JPolicy: A Java Extension for Dynamic Access Control

Tim Owen [an Wakeman Julian Rathke

Computer Science Technical Report 01/2004
Department of Informatics, University of Sussex, UK

January 2004

Abstract

The development of remote execution platforms, where service hosts accept
code from third party clients and run it on their behalf, provides a powerful
alternative to the RPC model of clients invoking remote services over a network.
A major concern for service hosts is to control access and usage of their own
services and resources, whether the client code is being executed by the service
host itself or operating remotely and using RPC. We introduce a set of extensions
to Java that enables service hosts to control how their services may be used by
client Java programs, according to a specified policy. We separate the policies
from the services being controlled, rather than fixing the policy at compile-time
or load-time. A novel aspect of this work is that the policies allow dynamic
access control to services: the availability of service functionality can vary during
execution. Furthermore, we support the changing of policies at run-time without
modification to service code or clients. We describe our implementation of
these language extensions and show how the system enables service providers to
enforce policies that protect their resources and services from undesirable client
code behaviour.

1 Introduction

While the traditional model of the Web involves users manually interacting
with a visual interface, the development of Web Services [32] is motivated
by the desire to allow programmable access to services. But from the
programmer’s point of view, Web Services essentially involve just RPC [3]
invocations: the client code packages together a request and optionally
some data and sends it to the server. The server executes its own code to
service the request and may return some data as a result.

Although this client-server mode of web service interaction is a powerful
extension to the monolithic model, it can involve a considerable amount
of network traffic for applications that require intensive dialogue with a
remote service. Furthermore, clients with limited resources or connectivity
are not always the most appropriate place to execute code that interacts
with a remote service.

The basis of the Remote Evaluation [26] model (also termed Remote
Execution, or just RE) is that service providers accept programs from third-
party clients and host the execution of the code themselves. This extends
the RPC style by allowing code to be packaged and sent to a server, rather
than simply supplying data with a request for the server to execute its
own code. Such a facility enables programmers to deploy their own code
to perform useful work with a remote service, with the benefit of placing
the code closer to the services that it requires. Furthermore, clients with
limited resources can deploy code to be executed remotely then disconnect
or switch off until such time as the results of the computation are required.

In either of the above scenarios a major concern for service hosts is how
to control access and usage of their own services, whether the code ac-
cessing a service is being executed by the service host itself, or operating
remotely and using RPC. For example, the Amazon Web Service API[2]
enables RPC-like programmable access to the company’s online shop, but
specifies some restrictions on how client code may use the service. Accord-
ing to the access agreement, client code may not perform requests faster
than once per second (although this is a guideline and is not actively en-
forced). Similarly, the Google Web Service API[15] limits client programs
to 1000 query requests per day (which is enforced: an exception is thrown
if the limit is exceeded). The Ebay API[10] offers a range of different lim-
its depending on the level of membership — a typical basic limit is that
programmers can make upto 5000 calls per day in test mode and 50 calls
per day in production mode, and maintain 8 simultaneous connections.

We believe that any increased adoption of programmable services and
hosting of third-party code will require mechanisms that allow hosts to
control the usage of their services. The informal policies used by Web

Services such as Google, Amazon and Ebay indicates that policy-based
control of service use is already of interest. In the RE scenario, where
service providers host third-party client code, then the need for access con-
trol and resource rationing becomes particularly important. Since hosted
code will be relying upon the host for access to more general services such
as disk storage and network functionality, more sophisticated policies and
policy control are required.

There are various ways in which a program may exhibit undesirable be-
haviour, but we are particularly interested in the external dependencies
of hosted programs: the services that they use via programming APIs
to libraries. Figure 1 shows an application written by a third-party de-
ployed to be run on a service host. The application code relies on external
host-provided services to be available in its execution environment. These
typically include disk and file access, network functionality and database
use, for example. Higher level services such as Google’s search facility or
other network-accessible services are also used through an API, so these
too form part of the external environment in which a program executes.

We consider memory consumption and CPU usage as essentially oper-
ating system (or virtual machine) concerns. While these issues are clearly
important to the overall behaviour of code, those resources are typically
not accessed explicitly by a program in the way that library services are —
rather, they are implicit in its execution. Our work will not focus on CPU
and memory usage and we consider this to be an interesting but orthogonal
issue.

If we assume that host resources and services are provided to a program
through an API, then a typical level of granularity for control is an in-
dividual method. In Figure 1 the small circles show the points at which
client code makes calls out to host services. Hence, controlling these API
method invocations to external service libraries allows us to impose policies
on program behaviour.

In this paper, we describe how programming language support for fine-
grained controls on the behaviour of programs enables service providers
to protect access to their services and resources. Our design shows that

Client's Application

| Deployed to Service Host
|

File System | Hosted Application | Other Service
Storage Service 1 (From a third-party client) ™ On Host
b =
Search Engine Network Access
Service Library Service
Service Host

Figure 1: Remote Execution on a Service Host

the application of policies to control service use can be achieved without
necessarily requiring client code to be aware of this policy control. We
introduce a language construct for specifying service usage policies such as
those examples mentioned above, and demonstrate a prototype implemen-
tation that extends Java with the ability to control how client code can
use a service. This technique applies equally well to controlling service use
in the traditional RPC style and in the RE situation where client code is
being hosted by the service provider. In the remainder we refer to this Java
extension as JPolicy. The JPolicy language is a modest extension of Java
with a small number of extra constructs to support policy-based control of
services.

The type of scenarios we aim to support with our system are exemplified
in Figure 2. Service providers implement their services in Java as classes
and interfaces in the normal way. The functionality provided by the service
is specified by the service API, which is the set of methods that clients can
call. Clients can access the service either remotely, using RPC, or locally if
the service host is prepared to accept third-party client code and execute
it on the host. We assume that each client gains access to a particular
service through an object instance that represents that service, provided

4

Remote
Client App

/
RPC Call: query(”stuff”)

Locally Hosted

E Client App |
E Call: send(data) Call: recv() |
: / \ \ :
| | L g |
| : Y ; \ ; \ !
X f Method . Method : Method !
! Runs... . Runs.. Runs.. |
X Abstract Abstract : E
! State . State : |
! Search Engine | || =" | Network Access | |
|| \CAN-SEARCH) Service Object \ALLOW-NET) Service Object | !
E Controls Controls :
Policy Policy :
i Object Object X
X Service Host !
class SearchEngine {
Vector query(String searchTerm) when CAN_SEARCH { ... }

}

policy BoundedQueries for SearchEngine {
CAN_SEARCH when { /* total calls to query method < bound */ }
}

policy TimeLimitedSearch for SearchEngine {
CAN_SEARCH when { /* time of day is between 9 and 5 */ }
}

class NetworkAccess {
void send(Object data) when ALLOW_NET { ... }
Object recv() when ALLOW_NET { ... }

}

Figure 2: Example JPolicy Services and Policies

to them as their unique entry point.

Since the functionality of a service object is accessed through its meth-
ods, we can control the behaviour of client programs that use the service
by enabling or disabling the awvailability of each service API method dy-
namically. This is depicted in the diagram of Figure 2 using the “switch”
metaphor. For example, we can impose a rate-limiting policy on a SearchEngine
service by switching off the availability of the query method after a limited
number of invocations has been reached, then switching it back on after
some delay.

A novel aspect of the JPolicy language lies in the separation of policy
from service code. Many existing policy control or resource access control
systems rely on a tight coupling of (compiled) service code and exact access
control specifications [9, 7, 21, 5]. Decoupling policy from code provides
some immediate benefits: servers are not obliged to recompile or rewrite
API code to account for any changes in policy and versioning of policy
controlled services is achievable within a single policy control framework.

The technology which underpins this decoupled approach to variable
method availability is based on a notion of abstract state, in which a method
invocation proceeds only when a service object’s abstract state permits it.
We may like to think of these as named properties of the underlying states
of the policy. For example, a service offering a print method may offer
this functionality under various circumstances, or states, described exactly
in a sophisticated underlying policy. From the service code’s perspective
all that is relevant though is whether the method is available when called.
This might lead us to an abstract state named Printable which is intended
to describe those collection of underlying states in which the print method
is available. By only allowing the service code to refer to abstract states
we enforce a separation of policy from the service object itself, so that the
policy is not hard-wired into the service.

The extensions to Java that we include in JPolicy enable this policy-
driven control of method availability:

e Instance methods can be annotated with a when clause, that specifies
an abstract state name. The presence of this clause makes the method

modal, in the sense that the invocation of a modal method on some
object can only proceed if the object is currently in the abstract state
named in the clause.

e Each object of a class that contains modal methods maintains a no-
tion of which abstract states it is currently in. For example, the Net-
workAccess class in Figure 2 has modal methods naming an abstract
state called ALLOW_NET and each NetworkAccess service object will
record whether it is presently in the abstract ALLOW_NET state or
not.

e The transitions between being in some abstract state and not are driven
by an external policy rather than the object itself. The language sup-
ports the definition of policies, that determine when an object should
enter or leave an abstract state. The conditions under which these
transitions occur can be based on a variety of factors, as explained in
Section 4.

e Client code that attempts to invoke a modal method will only proceed if
the target object is in the correct abstract state. There are a number of
ways in which clients can handle modal method calls: either execution
blocks until the invocation proceeds, or blocking can be avoided by
trying alternative code or skipping the call. If left unspecified the
default behaviour for clients is to block on unavailable methods.

The following sections describe these extensions in more detail, and explain
how they allow service access to be controlled in a fine-grained manner.

The remainder of the paper is organised as follows. In the next section
we elaborate on the notion of modal methods and abstract states. The
consequences of policy control for client code is discussed in Section 3. In
Section 4 we present our model for policy specification and how these are
linked with services. We follow this with a description of our JPolicy imple-
mentation and discussion of its run-time behaviour in Section 5. Finally,
we conclude with sections containing discussions on related and further
work.

2 Modal Methods and Abstract States

The primary purpose of the JPolicy extensions is to enable service hosts to
control when the methods in their Java services can be called. Since the
functionality of a service is accessed by invoking its methods, then we can
enable or disable the use of particular service functionality by selectively
blocking the invocation of a method in that service. This allows the service
host to control what facilities client code can access, and when it can be
accessed, assuming clients have no other means to use services in their
hosted environment.

In JPolicy, the level of granularity for access control is individual meth-
ods, which allows fine-grained management of the functionality available to
client code. For example, a host service that provides network access could
be controlled with a policy that allows outgoing network connections to be
made but not incoming, by enabling one service method and not another.

Our basic approach to enabling or disabling certain methods is to in-
tercept calls from clients and decide whether to continue the invocation or
not. Therefore, such methods can be thought of as having two modes of op-
eration: the normal Java mode where an invocation proceeds immediately
and a disabled mode where an invocation does not proceed but is blocked
instead. These modal methods are distinguished in the JPolicy language
by an annotation on the method’s definition: a when clause. For example,
the SearchEngine service class from Figure 2 has a modal method called
query with the following signature:

Vector query(String searchTerm) when CAN_SEARCH

The presence of a when clause means that this is a modal method, and
hence invocations of the method may or may not proceed immediately.
Conversely, methods without a when clause are non-modal and behave
exactly as normal Java methods.

The content of a when clause is the declaration of an abstract state
name, which is specific to the class in which it appears. The intent of this
is to declare that there is some abstract state of the object in which the
associated modal method should be enabled. This abstract state is simply

8

a yes/no flag, so e.g. a SearchEngine object is either in the CAN_SEARCH
abstract state or it is not. The actual meaning of the abstract state, in
terms of when individual objects are in the state is determined by the
policy associated with an object — this is explained below in Section 4.

Since a class may contain several modal methods, each with a when
clause potentially naming different abstract state names, the result is a set
of independent abstract states. Each object of that class maintains a notion
of its current combined status: which abstract states it is presently in, and
which it is not. This status then controls the availability of methods,
because the decision to allow a method call of a modal method to proceed
is determined by whether the target object is in the relevant abstract state
at that moment. A related issue here is that, in our current design, only
instance methods can be modal — we do not allow Java’s static methods
to have when clauses. This is because the abstract state is a property
of individual objects, but static methods are not invoked with respect to
any specific object. We could extend the language to allow static modal
methods, by associating the static abstract state with the class itself, in
a similar way to Java synchronization on static method calls where the
class’s lock is used.

In terms of the diagram in Figure 2, the abstract state is the “switch”
that manipulates the handling of method invocations. As shown in the
NetworkAccess service, more than one modal method’s when clause can
refer to a particular abstract state. In that case, the availability of all those
modal methods is tied together: either they are all enabled or all disabled.
It is the task of service programmers when adding when clauses to make
this decision about which modal methods should be controlled by which
abstract state names.

An important feature of our design is that objects do not control the
status of their set of abstract states, rather this is the responsibility of
separate policies. An object enters or leaves an abstract state when its
associated policy dictates. We discuss the definition and use of policies in
Section 4.

3 Client Code Implications

As explained in the previous sections, the existence of modal methods
in JPolicy means that the behaviour of a method invocation depends on
the method’s current mode, which is determined by the abstract state of
the target object. Clearly, this has implications for client code that calls
modal methods. The service API that is presented by the set of method
signatures shows which methods are modal, as indicated by the presence
of when clauses. This information is important to client programmers, in
a similar way to the existence of a throws clause in a method signature:
it warns the programmer that an invocation of a modal method may not
proceed. This acts as a reminder to clients that the services they wish to
use are subject to access controls.

In JPolicy, the effect of calling a modal method that is switched off
(i.e. because the target object is not in the required abstract state) is to
block the calling thread. The caller is only unblocked if the target object
enters the relevant abstract state again, at which point the method call
proceeds. This behaviour allows service hosts to completely deny service
functionality to clients, if they choose to impose a policy that never puts
the object into certain abstract states.

Our design does not allow clients to explicitly examine the current ab-
stract states of an object, therefore we have introduced a construct which
provides client code with alternatives to blocking. Instead clients can at-
tempt an invocation of a modal method and take evasive action if the call
does not proceed. This is analogous to exception handling constructs in
Java — indeed, we use similar syntax. The following example of client
code shows one form of this construct:

try Vector results=searchService.query("some terms") {
// code block using the results value

by

// Further code (results not in scope here)

In this syntax, the newly declared local variable results is assigned the

10

result of the modal method call if the invocation proceeds immediately,
and its scope is only within the following code block. If the query method
is switched off due to the current abstract state of the searchService
object then the caller will not block, but the method call and code block
will be skipped and execution continues after the block. Another use of
this construct is to allow a second block of alternative code to be executed
in the case of the modal method call not proceeding:

try Vector results=searchService.query("some terms") {
// code block using the results value

+
else {

// alternative code block (results not in scope here)
+

Here, the alternative block is executed if the query call cannot proceed
immediately. The third variation of this construct simply includes a mil-
lisecond timeout clause to the modal method invocation attempt:

try for 100 Vector results=searchService.query("some terms") {
// as before
+

In this form, if the object’s abstract state changes to re-enable the method
within the specified time of 100 milliseconds then the call will proceed.
The benefit of this clause is that it provides clients with an option midway
between immediate skipping and indefinite blocking.

4 Control Policies

The previous sections detail the way in which service providers can write
their services so that they can be policy-controlled, and how client code
can deal with using services that are controlled by policies. This section
shows what these policies actually look like and how they are linked to the
service objects under their control.

11

As explained above, the central concept in our work is the abstract
state of an object, which is reflected in the set of named abstract states
that appear in modal method when clauses. The availability of a modal
method is dictated by the current status of the target object’s associated
abstract state. As Figure 2 shows, the role of policies in JPolicy is to
cause changes in the abstract state of objects, whereas the service objects
themselves only examine the status and do not change it. This separation of
concerns means that policies are not hard-wired into the service code itself.
Abstract states act as the intermediary: individual policies determine when
to change an object’s abstract state, and the object reads this status when
deciding whether to allow a method invocation to proceed. Consequently,
the job of the policy declaration construct we have included in JPolicy is
to define exactly when an object is in an abstract state and when it is not.

4.1 Policy Specification

In the JPolicy language we extend the Java syntax with a top level con-
struct for specifying a policy. Therefore a compilation unit of Java code
contains a list of class, interface and policy definitions. Our model of a
policy is in the form of a labelled transition system — essentially a finite
state automaton, consisting of a set of concrete states with transitions be-
tween them. The policy definition declares the name of the class for which
it can be used, then specifies the sets of its concrete states that correspond
to each abstract state of objects of that class. The general form of a policy
specification is as follows:

policy PolicyName for ClassName {
-> initialConcreteState
transition concreteStatel -> concreteState2 when (conditionA)
transition concreteState2 -> concreteState3 when (conditionB)

ABSTRACT_STATE_X when { list of concrete states }

ABSTRACT_STATE_Y when { list of concrete states }
... // for each named abstract state declared in ClassName

12

class SearchEngine {
Vector query(String searchTerm) when CAN_SEARCH { ... }
}

policy BoundedQueries (int bound, int interval) for SearchEngine {
int credits = bound;
-> some;

// Every time we call the method, the counter decrements...
transition some -> some when (query)
{ credits = credits-1; }

// Until none are left...
transition some —> none when (credits <= 0);

// Then the counter is replenished at next time interval
transition none -> some when ((TimeService.now Y interval)==0)
{ credits = bound; }

CAN_SEARCH when { some }

Figure 3: Example Policy Specification

The particular concrete states and transitions of these automata reflect the
specific nature of each policy. For example, suppose we are specifying a
Google-like Web Services policy that a certain modal method in a service
can only be invoked a limited number of times in some time period. The
policy may have two concrete states, to represent whether the call limit
has been reached or not, and transitions between these based on a method
call counter and a time event. Figure 3 shows how this policy can actually
be written using the JPolicy syntax.

To assist in the construction of policies such as the call limiter outlined
above, which involves counting, policy specifications can include local vari-
ables that may be updated using a limited expression language. Without
this facility, policies that need to implement counters would have to spec-
ify states to record a count total, which becomes tedious and repetitive.

13

Figure 3 shows a local variable named credits that counts how many calls
can still be made before the limit is reached. Updating of local variables,
such as incrementing one used as a counter, is enabled by the addition of
an optional clause in transition specifications. This clause, shown in braces
at the end of a transition declaration, simply lists policy variable updates
— it is not arbitrary Java code.

A further enhancement of the policy construct is that it can be param-
eterised by values, much like the way a Java class can be parameterised
by having its constructor declare a list of formal parameters. A policy’s
named parameters can be used to initialise its local variables. In Figure 3
the BoundedQueries policy has been parameterised by the call limit and
the time interval, rather than having these hard wired into the transitions.

The descriptions above outline the general form of the policy construct,
but the utility and expressiveness of policies is determined mainly by the
content of the boolean conditional expressions used to label transitions.
In Figure 3, the BoundedQueries policy illustrates the use of most of the
terms that can be referred to in condition expressions. In some cases, the
condition expressions in a policy make reference to aspects of the object
that the policy is controlling, which is called the target object. The terms
used in transition expressions are:

Object instance methods The event of an instance method being in-
voked on the target object can be used to trigger a transition. The
first transition in the BoundedQueries policy is an example of this: it
names the query method in its condition, in order to count how many
times the method is invoked.

Static fields The value of a static field of some arbitrary class can be
used to gain access to external services in the wider environment. For
example, the policy in Figure 3 makes use of a service that presents
the current time as a one second counter field.

Object instance fields Although not used in the BoundedQueries policy
example, any instance field of the target object can be referred to. This
enables policies to use the internal state of service objects to guide

14

transitions.

Policy local variables Policies can declare a number of mutable local
variables, and these can be referred to in transition conditions. These
variables can be updated by assigning new values when a transition
ocCCurs.

Policy parameters The named parameters of a policy can be considered
as unchanging local variables, like final method parameters in Java.
The example policy uses the interval policy parameter in its third
transition expression.

Constant values These are simple literal values, such as integer con-
stants.

With the exception of instance methods, the condition expression syntax
allows these terms to be combined using a simple set of logical, conditional
and arithmetic operators. A transition may only use a method name in its
condition if it is the only term in the expression, because it does not make
sense to apply expression operators to a method call event. An important
property of the transition conditions is that they are pure expressions in
the sense that they do not cause any side effects.

4.2 Policy Attachment

Once policy specifications have been written for service classes, the con-
nection between a policy and a particular object is made by our final lan-
guage extension: a simple policy assignment construct. This infix operator
connects an object of some class with a policy for that class, specifying
arguments if the policy is parameterised:

searchService policy BoundedQueries (250, 10)

where searchService refers to an object of type SearchEngine and the
policy named BoundedQueries is defined as one for SearchEngine objects.

In a remote execution environment, service hosts will typically need to
be able to assign policies to the service objects they give to clients, but

15

deny clients the ability to change the policy associated with these objects.
Clearly, if clients could replace the policies attached to service objects
then they can subvert the host’s control on service usage — thus defeating
the purpose of policy-based control. In JPolicy, we can prevent this by
restricting the ability to change an object’s policy to the service provider
only. This is achieved by using a Java interface type for the client’s view of
a service, and constraining the semantics of the policy assignment construct
so that it can only be used to change the policy of an object that is handled
through a variable of class type. Clients do not know the name of the class
that implements each service, they only see an interface through which to
view the service. Therefore, the restriction on policy assignment to class
type variables only means that client code cannot replace the policy on a
service object.

Because the concept of an abstract state provides a level of separation
between policies and the objects they control, we can dynamically change
the policy that is associated with an individual object. Using the construct
just described, a different policy can be applied to an object without mak-
ing any changes to the object at all, or even informing it that a policy
change has occurred. And since the policy details are encapsulated in a
separate entity, service code does not need to be re-compiled when a policy
change takes place.

5 Implementation Details

We have implemented a compiler for the JPolicy language described above.
Since the language is designed as an extension to Java, the compiler trans-
lates the syntax extensions into pure Java. The resulting Java source can
then be compiled to bytecode or native executables using standard Java
compilers. See the Appendix for a full listing of the Java code generated
for the example class and policy shown in Figure 3.

The translation approach is straightforward: policy specifications are
converted into Java classes, service classes gain a field that links to a policy
object, and modal methods are implemented by synthesizing two wrapper

16

methods that guard access to the actual method code. Client code requires
very little translation, primarily because the use of a when clause is not
visible in the translated Java method signature. Indeed, clients that do not
use the non-blocking try construct described in Section 3 can actually be
compiled using a standard Java compiler, and still be successfully linked
against service code written in JPolicy. This is a useful feature in an
environment where it is unrealistic to expect all clients to be implemented
in a non-standard language. Service hosts can develop policy-controlled
services, while retaining backwards compatibility for Java clients that are
unaware of the use of policies.

Any JPolicy class containing at least one modal method is augmented
with an extra instance field named currentPolicy that provides the link
to a policy object. The storage of the current set of abstract states is
actually held in the policy object itself, rather than instances of the class
being controlled. The reason for this implementation design is that one
policy object may control several target objects, so we avoid duplication
by maintaining one set of abstract states in the policy. Target objects
use their link to the policy to check the current status when handling a
method invocation. The policy attachment construct shown in Section 4.2
is simply translated into an assignment of a policy class instance to the
currentPolicy field of the controlled object. The creation of new policy
objects for this construct is handled by the policy itself, using a factory
method.

Each modal method is compiled by erasing the when clause, renaming
the method with a suffix and marking the method with private visibility.
We then generate two wrapper methods: one with the original method
name, signature and visibility, and a second with similar signature and
visibility but renamed and with an extra parameter. The purpose of these
wrapper methods is to implement the method access control before calling
the original method body. One wrapper implements the blocking action
that waits until the abstract state allows the call to proceed. The second
wrapper implements the non-blocking invocation attempt discussed in Sec-
tion 3, and throws an exception if the call cannot proceed. The general

17

pattern of translation for a modal method such as:

public Vector query(String searchTerm) when CAN_SEARCH {
// original method body

}
is to generate this set of three Java methods:

private Vector query_ORIGINAL(String searchTerm) {
// Notify the currentPolicy that the method has been
// invoked, then...
// execute the original method body

+

public Vector query(String searchTerm) {
// Block waiting for the object to be in the CAN_SEARCH
// abstract state, then...
return this.query_ORIGINAL(searchTerm) ;

+

public Vector query_ATTEMPT(int timeout, String searchTerm)

throws MethodUnavailableException {

// Wait at most timeout milliseconds for the object to be

// in the CAN_SEARCH abstract state, then...

if (/* object is now in the abstract state */)
return this.query_ORIGINAL (searchTerm) ;

else
throw new MethodUnavailableException();

}

We use standard Java synchronization features to implement the waiting
for abstract states — this avoids a busy wait loop by putting the calling
thread to sleep until the policy object notifies the thread that the abstract
state has changed. Since the set of abstract states is actually stored in the
policy object, the service object uses its currentPolicy instance field to

request the current status of an abstract state.

18

The first of the two generated Java wrappers has an identical signature
to that of the original method written in the JPolicy language (once the
when clause has been erased). This means that client code can actually
be written in plain Java, by ignoring the when clauses and calling the
modal methods without knowing anything about the JPolicy language.
Therefore, we do not need to assume that clients will be written in JPolicy
and compiled using our compiler. The policy-based control of method
invocation is enforced completely on the service side of the call, rather
than trusting the client not to circumvent the controls.

However, if client code is written in the JPolicy language and does make
use of the invocation attempt try syntax described in Section 3, then a
call attempt such as:

try Vector results=searchService.query("some terms") {
// success code block

ks

else {
// alternative code block

ks

is translated into the following Java code:

try {
Vector results=searchService.query_ATTEMPT (O, "some terms");
// success code block

ks

catch (MethodUnavailableException e) {
// alternative code block

}

The descriptions above cover the translation of client and service code
that uses the extensions in JPolicy. The remaining construct is the policy
definition itself — these are converted into a Java class, with fields for each
local variable and parameter, and a BitSet to record the current status of
each abstract state. The translated class implements the labelled transition

19

system, with an instance field to record the current concrete state and a
method to implement each transition.

Much of the policy implementation uses an event-driven approach: events
such as methods being invoked or fields changing values cause handler
methods in the policy to be called. These handlers dispatch transitions
as appropriate, based on evaluating the condition expressions. Events are
sent to the policies by inserting code in methods and augmenting field up-
date code so that policy objects are notified when a method is invoked or
a field value is changed.

As transitions cause the current concrete state to change, the mapping
between concrete states and each abstract state is used to make any changes
to the current abstract states. When an abstract state does change, target
objects are notified so that any blocked method invocations can make use
of this information.

Our translation strategy for modal methods involves a level of indirec-
tion, since clients call one of the wrapper methods which first performs
an abstract state check before forwarding the call to the actual method
implementation. In the case where the target object is in the required
abstract state then the call proceeds, just as for non-modal methods, but
it is desirable to minimise this overhead for invocations of modal methods.
We have made some basic measurements of the overhead, by comparing
execution times of an indirect call against a direct call of the actual method
(bypassing the abstract state check by removing the private visibility).
The results indicate an approximate performance reduction of 5% for the

invocation of a modal method compared to the non-modal case, using the
Sun Java VM v1.4.1 on Linux.

6 Related Work

The concept of Remote Execution (RE) of third-party code has appeared
in various application areas, from Java applets to mobile code and agents|4,
13, 28] and active networks[1, 18, 20, 25, 30, 31]. Naturally, one of the major
concerns with RE is that host owners are accepting code from potentially

20

unknown and untrusted third parties, and therefore wish to protect their
machines from malicious, greedy or poorly-written programs. There are a
number of existing techniques that address this issue of program behaviour
control:

Sandboxing is used to control how a program can access resources in its
execution environment. The Java Security Manager architecture[14,
27] is founded on this approach, where calls to critical library methods
in the API such as creating network sockets or using the filesystem
are checked at run-time against a security policy of access rights. Our
work is an extension of this form of control, where we allow arbitrary
methods to be controlled rather than the fixed set that are hard-wired
into the Java model. A further limitation of the Java Security Manager
is that the security policies are “all or nothing” in the sense that a
policy either allows access or denies it — a decision that remains during
execution. We improve upon this by enabling more expressive dynamic
policies, where method accessibility can vary over time depending upon
factors such as time, user reputation, current system load or past usage
of the service’s methods.

Safe Languages can be designed so that undesirable program behaviour
is limited by the language itself and enforced by the compiler — once
the program has successfully been type-checked, then it is deemed
to satisfy the definition of safety designed into the language. This
language design approach has been applied to higher level languages
intended for programmers[18, 25, 28, 29] and lower level assembly and
bytecode languages[21, 24]. Again, the allowable access policies are
usually limited by the system design or are compiled into individual
programs, and hence are set once at compile-time or load-time. The
Vault language[9] permits dynamic access control, rather than a fixed
allow/deny permission, but the policy is still encoded into the program
source — changing policies requires the program to be re-compiled.

Module Thinning is a technique for limiting the possible activities of a
program by means of reducing the visibility of services it can access.

21

This approach has been used in Active Network systems][1, 20] to limit
the access of mobile code to resources on the network node. Work on
mobile Java code agents[17] protects services by narrowing the view of
a service interface, which prevents client code from linking to certain
methods. When a program is dynamically linked before execution,
all external dependencies are matched up with the library modules
that provide these facilities. A service host can use security policies
to control the linking process and thereby deny access to particular
services, or perhaps link against different implementations of a library
depending on the required level of functionality. Here, a limitation is
that the client program sees a fixed view of the available resources -
once it has been loaded and linked, the visibility cannot be altered
dynamically.

Code Rewriting allows hosts to impose a security policy on the be-
haviour of incoming programs, by modifying the binary executable[22]
or bytecode itself before execution starts. One example of this ap-
proach is the SASI system[11] where policies in the form of security
automata[23] determine the modification of a binary executable or Java
bytecode program. This has the benefit of allowing clients to write
code in any source programming language, and avoids the need to
send higher level program code to the service host. The drawback of
such systems is that a fixed policy is typically woven into the program
code statically, when the rewriting is performed.

A common limitation in many of the techniques just described is that the
host’s security policy typically specifies what can and cannot be accessed,
then this is built into the program or environment. Hence accessibility
is determined once and cannot change during program execution. Our
work is motivated by the observation that many useful security and access
policies require more flexibility than a fixed allow/deny rule. In particular,
method availability should be variable over time, with the policy depending
on factors such as service use and the wider environment. Moreover, there
should be a separation between the service code and the possibly many
policies that could be applied to controlling that service.

22

As stated in the introduction, the specify resources of memory and CPU
time are ones we consider an operating system or virtual machine con-
cern. Nevertheless, there is research into resource-bounded programming
languages[9, 19] that attempts to determine statically the memory usage
and execution time bounds of programs, but this requires significant lan-
guage restrictions. We consider this area of research to be an interesting
complement to our work, but one motivation for our system design is that
we cannot assume all client code will be written in special purpose lan-
guages.

The issue of defining and applying policies to the control of systems
is well studied, such as the management policy language Ponder[8] and
work on Role-based Access Control[6]. These systems focus on the higher
level management concerns: the specification and analysis of policies, typ-
ically using a declarative language. Allied to this, the field of security
includes much research on access control, e.g. [16], and capabilities based
on authentication, i.e. who is allowed to perform certain operations. Our
interest is in the lower level aspects of how policies are implemented, in the
specific domain of controlling program behaviour at the method invocation
level. This allows dynamic access control based on factors other than user
authentication, such as time, reputation or service usage patterns.

7 Conclusions and Further Work

We have designed and implemented JPolicy: a set of language extensions
for Java that enables programmers to control how the functionality in their
services can be accessed by client code, using separate policy specifications
that dynamically vary the availability of methods. The design described in
this paper explains how service providers can use this language to specify
fine-grained policies on how services can be accessed at run-time.

The primary outcome of this work is the successful application of policies
to control program behaviour, in particular the novel ability of our system
to enable control policies to be dynamically changed at run-time. We
achieve this without altering the service code being controlled or the client

23

code that is accessing the service. Furthermore, our design does not require
the clients to be written using the extended language — client code in plain
Java can still use policy-controlled services.

Our design involves a relatively simple and intuitive extension to the
Java programming model, whereby programmers annotate those methods
for which access control is required. The policies that control this access
are specified using the familiar model of a state machine, which enables
a concise representation of the required access control. As explained in
Section 5 the JPolicy language has a straightforward implementation that
maps the extensions into Java and incurs only a small run-time overhead
to implement the access control checks.

There are a number of areas with scope for further work. Integration
of our system with other research is possible in two notable areas: poli-
cies and resource accounting. It would be interesting to use the Ponder
language[8] which is designed for specifying system management policies,
and construct a back-end for the Ponder compiler that translates these
higher-level policies into the representation that we describe in Section 4.
The XenoServer platform[12] offers an environment for hosting third party
client code, whereby resources such as memory and CPU time are ac-
counted for and charged to the client. This is complementary to our work
on controlling the use of services, as it deals with those aspects of program
behaviour and resource usage that we do not address. We are in contact
with the XenoServer team, with a view to deploying our system as an
execution environment on that platform.

The JPolicy system forms part of a larger research effort into supporting
third party code hosting, so we would like to extend our initial prototype
system to deal with client code deployed remotely. Since our current design
allows the use of clients written in Java, we can exploit remote class loading
to transfer code and apply policy-based control to the services used by the
hosted client. In the wider project, we are also examining to what extent
static checking of access controls can be applied instead of dynamic run-
time checks. Initial work on a type and effect system shows promising
results, with the potential to feed into the JPolicy system design.

24

Appendix: Generated Code

The following simple service class and policy (from Figure 3) are used to
demonstrate the form of the generated Java code. The JPolicy source code
is:

class SearchEngine {
Vector query(String searchTerm) when CAN_SEARCH {
return new Vector();
}
}

policy BoundedQueries (int bound, int interval) for SearchEngine {
int credits = bound;
-> some;

transition some -> some when (query) { credits = credits-1; }
transition some -> none when (credits <= 0);

transition none -> some when ((TimeService.now Y interval)==0)
{ credits = bound; }

CAN_SEARCH when { some }

From this source, the following Java code is produced by our compiler:

class SearchEngine extends java.lang.Object {
static SearchEngine.Policy defaultPolicy = new SearchEngine.Policy();
public SearchEngine.Policy currentPolicy = SearchEngine.defaultPolicy;
Vector query(String searchTerm) {
if (! (this.currentPolicy.get(0)))
synchronized (this.currentPolicy) {
while (! (this.currentPolicy.get(0)))
try { this.currentPolicy.wait(); }
catch (InterruptedException CAUGHT_EXCEPTION) { }
}
else { }
return this.query_ORIGINAL(searchTerm) ;
}
Vector query_ATTEMPT(int timeoutMillis, String searchTerm)
throws MethodUnavailableException {
if (timeoutMillis != 0 && ! (this.currentPolicy.get(0)))

25

synchronized (this.currentPolicy) {
try { this.currentPolicy.wait(timeoutMillis); }
catch (InterruptedException CAUGHT_EXCEPTION) { }
}
else { }
if ((this.currentPolicy.get(0)))
return this.query_ORIGINAL(searchTerm) ;
else throw new MethodUnavailableException();
}
private Vector query_ORIGINAL(String searchTerm) {
this.currentPolicy.query_METHOD_CALLED() ;
return new Vector();
}
static class Policy extends java.lang.Object {
public boolean get(int state) {
return true;
}
public void query_METHOD_CALLED() { }
}
}

public class BoundedQueries extends SearchEngine.Policy
implements TimeService.now_LISTENER {
private int credits;
private java.util.BitSet abstractStates = new java.util.BitSet(1);
private int concreteState;
private final SearchEngine TARGET;
private final int bound;
private final int interval;
private synchronized void DO_TRANSITION_O0() {
{
this.credits = this.credits - 1;
}
if (this.credits <= 0) {
this.DO_TRANSITION_1();
return ;
} else { %}
}
private synchronized void DO_TRANSITION_1() {
TimeService.ADD_LISTENER_FOR_now (this) ;
{1
this.concreteState = 1;
this.abstractStates.clear(0);

26

this.notifyAl1();
}
private synchronized void DO_TRANSITION_2() {
TimeService .REMOVE_LISTENER_FOR_now(this) ;
{
this.credits = this.bound;
}
this.concreteState = 0;
if (this.credits <= 0) {
this .DO_TRANSITION_1();
return ;
} else { }
this.abstractStates.set(0);
this.notifyAl1Q);
}
public synchronized void query_METHOD_CALLED() {
if (this.concreteState == 0) this.DO_TRANSITION_O(); else { }
}
public synchronized void TimeService_UPDATED_WATCHABLE now() {
if (this.concreteState == 1 &&
((TimeService.now % this.interval) == 0))
this.DO_TRANSITION_2(); else { }
+
public static BoundedQueries makePolicy(SearchEngine TARGET,
int bound,
int interval) {
return new BoundedQueries(TARGET, bound, interval);
+
public boolean get(int state) {
return this.abstractStates.get(state);
+
private BoundedQueries(SearchEngine TARGET,
int bound,
int interval) {
this.TARGET = TARGET;
this.bound = bound;
this.interval = interval;
this.credits = this.bound;
this.concreteState = 0;
this.abstractStates.set(0);
if (this.credits <= 0) this.DO_TRANSITION_1(); else { }

27

References

[1] D. S. Alexander, Paul B. Menage, W. A. Arbaugh, A. D. Keromytis,
K.G. Anagnostakis, and J. M. Smith. The Price of Safety in an Ac-
tive Network. IEEE/KICS Journal of Communications and Networks
(JCN), March 2001.

[2] Amazon. Web Services, 2003. Online document http://www.amazon.
com/gp/aws/landing.html.

[3] A.D. Birrell and B. J. Nelson. Implementing remote procedure calls. In
Proceedings of the ACM Symposium on Operating System Principles,
1983.

[4] Luca Cardelli. Abstractions for mobile computation. In Secure Internet
Programmang, pages 51-94, 1999.

[5] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for
the Java Modeling Language (JML). In International Conference on
Software Engineering Research and Practice (SERP ’02), June 2002.

[6] M. Covington, M. Moyer, and M. Ahamad. Generalized role-based
access control for securing future applications. In 23rd National Infor-
mation Systems Security Conference, Baltimore, MD, October 2000.

[7] Karl Crary and Stephanie Weirich. Resource bound certification. In
Proceedings of the 27th ACM SIGPLAN-SIGAC'T Symposium on Prin-
ciples of Programming Languages (POPL-00), pages 184-198. ACM
Press, January 2000.

[8] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Slo-

man. The Ponder Policy Specification Language. Lecture Notes in
Computer Science, 1995:18-38, January 2001.

[9] Robert DeLine and Manuel Fahndrich. Enforcing High-Level protocols
in Low-Level software. In Proceedings of PLDI-01, volume 36(5) of
ACM SIGPLAN Notices, pages 59—69, June 2001.

28

[10] Ebay. Developers Program, 2003. Online document http://
developer.ebay.com/DevProgram/developer/faq.asp.

[11] Ulfar Erlingsson and Fred B. Schneider. SASI enforcement of security
policies: A retrospective. In WNSP: New Security Paradigms Work-
shop. ACM Press, 2000.

[12] K. A. Fraser, S. M. Hand, T. L. Harris, I. M. Leslie, and 1. A. Pratt.
The XenoServer computing infrastructure. Technical Report UCAM-
CL-TR-552, University of Cambridge, Computer Laboratory, January
2003.

[13] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Under-
standing Code Mobility. IEEE Transactions on Software Engineering,
24(5):342-361, 1998.

[14] Li Gong. Jawva 2 Platform Security Architecture. Sun Microsystems,
2002. Online specification http://java.sun.com/j2se/1.4.2/docs/
guide/security/spec/security-spec.doc.html.

[15] Google. Web APIs, 2003. Online document http://www.google.com/
apis/.

[16] Robert Grimm and Brian Bershad. Separating access control policy,
enforcement, and functionality in extensible systems. ACM Transac-
tions on Computer Systems, 19(1):36-70, February 2001.

[17] Daniel Hagimont and Leila Ismail. A protection scheme for mobile
agents on Java. In Mobile Computing and Networking, pages 215-222,
1997.

[18] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter,
and Scott Nettles. PLAN: A programming language for active net-
works. ACM SIGPLAN Notices, 34(1):86-93, 1999.

[19] Martin Hofmann. A type system for bounded space and func-
tional in-place update—extended abstract. Nordic Journal of Com-
puting, 7(4):258-289, Autumn 2000. An earlier version appeared in
ESOP2000.

29

[20] Paul Menage. RCANE: A Resource Controlled Framework for Active
Network Services. In Proceedings of the First International Working
Conference on Active Networks (IWAN ’99), volume 1653, pages 25—
36. Springer-Verlag, 1999.

[21] J. Gregory Morrisett, Karl Crary, Neal Glew, and David Walker.
Stack-based typed assembly language. Journal of Functional Program-
ming, January 2002.

[22] R. Pandey and B. Hashii. Providing fine-grained access control for
mobile programs through binary editing. Technical Report TR-98-08,
UC Davis, 1998.

[23] Fred B. Schneider. Enforceable security policies. Information and
System Security, 3(1):30-50, 2000.

[24] Beverly Schwartz. Introduction to spanner: Assembly language for the
smart packets project. Technical report, BBN-TM-1220, September
1999. http://www.ir.bbn.com/ “bschwart/publications/TM1220.
pdf.

[25] Beverly Schwartz, Alden W. Jackson, W. Timothy Strayer, Wenyi
Zhou, R. Dennis Rockwell, and Craig Partbridge. Smart packets: ap-

plying active networks to network management. ACM Transactions
on Computer Systems, 18(1):67-88, 2000.

[26] J. Stamos and D. Gifford. Remote evaluation. ACM Transactions on
Programming Languages and Systems, 12(4), October 1990.

[27] Sun Microsystems. Java Authentication and Authorization
Service (JAAS) Reference Guide, 2001. Online specification
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/
JAASRefGuide.html.

[28] Tommy Thorn. Programming languages for mobile code. ACM Com-
puting Surveys, 29(3):213-239, 1997.

[29] Dennis Volpano and Geoffrey Smith. Language issues in mobile pro-
gram security. Lecture Notes in Computer Science, 1419:25-43, 1998.

30

[30] I. Wakeman, A. Jeffrey, T. Owen, and D. Pepper. Safetynet: A
language-based approach to programmable networks. Computer Net-
works and ISDN Systems, 36(1):101-114, 2001.

[31] D. Wetherall, J. Guttag, and D. Tennenhouse. Ants: A toolkit for
building and dynamically deploying network protocols, 1998.

[32] WWW Consortium (W3C). Web Services Activity, 2003. Online spec-
ification documents http://www.w3.org/2002/ws/.

31

