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Abstra
t

In this paper, we outline new resear
h 
on
erning dynami
 
ompilation of Java appli
ations

in environments where system resour
es are signi�
antly limited. In su
h environments, whi
h

in
lude \smart" mobile telephones and Personal Digital Assistants, memory and pro
essor 
y-


les 
an be s
ar
e, making 
urrent te
hniques for the runtime translation of Java programs

or program fragments inappropriate. We propose an alternative te
hnique, proxy 
ompilation,

whi
h makes use of idle, 
onne
ted devi
es on a network to 
ompile 
ode on its behalf.

1 Introdu
tion

The Java programming language[10, 21℄, although 
ommonly asso
iated with Internet programming,

is a general-purpose obje
t-oriented programming language. Many of its features, su
h as the use of

a garbage-
olle
ted memory allo
ation s
heme, a virtual ma
hine exe
ution model and single 
lass

inheritan
e, have been highly lauded within the 
omputer programming industry and a
ademia.

The traditional role of the 
ompiler[1, 13, 42, 23℄ has been to fa
ilitate one-time translation of human-

readable sour
e programs into ma
hine-readable obje
t programs. The generated software is then

suitable for deployment on a parti
ular 
omputer, where the program is run. Typi
ally this means

synthesis of the program by the ma
hine's a
tual pro
essor. In the Java model, however, a 
ompiler is

primarily used to 
onvert Java sour
e 
ode, whi
h is written dire
tly by the programmer, to the Java

Virtual Ma
hine (JVM) 
lass�le format[21, 6℄. Virtual ma
hines (VMs) are hypotheti
al pro
essors

implemented in software. Exe
ution of a program for su
h a ma
hine typi
ally requires translation

of the VM program to one whi
h 
an be dire
tly exe
uted by the underlying pro
essor (often that

on whi
h the virtual ma
hine software is exe
uting), while retaining fun
tional equivalen
e. In this


ase, the VM language is being used as an intermediate representation in the implementation of the

language. Alternatively, the VM program 
an be interpreted by passing it through an interpreter

program running on the target ma
hine. The JVM is designed to allow 
onvenient representation of

Java programs. Su
h VM 
ode is relatively eÆ
ient for transfer a
ross networks, su
h as the Internet.

Additionally, the program 
ode 
ontained in JVM 
lass�les (referred to hereafter as JVM 
ode) 
an

generally be translated more easily than the high-level program 
onstru
ts in the originating Java

programs.

Several te
hniques exist for the exe
ution of JVM 
ode. In the traditional Java model, ea
h individual

JVM instru
tion is interpreted ea
h time the program is run. This pro
ess involves translation of

the JVM instru
tion into a semanti
ally equivalent instru
tion (or sequen
e of instru
tions) for

the target 
omputer to exe
ute; hen
e interpretation 
an slow program exe
ution, typi
ally by an

�
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order of magnitude. One 
ommon modi�
ation to this s
heme, made in pursuit of faster program

exe
ution, has been to translate JVM 
ode into native 
ode a single time at runtime when su
h 
ode

is loaded (termed Just-in-Time (JIT) 
ompilation[20, 18, 3, 38, 34℄), or in
rementally when system

a
tivity is below a spe
i�ed threshold (known as 
ontinuous 
ompilation[27, 28℄, as the program

is 
ontinually repla
ed with more highly-optimised versions of itself). JVM JIT 
ompilers often


ompile individual methods, rather than entire 
lasses or programs, and defer 
ompilation of ea
h

method until just prior to its exe
ution. In both JIT and 
ontinuous 
ompilation, a native 
ode

version of the abstra
t JVM 
ode is stored and exe
uted in pla
e of the JVM 
ode throughout the

remainder of the program. This results in a signi�
ant exe
ution speed in
rease as interpretation is

no longer required.

For powerful ma
hines, su
h as desktop 
omputers or servers, JIT 
ompilation is generally 
onsidered

to be a good solution. JIT systems often introdu
e user-per
eivable delays, however, while 
ode

is loaded and then 
ompiled. Additionally, JIT systems are often several megabytes in size and

generally 
onsume signi�
antly more RAM than an interpreter while exe
uting[16℄.

In the 
ontext of resour
e-
onstrained produ
ts, for example, embedded 
onsumer devi
es (su
h

as Personal Digital Assistants (PDAs) and so-
alled \smart" mobile phones), in whi
h memory

and CPU 
y
les are a s
ar
e resour
e, the overhead of a dynami
 
ompiler upon the system's

ROM/RAM usage and upon exe
ution speed is often impra
ti
al. An alternative 
ompilation s
heme

for Java whi
h is gaining popularity in resour
e-
onstrained environments is Ahead-of-Time (AOT)


ompilation[33, 30, 9, 25, 24, 31, 11, 5℄, in whi
h all program 
ode is 
ompiled o�-line (i.e. before

the program is run on the target 
omputer). This is, of 
ourse, the 
lassi
al model of 
ompilation

as used for ANSI C/C++[37℄ and many other programming languages, and 
an result in highly

optimised ma
hine 
ode without the need for runtime translation.

The 
entral problems with AOT 
ompilation are the loss of obje
t portability and the question of

how to resolve runtime linkage of pre-
ompiled binaries with dynami
ally loaded JVM 
lass�les.

Dynami
 
lass loading is one of the few features whi
h truly di�erentiates Java from C++, as it

allows 
ompletely new se
tions of a program to be supplied and translated at runtime. Spe
i�
 uses

in
lude the loading of Java applets into a web browser, and updates to a server appli
ation's 
ode

without interruption. The original proposal for Java AOT 
ompilation by Proebsting et al[30℄, whi
h

forbade dynami
 
lass loading, has sin
e been re�ned[24℄. Unfortunately, the re�nement introdu
es

an interpreter to support exe
ution of dynami
ally loaded 
ode. As dis
ussed above, interpreters

are ineÆ
ient and JIT 
ompilers are generally impra
ti
al in resour
e-
onstrained environments.

Consequently, eÆ
ient translation/exe
ution of dynami
ally loaded 
lasses in a resour
e-
onstrained

environment remains a fundamental problem in the �eld. This paper des
ribes resear
h being 
on-

du
ted at the University of Sussex exploring alternatives to the s
hemes outlined above. The goal

of the work is to �nd more eÆ
ient exe
ution s
hemes for Java programs exe
uting in resour
e-


onstrained environments.

The remainder of the paper is organised as follows. In Se
tion 2, an overview of Java Virtual

Ma
hine ar
hite
ture is presented. Some alternatives to 
urrent Java exe
ution/
ompilation s
hemes

are then outlined in se
tion 3; se
tion 3.1 des
ribes a lower-level representation for JVM 
ode and

An alternative model for dynami
 
ompilation is presented in se
tion 3.2. We present an overview

of our 
urrent a
tivity and intended future work in se
tion 4. Related work is des
ribed in se
tion 5.

Finally, a
knowledgements are made in se
tion 6 and a summary is given in se
tion 7.

2 Java Virtual Ma
hine Ar
hite
ture: An Overview

In order to support an overview of our resear
h, a brief overview of the implementation of a Java

Virtual Ma
hine is now presented. A thorough examination of JVM ar
hite
tural details is neither

possible nor warranted in this paper. For detailed information, readers are dire
ted to the JVM

literature[21, 40℄.
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2.1 Major 
omponents

The Java Virtual Ma
hine (JVM) is an abstra
t ma
hine whi
h pro
esses JVM 
lass�les. Su
h


lass�les 
ontain, broadly speaking, representations of the Java methods and member �elds forming

a single 
lass's de�nition, information to support the ex
eption me
hanism and a system for repre-

senting additional 
lass attributes. The JVM itself exists primarily to load and link 
lass�les into

the running ma
hine on demand (performed by the Class Loader), represent those 
lasses internally

by means of a number of runtime data stru
tures and fa
ilitate exe
ution (a role shared between the

Exe
ution Engine (whi
h is responsible for exe
ution of JVM instru
tions) and the Native Method

Interfa
e whi
h allows a Java program to exe
ute non-Java 
ode, generally ANSI C/C++.

2.2 The JVM Class Loader

Most JVM implementation require the ability to load JVM 
lass�les, and it is the JVM 
lass loader's

role to load referen
ed JVM 
lasses whi
h have not already been linked to the runtime system. A

repository of previously loaded 
lasses is maintained in the interests of eÆ
ien
y.

Classes may be loaded impli
itly for several reasons. Firstly, the initial 
lass�le - the 
lass�le


ontaining the publi
 stati
 void main(String args[℄) method - must be loaded on startup.

Depending on the 
lass poli
y adopted by the JVM, 
lasses referen
ed by this initial 
lass may be

loaded in either a lazy or eager manner. An eager 
lass loader loads the 
omplete transitive 
losure

of the initial 
lass - that is, all the 
lasses 
omprising the appli
ation 
ode - at startup

1

. Lazy 
lass

loaders wait until the �rst a
tive use of a 
lass before loading and linking its 
lass�le. The �rst

a
tive use of a 
lass o

urs when (1) an instan
e of that 
lass is 
reated; (2) an instan
e of one of

its sub
lasses is initialised; or (3) when one of its stati
 �elds is initialised

2

. Certain 
lasses, su
h

as java.lang.String, may be loaded impli
itly by the JVM to support exe
ution (in this 
ase, to

represent String literals). Classes may also be loaded expli
itly using the java.lang.Class.forName()

method in the Java API, or through the 
reation of a user 
lass loader.

In either situation, the Class Loader's job is, brie
y, that of loading, verifying, preparing,resolving

and initialising a 
lass from a JVM 
lass�le.

Loading involves obtaining the byte array representing the Java 
lass�le. Most often, this is either

retrieved from a �le store, or re
eived a
ross a network. A representation of the loaded 
lass is

usually then assigned to an internal database, known as the method area. The method area may


ontain the entire runtime representation of a 
lass, as suggested by Venners[40℄, or merely the

methods from loaded 
lasses. In the latter 
ase, supporting data, su
h as the 
onstant pool, is

stored in separate data stru
tures. The veri�
ation of a JVM 
lass�le is the important pro
ess of


he
king the stru
tural well-formedness of the 
lass�le and then inspe
ting the 
lass�le 
ontents to

ensure the 
ode does not attempt to perform non-permitted operations (su
h as exe
uting beyond

the end of a method, whi
h might 
ause type safety to be 
ir
umvented or the JVM to 
rash)

3

.

Preparation involves allo
ation and default initialisation of storage spa
e for stati
 
lass �elds.

Method tables, whi
h speed virtual method 
alls, and obje
t templates, whi
h speed obje
t 
re-

ation, are also often 
reated at this stage.

Initialisation involves exe
ution of the 
lass's 
lass initialisation method, if de�ned, wherein stati



lass �elds are initialised to their user-de�ned initial values (if spe
i�ed).

Symboli
 referen
es within a JVM 
lass�le, su
h as to 
lasses or obje
t �elds in order to referen
e a

�eld's value, are only resolved to dire
t referen
es (generally a dire
t pointer to a re
ord in one of the

JVM's internal data stru
tures) at runtime. This pro
ess of resolution may o

ur after preparation

but prior to initialisation, or more typi
ally at some point following initialisation, but prior to

1

In fa
t, if user 
lass loaders are used, this might not be the 
ase as some 
lasses 
annot be loaded until the

appropriate Class.forName() 
all is evaluated

2

Unless the stati
 �eld is de
lared �nal and initialised to a 
ompile-time 
onstant expression[40℄

3

Note this veri�
ation step is separate to Java's se
urity framework, whi
h in
ludes notions su
h as se
urity poli
ies

and prote
tion domains.
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the �rst referen
e to that symbol. The delay is generally in pursuit of in
reased exe
ution speed:

not all symbols in a 
lass�le will be referen
ed during exe
ution, so by delaying resolution, fewer

symbols may need to be resolved with less runtime overhead. Additionally, the 
ost of resolution is

amortised over the total exe
ution time. Many JVM implementations, in
luding Sun Mi
rosystems'

JDK, modify JVM byte
odes whi
h referen
e a resolved 
onstant pool entry to use so-
alled qui
k

op
odes. These instru
tions ensure the dire
t referen
e rather than the symboli
 referen
e is used

in subsequent invo
ations of the method 
ode.

2.3 The JVM Exe
ution Engine

The JVM's exe
ution engine is responsible for synthesis, in some manner, of the set of JVM 
lass�les

representing the original Java program. The requirements for JVM startup and the semanti
s for

ea
h JVM instru
tion in the JVM instru
tion set have been de�ned both informally[21, 40℄ and

formally[6℄. Brie
y, the JVM, at startup, is responsible for loading and linking the initial 
lass,

whi
h is spe
i�ed in some manner to the JVM.

Following su

essful startup, the publi
 stati
 void main(String args[℄)method of the initial


lass is invoked. The exe
ution engine is generally responsible for method invo
ation and exe
u-

tion. Again, with 
on
essions to brevity, JVM instru
tions 
an be broken into groups: instru
tions

for obje
t 
reation, 
ontrol 
ow modi�
ation, value storage/loading, operand sta
k manipulation,

type 
onversion, arithmeti
, type inspe
tion, array manipulation, ex
eption handling and thread

syn
hronisation.

Obje
t 
reation involves resolution of all supertypes of the obje
t's 
lass, whi
h in turn may require

loading and linkage of the 
orresponding JVM 
lass�les by the 
lass loader. Obje
t 
reation itself

requires allo
ation of memory, generally on the JVM's heap, for obje
t �elds (in
luding supertype

instan
e �elds). These �elds are initialised to default values, though may be reinitialised by a

subsequently invoked 
lass 
onstru
tor. The JVM heap is garbage 
olle
ted rather than expli
itly

deallo
ated.

In addition to a heap for the storage of obje
ts, an untyped operand sta
k is generally used by

a JVM implementation to hold intermediate values, pass parameters to methods, re
eive returned

values from methods and support the ex
eption me
hanism. A number of instru
tions are available

for operand sta
k manipulation, for example to dupli
ate values on the sta
k or to 
lear values from

the sta
k. While a di�erent operand sta
k is 
reated with ea
h method invo
ation (and persists

until method return), ea
h operand sta
k is held in a frame within a single, system-wide Java

sta
k. Frames also hold additional housekeeping information for the JVM, in
luding a predetermined

number of untyped lo
al variables slots

4

.

The JVM operates on a set of primitive types whi
h is similar to the set of types supported by

the Java language itself. Generally, integral types whi
h are represented by less than 32-bits are

promoted to integers. Consequently, the JVM's arithmeti
 instru
tions mainly 
onsist of instru
-

tions whi
h operate on integer (32-bit signed two's 
omplement integer), long (64-bit signed two's


omplement integer), 
oat (32-bit IEEE 754), double (64-bit IEEE 754) and obje
t referen
e types

5

.

A number of type 
onversion instru
tions exist to 
onvert between these di�erent types, while val-

ue storage/loading instru
tions allow movement of values between the operand sta
k and the lo
al

variable slots.

Control 
ow modi�
ation instru
tions are provided to allow sele
tion (
onditional jumps, et
.),

iteration, method invo
ation (and 
onsequently re
ursion), 
onstru
tor exe
ution and Java's

try..
at
h..�nally ex
eption me
hanism. Support for returning 
ontrol (and optionally a value) from

a method invo
ation is also supported.

4

In fa
t, lo
al variables and operand sta
k values are typed, though any value 
an be stored in any lo
al variable

or sta
k slot. As long and double types are 64-bits wide, they require two lo
als or two sta
k slots for their value to

be stored. The veri�er ensures this property is not abused.

5

Initial in
ompatibilities between Java 
oating point types and the IEEE 754 standard have sin
e been resolved

with the introdu
tion of the stri
tfp keyword.
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The JVM supports arrays as �rst 
lass obje
ts, with multidimensional arrays represented as arrays

of referen
es to array obje
ts. There are 
ertain subtleties relating to array obje
ts, su
h as them

having java.lang.Obje
t as a supertype, method invo
ation through array pointers being valid and a

number of issues 
on
erning run-time type 
omparisons with primitive types and other array obje
t

referen
es. A number of array manipulation instru
tions exist to support transfer of values between

the operand sta
k and array 
omponents.

Finally, type inspe
tion instru
tions support run-time type 
he
ks on obje
ts and primitive values

and thread syn
hronisation instru
tions support Java's built-in multi-threading fa
ilities.

2.4 The Java Native Interfa
e

Java provides a me
hanism, known as the Java Native Interfa
e (JNI ), whi
h fa
ilitates linkage of

Java 
ode with lega
y software. This me
hanism is optional in JVM implementations, and may be


omplemented or repla
ed by a proprietary native 
ode invo
ation me
hanism. Commonly, however,

the JNI is supported and provides a fa
ility for dynami
ally linking an ANSI C library at runtime

and exe
uting fun
tions from that library. An ANSI C library is generally supplied by the JVM

whi
h allow a

ess to the 
urrent JVM state; for example to re
eive pointers to JVM obje
ts and

values whi
h 
an be modi�ed by the ANSI C 
ode, to allow return of data to the 
alling method

in the JVM, and more 
omplex intera
tions, su
h as 
at
hing ex
eptions in JVM methods invoked

from the ANSI C 
ode.

Native methods are also 
ommonly used within the Java API wherever intera
tion with the exe
ut-

ing environment is required (su
h as to display user interfa
es or a

ess system-spe
i�
 features).

Additionally, native methods have the potential to speed 
riti
al operations by bypassing the JVM

exe
ution engine.

3 Alternatives to the Java Compilation Model

The remit of our resear
h is to explore ways in whi
h entire Java programs or dynami
ally load-

ed JVM 
lasses 
an be exe
uted with minimal 
ode size overhead for the target system. This is

fundamentally di�erent to the usual 
on
erns of dynami
 
ompilation, whi
h are typi
ally ease of

development and speed eÆ
ien
y of 
ompilation/optimisation at runtime. In view of this, funda-

mentally di�erent te
hniques are required.

We propose a lower-level representation of the JVM 
lass�le format (LVM) and a translator from

JVM to LVM. In the interests of spa
e eÆ
ien
y on the resour
e-
onstrained system, we propose

a te
hnique we refer to as proxy 
ompilation in whi
h the translation of JVM to LVM may be

performed by another 
omputer using some form of network 
onne
tion between the two systems.

3.1 A Lower-Level Alternative to the JVM Class�le Format

We are 
urrently resear
hing an implementation of the Java runtime environment whi
h is imple-

mented as a 
ombination of a load-time Java 
lass�le translator and lower-level virtual ma
hine,

whi
h will be referred to as LVM for ease of referen
e.

By \lower-level", we refer to a virtual ma
hine that 
an represent JVM programs with identi
al

semanti
s, but using a representation whi
h is platform-spe
i�
. Virtual ma
hine design usually

brings a requirement for generality - the VM must be easily implementable on a wide array of

mi
ropro
essors. The role of a dynami
-
ompiler, however, is to generate target-spe
i�
 
ode with

identi
al semanti
s to the input. We propose to retain the bene�ts of an interpreter-based virtual

ma
hine but spe
ialise that virtual ma
hine to a spe
i�
 pro
essor.
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Some innovative alternatives to the JVM 
lass�le format have already been proposed[19℄. We plan

to 
ondu
t some resear
h into alternative representations, though the majority of our work will be

in developing an e�e
tive instru
tion set.

The anti
ipated bene�ts of this approa
h are that exe
ution speed or size improvements 
an be

obtained without 
ompiling the program to native 
ode, whi
h requires signi�
antly more storage

(parti
ularly where a RISC ma
hine is the target). S
ope exists for spe
ialising the instru
tion set

for parti
ular appli
ations or 
ode idioms and for in
luding dire
t mappings between virtual ma
hine

op
odes and hardware op
odes. The ineÆ
ient sta
k-based ar
hite
ture, whi
h was 
hosen for the

JVM as it is 
ondu
ive to rapid development of interpreters on a wide variety of targets, 
ould be

rewritten using virtual registers, whi
h is likely to result in more speed-eÆ
ient 
ode with a tolerable


ode-size in
rease.

To enable use of the proprietary LVM format, a Java 
lass�le translator will 
onvert Java 
lass�les

into the LVM �le format, most likely at load-time. It is proposed that all Java features will ulti-

mately be supported by the low-level virtual ma
hine, though our initial resear
h is likely to use a

representative subset to expedite experimentation.

The LVM itself is expe
ted to in
lude an interpreter and, optionally, a garbage 
olle
tor (not all

appli
ations require memory deallo
ation). The prin
ipal design goal with regard to the LVM

interpreter is that its instru
tion set is suÆ
iently 
lose to the hardware to support dire
t mappings

between 
ertain instru
tions, registers, or other hardware attributes, but suÆ
iently high-level as to

make run-time translation of Java byte
ode to the LVM exe
utable format tolerable (either in terms

of the ROM/RAM/sta
k overhead of the translation pro
ess, or the time required to exe
ute, or a


ombination of both).

The translator will also be able to fun
tion mu
h like an Ahead-of-Time 
ompiler for JVM 
lass�les

whi
h generates LVM format 
lass�les. This will permit users to 
ompile the majority of their 
ode

to the speed- and size-eÆ
ient LVM format o�-line, at whi
h time aggressive or lengthy optimisations


an be performed. Optimisations whi
h are generally performed by native Java 
ompilers, namely

stati
, whole-program analysis, are inappropriate at this stage, however, as dynami
 
lass loading

renders part of the appli
ation unknown until runtime. Although a proportion of appli
ations 
an

be proven to not require dynami
 
lass loading, we are 
hoosing to fo
us on those whi
h do, rather

than resear
hing aggressive, o�-line whole-program analysis, whi
h is the subje
t of many 
urrent

Java resear
h proje
ts. There is s
ope for the use of annotations within JVM 
lass�les, su
h as

those suggested by Hummel et al[14℄. Su
h annotations would be introdu
ed by the translator when

generating target 
ode to aid the runtime system in maximising exe
ution eÆ
ien
y. Again, however,

we are unlikely to fo
us on this aspe
t as it has been 
onsidered by other resear
hers and would

detra
t from our proxy 
ompilation resear
h.

The proposed system is a 
ompromise between program size and exe
ution speed eÆ
ien
y. As the

LVM instru
tion set is designed to represent lower-level operations, a JVM program 
onverted to

the LVM format is expe
ted to require more storage spa
e than the original JVM program. The

LVM system startup is also expe
ted to be slower than an interpreted JVM system. Moreover, we

anti
ipate that LVM exe
ution speed will be signi�
antly faster than an interpreted JVM system,

although slower than a JIT-based JVM system. Fundamentally, however, we expe
t the runtime

footprint of the LVM system to be signi�
antly less than a JIT-based JVM, appli
ation exe
ution

to be signi�
antly faster than an interpreted system and for the memory requirement for translated

LVM 
ode to be signi�
antly less than that for native 
ode.

Should 
riti
al portions of the appli
ation require 
ompilation to native 
ode, either Ahead-of-

Time or during program exe
ution (i.e. a runtime pro�ler identi�es program hot spots), we would

ideally like to be able to natively 
ompile these se
tions. In view of this, we propose to support a

native interfa
e between the LVM and native 
ode. Su
h de
isions 
an be in
uen
ed either by user

intervention (stati
 
ompilation of 
riti
al 
ode), or by pro�ling at runtime.

6



3.2 Proxy Compilation

One possible out
ome of the resear
h work des
ribed above 
ould be that, owing to limitations on

available time for the translation of 
lass�les at load-time, the runtime translation of JVM to LVM

is impra
ti
al within a spe
i�
 ROM, RAM or sta
k limit (above whi
h, assumedly, the translation

would be too intrusive or expensive). A suÆ
iently 
omplex appli
ation or suÆ
iently s
ar
e system

resour
es will inevitably bring about this situation. We propose to in
rease performan
e using a

te
hnique we refer to as proxy 
ompilation.

In a proxy 
ompilation s
heme, idle peer devi
es to whi
h the devi
e is 
onne
ted via some form

of network or dire
t 
onne
tion are 
andidates for remote 
ompilation on behalf of the resour
e-


onstrained system. The remote 
ompilation may involve translation of a dynami
ally loaded JVM


lass�le to LVM, native 
ode, or some other representation.

It is diÆ
ult to gauge the extent to whi
h a proxy 
ompilation servi
e might be required by a resour
e-


onstrained system like a PDA. It is our impression, nevertheless, that dynami
 
ompilation and

dynami
 
lass loading would be valuable additions to a resour
e 
onstrained system. Additionally,

we feel that the feasibility of dynami
 
lass loading and runtime 
ompilation in su
h environments

in
reases when the overheads of translation are transferred from the 
lient to the server, su
h as one

a
hieves with our proxy 
ompilation proposal.

This te
hnique is expe
ted to be
ome very important as mi
ros are in
reasingly embedded into

produ
ts where, owing to produ
tion 
osts or other 
on
erns, insuÆ
ient resour
e exists to e�e
t a

translation of a program from JVM to LVM (or some other format), but a 
onne
tion to a network of

peer ma
hines has been in
luded. Su
h networks 
ould in
lude other small-s
ale embedded devi
es,

but also, potentially, very powerful ma
hinery whi
h has the 
apability to trivially perform the


ompilation tasks on behalf of peers. The advent of innovations su
h as the Bluetooth[8℄ standard

for wireless lo
al networking is likely to make su
h s
hemes highly attra
tive.

One parti
ularly important aspe
t 
on
erning a proxy 
ompilation s
heme of this nature is that of

how to ensure the validity of in
oming LVM or native 
ode. We do not 
urrently plan to fo
us

on authenti
ation or s
heduling aspe
ts of su
h distributed exe
ution, but rather to 
on
entrate on

studying the utility and eÆ
a
y of su
h a system, assuming that su
h issues 
an be over
ome with

negligible runtime overheads.

We intend to use proxy 
ompilation for both JIT 
ompilation of JVM to LVM and native 
ode

and also spe
ialisation of the LVM instru
tion set itself in response to pro�le results. A 
ompiler

whose runtime does not result in a linear in
rease in the target system exe
ution time permits

iterative optimisation and spe
ialisation[39℄ of both the runtime system and the target program

throughout appli
ation exe
ution. This is analogous to 
ontinuous 
ompilation[27℄, but within the

framework of a resour
e-
onstrained system. Clearly, however, the 
lient's resour
e 
onstraints

impose restri
tions on the appli
ability of spe
ialisation of the VM to a parti
ular appli
ation.

Whereas a single appli
ation might bene�t, multiple appli
ations would require multiple VMs, whi
h

would trade o� against the eÆ
ien
y in
reases introdu
ed by the spe
ialisation.

The intermitten
y and reliability of the network or 
able 
onne
tion between the two ma
hines

needs 
areful 
onsideration. Should the 
onne
tion be lost while proxy 
ompilation is in progress,

the 
lient devi
e must have a 
ontingen
y poli
y. This poli
y is likely to be di
tated by the resour
es

the 
lient has available. If a previously-
ompiled version of the 
ode has been 
a
hed, this 
an be

exe
uted. Alternatively, if an interpreter is available, the 
lient may 
hoose to interpret the 
ode. If

the 
onne
tion problem proves to be spe
i�
 to a parti
ular ma
hine, an alternative may be found

and the proxy 
ompilation requested anew. Finally, if none of these options are available, the 
lient

is entirely dependent on its network 
onne
tion and must wait until that 
onne
tion is restored, at

whi
h point either the interrupted proxy 
ompilation session is resumed or a new session started.
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4 Next Steps

We are 
urrently implementing a dynami
 
ompilation system to allow us to experiment with the

ideas outlined above. The system is resear
h-driven; 
onsequently, we plan to support representative,

but minimal Java programs. This implies supporting a subset of the Java 2 Platform API with, for

example, 
omplex I/O and networking fa
ilities omitted. The AWT, Swing and JFC se
tions of the

Java 2 Platform API will also be omitted, allowing us to fo
us on 
onsole-based appli
ations.

Firstly, we are de�ning and implementing an initial LVM in C++, together with a JVM 
lass�le

JIT 
ompiler for produ
ing LVM or target ma
hine 
ode at runtime. We expe
t to either implement

a very simplisti
 garbage 
olle
tor or use one of those freely available[2℄ under the GNU Publi


Li
ense[36℄. We will 
onsider the intera
tion of the LVM with the garbage 
olle
tor during this

work; there may be some advantages to be gained from representing obje
ts using a load/store VM

rather than a sta
k-based system. The JIT system will be used as a 
ontrol for the proxy 
ompilation

experiments (although other resear
h and 
ommer
ial systems will also be used). Implementation of

a proxy 
ompiler reading JVM 
lass�les and generating LVM or target ma
hine 
ode is underway. We

are implementing the proxy 
ompiler in Java to fa
ilitate rapid prototyping but intend to 
ompile

the JVM byte
ode to target 
ode using an Ahead-of-Time 
ompiler so as to maximise eÆ
ien
y

before testing the �nal system.

The system is being designed to permit dynami
 re-
ompilation of the LVM system to maximise

runtime eÆ
ien
y. One bene�t of this fa
ility is the option to optimise the system or adapt the LVM

instru
tion set in response to feedba
k gathered during a previous run, assuming resour
es permit

methods su
h as exe
ution pro�ling.

An initial proto
ol for proxy 
ompilation requests, together with mat
hing 
lient/server 
ode is

almost 
omplete.

To speed initial development and resear
h, we will be using Intel x86 as both the server and 
lient

platform. This is largely immaterial as the systems are being designed for resour
e-
onstrained

environments. Later in the proje
t, we expe
t to re-implement the system to target a real 
lient

system. This is likely to be either a Palm Pilot m100 PDA or Hewlett Pa
kard Jornada Windows

CE HPC. The Palm uses a 16MHz Motorola Dragonball EZ (MC68EZ328) pro
essor and has 2MB

RAM while the Jornada has a 133MHz Hita
hi SH3 (SH7709A) pro
essor with 16MB RAM. For the

purposes of simpli
ity, we will assume the system will be stored and exe
uted from RAM, although


learly any stati
 portions of our proposed runtime system 
ould theoreti
ally be stored in ROM.

Following 
ompletion of these software 
omponents, we will measure the runtime eÆ
ien
y of the

system using a set of representative ben
hmarks. We will 
onsider both 
ode-size, in
luding the

memory usage of the runtime system and the overheads of the proxy 
ompilation te
hnique on the

network; and total exe
ution time, in
luding proxy 
ompilation and any lo
al translation time.

We plan to publish our �ndings in due 
ourse, 
ontrasting our results with those obtained by other

resear
hers in the �eld and relevant 
ommer
ial software.

5 Related work

For reasons outlined above, interpreter and JIT-based systems are ineÆ
ient in resour
e-
onstrained

environments. Systems su
h as Insignia Solutions' Jeode produ
t[17℄, whi
h redu
e the overhead of

JIT te
hnology for embedded systems still impose a footprint upon the runtime system; the 
ompiler

must be stored on the target system and must 
ompile 
ode in pla
e of or in 
ompetition with the

appli
ation.

M
Glashan and Bower[22℄ 
laim that an interpreter-based virtual ma
hine delivers \entirely ad-

equate performan
e" for 
onsumer embedded systems produ
ts su
h as the SEGA Dream
ast.

While they re
ognise the importan
e of runtime minimisation in su
h environments, and 
ommend

8



interpreter-based VMs for their high-speed startup times and small memory footprint, their argu-

ment is based upon their own Smalltalk VM. The relevan
e of their �ndings to Java systems is

un
lear, though assumedly a proxy 
ompilation system bene�ts from the minimal VM while also

reaping the bene�ts of a powerful and 
exible dynami
 
ompilation system.

In the Ahead-of-Time domain, numerous stati
 Java 
ompilation systems exist[30, 9, 25, 24, 31, 11,

5, 38℄ though most are oriented to desktop systems with plentiful resour
es. All systems generate

native binary 
ode either dire
tly or via ANSI C, whi
h is subsequently 
ompiled o�-line. This

approa
h is generally speed eÆ
ient, but often forbids use of dynami
ally loaded 
lasses (e.g. [4℄)

and su�ers the overheads of native 
ode relative to 
ompa
t VM byte
ode.

The COMPOSE group's Harissa[25, 24℄ system notably a
knowledges the requirement for stati
ally-


ompiled Java appli
ations to exe
ute dynami
ally loaded 
lasses, however, its solution - an inter-

preter - results in a slow, if 
ompa
t solution. An equivalent interpreter has re
ently been added to

the GNU g
j 
ompiler[31℄. Neither system addresses eÆ
ient runtime 
ompilation of dynami
ally

loaded Java 
ode in resour
e-
onstrained environments.

Roelofs[32℄ notes the 
hara
teristi
s of resour
e-
onstrained systems, but is 
hie
y 
on
erned with

using 
onne
ted devi
es to allow remote exe
ution of appli
ation 
ode. Our resear
h instead seeks to

use more powerful peers to speed translation of the devi
e's 
ore program for subsequent exe
ution

on the devi
e itself.

Wakeman et al[26, 15℄ have worked on resear
h whi
h similarly a
knowledges the problems of en-

vironments in whi
h resour
es are limited. Their approa
h uses a proxy devi
e to serve suitably


ompressed or s
aled versions of requested data in a

ordan
e with 
lient-spe
i�ed 
onstraints ex-

pressing, for example, degradation limits. This is analogous to the notion of proxy 
ompilation,

though the authors have not spe
i�
ally proposed it. The work also proposes that 
lients inform the

proxy of their resour
es. This is a potentially attra
tive te
hnique whi
h would allow the server to

spe
ialise a 
ode fragment or appli
ation for the spe
i�
 resour
es available to the 
lient. In situa-

tions where low resour
es prohibit exe
ution pro�ling, this may be the only feedba
k the 
lient 
an

provide regarding the runtime environment. An additional, albeit lesser, 
onsideration is that their

implementation uses Java and RMI on the 
lient side. Our work dire
tly addresses the question of

proxy 
ompilation and is designed to s
ale to very simple 
lients where a Java runtime environment

may not be feasible.

The vast majority of dynami
 
ompilation systems require storage of a dynami
 
ompiler system in

the runtime environment, and must exe
ute on the target system. The small number of proje
ts

whi
h do not employ this model are now des
ribed. Voss and Eigenmann[41℄ detail a system whi
h is

notionally similar to proxy 
ompilation, but assumes various system 
hara
teristi
s. These in
lude a

requirement for NFS mounted storage to be shared between systems and a relian
e on RPC fa
ilities.

We believe su
h a solution would not s
ale well to resour
e-
onstrained systems (parti
ularly single

threaded appli
ations whi
h use a minimal operating system or do not require an OS). Additionally,

this proje
t has fo
ussed on ANSI C and FORTRAN appli
ations rather than Java.

Bell Labs' Inferno system[44, 43, 7℄ and Tao Systems' Elate/Intent system[12℄ both use a low-level

VM instru
tion set to in
rease the eÆ
ien
y of Java 
ode. These two systems are now 
ontrasted

with our proposed systems.

Inferno's use of a memory-to-memory virtual ma
hine results in a virtual ma
hine ar
hite
ture whi
h

is super�
ially similar to our proposed LVM system. There are a number of 
riti
al di�eren
es,

however. Firstly, Inferno is target-independent, supporting Intel x86, SPARC, ARM, PowerPC,

MIPS and other devi
es. Although the prin
iple of a low-level virtual ma
hine is appli
able to targets

with a load/store ar
hite
ture, we expe
t to in
rease eÆ
ien
y by 
reating spe
ialised versions of the

LVM instru
tion set for individual pro
essors. Furthermore the Inferno virtual ma
hine (Dis) has an

instru
tion set whi
h has been designed for the Limbo programming language, not Java. Although

there are many similar features, in
luding obje
ts and garbage 
olle
tion, supported by an extended

DIS VM instru
tion set, Inferno was not, to our knowledge, designed for Java. This may result in

ineÆ
ien
ies. Finally, although designed for network environments, Inferno neither dire
tly supports

nor proposes a proxy 
ompilation s
heme.

9



Elate/Insight also uses a low-level, target-independent instru
tion set, however it, like the Kimera

proje
t[35℄, use a form of remote 
ompilation whi
h relies on shared memory and persistent network


onne
tions. Su
h systems fail to a
knowledge the often intermittent nature of network 
onne
tions

to resour
e-
onstrained devi
es. As des
ribed above, our proxy 
ompilation s
heme is designed to

s
ale to a wide variety of ma
hines through te
hniques su
h as 
a
hes of previously 
ompiled 
ode

and eÆ
ient, 
lient-side interpretation.

Fraser and Proebsting[29℄ have proposed a te
hnique for the automati
 generation of 
ustom instru
-

tion sets in pursuit of spa
e eÆ
ien
y. Their system generates an interpreter and interpretive 
ode

with fun
tional equivalen
e to the original program. Although the authors were interested in 
ode


ompression, the te
hniques employed to dete
t 
ommon patterns in the input ANSI C program are

likely to be relevant to our own work on automati
 spe
ialisation of the LVM.

An interesting extension of our resear
h 
ould be to empiri
ally evaluate the intera
tion of proxy


ompilation with proposed 
ontinuous 
ompilation strategies[27, 28℄.

6 A
knowledgements

We would like to thank Hita
hi Mi
ro Systems Europe for supporting this resear
h.

The notion of proxy 
ompilation des
ribed in this paper evolved from a 
onversation with Ian

Wakeman, University of Sussex, wherein a similar 
on
ept was dis
ussed in the 
ontext of a
tive

networks.

Ulrik Page S
hultz of IRISA, University of Rennes, provided useful 
omments during the initial

stages of the resear
h. Thanks also to Mi
hael J. Voss and Rudolf Eigenmann of Purdue University

for 
omments and feedba
k.

Finally, we would like to thank our peers in the Software Systems group at the University of Sussex

for useful feedba
k throughout the proje
t.

7 Summary

We have outlined our reservations with regard to the appropriateness of 
urrent dynami
 
ompilation

s
hemes for Java in resour
e-
onstrained environments. We have summarised a proposal for a lower-

level virtual ma
hine, whi
h bene�ts from both a target-spe
i�
 instru
tion set (potentially generated

through a 
ombination of proxy 
ompilation and partial evaluation using pro�le results, assuming the

devi
e has suÆ
ient resour
es to gather exe
ution pro�les) and a 
ompa
t byte
ode representation.

In this 
ontext, we have also proposed a proxy 
ompilation me
hanism, in whi
h idle networked

ma
hines may be employed to perform translation and 
ompilation on behalf of the target system.

Our expe
tation is that our resear
h will prove proxy 
ompilation is a powerful and 
exible general

purpose te
hnique for dynami
 
ompilation. We also anti
ipate the value of su
h te
hniques will

in
rease as small-s
ale mobile devi
es proliferate.
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