
JPoliy: A Java Extension for Dynami Aess Control

Tim Owen Ian Wakeman Julian Rathke

Computer Siene Tehnial Report 01/2004

Department of Informatis, University of Sussex, UK

January 2004

Abstrat

The development of remote exeution platforms, where servie hosts aept

ode from third party lients and run it on their behalf, provides a powerful

alternative to the RPC model of lients invoking remote servies over a network.

A major onern for servie hosts is to ontrol aess and usage of their own

servies and resoures, whether the lient ode is being exeuted by the servie

host itself or operating remotely and using RPC.We introdue a set of extensions

to Java that enables servie hosts to ontrol how their servies may be used by

lient Java programs, aording to a spei�ed poliy. We separate the poliies

from the servies being ontrolled, rather than �xing the poliy at ompile-time

or load-time. A novel aspet of this work is that the poliies allow dynami

aess ontrol to servies: the availability of servie funtionality an vary during

exeution. Furthermore, we support the hanging of poliies at run-time without

modi�ation to servie ode or lients. We desribe our implementation of

these language extensions and show how the system enables servie providers to

enfore poliies that protet their resoures and servies from undesirable lient

ode behaviour.

1 Introdution

While the traditional model of the Web involves users manually interating

with a visual interfae, the development of Web Servies [32℄ is motivated

by the desire to allow programmable aess to servies. But from the

programmer's point of view, Web Servies essentially involve just RPC [3℄

invoations: the lient ode pakages together a request and optionally

some data and sends it to the server. The server exeutes its own ode to

servie the request and may return some data as a result.

1

Although this lient-server mode of web servie interation is a powerful

extension to the monolithi model, it an involve a onsiderable amount

of network traÆ for appliations that require intensive dialogue with a

remote servie. Furthermore, lients with limited resoures or onnetivity

are not always the most appropriate plae to exeute ode that interats

with a remote servie.

The basis of the Remote Evaluation [26℄ model (also termed Remote

Exeution, or just RE) is that servie providers aept programs from third-

party lients and host the exeution of the ode themselves. This extends

the RPC style by allowing ode to be pakaged and sent to a server, rather

than simply supplying data with a request for the server to exeute its

own ode. Suh a faility enables programmers to deploy their own ode

to perform useful work with a remote servie, with the bene�t of plaing

the ode loser to the servies that it requires. Furthermore, lients with

limited resoures an deploy ode to be exeuted remotely then disonnet

or swith o� until suh time as the results of the omputation are required.

In either of the above senarios a major onern for servie hosts is how

to ontrol aess and usage of their own servies, whether the ode a-

essing a servie is being exeuted by the servie host itself, or operating

remotely and using RPC. For example, the Amazon Web Servie API[2℄

enables RPC-like programmable aess to the ompany's online shop, but

spei�es some restritions on how lient ode may use the servie. Aord-

ing to the aess agreement, lient ode may not perform requests faster

than one per seond (although this is a guideline and is not atively en-

fored). Similarly, the Google Web Servie API[15℄ limits lient programs

to 1000 query requests per day (whih is enfored: an exeption is thrown

if the limit is exeeded). The Ebay API[10℄ o�ers a range of di�erent lim-

its depending on the level of membership | a typial basi limit is that

programmers an make upto 5000 alls per day in test mode and 50 alls

per day in prodution mode, and maintain 8 simultaneous onnetions.

We believe that any inreased adoption of programmable servies and

hosting of third-party ode will require mehanisms that allow hosts to

ontrol the usage of their servies. The informal poliies used by Web

2

Servies suh as Google, Amazon and Ebay indiates that poliy-based

ontrol of servie use is already of interest. In the RE senario, where

servie providers host third-party lient ode, then the need for aess on-

trol and resoure rationing beomes partiularly important. Sine hosted

ode will be relying upon the host for aess to more general servies suh

as disk storage and network funtionality, more sophistiated poliies and

poliy ontrol are required.

There are various ways in whih a program may exhibit undesirable be-

haviour, but we are partiularly interested in the external dependenies

of hosted programs: the servies that they use via programming APIs

to libraries. Figure 1 shows an appliation written by a third-party de-

ployed to be run on a servie host. The appliation ode relies on external

host-provided servies to be available in its exeution environment. These

typially inlude disk and �le aess, network funtionality and database

use, for example. Higher level servies suh as Google's searh faility or

other network-aessible servies are also used through an API, so these

too form part of the external environment in whih a program exeutes.

We onsider memory onsumption and CPU usage as essentially oper-

ating system (or virtual mahine) onerns. While these issues are learly

important to the overall behaviour of ode, those resoures are typially

not aessed expliitly by a program in the way that library servies are |

rather, they are impliit in its exeution. Our work will not fous on CPU

and memory usage and we onsider this to be an interesting but orthogonal

issue.

If we assume that host resoures and servies are provided to a program

through an API, then a typial level of granularity for ontrol is an in-

dividual method. In Figure 1 the small irles show the points at whih

lient ode makes alls out to host servies. Hene, ontrolling these API

method invoations to external servie libraries allows us to impose poliies

on program behaviour.

In this paper, we desribe how programming language support for �ne-

grained ontrols on the behaviour of programs enables servie providers

to protet aess to their servies and resoures. Our design shows that

3

(From a third-party lient)

Hosted Appliation

Storage Servie

File System

On Host

Other Servie

Servie Host

Client's Appliation

Deployed to Servie Host

Servie

Searh Engine

Library Servie

Network Aess

Figure 1: Remote Exeution on a Servie Host

the appliation of poliies to ontrol servie use an be ahieved without

neessarily requiring lient ode to be aware of this poliy ontrol. We

introdue a language onstrut for speifying servie usage poliies suh as

those examples mentioned above, and demonstrate a prototype implemen-

tation that extends Java with the ability to ontrol how lient ode an

use a servie. This tehnique applies equally well to ontrolling servie use

in the traditional RPC style and in the RE situation where lient ode is

being hosted by the servie provider. In the remainder we refer to this Java

extension as JPoliy. The JPoliy language is a modest extension of Java

with a small number of extra onstruts to support poliy-based ontrol of

servies.

The type of senarios we aim to support with our system are exempli�ed

in Figure 2. Servie providers implement their servies in Java as lasses

and interfaes in the normal way. The funtionality provided by the servie

is spei�ed by the servie API, whih is the set of methods that lients an

all. Clients an aess the servie either remotely, using RPC, or loally if

the servie host is prepared to aept third-party lient ode and exeute

it on the host. We assume that eah lient gains aess to a partiular

servie through an objet instane that represents that servie, provided

4

Servie Objet

Servie Host

State

Abstrat

CAN SEARCH

Objet

Poliy

Method

Runs...

Method

Runs...

Loally Hosted

Client App

Call: send(data) Call: rev()

Abstrat

State

ALLOW NET

Poliy

Objet

Servie Objet

Searh Engine Network Aess

Remote

Client App

Method

Runs...

RPC Call: query("stu�")

Controls Controls

lass SearhEngine {

Vetor query(String searhTerm) when CAN_SEARCH { ... }

}

poliy BoundedQueries for SearhEngine {

CAN_SEARCH when { /* total alls to query method < bound */ }

}

poliy TimeLimitedSearh for SearhEngine {

CAN_SEARCH when { /* time of day is between 9 and 5 */ }

}

lass NetworkAess {

void send(Objet data) when ALLOW_NET { ... }

Objet rev() when ALLOW_NET { ... }

}

Figure 2: Example JPoliy Servies and Poliies

5

to them as their unique entry point.

Sine the funtionality of a servie objet is aessed through its meth-

ods, we an ontrol the behaviour of lient programs that use the servie

by enabling or disabling the availability of eah servie API method dy-

namially. This is depited in the diagram of Figure 2 using the \swith"

metaphor. For example, we an impose a rate-limiting poliy on a SearhEngine

servie by swithing o� the availability of the query method after a limited

number of invoations has been reahed, then swithing it bak on after

some delay.

A novel aspet of the JPoliy language lies in the separation of poliy

from servie ode. Many existing poliy ontrol or resoure aess ontrol

systems rely on a tight oupling of (ompiled) servie ode and exat aess

ontrol spei�ations [9, 7, 21, 5℄. Deoupling poliy from ode provides

some immediate bene�ts: servers are not obliged to reompile or rewrite

API ode to aount for any hanges in poliy and versioning of poliy

ontrolled servies is ahievable within a single poliy ontrol framework.

The tehnology whih underpins this deoupled approah to variable

method availability is based on a notion of abstrat state, in whih a method

invoation proeeds only when a servie objet's abstrat state permits it.

We may like to think of these as named properties of the underlying states

of the poliy. For example, a servie o�ering a print method may o�er

this funtionality under various irumstanes, or states, desribed exatly

in a sophistiated underlying poliy. From the servie ode's perspetive

all that is relevant though is whether the method is available when alled.

This might lead us to an abstrat state named Printable whih is intended

to desribe those olletion of underlying states in whih the printmethod

is available. By only allowing the servie ode to refer to abstrat states

we enfore a separation of poliy from the servie objet itself, so that the

poliy is not hard-wired into the servie.

The extensions to Java that we inlude in JPoliy enable this poliy-

driven ontrol of method availability:

� Instane methods an be annotated with a when lause, that spei�es

an abstrat state name. The presene of this lause makes the method

6

modal, in the sense that the invoation of a modal method on some

objet an only proeed if the objet is urrently in the abstrat state

named in the lause.

� Eah objet of a lass that ontains modal methods maintains a no-

tion of whih abstrat states it is urrently in. For example, the Net-

workAess lass in Figure 2 has modal methods naming an abstrat

state alled ALLOW NET and eah NetworkAess servie objet will

reord whether it is presently in the abstrat ALLOW NET state or

not.

� The transitions between being in some abstrat state and not are driven

by an external poliy rather than the objet itself. The language sup-

ports the de�nition of poliies, that determine when an objet should

enter or leave an abstrat state. The onditions under whih these

transitions our an be based on a variety of fators, as explained in

Setion 4.

� Client ode that attempts to invoke a modal method will only proeed if

the target objet is in the orret abstrat state. There are a number of

ways in whih lients an handle modal method alls: either exeution

bloks until the invoation proeeds, or bloking an be avoided by

trying alternative ode or skipping the all. If left unspei�ed the

default behaviour for lients is to blok on unavailable methods.

The following setions desribe these extensions in more detail, and explain

how they allow servie aess to be ontrolled in a �ne-grained manner.

The remainder of the paper is organised as follows. In the next setion

we elaborate on the notion of modal methods and abstrat states. The

onsequenes of poliy ontrol for lient ode is disussed in Setion 3. In

Setion 4 we present our model for poliy spei�ation and how these are

linked with servies. We follow this with a desription of our JPoliy imple-

mentation and disussion of its run-time behaviour in Setion 5. Finally,

we onlude with setions ontaining disussions on related and further

work.

7

2 Modal Methods and Abstrat States

The primary purpose of the JPoliy extensions is to enable servie hosts to

ontrol when the methods in their Java servies an be alled. Sine the

funtionality of a servie is aessed by invoking its methods, then we an

enable or disable the use of partiular servie funtionality by seletively

bloking the invoation of a method in that servie. This allows the servie

host to ontrol what failities lient ode an aess, and when it an be

aessed, assuming lients have no other means to use servies in their

hosted environment.

In JPoliy, the level of granularity for aess ontrol is individual meth-

ods, whih allows �ne-grained management of the funtionality available to

lient ode. For example, a host servie that provides network aess ould

be ontrolled with a poliy that allows outgoing network onnetions to be

made but not inoming, by enabling one servie method and not another.

Our basi approah to enabling or disabling ertain methods is to in-

terept alls from lients and deide whether to ontinue the invoation or

not. Therefore, suh methods an be thought of as having two modes of op-

eration: the normal Java mode where an invoation proeeds immediately

and a disabled mode where an invoation does not proeed but is bloked

instead. These modal methods are distinguished in the JPoliy language

by an annotation on the method's de�nition: a when lause. For example,

the SearhEngine servie lass from Figure 2 has a modal method alled

query with the following signature:

Vetor query(String searhTerm) when CAN_SEARCH

The presene of a when lause means that this is a modal method, and

hene invoations of the method may or may not proeed immediately.

Conversely, methods without a when lause are non-modal and behave

exatly as normal Java methods.

The ontent of a when lause is the delaration of an abstrat state

name, whih is spei� to the lass in whih it appears. The intent of this

is to delare that there is some abstrat state of the objet in whih the

assoiated modal method should be enabled. This abstrat state is simply

8

a yes/no ag, so e.g. a SearhEngine objet is either in the CAN SEARCH

abstrat state or it is not. The atual meaning of the abstrat state, in

terms of when individual objets are in the state is determined by the

poliy assoiated with an objet | this is explained below in Setion 4.

Sine a lass may ontain several modal methods, eah with a when

lause potentially naming di�erent abstrat state names, the result is a set

of independent abstrat states. Eah objet of that lass maintains a notion

of its urrent ombined status: whih abstrat states it is presently in, and

whih it is not. This status then ontrols the availability of methods,

beause the deision to allow a method all of a modal method to proeed

is determined by whether the target objet is in the relevant abstrat state

at that moment. A related issue here is that, in our urrent design, only

instane methods an be modal | we do not allow Java's stati methods

to have when lauses. This is beause the abstrat state is a property

of individual objets, but stati methods are not invoked with respet to

any spei� objet. We ould extend the language to allow stati modal

methods, by assoiating the stati abstrat state with the lass itself, in

a similar way to Java synhronization on stati method alls where the

lass's lok is used.

In terms of the diagram in Figure 2, the abstrat state is the \swith"

that manipulates the handling of method invoations. As shown in the

NetworkAess servie, more than one modal method's when lause an

refer to a partiular abstrat state. In that ase, the availability of all those

modal methods is tied together: either they are all enabled or all disabled.

It is the task of servie programmers when adding when lauses to make

this deision about whih modal methods should be ontrolled by whih

abstrat state names.

An important feature of our design is that objets do not ontrol the

status of their set of abstrat states, rather this is the responsibility of

separate poliies. An objet enters or leaves an abstrat state when its

assoiated poliy ditates. We disuss the de�nition and use of poliies in

Setion 4.

9

3 Client Code Impliations

As explained in the previous setions, the existene of modal methods

in JPoliy means that the behaviour of a method invoation depends on

the method's urrent mode, whih is determined by the abstrat state of

the target objet. Clearly, this has impliations for lient ode that alls

modal methods. The servie API that is presented by the set of method

signatures shows whih methods are modal, as indiated by the presene

of when lauses. This information is important to lient programmers, in

a similar way to the existene of a throws lause in a method signature:

it warns the programmer that an invoation of a modal method may not

proeed. This ats as a reminder to lients that the servies they wish to

use are subjet to aess ontrols.

In JPoliy, the e�et of alling a modal method that is swithed o�

(i.e. beause the target objet is not in the required abstrat state) is to

blok the alling thread. The aller is only unbloked if the target objet

enters the relevant abstrat state again, at whih point the method all

proeeds. This behaviour allows servie hosts to ompletely deny servie

funtionality to lients, if they hoose to impose a poliy that never puts

the objet into ertain abstrat states.

Our design does not allow lients to expliitly examine the urrent ab-

strat states of an objet, therefore we have introdued a onstrut whih

provides lient ode with alternatives to bloking. Instead lients an at-

tempt an invoation of a modal method and take evasive ation if the all

does not proeed. This is analogous to exeption handling onstruts in

Java | indeed, we use similar syntax. The following example of lient

ode shows one form of this onstrut:

try Vetor results=searhServie.query("some terms") {

// ode blok using the results value

}

// Further ode (results not in sope here)

In this syntax, the newly delared loal variable results is assigned the

10

result of the modal method all if the invoation proeeds immediately,

and its sope is only within the following ode blok. If the query method

is swithed o� due to the urrent abstrat state of the searhServie

objet then the aller will not blok, but the method all and ode blok

will be skipped and exeution ontinues after the blok. Another use of

this onstrut is to allow a seond blok of alternative ode to be exeuted

in the ase of the modal method all not proeeding:

try Vetor results=searhServie.query("some terms") {

// ode blok using the results value

}

else {

// alternative ode blok (results not in sope here)

}

Here, the alternative blok is exeuted if the query all annot proeed

immediately. The third variation of this onstrut simply inludes a mil-

liseond timeout lause to the modal method invoation attempt:

try for 100 Vetor results=searhServie.query("some terms") {

// as before

}

In this form, if the objet's abstrat state hanges to re-enable the method

within the spei�ed time of 100 milliseonds then the all will proeed.

The bene�t of this lause is that it provides lients with an option midway

between immediate skipping and inde�nite bloking.

4 Control Poliies

The previous setions detail the way in whih servie providers an write

their servies so that they an be poliy-ontrolled, and how lient ode

an deal with using servies that are ontrolled by poliies. This setion

shows what these poliies atually look like and how they are linked to the

servie objets under their ontrol.

11

As explained above, the entral onept in our work is the abstrat

state of an objet, whih is reeted in the set of named abstrat states

that appear in modal method when lauses. The availability of a modal

method is ditated by the urrent status of the target objet's assoiated

abstrat state. As Figure 2 shows, the role of poliies in JPoliy is to

ause hanges in the abstrat state of objets, whereas the servie objets

themselves only examine the status and do not hange it. This separation of

onerns means that poliies are not hard-wired into the servie ode itself.

Abstrat states at as the intermediary: individual poliies determine when

to hange an objet's abstrat state, and the objet reads this status when

deiding whether to allow a method invoation to proeed. Consequently,

the job of the poliy delaration onstrut we have inluded in JPoliy is

to de�ne exatly when an objet is in an abstrat state and when it is not.

4.1 Poliy Spei�ation

In the JPoliy language we extend the Java syntax with a top level on-

strut for speifying a poliy. Therefore a ompilation unit of Java ode

ontains a list of lass, interfae and poliy de�nitions. Our model of a

poliy is in the form of a labelled transition system | essentially a �nite

state automaton, onsisting of a set of onrete states with transitions be-

tween them. The poliy de�nition delares the name of the lass for whih

it an be used, then spei�es the sets of its onrete states that orrespond

to eah abstrat state of objets of that lass. The general form of a poliy

spei�ation is as follows:

poliy PoliyName for ClassName {

-> initialConreteState

transition onreteState1 -> onreteState2 when (onditionA)

transition onreteState2 -> onreteState3 when (onditionB)

...

ABSTRACT_STATE_X when { list of onrete states }

ABSTRACT_STATE_Y when { list of onrete states }

... // for eah named abstrat state delared in ClassName

}

12

lass SearhEngine {

Vetor query(String searhTerm) when CAN_SEARCH { ... }

}

poliy BoundedQueries (int bound, int interval) for SearhEngine {

int redits = bound;

-> some;

// Every time we all the method, the ounter derements...

transition some -> some when (query)

{ redits = redits-1; }

// Until none are left...

transition some -> none when (redits <= 0);

// Then the ounter is replenished at next time interval

transition none -> some when ((TimeServie.now % interval)==0)

{ redits = bound; }

CAN_SEARCH when { some }

}

Figure 3: Example Poliy Spei�ation

The partiular onrete states and transitions of these automata reet the

spei� nature of eah poliy. For example, suppose we are speifying a

Google-like Web Servies poliy that a ertain modal method in a servie

an only be invoked a limited number of times in some time period. The

poliy may have two onrete states, to represent whether the all limit

has been reahed or not, and transitions between these based on a method

all ounter and a time event. Figure 3 shows how this poliy an atually

be written using the JPoliy syntax.

To assist in the onstrution of poliies suh as the all limiter outlined

above, whih involves ounting, poliy spei�ations an inlude loal vari-

ables that may be updated using a limited expression language. Without

this faility, poliies that need to implement ounters would have to spe-

ify states to reord a ount total, whih beomes tedious and repetitive.

13

Figure 3 shows a loal variable named redits that ounts how many alls

an still be made before the limit is reahed. Updating of loal variables,

suh as inrementing one used as a ounter, is enabled by the addition of

an optional lause in transition spei�ations. This lause, shown in braes

at the end of a transition delaration, simply lists poliy variable updates

| it is not arbitrary Java ode.

A further enhanement of the poliy onstrut is that it an be param-

eterised by values, muh like the way a Java lass an be parameterised

by having its onstrutor delare a list of formal parameters. A poliy's

named parameters an be used to initialise its loal variables. In Figure 3

the BoundedQueries poliy has been parameterised by the all limit and

the time interval, rather than having these hard wired into the transitions.

The desriptions above outline the general form of the poliy onstrut,

but the utility and expressiveness of poliies is determined mainly by the

ontent of the boolean onditional expressions used to label transitions.

In Figure 3, the BoundedQueries poliy illustrates the use of most of the

terms that an be referred to in ondition expressions. In some ases, the

ondition expressions in a poliy make referene to aspets of the objet

that the poliy is ontrolling, whih is alled the target objet. The terms

used in transition expressions are:

Objet instane methods The event of an instane method being in-

voked on the target objet an be used to trigger a transition. The

�rst transition in the BoundedQueries poliy is an example of this: it

names the query method in its ondition, in order to ount how many

times the method is invoked.

Stati �elds The value of a stati �eld of some arbitrary lass an be

used to gain aess to external servies in the wider environment. For

example, the poliy in Figure 3 makes use of a servie that presents

the urrent time as a one seond ounter �eld.

Objet instane �elds Although not used in the BoundedQueries poliy

example, any instane �eld of the target objet an be referred to. This

enables poliies to use the internal state of servie objets to guide

14

transitions.

Poliy loal variables Poliies an delare a number of mutable loal

variables, and these an be referred to in transition onditions. These

variables an be updated by assigning new values when a transition

ours.

Poliy parameters The named parameters of a poliy an be onsidered

as unhanging loal variables, like final method parameters in Java.

The example poliy uses the interval poliy parameter in its third

transition expression.

Constant values These are simple literal values, suh as integer on-

stants.

With the exeption of instane methods, the ondition expression syntax

allows these terms to be ombined using a simple set of logial, onditional

and arithmeti operators. A transition may only use a method name in its

ondition if it is the only term in the expression, beause it does not make

sense to apply expression operators to a method all event. An important

property of the transition onditions is that they are pure expressions in

the sense that they do not ause any side e�ets.

4.2 Poliy Attahment

One poliy spei�ations have been written for servie lasses, the on-

netion between a poliy and a partiular objet is made by our �nal lan-

guage extension: a simple poliy assignment onstrut. This in�x operator

onnets an objet of some lass with a poliy for that lass, speifying

arguments if the poliy is parameterised:

searhServie poliy BoundedQueries(250, 10)

where searhServie refers to an objet of type SearhEngine and the

poliy named BoundedQueries is de�ned as one for SearhEngine objets.

In a remote exeution environment, servie hosts will typially need to

be able to assign poliies to the servie objets they give to lients, but

15

deny lients the ability to hange the poliy assoiated with these objets.

Clearly, if lients ould replae the poliies attahed to servie objets

then they an subvert the host's ontrol on servie usage | thus defeating

the purpose of poliy-based ontrol. In JPoliy, we an prevent this by

restriting the ability to hange an objet's poliy to the servie provider

only. This is ahieved by using a Java interfae type for the lient's view of

a servie, and onstraining the semantis of the poliy assignment onstrut

so that it an only be used to hange the poliy of an objet that is handled

through a variable of lass type. Clients do not know the name of the lass

that implements eah servie, they only see an interfae through whih to

view the servie. Therefore, the restrition on poliy assignment to lass

type variables only means that lient ode annot replae the poliy on a

servie objet.

Beause the onept of an abstrat state provides a level of separation

between poliies and the objets they ontrol, we an dynamially hange

the poliy that is assoiated with an individual objet. Using the onstrut

just desribed, a di�erent poliy an be applied to an objet without mak-

ing any hanges to the objet at all, or even informing it that a poliy

hange has ourred. And sine the poliy details are enapsulated in a

separate entity, servie ode does not need to be re-ompiled when a poliy

hange takes plae.

5 Implementation Details

We have implemented a ompiler for the JPoliy language desribed above.

Sine the language is designed as an extension to Java, the ompiler trans-

lates the syntax extensions into pure Java. The resulting Java soure an

then be ompiled to byteode or native exeutables using standard Java

ompilers. See the Appendix for a full listing of the Java ode generated

for the example lass and poliy shown in Figure 3.

The translation approah is straightforward: poliy spei�ations are

onverted into Java lasses, servie lasses gain a �eld that links to a poliy

objet, and modal methods are implemented by synthesizing two wrapper

16

methods that guard aess to the atual method ode. Client ode requires

very little translation, primarily beause the use of a when lause is not

visible in the translated Java method signature. Indeed, lients that do not

use the non-bloking try onstrut desribed in Setion 3 an atually be

ompiled using a standard Java ompiler, and still be suessfully linked

against servie ode written in JPoliy. This is a useful feature in an

environment where it is unrealisti to expet all lients to be implemented

in a non-standard language. Servie hosts an develop poliy-ontrolled

servies, while retaining bakwards ompatibility for Java lients that are

unaware of the use of poliies.

Any JPoliy lass ontaining at least one modal method is augmented

with an extra instane �eld named urrentPoliy that provides the link

to a poliy objet. The storage of the urrent set of abstrat states is

atually held in the poliy objet itself, rather than instanes of the lass

being ontrolled. The reason for this implementation design is that one

poliy objet may ontrol several target objets, so we avoid dupliation

by maintaining one set of abstrat states in the poliy. Target objets

use their link to the poliy to hek the urrent status when handling a

method invoation. The poliy attahment onstrut shown in Setion 4.2

is simply translated into an assignment of a poliy lass instane to the

urrentPoliy �eld of the ontrolled objet. The reation of new poliy

objets for this onstrut is handled by the poliy itself, using a fatory

method.

Eah modal method is ompiled by erasing the when lause, renaming

the method with a suÆx and marking the method with private visibility.

We then generate two wrapper methods: one with the original method

name, signature and visibility, and a seond with similar signature and

visibility but renamed and with an extra parameter. The purpose of these

wrapper methods is to implement the method aess ontrol before alling

the original method body. One wrapper implements the bloking ation

that waits until the abstrat state allows the all to proeed. The seond

wrapper implements the non-bloking invoation attempt disussed in Se-

tion 3, and throws an exeption if the all annot proeed. The general

17

pattern of translation for a modal method suh as:

publi Vetor query(String searhTerm) when CAN_SEARCH {

// original method body

}

is to generate this set of three Java methods:

private Vetor query_ORIGINAL(String searhTerm) {

// Notify the urrentPoliy that the method has been

// invoked, then...

// exeute the original method body

}

publi Vetor query(String searhTerm) {

// Blok waiting for the objet to be in the CAN_SEARCH

// abstrat state, then...

return this.query_ORIGINAL(searhTerm);

}

publi Vetor query_ATTEMPT(int timeout, String searhTerm)

throws MethodUnavailableExeption {

// Wait at most timeout milliseonds for the objet to be

// in the CAN_SEARCH abstrat state, then...

if (/* objet is now in the abstrat state */)

return this.query_ORIGINAL(searhTerm);

else

throw new MethodUnavailableExeption();

}

We use standard Java synhronization features to implement the waiting

for abstrat states | this avoids a busy wait loop by putting the alling

thread to sleep until the poliy objet noti�es the thread that the abstrat

state has hanged. Sine the set of abstrat states is atually stored in the

poliy objet, the servie objet uses its urrentPoliy instane �eld to

request the urrent status of an abstrat state.

18

The �rst of the two generated Java wrappers has an idential signature

to that of the original method written in the JPoliy language (one the

when lause has been erased). This means that lient ode an atually

be written in plain Java, by ignoring the when lauses and alling the

modal methods without knowing anything about the JPoliy language.

Therefore, we do not need to assume that lients will be written in JPoliy

and ompiled using our ompiler. The poliy-based ontrol of method

invoation is enfored ompletely on the servie side of the all, rather

than trusting the lient not to irumvent the ontrols.

However, if lient ode is written in the JPoliy language and does make

use of the invoation attempt try syntax desribed in Setion 3, then a

all attempt suh as:

try Vetor results=searhServie.query("some terms") {

// suess ode blok

}

else {

// alternative ode blok

}

is translated into the following Java ode:

try {

Vetor results=searhServie.query_ATTEMPT(0, "some terms");

// suess ode blok

}

ath (MethodUnavailableExeption e) {

// alternative ode blok

}

The desriptions above over the translation of lient and servie ode

that uses the extensions in JPoliy. The remaining onstrut is the poliy

de�nition itself | these are onverted into a Java lass, with �elds for eah

loal variable and parameter, and a BitSet to reord the urrent status of

eah abstrat state. The translated lass implements the labelled transition

19

system, with an instane �eld to reord the urrent onrete state and a

method to implement eah transition.

Muh of the poliy implementation uses an event-driven approah: events

suh as methods being invoked or �elds hanging values ause handler

methods in the poliy to be alled. These handlers dispath transitions

as appropriate, based on evaluating the ondition expressions. Events are

sent to the poliies by inserting ode in methods and augmenting �eld up-

date ode so that poliy objets are noti�ed when a method is invoked or

a �eld value is hanged.

As transitions ause the urrent onrete state to hange, the mapping

between onrete states and eah abstrat state is used to make any hanges

to the urrent abstrat states. When an abstrat state does hange, target

objets are noti�ed so that any bloked method invoations an make use

of this information.

Our translation strategy for modal methods involves a level of indire-

tion, sine lients all one of the wrapper methods whih �rst performs

an abstrat state hek before forwarding the all to the atual method

implementation. In the ase where the target objet is in the required

abstrat state then the all proeeds, just as for non-modal methods, but

it is desirable to minimise this overhead for invoations of modal methods.

We have made some basi measurements of the overhead, by omparing

exeution times of an indiret all against a diret all of the atual method

(bypassing the abstrat state hek by removing the private visibility).

The results indiate an approximate performane redution of 5% for the

invoation of a modal method ompared to the non-modal ase, using the

Sun Java VM v1.4.1 on Linux.

6 Related Work

The onept of Remote Exeution (RE) of third-party ode has appeared

in various appliation areas, from Java applets to mobile ode and agents[4,

13, 28℄ and ative networks[1, 18, 20, 25, 30, 31℄. Naturally, one of the major

onerns with RE is that host owners are aepting ode from potentially

20

unknown and untrusted third parties, and therefore wish to protet their

mahines from maliious, greedy or poorly-written programs. There are a

number of existing tehniques that address this issue of program behaviour

ontrol:

Sandboxing is used to ontrol how a program an aess resoures in its

exeution environment. The Java Seurity Manager arhiteture[14,

27℄ is founded on this approah, where alls to ritial library methods

in the API suh as reating network sokets or using the �lesystem

are heked at run-time against a seurity poliy of aess rights. Our

work is an extension of this form of ontrol, where we allow arbitrary

methods to be ontrolled rather than the �xed set that are hard-wired

into the Java model. A further limitation of the Java Seurity Manager

is that the seurity poliies are \all or nothing" in the sense that a

poliy either allows aess or denies it | a deision that remains during

exeution. We improve upon this by enabling more expressive dynami

poliies, where method aessibility an vary over time depending upon

fators suh as time, user reputation, urrent system load or past usage

of the servie's methods.

Safe Languages an be designed so that undesirable program behaviour

is limited by the language itself and enfored by the ompiler | one

the program has suessfully been type-heked, then it is deemed

to satisfy the de�nition of safety designed into the language. This

language design approah has been applied to higher level languages

intended for programmers[18, 25, 28, 29℄ and lower level assembly and

byteode languages[21, 24℄. Again, the allowable aess poliies are

usually limited by the system design or are ompiled into individual

programs, and hene are set one at ompile-time or load-time. The

Vault language[9℄ permits dynami aess ontrol, rather than a �xed

allow/deny permission, but the poliy is still enoded into the program

soure | hanging poliies requires the program to be re-ompiled.

Module Thinning is a tehnique for limiting the possible ativities of a

program by means of reduing the visibility of servies it an aess.

21

This approah has been used in Ative Network systems[1, 20℄ to limit

the aess of mobile ode to resoures on the network node. Work on

mobile Java ode agents[17℄ protets servies by narrowing the view of

a servie interfae, whih prevents lient ode from linking to ertain

methods. When a program is dynamially linked before exeution,

all external dependenies are mathed up with the library modules

that provide these failities. A servie host an use seurity poliies

to ontrol the linking proess and thereby deny aess to partiular

servies, or perhaps link against di�erent implementations of a library

depending on the required level of funtionality. Here, a limitation is

that the lient program sees a �xed view of the available resoures -

one it has been loaded and linked, the visibility annot be altered

dynamially.

Code Rewriting allows hosts to impose a seurity poliy on the be-

haviour of inoming programs, by modifying the binary exeutable[22℄

or byteode itself before exeution starts. One example of this ap-

proah is the SASI system[11℄ where poliies in the form of seurity

automata[23℄ determine the modi�ation of a binary exeutable or Java

byteode program. This has the bene�t of allowing lients to write

ode in any soure programming language, and avoids the need to

send higher level program ode to the servie host. The drawbak of

suh systems is that a �xed poliy is typially woven into the program

ode statially, when the rewriting is performed.

A ommon limitation in many of the tehniques just desribed is that the

host's seurity poliy typially spei�es what an and annot be aessed,

then this is built into the program or environment. Hene aessibility

is determined one and annot hange during program exeution. Our

work is motivated by the observation that many useful seurity and aess

poliies require more exibility than a �xed allow/deny rule. In partiular,

method availability should be variable over time, with the poliy depending

on fators suh as servie use and the wider environment. Moreover, there

should be a separation between the servie ode and the possibly many

poliies that ould be applied to ontrolling that servie.

22

As stated in the introdution, the speify resoures of memory and CPU

time are ones we onsider an operating system or virtual mahine on-

ern. Nevertheless, there is researh into resoure-bounded programming

languages[9, 19℄ that attempts to determine statially the memory usage

and exeution time bounds of programs, but this requires signi�ant lan-

guage restritions. We onsider this area of researh to be an interesting

omplement to our work, but one motivation for our system design is that

we annot assume all lient ode will be written in speial purpose lan-

guages.

The issue of de�ning and applying poliies to the ontrol of systems

is well studied, suh as the management poliy language Ponder[8℄ and

work on Role-based Aess Control[6℄. These systems fous on the higher

level management onerns: the spei�ation and analysis of poliies, typ-

ially using a delarative language. Allied to this, the �eld of seurity

inludes muh researh on aess ontrol, e.g. [16℄, and apabilities based

on authentiation, i.e. who is allowed to perform ertain operations. Our

interest is in the lower level aspets of how poliies are implemented, in the

spei� domain of ontrolling program behaviour at the method invoation

level. This allows dynami aess ontrol based on fators other than user

authentiation, suh as time, reputation or servie usage patterns.

7 Conlusions and Further Work

We have designed and implemented JPoliy: a set of language extensions

for Java that enables programmers to ontrol how the funtionality in their

servies an be aessed by lient ode, using separate poliy spei�ations

that dynamially vary the availability of methods. The design desribed in

this paper explains how servie providers an use this language to speify

�ne-grained poliies on how servies an be aessed at run-time.

The primary outome of this work is the suessful appliation of poliies

to ontrol program behaviour, in partiular the novel ability of our system

to enable ontrol poliies to be dynamially hanged at run-time. We

ahieve this without altering the servie ode being ontrolled or the lient

23

ode that is aessing the servie. Furthermore, our design does not require

the lients to be written using the extended language | lient ode in plain

Java an still use poliy-ontrolled servies.

Our design involves a relatively simple and intuitive extension to the

Java programming model, whereby programmers annotate those methods

for whih aess ontrol is required. The poliies that ontrol this aess

are spei�ed using the familiar model of a state mahine, whih enables

a onise representation of the required aess ontrol. As explained in

Setion 5 the JPoliy language has a straightforward implementation that

maps the extensions into Java and inurs only a small run-time overhead

to implement the aess ontrol heks.

There are a number of areas with sope for further work. Integration

of our system with other researh is possible in two notable areas: poli-

ies and resoure aounting. It would be interesting to use the Ponder

language[8℄ whih is designed for speifying system management poliies,

and onstrut a bak-end for the Ponder ompiler that translates these

higher-level poliies into the representation that we desribe in Setion 4.

The XenoServer platform[12℄ o�ers an environment for hosting third party

lient ode, whereby resoures suh as memory and CPU time are a-

ounted for and harged to the lient. This is omplementary to our work

on ontrolling the use of servies, as it deals with those aspets of program

behaviour and resoure usage that we do not address. We are in ontat

with the XenoServer team, with a view to deploying our system as an

exeution environment on that platform.

The JPoliy system forms part of a larger researh e�ort into supporting

third party ode hosting, so we would like to extend our initial prototype

system to deal with lient ode deployed remotely. Sine our urrent design

allows the use of lients written in Java, we an exploit remote lass loading

to transfer ode and apply poliy-based ontrol to the servies used by the

hosted lient. In the wider projet, we are also examining to what extent

stati heking of aess ontrols an be applied instead of dynami run-

time heks. Initial work on a type and e�et system shows promising

results, with the potential to feed into the JPoliy system design.

24

Appendix: Generated Code

The following simple servie lass and poliy (from Figure 3) are used to

demonstrate the form of the generated Java ode. The JPoliy soure ode

is:

lass SearhEngine {

Vetor query(String searhTerm) when CAN_SEARCH {

return new Vetor();

}

}

poliy BoundedQueries (int bound, int interval) for SearhEngine {

int redits = bound;

-> some;

transition some -> some when (query) { redits = redits-1; }

transition some -> none when (redits <= 0);

transition none -> some when ((TimeServie.now % interval)==0)

{ redits = bound; }

CAN_SEARCH when { some }

}

From this soure, the following Java ode is produed by our ompiler:

lass SearhEngine extends java.lang.Objet {

stati SearhEngine.Poliy defaultPoliy = new SearhEngine.Poliy();

publi SearhEngine.Poliy urrentPoliy = SearhEngine.defaultPoliy;

Vetor query(String searhTerm) {

if (! (this.urrentPoliy.get(0)))

synhronized (this.urrentPoliy) {

while (! (this.urrentPoliy.get(0)))

try { this.urrentPoliy.wait(); }

ath (InterruptedExeption CAUGHT_EXCEPTION) { }

}

else { }

return this.query_ORIGINAL(searhTerm);

}

Vetor query_ATTEMPT(int timeoutMillis, String searhTerm)

throws MethodUnavailableExeption {

if (timeoutMillis != 0 && ! (this.urrentPoliy.get(0)))

25

synhronized (this.urrentPoliy) {

try { this.urrentPoliy.wait(timeoutMillis); }

ath (InterruptedExeption CAUGHT_EXCEPTION) { }

}

else { }

if ((this.urrentPoliy.get(0)))

return this.query_ORIGINAL(searhTerm);

else throw new MethodUnavailableExeption();

}

private Vetor query_ORIGINAL(String searhTerm) {

this.urrentPoliy.query_METHOD_CALLED();

return new Vetor();

}

stati lass Poliy extends java.lang.Objet {

publi boolean get(int state) {

return true;

}

publi void query_METHOD_CALLED() { }

}

}

publi lass BoundedQueries extends SearhEngine.Poliy

implements TimeServie.now_LISTENER {

private int redits;

private java.util.BitSet abstratStates = new java.util.BitSet(1);

private int onreteState;

private final SearhEngine TARGET;

private final int bound;

private final int interval;

private synhronized void DO_TRANSITION_0() {

{

this.redits = this.redits - 1;

}

if (this.redits <= 0) {

this.DO_TRANSITION_1();

return ;

} else { }

}

private synhronized void DO_TRANSITION_1() {

TimeServie.ADD_LISTENER_FOR_now(this);

{ }

this.onreteState = 1;

this.abstratStates.lear(0);

26

this.notifyAll();

}

private synhronized void DO_TRANSITION_2() {

TimeServie.REMOVE_LISTENER_FOR_now(this);

{

this.redits = this.bound;

}

this.onreteState = 0;

if (this.redits <= 0) {

this.DO_TRANSITION_1();

return ;

} else { }

this.abstratStates.set(0);

this.notifyAll();

}

publi synhronized void query_METHOD_CALLED() {

if (this.onreteState == 0) this.DO_TRANSITION_0(); else { }

}

publi synhronized void TimeServie_UPDATED_WATCHABLE_now() {

if (this.onreteState == 1 &&

((TimeServie.now % this.interval) == 0))

this.DO_TRANSITION_2(); else { }

}

publi stati BoundedQueries makePoliy(SearhEngine TARGET,

int bound,

int interval) {

return new BoundedQueries(TARGET, bound, interval);

}

publi boolean get(int state) {

return this.abstratStates.get(state);

}

private BoundedQueries(SearhEngine TARGET,

int bound,

int interval) {

this.TARGET = TARGET;

this.bound = bound;

this.interval = interval;

this.redits = this.bound;

this.onreteState = 0;

this.abstratStates.set(0);

if (this.redits <= 0) this.DO_TRANSITION_1(); else { }

}

}

27

Referenes

[1℄ D. S. Alexander, Paul B. Menage, W. A. Arbaugh, A. D. Keromytis,

K.G. Anagnostakis, and J. M. Smith. The Prie of Safety in an A-

tive Network. IEEE/KICS Journal of Communiations and Networks

(JCN), Marh 2001.

[2℄ Amazon. Web Servies, 2003. Online doument http://www.amazon.

om/gp/aws/landing.html.

[3℄ A. D. Birrell and B. J. Nelson. Implementing remote proedure alls. In

Proeedings of the ACM Symposium on Operating System Priniples,

1983.

[4℄ Lua Cardelli. Abstrations for mobile omputation. In Seure Internet

Programming, pages 51{94, 1999.

[5℄ Yoonsik Cheon and Gary T. Leavens. A runtime assertion heker for

the Java Modeling Language (JML). In International Conferene on

Software Engineering Researh and Pratie (SERP '02), June 2002.

[6℄ M. Covington, M. Moyer, and M. Ahamad. Generalized role-based

aess ontrol for seuring future appliations. In 23rd National Infor-

mation Systems Seurity Conferene, Baltimore, MD, Otober 2000.

[7℄ Karl Crary and Stephanie Weirih. Resoure bound erti�ation. In

Proeedings of the 27th ACM SIGPLAN-SIGACT Symposium on Prin-

iples of Programming Languages (POPL-00), pages 184{198. ACM

Press, January 2000.

[8℄ Niodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Slo-

man. The Ponder Poliy Spei�ation Language. Leture Notes in

Computer Siene, 1995:18{38, January 2001.

[9℄ Robert DeLine and Manuel F�ahndrih. Enforing High-Level protools

in Low-Level software. In Proeedings of PLDI-01, volume 36(5) of

ACM SIGPLAN Noties, pages 59{69, June 2001.

28

[10℄ Ebay. Developers Program, 2003. Online doument http://

developer.ebay.om/DevProgram/developer/faq.asp.

[11℄ Ulfar Erlingsson and Fred B. Shneider. SASI enforement of seurity

poliies: A retrospetive. In WNSP: New Seurity Paradigms Work-

shop. ACM Press, 2000.

[12℄ K. A. Fraser, S. M. Hand, T. L. Harris, I. M. Leslie, and I. A. Pratt.

The XenoServer omputing infrastruture. Tehnial Report UCAM-

CL-TR-552, University of Cambridge, Computer Laboratory, January

2003.

[13℄ Alfonso Fuggetta, Gian Pietro Pio, and Giovanni Vigna. Under-

standing Code Mobility. IEEE Transations on Software Engineering,

24(5):342{361, 1998.

[14℄ Li Gong. Java 2 Platform Seurity Arhiteture. Sun Mirosystems,

2002. Online spei�ation http://java.sun.om/j2se/1.4.2/dos/

guide/seurity/spe/seurity-spe.do.html.

[15℄ Google. Web APIs, 2003. Online doument http://www.google.om/

apis/.

[16℄ Robert Grimm and Brian Bershad. Separating aess ontrol poliy,

enforement, and funtionality in extensible systems. ACM Transa-

tions on Computer Systems, 19(1):36{70, February 2001.

[17℄ Daniel Hagimont and Leila Ismail. A protetion sheme for mobile

agents on Java. In Mobile Computing and Networking, pages 215{222,

1997.

[18℄ Mihael Hiks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter,

and Sott Nettles. PLAN: A programming language for ative net-

works. ACM SIGPLAN Noties, 34(1):86{93, 1999.

[19℄ Martin Hofmann. A type system for bounded spae and fun-

tional in-plae update{extended abstrat. Nordi Journal of Com-

puting, 7(4):258{289, Autumn 2000. An earlier version appeared in

ESOP2000.

29

[20℄ Paul Menage. RCANE: A Resoure Controlled Framework for Ative

Network Servies. In Proeedings of the First International Working

Conferene on Ative Networks (IWAN '99), volume 1653, pages 25{

36. Springer-Verlag, 1999.

[21℄ J. Gregory Morrisett, Karl Crary, Neal Glew, and David Walker.

Stak-based typed assembly language. Journal of Funtional Program-

ming, January 2002.

[22℄ R. Pandey and B. Hashii. Providing �ne-grained aess ontrol for

mobile programs through binary editing. Tehnial Report TR-98-08,

UC Davis, 1998.

[23℄ Fred B. Shneider. Enforeable seurity poliies. Information and

System Seurity, 3(1):30{50, 2000.

[24℄ Beverly Shwartz. Introdution to spanner: Assembly language for the

smart pakets projet. Tehnial report, BBN-TM-1220, September

1999. http://www.ir.bbn.om/~bshwart/publiations/TM1220.

pdf.

[25℄ Beverly Shwartz, Alden W. Jakson, W. Timothy Strayer, Wenyi

Zhou, R. Dennis Rokwell, and Craig Partbridge. Smart pakets: ap-

plying ative networks to network management. ACM Transations

on Computer Systems, 18(1):67{88, 2000.

[26℄ J. Stamos and D. Gi�ord. Remote evaluation. ACM Transations on

Programming Languages and Systems, 12(4), Otober 1990.

[27℄ Sun Mirosystems. Java Authentiation and Authorization

Servie (JAAS) Referene Guide, 2001. Online spei�ation

http://java.sun.om/j2se/1.4.2/dos/guide/seurity/jaas/

JAASRefGuide.html.

[28℄ Tommy Thorn. Programming languages for mobile ode. ACM Com-

puting Surveys, 29(3):213{239, 1997.

[29℄ Dennis Volpano and Geo�rey Smith. Language issues in mobile pro-

gram seurity. Leture Notes in Computer Siene, 1419:25{43, 1998.

30

[30℄ I. Wakeman, A. Je�rey, T. Owen, and D. Pepper. Safetynet: A

language-based approah to programmable networks. Computer Net-

works and ISDN Systems, 36(1):101{114, 2001.

[31℄ D. Wetherall, J. Guttag, and D. Tennenhouse. Ants: A toolkit for

building and dynamially deploying network protools, 1998.

[32℄ WWW Consortium (W3C). Web Servies Ativity, 2003. Online spe-

i�ation douments http://www.w3.org/2002/ws/.

31

