
sumptions that dom(ΣO) ∩ dom(ΣH) = ∅, n < ΣN and the condition for
this subcase, that is C ∩ dom(ΣO) = ∅.

• If (C ∩ dom(ΣO) , ∅) then Σ + n :loc[a, C] has the form 〈ΣN ∪ {n}, O′, H ′〉
where O′ = ΣO ∪ (l↔C ∪ (ΣHfC) andH ′ = ΣH/(ΣHfC). One again, we
have to prove that Σ + n :loc[a, C] satisfies the three consistency conditions:

1. dom(O′) ⊆ loc(ΣN ∪ {n}) and that O′ is a linkset. The proof here pro-
gresses similar to the second requirement of the previous subcase.

2. dom(H ′) ⊆ loc(ΣN ∪ {n}) and that H ′ is a linkset. The proof for the in-
clusion is a simpler version of the above subcases, while the requirement
thatH ′ = ΣH/ΣHfC is a linkset is obtained from the fact that ΣHfC
is a component and Lemma 3.3.4.

3. dom(O′) ∩ dom(H ′) = ∅. This is obtained from the assumptions that
dom(ΣO) ∩ dom(ΣH) = ∅, n < ΣN and the structure of O′ andH ′. �

Location and Link Failure in a Distributed π-calculus 67

References

[1] Roberto M. Amadio. An asynchronous model of locality, failure, and process mobility. In
D. Garlan and D. Le Métayer, editors, Proceedings of the 2nd International Conference on
Coordination Languages and Models (COORDINATION’97), volume 1282, pages 374–391,
Berlin, Germany, 1997. Springer-Verlag.

[2] Roberto M. Amadio and Sanjiva Prasad. Localities and failures. FSTTCS: Foundations of
Software Technology and Theoretical Computer Science, 14, 1994.

[3] Martin Berger. Basic theory of reduction congruence for two timed asynchronous π-calculi. In
Proc. CONCUR’04, 2004.

[4] Luca Cardelli. Wide area computation. In Proceedings of 26th ICALP, Lecture Notes in Com-
puter Science, pages 10–24. Springer-Verlag, 1999.

[5] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

[6] Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of mobile
agents. CONCUR 96, LNCS 1119:406–421, August 1996.

[7] R.J. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and refinement of
actions (extended abstract). In A. Kreczmar and G. Mirkowska, editors, Proceedings 14th Sym-
posium on Mathematical Foundations of Computer Science, MFCS ’89, Pora̧bka-Kozubnik,
Poland, August/September 1989, volume 379 of lncs, pages 237–248. Springer-Verlag, 1989.

[8] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of
access and mobility control in distributed systems. Theoretical Computer Science, 322:615–
669, 2004.

[9] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the
presence of subtyping. Mathematical Structures in Computer Science, 14:651–684, 2004.

[10] Matthew Hennessy and James Riely. Resource access control in systems of mobile agents. In
Uwe Nestmann and Benjamin C. Pierce, editors, HLCL98: High-Level Concurrent Languages
(Nice, France, September 12, 1998), volume 16(3), pages 3–17. Elsevier Science Publishers,
1998.

[11] Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82–120, 2002.

[12] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer
Science, 152(2):437–486, 1995.

[13] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow. In
29th Annual Symposium on Principles of Programming Languages. ACM, January 2002.

[14] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[15] Nestmann, Fuzzati, and Merro. Modeling consensus in a process calculus. In CONCUR: 14th
International Conference on Concurrency Theory. LNCS, Springer-Verlag, 2003.

[16] James Riely and Matthew Hennessy. Distributed processes and location failures. Theoretical
Computer Science, 226:693–735, 2001.

[17] Davide Sangiorgi and David Walker. The π-calculus. Cambridge University Press, 2001.

[18] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach to designing
fault-tolerant computing systems. Computer Systems, 1(3):222–238, 1983.

