
UNIVERSITY OF SUSSEX

COMPUTER SCIENCE

Towards a Behavioural Theory of

Access and Mobility Control in

Distributed Systems

M. Hennessy

M. Merro

J. Rathke

Report 01/2002 October 2002

Computer Science
School of Cognitive and Computing Sciences

University of Sussex
Brighton BN1 9QH

ISSN 1350–3170

Towards a Behavioural Theory of Access and

Mobility Control in Distributed Systems

M. Hennessy, M. Merro and J. Rathke

Abstract. We define a typed bisimulation equivalence for the language Dpi, a dis-
tributed version of the π-calculus in which processes may migrate between dynamically
created locations. It takes into account resource access policies, which can be imple-
mented in Dpi using a novel form of dynamic capability types. The equivalence, based
on typed actions between configurations, is justified by showing that it is fully-abstract
with respect to a natural distributed version of a contextual equivalence.

In the second part of the paper we study the effect of controlling the migration of
processes. This affects the ability to perform observations at specific locations, as the
observer may be denied access. We show how the typed actions can be modified to
take this into account, and generalise the full-abstraction result to this more delicate
scenario.

1 Introduction

The behaviour of processes in a distributed system depends on the re-
sources they have been allocated. Moreover these resources, or a process’s
knowledge of these resources, may vary over time. Therefore an adequate
behavioural theory of distributed systems must be based not only on the
inherent abilities of processes to interact with other processes, but must
also take into account the (dynamic) resource environment in which they
are operating. In our approach judgements will take the form

Γ |= M ≈ N,

where N and M are systems and Γ represents their computing environ-
ment. Intuitively this means that M and N offer the same behaviour,
relative to the environment Γ. The challenge addressed by this paper is
to give an adequate formalisation of this idea, where

• the systems M and N are collections of location aware processes, which
may be allocated varying access rights to resources at different loca-
tions and may migrate between these locations to exercise their rights

COGS, University of Sussex. Research Funded by EPSRC grant GR/M71169, the
Royal Society and the Mikado and Myths projects. The first author also wishes to
acknowledge the hospitality of the University of Wellington.

2 M. Hennessy, M. Merro and J. Rathke

• the computing environment Γ may vary dynamically, reflecting both
the overall resources available to M and N and the evolving knowledge
that users may accumulate of these resources.

This is developed in terms of the language Dpi, [9], a version of the π-
calculus, [14], in which processes may migrate between locations, which in
turn can be dynamically created. As explained in [9] resource access poli-
cies in Dpi may be implemented using a capability based type system; thus
in this setting it is sufficient to develop typed behavioural equivalences in
order to capture the effect of resource access policies on process behaviour.
But in this paper we extend the typing system of [9] by allowing types to
be created dynamically and to depend on received data.

In Dpi a typical system can take the form

lJP K | (new e : T) (kJQK | lJRK)

Here there are two threads P and R running at l and one, Q, running at
k. The threads Q and R share the private name e at type T. The threads
P, Q, R are similar to processes in the π-calculus in that they can receive
and send values on local channels; the types of these channels indicate the
kind of values which may be transmitted. For example in

lJ(newloc k : K) with C in (xpt1!〈k〉 | xpt2!〈k〉 | R)K,

in parallel with the execution of R at l, a new location k is created at
type K, the code C is installed there, and the name of the new location is
exported via the channels xpti.

Location types are similar to record types, their form being

loc[a1 : An, . . . an : An]

This indicates that the channels or resources ai at types Ai are available
at the location; each pair ai : Ai can be viewed as a capability at that
location. So for example K above could be

loc[ping : rw〈A〉, finger : rw〈B〉]

indicating that the services ping and finger are supported (via both read
and write communication) at k. However the types at which k becomes
known depends on the types of the exporting channels. Suppose for ex-
ample these had the types

xpt1 : w〈loc[ping : w〈A〉]〉

xpt2 : w〈loc[finger : w〈B〉]〉

Then processes receiving the name k from the source xpt1 would only be
able to write to the ping service at k, while the source xpt2 only allows

. . . Behavioural Theory of Access and Mobility Control. . . 3

similar access to the finger service. In effect different capabilities at k
are obtained via different sources. It is in this way, by selectively dis-
tributing names at particular supertypes, that resource access policies are
implemented in Dpi.

The language Dpi and its reduction semantics is summarised in Sec-
tion 2, which relies heavily on the corresponding section of [9]. The typing
system is discussed in Section 3. This contains two major extensions to the
original typing system of [9]. The first introduces a new kind of type, rc〈A〉
for registered channel names, which allows channels names to be used con-
sistently at multiple locations. The second allows types to be constructed
dynamically and be dependent on received data. The first main result of
the paper is a Subject Reduction theorem for this new typing system.

The second novelty of the paper, in Section 4.1, is a definition of typed

action

Γ ✄ M µ−→ Γ′
✄ N (1)

indicating that in an environment constrained by the type environment Γ
the system M may perform the action µ and be transformed into N ; the
environment Γ may also be changed by this interaction, to Γ′, for example
by the extrusion of new resources, or new capabilities on already known
resources. Here the actions µ are either internal moves, τ , or located input
or output actions, of the form k.a?v or k.a!v. Informally, the action in
(1) is possible if M is capable of performing the action µ in the standard
manner and the the environment Γ allows it to happen.

With these typed actions we can define a standard notion of (weak)
bisimulation between configurations, consistent pairs of the form Γ ✄ M ;
the formal definition is given in Section 4 and we use Γ ✄ M ≈bis N to
denote bisimilarity, that is, there is a bisimulation containing the two
configurations Γ ✄ M and Γ ✄ N .

The second main result of the paper is that this notion of typed bisim-

ilarity captures precisely an independently defined contextual equivalence.
In Section 4 we define Γ |= M ∼=

rbc N to be the largest parameterised
equivalence which is

• closed with respect to reductions, that is preserves in some sense the
reduction semantics

• preserved, in a suitable sense, with respect to Γ-system contexts

• preserves simple observations, which we call distributed barbs.

We prove the theorem:

In Dpi Γ |= M ≈bis N if and only if Γ |= M ∼=
rbc N (2)

4 M. Hennessy, M. Merro and J. Rathke

The final topic of the paper is the effect of migration on the behaviour
of systems. In Dpi the migration of processes is unconstrained. The
relevant reduction rule is

kJgoto l.P K → lJP K.

Any agent is allowed to migrate from a site k to the site l. Indeed this
rule is essential in establishing the above theorem. For example consider
the systems M1, M2 given by

(new k : K) lJc!〈k〉K | kJa!〈〉 stopK and (new k : K) lJc!〈k〉K | kJstopK

(3)
where K is the declaration type loc[a : rw〈〉], and Γ an environment which
has read capability at type K on c at l. These are not bisimilar in the
environment Γ, as after exporting the new name k on c at l, that is per-
forming the bound output action (k)l.c!k, only the former may have the
typed action

(Γ′
✄ kJa!〈〉 stopK) k.a!〈〉−−−→ (Γ′

✄ kJstopK)

where Γ′ represents the environment Γ updated with the new knowledge
of a at k. Moreover they can be distinguished contextually because of the
Γ-context

lJc?(x) .gotox.a?(y) goto l.ω!〈〉K | −

An environment which has read or write capability on a channel at k can
automatically send an agent there to perform a test and report back to
base. Note that this test works only because systems allowed by Γ have
the automatic ability to migrate to the site k. If on the other hand mi-
gration were constrained, as one would expect in more realistic scenarios,
then these tests would no longer be necessarily valid and these terms may
become contextually equivalent.

There are many mechanisms by which migration could be controlled
in languages such as Dpi. In this paper we introduce one such mecha-
nism, based on a simple extension of the typing system, which allows us
to examine the effect of such control on behavioural equivalences. We
introduce a new location capability

moveS

Then migration from l to k is only allowed with respect to an environment
Γ, if in Γ the location k is known with a capability moveS for some set S
containing l; we say l has migration rights to k. This idea is easily imple-
mented by using a slight extension to our typing system, and is sufficient
to demonstrate the subtleties involved when migration is controlled. The

. . . Behavioural Theory of Access and Mobility Control. . . 5

details are given in Section 5, where we also demonstrate the power of this
mechanism.

The remainder of the paper is devoted to extending the result (2)
above to this language. The power of contexts, which can use this capa-
bility moveS to control access to sites, turns out to be very complex. To
simplify matters we address the case where the only form of this capability
allowed is move∗, with ∗ being a wild card; thus if the environment has
this capability for a location k then all locations have migration rights to
k.

The typed actions (1) above are readily adapted to this scenario. Here
we allow, for example, the action

Γ ✄ M k.a!v−−−→m Γ′
✄ N (4)

if, in addition to the requirements for (1) we require that the environment
has the capability move∗ for k; intuitively for the environment to see the
action (4) it must be able to move to the site k.

These actions lead to a new bisimulation equivalence, denoted ≈m
bis

,
and we can prove

Γ |= M ≈m
bis

N if and only if Γ |= M ∼=
m
rbc

N

where ∼=
m
rbc

is a suitable modification of the contextual equivalence ∼=
rbc.

For the latter we only require the equivalence to be preserved by processes
at locations to which the environment has migration rights. Thus referring
to (3) above we will have

Γ |= M1 ∼=
m

rbc M2

if Γ does not have migration rights to k. Note that neither of these systems
can give rise to the modified typed actions, as given in (4) above.

However it is easy to envisage a natural version of contextual equiva-
lence which does distinguish between M1 and M2 of (3) above. Although
the environment may not have migration rights to k, it may, apriori, have
a process running there. If this were allowed, and the environment had the
appropriate capability on the channel a at k then the systems M1 and M2

could be distinguished. The question then arises of finding a bisimulation
based characterisation for this modified contextual equivalence.

We address a parameterised version of this problem. Let T be the set
of locations at which apriori the environment can place testing processes
and let ∼=

T
rbc be the resulting contextual equivalence. Unfortunately this

is not characterised by the natural modification to the equivalence ≈m
bis

,
which we denote by ≈T

bis. This is defined using actions such as

Γ ✄ M k.a!v−−−→T Γ′
✄ N (5)

6 M. Hennessy, M. Merro and J. Rathke

which are only allowed if either the environment has migration rights to
k, as before, or k is in T . A counterexample is given in Section 5.2.

It turns out that we must be careful about the location at which in-
formation is learned. Information about k learned at l can not be used
without the capability to move to k. However this information must be re-
tained because that move capability may subsequently be obtained. This
leads to a more complicated form of environment Γ, which records

• locations at which testing processes may be placed, T

• globally available information on capabilities at locations

• similar locally available information.

The details are given in Section 5.2, which also contains a generalisation
of the typed actions of (1) above to these more complicated environments.
The final result of the paper is that the new bisimulation equivalence based
on these actions again captures the contextual equivalence:

In Dpi with controlled migration, Γ |= M ≈T
bis N if and only if

Γ |= M ∼=
T
rbc

N .

2 The language Dpi

Syntax: The syntax, given in Figure 1, is a slight extension of that of
Dpi from [9]. This presupposes a general set of names Names ranged over
by n, m, and a set of variables Vars ranged over by x, y; informally we will
often use a, b, c, . . . for names of channels and l, k, . . . for locations or sites.
Identifiers, ranged over by u, v, w, may either be variables or names. The
syntax also uses a set of types, which are defined in Figure 4; discussion
of these is postponed until the next section.

From Figure 1 we can see that values take the form of tuples (α1, . . . , αn),
for n > 0, where each αi intuitively refers to a channel. Local channels
are represented by a simple identifier. Alternatively α may take the form
(u1, . . . , un)@u, representing a sequence of channels (u1, . . . , un) each lo-
cated at u.

Compound values are deconstructed using patterns, ranged over by the
meta-variables X, Y,; these are values comprised entirely of distinct
variables. For example the pattern (x, (y1, y2)@z) will deconstruct a value
into two components, requiring the second one to have the form (n1, n2)@k.

The syntax is built in a two-level structure, the lower level being pro-
cesses, agents or threads. The syntax here is an extension of the π-calculus,
[9], with primitives for migration between locations. As in the π-calculus,
we have input and output of values on channels, parallelism and the ter-
minated process stop. We also allow matching and mismatching, with the

. . . Behavioural Theory of Access and Mobility Control. . . 7

M, N ::= Systems

lJP K Located Process
M | N Composition
(new n : T) M Name Scoping
0 Termination

P, Q ::= Processes

u!〈V 〉P Output
u?(X : T)P Input
goto v.W Migration
if u = v then P else Q Matching
(newc n : A) P Channel Name creation
(newreg n : G) P Registered Name creation
(newloc k : K) with C in P Location Name creation
P | Q Composition
∗ P Replication
stop Termination

U, V, W ::= Values

(α1, . . . , αn), n > 0 tuples

α, α′ ::= Generalised Identifiers

u Identifiers
(u1, . . . , un)@u, n ≥ 0 Located Identifiers

Figure 1. Syntax of Dpi

construct if u = v then P else Q, a form of recursion, ∗P , and three forms
of name creation:

• (newc a : A) P , the creation of a new local channel of type A called a.

• (newreg n : rc〈A〉) P , the creation of a new registered name for located
channels of type A. These may be used in the declaration types of
locations and treated uniformly across them.

• (newloc k : K) with P , the creation of a new location k of type K, with
the code P running there. Our typing system will ensure that K is a
well-formed location type; for example this means that it may only use
the registered channel names.

Systems are constructed from located threads, of the form lJP K, repre-

8 M. Hennessy, M. Merro and J. Rathke

senting the thread P running at location l. These may be combined with
the parallel operator | and names may be shared between threads using
the construct (new e : T) where T is one of A, rc〈〉A or K.

Processes, systems and indeed types may contain occurrences of vari-
ables, and these may be bound in the construct u?(X : T) P ; if x appears
in the pattern X then all occurrences of x in T and P are bound. This
leads to the notions of free and bound variables, capture-avoiding substi-
tution of identifiers for variables, P{|v/x|}, and α-equivalence. These are all
standard apart from substitutions into types, which is not quite syntactic;
the details of substitution into types may be found in Definition 3.3 . We
say that a system or process term is closed if it contains no free occurrences
of variables.

The language also contains binding constructs for names, (newc n : A) P ,
(newreg n : G) P and (newloc k : K) with C in P in processes. So we also
have the notions of free and bound names in terms, and as usual the def-
inition of α-equivalence identifies terms which only differ by their use of
bound names.

Reduction Semantics: This is given in terms of a binary relation be-
tween closed systems:

M → N

and is a mild generalisation of that given in [9] for Dpi. It is a con-

textual relation between systems; that is, it is preserved by the static
operators | and (new e : T) . It is defined to be the least such relation
which satisfies the axioms and rules in Figure 2. The rule (r-str) merely
says that the we are working up to a structural equivalence, ≡, which
abstracts from inessential details in the terms representing systems. For-
mally structural equivalence is defined to be the least contextual relation
between (closed) systems which satisfies the axioms in Figure 3. One of
the main forms reduction involves local communication and is governed
by the axiom (r-comm):

kJc!〈V 〉QK | kJc?(X : T) P K → kJQK | kJP{|V/X|}K

This uses an obvious generalisation of substitution of values into patterns
P{|V/X|}; of course this may not be well-defined if the structure of the
pattern X does not match that of the value V . The other main form of
reduction is migration, governed by the rule (r-move):

kJgoto l.P K → lJP K

In addition to these we have the unwinding of recursive definitions (r-unwind)
and the testing of identifiers for identity, (r-eq) and (r-neq).

. . . Behavioural Theory of Access and Mobility Control. . . 9

(r-comm)

kJc!〈V 〉QK | kJc?(X : T) P K → kJQK | kJP{|V/X|}K

(r-c−create)

kJ(newc n : A) P K → (new n : A@k) kJP K

(r-move)

kJgoto l.P K → lJP K

(r-r−create)

kJ(newreg n : G) P K → (new n : G) kJP K

(r-unwind)

kJ∗ P K → kJP | ∗ P K

(r-l−create)

kJ(newloc l : K) with C in P K →
(new l : K) (lJCK | kJP K)

(r-split)

kJP | QK → kJP K | kJQK

(r-eq)

kJif u = u then P else QK → kJP K

(r-neq)

kJif u = v then P else QK → kJQK

u 6= v

(r-str)

M ≡ N, M → M ′, M ′ ≡ N ′

N → N ′

Figure 2. Reduction semantics for Dpi

(s-extr) (new n : T) (M | N) = M | (new n : T) N
if n(n) 6∈ fn(M)

(s-com) M | N = N | M
(s-assoc) (M | N) | O = M | (N | O)
(s-zero) M | 0 = M
(s-flip) (new n : T) (new n′ : T′) N = (new n′ : T′) (new n : T) N

if n(n) 6∈ T′, n(n′) 6∈ T

Figure 3. Structural equivalence for Dpi

The remaining rules are housekeeping in nature. The rule (r-split)
allows the structural reorganisation of threads so that the main reduction
rules can be applied, while the three rules associated with name binding
(r-c − create),(r-r − l − create) and (r-r − create) allow names de-
clared locally in threads to appear globally at the system level, with their
types appropriately modified.

10 M. Hennessy, M. Merro and J. Rathke

Base Types: B ::= int | bool | unit | ⊤ | . . .
Local Channel types: A ::= r〈T〉 | w〈T〉 | rw〈T, U〉

provided U <: T
Capability Types: R ::= u : A
Location Types: K ::= loc[R1, . . . ,Rn], n ≥ 0
Registered Name Types: G ::= rc〈A〉

Value Types: C ::= B | A | G | (Ã)@u | (Ã)@K
Transmission Types: T ::= (C1, . . . ,Cn), n ≥ 0

Figure 4. Types

3 Typing

In this section we outline the types use to control resources and the ac-
companying typing system. The starting point is similar to the typing
system of [9], but there are three major differences:

• We use a new category of types, registered name types, to explicitly
manage the resource names which can be shared between different
locations.

• The types expressions are allowed to contain variables, thereby giv-
ing rise to what we call dynamic types; the constraints they place on
agent behaviour is determined dynamically by instantiation of these
variables.

• The notion of type environment is changed; they do not explicitly
contain associations between names and location types.

3.1 The Types

The collection of types is an extension of those used in [9], to which the
reader is referred for more background and motivation. In particular we
will inherit a subtyping relation T <: U with the property of partial meets;
that is if two types T1, T2 have a lower bound, which we denote by T ↓ U,
then they have a greatest lower bound T1 ⊓ T2. Intuitively the existence
of T⊓U means that T and U are consistent, in that they allow compatible
capabilities on values at these types.

The basic set of types may be classified as follows:

Base types: includes predefined types such as int, bool, Note it
also includes the type ⊤, at which names can only be used for com-
parison with other names.

. . . Behavioural Theory of Access and Mobility Control. . . 11

Local Channel types: ranged over by A and may be restricted to read-
only capability r〈T〉 or write-only capability w〈T〉.

Location types: ranged over by L, K and may take the form loc[u1 :
A1, . . . , un : An]. A process which obtains a location name at this type
may use the resources ui there, with the capabilities ordained by the
local channel type Ai. As in [9] we require ui to be distinct, although
this side condition is omitted from Figure 4. We abbreviate loc[] to
loc.

Registered name types: ranged over by G, and may take the form
rc〈A〉, where A is a local channel type. One may think of these as
types of names which have been registered as available for use in the
declaration of new locations. The intention is that distinct locations
can maintain a uniform naming scheme for common services.

The formation rules for all types are given in Figure 4. The trans-

mission types, ranged over by T, are the types at which values may be
sent or received over channels. They consist of tuples the components of
which may be base values, local channels, registered names, or structured

values of the composite type Ã@K, or finally non-local channels of type
A@k. The usefulness of the composite types A@K has been explained at
length in [9] to which the reader is referred to for more details; briefly
these may be viewed as dependent types, with values of the form c@u;
here c is the name of a channel of type A located at k, a location name of
type K. Note that a location type K can also be viewed as a transmission
type, by identifying it with (̃)@K. The new composite type A@u allows a
host to specify exactly the location of a channel name.

Formally the types must be defined simultaneously with the subtype
relation <: because of the side-condition in the rules for local channels.
The rules defining subtype relation are given in Figure 5, and again these
are a minor modification from the subtyping rules in [9], where motivation
may be found, which in turn are a generalisation of the subtyping rules
originally introduced for the π-calculus in [15]. In the rule (sub-loc) we
use the obvious notation L(u) to denote the channel type associated in the
location type L with the identifier u. It is easy to check that the defined
relation <: is a pre-order (even a partial order) but it also has another
important property.

Definition 3.1 (Partial meets). A preorder 〈A, <〉 is said to have
partial meets if every pair of elements a1, a2 in A which has a lower bound
also has a greatest lower bound. Formally if there is an element b such
that b < a1, b < a2 then there exists an element a1 ⊓ a2 satisfying

12 M. Hennessy, M. Merro and J. Rathke

(sub-ctop)

T <: ⊤

(sub-tuple)

base <: base

(sub-chan)

T1 <: T2, U1 <: U2

T2 <: U1

w〈T2〉 <: w〈T1〉
r〈U1〉 <: r〈U2〉
rw〈U1, T2〉 <: rw〈U2, T1〉

T <: U

rw〈U, T 〉 <: w〈T 〉
rw〈U, T 〉 <: r〈U〉

(sub-loc)

L(ui) <: Ai, 0 ≤ i ≤ k

L <: loc[u1 : A1, . . . , uk : Ak]

(sub-cap)

A <: A′

u : A <: u : A′

(sub-hom)

A1 <: A2, K1 <: K2

A1@K1 <: A2@K2

A1@u <: A2@u
rc〈A1〉 <: rc〈A2〉

(sub-tuple)

Ci <: C′
i

(C̃) <: (C̃′)

Figure 5. Subtyping

• a1 ⊓ a2 < a1 and a1 ⊓ a2 < a2

• for every b such that b < a1 and b < a2, we have b < a1 ⊓ a2.

✷

Proposition 3.2. The set of types Types, ordered by <: has partial
meets.

Proof: See [9]. ✷

Intuitively T1⊓T2 exists if the capabilities described by the individual types
Ti are consistent, and it is obtained by “unioning” their capabilities. This
operation will be used extensively in our type inference system. It is also
used in the definition of syntactic substitution of identifiers for variables
into types, referred to in the previous section.

Definition 3.3 (Substitution into types). Let T{|v/x|} be defined by

. . . Behavioural Theory of Access and Mobility Control. . . 13

induction by letting

loc[u1 : A1, . . . , un : An]{|v/x|} =

loc[u1{|v/x|} : (A1{|v/x|})] ⊓ . . . ⊓ loc[un{|v/x|} : (An{|v/x|})]

and extending the definition homomorphically to all other types. So for
example

• rw〈A, B〉{|v/x|} = rw〈A{|v/x|}, B{|v/x|}〉

• and r〈A〉{|v/x|} = r〈A{|v/x|}〉 ✷

This ensures that types are well-defined under substitutions as it is easy
to check that T <: U implies T{|v/x|} <: U{|v/x|}.

We end this subsection with some examples which demonstrate the
usefulness of dynamic types. We will often omit individual type annota-
tions, particularly when they play no role in the discussion, and will use
standard abbreviations, such as omitting trailing occurrences of stop.

Example 3.4. [Remote channel types] Consider the location type

Ls = loc[quest : Tq, ping : Tp, kill : Tk]

at which a typical service site s might be declared. Such a service would
respond to calls on the three ports, quest, ping, and kill. The first might
be a method which provides a specific function, such as testing integers
for primality, the second might allow the state of the service to be tested,
while the third would give a client the ability to close the site. The agent
responsible for creating s has the possibility of publicising its existence
either at the declaration type Ls or at one of its subtypes, such as:

loc[quest : Tq, ping : Tp]

loc[quest : Tq]

loc

This allows the agent to provide selective access to the services available
at the server.

A typical server would take the form

sJ internals | ∗quest?(X : Uq) . . .

∗ ping?(X : Up) . . .

∗ kill?(X : Uk) . . . K

where internals represents some internal code necessary to set-up and
control the services. Let us look at one example of servicing requests.
Suppose the service checks whether or not a supplied integer is a prime
number. So at the channel quest the service receives an integer, and a

14 M. Hennessy, M. Merro and J. Rathke

return address; it checks if the integer is a prime and returns the answer
at the proffered address:

sJ. . . | ∗quest?(x, y@z) goto z.y!〈isprime(x)〉

∗ ping?(X : Up) . . .

∗ kill?(X : Uk) . . . K

Here the integer is bound to x, while the address consists of two parts, a
channel, bound to y, at some unknown site, bound to z.

A typical client, residing at c, takes the form:

cJ(newc r : rw〈bool〉) goto s.quest!〈v, r@c〉 stop | r?(z) . . .K

Here a new return channel r is generated and a process is sent to the service
s with the integer to be tested v, and the return address r@c. Meanwhile
back at the client the result is awaited on the local channel r.

The type of the service at the port quest, denoted Tp above, takes the
form r〈Uq〉, where Uq is a tuple type. The first component is int while
the second is a type for a remote channel at some unknown location; the
fact that the location (of the client) is unknown, or arbitrary, allows the
service to be used by any client. The type Uq is given by

〈 int, w〈bool〉@loc 〉

since only the capability to write a boolean is required of the remote
channel. ✷

Example 3.5. [Personalised service] Here we consider a variation of the
servers in Example 3.4 which can be personalised so as to respond only to
a specific site. Consider the following system, which receives requests for
new services:

centerJ setup?(x@z) (newloc s : Lz
s) with ∗quest?(x, y) . . . in

goto z.x!〈s〉K

Here a request is received at setup for a new service, which is established
at a new site s, whose name is returned to the address bound to x@z. The
interesting point here is that the type at which the service is established
is given by

Lz
s = loc[quest : rw〈int, w〈bool〉@z〉, ping : . . .]

Here the dynamic type w〈bool〉@z, will be instantiated at run-time, thus
determining the site to which all replies will be sent.

So an example client such as

meJ(newc r : rw〈bool〉) goto center.setup!〈r@me〉 . . . K

. . . Behavioural Theory of Access and Mobility Control. . . 15

receives personalised treatment; the new site will always reply to a channel
at the site me. ✷

Example 3.6. [Shared interfaces] Here we demonstrate the usefulness of
new type category of registered names in setting up shared interfaces
among different sites. Consider a system of the form

(newreg put : rc〈Tp〉, get : rc〈Tg〉) (Bserver | Client1 | Client2 | . . .)

consisting of a bank account server Bserver and a number of clients. The
system is within the scope of two registered names, put and get, registered
at specific types Tp and Tg on which we will not elaborate. This pair
of typed names may serve, informally, as the interface for bank accounts
created by the server for the various clients. An example server would
take the form:

Bserver ⇐ sJ∗request?(x : int, y@z)

(newloc b : Lb) with . . . put, get . . . in

goto z.y!〈b〉 K

Here a request is received, consisting of an initial amount x and a return
address y@z. A new bank account is established at some new site b, whose
name is forwarded to the return address. For simplicity we ignore the
actual code for running the bank account but it uses put and get as access
ports. The declaration type of the new account uses the registered names:

Lb = loc[put : Tp, get : Tg]

A typical client will look like:

Client ⇐ meJ(newc r : rw〈Lb〉) goto s.request!〈r@me〉 | r?(x) . . .K

It generates an appropriate reply channel, sends it to the server and then
awaits the name of the new account.

All new accounts received by clients will now have the same interface,
consisting of the two methods put, get at the types Tp and Tg. More
importantly the code developed by each client is independent of the ac-
tual account at which it will be run, so long as it respects the published
interface. ✷

Example 3.7. [Dynamic interfaces] In the previous example the server
generates the new bank accounts and informs the client. An alternative
scheme would be for the clients to be responsible for setting up the ac-

16 M. Hennessy, M. Merro and J. Rathke

counts and the server would merely administer the shared interface:

Server ⇐ (newreg put : rc〈Tp〉, get : rc〈Tg〉)

sJ∗request?(y@z)

goto z.y!〈put, get〉K

Here, on receipt of a request the server simply forwards the two registered
names put and get. A typical client would look like:

Client ⇐ meJ(newc r : Tr) goto s.request!〈r@me〉 |

r?(y, z) (newloc b : Ly,z) with . . . code . . . in . . .K

Here the client, in response to a request, receives two registered names
which are bound to y and z and then a new bank account is set up with
a declaration type

Ly,z = loc[y : Tg, z : Tp]

Note that this again is a dynamic type, which will be instantiated at run-
time. Also the type of the reply channel used by clients, Tr is for registered

names, rather than channels. Here it may be 〈put : rc〈Tp〉, get : rc〈Tg〉〉.
The net effect is that all bank accounts established by clients who use

the server will share the same interface. ✷

3.2 Type environments

A type judgement will take the form Γ ⊢ M where Γ is a type environment,
a list of assumptions about the types to be associated with the identifiers
in the system M .

These can take the form

• u : base, meaning x is a variable of some base type base

• u : loc, meaning that u is a location.

• u : rc〈A〉, meaning u represents a registered name of type A

• u : A@w, meaning the channel u located at w has type A

The first three types used will be called global while the last will be called
located, the channel type A located at w.

In general, an arbitrary list of such assumptions may not be consistent.
For example we should not be able to introduce an assumption u : loc if u
is already designated a channel, or introduce u : A@w unless w is known
to be a location. In order to describe the set of valid environments we
introduce judgements of the form

Γ ⊢ env

. . . Behavioural Theory of Access and Mobility Control. . . 17

(e-empty)

⊢ env

(e-base)

Γ ⊢ env

Γ, u : base ⊢ env

u 6∈ Γ

(e-new−lchan)

Γ ⊢ env

Γ ⊢ w : loc

Γ, u : A@w ⊢ env

u 6∈ Γ
u 6∈ A

(e-ref−lchan)

Γ ⊢ env

Γ ⊢ w : loc

Γ ⊢ u : rc〈B〉, B <: A

Γ, u : A@w ⊢ env

u@w 6∈ dom(Γ)
u 6∈ A

(e-rchan)

Γ ⊢ env

Γ, u : rc〈A〉 ⊢ env

u 6∈ Γ

(e-loc)

Γ ⊢ env

Γ, u : loc ⊢ env

u 6∈ Γ

Figure 6. Well-formed Environments

(t-name)

Γ, u : T, Γ′ ⊢ env

Γ, u : T, Γ′ ⊢ u : T′ T <: T′

(t-tuple)

Γ ⊢ ui : Ti

Γ ⊢ (ũ) : (T̃)
(t-located−channel)

Γ ⊢ ui : Ai@v
Γ ⊢ v : K

Γ ⊢ (ũ)@v : (Ã)@K

(t-loc)

Γ ⊢ v : loc

Γ ⊢ ui : Ai@v

Γ ⊢ v : loc[u1 : A1, . . . , un : An]

(t-located−channel)

Γ ⊢ ui : Ai@k

Γ ⊢ (ũ) : (Ã)@k

(t-dec−loc)

Γ ⊢ v : loc

Γ ⊢ ui : Ai@v
Γ ⊢ ui : rc〈Di〉, Di <: Ai

Γ ⊢dec v : loc[u1 : A1, . . . , un : An]

Figure 7. Type rules for values

An environment may contain several entries for a name u but the judge-
ments ensure that each instance is either as a registered name or located
at a unique location. The inference rules are given in Figure 6 and are
straightforward. A valid environment Γ can always be extended by an
entry u : base, u : loc or u : rc〈A〉 provided the identifier u is new to Γ.
Also, using (e-new − lchan), it can be extended by a located channel
association u : A@w provided u is new and w is known to be a location;
this corresponds to adding dynamically a completely new channel name at
the location w. On the other hand the rule (e-ref− lchan) allows loca-
tions to share channel names. Here the side-condition (see the definition
of the domain of an environment below) ensures that u can not already

18 M. Hennessy, M. Merro and J. Rathke

exist at the location w, but it may exist elsewhere; that is Γ may contain
an association u : A′

@w′ for some w′ different than w. But to introduce
such a name, to be shared among various locations, it must already be
declared as a registered name, and it can only be introduced at w with a
subtype of its declared type. This is the import of the premise u : rc〈B〉
and the condition B <: A. So in general local channel names may exist
at different locations but all their local types are consistent, in that they
have the declared type B as a lower bound.

Valid type environments associate types to identifiers but we are some-
what lax about the use of variables in these types. In principle such a type
may contain variables which are not known to the environment. It will
turn out that we will not be able to type systems relative to such environ-
ments.

Definition 3.8 (Environment domains). For any environment Γ we
define its domain dom(Γ) to be

{u | Γ ⊢ u : T for some global type T }∪

{u@w | Γ ⊢ u : A@w for some located type A }

✷

The association between identifiers and types may be generalised in
a natural manner to values. This is achieved by judgements of the form
Γ ⊢ V : T and the rules are given in Figure 7. The basic axiom is
(t-name), which uses the subtyping relation, and the other rules merely
extend the resulting associations structurally to other values and other
types. We defer the discussion of the judgement Γ ⊢dec v : K until later.

Proposition 3.9. Suppose Γ is a valid environment, that is Γ ⊢ env.
Then

(i) Γ ⊢ V : T1 and Γ ⊢ V : T2 implies Γ ⊢ V : T1 ⊓ T2

(ii) Γ ⊢ u : A@w and Γ ⊢ u : rc〈B〉 implies Γ ⊢ u : rc〈A ⊓ B〉

(iii) Γ ⊢ u : r〈T〉@w and Γ ⊢ u : w〈U〉@w implies U <: T

(iv) Γ ⊢ u : U and U <: T implies Γ ⊢ u : U.

Proof: Straightforward inductions on the inferences of the judgements.
✷

Valid type environments may also be compared by their ability to
associate types to identifiers:

Definition 3.10 (Environment extensions). For valid type environ-
ments let Γ1 <: Γ2 if for every identifier u, Γ2 ⊢ u : T2 implies Γ1 ⊢ u : T1

. . . Behavioural Theory of Access and Mobility Control. . . 19

for some T1 <: T2 ✷

Proposition 3.11. Let Envs be the set of all valid environments. Then
the preorder 〈Envs, <:〉 has partial meets.

Proof: First note that Envs ordered by <: is indeed a preorder but not
a partial order. For example if Γ1, Γ2 denote the environments

k : loc, l : loc and l : loc, k : loc

respectively, then Γ1 <: Γ2 and Γ2 <: Γ1 but they are different environ-
ments.

Suppose there is a valid environment ∆ such that ∆ <: Γi for i = 1, 2
we show how to construct a valid environment Γ1 ⊓ Γ2. The construction
is by induction on the size of Γ2. If it is empty then the result is obviously
Γ1 itself. Otherwise it is of the form Γ′

2, u : T and we may assume Γ1 ⊓Γ′
2

exists. Then Γ1 ⊓ Γ2 is constructed by extending Γ1 ⊓ Γ′
2; the precise

extension depends on u and T. If u 6∈ dom(Γ1 ⊓Γ′
2) then the construction

gives Γ1 ⊓ Γ′
2, u : T. So let us assume that u ∈ dom(Γ1 ⊓ Γ′

2).

• T is loc: The construction gives Γ1 ⊓ Γ′
2 itself.

• T is base: Similar.

• T is rc〈A〉: Here there are two cases:

– If u : rc〈B〉 appears in Γ1 ⊓ Γ′
2 then the result is obtained by re-

placing that entry with u : rc〈B ⊓ A〉.

– Otherwise we can assume that u : rc〈B〉 does not appear in Γ1 ⊓Γ′
2

for any B but we do have an entry u : B@w. Let ∆ be obtained by re-
moving this entry. Then the construction gives ∆, u : rc〈B ⊓ A〉, u :
B@w.

• T has the form A@w: Here again there are a number of cases:

– Suppose u : rc〈B〉 and u : A′
@w appear in Γ1 ⊓ Γ′

2. Then the con-
struction gives the result of replacing these with u : rc〈B ⊓ A〉, u :
(A ⊓ A′)@w respectively.

– Suppose u : rc〈B〉 appears in Γ1⊓Γ′
2 but u : A′

@w does not, for any
A′. Here the construction gives ∆, u : A′

@w where ∆ is the result
of replacing the entry u : B in Γ1 ⊓ Γ′

2 with u : rc〈B ⊓ A〉.

– Suppose there is no entry of the form u : rc〈B〉 but there is u : A′
@w.

Then the construction replaces that entry with u : A ⊓ A′.

– Finally suppose there is no entry u : rc〈B〉 but there is one of
the form u : A′

@w′ for some w′ different from w. Let ∆ be the

20 M. Hennessy, M. Merro and J. Rathke

result of removing that entry. Then the construction gives ∆, u :
rc〈A ⊓ A′〉, u : A@w, u : A@w′.

We leave the reader to check that this construction is correct; that is

• Γ1 ⊓ Γ2 ⊢ env

• Γ1 ⊓ Γ2 <: Γi for i = 1, 2

• If ∆ <: Γi for i = 1, 2 then ∆ <: Γ1 ⊓ Γ2. ✷

Our first use of this partial meet operation is to construct a type en-
vironment from a value V and a type T, relative to a location identifier
w; this will be denoted by 〈V : T〉@w. The definition is by induction on
the structure of V ; in general it only gives a list of type associations but
in certain cases it will also be a valid type environment.

• V is an identifier u and T is a local channel type A. Then 〈V : T〉@w
is the list of size two, w : loc, u : T@w. If T is a located channel type
A@k then 〈V : T〉@w is is k : loc, u : A@k.

• V is an identifier u and T is a location type loc[v1 : B1, . . . , vk : Bk].
Here 〈V : T〉@w is the list u : loc, v1 : B1@u, . . . , vk : Bk@u. Note w
plays no role in the construction of the list.

• V is the structured name (u1, . . . un)@v. Here T must have the form
(A1, . . . ,An)@K and again, the resulting list 〈V : T〉@w will be indepen-
dent of w. It is constructed in the natural manner; first we construct
the list associated with K, and then add on the associations for ui.
This gives 〈v : K〉@w, u1 : A1@v, . . . , un : An@v.

• V is the tuple (α1, . . . , αn). In this case we need T to be of the form
(C1, . . . ,Cn), in which case the resulting list 〈V : T〉@w is constructed
by induction: 〈α1 : T1〉@w ⊓ . . . ⊓ 〈αn : Tn〉@w.

We have seen that often the construction of 〈V : T〉@w is often independent
of the location w, for example in the case when T is a location type. In
such cases we will render this simply as 〈k : K〉.

3.3 Type Inference

We are now ready to describe the type inference system for ensuring that
systems are well-typed. There are two form of judgements, for systems
and threads. The type inference rules for the first,

Γ ⊢ M,

meaning that M is a well-typed system relative to Γ, are given in Figure 8.
The intention is that whenever such a judgement can be inferred it will
follow that Γ is a well-formed environment.

. . . Behavioural Theory of Access and Mobility Control. . . 21

(t-rnew)

Γ, n : rc〈A〉 ⊢ M

Γ ⊢ (new n : rc〈A〉) M

(t-cnew)

Γ, n : A@k ⊢ M

Γ ⊢ (new n : A@k) M

(t-lnew)

Γ ⊓ 〈k : K〉 ⊢ M
Γ ⊓ 〈k : K〉 ⊢dec k : K

Γ ⊢ (new k : K) M
(t-par)

Γ ⊢ M
Γ ⊢ N

Γ ⊢ M | N

(t-thread)

Γ ⊢k P : proc

Γ ⊢ k : loc

Γ ⊢ kJP K

Figure 8. Typing Systems

The main inference rule is (t-thread). In order to ensure that kJP K is
a well-typed system we must show that the thread is well-typed to run at
k. The typing of threads must be relative to a location because it may use
local channels; these channels must exist at k. There is also a subtlety in
the typing of name creation. First note that in these, and all subsequent
rules, we assume that all bound names in a conclusion do not appear free
in any assumptions. Thus in (t-lnew) when constructing Γ ⊓ 〈k : K〉
we know that k is actually new to Γ; so effectively the type associations
in 〈k : K〉 are simply appended to those in Γ. There is also an implicit
assumption that 〈k : K〉 is actually a well-formed environment. However
note that we have to check that K is a proper declaration type; that is
we need to ensure that it only contains registered resource names. This is
achieved by an additional judgement on values,

Γ ⊓ 〈k : K〉 ⊢dec k : K

See the rule (t-dec− loc) in Figure 7; this ensures that all channel names
installed at new locations have already been registered.

Finally the typing rules for the judgements on threads

Γ ⊢w P : proc

are given in Figure 9, many of which should be familiar from typing sys-
tems for the π-calculus. For example (t-in) says that to ensure the process
u?(X : T) P is well-typed relative to Γ to run at location w we must ensure
that

• u is a channel with read capability of the appropriate type at w, that
is Γ ⊢ u : r〈T〉@w

• the residual is well-typed in the environment Γ augmented by assuming
the variables in the pattern X have the types assigned to them by the

22 M. Hennessy, M. Merro and J. Rathke

(t-output)

Γ ⊢w P : proc

Γ ⊢ V : T@w
Γ ⊢ u : w〈T〉@w

Γ ⊢w u!〈V 〉P : proc

(t-in)

Γ ⊓ 〈X : T〉@w ⊢w P : proc

Γ ⊢ u : r〈T〉@w

Γ ⊢w u?(X : T) P : proc

(t-go)

Γ ⊢ u : loc

Γ ⊢u P : proc

Γ ⊢w gotou.P : proc

(t-stop)

Γ ⊢ env

Γ ⊢w stop : proc

(t-l−new)

Γ ⊓ 〈k : K〉 ⊢w P : proc

Γ ⊓ 〈k : K〉 ⊢k C : proc

Γ ⊓ 〈k : K〉 ⊢dec k : K

Γ ⊢w (newloc k : K) with C in P : proc

(t-c−new)

Γ, n : A@w ⊢w P : proc

Γ ⊢w (newc n : A) P : proc

(t-r−new)

Γ, n : G ⊢w P : proc

Γ ⊢w (newreg n : G) P : proc

(t-match)

Γ ⊢ u : T, v : U
Γ ⊢w Q : proc

Γ ⊓ 〈u : U〉@w ⊓ 〈v : T〉@w ⊢w P : proc

Γ ⊢w if u = v then P else Q : proc

(t-rep)

Γ ⊢w P : proc

Γ ⊢w ∗ P : proc

(t-par)

Γ ⊢w P : proc

Γ ⊢w Q : proc

Γ ⊢w P | Q : proc

Figure 9. Typing Threads

incoming type T, that is Γ ⊓ 〈X : T〉@w ⊢w P : proc.

The rules (t-output),(t-stop), (t-par) and (t-rep) are informed in the
same manner from similar rules for the π-calculus. The rule (t-go) is
a natural one for typing the process gotou.P and note that the require-
ments are actually independent of the current location w. The three rules
governing the generation of new names at the three kinds of types A, K
and G should be self-explanatory. Finally the rule (t-match) is moti-
vated at length in [9] where it is argued to be essential in capability based
type systems. Briefly when establishing that if u = v then P else Q is
well-typed with respect to Γ we need to ensure that both P and Q are
well-typed. However in the case of P we can take advantage of the fact
that the identifiers u and v are in fact the same. Consequently any typing

. . . Behavioural Theory of Access and Mobility Control. . . 23

information associated with them can be amalgamated. So we need only
establish that P is well-typed with respect to the augmented environment
Γ ⊓ 〈u : U〉@w ⊓ 〈v : T〉@w; here the type of u is augmented by that of v,
namely U, while that of v is augmented with T, the type of u. In capabil-
ity based typing systems this is important as it enables us to periodically
accumulate capabilities associated with particular identifiers.

3.4 Properties of the typing system

We are mainly interested in establishing Subjection reduction but this
requires a series of preliminary results which we first outline. We often
abbreviate abbreviate the judgement Γ ⊢w P : proc to Γ ⊢w P . First two
standard properties one would expect:

Proposition 3.12.

• (Weakening) Suppose Γ, Γ′ are two well-defined environments such
that Γ′ <: Γ. Then Γ ⊢ M implies Γ′ ⊢ M .

• (Strengthening) Suppose If Γ, u : T ⊢ M and u does not occur in the
free identifiers of M . Then Γ ⊢ M .

Proof: Standard. Note however that corresponding results must be first
established for the typing systems for values and processes. ✷

One standard property which does not hold is Interchange:

Γ1, u1 : T1, u2 : T2,⊢ M implies Γ1, u2 : T2, u1 : T1,⊢ M

because one can not arbitrarily switch the entries in a well-typed envi-
ronment. This property usually plays a central role in proofs of Subject
Reduction and here we have to find a replacement. In a preorder 〈A, <〉
with partial meets (as opposed to a partial order) the meet a ⊓ b of two
elements is not uniquely determined; there may be more than one ele-
ment which satisfies the definition. But all are related with respect to the
equivalence relation ≡ defined by

a ≡ b if a < b and b < a

Moreover in any preorder with partial meet we have the identities

a ⊓ b ≡ b ⊓ a (6)

a ⊓ (b ⊓ c) ≡ (a ⊓ b) ⊓ c (7)

Recall that Envs ordered by <: is such a structure. Moreover from Weak-
ening we know that whenever Γ1 ≡ Γ2

Γ1 ⊢ M if and only if Γ2 ⊢ M

24 M. Hennessy, M. Merro and J. Rathke

and similarly for processes and values. Thus we can rearrange valid en-
vironments using the identities (6), (7) above without changing their use
in the inference of typing judgements. These judgements will be used in
place of Interchange.

The main difficulty in establishing the Subject Reduction resides in
showing the the reduction rule (r-comm) preserves well-typing. This
amounts to showing that Γ ⊢k c!〈V 〉Q | c?(X) R implies Γ ⊢k Q | R{|V/X|}
and proving

Γ ⊢k R{|V/X|} (8)

is the non-trivial part. After some analysis of the premise we will have

Γ ⊓ 〈X : T〉@k ⊢k R and Γ ⊢ V : T@w (9)

and the Substitution result should be sufficient to infer (8) from (9).
However here the notation for the constructed environment 〈X : T〉@k

hides considerable complexity; the type T may be any of the allowed
transmission types, for local or non-local channels, for locations, or for
structured values. Accordingly to make the proofs more transparent we
will isolate the particular cases, and treat some of them individually.

Proposition 3.13 (Local channel substitutions). Suppose Γ ⊢ v :
A@w and Γ ⊢ w1 : loc. Then, if x does not appear in Γ

Values: Γ, x : A@w ⊢ U : T@w1 implies Γ ⊢ U{|v/x|} : T@w1

Processes: Γ, x : A@w ⊢w1
R implies Γ ⊢w1

: R{|v/x|}

Proof: Throughout the proof we let α′ denote α{|v/x|} for any appropriate
syntactic object α.

The result for values is easily established by induction on the inference
of the judgement Γ, x : A@w ⊢ U : T@w1. The base case is when the
axiom (t-name) is used, where the argument depends on whether U is
the variable x or not. All other cases follow straightforwardly by induction.
Note that because of the restrictions on the formation rules for well-typed
environments we know that x can not appear in the type A.

Similarly the result for processes is proved by induction on the inference
of Γ, x : A@w ⊢w1

R and an analysis of the last rule used. We examine
two typical cases.

• Suppose Γ, x : A@w ⊢w1
u?(X : T) R because

(i) Γ, x : A@w ⊢ u : r〈T〉@w1 and

(ii) (Γ, x : A@w) ⊓ 〈X : T〉@w ⊢w1
R

Applying the first result to (i) we obtain

. . . Behavioural Theory of Access and Mobility Control. . . 25

(i’) Γ ⊢ u′ : r〈T〉@w1.

In (ii), because Γ ⊢ w : loc, the environment may be written as (Γ⊓〈x :
A〉@w)⊓〈X : T〉@w which is equivalent to (Γ⊓〈X : T〉@w)⊓〈x : A〉@w.
Thus (ii) may be rewritten as

(ii’) (Γ ⊓ 〈X : T〉@w) ⊓ 〈x : A〉@w ⊢w1
R

Here we can apply induction to obtain

(ii”) (Γ ⊓ 〈X : T〉@w) ⊢w1
R′

Now the input rule (t-in) can be applied to (i’) and (ii”) to obtain the
required Γ ⊢w1

u′?(X : T) R′. Note that our conventions about bound
variables ensures that u′?(X : T) R′ is the same as (u?(X : T) R)′.

• Suppose Γ, x : A@w ⊢w1
if u1 = u2 then P else Q because

(i) Γ, x : A@w ⊢ u1 : T, u2 : U

(ii) Γ, x : A@w ⊢w1
Q and

(iii) (Γ, x : A@w) ⊓ 〈u1 : U〉@w1 ⊓ 〈u2 : T〉@w1 ⊢w1
P

Applying the first result to (i) and induction to (ii) we obtain

(i’) Γ ⊢ u′
1 : T, u′

2 : U

(ii’) Γ ⊢w1
Q′

The environment in (iii) can be rewritten to the equivalent form

Γ ⊓ 〈u1 : U〉@w1 ⊓ 〈u2 : T〉@w1 ⊓ 〈x : A〉@w (10)

The argument now depends on whether u1 or u2 (or both) coincide
with x. As an example consider the case when u1 is x and u2 is
different. Here w must be the same as w1 and U must be a local
channel type A′

@w such that A⊓A′ exists. Then the environment (10)
can be rewritten as

Γ ⊓ 〈u2 : T〉@w ⊓ 〈x : A ⊓ A′〉@w

Also because Γ ⊢ v : A@w we know Γ ⊓ 〈v : A′〉@w is well-defined and
therefore by Weakening we have

Γ ⊓ 〈v : A′〉@w ⊓ 〈u2 : T〉@w ⊓ 〈x : A ⊓ A′〉@w ⊢w1
P (11)

But Γ ⊓ 〈v : A′〉@w ⊢ v : (A ⊓ A′)@w and so we my apply induction to
(11) to obtain

(iii’) Γ ⊓ 〈v : A′〉@w ⊓ 〈u2 : T〉@w ⊢w1
P ′

Now (t-match) can be applied to (i’),(ii’) and (iii’) to obtain Γ ⊢w1

if u′
1 = u′

2 then P ′ else Q′.

26 M. Hennessy, M. Merro and J. Rathke

✷

Unfortunately the substitution of locations requires a more compli-
cated formulation. In this case our premise is that Γ ⊢ v : K, for some
location type K, the inductive hypothesis is

Γ ⊓ 〈x : K〉 ⊢w R (12)

and we need to prove Γ ⊢w R{|v/x|}. As an example suppose R has the
form goto x.c?(y : A) P . Then from the second premise we will be able to
deduce that

Γ ⊢ v : K, y : A@x ⊢x P

However at this point we will be unable to perform induction because this
is not an instance of the inductive hypothesis (12). Instead we will need
to generalise (12) and unfortunately this will mean substituting v for x
not only in process terms but also in environments.

Definition 3.14 (Substituting into environments). Suppose Γ is
a valid environment. We define Γ[v/x], the substitution of v for x in Γ,
by induction on the size of Γ. If it is empty then so is Γ[v/x]. So we may
assume Γ has the form Γ′, u : T and that Γ′[v/x] has been defined.

• If T is base then Γ[v/x] is given by Γ′[v/x], u : T.

• If it is rc〈A〉 then Γ[v/x] is given by Γ′[v/x] ⊓ u{|v/x|} : rc〈A{|v/x|}〉.

• If it is loc then it is Γ′[v/x] ⊓ u{|v/x|} : loc.

• Otherwise it must be of the form A@w and Γ[v/x] is defined to be

Γ′[v/x] ⊓ 〈u{|v/x|} : A{|v/x|}〉@w{|v/x|}. ✷

Lemma 3.15. Suppose Γ ⊢ env. Then

• Γ ⊓ 〈x : loc〉 ⊓ 〈v : loc〉 ⊢ env implies Γ[v/x] ⊢ env.

• Γ ⊓ 〈x : rc〈A〉〉 ⊓ 〈v : rc〈A〉〉 ⊢ env implies Γ[v/x] ⊢ env.

Proof: By induction on the size of Γ. ✷

With this new notation we are now able to formulate an appropriate
substitution result for locations.

Proposition 3.16 (Location substitutions). Suppose Γ1 ⊢ v : K
and x does not appear in Γ1. Then

Environments: Γ1 ⊓ 〈x : K〉 ⊓ Γ2 ⊢ env implies Γ1 ⊓ Γ2[v/x] ⊢ env

Values: Γ1 ⊓ 〈x : K〉 ⊓ Γ2 ⊢ U : T@w implies Γ1 ⊓ Γ2[v/x] ⊢ U{|v/x|} :
(T@w){|v/x|}

. . . Behavioural Theory of Access and Mobility Control. . . 27

Processes: Γ1 ⊓ 〈x : K〉 ⊓ Γ2 ⊢w R implies Γ1 ⊓ Γ2[v/x] ⊢w{|v/x|} R{|v/x|}

Proof: Note that the previous Lemma ensures that Γ2[v/x] is a well-
defined environment. The first result is proved by induction on Γ while
the second is by induction on the inference of the judgement Γ1 ⊓ 〈x :
K〉 ⊓ Γ2 ⊢ U : T@w; we leave the details to the reader.

The result for processes is by induction on the inference of Γ1⊓〈x : K〉⊓
Γ2 ⊢w R and an analysis of the last rule used. We give one representative
example.

Suppose Γ1 ⊓ 〈x : K〉 ⊓ Γ2 ⊢w (newloc l : L) with C in P because

(i) (Γ1 ⊓ 〈x : K〉 ⊓ Γ2) ⊓ 〈l : L〉 ⊢l C

(ii) (Γ1 ⊓ 〈x : K〉 ⊓ Γ2) ⊓ 〈l : L〉 ⊢w P

(iii) Γ1 ⊓ 〈x : K〉 ⊓ Γ2 ⊓ 〈l : L〉 ⊢dec l : L

Using the associativity of ⊓ we can rearrange (i) to the form

Γ1 ⊓ 〈x : K〉 ⊓ (Γ2 ⊓ 〈l : L〉) ⊢l C

to which induction can be applied to give

Γ1 ⊓ (Γ2 ⊓ 〈l : L〉)[v/x] ⊢l C{|v/x|}

However once more the environment can be rearranged to give

(i’) Γ1 ⊓ Γ2[v/x] ⊓ 〈l : L〉) ⊢l C{|v/x|}

A similar argument can be used to obtain

(ii’) Γ1 ⊓ Γ2[v/x] ⊓ 〈l : L〉) ⊢w{|v/x|} P{|v/x|}

We can also deconstruct (iii), using the rule (t-dec− loc) in Figure 7,
to give

(a) Γ1 ⊓ 〈x : K〉 ⊓ Γ2 ⊓ 〈l : L〉 ⊢ l : loc

(b) Γ1 ⊓ 〈x : K〉 ⊓ Γ2 ⊓ 〈l : L〉 ⊢ ai : rc〈D〉 for some D <: A

where L is the type loc[a1 : A1, . . . , an : An]. But the result for values can
in turn be applied to these to give

(a’) Γ1 ⊓ (Γ2 ⊓ 〈l : L〉)[v/x] ⊢ l : loc

(b’) Γ1 ⊓ (Γ2 ⊓ 〈l : L〉)[v/x] ⊢ ai : rc〈D〉

Once more these environments can be rearranged so that the rule (t-loc− dec)
can be applied to give

(iii’) Γ1 ⊓ Γ2[v/x] ⊓ 〈l : L〉) ⊢dec l : L

Now (t-newl) can be applied to (i’),(ii’) and (iii’) to obtain

Γ1 ⊓ Γ2[v/x] ⊢w{|v/x|} (newloc l : L) with C ′ in P ′

28 M. Hennessy, M. Merro and J. Rathke

as required. ✷

The substitution of registered names needs a formulation similar to
that of locations. For example consider an attempt to prove

Γ, x : rc〈A〉 ⊢w (newloc k : loc[x : B]) with C in P (13)

This will be reduced to an attempt to prove

Γ, x : rc〈A〉, k : loc, x : B@k ⊢w P

which is not of the form (13).

Proposition 3.17 (Registered name substitutions). Suppose Γ1 ⊢
v : rc〈A〉 and x does not appear in Γ1. Then

Environments: Γ1 ⊓ 〈x : rc〈A〉〉 ⊓ Γ2 ⊢ env implies Γ1 ⊓ Γ2[v/x] ⊢ env

Values: Γ1 ⊓ 〈x : rc〈A〉〉 ⊓ Γ2 ⊢ U : T@w implies Γ1 ⊓ Γ2[v/x] ⊢ U{|v/x|} :
(T@w){|v/x|}

Processes: Γ1 ⊓ 〈x : rc〈A〉〉 ⊓ Γ2 ⊢w R implies Γ1 ⊓ Γ2[v/x] ⊢w R{|v/x|}

Proof: Left to the reader. ✷

We can now state the Substitution result in the required form:

Theorem 3.18 (Substitutions). Suppose Γ ⊢ V : T@w, Γ ⊢ w : loc

and the variables in X do not appear in Γ. Then Γ ⊓ 〈X : T〉@w ⊢w R
implies Γ ⊢w{|V/X|} R{|V/X|}.

Proof: The proof is by induction on the structure of the type T. When it
has the form A the result follows from Proposition 3.13 and the cases A@k
and base are similar. When T is a location type it follows from Proposi-
tion 3.16 and when it is of the form rc〈B〉 it follows from Proposition 3.17.
The remaining cases can be proved by induction. ✷

We are now ready to outline the main result of this section.

Theorem 3.19 (Subject Reduction). If Γ ⊢ M and M → N then
Γ ⊢ N .

Proof: It is a question of examining in turn each of the rules in Figure 2.
The rule (r-str) requires the result

M ≡ N and Γ ⊢ M implies Γ ⊢ N ,

the details of which may be found in [9]. We examine two typical cases
from the remaining in Figure 2.

(r-comm): Suppose Γ ⊢ kJc!〈V 〉QK | kJc?(X : T) P K. We have to show
that Γ ⊢ kJQK | kJP{|V/X|}K, which will follow if we can prove

. . . Behavioural Theory of Access and Mobility Control. . . 29

(i) Γ ⊢k Q and

(ii) Γ ⊢k P{|V/X|}

The first is easily seen to follow from the hypothesis while the second
will follow from Theorem 3.18 if we can establish

(a) Γ ⊢ V : T@k and

(b) Γ ⊓ 〈X : T〉@w ⊢k P

The hypothesis implies implies Γ ⊢k c?(X : T) P which means (b) is
satisfied but also that Γ ⊢k c : r〈T〉@k. On the other hand the hypoth-
esis also implies that Γ ⊢k c!〈V 〉Q which means that Γ ⊢ V : U@k for
some type U such that Γ ⊢ c : w〈U〉@k. However Proposition 3.9 (iii)
implies that U <: T and part (iv) of the same proposition gives (a)
and we are finished.

(r-c− create): Suppose Γ ⊢ kJ(newc n : A) P K. To establish the judge-
ment Γ ⊢ (new n : A@k) kJP K it is sufficient, by (t-c− new), to prove

Γ, n : A@k ⊢k P (14)

But the only way to establish the hypothesis is by the rule (t-cnew)
in Figure 8, for which we need Γ, n : A@k ⊢ kJP K, which can only be
established from (t-thread), for which (14) is necessary. ✷

4 Contextual equivalence in Dpi

We now turn to the issue of defining a notion of equivalence for our lan-
guage. In general the ability to distinguish between systems depends on
our knowledge of the capabilities at the various sites. For example a client
who is not aware of the resource a at the location k will be unable to
perceive any difference between the two systems

kJa?(x) P K kJstopK

Thus, as explained in the Introduction, we develop notions of equiva-
lences of the form

Γ |= M ≈ N (15)

where Γ is a well-defined type environment representing the user’s knowl-
edge of the capabilities of the systems M and N . Since we are only inter-
ested in closed systems, that is containing no occurrences of free variables,
we confine our attention to closed environments, those with no variables
in their domains.

It may seem reasonable to assume that the user knows everything
about the systems under scrutiny, but Dpi is specifically designed to model

30 M. Hennessy, M. Merro and J. Rathke

scenarios in which clients are given selective knowledge of dynamically
created resources.

Example 4.1. Let K be the type loc[a : A, b : B] Consider the system
M defined by

lJ(newloc k : K) with a?(x) S in c!〈k〉K

This generates a new location k, exports its name along c and installs a
service S at k via the resource a.

The ability of a user to use the service depends on its capability on the
channel c at k. Suppose this can only send values at the type Kb where
Kb is loc[b : B], a supertype of K. When the new name is exported along
c there will now be a divergence between the knowledge of the user and
that of the system M . The latter knows that k supports two resources a
and b, while the user is under the illusion that it only supports one, b. ✷

So we will have to consider triples in (15) above where Γ will not in general
have sufficient information to type M and N . We will be able to maintain
some constraints about the typeability of M and N by insisting that Γ,
the knowledge of the user, represents a subset of the knowledge of the
system. This motivates the following definition:

Definition 4.2 (Simple configurations). A simple configuration is
written as Γ ✄ M , where

• M is a closed system

• there exists some ∆ such that ∆ <: Γ, dom(∆) = dom(Γ) and

• ∆ ⊢ M . ✷

Rather than simply defining an ad-hoc bisimulation based equivalence
over simple configurations we first introduce a touchstone equivalence by
which considering natural desirable properties that one would expect of
behavioural equivalences. We choose to base this on a generalisation of
the reduction barbed congruence of [10].

A knowledge-indexed relation over systems is a family of binary rela-
tions between systems indexed by closed type environments. We write
Γ |= M R N to mean that systems M and N are related by R at index
Γ and moreover, Γ ✄ M and Γ ✄ N form simple configurations. The de-
sirable properties of knowledge-indexed relations which we consider are as
follows:

Reduction closure: We say that a knowledge-indexed relation over
systems is reduction closed if whenever Γ |= M R N and M → M ′ there
exists some N ′ such that N →∗ N ′ and Γ |= M R N ′.

. . . Behavioural Theory of Access and Mobility Control. . . 31

Context closure: We say that a knowledge-indexed relation over sys-
tems is contextual if

(i) Γ |= M R N and Γ, Γ′ ⊢ env implies Γ, Γ′ |= M R N

(ii) Γ |= M R N and Γ ⊢ O implies Γ |= (M | O) R (N | O)

(iii) Γ ⊓ 〈n : T〉 |= M R N implies Γ |= (new n : T) M R (new n : T) N

Note that in this last clause we have used an abbreviation to cover the
three different forms of names which can be declared, local channels, reg-
istered names and locations, each differentiated by the form which T can
take. Moreover we assume that n is new to Γ. The first clause also con-
tains a subtlety; this implies that the equivalence should be preserved even
if the user invents some new names. It would be unreasonable to rewrite
this as

(i’) Γ |= M R N and Γ′ <: Γ, where Γ′ ⊢ env, implies Γ′ |= M R N

This would allow the user to invent new capabilities on resources it has
received from the systems under investigation.

Barb preservation: For any given location k and any given channel
a such that Γ ⊢ k : loc and Γ ⊢ a : rw〈〉@k we write Γ ⊢ M ⇓barb a@k if
there exists some M ′ such that M →∗ (M ′ | kJa!〈〉P K). We say that a
knowledge-indexed relation over systems is barb preserving if

Γ |= M R N and Γ ⊢ M ⇓barb a@k implies Γ ⊢ N ⇓barb a@k

These three properties determine our touchstone equivalence:

Definition 4.3 (Reduction barbed congruence). We let ∼=
rbc be

the largest knowledge-indexed relation over systems which is

• pointwise symmetric, that is Γ |= M ∼=
rbc N implies Γ |= N ∼=

rbc M

• contextual

• reduction closed

• barb preserving ✷

We will now characterise ∼=
rbc using a labelled transition system and

bisimulation equivalence, thereby justifying our particular notion of bisim-
ulations. Note that knowledge-indexed relations generalise the more usual
notion of type-indexed relations in which one would also demand that
Γ ⊢ M and Γ ⊢ N whenever Γ |= M R N . Our characterisations can be
instantiated to account for these situations.

32 M. Hennessy, M. Merro and J. Rathke

4.1 A labelled transition characterisation of contextual equivalence

The labelled transition system we present in this section is informed by
recent work by two of the authors on characterising contextual equiva-
lences for π-calculus with input/output subtyping [8]. This in turn was
influenced by work by Boreale Sangiorgi and for a similar language in the
absence of the name equality test [2].

A standard labelled transition system for Dpi would describe the ac-
tions, inputs/outputs on located channels, which a system could in prin-
ciple perform. However because of possible limited knowledge an external
user may not be able to provoke these actions. Our labelled transition
system uses typed actions of the form

Γ ✄ M µ−→ Γ′
✄ M ′

where Γ ✄ M is a simple configuration and µ takes one of the forms:

output: of the value V along the channel c located at k, and exporting
the new names ñ, (ñ)k.c!V

input: of the channel V along the channel c located at k, using new names
ñ of type T̃ , (ñ : T̃)c?V

internal: unobservable activity, τ

The rules determining these relations are given in Figure 10, and they de-
serve some comment. First, for simplicity, internal action is equated with
reduction, in the rule (lts-red). The rule (lts-out) says that kJa!〈V 〉P K

can only perform the obvious output action if

• k is known by Γ to be a location

• the user has the capability to accept a value from a at k, that is
Γ ⊢ a : r〈T〉@k for some transmission type T

• the information which is being sent to the user does not contradict its
current knowledge, that is Γ ⊓ 〈V : T〉@k exists

In fact in the rule the second requirement is slightly more stringent; we
only use one particular transmission type for V , namely that which ap-
pears in Γ for a at k; this simply cuts down on the number of possible
moves.

The rule for input, (lts-in), has a similar flavour. The located process
kJa?(X : T) P K can only read a value V at the channel a located at k if

(i) the user knows k is a location

(ii) the user can write on a located at k at the required type, that is
Γ ⊢ a : w〈U〉@k, for some type U

. . . Behavioural Theory of Access and Mobility Control. . . 33

(lts-red)

M −→ M ′

(Γ ✄ M) τ−→ (Γ ✄ M ′)

(lts-out)

Γ ⊢ k : loc

a : r〈T〉@k ∈ Γ
Γ ⊓ 〈V : T〉@k exists

(Γ ✄ kJa!〈V 〉P K) k.a!V−−−→ (Γ ⊓ 〈V : T〉@k ✄ kJP K)

(lts-in)

Γ ⊢ k : loc

a : w〈U〉@k ∈ Γ
Γ ⊢ V : U@k

(Γ ✄ kJa?(X : T) P K) k.a?V−−−→ (Γ ✄ kJP{|V/X|}K)

(lts-open)

(Γ, n : ⊤ ✄ M) (ñ)k.a!V−−−−−→ (Γ′
✄ M ′)

(Γ ✄ (new n : T) M) (nen)k.a!V−−−−−−→ (Γ′
✄ M ′)

n 6= a, k

n ∈ fn(V)

(lts-weak)

(Γ, n : T ✄ M) (ñ:T̃)k.a?V−−−−−−−→ (Γ′
✄ M ′)

(Γ ✄ M) (n:Ten:eT)k.a?V−−−−−−−−−→ (Γ′
✄ M ′)

n 6= a, k

(lts-par)

(Γ ✄ M) α−→ (Γ′
✄ M ′)

(Γ ✄ M | N) α−→ (Γ′
✄ M ′ | N)

(Γ ✄ N | M) α−→ (Γ′
✄ N | M ′)

bn(α) 6∈ fn(N)

(lts-new)

(Γ, n : ⊤ ✄ M) α−→ (Γ′, n : ⊤ ✄ M ′)

(Γ ✄ (new n : T) M) α−→ (Γ′
✄ (new n : T) M ′)

n 6∈ n(α)

Figure 10. Typed actions

(iii) the user can type the value V at this the required type, Γ ⊢ V : U@w.

As in the output case the second requirement is written slightly differently,
requiring that the value being sent, V , can be typed at the write-type

34 M. Hennessy, M. Merro and J. Rathke

which a appears in Γ; we have used this version only to maintain symme-
try with the output case. Note also that apriori there is no relationship
required between the type at which the value is sent, U, and the type at
which it will be used, T. But it turns out that in the context in which
these rules will be applied (see Definition 4.2 below) the latter will be a
supertype of the former.

The remaining rules are familiar from standard treatments of the pi-
calculus with the possible exception of (lts-weak) which states that for
any input transition the environment may invent fresh names in order to
type the incoming value.

We demonstrate that the transition rules are in fact well-defined, in
the sense that they form a binary relation between simple configurations.

Proposition 4.4. Suppose Γ ✄ M is a simple configuration. If Γ ✄

M µ−→Γ′
✄ N is a typed action then Γ′

✄ N is also a simple configuration.
Moreover,

• if µ is (ñ)k.c!V then c : r〈T〉@k ∈ Γ for some T and Γ′ is Γ⊓ 〈V : T〉@k

• if µ is (ñ : T̃)k.c?V then Γ′ is Γ, ñ : T̃.

Proof: By induction on the inference of the typed action Γ ✄ M µ−→
Γ′

✄ N and an analysis of the last rule used. As an example consider an
application of the rule (lts-in). Here we have

(Γ ✄ kJc?(X : T) P K) k.c?V−−−→ (Γ ✄ kJP{|V/X|}K)

because

(i) Γ ⊢ k : loc

(ii) c : w〈U〉@k ∈ Γ for some type U

(iii) Γ ⊢ V : U@k.

We know that ∆ ⊢ kJc?(X : T) P K for some ∆ such that ∆ <: Γ and
dom(∆) = dom(Γ). We will have the required result if we can show that
∆ ⊢ kJP{|V/X|}K, that is

∆ ⊢k P{|V/X|} (16)

From the hypothesis we know that ∆ ⊢ kJc?(X : T) P K, that is ∆ ⊢k

c?(X : T) P . This can only be derived by the rule (t-in) which means we
must have

(i’) ∆ ⊢ c : r〈T〉

(ii’) ∆ ⊓ 〈X : T〉@k ⊢k P : proc

But (ii) above, and the fact that ∆ <: Γ, implies that ∆ ⊢ c : w〈U〉,
and therefore by the third part of Proposition 3.9 we have U <: T; the

. . . Behavioural Theory of Access and Mobility Control. . . 35

fourth part of the same Proposition, together with (iii) above, then gives
Γ ⊢ V : T@k. This, and the above (ii’) are the required hypotheses in the
Substitution Theorem, Theorem 3.18, to obtain the required (16). ✷

The net effect of this proposition is that in typed actions Γ✄M µ−→Γ′
✄N

the resulting environment Γ′ is completely determined by Γ and µ.
It is very easy to view these typed actions as simple restrictions on a

natural operational semantics for Dpi. Let us write

M µ−→ N

if ∆ ✄ M µ−→ ∆′
✄ N for some ∆, ∆′ using a variation on the rules from

Figure 10 in which the typing constraints on ∆ are not enforced (note
that side-conditions to maintain freshness of new names are still in place).
Then we will have the typed action

Γ ✄ M µ−→ Γ′
✄ N

if and only if

• M can in principle perform the action µ, that is M µ−→ N

• and the environment Γ allows the action.

We make the latter statement more precise in the next proposition.

Proposition 4.5. Suppose Γ ✄ M is a simple configuration.

• (Γ ✄ M) τ−→ (Γ′
✄ N) if and only if M → N and Γ′ is Γ

• (Γ ✄ M) (ñ)k.a!V−−−−−→ (Γ′
✄ N) if and only if M (ñ)k.a!V−−−−−→ N and

– Γ ⊢ k : loc

– a : r〈T〉@k occurs in Γ, for some type T

• (Γ ✄ M) (ñ:T̃)k.a?V−−−−−−−→ (Γ′
✄ N) if and only if M k.a?V−−−→ N and

– Γ ⊢ k : loc

– Γ ⊢ a : w〈T〉@k, for some type T

– Γ, ñ : T̃ ⊢ V : T@k

Proof: Each statement only requires a simple proof by rule induction.
✷

Definition 4.6 (Bisimulations). A binary relation R over simple con-
figurations is said to be a bisimulation if C R D implies

• C µ−→ C ′ implies D µ̂=⇒ D′ for D′ such that C′ R D′

• Symmetrically, D µ−→ D′ implies C µ̂=⇒ C ′ for C ′ such that C′ R D′

36 M. Hennessy, M. Merro and J. Rathke

Here we are using the standard notation from [13]; µ=⇒ means τ−→∗ ◦ µ−→◦
τ−→∗ while µ̂=⇒ is τ−→∗ if µ is τ and µ=⇒ otherwise; this allows a single

internal move to be matched by zero or move internal moves.
We write Γ |= M ≈bis N if (Γ ✄ M) R (Γ ✄ N) for some bisimulation

R, and say that M and N are bisimilar in the environment Γ. ✷

Note that the relation ≈bis forms a knowledge-indexed relation over sys-
tems by considering Γ as a parameter to the relation. Moreover it satisfies
all of the properties in Definition 4.3. As an example we will prove that
≈bis is contextual. The following three lemmas will be helpful in estab-
lishing this.

Lemma 4.7. If Γ |= M ≈bis N and Γ <: Γ′, where dom(Γ) = dom(Γ′),
then Γ′ |= M ≈bis N .

Proof: Straightforward co-induction. ✷

The next lemma ensures that when new values are extruded to the en-
vironment the types at which they become known are supertypes of the
type at which they were declared by the system.

Lemma 4.8. If Γ ✄ M (ñ)k.c!V−−−−−→ Γ′
✄ M ′ then M ≡ (new ñ : T̃) M ′′ such

that if Γ′ ⊢ ñ : Ũ then T̃ <: Ũ.

Proof: We show the case where V is is a simple identifier, but can use
induction to extend this to the more general case.

Suppose we have Γ✄M (n)k.c!n−−−−−→Γ′
✄M ′. It is straightforward to check

that Γ′ is Γ⊓ 〈n : T0〉@k for some T0 such that Γ contains c : r〈T0〉@k and
that M ≡ (new n : T) M ′′ for some T and M ′′. Suppose that Γ′ ⊢ n : U .
We know from the typing rules that it must be the case that T0@k <: U .
We show that T <: T0@k: we know that Γ✄M is a configuration, so there
must exist a ∆ such that ∆ ⊢ M , dom(∆) = dom(Γ) and ∆ <: Γ. We
know from this and the typing rule for outputs that

(i) ∆ ⊢ c : w〈T1〉@k

(ii) ∆ ⊓ 〈n : T〉 ⊢ n : T1@k

We use (ii) to see that T <: T1@k. We also note that ∆(c) <: Γ(c) implies
that ∆ contains c : r〈T2〉@k for some T2@k <: T0@k. This fact, along with
(i), tells us

T1@k <: T2@k <: T0@k

because of the variance condition on read/write channels. Collecting these
together we obtain T <: T0@k as required. ✷

We now show that actions performed jointly by a system and an ob-
server in its environment can be decomposed into individual components;

. . . Behavioural Theory of Access and Mobility Control. . . 37

moreover these components can be recomposed to form again the joint
action. The results depend on the fact that the system is part of a simple
configuration.

Lemma 4.9 (Composition/Decomposition).

(i) (a) If Γ ✄ M (ñ)k.c!V=====⇒ Γ′
✄ M ′ and O k.c?V−−−→ O′ then Γ ✄ M | O τ=⇒

Γ ✄ (new ñ : T̃) M ′ | O′ for some T̃

(b) If Γ ✄ M (ñ:T̃)k.c?V=======⇒ Γ′
✄ M ′ and O (ñ)k.c!V−−−−−→O′ then Γ ✄ M |O τ=⇒

Γ ✄ (new ñ : T̃) M ′ | O′

(ii) If Γ ✄ M | O τ−→ Γ ✄ M ′ and Γ ⊢ O then one of the following hold

(a) Γ ✄ M τ−→ Γ ✄ M ′′ such that M ′ ≡ M ′′ | O

(b) O −→ O′ such that M ′ ≡ M | O′

(c) Γ ✄ M (ñ)k.c!V−−−−−→ Γ′
✄ M ′′ and O k.c?V−−−→ O′ such that

M ′ ≡ (new ñ : T̃) M ′′ | O′ for some T̃

(d) Γ ✄ M (ñ:T̃)k.c?V−−−−−−−→ Γ′
✄ M ′′ and O (ñ)k.c!V−−−−−→ O′ such that

M ′ ≡ (new ñ : T̃) M ′′ | O′

Proof: Part (i) is relatively straightforward. We only show the first case
as the other is similar. We can proceed by induction on the number of
τ actions in the derivation from the system. For the inductive case this
follows easily by the inductive hypothesis and the fact that | and (new)
are evaluation contexts. We consider the base case in which Γ✄M (ñ)k.c!V−−−−−→
Γ′

✄ M ′.
By Proposition 4.5 we see that M (ñ)k.c!V−−−−−→ M ′. By inspecting the

transition rules we note that the following structural forms must hold

• M ≡ (new ñ : T̃) (new m̃′ : T̃′) (kJc!〈V 〉P K | M ′′)

• M ′ ≡ (new m̃′ : T̃′) (kJP K | M ′′)

• O ≡ (new ñ′ : Ũ′) (kJc?(X : U) QK | O′′)

• O′ ≡ (new ñ′ : Ũ′) (kJQ{|V/X|}K | O′′)

for k, c not in ñ, ñ′, m̃′. It is clear that, by alpha-converting where neces-
sary,

M |O ≡ (new ñ : T̃) ((new m̃′ : T̃′) (kJc!〈V 〉P K|M ′′)|O)−→(new ñ : T̃) (M ′|O′)

so we then conclude Γ ✄ M | O τ−→ Γ ✄ (new ñ : T̃) (M ′ | O′) as required.

For Part(ii) we suppose Γ ⊢ O and consider how the judgment Γ ✄

M | O τ−→ Γ ✄ M ′ is derived. This transition must be derived using an
instance of one of the base axioms for reduction in Figure 2. Call this
axiom instance A. The cases which arise are

38 M. Hennessy, M. Merro and J. Rathke

• A is a subterm of M . In which case O does not contribute to the
transition and (a) holds.

• A is a subterm of O. In which case M does not contribute to the
transition and (b) holds.

• A is not a subterm of M or O. In which case, by inspecting the rules,
we see that the only possibility is that A must be an instance of rule
(r-comm). Let us suppose that A is of the form

kJc!〈V 〉P K | kJc?(X : U) QK → kJP K | kJQ{|V/X|}K

There are two ways in which this could occur: either M provides the
output action, say (ñ)k.c!V−−−−−→, and N the corresponding input (in which
case (c) will hold), or vice-versa (and (d) will hold). We concentrate
on the former as the latter can be dealt with in a similar way. We
know that it must be the case that (up to structural equivalence)

M ≡ (new ñ : T̃) (new m̃′ : T̃′) (kJc!〈V 〉P K | M ′′′)

O ≡ (new m̃ : Ũ) (kJc?(X : U) QK | O′′)

such that k and c are not in ñ, m̃′, m̃. Let M ′′ be the term

(new m̃′ : T̃′) (kJP K | M ′′′)

and O′ be

(new m̃ : Ũ) (kJQ{|V/X|}K | O′′).

It is clear that M ′ ≡ (new ñ : T̃) (M ′′ |O′) so it suffices to demonstrate
that O k.c?V−−−→ O′ and Γ ✄ M (ñ)k.c!V−−−−−→ Γ′

✄ M ′′ for some Γ′ such that
T̃ <: Γ′(ñ). The former is immediate from the transition rules for in-
put. We also know that M (ñ)k.c!V−−−−−→M ′′ so we must show that Γ permits
the typed action. We know by hypothesis that Γ ⊢ O. This means, in
particular, that Γ ⊓ 〈m̃ : Ũ〉 ⊢ kJc?(X : U) QK. This immediately tells
us that

Γ ⊢ k : loc

(as k is not in m̃) and Γ ⊓ 〈m̃ : Ũ〉 ⊢ c : r〈U〉@k. Again, c is not in m̃,
so it must be that

c : r〈T〉@k appears in Γ for some T.

These two facts, and the fact that Γ ✄ M is a simple configuration,
allow us to conclude using Proposition 4.5 that Γ✄M (ñ)k.c!V−−−−−→Γ⊓〈V :
T〉@k ✄ M ′′ as required. ✷

The next series of propositions examine the individual requirements
for ≈bis to be contextual.

. . . Behavioural Theory of Access and Mobility Control. . . 39

Proposition 4.10.

Γ |= M ≈bis N and Γ, Γ′ ⊢ env implies Γ, Γ′ |= M ≈bis N.

Proof: Although this should be straightforward the proof is complicated
by the fact that we do not have an Interchange rule for environments.

For the purposes of the proof, let us fix a type environment Γ0 and
an association list Γ′

0 such that Γ0, Γ
′
0 ⊢ env. Using these we define two

grammars for extensions of Γ0, Γ
′
0 and Γ0 respectively, corresponding to

the ways in which typed actions can increase an environments knowledge.
Let Γ+ denote environments which can be described by the grammar

Γ+ ::= Γ0, Γ
′
0

| Γ+ ⊓ Γ provided Γ ⊢ env and dom(Γ) ∩ dom(Γ′
0) = ∅

| Γ+, Γ provided Γ+, Γ ⊢ env and dom(Γ) ∩ dom(Γ′
0) = ∅

Let the set of environments Γ− be defined in a similar manner, but starting
from Γ0 rather then Γ0, Γ

′
0. By construction we therefore have that both

Γ+ ⊢ env and Γ− ⊢ env and that dom(Γ′
0) is disjoint from dom(Γ−).

We now define R such that (Γ+
✄ M) R (Γ+

✄ N) if and only if Γ− |=
M ≈bis N and show that R forms a bisimulation. The result follows easily
from this, using the initial case when Γ+, Γ− are Γ0 and Γ′

0 respectively.
The relation is clearly symmetric, so we simply need to show that

Γ+
✄ N µ̂=⇒ Γ+

1 ✄ N ′

with

(Γ+
1 ✄ M ′) R (Γ+

1 ✄ N ′)

whenever Γ+
✄ M µ−→ Γ+

1 ✄ M ′. So, suppose that Γ+
✄ M µ−→ Γ+

1 ✄ M ′.
If µ is a τ action then the definition of R gives an immediate match from
N as τ reductions are independent of the environment. The interesting
cases are those actions which are constrained.

Consider the case in which µ is (ñ)k.c!V . We know that Γ+
1 is of

the form Γ+ ⊓ 〈V : T〉@k. Note that the fact that Γ−
✄ M is a simple

configuration assures us that the domain of 〈V : T〉@k does not intersect
that of Γ′

0, so that Γ+
1 is an environment allowed by our first grammar.

We also know by Proposition 4.5 that

• M µ−→ M ′

• Γ+ ⊢ k : loc

• Γ+ contains c : r〈T〉@k for some T.

40 M. Hennessy, M. Merro and J. Rathke

We know that dom(Γ′
0) is disjoint from dom(Γ−) and that Γ−

✄ M is a
simple configuration, so it must be the case that Γ− ⊢ k : loc and Γ−

contains c : r〈T〉@k also. By Proposition 4.5 again, we see that Γ−
✄

M µ−→ Γ− ⊓ 〈V : T〉@k ✄ M ′. By definition of R we know that there must
exist some

Γ−
✄ N µ=⇒ Γ− ⊓ 〈V : T〉@k ✄ N ′

such that

Γ− ⊓ 〈V : T〉@k |= M ′ ≈bis N ′.

This, and Proposition 4.5, tells us that Γ+
✄ N µ=⇒ Γ+

1 ✄ N ′ with (Γ+
1 ✄

M ′) R (Γ+
1 ✄ N ′) as required.

The case in which µ is an input transition can be treated similarly, but
using the third rule in the grammar for extending environments. ✷

Proposition 4.11.

Γ ⊓ 〈n : T〉 |= M ≈bis N implies Γ |= (new n : T) M ≈bis (new n : T) N.

Proof: In fact, due to Lemma 4.7, it suffices to show

Γ ⊓ 〈n : ⊤〉 |= M ≈bis N implies Γ |= (new n : T) M ≈bis (new n : T) N.

We proceed by defining a relation R which contains ≈bis and relates (Γ ✄

(new n : T) M) and (Γ ✄ (new n : T) N) whenever Γ, n : ⊤ |= M ≈bis N .
We show that R forms a bisimulation.

Take any two configurations related by R: if these are bisimilar then we
can be sure that R satisfies the necessary closure properties. Thus we can
assume that we have chosen configurations of the form Γ✄ (new n : T) M
and Γ ✄ (new n : T) N . Suppose Γ ✄ (new n : T) M µ−→ Γ′

✄ M ′. There
are two possibilities regarding which was the last rule involving (new)
used to infer this transition. If rule (lts-open) was used then µ is of the
form (n)µ′ and

Γ, n : ⊤ ✄ M µ′

−→ Γ′
✄ M ′.

We know by the definition of R that Γ, n : ⊤ |= M ≈bis N , so we have

Γ, n : ⊤ ✄ N µ′

=⇒ Γ′
✄ N ′

such that Γ′
✄M ′≈bisN ′. In turn we see that Γ✄(new n : T) N µ=⇒ Γ′

✄N ′

so that (Γ′
✄ M ′) R (Γ′

✄ N ′) as required. Otherwise, it must be the case
that (lts-new) was used. The matching transition from N can be found
using a similar argument. ✷

Proposition 4.12.

Γ |= M ≈bis N and Γ ⊢ O implies Γ |= M | O ≈bis N | O.

. . . Behavioural Theory of Access and Mobility Control. . . 41

Proof: We do this by defining a relation R such that

(Γ ✄ (new ñ0 : Ũ1) M | O) R (Γ ✄ (new ñ0 : Ũ2) N | O)

if and only if there exists some Γ′, T̃ such that all of the following hold

• Γ′ <: Γ

• Ũ1 <: T̃

• Ũ2 <: T̃

• Γ′ ⊓ 〈ñ0 : T̃〉 |= M ≈bis N

• Γ′ ⊓ 〈ñ0 : T̃〉 ⊢ O.

We must show that R forms a bisimulation. For the purposes of exposition
we will assume that ñ0 is empty. The more general case follows in a similar
manner.

Take (Γ ✄ M | O) R (Γ ✄ N | O) witnessed by Γ′ |= M ≈bis N and
Γ′ ⊢ O and suppose that Γ ✄ M | O µ−→ Γ0 ✄ M ′. If µ is not a τ action
then it clearly derives entirely from M or O. In either case, a matching
µ transition can be found from N because Γ′ |= M ≈bis N and Γ′ <: Γ.
Suppose then that µ is a τ action (so that Γ0 is Γ). We use Lemma 4.9,
Part (ii), to observe that one of four cases hold.

(a) Γ′
✄ M τ−→ Γ′

✄ M ′′. Again, matching transitions are easily found
because Γ′ |= M ≈bis N .

(b) O τ−→O′. But then Γ✄N |O τ−→Γ✄N |O′ and, by Subject Reduction,
Theorem 3.19, we know that Γ′ ⊢ O′ also so (Γ✄M |O′) R (Γ✄N |O′)
as required.

(c) Γ′
✄M (ñ)k.c!V−−−−−→Γ′′

✄M ′′ and O k.c?V−−−→O′ such that M ′ ≡ (new ñ : Ũ1) (M ′′|
O′) for some Ũ1. We note that there must exist some Γ′

✄ N (ñ)k.c!V=====⇒
Γ′′

✄ N ′ such that Γ′′ |= M ′′ ≈bis N ′ and moreover, by Lemma 4.9,
Part (i), we see that Γ✄N |O τ=⇒ Γ✄(new ñ : Ũ2) N ′ |O′ for some Ũ2.
But we know that Γ′′ is Γ′ ⊓ 〈V : T〉@k and that ñ are all contained
in V , so Γ′′ is necessarily of the form Γ′

0 ⊓ 〈ñ : T̃〉 for some Γ′
0 <: Γ′

(transitively, Γ′
0 <: Γ). We know by Lemma 4.8 that Ũ1 <: T̃ and

Ũ2 <: T̃. In particular, we have

Γ′
0 ⊓ 〈ñ : T̃〉 |= M ′ ≈bis N ′.

Now, we know that Γ′
✄ M (ñ)k.c!V−−−−−→ Γ′′

✄ M ′′ so this means that Γ′

contains c : r〈T〉@k for some T. We also know that Γ′ ⊢ O and O k.c?V−−−→
O′. Up to structural equivalence then, this means that

O ≡ (new m̃ : Ũ) (kJc?(X : U) QK | O′′)

42 M. Hennessy, M. Merro and J. Rathke

and

O′ ≡ (new m̃ : Ũ) (kJQ{|V/X|}K | O′′)

with k, c not in m̃. By inspecting the typing rules we see that

Γ′ ⊢ c : r〈U〉@k

and

Γ′ ⊓ 〈V : T〉@k ⊓ 〈m̃ : Ũ〉 ⊓ 〈X : U〉@k ⊢k Q.

The former tells us that T <: U because we know Γ contains c : r〈T〉@k,
and the latter, along with the fact that

Γ′ ⊓ 〈V : T〉@k ⊓ 〈m̃ : Ũ〉 ⊢ V : T@k

and Theorem 3.18, tells us that Γ′ ⊓ 〈V : T〉@k = Γ′
0 ⊓ 〈ñ : T̃〉 ⊢ O′ so

we can conclude

(Γ ✄ (new ñ : Ũ1) M ′ | O′) R (Γ ✄ (new ñ : Ũ2) N ′ | O′)

as required.

(d) Γ ✄ M (ñ:T̃)k.c?V−−−−−−−→ Γ′
✄ M ′′ and O (ñ)k.c!V−−−−−→ O′. Can be dealt with in a

similar manner to the previous case. ✷

Corollary 4.13. The knowledge-indexed relation ≈bis over systems is
contextual.

Proof: We need to show the three relevant properties of contextuality;
namely, preservation under weakening, (new n : T) [] contexts and parallel
composition. Note that these are exactly the content of the previous three
propositions. ✷

Moreover it is the largest knowledge-indexed relation which satisfies
all the properties of Definition 4.3:

Theorem 4.14 (Full abstraction of ∼=
rbc for ≈bis).

Γ |= M ∼=
rbc N iff Γ |= M ≈bis N

Proof: One direction is straightforward. We have just shown that ≈bis is
contextual. By definition it is pointwise symmetric and reduction closed,
and it is easy to prove that it is barb preserving. It follows that ≈bis is
contained in ∼=

rbc.
The converse is more difficult. It involves constructing a context

C[−]α,Γ which in some sense characterises the ability of a system to per-
form the external action α in the environment Γ. Approximately this
context should have the property that

Γ ✄ M α=⇒ Γ′
✄ N

. . . Behavioural Theory of Access and Mobility Control. . . 43

if and only if C[M]α,Γ ⇒ D[N], where D[−] is a canonical context from
which both N and Γ′ are in some sense recoverable.

The formal proof can be recovered as an instance of the more compli-
cated Theorem 5.21 and is therefore omitted. ✷

5 Controlling mobility

We now consider a richer calculus in which movement of processes may be
controlled. As explained in the Introduction, in Dpi any process which is
in possession of the name of a location may travel to that place and begin
executing arbitrary code there. We extend Dpi with a very simple means
of mobility control and investigate the resulting contextual equivalence.

5.1 Migration rights

Hennessy and Riely have already proposed a simple access control mech-
anism for Dpi in the form of the move capability [9], and here we extend
this idea to allow somewhat more flexibility.

The location types in Dpi are of the form

loc[u1 : A1, . . . , un : An]

where the ui : Ai can be seen as capabilities at that location. We introduce
an extra type of capability now by allowing location types to be also of
the form

loc[moveS, a1 : A1, . . . , an : An] (17)

where S is a set of identifiers. If a location k is known at this type then
agents resident at any location in S have migration rights to k.

Example 5.1. [The taxman] Let us re-examine the bank account server
in Example 3.6. The server Bserver automatically gains knowledge of
all generated bank accounts, and therefore apriori has migration rights to
them; it can run whatever code it wishes at these sites. A simple variation,
which takes advantage of this fact could be defined as:

Bserver ⇐ sJrequest?(x : int, y@z)

(newloc b : Lb) with . . . put, get . . . in

goto z.y!〈b〉 | Taxman K

44 M. Hennessy, M. Merro and J. Rathke

Γ ⊢ u : loc

Γ ⊢ w : loc

Γ, u : movew ⊢ env Γ, u : movew, Γ′ ⊢(dec) u : loc[movew]

Γ ⊢(dec) u : loc[R1, . . . ,Ri]
Γ ⊢(dec) u : loc[Ri+1, . . . ,Rn]

Γ ⊢(dec) u : loc[R1, . . . ,Rn]

where ⊢(dec) indicates that this judgement is valid for both ⊢ and ⊢dec.

Figure 11. Extra rules for move capability

where the agent Taxman is defined by:

deduct?(x : int,

y : Lb,

z)

goto y. . . . collect tax with get, put

. . . return to z

This agent can be sent by the server to any client bank account, bound to
y, to collect an amount of tax, bound to x.

With our augmented capabilities an alternative server could be defined
which generates bank accounts with nominated migration rights; the client
could determine those sites which may use the accounts:

(newreg put : rc〈Tp〉, get : rc〈Tg〉)

BserverCon ⇐ sJrequest?(x : int, y@z, W) − W allowed sites

(newloc b : LW
b) with . . .put . . . get . . .K

where the dynamic type loc[moveW, put : . . . get : . . .] is the declaration
type of the new accounts. ✷

Formally to incorporate this new capability into Dpi we need to extend
it with variables, constructors and deconstructors for finite sets of names.
This is routine but tedious. So instead let us outline how we may introduce
move capabilities of the form moveu for single identifiers; by allowing a
number of these to occur in a location type we can simulate the effect of
finite sets; instead of the location type (17) above we would use

loc[moveu1
, . . . moveuk

, a1 : A1, . . .]

We need to modify the type system to cater for this new capability.

. . . Behavioural Theory of Access and Mobility Control. . . 45

The details are straightforward:

• We redefine the capabilities in Figure 4 to read

Capabilities: R ::= u : A | moveu

• Type environments can now also include entries of the form u : movew.
We add rules to the type judgements for environments and values ac-
cordingly; see Figure 11.

• Finally, we change the type inference of the migration primitive by
replacing the rule (t-go) from Figure 9 with

(t-move−go)

Γ ⊢ u : loc[movew]
Γ ⊢u P : proc

Γ ⊢w gotou.P

We make no change to the reduction semantics, nor the definition of
contextual equivalence for the language. It is straightforward to check that
Theorem 3.19, Subject Reduction also holds for this extended calculus.

Let us now examine the effect migration rights have on behavioural
equivalences. Suppose N1, N2 are given by

kJa!〈〉 stopK and kJstopK (18)

The question of whether or not N1 and N2 are contextually equivalent
relative to an environment Γ, now written

Γ |= N1 ∼=
m

rbc N2

depends on whether there are locations known to the environment Γ which
have migration rights to k. If so, say at a location l1, agents may be sent
from l1 to k in order to observe the difference in behaviour between M1 and
M2 at k. But will these agents be able to report back to the environment?
This in turn depends on whether there is some site l2 in the environment
which allows migration from k. But now is there a location which can
coordinate this testing involving l1 and l2? This depends on the existence
of another site which has appropriate migration rights to and from l1, l2.

The situation is getting complicated. But in general it can get much
more complicated. Observing different behaviour at a site k may require a
range of capabilities, and knowledge of these may be distributed through-
out the environment at sites with limited migration rights between them-
selves.

We simplify matters by restricting attention to a very simple form
of migration right; the simplification is not necessarily very realistic but

46 M. Hennessy, M. Merro and J. Rathke

it will enable us to demonstrate the subtlety involved in developing be-
havioural equivalences in the presence of controlled mobility. We consider
the sublanguage in which only the universal move capability move∗ where
∗ is a wildcard, is allowed; this capability grants migration rights to every

site. Thus in an environment containing

l : loc[move∗, u1 : A1, . . .]

k : loc[u1 : A1, . . .]

all sites have access to l while no sites have access to k.
For this restricted language we give, in the following two subsections,

two different generalisations to the full-abstraction result, Theorem 4.14.

5.2 Mobility Bisimulation equivalence

It is straightforward to adapt the typed actions in Figure 10 to take into
account these simple migration rights. Essentially for an action to be
allowed at a site k the constraints discussed in Section 4.1 must be satisfied
but in addition the environment must have migration rights to k. Formally
we define actions

Γ ✄ M µ−→m Γ′
✄ M ′

by replacing the rules (lts-out) and (lts-in) in Figure 10 with

(lts-outm)

Γ ⊢ k : loc[move∗]
a : r〈T〉@k ∈ Γ
Γ ⊓ 〈V : T〉@k exists

(Γ ✄ kJa!〈V 〉P K) k.a!V−−−→m (Γ ⊓ 〈V : T〉@k ✄ kJP K)

(lts-inm)

Γ ⊢ k : loc[move∗]
a : w〈U〉@k ∈ Γ
Γ ⊢ V : U@k

(Γ ✄ kJa?(X : T) P K) k.a?V−−−→m (Γ ✄ kJP{|V/X|}K)

and leaving the other rules unchanged.

Definition 5.2 (Typed m-Bisimulations). A typed relation R over
systems is said to be a typed m-bisimulation if it satisfies the requirements
of Definition 4.6, with the relation Γ ✄ M µ−→ Γ′

✄ M ′ replaced by Γ ✄

M µ−→m Γ′
✄ M ′.

We use Γ |= M ≈m
bis N to denote the resulting version of bisimulation

equivalence. ✷

Example 5.3. As in (18) above let N1, N2 denote kJa!〈〉 stopK and

. . . Behavioural Theory of Access and Mobility Control. . . 47

kJstopK respectively, and suppose Γ is such that Γ 6⊢ k : loc[move∗]. Then
Γ |= N1 ≈m

bis N2 because no m-typed actions are possible from these sys-
tems. ✷

Example 5.4. Here let N3, N4 represent the systems

(new k : loc[move∗, b : rw〈〉]) lJa!〈k〉K | kJb!〈〉K and

(new k : loc[move∗, b : rw〈〉]) lJa!〈k〉K | kJ0K

respectively, and let Γ1 denote the environment

l : loc, l : move∗, b : rc〈rw〈〉〉, a : rw〈loc[b : rw〈〉]〉@l

Here the environment can interact at the site l because it has migration
rights there. And via the channel a located at l it can gain knowledge of
k. But because of the type at which it knows a it can never gain migration
rights to k. Consequently we have Γ1 |= N3 ≈m

bis N4.
However let Γ2 denote

l : loc, l : move∗, b : rc〈rw〈〉〉, a : rw〈loc[move∗, b : rw〈〉]〉@l

Here any location name received on the channel a at l comes with migra-
tion rights. So we have Γ2 |= N3 6≈

m

bis N4. ✷

The essential property of this new equivalence is a restricted form of
contextuality:

Proposition 5.5. Suppose Γ ⊢ k : loc[move∗]. Then Γ |= M ≈m
bis

N and
Γ ⊢ kJP K implies Γ |= M | kJP K ≈m

bis
N | kJP K.

Proof: The proof is similar to that of Proposition 4.12, where now the
hypothesis Γ ⊢ k : loc[move∗] is necessary to allow interaction between the
two systems in parallel. ✷

This property allows us to give a contextual characterisation of ≈m
bis

.
We need to slightly adapt the concepts defined in Section 4.

m-Context closure: Here the change is in the second clause. A typed
relation over systems is m-contextual if

(i) Γ |= M R N and Γ, Γ′ ⊢ env implies Γ, Γ′ |= M R N

(ii) Γ |= M R N , Γ ⊢ k : loc[move∗] and Γ ⊢ kJP K implies Γ |= (M |
kJP K) R (N | kJP K)

(iii) Γ ⊓ 〈n : T〉 |= M R N implies Γ |= (new n : T) M R (new n : T) N

m-Barb preservation: Here we only allow barbs at locations to which
migration rights exist. We write Γ ⊢ M ⇓m-barb a@k if

• Γ ⊢ k : loc[move∗] and Γ ⊢ a : rw〈〉@k

48 M. Hennessy, M. Merro and J. Rathke

• there exists some M ′ such that M →∗ (M ′ | kJa!〈〉P | QK)

We now say that a typed relation over systems is m-barb preserving if
Γ |= M R N and Γ ⊢ M ⇓m-barb a@k implies Γ ⊢ N ⇓m-barb a@k.

Definition 5.6 (m-Reduction barbed congruence). Let ∼=
m
rbc be the

largest typed relation over systems which is reduction-closed, m-contextual
and m-barb preserving. ✷

Theorem 5.7 (Full abstraction of ∼=
m
rbc for ≈m

bis).

Γ |= M ∼=
m

rbc N iff Γ |= M ≈m

bis N.

Proof: The formal proof can be recovered as an instance of the more
complicated Theorem 5.21 and is therefore omitted. ✷

5.3 Re-examining contextuality

The two examples given in the previous subsection deserve re-examination,
particularly in view of the definition of m-contextuality. In Example 5.3
above it turns out that N1 and N2 are not equivalent with respect to any Γ
which does not contain migration rights to k. But an alternative definition
of contextual would require the behavioural equivalence to be preserved
by all contexts typeable by Γ. Suppose Γ is the environment

h : loc, h : move∗, eureka : rw〈〉@h, k : loc, a : rw〈〉@k

Then one can check that Γ ⊢ kJa?() goto h.eureka!〈〉K and running Ni

in parallel with this well-typed context would enable us to distinguish
between them.

This new, but still informal, notion of contextuality presupposes that
the context can have already in place some testing agents running at
certain sites to which it does not have migration rights. An obvious choice
of sites would be all those which are known about, that is all k such that
Γ ⊢ k : loc. However our results can be parameterised on this choice.

T -Context closure: Let T be a collection of location names. A typed
relation R is said to be T -contextual if

(i) Γ |= M R N and Γ, Γ′ ⊢ env implies Γ, Γ′ |= M R N

(ii) Γ |= M R N , Γ ⊢ kJP K, where either k ∈ T or Γ ⊢ k : loc[move∗],
implies Γ |= (M | kJP K) R (N | kJP K)

(iii) Γ ⊓ 〈n : T〉 |= M R N implies Γ |= (new n : T) M R (new n : T) N

Definition 5.8 (T -Reduction barbed congruence). Let ∼=
T
rbc be the

largest typed relation over systems which is reduction-closed, T -contextual
and m-barb preserving. ✷

. . . Behavioural Theory of Access and Mobility Control. . . 49

Note that here we still only allow barbs at locations to which we have
migration rights. This could be generalised to also allow barbs at locations
in T . But it would not change the equivalence as these local barbs can
always be replaced by barbs at predefined locations which the environment
declares with migration rights.

The question now is whether we can devise a bisimulation based char-
acterisation of ∼=

T
rbc.

The obvious approach is to modify the definitions of the typed actions
µ−→m, to obtain actions µ−→T which allow observations at a site k, if either

the environment has migration rights to k as before, or k ∈ T . With
these actions we can modify Definition 4.6 to obtain a new behavioural
equivalence, which we denote by ≈T

bis
. Unfortunately this does not coincide

with the contextual equivalence ∼=
T
rbc.

Example 5.9. Let N5, N6 be the systems defined by

hJa!〈b@k〉K | kJb!〈〉K and hJa!〈b@k〉K | kJstopK

and Γ the environment

h : loc, h : move∗, k : loc, a : rw〈T〉@h

Then if k is in T one can check that N5 6≈
T

bis
N6. This is because Γ✄N5 can

perform the action h.a!(b@k) followed by k.b!〈〉, which can not be matched
by Γ ✄ N6.

However Γ |= N5 ∼=
T
rbc

N6 because it is not possible to find a context
to distinguish between them. A context can be found to augment the
knowledge of the environment at h with the fact that b exists at k. But it
is not possible to transfer this information from h to where it can be put
to use, namely k. ✷

This example demonstrates that even with our very restricted move
capability there are problems with the flow of information. Knowledge
about the system learnt at l can not necessarily be passed to k if the
environment does not have move capability at k. Thus, any direct inter-
actions performed at a location k in T , without using migration, need to
be made with a localised knowledge at k. This motivates the new form of
configurations we introduce for the labelled transition system necessary in
order to characterise ∼=

T
rbc.

We replace a simple Γ with a structure Γ = (Γ, Γk1
, . . . ,Γkn

) where the
ki make up T . Each Γki

represents localised knowledge at ki whereas Γ
represents the centralised knowledge, available at any location for which we
have move capability. Given that we can store the centralised knowledge
at a location k0, provided by the environment (with move capability),
we can always pass local knowledge on to k0 (but not vice versa). Thus

50 M. Hennessy, M. Merro and J. Rathke

(lts-move−out)

Γ ⊢ k : loc[move∗]
a : r〈T〉@k ∈ Γ
Γ ⊓ 〈V : T〉@k exists

(Γ ✄ kJa!〈V 〉P K) k.a!V−−−→ (Γ ⊓0 〈V : T〉@k ✄ kJP K)

(lts-T−out)

Γ 6⊢ k : loc[move∗]
k ∈ T
a : r〈T〉@k ∈ Γk

Γ ⊓0 〈V : T〉@k ⊓k 〈V : T〉@k exists

(Γ ✄ kJa!〈V 〉P K) k.a!V−−−→ (Γ ⊓0 〈V : T〉@k ⊓k 〈V : T〉@k ✄ kJP K)

(lts-move−in)

Γ ⊢ k : loc[move∗]
Γ ⊢ a : w〈T〉@k
Γ ⊢ V : T@k

(Γ ✄ kJa?(X : A) P K) k.a?V−−−→ (Γ ✄ kJP{|V/X|}K)

(lts-T−in)

Γ 6⊢ k : loc[move∗]
k ∈ T
Γk ⊢ a : w〈T〉@k
Γk ⊢ V : T@k

(Γ ✄ kJa?(X : A) P K) k.a?V−−−→ (Γ ✄ kJP{|V/X|}K)

(lts-T−weak)

(Γ, (n : T)
∇

✄ M) (ñ:T̃)k.a?V−−−−−−−→ (Γ
′
✄ M ′)

(Γ ✄ M) (n:Ten:eT)k.a?V−−−−−−−−−→ (Γ′
✄ M ′)

n 6= a, k

Figure 12. Labelled transition rules accounting for the move capability

centralised knowledge is always greater than any of the local knowledge
environments. This leads us to the following definition:

Definition 5.10 (Configurations).

• An environment structure, or simply a structure, over T , consists of a
family of type environments Γ = Γ, Γk1

, . . . ,Γkn
such that

. . . Behavioural Theory of Access and Mobility Control. . . 51

– T = {k1, . . . , kn}

– Γ <: Γki for each 1 ≤ i ≤ n

We sometimes use Γk0
to denote the first component of the structure

Γ.

• A configuration Γ ✄ M (over T) consists of an environment structure
Γ and a system M such that there exists some environment ∆ with

– ∆ ⊢ M

– ∆ <: Γ

– dom(∆) = dom(Γ) ✷

We will write Γ
T

∇
to mean the family of environments Γ, Γk1

, . . . ,Γkn
such

that each component Γki
is equal to the environment Γ; we will typically

omit the parameter T here as it can usually be recovered from context.

We understand Γ, Γ
′

and Γ ⊓ Γ
′

to be pointwise operations. Finally we
need a notation for increasing knowledge in the individual components
of a configuration, for which we use the notation ⊓k. For instance we
write Γ⊓0 Γ′ to mean the family such that the global component becomes
Γ ⊓0 Γ′ and all other components are unchanged. Similarly Γ ⊓k Γ′ adds,
if possible, Γ′ to the kth component.

We define our new labelled transition system, parameterised on T , as
binary relations between these new configurations. We replace the rules
(lts-out) and (lts-in) in Figure 10 with those in Figure 12 and modify
the remaining rules in Figure 10 in the obvious manner; an example of the
required modification is given in the rule (lts-T− weak), where the new
knowledge, a name n of type T, is extended throughout all components of
the environment. A similar modification is required for the rule for rules
involving (new) .

Note that each of the new rules, involving input and output, have two
cases, depending on whether the move∗ capability of the location under
scrutiny is present, or if it is in the parameter T . The difference between
the cases lies in whether the ability to perform the corresponding action is
checked locally or globally. For outputs, if the move capability is present
then only the global environment is increased with the new knowledge; in
its absence the corresponding local environment also has to be updated.
Note also that the effect of the rule (lts-T− weak) is that all new names
generated by the environment are made known to every component.

It is straightforward to check that the resulting labelled transition sys-
tem is well-defined, and has many of the desirable properties of the more
straightforward labelled transition system of Section 4.

52 M. Hennessy, M. Merro and J. Rathke

Proposition 5.11.

• If Γ ✄ M is a configuration and (Γ ✄ M) α−→ (Γ
′
✄ M ′) then Γ

′
✄ M ′

is also a configuration.

• For every Γ and every action α there exists a unique structure (Γafterα)

with the property that (Γ ✄ M) α−→ (Γ
′
✄ M ′) implies Γ

′
is (Γ after α).

Proof: Similar to that of Proposition 4.4. ✷

The evolution from Γ to (Γ after α) involves two distinct kinds of increase
in knowledge. The first is when the types associated with names already
known to Γ are changed (to a subtype) and the second is when new names
are created. The latter, for example happens when the action is an input
rule and the environment creates new names; it can also happen in the
output case, when the system extrudes new names. But in all cases the
new knowledge is distributed to each component of the new environment
structure. We call this new information the extension of Γ by α.

The standard definition of (weak) bisimilarity may now be applied to
this new labelled transition system; to emphasise the role of the parameter
T we will write the resulting equivalence as ≈T

bis. We show that this co-
inductive equivalence characterises the contextual equivalence ∼=

T
rbc

.
However to carry out the proof we must first generalise the latter, from

simple environments Γ to the structures Γ. This involves generalising the
notion of of context-closure to families of relations indexed by environment
structures.

T -Context closure revisited: A family of relations R, parame-
terised over environment structures, is said to be T -contextual if

(i) Γ |= M R N and Γ, Γ′ ⊢ env implies Γ, Γ′
∇ |= M R N

(ii) Γ |= M R N , Γ ⊢ kJP K, where Γ ⊢ k : loc[move∗], implies Γ |=
(M | kJP K) R (N | kJP K)

(iii) Γ |= M R N , Γi ⊢ kiJP K, where ki ∈ T , implies Γ |= (M | kJP K) R
(N | kJP K)

(iv) Γ⊓〈n : T〉
∇
|= M R N implies Γ |= (new n : T) M R (new n : T) N

Definition 5.12 (T -Reduction barbed congruence revisited). Let

∼=
T
rbc be the largest family of relations indexed by environment structures

which is is reduction-closed, T -contextual and m-barb preserving. ✷

These definitions are designed with the following property in mind:

Proposition 5.13. Γ |= M ∼=
T
rbc

N (according to Definition 5.8) if and
only if Γ∇ |= M ∼=

T
rbc N (according to Definition 5.12) .

. . . Behavioural Theory of Access and Mobility Control. . . 53

Proof: Straightforward unravelling of the definitions. ✷

So now we can concentrate on relating the relation Γ |= M ∼=
T
rbc

N with
Γ |= M ≈T

bis N , and thereby obtain a co-inductive characterisation of the
real relation of interest, Γ |= M ∼=

T
rbc

N .

Proposition 5.14 (Soundness of ≈bis for ∼=
rbc). For any T , Γ |=

M ≈T
bis N implies Γ |= M ∼=

T
rbc N .

Proof: This involves showing that the co-inductive relation satisfies the
defining properties of ∼=

T
rbc

, the most difficult one being the preservation
of relevant contexts. However the proof is a mild generalisation of that of
Corollary 4.13, and its preceding propositions. ✷

The remainder of the section is devoted to the proof of the converse
of this proposition, namely completeness. The main challenge is to design
contexts which characterises, in some sense the typed actions of Figure 12.
The intuitive idea is to maintain some home base, which we will denote
with the new location name k0, which maintains all global information,
available at another new resource named r0. Each site ki in T will maintain
a record of local information, available at a local resource which we call
ri. An invariant of the testing context is that the information available at
each ri is also available globally, at r0.

The context for an action at a site l depends on whether the environ-
ment has migration rights to l. It it does then an agent is launched from
the home base to l and reports back to base, updating the information
at r0. If it does not then the test is purely local; it is launched from the
relevant location ki in T , although to maintain the invariant the global
knowledge is also updated at the home base k0.

The definition of the defining contexts, CΓ
α , for the action α relative

to the structure Γ is given in Figure 13. However to keep the description
manageable we only consider the case where α involves the transmission
of a single name; this contains all the essential details of the more gen-
eral case. The description also uses a considerable number of notational
conventions we we now outline.

Notation 5.15.

• For the remainder of this section we use assume that the names k0,
r0, r1, . . . , rn are always chosen to be new wherever they are used; their
use has already been informally explained. We also require the fresh
names δ, δfail and δsucc to be used periodically as barbs.

• For a type environment Γ we use vΓ to represent a tuple consisting of
all the identifiers (and compound identifiers) in the domain of Γ. This

54 M. Hennessy, M. Merro and J. Rathke

For notational convenience below we use Γ
′
as an abbreviation for (Γ after

α).

• If α is (m̃)k.a!v and Γ ⊢ k : loc[move∗] then CΓ
α =

k0Jgoto k.a?X.if (X =Γ (new m̃) v) then goto k0.(r0!
〈
vΓ

′
k0

〉
| δ!〈〉) else 0K

| LReport

• If α is (m̃)ki.a!v, where Γ 6⊢ ki : loc[move∗] but ki ∈ T then CΓ
α =

kiJa?X.if (X =Γ (new m̃) v) then ri!
〈
vΓ

′
ki

〉
| goto k0.(r0!

〈
vΓ

′
ki

〉
| δ!〈〉) else 0K

|
∏

kj∈T ,i 6=j

kjJrj !

〈
vΓ

′
kj

〉
K

• If α is (m̃ : T̃)k.a?v and Γ ⊢ k : loc[move∗] then CΓ
α =

(new m̃ : T̃) k0Jgoto k.a!〈v〉 .goto k0.(r0!
〈
vΓ

′
k0

〉
| δ!〈〉)K | LReport

• If α is (m̃ : T̃)ki.a?v, where Γ 6⊢ ki : loc[move∗] but ki ∈ T then CΓ
α =

(new m̃ : T̃) kiJa!〈v〉 .goto k0.(r0!
〈
vΓ

′
k0

〉
δ!〈〉)K | | LReport

Figure 13. Contexts for actions

is our way of representing the knowledge of an environment, typeable
by Γ. Thus in Figure 13 when a test has been completed the new
knowledge in the form of v∆ for some ∆, is made available at the
global resource name r0. In all but one case this is (Γ after α)k0

. The
exception is in the second case, where for reasons of typeability this
has to be restricted to the local knowledge at the location of the action.
But in all cases local knowledge in a similar form is also made available
at the local resource names ri; this uses the process term

∏

kj∈T

kjJrj !
〈
v(Γafterα)kj

〉
K

which we abbreviate to LReport.

• For a type environment Γ we use (Γ) to represent the tuple of types
listed in Γ in such a way that Γ ⊢ vΓ : (Γ). These will be used to
ensure that the action contexts are properly typed.

. . . Behavioural Theory of Access and Mobility Control. . . 55

• The action contexts for outputs receive a value v and test its identity
against all known identifiers. In Figure 13 this testing is expressed
using the notation (X =Γ (new m̃) v), which is defined by

X = n if v = n 6= m
X 6∈ Γ if v = m
(X1 =Γ (new m̃) V1) ∧ (X2 =Γ (new m̃) V2) if X = X1@X2

and V = V1@V2

Here X 6∈ Γ is obvious encoding of nested tests for X against each
identifier in the domain of Γ, and we use ∧ as a shorthand for a pro-
grammed conjunction of tests.

We need to ensure that these action contexts can be properly typed,
and that the definition of T -context closure actually allows them to be
used as contexts; this is far from apparent from the definition of T -context
closure. A useful description of allowed contexts is given in the following
definition.

Definition 5.16 (T -contexts). Let obs(Γ, N) be the least relation
which satisfies the following conditions:

• obs(Γ, 0)

• obs(Γ, N), Γ ⊢ k : loc[move∗] and Γ ⊢ kJP K implies obs(Γ, N | kJP K)

• obs(Γ, N), k ∈ T and Γki
⊢ kiJP K implies obs(Γ, N | kiJP K)

• obs(Γ, n : T∇, N) implies obs(Γ, (new n : T) N) ✷

Proposition 5.17. Let R be any family of relations which is T -contextual.
If obs(Γ, O) then Γ |= M R N implies Γ |= (M | O) R (N | O)

Proof: By induction on the definition of obs(Γ, O). ✷

We should not expect CΓ
α to be an allowed context for Γ, that is

obs(Γ, CΓ
α); we need to add types for the new housekeeping names k0, ri

etc. used. Unfortunately the precise typings for these new names depends
to some extent on the action α. The basic reason is that the test po-
sitioned at ki ∈ T has to be typeable by the local knowledge Γi. This
test includes an agent which reports to the home base; however to ensure
typeability its behaviour there can only depend on the knowledge Γi; see
the second case in Figure 13, where at r0 only the knowledge known at ki

can be reported globally. With this in mind let us define ΓH,α, a list of
type associations as follows:

k0:loc, move@k0, δ:rw〈〉@k0, δfail:rw〈〉@k0, δsucc:rw〈〉@k0,

r0:rw〈(Γ after α)n〉@k0, r1:rw〈(Γ after α)k1
〉@k1, . . . , rn:rw〈(Γ after α)kn

〉@kn

56 M. Hennessy, M. Merro and J. Rathke

where

• If α is an output move, Γ 6⊢ ki : loc[move∗] but ki ∈ T then the index
n is ki

• otherwise n is k0.

We can now state the main result which formalises the correspondence
between typed actions and typed contexts. It uses a term GReportα to
give the state of knowledge, after the success completion of the action; its
composition depends slightly on the action in question.

Proposition 5.18. Suppose (Γ ✄ M) is a configuration. Then (Γ ✄

M) α=⇒ (Γ
′
✄ M ′) if and only if

1. obs(Γ, ΓH,α∇
, CΓ

α), that is CΓ
α is an allowed context for the extended

environment structure

2. M | CΓ
α →∗ (new m̃:T̃) (M ′ | k0Jδ!〈〉K | LReport |GReportα)

If α is an output action at ki where Γ 6⊢ ki : loc[move∗] but ki ∈ T then
GReportα is the term

k0Jr0!
〈
v(Γafterα)ki

〉
K

Otherwise it is

k0Jr0!
〈
v(Γafterα)k0

〉
K

Proof: (Outline) In one direction the result is straightforward; it is suffi-

cient to prove, by induction on the derivation, that if (Γ✄M) α=⇒ (Γ
′
✄M ′)

then the action context is allowed and that when run parallel with M the
overall system can reach the desired state.

The converse is more difficult and depends on the precise definition of

the context. But the crucial point is that in the reduction from M | CΓ
α

the subsystem k0Jδ!〈〉K can only be reached if M performs the action α,
possibly preceded or followed by some internal actions. ✷

The usefulness of the components of these contexts which retain the
local and global knowledge is apparent from the following result:

Lemma 5.19 (Extrusion). Suppose m̃:T̃ is the extension of Γ by the
action α. Then

Γ, (ΓH,α)
∇
|= (new m̃:T̃) (M | GReportα | LReport)

∼=
rbc
T (new m̃:T̃) (N | GReportα | LReport)

implies

(Γ after α) |= M ∼=
rbc
T N

. . . Behavioural Theory of Access and Mobility Control. . . 57

Proof: Unfortunately the proof of this result is notationally quite complex
and is relegated to the appendix. ✷

We next give an outline of the completeness proof, which relies heavily
on this Extrusion Lemma.

Proposition 5.20 (Completeness of ≈bis for ∼=
rbc). For any T , Γ |=

M ∼=
rbc
T N implies Γ |= M ≈T

bis
N .

Proof: We define a relation R such that Γ |= M R N if Γ |= M ∼=
rbc
T N

and show that R forms a bisimulation. The proposition will then follow
by co-induction.

Suppose Γ |= M R N and let Γ✄M α−→ (Γafterα)✄M ′. We must find
a matching transition from (Γ ✄ N). We only outline the monadic case,
where only single values are transmitted.

The idea of the proof is to use a particular context which mimics the
effect of the action α, and also allows us to subsequently compare the
residuals of the two systems. This context has the form

DΓ
α[−] = (new δ) (− | CΓ

α | Flip)

where where CΓ
α is given in Figure 13 and Flip is the system

k0Jδfail!〈〉 | δ?() .δfail?() .δsucc!〈〉K

Intuitively the existence of the barb δfail at the home-base k0 indicates
that the action has not yet happened, whereas that of δsucc ensures that
is has occurred, and has been reported via δ. In the context above this
reporting channel δ has been restricted and we have omitted its obvious
type.

Using Proposition 5.18 (the only if implication), we can deduce that

CΓ
α |Flip is an allowed context for the extended environment Γ, ΓH,α∇

and
because ∼=

rbc
T is T -contextual we therefore have

Γ, ΓH,α∇
|= DΓ

α[M] ∼=
rbc
T DΓ

α[N]

By inspecting the reduction rules of DΓ
α[M] we observe that,

DΓ
α[M] →∗ (new m̃ : T̃) (M ′ | k0Jδsucc!〈〉K | |GReportα | LReport)

where (m̃ : T̃) is the extension of Γ by α. Let us call this latter system
M0.

This reduction must be matched by a corresponding reduction

DΓ
α[N] →∗ N0

where

Γ, ΓH,α∇
|= M0 ∼=

rbc N0. (19)

58 M. Hennessy, M. Merro and J. Rathke

However the possible matching reductions are constrained by the barbs of
M0 in the extended environment; it has the barb δsucc@k0 but it does not
have δfail@k0. Effectively the reduction must have the form

DΓ
α[N] →∗ (new m̃ : T̃) (N ′ | k0Jδsucc!〈〉K | GReportα | LReport)

for some N ′. This in turn implies that there must be a reduction

N | CΓ
α →∗ (new m̃ : T̃) (N ′ | k0Jδ!〈〉K | GReportα | LReport)

At this stage we can apply Proposition 5.18 (in the opposite direction) to
obtain a required weak typed action

Γ ✄ N α=⇒ Γ
′
✄ N ′

However we must establish that

(Γ after α) |= M ′
∼=

rbc
T N ′ (20)

It is easy to remove the success barbs from (19) above to obtain

Γ, ΓH,α∇
|= (new m̃:T̃) (M ′ | GReportα | LReport)

∼=
rbc
T (new m̃:T̃) (N ′ | GReportα | LReport)

However this is precisely the premise in the Extrusion Lemma above,
Lemma 5.19, which gives the required (20). ✷

Finally, we can state the final result of the paper which follows from
Propositions 5.14 and 5.20.

Theorem 5.21 (Full abstraction). In Dpi with restricted mobility

Γ |= M ∼=
T

rbc N if and only if Γ |= M ≈T

bis N.

Note that Theorem 4.14 and Theorem 5.7 can be recovered as an instance
of this result by considering every location type to contain the move ca-
pability. In this case the extra labelled transitions and extra structure we
require in configurations becomes redundant.

6 Conclusions and related work

We have presented two labelled transition systems for which bisimilarity
coincides with a natural notion of contextual equivalence for distributed
systems. The labelled transitions rely upon a type discipline for the lan-
guage which can control resource access and mobility. As in [8, 2], the
use of a type environment representing the tester’s knowledge of the sys-
tem plays an important role in characterising the contextual equivalences.
In particular it aided us in defining a labelled transition system which
accounts for information flow in a distributed setting with restricted mo-
bility.

. . . Behavioural Theory of Access and Mobility Control. . . 59

The mobility control presented here is not intended to be a definitive
treatment, rather a first step towards identifying the nature of contextual
equivalence in this setting. A clear progression of this work then would
be to introduce a more fine-grained mobility control mechanism into Dpi
or similar and to adapt the ideas presented here to understand contextual
equivalence. In another vein, we can investigate how the parameter T
affects equivalence. The use we make of it here is to allow testing at
any (initially) known location. At the other extreme we could fix T to
be empty. This would only allow tests to be placed at fresh locations —
thereby changing the nature of observability and simplifying the semantics
considerably. This may be the appropriate choice for testing equivalences
[7].

There has been a great deal of interest in modelling distributed systems
using calculi in recent years, [16, 6, 1, 4, 18, 9, 3]. The emphasis so far
has largely been on design of the languages to give succinct descriptions of
mobile processes with type systems given to constrain behaviour in a safe
manner. Where equivalence has been used it has typically been introduced
as some sort of contextual equivalence very similar to the one found in the
present paper [6, 1, 11]. Proofs of correctness of protocols or language
translations have been carried out with respect to these contextual equiv-
alences. Recently in [5] a form of bisimulation has been suggested as a
proof method for establishing contextual equivalence in the Seal calculus.
But, as far as we know, the only existing example of an operational char-
acterisation of behavioural equivalence in the distributed setting is found
in [12].

The work in [17] takes a different, more intensional approach to equiva-
lence in the distributed setting in that, in order to establish correctness of
a particular protocol, a novel notion of equivalence based on coupled sim-
ulation tailored to accommodate migration is identified. Although having
many interesting properties such as congruence, this equivalence is not
shown to coincide with any independent contextually defined notion of
equivalence.

A The Extrusion Lemma

To prove the Extrusion lemma we need to formulate a more general state-
ment, involving environment structures which are consistent with Γ, the
current knowledge about the system. It uses a general environment struc-
ture ∆ and presupposes that the channels ri used in the main body of the
text are typed to support the reporting of the components of ∆. So we

60 M. Hennessy, M. Merro and J. Rathke

use ΓD to denote the following list of environments:

k0:loc, move@k0, r0:rw〈∆k0
〉@k0

r1:rw〈∆k1
〉@k1, . . . , rn:rw〈∆kn

〉@kn

Lemma A.1 (General Extrusion). Let ∆ be an environment struc-
ture such that Γ ⊓ ∆ ✄ M and Γ ⊓ ∆ ✄ N are configurations. Then

Γ, (ΓD)
∇
|= (new m̃:T̃) (M | k0Jr0!〈v∆〉K |

∏
kj∈T kjJrj !

〈
v∆kj

〉
K)

∼=
rbc
T

(new m̃:T̃) (N | k0Jr0!〈v∆〉K |
∏

kj∈T kjJrj !
〈
v∆kj

〉
K)

implies

Γ ⊓ ∆ |= M ∼=
rbc
T N.

Proof: We define a family of relations as follows: Let RΓ⊓∆ be the set of
all pairs of systems (M, N) such that

Γ, (ΓD)
∇
|= (new m̃:T̃) (M | k0Jr0!〈v∆〉K |

∏

kj∈T

kjJrj !
〈
v∆kj

〉
K) ∼=

rbc
T

(new m̃:T̃) (N | k0Jr0!〈v∆〉K |
∏

kj∈T

kjJrj !
〈
v∆kj

〉
K)

When it is apparent from the context we will refer to these systems simply
as A, B respectively.

The result will follow if we prove that

RΓ⊓∆

is

• Reduction closed

• T -contextual

• m-barb preserving

We outline some of the required proofs.
First let us consider the third requirement, m-barb preserving ; From

Γ ⊓ ∆ ⊢ M ⇓m-barb a@k we need to show that Γ ⊓ ∆ ⊢ N ⇓m-barb a@k. We
know A and B have the same barbs but the problem is that a@k may not
be a barb of A because a (or even k) may be restricted via the occurrence
of (new m̃ : M̃) in A. We overcome this problem by placing A and B in
an appropriate context.

Let Kbarbbe the system

k0Jr0?(X : (∆)).goto k.a?().goto k0.w!〈〉 {|X/v∆|}K

. . . Behavioural Theory of Access and Mobility Control. . . 61

where w is a fresh channel. It is easy to check that

Γ, (ΓD)
∇
, w : rw〈〉@k0 |= A | Kbarb ∼=

rbc
T B | Kbarb

and that

Γ, (ΓD)
∇
, w : rw〈〉@k0 ⊢ (A | Kbarb) ⇓m-barb w@k0

Effectively we have turned the barb a@k of M into the barb w@k0 of A in
the context of Kbarb.

By the m-barb preservation property of ∼=
rbc
T (and Weakening), we have

Γ, (ΓD)
∇
, w : rw〈〉@k0 ⊢ (B | Kbarb) ⇓m-barb w@k0

As w is fresh this could only have arisen by interaction with N along
channel a at k, that is N →∗ (N ′ | kJa!〈〉 | . . .K). This suffices to
conclude that Γ ⊓ ∆ ⊢ N ⇓m-barb a@k, as required.

The other requirements are proved in a similar manner. Let us look
briefly at perhaps the most difficult one, namely that R is preserved by
suitable parallel compositions. So suppose Γ ⊓ ∆ |= M R N and Γ ⊓ ∆ ⊢
kJP K. We must show that Γ ⊓ ∆ |= M | kJP K R N | kJP K whenever either
Γ ⊓ ∆ ⊢ k : loc[move∗] or k ∈ T . The details only vary slightly between
the cases.

First suppose Γ ⊓ ∆ ⊢ k : loc[move∗]. Here we use the context

Kmove = k0Jr0?(X : (∆)) .(goto k.P){|X/v∆|} | r′0!〈X〉K

where r′0 is fresh. Since Γ⊓∆ ⊢ kJP K and we abstract over the values v∆,
it is easy to check that

Γ, (ΓD)
∇
, r′0 : rw〈∆〉@k0 ⊢ Kmove

and therefore by contextuality we have

Γ, (ΓD)
∇
, r′0 : rw〈∆〉@k0 |= (new r0) (A | Kmove) ∼=

rbc
T (new r0) (B | Kmove)

where we have omitted the obvious declaration type on the restricted
channel r0, namely rw〈∆〉@k0.

A simple argument gives the identity

Γ, (ΓD)
∇
, r′0 : rw〈(∆)〉@k0 |= (new r0) (A | Kmove) ∼=

rbc
T

(new m̃) ((M | kJP K) | k0Jr
′
0!〈v∆〉K |

∏

kj∈T

kjJrj !
〈
v∆kj

〉
K)

and similar one relating B with N .
As r0 and r′0 are both fresh and have the same type we can conclude

62 M. Hennessy, M. Merro and J. Rathke

that

Γ, (ΓD)
∇
|= (new m̃:T̃) ((M | kJP K) | k0Jr0!〈v∆〉K |

∏
kj∈S kjJrj !

〈
v∆kj

〉
K)

∼=
rbc
T

(new m̃:T̃) ((N | kJP K) | k0Jr0!〈v∆〉K |
∏

kj∈S kjJrj !
〈
v∆kj

〉
K).

This suffices to witness

Γ ⊓ ∆ |= (M | kJP K) R (N | kJP K)

as required.
The structure of the proof in the second case, when k ∈ T , say k = ki

is similar but we use the context

Klocal = kiJri?(X : ∆ki
)K.(P{|X/v∆ki

|} | r′i!〈X〉)

instead. ✷

Let us now see how the version of Extrusion required for the Com-
pleteness proof can be obtained from this general result.

Corollary A.2. Suppose m̃:T̃ is the extension of Γ by the action α.
Then

Γ, (ΓD)
∇
|= (new m̃:T̃) (M ′ | GReportα | LReport)

∼=
rbc
T (new m̃:T̃) (N ′ | GReportα | LReport)

implies

(Γ after α) |= M ′
∼=

rbc
T N ′

Proof: The proof depends on instantiating the environment structure ∆
in the more general result. It suffices to let this be (Γ after α). Note that
in all cases except one this instantiation gives Γki

<: ∆ki
for each i. The

exception is the troublesome case when α is an output at some location
ki to which we do not have migration rights but which is in T ; In this
case we do not have Γk0

<: ∆k0
but only the weaker statement Γk0

⊓∆k0
.

Hence the requirement for the more general extrusion lemma. ✷

References

[1] Roberto M. Amadio and Sanjiva Prasad. Modelling IP mobility. In Davide San-
giorgi and Robert de Simone, editors, CONCUR ’98: Concurrency Theory (9th
International Conference, Nice, France), volume 1466 of LNCS, pages 301–316.
Springer, September 1998.

[2] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi without match-
ing. In 13th LICS Conf. IEEE Computer Society Press, 1998.

[3] Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27–59,
1995. Short version in Proceedings of POPL ’95. A preliminary version appeared
as Report 122, Digital Systems Research, June 1994.

. . . Behavioural Theory of Access and Mobility Control. . . 63

[4] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, June 2000.

[5] G. Castagna and F. Zappa. The seal calculus revisited. In 22th Conference on the
Foundations of Software Technology and Theoretical Computer Science. pringer-
Verlag, 2002. to appear.

[6] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier
Rémy. A calculus of mobile agents. In 7th International Conference on Con-
currency Theory (CONCUR’96), pages 406–421, Pisa, Italy, August 26-29 1996.
Springer-Verlag. LNCS 1119.

[7] M. Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge, Mass.,
1988.

[8] M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in
the presence of subtyping. In Proc. CATS2002, Computing: Australasian The-
ory Symposium, Melbourne 2002, 2002. Also available as a University of Sussex
technical report.

[9] Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. Information and Computation, 173:82–120, 2002.

[10] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 152(2):437–486, 1995.

[11] M. Merro, J. Kleist, and U. Nestmann. Mobile Objects as Mobile Processes. To
appear in Journal of Information and Computation, 2002.

[12] Massimo Merro and Matthew Hennessy. Bisimulation congruences in safe ambi-
ents. ACM SIGPLAN Notices, 31(1):71–80, January 2002.

[13] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[14] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts I and
II). Information and Computation, 100:1–77, 1992.

[15] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409–454, 1996. Extended ab-
stract in LICS ’93.

[16] Peter Sewell. Global/local subtyping and capability inference for a distributed
pi-calculus. In ICALP 98, volume 1443 of LNCS. Springer, 1998.

[17] Asis Unyapoth and Peter Sewell. Nomadic pict: Correct communication infras-
tructure for mobile computation. In Conference Record of POPL’01: The 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 236–247, London, United Kingdom, January 17–19, 2001.

[18] J. Vitek and G. Castagna. A calculus of secure mobile computations. In Secure In-
ternet Programming: Security Issues for Distributed and Mobile Objects, volume
1603 of LNCS. Springer, 1999.

