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Abstrat

In this paper, we outline new researh onerning dynami ompilation of Java appliations

in environments where system resoures are signi�antly limited. In suh environments, whih

inlude \smart" mobile telephones and Personal Digital Assistants, memory and proessor y-

les an be sare, making urrent tehniques for the runtime translation of Java programs

or program fragments inappropriate. We propose an alternative tehnique, proxy ompilation,

whih makes use of idle, onneted devies on a network to ompile ode on its behalf.

1 Introdution

The Java programming language[10, 21℄, although ommonly assoiated with Internet programming,

is a general-purpose objet-oriented programming language. Many of its features, suh as the use of

a garbage-olleted memory alloation sheme, a virtual mahine exeution model and single lass

inheritane, have been highly lauded within the omputer programming industry and aademia.

The traditional role of the ompiler[1, 13, 42, 23℄ has been to failitate one-time translation of human-

readable soure programs into mahine-readable objet programs. The generated software is then

suitable for deployment on a partiular omputer, where the program is run. Typially this means

synthesis of the program by the mahine's atual proessor. In the Java model, however, a ompiler is

primarily used to onvert Java soure ode, whih is written diretly by the programmer, to the Java

Virtual Mahine (JVM) lass�le format[21, 6℄. Virtual mahines (VMs) are hypothetial proessors

implemented in software. Exeution of a program for suh a mahine typially requires translation

of the VM program to one whih an be diretly exeuted by the underlying proessor (often that

on whih the virtual mahine software is exeuting), while retaining funtional equivalene. In this

ase, the VM language is being used as an intermediate representation in the implementation of the

language. Alternatively, the VM program an be interpreted by passing it through an interpreter

program running on the target mahine. The JVM is designed to allow onvenient representation of

Java programs. Suh VM ode is relatively eÆient for transfer aross networks, suh as the Internet.

Additionally, the program ode ontained in JVM lass�les (referred to hereafter as JVM ode) an

generally be translated more easily than the high-level program onstruts in the originating Java

programs.

Several tehniques exist for the exeution of JVM ode. In the traditional Java model, eah individual

JVM instrution is interpreted eah time the program is run. This proess involves translation of

the JVM instrution into a semantially equivalent instrution (or sequene of instrutions) for

the target omputer to exeute; hene interpretation an slow program exeution, typially by an
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order of magnitude. One ommon modi�ation to this sheme, made in pursuit of faster program

exeution, has been to translate JVM ode into native ode a single time at runtime when suh ode

is loaded (termed Just-in-Time (JIT) ompilation[20, 18, 3, 38, 34℄), or inrementally when system

ativity is below a spei�ed threshold (known as ontinuous ompilation[27, 28℄, as the program

is ontinually replaed with more highly-optimised versions of itself). JVM JIT ompilers often

ompile individual methods, rather than entire lasses or programs, and defer ompilation of eah

method until just prior to its exeution. In both JIT and ontinuous ompilation, a native ode

version of the abstrat JVM ode is stored and exeuted in plae of the JVM ode throughout the

remainder of the program. This results in a signi�ant exeution speed inrease as interpretation is

no longer required.

For powerful mahines, suh as desktop omputers or servers, JIT ompilation is generally onsidered

to be a good solution. JIT systems often introdue user-pereivable delays, however, while ode

is loaded and then ompiled. Additionally, JIT systems are often several megabytes in size and

generally onsume signi�antly more RAM than an interpreter while exeuting[16℄.

In the ontext of resoure-onstrained produts, for example, embedded onsumer devies (suh

as Personal Digital Assistants (PDAs) and so-alled \smart" mobile phones), in whih memory

and CPU yles are a sare resoure, the overhead of a dynami ompiler upon the system's

ROM/RAM usage and upon exeution speed is often impratial. An alternative ompilation sheme

for Java whih is gaining popularity in resoure-onstrained environments is Ahead-of-Time (AOT)

ompilation[33, 30, 9, 25, 24, 31, 11, 5℄, in whih all program ode is ompiled o�-line (i.e. before

the program is run on the target omputer). This is, of ourse, the lassial model of ompilation

as used for ANSI C/C++[37℄ and many other programming languages, and an result in highly

optimised mahine ode without the need for runtime translation.

The entral problems with AOT ompilation are the loss of objet portability and the question of

how to resolve runtime linkage of pre-ompiled binaries with dynamially loaded JVM lass�les.

Dynami lass loading is one of the few features whih truly di�erentiates Java from C++, as it

allows ompletely new setions of a program to be supplied and translated at runtime. Spei� uses

inlude the loading of Java applets into a web browser, and updates to a server appliation's ode

without interruption. The original proposal for Java AOT ompilation by Proebsting et al[30℄, whih

forbade dynami lass loading, has sine been re�ned[24℄. Unfortunately, the re�nement introdues

an interpreter to support exeution of dynamially loaded ode. As disussed above, interpreters

are ineÆient and JIT ompilers are generally impratial in resoure-onstrained environments.

Consequently, eÆient translation/exeution of dynamially loaded lasses in a resoure-onstrained

environment remains a fundamental problem in the �eld. This paper desribes researh being on-

duted at the University of Sussex exploring alternatives to the shemes outlined above. The goal

of the work is to �nd more eÆient exeution shemes for Java programs exeuting in resoure-

onstrained environments.

The remainder of the paper is organised as follows. In Setion 2, an overview of Java Virtual

Mahine arhiteture is presented. Some alternatives to urrent Java exeution/ompilation shemes

are then outlined in setion 3; setion 3.1 desribes a lower-level representation for JVM ode and

An alternative model for dynami ompilation is presented in setion 3.2. We present an overview

of our urrent ativity and intended future work in setion 4. Related work is desribed in setion 5.

Finally, aknowledgements are made in setion 6 and a summary is given in setion 7.

2 Java Virtual Mahine Arhiteture: An Overview

In order to support an overview of our researh, a brief overview of the implementation of a Java

Virtual Mahine is now presented. A thorough examination of JVM arhitetural details is neither

possible nor warranted in this paper. For detailed information, readers are direted to the JVM

literature[21, 40℄.
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2.1 Major omponents

The Java Virtual Mahine (JVM) is an abstrat mahine whih proesses JVM lass�les. Suh

lass�les ontain, broadly speaking, representations of the Java methods and member �elds forming

a single lass's de�nition, information to support the exeption mehanism and a system for repre-

senting additional lass attributes. The JVM itself exists primarily to load and link lass�les into

the running mahine on demand (performed by the Class Loader), represent those lasses internally

by means of a number of runtime data strutures and failitate exeution (a role shared between the

Exeution Engine (whih is responsible for exeution of JVM instrutions) and the Native Method

Interfae whih allows a Java program to exeute non-Java ode, generally ANSI C/C++.

2.2 The JVM Class Loader

Most JVM implementation require the ability to load JVM lass�les, and it is the JVM lass loader's

role to load referened JVM lasses whih have not already been linked to the runtime system. A

repository of previously loaded lasses is maintained in the interests of eÆieny.

Classes may be loaded impliitly for several reasons. Firstly, the initial lass�le - the lass�le

ontaining the publi stati void main(String args[℄) method - must be loaded on startup.

Depending on the lass poliy adopted by the JVM, lasses referened by this initial lass may be

loaded in either a lazy or eager manner. An eager lass loader loads the omplete transitive losure

of the initial lass - that is, all the lasses omprising the appliation ode - at startup

1

. Lazy lass

loaders wait until the �rst ative use of a lass before loading and linking its lass�le. The �rst

ative use of a lass ours when (1) an instane of that lass is reated; (2) an instane of one of

its sublasses is initialised; or (3) when one of its stati �elds is initialised

2

. Certain lasses, suh

as java.lang.String, may be loaded impliitly by the JVM to support exeution (in this ase, to

represent String literals). Classes may also be loaded expliitly using the java.lang.Class.forName()

method in the Java API, or through the reation of a user lass loader.

In either situation, the Class Loader's job is, briey, that of loading, verifying, preparing,resolving

and initialising a lass from a JVM lass�le.

Loading involves obtaining the byte array representing the Java lass�le. Most often, this is either

retrieved from a �le store, or reeived aross a network. A representation of the loaded lass is

usually then assigned to an internal database, known as the method area. The method area may

ontain the entire runtime representation of a lass, as suggested by Venners[40℄, or merely the

methods from loaded lasses. In the latter ase, supporting data, suh as the onstant pool, is

stored in separate data strutures. The veri�ation of a JVM lass�le is the important proess of

heking the strutural well-formedness of the lass�le and then inspeting the lass�le ontents to

ensure the ode does not attempt to perform non-permitted operations (suh as exeuting beyond

the end of a method, whih might ause type safety to be irumvented or the JVM to rash)

3

.

Preparation involves alloation and default initialisation of storage spae for stati lass �elds.

Method tables, whih speed virtual method alls, and objet templates, whih speed objet re-

ation, are also often reated at this stage.

Initialisation involves exeution of the lass's lass initialisation method, if de�ned, wherein stati

lass �elds are initialised to their user-de�ned initial values (if spei�ed).

Symboli referenes within a JVM lass�le, suh as to lasses or objet �elds in order to referene a

�eld's value, are only resolved to diret referenes (generally a diret pointer to a reord in one of the

JVM's internal data strutures) at runtime. This proess of resolution may our after preparation

but prior to initialisation, or more typially at some point following initialisation, but prior to

1

In fat, if user lass loaders are used, this might not be the ase as some lasses annot be loaded until the

appropriate Class.forName() all is evaluated

2

Unless the stati �eld is delared �nal and initialised to a ompile-time onstant expression[40℄

3

Note this veri�ation step is separate to Java's seurity framework, whih inludes notions suh as seurity poliies

and protetion domains.
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the �rst referene to that symbol. The delay is generally in pursuit of inreased exeution speed:

not all symbols in a lass�le will be referened during exeution, so by delaying resolution, fewer

symbols may need to be resolved with less runtime overhead. Additionally, the ost of resolution is

amortised over the total exeution time. Many JVM implementations, inluding Sun Mirosystems'

JDK, modify JVM byteodes whih referene a resolved onstant pool entry to use so-alled quik

opodes. These instrutions ensure the diret referene rather than the symboli referene is used

in subsequent invoations of the method ode.

2.3 The JVM Exeution Engine

The JVM's exeution engine is responsible for synthesis, in some manner, of the set of JVM lass�les

representing the original Java program. The requirements for JVM startup and the semantis for

eah JVM instrution in the JVM instrution set have been de�ned both informally[21, 40℄ and

formally[6℄. Briey, the JVM, at startup, is responsible for loading and linking the initial lass,

whih is spei�ed in some manner to the JVM.

Following suessful startup, the publi stati void main(String args[℄)method of the initial

lass is invoked. The exeution engine is generally responsible for method invoation and exeu-

tion. Again, with onessions to brevity, JVM instrutions an be broken into groups: instrutions

for objet reation, ontrol ow modi�ation, value storage/loading, operand stak manipulation,

type onversion, arithmeti, type inspetion, array manipulation, exeption handling and thread

synhronisation.

Objet reation involves resolution of all supertypes of the objet's lass, whih in turn may require

loading and linkage of the orresponding JVM lass�les by the lass loader. Objet reation itself

requires alloation of memory, generally on the JVM's heap, for objet �elds (inluding supertype

instane �elds). These �elds are initialised to default values, though may be reinitialised by a

subsequently invoked lass onstrutor. The JVM heap is garbage olleted rather than expliitly

dealloated.

In addition to a heap for the storage of objets, an untyped operand stak is generally used by

a JVM implementation to hold intermediate values, pass parameters to methods, reeive returned

values from methods and support the exeption mehanism. A number of instrutions are available

for operand stak manipulation, for example to dupliate values on the stak or to lear values from

the stak. While a di�erent operand stak is reated with eah method invoation (and persists

until method return), eah operand stak is held in a frame within a single, system-wide Java

stak. Frames also hold additional housekeeping information for the JVM, inluding a predetermined

number of untyped loal variables slots

4

.

The JVM operates on a set of primitive types whih is similar to the set of types supported by

the Java language itself. Generally, integral types whih are represented by less than 32-bits are

promoted to integers. Consequently, the JVM's arithmeti instrutions mainly onsist of instru-

tions whih operate on integer (32-bit signed two's omplement integer), long (64-bit signed two's

omplement integer), oat (32-bit IEEE 754), double (64-bit IEEE 754) and objet referene types

5

.

A number of type onversion instrutions exist to onvert between these di�erent types, while val-

ue storage/loading instrutions allow movement of values between the operand stak and the loal

variable slots.

Control ow modi�ation instrutions are provided to allow seletion (onditional jumps, et.),

iteration, method invoation (and onsequently reursion), onstrutor exeution and Java's

try..ath..�nally exeption mehanism. Support for returning ontrol (and optionally a value) from

a method invoation is also supported.

4

In fat, loal variables and operand stak values are typed, though any value an be stored in any loal variable

or stak slot. As long and double types are 64-bits wide, they require two loals or two stak slots for their value to

be stored. The veri�er ensures this property is not abused.

5

Initial inompatibilities between Java oating point types and the IEEE 754 standard have sine been resolved

with the introdution of the stritfp keyword.
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The JVM supports arrays as �rst lass objets, with multidimensional arrays represented as arrays

of referenes to array objets. There are ertain subtleties relating to array objets, suh as them

having java.lang.Objet as a supertype, method invoation through array pointers being valid and a

number of issues onerning run-time type omparisons with primitive types and other array objet

referenes. A number of array manipulation instrutions exist to support transfer of values between

the operand stak and array omponents.

Finally, type inspetion instrutions support run-time type heks on objets and primitive values

and thread synhronisation instrutions support Java's built-in multi-threading failities.

2.4 The Java Native Interfae

Java provides a mehanism, known as the Java Native Interfae (JNI ), whih failitates linkage of

Java ode with legay software. This mehanism is optional in JVM implementations, and may be

omplemented or replaed by a proprietary native ode invoation mehanism. Commonly, however,

the JNI is supported and provides a faility for dynamially linking an ANSI C library at runtime

and exeuting funtions from that library. An ANSI C library is generally supplied by the JVM

whih allow aess to the urrent JVM state; for example to reeive pointers to JVM objets and

values whih an be modi�ed by the ANSI C ode, to allow return of data to the alling method

in the JVM, and more omplex interations, suh as athing exeptions in JVM methods invoked

from the ANSI C ode.

Native methods are also ommonly used within the Java API wherever interation with the exeut-

ing environment is required (suh as to display user interfaes or aess system-spei� features).

Additionally, native methods have the potential to speed ritial operations by bypassing the JVM

exeution engine.

3 Alternatives to the Java Compilation Model

The remit of our researh is to explore ways in whih entire Java programs or dynamially load-

ed JVM lasses an be exeuted with minimal ode size overhead for the target system. This is

fundamentally di�erent to the usual onerns of dynami ompilation, whih are typially ease of

development and speed eÆieny of ompilation/optimisation at runtime. In view of this, funda-

mentally di�erent tehniques are required.

We propose a lower-level representation of the JVM lass�le format (LVM) and a translator from

JVM to LVM. In the interests of spae eÆieny on the resoure-onstrained system, we propose

a tehnique we refer to as proxy ompilation in whih the translation of JVM to LVM may be

performed by another omputer using some form of network onnetion between the two systems.

3.1 A Lower-Level Alternative to the JVM Class�le Format

We are urrently researhing an implementation of the Java runtime environment whih is imple-

mented as a ombination of a load-time Java lass�le translator and lower-level virtual mahine,

whih will be referred to as LVM for ease of referene.

By \lower-level", we refer to a virtual mahine that an represent JVM programs with idential

semantis, but using a representation whih is platform-spei�. Virtual mahine design usually

brings a requirement for generality - the VM must be easily implementable on a wide array of

miroproessors. The role of a dynami-ompiler, however, is to generate target-spei� ode with

idential semantis to the input. We propose to retain the bene�ts of an interpreter-based virtual

mahine but speialise that virtual mahine to a spei� proessor.
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Some innovative alternatives to the JVM lass�le format have already been proposed[19℄. We plan

to ondut some researh into alternative representations, though the majority of our work will be

in developing an e�etive instrution set.

The antiipated bene�ts of this approah are that exeution speed or size improvements an be

obtained without ompiling the program to native ode, whih requires signi�antly more storage

(partiularly where a RISC mahine is the target). Sope exists for speialising the instrution set

for partiular appliations or ode idioms and for inluding diret mappings between virtual mahine

opodes and hardware opodes. The ineÆient stak-based arhiteture, whih was hosen for the

JVM as it is onduive to rapid development of interpreters on a wide variety of targets, ould be

rewritten using virtual registers, whih is likely to result in more speed-eÆient ode with a tolerable

ode-size inrease.

To enable use of the proprietary LVM format, a Java lass�le translator will onvert Java lass�les

into the LVM �le format, most likely at load-time. It is proposed that all Java features will ulti-

mately be supported by the low-level virtual mahine, though our initial researh is likely to use a

representative subset to expedite experimentation.

The LVM itself is expeted to inlude an interpreter and, optionally, a garbage olletor (not all

appliations require memory dealloation). The prinipal design goal with regard to the LVM

interpreter is that its instrution set is suÆiently lose to the hardware to support diret mappings

between ertain instrutions, registers, or other hardware attributes, but suÆiently high-level as to

make run-time translation of Java byteode to the LVM exeutable format tolerable (either in terms

of the ROM/RAM/stak overhead of the translation proess, or the time required to exeute, or a

ombination of both).

The translator will also be able to funtion muh like an Ahead-of-Time ompiler for JVM lass�les

whih generates LVM format lass�les. This will permit users to ompile the majority of their ode

to the speed- and size-eÆient LVM format o�-line, at whih time aggressive or lengthy optimisations

an be performed. Optimisations whih are generally performed by native Java ompilers, namely

stati, whole-program analysis, are inappropriate at this stage, however, as dynami lass loading

renders part of the appliation unknown until runtime. Although a proportion of appliations an

be proven to not require dynami lass loading, we are hoosing to fous on those whih do, rather

than researhing aggressive, o�-line whole-program analysis, whih is the subjet of many urrent

Java researh projets. There is sope for the use of annotations within JVM lass�les, suh as

those suggested by Hummel et al[14℄. Suh annotations would be introdued by the translator when

generating target ode to aid the runtime system in maximising exeution eÆieny. Again, however,

we are unlikely to fous on this aspet as it has been onsidered by other researhers and would

detrat from our proxy ompilation researh.

The proposed system is a ompromise between program size and exeution speed eÆieny. As the

LVM instrution set is designed to represent lower-level operations, a JVM program onverted to

the LVM format is expeted to require more storage spae than the original JVM program. The

LVM system startup is also expeted to be slower than an interpreted JVM system. Moreover, we

antiipate that LVM exeution speed will be signi�antly faster than an interpreted JVM system,

although slower than a JIT-based JVM system. Fundamentally, however, we expet the runtime

footprint of the LVM system to be signi�antly less than a JIT-based JVM, appliation exeution

to be signi�antly faster than an interpreted system and for the memory requirement for translated

LVM ode to be signi�antly less than that for native ode.

Should ritial portions of the appliation require ompilation to native ode, either Ahead-of-

Time or during program exeution (i.e. a runtime pro�ler identi�es program hot spots), we would

ideally like to be able to natively ompile these setions. In view of this, we propose to support a

native interfae between the LVM and native ode. Suh deisions an be inuened either by user

intervention (stati ompilation of ritial ode), or by pro�ling at runtime.
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3.2 Proxy Compilation

One possible outome of the researh work desribed above ould be that, owing to limitations on

available time for the translation of lass�les at load-time, the runtime translation of JVM to LVM

is impratial within a spei� ROM, RAM or stak limit (above whih, assumedly, the translation

would be too intrusive or expensive). A suÆiently omplex appliation or suÆiently sare system

resoures will inevitably bring about this situation. We propose to inrease performane using a

tehnique we refer to as proxy ompilation.

In a proxy ompilation sheme, idle peer devies to whih the devie is onneted via some form

of network or diret onnetion are andidates for remote ompilation on behalf of the resoure-

onstrained system. The remote ompilation may involve translation of a dynamially loaded JVM

lass�le to LVM, native ode, or some other representation.

It is diÆult to gauge the extent to whih a proxy ompilation servie might be required by a resoure-

onstrained system like a PDA. It is our impression, nevertheless, that dynami ompilation and

dynami lass loading would be valuable additions to a resoure onstrained system. Additionally,

we feel that the feasibility of dynami lass loading and runtime ompilation in suh environments

inreases when the overheads of translation are transferred from the lient to the server, suh as one

ahieves with our proxy ompilation proposal.

This tehnique is expeted to beome very important as miros are inreasingly embedded into

produts where, owing to prodution osts or other onerns, insuÆient resoure exists to e�et a

translation of a program from JVM to LVM (or some other format), but a onnetion to a network of

peer mahines has been inluded. Suh networks ould inlude other small-sale embedded devies,

but also, potentially, very powerful mahinery whih has the apability to trivially perform the

ompilation tasks on behalf of peers. The advent of innovations suh as the Bluetooth[8℄ standard

for wireless loal networking is likely to make suh shemes highly attrative.

One partiularly important aspet onerning a proxy ompilation sheme of this nature is that of

how to ensure the validity of inoming LVM or native ode. We do not urrently plan to fous

on authentiation or sheduling aspets of suh distributed exeution, but rather to onentrate on

studying the utility and eÆay of suh a system, assuming that suh issues an be overome with

negligible runtime overheads.

We intend to use proxy ompilation for both JIT ompilation of JVM to LVM and native ode

and also speialisation of the LVM instrution set itself in response to pro�le results. A ompiler

whose runtime does not result in a linear inrease in the target system exeution time permits

iterative optimisation and speialisation[39℄ of both the runtime system and the target program

throughout appliation exeution. This is analogous to ontinuous ompilation[27℄, but within the

framework of a resoure-onstrained system. Clearly, however, the lient's resoure onstraints

impose restritions on the appliability of speialisation of the VM to a partiular appliation.

Whereas a single appliation might bene�t, multiple appliations would require multiple VMs, whih

would trade o� against the eÆieny inreases introdued by the speialisation.

The intermitteny and reliability of the network or able onnetion between the two mahines

needs areful onsideration. Should the onnetion be lost while proxy ompilation is in progress,

the lient devie must have a ontingeny poliy. This poliy is likely to be ditated by the resoures

the lient has available. If a previously-ompiled version of the ode has been ahed, this an be

exeuted. Alternatively, if an interpreter is available, the lient may hoose to interpret the ode. If

the onnetion problem proves to be spei� to a partiular mahine, an alternative may be found

and the proxy ompilation requested anew. Finally, if none of these options are available, the lient

is entirely dependent on its network onnetion and must wait until that onnetion is restored, at

whih point either the interrupted proxy ompilation session is resumed or a new session started.
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4 Next Steps

We are urrently implementing a dynami ompilation system to allow us to experiment with the

ideas outlined above. The system is researh-driven; onsequently, we plan to support representative,

but minimal Java programs. This implies supporting a subset of the Java 2 Platform API with, for

example, omplex I/O and networking failities omitted. The AWT, Swing and JFC setions of the

Java 2 Platform API will also be omitted, allowing us to fous on onsole-based appliations.

Firstly, we are de�ning and implementing an initial LVM in C++, together with a JVM lass�le

JIT ompiler for produing LVM or target mahine ode at runtime. We expet to either implement

a very simplisti garbage olletor or use one of those freely available[2℄ under the GNU Publi

Liense[36℄. We will onsider the interation of the LVM with the garbage olletor during this

work; there may be some advantages to be gained from representing objets using a load/store VM

rather than a stak-based system. The JIT system will be used as a ontrol for the proxy ompilation

experiments (although other researh and ommerial systems will also be used). Implementation of

a proxy ompiler reading JVM lass�les and generating LVM or target mahine ode is underway. We

are implementing the proxy ompiler in Java to failitate rapid prototyping but intend to ompile

the JVM byteode to target ode using an Ahead-of-Time ompiler so as to maximise eÆieny

before testing the �nal system.

The system is being designed to permit dynami re-ompilation of the LVM system to maximise

runtime eÆieny. One bene�t of this faility is the option to optimise the system or adapt the LVM

instrution set in response to feedbak gathered during a previous run, assuming resoures permit

methods suh as exeution pro�ling.

An initial protool for proxy ompilation requests, together with mathing lient/server ode is

almost omplete.

To speed initial development and researh, we will be using Intel x86 as both the server and lient

platform. This is largely immaterial as the systems are being designed for resoure-onstrained

environments. Later in the projet, we expet to re-implement the system to target a real lient

system. This is likely to be either a Palm Pilot m100 PDA or Hewlett Pakard Jornada Windows

CE HPC. The Palm uses a 16MHz Motorola Dragonball EZ (MC68EZ328) proessor and has 2MB

RAM while the Jornada has a 133MHz Hitahi SH3 (SH7709A) proessor with 16MB RAM. For the

purposes of simpliity, we will assume the system will be stored and exeuted from RAM, although

learly any stati portions of our proposed runtime system ould theoretially be stored in ROM.

Following ompletion of these software omponents, we will measure the runtime eÆieny of the

system using a set of representative benhmarks. We will onsider both ode-size, inluding the

memory usage of the runtime system and the overheads of the proxy ompilation tehnique on the

network; and total exeution time, inluding proxy ompilation and any loal translation time.

We plan to publish our �ndings in due ourse, ontrasting our results with those obtained by other

researhers in the �eld and relevant ommerial software.

5 Related work

For reasons outlined above, interpreter and JIT-based systems are ineÆient in resoure-onstrained

environments. Systems suh as Insignia Solutions' Jeode produt[17℄, whih redue the overhead of

JIT tehnology for embedded systems still impose a footprint upon the runtime system; the ompiler

must be stored on the target system and must ompile ode in plae of or in ompetition with the

appliation.

MGlashan and Bower[22℄ laim that an interpreter-based virtual mahine delivers \entirely ad-

equate performane" for onsumer embedded systems produts suh as the SEGA Dreamast.

While they reognise the importane of runtime minimisation in suh environments, and ommend
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interpreter-based VMs for their high-speed startup times and small memory footprint, their argu-

ment is based upon their own Smalltalk VM. The relevane of their �ndings to Java systems is

unlear, though assumedly a proxy ompilation system bene�ts from the minimal VM while also

reaping the bene�ts of a powerful and exible dynami ompilation system.

In the Ahead-of-Time domain, numerous stati Java ompilation systems exist[30, 9, 25, 24, 31, 11,

5, 38℄ though most are oriented to desktop systems with plentiful resoures. All systems generate

native binary ode either diretly or via ANSI C, whih is subsequently ompiled o�-line. This

approah is generally speed eÆient, but often forbids use of dynamially loaded lasses (e.g. [4℄)

and su�ers the overheads of native ode relative to ompat VM byteode.

The COMPOSE group's Harissa[25, 24℄ system notably aknowledges the requirement for statially-

ompiled Java appliations to exeute dynamially loaded lasses, however, its solution - an inter-

preter - results in a slow, if ompat solution. An equivalent interpreter has reently been added to

the GNU gj ompiler[31℄. Neither system addresses eÆient runtime ompilation of dynamially

loaded Java ode in resoure-onstrained environments.

Roelofs[32℄ notes the harateristis of resoure-onstrained systems, but is hiey onerned with

using onneted devies to allow remote exeution of appliation ode. Our researh instead seeks to

use more powerful peers to speed translation of the devie's ore program for subsequent exeution

on the devie itself.

Wakeman et al[26, 15℄ have worked on researh whih similarly aknowledges the problems of en-

vironments in whih resoures are limited. Their approah uses a proxy devie to serve suitably

ompressed or saled versions of requested data in aordane with lient-spei�ed onstraints ex-

pressing, for example, degradation limits. This is analogous to the notion of proxy ompilation,

though the authors have not spei�ally proposed it. The work also proposes that lients inform the

proxy of their resoures. This is a potentially attrative tehnique whih would allow the server to

speialise a ode fragment or appliation for the spei� resoures available to the lient. In situa-

tions where low resoures prohibit exeution pro�ling, this may be the only feedbak the lient an

provide regarding the runtime environment. An additional, albeit lesser, onsideration is that their

implementation uses Java and RMI on the lient side. Our work diretly addresses the question of

proxy ompilation and is designed to sale to very simple lients where a Java runtime environment

may not be feasible.

The vast majority of dynami ompilation systems require storage of a dynami ompiler system in

the runtime environment, and must exeute on the target system. The small number of projets

whih do not employ this model are now desribed. Voss and Eigenmann[41℄ detail a system whih is

notionally similar to proxy ompilation, but assumes various system harateristis. These inlude a

requirement for NFS mounted storage to be shared between systems and a reliane on RPC failities.

We believe suh a solution would not sale well to resoure-onstrained systems (partiularly single

threaded appliations whih use a minimal operating system or do not require an OS). Additionally,

this projet has foussed on ANSI C and FORTRAN appliations rather than Java.

Bell Labs' Inferno system[44, 43, 7℄ and Tao Systems' Elate/Intent system[12℄ both use a low-level

VM instrution set to inrease the eÆieny of Java ode. These two systems are now ontrasted

with our proposed systems.

Inferno's use of a memory-to-memory virtual mahine results in a virtual mahine arhiteture whih

is super�ially similar to our proposed LVM system. There are a number of ritial di�erenes,

however. Firstly, Inferno is target-independent, supporting Intel x86, SPARC, ARM, PowerPC,

MIPS and other devies. Although the priniple of a low-level virtual mahine is appliable to targets

with a load/store arhiteture, we expet to inrease eÆieny by reating speialised versions of the

LVM instrution set for individual proessors. Furthermore the Inferno virtual mahine (Dis) has an

instrution set whih has been designed for the Limbo programming language, not Java. Although

there are many similar features, inluding objets and garbage olletion, supported by an extended

DIS VM instrution set, Inferno was not, to our knowledge, designed for Java. This may result in

ineÆienies. Finally, although designed for network environments, Inferno neither diretly supports

nor proposes a proxy ompilation sheme.
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Elate/Insight also uses a low-level, target-independent instrution set, however it, like the Kimera

projet[35℄, use a form of remote ompilation whih relies on shared memory and persistent network

onnetions. Suh systems fail to aknowledge the often intermittent nature of network onnetions

to resoure-onstrained devies. As desribed above, our proxy ompilation sheme is designed to

sale to a wide variety of mahines through tehniques suh as ahes of previously ompiled ode

and eÆient, lient-side interpretation.

Fraser and Proebsting[29℄ have proposed a tehnique for the automati generation of ustom instru-

tion sets in pursuit of spae eÆieny. Their system generates an interpreter and interpretive ode

with funtional equivalene to the original program. Although the authors were interested in ode

ompression, the tehniques employed to detet ommon patterns in the input ANSI C program are

likely to be relevant to our own work on automati speialisation of the LVM.

An interesting extension of our researh ould be to empirially evaluate the interation of proxy

ompilation with proposed ontinuous ompilation strategies[27, 28℄.
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7 Summary

We have outlined our reservations with regard to the appropriateness of urrent dynami ompilation

shemes for Java in resoure-onstrained environments. We have summarised a proposal for a lower-

level virtual mahine, whih bene�ts from both a target-spei� instrution set (potentially generated

through a ombination of proxy ompilation and partial evaluation using pro�le results, assuming the

devie has suÆient resoures to gather exeution pro�les) and a ompat byteode representation.

In this ontext, we have also proposed a proxy ompilation mehanism, in whih idle networked

mahines may be employed to perform translation and ompilation on behalf of the target system.

Our expetation is that our researh will prove proxy ompilation is a powerful and exible general

purpose tehnique for dynami ompilation. We also antiipate the value of suh tehniques will

inrease as small-sale mobile devies proliferate.
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