
JPoli
y: A Java Extension for Dynami
 A

ess Control

Tim Owen Ian Wakeman Julian Rathke

Computer S
ien
e Te
hni
al Report 01/2004

Department of Informati
s, University of Sussex, UK

January 2004

Abstra
t

The development of remote exe
ution platforms, where servi
e hosts a

ept

ode from third party
lients and run it on their behalf, provides a powerful

alternative to the RPC model of
lients invoking remote servi
es over a network.

A major
on
ern for servi
e hosts is to
ontrol a

ess and usage of their own

servi
es and resour
es, whether the
lient
ode is being exe
uted by the servi
e

host itself or operating remotely and using RPC.We introdu
e a set of extensions

to Java that enables servi
e hosts to
ontrol how their servi
es may be used by

lient Java programs, a

ording to a spe
i�ed poli
y. We separate the poli
ies

from the servi
es being
ontrolled, rather than �xing the poli
y at
ompile-time

or load-time. A novel aspe
t of this work is that the poli
ies allow dynami

a

ess
ontrol to servi
es: the availability of servi
e fun
tionality
an vary during

exe
ution. Furthermore, we support the
hanging of poli
ies at run-time without

modi�
ation to servi
e
ode or
lients. We des
ribe our implementation of

these language extensions and show how the system enables servi
e providers to

enfor
e poli
ies that prote
t their resour
es and servi
es from undesirable
lient

ode behaviour.

1 Introdu
tion

While the traditional model of the Web involves users manually intera
ting

with a visual interfa
e, the development of Web Servi
es [32℄ is motivated

by the desire to allow programmable a

ess to servi
es. But from the

programmer's point of view, Web Servi
es essentially involve just RPC [3℄

invo
ations: the
lient
ode pa
kages together a request and optionally

some data and sends it to the server. The server exe
utes its own
ode to

servi
e the request and may return some data as a result.

1

Although this
lient-server mode of web servi
e intera
tion is a powerful

extension to the monolithi
 model, it
an involve a
onsiderable amount

of network traÆ
 for appli
ations that require intensive dialogue with a

remote servi
e. Furthermore,
lients with limited resour
es or
onne
tivity

are not always the most appropriate pla
e to exe
ute
ode that intera
ts

with a remote servi
e.

The basis of the Remote Evaluation [26℄ model (also termed Remote

Exe
ution, or just RE) is that servi
e providers a

ept programs from third-

party
lients and host the exe
ution of the
ode themselves. This extends

the RPC style by allowing
ode to be pa
kaged and sent to a server, rather

than simply supplying data with a request for the server to exe
ute its

own
ode. Su
h a fa
ility enables programmers to deploy their own
ode

to perform useful work with a remote servi
e, with the bene�t of pla
ing

the
ode
loser to the servi
es that it requires. Furthermore,
lients with

limited resour
es
an deploy
ode to be exe
uted remotely then dis
onne
t

or swit
h o� until su
h time as the results of the
omputation are required.

In either of the above s
enarios a major
on
ern for servi
e hosts is how

to
ontrol a

ess and usage of their own servi
es, whether the
ode a
-

essing a servi
e is being exe
uted by the servi
e host itself, or operating

remotely and using RPC. For example, the Amazon Web Servi
e API[2℄

enables RPC-like programmable a

ess to the
ompany's online shop, but

spe
i�es some restri
tions on how
lient
ode may use the servi
e. A

ord-

ing to the a

ess agreement,
lient
ode may not perform requests faster

than on
e per se
ond (although this is a guideline and is not a
tively en-

for
ed). Similarly, the Google Web Servi
e API[15℄ limits
lient programs

to 1000 query requests per day (whi
h is enfor
ed: an ex
eption is thrown

if the limit is ex
eeded). The Ebay API[10℄ o�ers a range of di�erent lim-

its depending on the level of membership | a typi
al basi
 limit is that

programmers
an make upto 5000
alls per day in test mode and 50
alls

per day in produ
tion mode, and maintain 8 simultaneous
onne
tions.

We believe that any in
reased adoption of programmable servi
es and

hosting of third-party
ode will require me
hanisms that allow hosts to

ontrol the usage of their servi
es. The informal poli
ies used by Web

2

Servi
es su
h as Google, Amazon and Ebay indi
ates that poli
y-based

ontrol of servi
e use is already of interest. In the RE s
enario, where

servi
e providers host third-party
lient
ode, then the need for a

ess
on-

trol and resour
e rationing be
omes parti
ularly important. Sin
e hosted

ode will be relying upon the host for a

ess to more general servi
es su
h

as disk storage and network fun
tionality, more sophisti
ated poli
ies and

poli
y
ontrol are required.

There are various ways in whi
h a program may exhibit undesirable be-

haviour, but we are parti
ularly interested in the external dependen
ies

of hosted programs: the servi
es that they use via programming APIs

to libraries. Figure 1 shows an appli
ation written by a third-party de-

ployed to be run on a servi
e host. The appli
ation
ode relies on external

host-provided servi
es to be available in its exe
ution environment. These

typi
ally in
lude disk and �le a

ess, network fun
tionality and database

use, for example. Higher level servi
es su
h as Google's sear
h fa
ility or

other network-a

essible servi
es are also used through an API, so these

too form part of the external environment in whi
h a program exe
utes.

We
onsider memory
onsumption and CPU usage as essentially oper-

ating system (or virtual ma
hine)
on
erns. While these issues are
learly

important to the overall behaviour of
ode, those resour
es are typi
ally

not a

essed expli
itly by a program in the way that library servi
es are |

rather, they are impli
it in its exe
ution. Our work will not fo
us on CPU

and memory usage and we
onsider this to be an interesting but orthogonal

issue.

If we assume that host resour
es and servi
es are provided to a program

through an API, then a typi
al level of granularity for
ontrol is an in-

dividual method. In Figure 1 the small
ir
les show the points at whi
h

lient
ode makes
alls out to host servi
es. Hen
e,
ontrolling these API

method invo
ations to external servi
e libraries allows us to impose poli
ies

on program behaviour.

In this paper, we des
ribe how programming language support for �ne-

grained
ontrols on the behaviour of programs enables servi
e providers

to prote
t a

ess to their servi
es and resour
es. Our design shows that

3

(From a third-party
lient)

Hosted Appli
ation

Storage Servi
e

File System

On Host

Other Servi
e

Servi
e Host

Client's Appli
ation

Deployed to Servi
e Host

Servi
e

Sear
h Engine

Library Servi
e

Network A

ess

Figure 1: Remote Exe
ution on a Servi
e Host

the appli
ation of poli
ies to
ontrol servi
e use
an be a
hieved without

ne
essarily requiring
lient
ode to be aware of this poli
y
ontrol. We

introdu
e a language
onstru
t for spe
ifying servi
e usage poli
ies su
h as

those examples mentioned above, and demonstrate a prototype implemen-

tation that extends Java with the ability to
ontrol how
lient
ode
an

use a servi
e. This te
hnique applies equally well to
ontrolling servi
e use

in the traditional RPC style and in the RE situation where
lient
ode is

being hosted by the servi
e provider. In the remainder we refer to this Java

extension as JPoli
y. The JPoli
y language is a modest extension of Java

with a small number of extra
onstru
ts to support poli
y-based
ontrol of

servi
es.

The type of s
enarios we aim to support with our system are exempli�ed

in Figure 2. Servi
e providers implement their servi
es in Java as
lasses

and interfa
es in the normal way. The fun
tionality provided by the servi
e

is spe
i�ed by the servi
e API, whi
h is the set of methods that
lients
an

all. Clients
an a

ess the servi
e either remotely, using RPC, or lo
ally if

the servi
e host is prepared to a

ept third-party
lient
ode and exe
ute

it on the host. We assume that ea
h
lient gains a

ess to a parti
ular

servi
e through an obje
t instan
e that represents that servi
e, provided

4

Servi
e Obje
t

Servi
e Host

State

Abstra
t

CAN SEARCH

Obje
t

Poli
y

Method

Runs...

Method

Runs...

Lo
ally Hosted

Client App

Call: send(data) Call: re
v()

Abstra
t

State

ALLOW NET

Poli
y

Obje
t

Servi
e Obje
t

Sear
h Engine Network A

ess

Remote

Client App

Method

Runs...

RPC Call: query("stu�")

Controls Controls

lass Sear
hEngine {

Ve
tor query(String sear
hTerm) when CAN_SEARCH { ... }

}

poli
y BoundedQueries for Sear
hEngine {

CAN_SEARCH when { /* total
alls to query method < bound */ }

}

poli
y TimeLimitedSear
h for Sear
hEngine {

CAN_SEARCH when { /* time of day is between 9 and 5 */ }

}

lass NetworkA

ess {

void send(Obje
t data) when ALLOW_NET { ... }

Obje
t re
v() when ALLOW_NET { ... }

}

Figure 2: Example JPoli
y Servi
es and Poli
ies

5

to them as their unique entry point.

Sin
e the fun
tionality of a servi
e obje
t is a

essed through its meth-

ods, we
an
ontrol the behaviour of
lient programs that use the servi
e

by enabling or disabling the availability of ea
h servi
e API method dy-

nami
ally. This is depi
ted in the diagram of Figure 2 using the \swit
h"

metaphor. For example, we
an impose a rate-limiting poli
y on a Sear
hEngine

servi
e by swit
hing o� the availability of the query method after a limited

number of invo
ations has been rea
hed, then swit
hing it ba
k on after

some delay.

A novel aspe
t of the JPoli
y language lies in the separation of poli
y

from servi
e
ode. Many existing poli
y
ontrol or resour
e a

ess
ontrol

systems rely on a tight
oupling of (
ompiled) servi
e
ode and exa
t a

ess

ontrol spe
i�
ations [9, 7, 21, 5℄. De
oupling poli
y from
ode provides

some immediate bene�ts: servers are not obliged to re
ompile or rewrite

API
ode to a

ount for any
hanges in poli
y and versioning of poli
y

ontrolled servi
es is a
hievable within a single poli
y
ontrol framework.

The te
hnology whi
h underpins this de
oupled approa
h to variable

method availability is based on a notion of abstra
t state, in whi
h a method

invo
ation pro
eeds only when a servi
e obje
t's abstra
t state permits it.

We may like to think of these as named properties of the underlying states

of the poli
y. For example, a servi
e o�ering a print method may o�er

this fun
tionality under various
ir
umstan
es, or states, des
ribed exa
tly

in a sophisti
ated underlying poli
y. From the servi
e
ode's perspe
tive

all that is relevant though is whether the method is available when
alled.

This might lead us to an abstra
t state named Printable whi
h is intended

to des
ribe those
olle
tion of underlying states in whi
h the printmethod

is available. By only allowing the servi
e
ode to refer to abstra
t states

we enfor
e a separation of poli
y from the servi
e obje
t itself, so that the

poli
y is not hard-wired into the servi
e.

The extensions to Java that we in
lude in JPoli
y enable this poli
y-

driven
ontrol of method availability:

� Instan
e methods
an be annotated with a when
lause, that spe
i�es

an abstra
t state name. The presen
e of this
lause makes the method

6

modal, in the sense that the invo
ation of a modal method on some

obje
t
an only pro
eed if the obje
t is
urrently in the abstra
t state

named in the
lause.

� Ea
h obje
t of a
lass that
ontains modal methods maintains a no-

tion of whi
h abstra
t states it is
urrently in. For example, the Net-

workA

ess
lass in Figure 2 has modal methods naming an abstra
t

state
alled ALLOW NET and ea
h NetworkA

ess servi
e obje
t will

re
ord whether it is presently in the abstra
t ALLOW NET state or

not.

� The transitions between being in some abstra
t state and not are driven

by an external poli
y rather than the obje
t itself. The language sup-

ports the de�nition of poli
ies, that determine when an obje
t should

enter or leave an abstra
t state. The
onditions under whi
h these

transitions o

ur
an be based on a variety of fa
tors, as explained in

Se
tion 4.

� Client
ode that attempts to invoke a modal method will only pro
eed if

the target obje
t is in the
orre
t abstra
t state. There are a number of

ways in whi
h
lients
an handle modal method
alls: either exe
ution

blo
ks until the invo
ation pro
eeds, or blo
king
an be avoided by

trying alternative
ode or skipping the
all. If left unspe
i�ed the

default behaviour for
lients is to blo
k on unavailable methods.

The following se
tions des
ribe these extensions in more detail, and explain

how they allow servi
e a

ess to be
ontrolled in a �ne-grained manner.

The remainder of the paper is organised as follows. In the next se
tion

we elaborate on the notion of modal methods and abstra
t states. The

onsequen
es of poli
y
ontrol for
lient
ode is dis
ussed in Se
tion 3. In

Se
tion 4 we present our model for poli
y spe
i�
ation and how these are

linked with servi
es. We follow this with a des
ription of our JPoli
y imple-

mentation and dis
ussion of its run-time behaviour in Se
tion 5. Finally,

we
on
lude with se
tions
ontaining dis
ussions on related and further

work.

7

2 Modal Methods and Abstra
t States

The primary purpose of the JPoli
y extensions is to enable servi
e hosts to

ontrol when the methods in their Java servi
es
an be
alled. Sin
e the

fun
tionality of a servi
e is a

essed by invoking its methods, then we
an

enable or disable the use of parti
ular servi
e fun
tionality by sele
tively

blo
king the invo
ation of a method in that servi
e. This allows the servi
e

host to
ontrol what fa
ilities
lient
ode
an a

ess, and when it
an be

a

essed, assuming
lients have no other means to use servi
es in their

hosted environment.

In JPoli
y, the level of granularity for a

ess
ontrol is individual meth-

ods, whi
h allows �ne-grained management of the fun
tionality available to

lient
ode. For example, a host servi
e that provides network a

ess
ould

be
ontrolled with a poli
y that allows outgoing network
onne
tions to be

made but not in
oming, by enabling one servi
e method and not another.

Our basi
 approa
h to enabling or disabling
ertain methods is to in-

ter
ept
alls from
lients and de
ide whether to
ontinue the invo
ation or

not. Therefore, su
h methods
an be thought of as having two modes of op-

eration: the normal Java mode where an invo
ation pro
eeds immediately

and a disabled mode where an invo
ation does not pro
eed but is blo
ked

instead. These modal methods are distinguished in the JPoli
y language

by an annotation on the method's de�nition: a when
lause. For example,

the Sear
hEngine servi
e
lass from Figure 2 has a modal method
alled

query with the following signature:

Ve
tor query(String sear
hTerm) when CAN_SEARCH

The presen
e of a when
lause means that this is a modal method, and

hen
e invo
ations of the method may or may not pro
eed immediately.

Conversely, methods without a when
lause are non-modal and behave

exa
tly as normal Java methods.

The
ontent of a when
lause is the de
laration of an abstra
t state

name, whi
h is spe
i�
 to the
lass in whi
h it appears. The intent of this

is to de
lare that there is some abstra
t state of the obje
t in whi
h the

asso
iated modal method should be enabled. This abstra
t state is simply

8

a yes/no
ag, so e.g. a Sear
hEngine obje
t is either in the CAN SEARCH

abstra
t state or it is not. The a
tual meaning of the abstra
t state, in

terms of when individual obje
ts are in the state is determined by the

poli
y asso
iated with an obje
t | this is explained below in Se
tion 4.

Sin
e a
lass may
ontain several modal methods, ea
h with a when

lause potentially naming di�erent abstra
t state names, the result is a set

of independent abstra
t states. Ea
h obje
t of that
lass maintains a notion

of its
urrent
ombined status: whi
h abstra
t states it is presently in, and

whi
h it is not. This status then
ontrols the availability of methods,

be
ause the de
ision to allow a method
all of a modal method to pro
eed

is determined by whether the target obje
t is in the relevant abstra
t state

at that moment. A related issue here is that, in our
urrent design, only

instan
e methods
an be modal | we do not allow Java's stati
 methods

to have when
lauses. This is be
ause the abstra
t state is a property

of individual obje
ts, but stati
 methods are not invoked with respe
t to

any spe
i�
 obje
t. We
ould extend the language to allow stati
 modal

methods, by asso
iating the stati
 abstra
t state with the
lass itself, in

a similar way to Java syn
hronization on stati
 method
alls where the

lass's lo
k is used.

In terms of the diagram in Figure 2, the abstra
t state is the \swit
h"

that manipulates the handling of method invo
ations. As shown in the

NetworkA

ess servi
e, more than one modal method's when
lause
an

refer to a parti
ular abstra
t state. In that
ase, the availability of all those

modal methods is tied together: either they are all enabled or all disabled.

It is the task of servi
e programmers when adding when
lauses to make

this de
ision about whi
h modal methods should be
ontrolled by whi
h

abstra
t state names.

An important feature of our design is that obje
ts do not
ontrol the

status of their set of abstra
t states, rather this is the responsibility of

separate poli
ies. An obje
t enters or leaves an abstra
t state when its

asso
iated poli
y di
tates. We dis
uss the de�nition and use of poli
ies in

Se
tion 4.

9

3 Client Code Impli
ations

As explained in the previous se
tions, the existen
e of modal methods

in JPoli
y means that the behaviour of a method invo
ation depends on

the method's
urrent mode, whi
h is determined by the abstra
t state of

the target obje
t. Clearly, this has impli
ations for
lient
ode that
alls

modal methods. The servi
e API that is presented by the set of method

signatures shows whi
h methods are modal, as indi
ated by the presen
e

of when
lauses. This information is important to
lient programmers, in

a similar way to the existen
e of a throws
lause in a method signature:

it warns the programmer that an invo
ation of a modal method may not

pro
eed. This a
ts as a reminder to
lients that the servi
es they wish to

use are subje
t to a

ess
ontrols.

In JPoli
y, the e�e
t of
alling a modal method that is swit
hed o�

(i.e. be
ause the target obje
t is not in the required abstra
t state) is to

blo
k the
alling thread. The
aller is only unblo
ked if the target obje
t

enters the relevant abstra
t state again, at whi
h point the method
all

pro
eeds. This behaviour allows servi
e hosts to
ompletely deny servi
e

fun
tionality to
lients, if they
hoose to impose a poli
y that never puts

the obje
t into
ertain abstra
t states.

Our design does not allow
lients to expli
itly examine the
urrent ab-

stra
t states of an obje
t, therefore we have introdu
ed a
onstru
t whi
h

provides
lient
ode with alternatives to blo
king. Instead
lients
an at-

tempt an invo
ation of a modal method and take evasive a
tion if the
all

does not pro
eed. This is analogous to ex
eption handling
onstru
ts in

Java | indeed, we use similar syntax. The following example of
lient

ode shows one form of this
onstru
t:

try Ve
tor results=sear
hServi
e.query("some terms") {

//
ode blo
k using the results value

}

// Further
ode (results not in s
ope here)

In this syntax, the newly de
lared lo
al variable results is assigned the

10

result of the modal method
all if the invo
ation pro
eeds immediately,

and its s
ope is only within the following
ode blo
k. If the query method

is swit
hed o� due to the
urrent abstra
t state of the sear
hServi
e

obje
t then the
aller will not blo
k, but the method
all and
ode blo
k

will be skipped and exe
ution
ontinues after the blo
k. Another use of

this
onstru
t is to allow a se
ond blo
k of alternative
ode to be exe
uted

in the
ase of the modal method
all not pro
eeding:

try Ve
tor results=sear
hServi
e.query("some terms") {

//
ode blo
k using the results value

}

else {

// alternative
ode blo
k (results not in s
ope here)

}

Here, the alternative blo
k is exe
uted if the query
all
annot pro
eed

immediately. The third variation of this
onstru
t simply in
ludes a mil-

lise
ond timeout
lause to the modal method invo
ation attempt:

try for 100 Ve
tor results=sear
hServi
e.query("some terms") {

// as before

}

In this form, if the obje
t's abstra
t state
hanges to re-enable the method

within the spe
i�ed time of 100 millise
onds then the
all will pro
eed.

The bene�t of this
lause is that it provides
lients with an option midway

between immediate skipping and inde�nite blo
king.

4 Control Poli
ies

The previous se
tions detail the way in whi
h servi
e providers
an write

their servi
es so that they
an be poli
y-
ontrolled, and how
lient
ode

an deal with using servi
es that are
ontrolled by poli
ies. This se
tion

shows what these poli
ies a
tually look like and how they are linked to the

servi
e obje
ts under their
ontrol.

11

As explained above, the
entral
on
ept in our work is the abstra
t

state of an obje
t, whi
h is re
e
ted in the set of named abstra
t states

that appear in modal method when
lauses. The availability of a modal

method is di
tated by the
urrent status of the target obje
t's asso
iated

abstra
t state. As Figure 2 shows, the role of poli
ies in JPoli
y is to

ause
hanges in the abstra
t state of obje
ts, whereas the servi
e obje
ts

themselves only examine the status and do not
hange it. This separation of

on
erns means that poli
ies are not hard-wired into the servi
e
ode itself.

Abstra
t states a
t as the intermediary: individual poli
ies determine when

to
hange an obje
t's abstra
t state, and the obje
t reads this status when

de
iding whether to allow a method invo
ation to pro
eed. Consequently,

the job of the poli
y de
laration
onstru
t we have in
luded in JPoli
y is

to de�ne exa
tly when an obje
t is in an abstra
t state and when it is not.

4.1 Poli
y Spe
i�
ation

In the JPoli
y language we extend the Java syntax with a top level
on-

stru
t for spe
ifying a poli
y. Therefore a
ompilation unit of Java
ode

ontains a list of
lass, interfa
e and poli
y de�nitions. Our model of a

poli
y is in the form of a labelled transition system | essentially a �nite

state automaton,
onsisting of a set of
on
rete states with transitions be-

tween them. The poli
y de�nition de
lares the name of the
lass for whi
h

it
an be used, then spe
i�es the sets of its
on
rete states that
orrespond

to ea
h abstra
t state of obje
ts of that
lass. The general form of a poli
y

spe
i�
ation is as follows:

poli
y Poli
yName for ClassName {

-> initialCon
reteState

transition
on
reteState1 ->
on
reteState2 when (
onditionA)

transition
on
reteState2 ->
on
reteState3 when (
onditionB)

...

ABSTRACT_STATE_X when { list of
on
rete states }

ABSTRACT_STATE_Y when { list of
on
rete states }

... // for ea
h named abstra
t state de
lared in ClassName

}

12

lass Sear
hEngine {

Ve
tor query(String sear
hTerm) when CAN_SEARCH { ... }

}

poli
y BoundedQueries (int bound, int interval) for Sear
hEngine {

int
redits = bound;

-> some;

// Every time we
all the method, the
ounter de
rements...

transition some -> some when (query)

{
redits =
redits-1; }

// Until none are left...

transition some -> none when (
redits <= 0);

// Then the
ounter is replenished at next time interval

transition none -> some when ((TimeServi
e.now % interval)==0)

{
redits = bound; }

CAN_SEARCH when { some }

}

Figure 3: Example Poli
y Spe
i�
ation

The parti
ular
on
rete states and transitions of these automata re
e
t the

spe
i�
 nature of ea
h poli
y. For example, suppose we are spe
ifying a

Google-like Web Servi
es poli
y that a
ertain modal method in a servi
e

an only be invoked a limited number of times in some time period. The

poli
y may have two
on
rete states, to represent whether the
all limit

has been rea
hed or not, and transitions between these based on a method

all
ounter and a time event. Figure 3 shows how this poli
y
an a
tually

be written using the JPoli
y syntax.

To assist in the
onstru
tion of poli
ies su
h as the
all limiter outlined

above, whi
h involves
ounting, poli
y spe
i�
ations
an in
lude lo
al vari-

ables that may be updated using a limited expression language. Without

this fa
ility, poli
ies that need to implement
ounters would have to spe
-

ify states to re
ord a
ount total, whi
h be
omes tedious and repetitive.

13

Figure 3 shows a lo
al variable named
redits that
ounts how many
alls

an still be made before the limit is rea
hed. Updating of lo
al variables,

su
h as in
rementing one used as a
ounter, is enabled by the addition of

an optional
lause in transition spe
i�
ations. This
lause, shown in bra
es

at the end of a transition de
laration, simply lists poli
y variable updates

| it is not arbitrary Java
ode.

A further enhan
ement of the poli
y
onstru
t is that it
an be param-

eterised by values, mu
h like the way a Java
lass
an be parameterised

by having its
onstru
tor de
lare a list of formal parameters. A poli
y's

named parameters
an be used to initialise its lo
al variables. In Figure 3

the BoundedQueries poli
y has been parameterised by the
all limit and

the time interval, rather than having these hard wired into the transitions.

The des
riptions above outline the general form of the poli
y
onstru
t,

but the utility and expressiveness of poli
ies is determined mainly by the

ontent of the boolean
onditional expressions used to label transitions.

In Figure 3, the BoundedQueries poli
y illustrates the use of most of the

terms that
an be referred to in
ondition expressions. In some
ases, the

ondition expressions in a poli
y make referen
e to aspe
ts of the obje
t

that the poli
y is
ontrolling, whi
h is
alled the target obje
t. The terms

used in transition expressions are:

Obje
t instan
e methods The event of an instan
e method being in-

voked on the target obje
t
an be used to trigger a transition. The

�rst transition in the BoundedQueries poli
y is an example of this: it

names the query method in its
ondition, in order to
ount how many

times the method is invoked.

Stati
 �elds The value of a stati
 �eld of some arbitrary
lass
an be

used to gain a

ess to external servi
es in the wider environment. For

example, the poli
y in Figure 3 makes use of a servi
e that presents

the
urrent time as a one se
ond
ounter �eld.

Obje
t instan
e �elds Although not used in the BoundedQueries poli
y

example, any instan
e �eld of the target obje
t
an be referred to. This

enables poli
ies to use the internal state of servi
e obje
ts to guide

14

transitions.

Poli
y lo
al variables Poli
ies
an de
lare a number of mutable lo
al

variables, and these
an be referred to in transition
onditions. These

variables
an be updated by assigning new values when a transition

o

urs.

Poli
y parameters The named parameters of a poli
y
an be
onsidered

as un
hanging lo
al variables, like final method parameters in Java.

The example poli
y uses the interval poli
y parameter in its third

transition expression.

Constant values These are simple literal values, su
h as integer
on-

stants.

With the ex
eption of instan
e methods, the
ondition expression syntax

allows these terms to be
ombined using a simple set of logi
al,
onditional

and arithmeti
 operators. A transition may only use a method name in its

ondition if it is the only term in the expression, be
ause it does not make

sense to apply expression operators to a method
all event. An important

property of the transition
onditions is that they are pure expressions in

the sense that they do not
ause any side e�e
ts.

4.2 Poli
y Atta
hment

On
e poli
y spe
i�
ations have been written for servi
e
lasses, the
on-

ne
tion between a poli
y and a parti
ular obje
t is made by our �nal lan-

guage extension: a simple poli
y assignment
onstru
t. This in�x operator

onne
ts an obje
t of some
lass with a poli
y for that
lass, spe
ifying

arguments if the poli
y is parameterised:

sear
hServi
e poli
y BoundedQueries(250, 10)

where sear
hServi
e refers to an obje
t of type Sear
hEngine and the

poli
y named BoundedQueries is de�ned as one for Sear
hEngine obje
ts.

In a remote exe
ution environment, servi
e hosts will typi
ally need to

be able to assign poli
ies to the servi
e obje
ts they give to
lients, but

15

deny
lients the ability to
hange the poli
y asso
iated with these obje
ts.

Clearly, if
lients
ould repla
e the poli
ies atta
hed to servi
e obje
ts

then they
an subvert the host's
ontrol on servi
e usage | thus defeating

the purpose of poli
y-based
ontrol. In JPoli
y, we
an prevent this by

restri
ting the ability to
hange an obje
t's poli
y to the servi
e provider

only. This is a
hieved by using a Java interfa
e type for the
lient's view of

a servi
e, and
onstraining the semanti
s of the poli
y assignment
onstru
t

so that it
an only be used to
hange the poli
y of an obje
t that is handled

through a variable of
lass type. Clients do not know the name of the
lass

that implements ea
h servi
e, they only see an interfa
e through whi
h to

view the servi
e. Therefore, the restri
tion on poli
y assignment to
lass

type variables only means that
lient
ode
annot repla
e the poli
y on a

servi
e obje
t.

Be
ause the
on
ept of an abstra
t state provides a level of separation

between poli
ies and the obje
ts they
ontrol, we
an dynami
ally
hange

the poli
y that is asso
iated with an individual obje
t. Using the
onstru
t

just des
ribed, a di�erent poli
y
an be applied to an obje
t without mak-

ing any
hanges to the obje
t at all, or even informing it that a poli
y

hange has o

urred. And sin
e the poli
y details are en
apsulated in a

separate entity, servi
e
ode does not need to be re-
ompiled when a poli
y

hange takes pla
e.

5 Implementation Details

We have implemented a
ompiler for the JPoli
y language des
ribed above.

Sin
e the language is designed as an extension to Java, the
ompiler trans-

lates the syntax extensions into pure Java. The resulting Java sour
e
an

then be
ompiled to byte
ode or native exe
utables using standard Java

ompilers. See the Appendix for a full listing of the Java
ode generated

for the example
lass and poli
y shown in Figure 3.

The translation approa
h is straightforward: poli
y spe
i�
ations are

onverted into Java
lasses, servi
e
lasses gain a �eld that links to a poli
y

obje
t, and modal methods are implemented by synthesizing two wrapper

16

methods that guard a

ess to the a
tual method
ode. Client
ode requires

very little translation, primarily be
ause the use of a when
lause is not

visible in the translated Java method signature. Indeed,
lients that do not

use the non-blo
king try
onstru
t des
ribed in Se
tion 3
an a
tually be

ompiled using a standard Java
ompiler, and still be su

essfully linked

against servi
e
ode written in JPoli
y. This is a useful feature in an

environment where it is unrealisti
 to expe
t all
lients to be implemented

in a non-standard language. Servi
e hosts
an develop poli
y-
ontrolled

servi
es, while retaining ba
kwards
ompatibility for Java
lients that are

unaware of the use of poli
ies.

Any JPoli
y
lass
ontaining at least one modal method is augmented

with an extra instan
e �eld named
urrentPoli
y that provides the link

to a poli
y obje
t. The storage of the
urrent set of abstra
t states is

a
tually held in the poli
y obje
t itself, rather than instan
es of the
lass

being
ontrolled. The reason for this implementation design is that one

poli
y obje
t may
ontrol several target obje
ts, so we avoid dupli
ation

by maintaining one set of abstra
t states in the poli
y. Target obje
ts

use their link to the poli
y to
he
k the
urrent status when handling a

method invo
ation. The poli
y atta
hment
onstru
t shown in Se
tion 4.2

is simply translated into an assignment of a poli
y
lass instan
e to the

urrentPoli
y �eld of the
ontrolled obje
t. The
reation of new poli
y

obje
ts for this
onstru
t is handled by the poli
y itself, using a fa
tory

method.

Ea
h modal method is
ompiled by erasing the when
lause, renaming

the method with a suÆx and marking the method with private visibility.

We then generate two wrapper methods: one with the original method

name, signature and visibility, and a se
ond with similar signature and

visibility but renamed and with an extra parameter. The purpose of these

wrapper methods is to implement the method a

ess
ontrol before
alling

the original method body. One wrapper implements the blo
king a
tion

that waits until the abstra
t state allows the
all to pro
eed. The se
ond

wrapper implements the non-blo
king invo
ation attempt dis
ussed in Se
-

tion 3, and throws an ex
eption if the
all
annot pro
eed. The general

17

pattern of translation for a modal method su
h as:

publi
 Ve
tor query(String sear
hTerm) when CAN_SEARCH {

// original method body

}

is to generate this set of three Java methods:

private Ve
tor query_ORIGINAL(String sear
hTerm) {

// Notify the
urrentPoli
y that the method has been

// invoked, then...

// exe
ute the original method body

}

publi
 Ve
tor query(String sear
hTerm) {

// Blo
k waiting for the obje
t to be in the CAN_SEARCH

// abstra
t state, then...

return this.query_ORIGINAL(sear
hTerm);

}

publi
 Ve
tor query_ATTEMPT(int timeout, String sear
hTerm)

throws MethodUnavailableEx
eption {

// Wait at most timeout millise
onds for the obje
t to be

// in the CAN_SEARCH abstra
t state, then...

if (/* obje
t is now in the abstra
t state */)

return this.query_ORIGINAL(sear
hTerm);

else

throw new MethodUnavailableEx
eption();

}

We use standard Java syn
hronization features to implement the waiting

for abstra
t states | this avoids a busy wait loop by putting the
alling

thread to sleep until the poli
y obje
t noti�es the thread that the abstra
t

state has
hanged. Sin
e the set of abstra
t states is a
tually stored in the

poli
y obje
t, the servi
e obje
t uses its
urrentPoli
y instan
e �eld to

request the
urrent status of an abstra
t state.

18

The �rst of the two generated Java wrappers has an identi
al signature

to that of the original method written in the JPoli
y language (on
e the

when
lause has been erased). This means that
lient
ode
an a
tually

be written in plain Java, by ignoring the when
lauses and
alling the

modal methods without knowing anything about the JPoli
y language.

Therefore, we do not need to assume that
lients will be written in JPoli
y

and
ompiled using our
ompiler. The poli
y-based
ontrol of method

invo
ation is enfor
ed
ompletely on the servi
e side of the
all, rather

than trusting the
lient not to
ir
umvent the
ontrols.

However, if
lient
ode is written in the JPoli
y language and does make

use of the invo
ation attempt try syntax des
ribed in Se
tion 3, then a

all attempt su
h as:

try Ve
tor results=sear
hServi
e.query("some terms") {

// su

ess
ode blo
k

}

else {

// alternative
ode blo
k

}

is translated into the following Java
ode:

try {

Ve
tor results=sear
hServi
e.query_ATTEMPT(0, "some terms");

// su

ess
ode blo
k

}

at
h (MethodUnavailableEx
eption e) {

// alternative
ode blo
k

}

The des
riptions above
over the translation of
lient and servi
e
ode

that uses the extensions in JPoli
y. The remaining
onstru
t is the poli
y

de�nition itself | these are
onverted into a Java
lass, with �elds for ea
h

lo
al variable and parameter, and a BitSet to re
ord the
urrent status of

ea
h abstra
t state. The translated
lass implements the labelled transition

19

system, with an instan
e �eld to re
ord the
urrent
on
rete state and a

method to implement ea
h transition.

Mu
h of the poli
y implementation uses an event-driven approa
h: events

su
h as methods being invoked or �elds
hanging values
ause handler

methods in the poli
y to be
alled. These handlers dispat
h transitions

as appropriate, based on evaluating the
ondition expressions. Events are

sent to the poli
ies by inserting
ode in methods and augmenting �eld up-

date
ode so that poli
y obje
ts are noti�ed when a method is invoked or

a �eld value is
hanged.

As transitions
ause the
urrent
on
rete state to
hange, the mapping

between
on
rete states and ea
h abstra
t state is used to make any
hanges

to the
urrent abstra
t states. When an abstra
t state does
hange, target

obje
ts are noti�ed so that any blo
ked method invo
ations
an make use

of this information.

Our translation strategy for modal methods involves a level of indire
-

tion, sin
e
lients
all one of the wrapper methods whi
h �rst performs

an abstra
t state
he
k before forwarding the
all to the a
tual method

implementation. In the
ase where the target obje
t is in the required

abstra
t state then the
all pro
eeds, just as for non-modal methods, but

it is desirable to minimise this overhead for invo
ations of modal methods.

We have made some basi
 measurements of the overhead, by
omparing

exe
ution times of an indire
t
all against a dire
t
all of the a
tual method

(bypassing the abstra
t state
he
k by removing the private visibility).

The results indi
ate an approximate performan
e redu
tion of 5% for the

invo
ation of a modal method
ompared to the non-modal
ase, using the

Sun Java VM v1.4.1 on Linux.

6 Related Work

The
on
ept of Remote Exe
ution (RE) of third-party
ode has appeared

in various appli
ation areas, from Java applets to mobile
ode and agents[4,

13, 28℄ and a
tive networks[1, 18, 20, 25, 30, 31℄. Naturally, one of the major

on
erns with RE is that host owners are a

epting
ode from potentially

20

unknown and untrusted third parties, and therefore wish to prote
t their

ma
hines from mali
ious, greedy or poorly-written programs. There are a

number of existing te
hniques that address this issue of program behaviour

ontrol:

Sandboxing is used to
ontrol how a program
an a

ess resour
es in its

exe
ution environment. The Java Se
urity Manager ar
hite
ture[14,

27℄ is founded on this approa
h, where
alls to
riti
al library methods

in the API su
h as
reating network so
kets or using the �lesystem

are
he
ked at run-time against a se
urity poli
y of a

ess rights. Our

work is an extension of this form of
ontrol, where we allow arbitrary

methods to be
ontrolled rather than the �xed set that are hard-wired

into the Java model. A further limitation of the Java Se
urity Manager

is that the se
urity poli
ies are \all or nothing" in the sense that a

poli
y either allows a

ess or denies it | a de
ision that remains during

exe
ution. We improve upon this by enabling more expressive dynami

poli
ies, where method a

essibility
an vary over time depending upon

fa
tors su
h as time, user reputation,
urrent system load or past usage

of the servi
e's methods.

Safe Languages
an be designed so that undesirable program behaviour

is limited by the language itself and enfor
ed by the
ompiler | on
e

the program has su

essfully been type-
he
ked, then it is deemed

to satisfy the de�nition of safety designed into the language. This

language design approa
h has been applied to higher level languages

intended for programmers[18, 25, 28, 29℄ and lower level assembly and

byte
ode languages[21, 24℄. Again, the allowable a

ess poli
ies are

usually limited by the system design or are
ompiled into individual

programs, and hen
e are set on
e at
ompile-time or load-time. The

Vault language[9℄ permits dynami
 a

ess
ontrol, rather than a �xed

allow/deny permission, but the poli
y is still en
oded into the program

sour
e |
hanging poli
ies requires the program to be re-
ompiled.

Module Thinning is a te
hnique for limiting the possible a
tivities of a

program by means of redu
ing the visibility of servi
es it
an a

ess.

21

This approa
h has been used in A
tive Network systems[1, 20℄ to limit

the a

ess of mobile
ode to resour
es on the network node. Work on

mobile Java
ode agents[17℄ prote
ts servi
es by narrowing the view of

a servi
e interfa
e, whi
h prevents
lient
ode from linking to
ertain

methods. When a program is dynami
ally linked before exe
ution,

all external dependen
ies are mat
hed up with the library modules

that provide these fa
ilities. A servi
e host
an use se
urity poli
ies

to
ontrol the linking pro
ess and thereby deny a

ess to parti
ular

servi
es, or perhaps link against di�erent implementations of a library

depending on the required level of fun
tionality. Here, a limitation is

that the
lient program sees a �xed view of the available resour
es -

on
e it has been loaded and linked, the visibility
annot be altered

dynami
ally.

Code Rewriting allows hosts to impose a se
urity poli
y on the be-

haviour of in
oming programs, by modifying the binary exe
utable[22℄

or byte
ode itself before exe
ution starts. One example of this ap-

proa
h is the SASI system[11℄ where poli
ies in the form of se
urity

automata[23℄ determine the modi�
ation of a binary exe
utable or Java

byte
ode program. This has the bene�t of allowing
lients to write

ode in any sour
e programming language, and avoids the need to

send higher level program
ode to the servi
e host. The drawba
k of

su
h systems is that a �xed poli
y is typi
ally woven into the program

ode stati
ally, when the rewriting is performed.

A
ommon limitation in many of the te
hniques just des
ribed is that the

host's se
urity poli
y typi
ally spe
i�es what
an and
annot be a

essed,

then this is built into the program or environment. Hen
e a

essibility

is determined on
e and
annot
hange during program exe
ution. Our

work is motivated by the observation that many useful se
urity and a

ess

poli
ies require more
exibility than a �xed allow/deny rule. In parti
ular,

method availability should be variable over time, with the poli
y depending

on fa
tors su
h as servi
e use and the wider environment. Moreover, there

should be a separation between the servi
e
ode and the possibly many

poli
ies that
ould be applied to
ontrolling that servi
e.

22

As stated in the introdu
tion, the spe
ify resour
es of memory and CPU

time are ones we
onsider an operating system or virtual ma
hine
on-

ern. Nevertheless, there is resear
h into resour
e-bounded programming

languages[9, 19℄ that attempts to determine stati
ally the memory usage

and exe
ution time bounds of programs, but this requires signi�
ant lan-

guage restri
tions. We
onsider this area of resear
h to be an interesting

omplement to our work, but one motivation for our system design is that

we
annot assume all
lient
ode will be written in spe
ial purpose lan-

guages.

The issue of de�ning and applying poli
ies to the
ontrol of systems

is well studied, su
h as the management poli
y language Ponder[8℄ and

work on Role-based A

ess Control[6℄. These systems fo
us on the higher

level management
on
erns: the spe
i�
ation and analysis of poli
ies, typ-

i
ally using a de
larative language. Allied to this, the �eld of se
urity

in
ludes mu
h resear
h on a

ess
ontrol, e.g. [16℄, and
apabilities based

on authenti
ation, i.e. who is allowed to perform
ertain operations. Our

interest is in the lower level aspe
ts of how poli
ies are implemented, in the

spe
i�
 domain of
ontrolling program behaviour at the method invo
ation

level. This allows dynami
 a

ess
ontrol based on fa
tors other than user

authenti
ation, su
h as time, reputation or servi
e usage patterns.

7 Con
lusions and Further Work

We have designed and implemented JPoli
y: a set of language extensions

for Java that enables programmers to
ontrol how the fun
tionality in their

servi
es
an be a

essed by
lient
ode, using separate poli
y spe
i�
ations

that dynami
ally vary the availability of methods. The design des
ribed in

this paper explains how servi
e providers
an use this language to spe
ify

�ne-grained poli
ies on how servi
es
an be a

essed at run-time.

The primary out
ome of this work is the su

essful appli
ation of poli
ies

to
ontrol program behaviour, in parti
ular the novel ability of our system

to enable
ontrol poli
ies to be dynami
ally
hanged at run-time. We

a
hieve this without altering the servi
e
ode being
ontrolled or the
lient

23

ode that is a

essing the servi
e. Furthermore, our design does not require

the
lients to be written using the extended language |
lient
ode in plain

Java
an still use poli
y-
ontrolled servi
es.

Our design involves a relatively simple and intuitive extension to the

Java programming model, whereby programmers annotate those methods

for whi
h a

ess
ontrol is required. The poli
ies that
ontrol this a

ess

are spe
i�ed using the familiar model of a state ma
hine, whi
h enables

a
on
ise representation of the required a

ess
ontrol. As explained in

Se
tion 5 the JPoli
y language has a straightforward implementation that

maps the extensions into Java and in
urs only a small run-time overhead

to implement the a

ess
ontrol
he
ks.

There are a number of areas with s
ope for further work. Integration

of our system with other resear
h is possible in two notable areas: poli-

ies and resour
e a

ounting. It would be interesting to use the Ponder

language[8℄ whi
h is designed for spe
ifying system management poli
ies,

and
onstru
t a ba
k-end for the Ponder
ompiler that translates these

higher-level poli
ies into the representation that we des
ribe in Se
tion 4.

The XenoServer platform[12℄ o�ers an environment for hosting third party

lient
ode, whereby resour
es su
h as memory and CPU time are a
-

ounted for and
harged to the
lient. This is
omplementary to our work

on
ontrolling the use of servi
es, as it deals with those aspe
ts of program

behaviour and resour
e usage that we do not address. We are in
onta
t

with the XenoServer team, with a view to deploying our system as an

exe
ution environment on that platform.

The JPoli
y system forms part of a larger resear
h e�ort into supporting

third party
ode hosting, so we would like to extend our initial prototype

system to deal with
lient
ode deployed remotely. Sin
e our
urrent design

allows the use of
lients written in Java, we
an exploit remote
lass loading

to transfer
ode and apply poli
y-based
ontrol to the servi
es used by the

hosted
lient. In the wider proje
t, we are also examining to what extent

stati

he
king of a

ess
ontrols
an be applied instead of dynami
 run-

time
he
ks. Initial work on a type and e�e
t system shows promising

results, with the potential to feed into the JPoli
y system design.

24

Appendix: Generated Code

The following simple servi
e
lass and poli
y (from Figure 3) are used to

demonstrate the form of the generated Java
ode. The JPoli
y sour
e
ode

is:

lass Sear
hEngine {

Ve
tor query(String sear
hTerm) when CAN_SEARCH {

return new Ve
tor();

}

}

poli
y BoundedQueries (int bound, int interval) for Sear
hEngine {

int
redits = bound;

-> some;

transition some -> some when (query) {
redits =
redits-1; }

transition some -> none when (
redits <= 0);

transition none -> some when ((TimeServi
e.now % interval)==0)

{
redits = bound; }

CAN_SEARCH when { some }

}

From this sour
e, the following Java
ode is produ
ed by our
ompiler:

lass Sear
hEngine extends java.lang.Obje
t {

stati
 Sear
hEngine.Poli
y defaultPoli
y = new Sear
hEngine.Poli
y();

publi
 Sear
hEngine.Poli
y
urrentPoli
y = Sear
hEngine.defaultPoli
y;

Ve
tor query(String sear
hTerm) {

if (! (this.
urrentPoli
y.get(0)))

syn
hronized (this.
urrentPoli
y) {

while (! (this.
urrentPoli
y.get(0)))

try { this.
urrentPoli
y.wait(); }

at
h (InterruptedEx
eption CAUGHT_EXCEPTION) { }

}

else { }

return this.query_ORIGINAL(sear
hTerm);

}

Ve
tor query_ATTEMPT(int timeoutMillis, String sear
hTerm)

throws MethodUnavailableEx
eption {

if (timeoutMillis != 0 && ! (this.
urrentPoli
y.get(0)))

25

syn
hronized (this.
urrentPoli
y) {

try { this.
urrentPoli
y.wait(timeoutMillis); }

at
h (InterruptedEx
eption CAUGHT_EXCEPTION) { }

}

else { }

if ((this.
urrentPoli
y.get(0)))

return this.query_ORIGINAL(sear
hTerm);

else throw new MethodUnavailableEx
eption();

}

private Ve
tor query_ORIGINAL(String sear
hTerm) {

this.
urrentPoli
y.query_METHOD_CALLED();

return new Ve
tor();

}

stati

lass Poli
y extends java.lang.Obje
t {

publi
 boolean get(int state) {

return true;

}

publi
 void query_METHOD_CALLED() { }

}

}

publi

lass BoundedQueries extends Sear
hEngine.Poli
y

implements TimeServi
e.now_LISTENER {

private int
redits;

private java.util.BitSet abstra
tStates = new java.util.BitSet(1);

private int
on
reteState;

private final Sear
hEngine TARGET;

private final int bound;

private final int interval;

private syn
hronized void DO_TRANSITION_0() {

{

this.
redits = this.
redits - 1;

}

if (this.
redits <= 0) {

this.DO_TRANSITION_1();

return ;

} else { }

}

private syn
hronized void DO_TRANSITION_1() {

TimeServi
e.ADD_LISTENER_FOR_now(this);

{ }

this.
on
reteState = 1;

this.abstra
tStates.
lear(0);

26

this.notifyAll();

}

private syn
hronized void DO_TRANSITION_2() {

TimeServi
e.REMOVE_LISTENER_FOR_now(this);

{

this.
redits = this.bound;

}

this.
on
reteState = 0;

if (this.
redits <= 0) {

this.DO_TRANSITION_1();

return ;

} else { }

this.abstra
tStates.set(0);

this.notifyAll();

}

publi
 syn
hronized void query_METHOD_CALLED() {

if (this.
on
reteState == 0) this.DO_TRANSITION_0(); else { }

}

publi
 syn
hronized void TimeServi
e_UPDATED_WATCHABLE_now() {

if (this.
on
reteState == 1 &&

((TimeServi
e.now % this.interval) == 0))

this.DO_TRANSITION_2(); else { }

}

publi
 stati
 BoundedQueries makePoli
y(Sear
hEngine TARGET,

int bound,

int interval) {

return new BoundedQueries(TARGET, bound, interval);

}

publi
 boolean get(int state) {

return this.abstra
tStates.get(state);

}

private BoundedQueries(Sear
hEngine TARGET,

int bound,

int interval) {

this.TARGET = TARGET;

this.bound = bound;

this.interval = interval;

this.
redits = this.bound;

this.
on
reteState = 0;

this.abstra
tStates.set(0);

if (this.
redits <= 0) this.DO_TRANSITION_1(); else { }

}

}

27

Referen
es

[1℄ D. S. Alexander, Paul B. Menage, W. A. Arbaugh, A. D. Keromytis,

K.G. Anagnostakis, and J. M. Smith. The Pri
e of Safety in an A
-

tive Network. IEEE/KICS Journal of Communi
ations and Networks

(JCN), Mar
h 2001.

[2℄ Amazon. Web Servi
es, 2003. Online do
ument http://www.amazon.

om/gp/aws/landing.html.

[3℄ A. D. Birrell and B. J. Nelson. Implementing remote pro
edure
alls. In

Pro
eedings of the ACM Symposium on Operating System Prin
iples,

1983.

[4℄ Lu
a Cardelli. Abstra
tions for mobile
omputation. In Se
ure Internet

Programming, pages 51{94, 1999.

[5℄ Yoonsik Cheon and Gary T. Leavens. A runtime assertion
he
ker for

the Java Modeling Language (JML). In International Conferen
e on

Software Engineering Resear
h and Pra
ti
e (SERP '02), June 2002.

[6℄ M. Covington, M. Moyer, and M. Ahamad. Generalized role-based

a

ess
ontrol for se
uring future appli
ations. In 23rd National Infor-

mation Systems Se
urity Conferen
e, Baltimore, MD, O
tober 2000.

[7℄ Karl Crary and Stephanie Weiri
h. Resour
e bound
erti�
ation. In

Pro
eedings of the 27th ACM SIGPLAN-SIGACT Symposium on Prin-

iples of Programming Languages (POPL-00), pages 184{198. ACM

Press, January 2000.

[8℄ Ni
odemos Damianou, Naranker Dulay, Emil Lupu, and Morris Slo-

man. The Ponder Poli
y Spe
i�
ation Language. Le
ture Notes in

Computer S
ien
e, 1995:18{38, January 2001.

[9℄ Robert DeLine and Manuel F�ahndri
h. Enfor
ing High-Level proto
ols

in Low-Level software. In Pro
eedings of PLDI-01, volume 36(5) of

ACM SIGPLAN Noti
es, pages 59{69, June 2001.

28

[10℄ Ebay. Developers Program, 2003. Online do
ument http://

developer.ebay.
om/DevProgram/developer/faq.asp.

[11℄ Ulfar Erlingsson and Fred B. S
hneider. SASI enfor
ement of se
urity

poli
ies: A retrospe
tive. In WNSP: New Se
urity Paradigms Work-

shop. ACM Press, 2000.

[12℄ K. A. Fraser, S. M. Hand, T. L. Harris, I. M. Leslie, and I. A. Pratt.

The XenoServer
omputing infrastru
ture. Te
hni
al Report UCAM-

CL-TR-552, University of Cambridge, Computer Laboratory, January

2003.

[13℄ Alfonso Fuggetta, Gian Pietro Pi

o, and Giovanni Vigna. Under-

standing Code Mobility. IEEE Transa
tions on Software Engineering,

24(5):342{361, 1998.

[14℄ Li Gong. Java 2 Platform Se
urity Ar
hite
ture. Sun Mi
rosystems,

2002. Online spe
i�
ation http://java.sun.
om/j2se/1.4.2/do
s/

guide/se
urity/spe
/se
urity-spe
.do
.html.

[15℄ Google. Web APIs, 2003. Online do
ument http://www.google.
om/

apis/.

[16℄ Robert Grimm and Brian Bershad. Separating a

ess
ontrol poli
y,

enfor
ement, and fun
tionality in extensible systems. ACM Transa
-

tions on Computer Systems, 19(1):36{70, February 2001.

[17℄ Daniel Hagimont and Leila Ismail. A prote
tion s
heme for mobile

agents on Java. In Mobile Computing and Networking, pages 215{222,

1997.

[18℄ Mi
hael Hi
ks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter,

and S
ott Nettles. PLAN: A programming language for a
tive net-

works. ACM SIGPLAN Noti
es, 34(1):86{93, 1999.

[19℄ Martin Hofmann. A type system for bounded spa
e and fun
-

tional in-pla
e update{extended abstra
t. Nordi
 Journal of Com-

puting, 7(4):258{289, Autumn 2000. An earlier version appeared in

ESOP2000.

29

[20℄ Paul Menage. RCANE: A Resour
e Controlled Framework for A
tive

Network Servi
es. In Pro
eedings of the First International Working

Conferen
e on A
tive Networks (IWAN '99), volume 1653, pages 25{

36. Springer-Verlag, 1999.

[21℄ J. Gregory Morrisett, Karl Crary, Neal Glew, and David Walker.

Sta
k-based typed assembly language. Journal of Fun
tional Program-

ming, January 2002.

[22℄ R. Pandey and B. Hashii. Providing �ne-grained a

ess
ontrol for

mobile programs through binary editing. Te
hni
al Report TR-98-08,

UC Davis, 1998.

[23℄ Fred B. S
hneider. Enfor
eable se
urity poli
ies. Information and

System Se
urity, 3(1):30{50, 2000.

[24℄ Beverly S
hwartz. Introdu
tion to spanner: Assembly language for the

smart pa
kets proje
t. Te
hni
al report, BBN-TM-1220, September

1999. http://www.ir.bbn.
om/~bs
hwart/publi
ations/TM1220.

pdf.

[25℄ Beverly S
hwartz, Alden W. Ja
kson, W. Timothy Strayer, Wenyi

Zhou, R. Dennis Ro
kwell, and Craig Partbridge. Smart pa
kets: ap-

plying a
tive networks to network management. ACM Transa
tions

on Computer Systems, 18(1):67{88, 2000.

[26℄ J. Stamos and D. Gi�ord. Remote evaluation. ACM Transa
tions on

Programming Languages and Systems, 12(4), O
tober 1990.

[27℄ Sun Mi
rosystems. Java Authenti
ation and Authorization

Servi
e (JAAS) Referen
e Guide, 2001. Online spe
i�
ation

http://java.sun.
om/j2se/1.4.2/do
s/guide/se
urity/jaas/

JAASRefGuide.html.

[28℄ Tommy Thorn. Programming languages for mobile
ode. ACM Com-

puting Surveys, 29(3):213{239, 1997.

[29℄ Dennis Volpano and Geo�rey Smith. Language issues in mobile pro-

gram se
urity. Le
ture Notes in Computer S
ien
e, 1419:25{43, 1998.

30

[30℄ I. Wakeman, A. Je�rey, T. Owen, and D. Pepper. Safetynet: A

language-based approa
h to programmable networks. Computer Net-

works and ISDN Systems, 36(1):101{114, 2001.

[31℄ D. Wetherall, J. Guttag, and D. Tennenhouse. Ants: A toolkit for

building and dynami
ally deploying network proto
ols, 1998.

[32℄ WWW Consortium (W3C). Web Servi
es A
tivity, 2003. Online spe
-

i�
ation do
uments http://www.w3.org/2002/ws/.

31

