CS Report 01,/2001
Proxy Compilation*

Matt Newsome and Des Watson |
{mattn,desw }Qcogs.susx.ac.uk

January 2001

Abstract

In this paper, we outline new research concerning dynamic compilation of Java applications
in environments where system resources are significantly limited. In such environments, which
include “smart” mobile telephones and Personal Digital Assistants, memory and processor cy-
cles can be scarce, making current techniques for the runtime translation of Java programs
or program fragments inappropriate. We propose an alternative technique, prory compilation,
which makes use of idle, connected devices on a network to compile code on its behalf.

1 Introduction

The Java programming language[10, 21], although commonly associated with Internet programming,
is a general-purpose object-oriented programming language. Many of its features, such as the use of
a garbage-collected memory allocation scheme, a virtual machine execution model and single class
inheritance, have been highly lauded within the computer programming industry and academia.

The traditional role of the compiler[1, 13, 42, 23] has been to facilitate one-time translation of human-
readable source programs into machine-readable object programs. The generated software is then
suitable for deployment on a particular computer, where the program is run. Typically this means
synthesis of the program by the machine’s actual processor. In the Java model, however, a compiler is
primarily used to convert Java source code, which is written directly by the programmer, to the Java
Virtual Machine (JVM) classfile format[21, 6]. Virtual machines (VMs) are hypothetical processors
implemented in software. Execution of a program for such a machine typically requires translation
of the VM program to one which can be directly executed by the underlying processor (often that
on which the virtual machine software is executing), while retaining functional equivalence. In this
case, the VM language is being used as an intermediate representation in the implementation of the
language. Alternatively, the VM program can be interpreted by passing it through an interpreter
program running on the target machine. The JVM is designed to allow convenient representation of
Java programs. Such VM code is relatively efficient for transfer across networks, such as the Internet.
Additionally, the program code contained in JVM classfiles (referred to hereafter as JVM code) can
generally be translated more easily than the high-level program constructs in the originating Java
programs.

Several techniques exist for the execution of JVM code. In the traditional Java model, each individual
JVM instruction is interpreted each time the program is run. This process involves translation of
the JVM instruction into a semantically equivalent instruction (or sequence of instructions) for
the target computer to execute; hence interpretation can slow program execution, typically by an
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order of magnitude. One common modification to this scheme, made in pursuit of faster program
execution, has been to translate JVM code into native code a single time at runtime when such code
is loaded (termed Just-in-Time (JIT) compilation[20, 18, 3, 38, 34]), or incrementally when system
activity is below a specified threshold (known as continuous compilation[27, 28], as the program
is continually replaced with more highly-optimised versions of itself). JVM JIT compilers often
compile individual methods, rather than entire classes or programs, and defer compilation of each
method until just prior to its execution. In both JIT and continuous compilation, a native code
version of the abstract JVM code is stored and executed in place of the JVM code throughout the
remainder of the program. This results in a significant execution speed increase as interpretation is
no longer required.

For powerful machines, such as desktop computers or servers, JIT compilation is generally considered
to be a good solution. JIT systems often introduce user-perceivable delays, however, while code
is loaded and then compiled. Additionally, JIT systems are often several megabytes in size and
generally consume significantly more RAM than an interpreter while executing[16].

In the context of resource-constrained products, for example, embedded consumer devices (such
as Personal Digital Assistants (PDAs) and so-called “smart” mobile phones), in which memory
and CPU cycles are a scarce resource, the overhead of a dynamic compiler upon the system’s
ROM/RAM usage and upon execution speed is often impractical. An alternative compilation scheme
for Java which is gaining popularity in resource-constrained environments is Ahead-of-Time (AOT)
compilation[33, 30, 9, 25, 24, 31, 11, 5], in which all program code is compiled off-line (i.e. before
the program is run on the target computer). This is, of course, the classical model of compilation
as used for ANSI C/C++[37] and many other programming languages, and can result in highly
optimised machine code without the need for runtime translation.

The central problems with AOT compilation are the loss of object portability and the question of
how to resolve runtime linkage of pre-compiled binaries with dynamically loaded JVM classfiles.
Dynamic class loading is one of the few features which truly differentiates Java from C++4, as it
allows completely new sections of a program to be supplied and translated at runtime. Specific uses
include the loading of Java applets into a web browser, and updates to a server application’s code
without interruption. The original proposal for Java AOT compilation by Proebsting et al[30], which
forbade dynamic class loading, has since been refined[24]. Unfortunately, the refinement introduces
an interpreter to support execution of dynamically loaded code. As discussed above, interpreters
are inefficient and JIT compilers are generally impractical in resource-constrained environments.

Consequently, efficient translation/execution of dynamically loaded classes in a resource-constrained
environment remains a fundamental problem in the field. This paper describes research being con-
ducted at the University of Sussex exploring alternatives to the schemes outlined above. The goal
of the work is to find more efficient execution schemes for Java programs executing in resource-
constrained environments.

The remainder of the paper is organised as follows. In Section 2, an overview of Java Virtual
Machine architecture is presented. Some alternatives to current Java execution/compilation schemes
are then outlined in section 3; section 3.1 describes a lower-level representation for JVM code and
An alternative model for dynamic compilation is presented in section 3.2. We present an overview
of our current activity and intended future work in section 4. Related work is described in section 5.
Finally, acknowledgements are made in section 6 and a summary is given in section 7.

2 Java Virtual Machine Architecture: An Overview

In order to support an overview of our research, a brief overview of the implementation of a Java
Virtual Machine is now presented. A thorough examination of JVM architectural details is neither
possible nor warranted in this paper. For detailed information, readers are directed to the JVM
literature[21, 40].



2.1 Major components

The Java Virtual Machine (JVM) is an abstract machine which processes JVM classfiles. Such
classfiles contain, broadly speaking, representations of the Java methods and member fields forming
a single class’s definition, information to support the exception mechanism and a system for repre-
senting additional class attributes. The JVM itself exists primarily to load and link classfiles into
the running machine on demand (performed by the Class Loader), represent those classes internally
by means of a number of runtime data structures and facilitate execution (a role shared between the
Ezecution Engine (which is responsible for execution of JVM instructions) and the Native Method
Interface which allows a Java program to execute non-Java code, generally ANSI C/C++.

2.2 The JVM Class Loader

Most JVM implementation require the ability to load JVM classfiles, and it is the JVM class loader’s
role to load referenced JVM classes which have not already been linked to the runtime system. A
repository of previously loaded classes is maintained in the interests of efficiency.

Classes may be loaded implicitly for several reasons. Firstly, the initial classfile - the classfile
containing the public static void main(String args[]) method - must be loaded on startup.
Depending on the class policy adopted by the JVM, classes referenced by this initial class may be
loaded in either a lazy or eager manner. An eager class loader loads the complete transitive closure
of the initial class - that is, all the classes comprising the application code - at startup'. Lazy class
loaders wait until the first active use of a class before loading and linking its classfile. The first
active use of a class occurs when (1) an instance of that class is created; (2) an instance of one of
its subclasses is initialised; or (3) when one of its static fields is initialised®. Certain classes, such
as java.lang.String, may be loaded implicitly by the JVM to support execution (in this case, to
represent String literals). Classes may also be loaded explicitly using the java.lang.Class.forName()
method in the Java API, or through the creation of a user class loader.

In either situation, the Class Loader’s job is, briefly, that of loading, verifying, preparing,resolving
and initialising a class from a JVM classfile.

Loading involves obtaining the byte array representing the Java classfile. Most often, this is either
retrieved from a file store, or received across a network. A representation of the loaded class is
usually then assigned to an internal database, known as the method area. The method area may
contain the entire runtime representation of a class, as suggested by Venners[40], or merely the
methods from loaded classes. In the latter case, supporting data, such as the constant pool, is
stored in separate data structures. The werification of a JVM classfile is the important process of
checking the structural well-formedness of the classfile and then inspecting the classfile contents to
ensure the code does not attempt to perform non-permitted operations (such as executing beyond
the end of a method, which might cause type safety to be circumvented or the JVM to crash)?.

Preparation involves allocation and default initialisation of storage space for static class fields.
Method tables, which speed virtual method calls, and object templates, which speed object cre-
ation, are also often created at this stage.

Initialisation involves execution of the class’s class initialisation method, if defined, wherein static
class fields are initialised to their user-defined initial values (if specified).

Symbolic references within a JVM classfile, such as to classes or object fields in order to reference a
field’s value, are only resolved to direct references (generally a direct pointer to a record in one of the
JVM’s internal data structures) at runtime. This process of resolution may occur after preparation
but prior to initialisation, or more typically at some point following initialisation, but prior to

n fact, if user class loaders are used, this might not be the case as some classes cannot be loaded until the
appropriate Class.forName() call is evaluated

2Unless the static field is declared final and initialised to a compile-time constant expression[40]

3Note this verification step is separate to Java’s security framework, which includes notions such as security policies
and protection domains.



the first reference to that symbol. The delay is generally in pursuit of increased execution speed:
not all symbols in a classfile will be referenced during execution, so by delaying resolution, fewer
symbols may need to be resolved with less runtime overhead. Additionally, the cost of resolution is
amortised over the total execution time. Many JVM implementations, including Sun Microsystems’
JDK, modify JVM bytecodes which reference a resolved constant pool entry to use so-called quick-
opcodes. These instructions ensure the direct reference rather than the symbolic reference is used
in subsequent invocations of the method code.

2.3 The JVM Execution Engine

The JVM’s execution engine is responsible for synthesis, in some manner, of the set of JVM classfiles
representing the original Java program. The requirements for JVM startup and the semantics for
each JVM instruction in the JVM instruction set have been defined both informally[21, 40] and
formally[6]. Briefly, the JVM, at startup, is responsible for loading and linking the initial class,
which is specified in some manner to the JVM.

Following successful startup, the public static void main(String args[]) method of the initial
class is invoked. The execution engine is generally responsible for method invocation and execu-
tion. Again, with concessions to brevity, JVM instructions can be broken into groups: instructions
for object creation, control flow modification, value storage/loading, operand stack manipulation,
type conversion, arithmetic, type inspection, array manipulation, exception handling and thread
synchronisation.

Object creation involves resolution of all supertypes of the object’s class, which in turn may require
loading and linkage of the corresponding JVM classfiles by the class loader. Object creation itself
requires allocation of memory, generally on the JVM’s heap, for object fields (including supertype
instance fields). These fields are initialised to default values, though may be reinitialised by a
subsequently invoked class constructor. The JVM heap is garbage collected rather than explicitly
deallocated.

In addition to a heap for the storage of objects, an untyped operand stack is generally used by
a JVM implementation to hold intermediate values, pass parameters to methods, receive returned
values from methods and support the exception mechanism. A number of instructions are available
for operand stack manipulation, for example to duplicate values on the stack or to clear values from
the stack. While a different operand stack is created with each method invocation (and persists
until method return), each operand stack is held in a frame within a single, system-wide Java
stack. Frames also hold additional housekeeping information for the JVM, including a predetermined
number of untyped local variables slots?.

The JVM operates on a set of primitive types which is similar to the set of types supported by
the Java language itself. Generally, integral types which are represented by less than 32-bits are
promoted to integers. Consequently, the JVM’s arithmetic instructions mainly consist of instruc-
tions which operate on integer (32-bit signed two’s complement integer), long (64-bit signed two’s
complement integer), float (32-bit IEEE 754), double (64-bit IEEE 754) and object reference types®.
A number of type conversion instructions exist to convert between these different types, while val-
ue storage/loading instructions allow movement of values between the operand stack and the local
variable slots.

Control flow modification instructions are provided to allow selection (conditional jumps, etc.),
iteration, method invocation (and consequently recursion), constructor execution and Java’s
try..catch..finally exception mechanism. Support for returning control (and optionally a value) from
a method invocation is also supported.

4In fact, local variables and operand stack values are typed, though any value can be stored in any local variable
or stack slot. As long and double types are 64-bits wide, they require two locals or two stack slots for their value to
be stored. The verifier ensures this property is not abused.

5Tnitial incompatibilities between Java floating point types and the IEEE 754 standard have since been resolved
with the introduction of the strictfp keyword.



The JVM supports arrays as first class objects, with multidimensional arrays represented as arrays
of references to array objects. There are certain subtleties relating to array objects, such as them
having java.lang.Object as a supertype, method invocation through array pointers being valid and a
number of issues concerning run-time type comparisons with primitive types and other array object
references. A number of array manipulation instructions exist to support transfer of values between
the operand stack and array components.

Finally, type inspection instructions support run-time type checks on objects and primitive values
and thread synchronisation instructions support Java’s built-in multi-threading facilities.

2.4 The Java Native Interface

Java provides a mechanism, known as the Java Native Interface (JNI), which facilitates linkage of
Java code with legacy software. This mechanism is optional in JVM implementations, and may be
complemented or replaced by a proprietary native code invocation mechanism. Commonly, however,
the JNT is supported and provides a facility for dynamically linking an ANSI C library at runtime
and executing functions from that library. An ANSI C library is generally supplied by the JVM
which allow access to the current JVM state; for example to receive pointers to JVM objects and
values which can be modified by the ANSI C code, to allow return of data to the calling method
in the JVM, and more complex interactions, such as catching exceptions in JVM methods invoked
from the ANSI C code.

Native methods are also commonly used within the Java API wherever interaction with the execut-
ing environment is required (such as to display user interfaces or access system-specific features).
Additionally, native methods have the potential to speed critical operations by bypassing the JVM
execution engine.

3 Alternatives to the Java Compilation Model

The remit of our research is to explore ways in which entire Java programs or dynamically load-
ed JVM classes can be executed with minimal code size overhead for the target system. This is
fundamentally different to the usual concerns of dynamic compilation, which are typically ease of
development and speed efficiency of compilation/optimisation at runtime. In view of this, funda-
mentally different techniques are required.

We propose a lower-level representation of the JVM classfile format (LVM) and a translator from
JVM to LVM. In the interests of space efficiency on the resource-constrained system, we propose
a technique we refer to as proxy compilation in which the translation of JVM to LVM may be
performed by another computer using some form of network connection between the two systems.

3.1 A Lower-Level Alternative to the JVM Classfile Format

We are currently researching an implementation of the Java runtime environment which is imple-
mented as a combination of a load-time Java classfile translator and lower-level virtual machine,
which will be referred to as LVM for ease of reference.

By “lower-level”, we refer to a virtual machine that can represent JVM programs with identical
semantics, but using a representation which is platform-specific. Virtual machine design usually
brings a requirement for generality - the VM must be easily implementable on a wide array of
microprocessors. The role of a dynamic-compiler, however, is to generate target-specific code with
identical semantics to the input. We propose to retain the benefits of an interpreter-based virtual
machine but specialise that virtual machine to a specific processor.



Some innovative alternatives to the JVM classfile format have already been proposed[19]. We plan
to conduct some research into alternative representations, though the majority of our work will be
in developing an effective instruction set.

The anticipated benefits of this approach are that execution speed or size improvements can be
obtained without compiling the program to native code, which requires significantly more storage
(particularly where a RISC machine is the target). Scope exists for specialising the instruction set
for particular applications or code idioms and for including direct mappings between virtual machine
opcodes and hardware opcodes. The inefficient stack-based architecture, which was chosen for the
JVM as it is conducive to rapid development of interpreters on a wide variety of targets, could be
rewritten using virtual registers, which is likely to result in more speed-efficient code with a tolerable
code-size increase.

To enable use of the proprietary LVM format, a Java classfile translator will convert Java classfiles
into the LVM file format, most likely at load-time. It is proposed that all Java features will ulti-
mately be supported by the low-level virtual machine, though our initial research is likely to use a
representative subset to expedite experimentation.

The LVM itself is expected to include an interpreter and, optionally, a garbage collector (not all
applications require memory deallocation). The principal design goal with regard to the LVM
interpreter is that its instruction set is sufficiently close to the hardware to support direct mappings
between certain instructions, registers, or other hardware attributes, but sufficiently high-level as to
make run-time translation of Java bytecode to the LVM executable format tolerable (either in terms
of the ROM/RAM/stack overhead of the translation process, or the time required to execute, or a
combination of both).

The translator will also be able to function much like an Ahead-of-Time compiler for JVM classfiles
which generates LVM format classfiles. This will permit users to compile the majority of their code
to the speed- and size-efficient LVM format off-line, at which time aggressive or lengthy optimisations
can be performed. Optimisations which are generally performed by native Java compilers, namely
static, whole-program analysis, are inappropriate at this stage, however, as dynamic class loading
renders part of the application unknown until runtime. Although a proportion of applications can
be proven to not require dynamic class loading, we are choosing to focus on those which do, rather
than researching aggressive, off-line whole-program analysis, which is the subject of many current
Java research projects. There is scope for the use of annotations within JVM classfiles, such as
those suggested by Hummel et al[14]. Such annotations would be introduced by the translator when
generating target code to aid the runtime system in maximising execution efficiency. Again, however,
we are unlikely to focus on this aspect as it has been considered by other researchers and would
detract from our proxy compilation research.

The proposed system is a compromise between program size and execution speed efficiency. As the
LVM instruction set is designed to represent lower-level operations, a JVM program converted to
the LVM format is expected to require more storage space than the original JVM program. The
LVM system startup is also expected to be slower than an interpreted JVM system. Moreover, we
anticipate that LVM execution speed will be significantly faster than an interpreted JVM system,
although slower than a JIT-based JVM system. Fundamentally, however, we expect the runtime
footprint of the LVM system to be significantly less than a JIT-based JVM, application execution
to be significantly faster than an interpreted system and for the memory requirement for translated
LVM code to be significantly less than that for native code.

Should critical portions of the application require compilation to native code, either Ahead-of-
Time or during program execution (i.e. a runtime profiler identifies program hot spots), we would
ideally like to be able to natively compile these sections. In view of this, we propose to support a
native interface between the LVM and native code. Such decisions can be influenced either by user
intervention (static compilation of critical code), or by profiling at runtime.



3.2 Proxy Compilation

One possible outcome of the research work described above could be that, owing to limitations on
available time for the translation of classfiles at load-time, the runtime translation of JVM to LVM
is impractical within a specific ROM, RAM or stack limit (above which, assumedly, the translation
would be too intrusive or expensive). A sufficiently complex application or sufficiently scarce system
resources will inevitably bring about this situation. We propose to increase performance using a
technique we refer to as prozy compilation.

In a proxy compilation scheme, idle peer devices to which the device is connected via some form
of network or direct connection are candidates for remote compilation on behalf of the resource-
constrained system. The remote compilation may involve translation of a dynamically loaded JVM
classfile to LVM, native code, or some other representation.

It is difficult to gauge the extent to which a proxy compilation service might be required by a resource-
constrained system like a PDA. Tt is our impression, nevertheless, that dynamic compilation and
dynamic class loading would be valuable additions to a resource constrained system. Additionally,
we feel that the feasibility of dynamic class loading and runtime compilation in such environments
increases when the overheads of translation are transferred from the client to the server, such as one
achieves with our proxy compilation proposal.

This technique is expected to become very important as micros are increasingly embedded into
products where, owing to production costs or other concerns, insufficient resource exists to effect a
translation of a program from JVM to LVM (or some other format), but a connection to a network of
peer machines has been included. Such networks could include other small-scale embedded devices,
but also, potentially, very powerful machinery which has the capability to trivially perform the
compilation tasks on behalf of peers. The advent of innovations such as the Bluetooth[8] standard
for wireless local networking is likely to make such schemes highly attractive.

One particularly important aspect concerning a proxy compilation scheme of this nature is that of
how to ensure the validity of incoming LVM or native code. We do not currently plan to focus
on authentication or scheduling aspects of such distributed execution, but rather to concentrate on
studying the utility and efficacy of such a system, assuming that such issues can be overcome with
negligible runtime overheads.

We intend to use proxy compilation for both JIT compilation of JVM to LVM and native code
and also specialisation of the LVM instruction set itself in response to profile results. A compiler
whose runtime does not result in a linear increase in the target system execution time permits
iterative optimisation and specialisation[39] of both the runtime system and the target program
throughout application execution. This is analogous to continuous compilation[27], but within the
framework of a resource-constrained system. Clearly, however, the client’s resource constraints
impose restrictions on the applicability of specialisation of the VM to a particular application.
Whereas a single application might benefit, multiple applications would require multiple VMs, which
would trade off against the efficiency increases introduced by the specialisation.

The intermittency and reliability of the network or cable connection between the two machines
needs careful consideration. Should the connection be lost while proxy compilation is in progress,
the client device must have a contingency policy. This policy is likely to be dictated by the resources
the client has available. If a previously-compiled version of the code has been cached, this can be
executed. Alternatively, if an interpreter is available, the client may choose to interpret the code. If
the connection problem proves to be specific to a particular machine, an alternative may be found
and the proxy compilation requested anew. Finally, if none of these options are available, the client
is entirely dependent on its network connection and must wait until that connection is restored, at
which point either the interrupted proxy compilation session is resumed or a new session started.



4 Next Steps

We are currently implementing a dynamic compilation system to allow us to experiment with the
ideas outlined above. The system is research-driven; consequently, we plan to support representative,
but minimal Java programs. This implies supporting a subset of the Java 2 Platform API with, for
example, complex I/O and networking facilities omitted. The AWT, Swing and JFC sections of the
Java 2 Platform API will also be omitted, allowing us to focus on console-based applications.

Firstly, we are defining and implementing an initial LVM in C++, together with a JVM classfile
JIT compiler for producing LVM or target machine code at runtime. We expect to either implement
a very simplistic garbage collector or use one of those freely available[2] under the GNU Public
License[36]. We will consider the interaction of the LVM with the garbage collector during this
work; there may be some advantages to be gained from representing objects using a load/store VM
rather than a stack-based system. The JIT system will be used as a control for the proxy compilation
experiments (although other research and commercial systems will also be used). Implementation of
a proxy compiler reading JVM classfiles and generating LVM or target machine code is underway. We
are implementing the proxy compiler in Java to facilitate rapid prototyping but intend to compile
the JVM bytecode to target code using an Ahead-of-Time compiler so as to maximise efficiency
before testing the final system.

The system is being designed to permit dynamic re-compilation of the LVM system to maximise
runtime efficiency. One benefit of this facility is the option to optimise the system or adapt the LVM
instruction set in response to feedback gathered during a previous run, assuming resources permit
methods such as execution profiling.

An initial protocol for proxy compilation requests, together with matching client/server code is
almost complete.

To speed initial development and research, we will be using Intel x86 as both the server and client
platform. This is largely immaterial as the systems are being designed for resource-constrained
environments. Later in the project, we expect to re-implement the system to target a real client
system. This is likely to be either a Palm Pilot m100 PDA or Hewlett Packard Jornada Windows
CE HPC. The Palm uses a 16MHz Motorola Dragonball EZ (MC68EZ328) processor and has 2MB
RAM while the Jornada has a 133MHz Hitachi SH3 (SH7709A) processor with 16MB RAM. For the
purposes of simplicity, we will assume the system will be stored and executed from RAM, although
clearly any static portions of our proposed runtime system could theoretically be stored in ROM.

Following completion of these software components, we will measure the runtime efficiency of the
system using a set of representative benchmarks. We will consider both code-size, including the
memory usage of the runtime system and the overheads of the proxy compilation technique on the
network; and total execution time, including proxy compilation and any local translation time.

We plan to publish our findings in due course, contrasting our results with those obtained by other
researchers in the field and relevant commercial software.

5 Related work

For reasons outlined above, interpreter and JIT-based systems are inefficient in resource-constrained
environments. Systems such as Insignia Solutions’ Jeode product[17], which reduce the overhead of
JIT technology for embedded systems still impose a footprint upon the runtime system; the compiler
must be stored on the target system and must compile code in place of or in competition with the
application.

McGlashan and Bower[22] claim that an interpreter-based virtual machine delivers “entirely ad-
equate performance” for consumer embedded systems products such as the SEGA Dreamcast.
While they recognise the importance of runtime minimisation in such environments, and commend



interpreter-based VMs for their high-speed startup times and small memory footprint, their argu-
ment is based upon their own Smalltalk VM. The relevance of their findings to Java systems is
unclear, though assumedly a proxy compilation system benefits from the minimal VM while also
reaping the benefits of a powerful and flexible dynamic compilation system.

In the Ahead-of-Time domain, numerous static Java compilation systems exist[30, 9, 25, 24, 31, 11,
5, 38] though most are oriented to desktop systems with plentiful resources. All systems generate
native binary code either directly or via ANSI C, which is subsequently compiled off-line. This
approach is generally speed efficient, but often forbids use of dynamically loaded classes (e.g. [4])
and suffers the overheads of native code relative to compact VM bytecode.

The COMPOSE group’s Harissa[25, 24] system notably acknowledges the requirement for statically-
compiled Java applications to execute dynamically loaded classes, however, its solution - an inter-
preter - results in a slow, if compact solution. An equivalent interpreter has recently been added to
the GNU gcj compiler[31]. Neither system addresses efficient runtime compilation of dynamically
loaded Java code in resource-constrained environments.

Roelofs[32] notes the characteristics of resource-constrained systems, but is chiefly concerned with
using connected devices to allow remote execution of application code. Our research instead seeks to
use more powerful peers to speed translation of the device’s core program for subsequent execution
on the device itself.

Wakeman et al[26, 15] have worked on research which similarly acknowledges the problems of en-
vironments in which resources are limited. Their approach uses a proxy device to serve suitably
compressed or scaled versions of requested data in accordance with client-specified constraints ex-
pressing, for example, degradation limits. This is analogous to the notion of proxy compilation,
though the authors have not specifically proposed it. The work also proposes that clients inform the
proxy of their resources. This is a potentially attractive technique which would allow the server to
specialise a code fragment or application for the specific resources available to the client. In situa-
tions where low resources prohibit execution profiling, this may be the only feedback the client can
provide regarding the runtime environment. An additional, albeit lesser, consideration is that their
implementation uses Java and RMI on the client side. Our work directly addresses the question of
proxy compilation and is designed to scale to very simple clients where a Java runtime environment
may not be feasible.

The vast majority of dynamic compilation systems require storage of a dynamic compiler system in
the runtime environment, and must execute on the target system. The small number of projects
which do not employ this model are now described. Voss and Eigenmann[41] detail a system which is
notionally similar to proxy compilation, but assumes various system characteristics. These include a
requirement for NFS mounted storage to be shared between systems and a reliance on RPC facilities.
We believe such a solution would not scale well to resource-constrained systems (particularly single
threaded applications which use a minimal operating system or do not require an OS). Additionally,
this project has focussed on ANSI C and FORTRAN applications rather than Java.

Bell Labs’ Inferno system[44, 43, 7] and Tao Systems’ Elate/Intent system[12] both use a low-level
VM instruction set to increase the efficiency of Java code. These two systems are now contrasted
with our proposed systems.

Inferno’s use of a memory-to-memory virtual machine results in a virtual machine architecture which
is superficially similar to our proposed LVM system. There are a number of critical differences,
however. Firstly, Inferno is target-independent, supporting Intel x86, SPARC, ARM, PowerPC,
MIPS and other devices. Although the principle of a low-level virtual machine is applicable to targets
with a load/store architecture, we expect to increase efficiency by creating specialised versions of the
LVM instruction set for individual processors. Furthermore the Inferno virtual machine (Dis) has an
instruction set which has been designed for the Limbo programming language, not Java. Although
there are many similar features, including objects and garbage collection, supported by an extended
DIS VM instruction set, Inferno was not, to our knowledge, designed for Java. This may result in
inefficiencies. Finally, although designed for network environments, Inferno neither directly supports
nor proposes a proxy compilation scheme.



Elate/Insight also uses a low-level, target-independent instruction set, however it, like the Kimera
project[35], use a form of remote compilation which relies on shared memory and persistent network
connections. Such systems fail to acknowledge the often intermittent nature of network connections
to resource-constrained devices. As described above, our proxy compilation scheme is designed to
scale to a wide variety of machines through techniques such as caches of previously compiled code
and efficient, client-side interpretation.

Fraser and Proebsting[29] have proposed a technique for the automatic generation of custom instruc-
tion sets in pursuit of space efficiency. Their system generates an interpreter and interpretive code
with functional equivalence to the original program. Although the authors were interested in code
compression, the techniques employed to detect common patterns in the input ANSI C program are
likely to be relevant to our own work on automatic specialisation of the LVM.

An interesting extension of our research could be to empirically evaluate the interaction of proxy
compilation with proposed continuous compilation strategies[27, 28].

6 Acknowledgements

We would like to thank Hitachi Micro Systems FEurope for supporting this research.

The notion of proxy compilation described in this paper evolved from a conversation with Ian
Wakeman, University of Sussex, wherein a similar concept was discussed in the context of active
networks.

Ulrik Page Schultz of TRISA, University of Rennes, provided useful comments during the initial
stages of the research. Thanks also to Michael J. Voss and Rudolf Eigenmann of Purdue University
for comments and feedback.

Finally, we would like to thank our peers in the Software Systems group at the University of Sussex
for useful feedback throughout the project.

7 Summary

We have outlined our reservations with regard to the appropriateness of current dynamic compilation
schemes for Java in resource-constrained environments. We have summarised a proposal for a lower-
level virtual machine, which benefits from both a target-specific instruction set (potentially generated
through a combination of proxy compilation and partial evaluation using profile results, assuming the
device has sufficient resources to gather execution profiles) and a compact bytecode representation.
In this context, we have also proposed a proxy compilation mechanism, in which idle networked
machines may be employed to perform translation and compilation on behalf of the target system.
Our expectation is that our research will prove proxy compilation is a powerful and flexible general
purpose technique for dynamic compilation. We also anticipate the value of such techniques will
increase as small-scale mobile devices proliferate.
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