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Preface

The contents of Chapters 3 and 4 are the result of collaborative research with my supervisor,

Matthew Hennessy. Preliminary versions of these two chapters have been published as Sussex

University technical reports [47, 48] and appear as an extended abstract in [46]. An earlier version

of work in Chapter 5 has also appeared as a Sussex University technical report [91] written jointly

with Matthew Hennessy. However, in its present form, Chapter 5 is my own work. An extended

abstract detailing the contents of Chapter 6 is due to be published later this year [90].



Symbolic Techniques for Value-passing Calculi

Julian Rathke

Abstract

We investigate the use of symbolic operational semantics for value-passing process languages.

Symbolic semantics provide analytical tools for reasoning about particular infinite state systems

where traditional methods fail. We eschew the use of Milner’s encoding of value-passing agents

into pure process algebra and advocate the treatment of value-passing terms as first-order processes

proper. Such an approach enables us to build finitary proof systems for reasoning within a variety

of value-passing calculi. All work carried out here is parametric with respect to the language of

data expressions and, as such, reasoning about processes must be done relative to reasoning about

data.

Firstly, we consider the broadcast calculus CBS. A novel semantic notion of strong equiva-

lence is derived using the technique of barbed bisimulations. We characterise this equivalence,

equationally, using an infinitary rule of inference and then, by means of a symbolic semantics

for CBS, demonstrate how this infinitary rule can be avoided. A similar programme of study is

executed for the corresponding weak equivalence.

Secondly, the problem of model checking value-passing processes is addressed. We introduce

a suitable specification language based on the modal µ-calculus and, using symbolic graphs as the

underlying models, develop a sound tableaux based model checker for formulae in this new logic.

We investigate the power of this model checker by proving relative completeness and incomplete-

ness results for restricted classes of process and various sub-logics.

Finally, we pursue the technique of unique fixpoint induction in the setting of value-passing

process languages. We offer an intuitive generalisation of unique fixpoint induction and show that

it is derivable from existing formulations. Further to this, using symbolic techniques we present

relatively complete proof systems for regular, guarded, value passing processes, which characterise

both strong and weak bisimulation. A relationship between parameterised and unparameterised

processes with parallel compositions is also described.
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Chapter 1

Introduction

Communication and concurrency are the two fundamental concepts which are used to model and

understand complex dynamic systems. A large system can be realised as a collection of many

parts and, because autonomous agents go about their business independently, many isolated agents

acting concurrently do not model systems well. In particular, they fail to capture the unified

behaviour of the system, viewed holistically. We have come to accept that this aspect of systems

can be modelled well by interaction or communication. This is the basic tenet of concurrency

theory, or process calculus, that has given rise to a large body of work over the last few decades.

The first theory of concurrency might be considered to be the theory of Petri nets, [82, 92, 83].

These models arose as a generalisation of automata in which actions or events may be performed

concurrently, but what was somehow absent from the net model approach was an appreciation

of the structure of large systems, in particular, the idea of small components interacting to form

a whole. These considerations were to be recognized in later years in the wake of the study of

processes. Seemingly independently, theories of processes were developed around the idea of

communicating agents, performing atomic, indivisible, actions, [7, 50, 70]; the calculi presented

in [6, 74, 51] are the fruits of extensive research into processes, [10, 15, 44, 69, 71, 80] for example.

These calculi all provide syntactic descriptions of communicating agents and, in the so-called pure

forms of these languages, communication is modelled solely by synchronisation so that the fact

that actual data may be transmitted from one agent to another is abstracted away. This is a perfectly

valid abstraction for theoretical purposes but for many specifications one wishes to retain certain

fundamental aspects of communication. For example, one may wish to describe protocols where

actual messages are being sent between agents and future behaviour depends upon the content

of such messages. Languages which incorporate this feature are typically distinguished from the

pure variants by referring to them as value-passing calculi. The semantics of such calculi are the

topic of this thesis.

The theory of process calculi has focussed, to a large extent, on pure calculi. Furthermore, the

treatment of value-passing calculi has been somewhat neglected due to the fact that value-passing

can be encoded in pure calculi in a straightforward manner. In a value-passing calculus the atomic

actions are usually of the form a!v, meaning send the value v on channel name a, or of the form

a?v meaning receive the value v on a. Typically we do not know which value we are about to

receive so we have a construct a?x:p(x), which binds a variable x in the abstraction (a function

from values to processes), p. We would consider this to denote the process which could perform

any a?v action and then subsequently behave as p(v). The encoding of this construct into a pure

language utilises the fact that each of the value actions can be considered as a single abstract

action, written as a triple, (a; !;v) or (a;?;v). Thus a?x:p(x) can be described in the pure calculus



Chapter 1. Introduction 2

as a summation

∑
v2Val

(a;?;v):p(v):

This is often referred to as Milner’s encoding but such a treatment of value-passing is prevalent in

CSP also.

Let us consider the ramifications of accepting this approach to the theory of languages with

value-passing. Firstly, the intended interpretation of an action c!v is that a piece of data, v, is being

sent along a channel named c and, in order to receive this piece of data, another process must be

listening on channel c. This other process need not be listening for any particular piece of data

but it must simply be listening for some value. Performing the encoding shifts the emphasis from

communication of data to synchronisation. The interpretation one might give Milner’s encoding

of such an exchange of data is that the piece of data v is still being sent along channel c but, in

contrast, the second process must be listening for that particular value in order for communication

to occur. It so happens that the encoding guarantees that if a process is listening for any one value

on a channel c then it must be listening for every value on the same channel. The way that the

encoding ensures this property is by offering a choice of actions. Thus the single atomic action of

listening on a channel is transformed into a multitude of independent actions being offered; this

transformation has considerable effects upon the basic structure of processes.

Secondly, there is also the more practical issue of infinite summation. Many find it unrealistic

to allow an infinitary operator in a language and, in order to implement Milner’s encoding, such

a beast is necessary whenever the value domain is infinite. Also, much of the theory developed

for the pure language is restricted to the case of finite summation and is therefore inapplicable to

value-passing languages with infinite data domains. Therefore we find Milner’s encoding wholly

unsatisfactory as a means of modelling value-passing processes. It is analogous to trying to un-

derstand predicate logic by reducing quantifiers to (infinite) conjunctions and disjunctions in the

propositional case. We prefer to adopt a first-order approach to value-passing processes.

The use of process calculi for systems or protocol specifications has been encouraged in no

small part due to presence of constructs like conditionals for modelling the communication flow

of actual data. The ability to express properties of processes with particular reference to data

is a generous but extremely useful feature of specification calculi. It is surprising that, in the

complementary world of process modelling, there has been little attempt to shift away from the

perspective of synchronisation as the basic communication mechanism. Labelled transition sys-

tems [58] have long been used as a basic model of reactive computation in which a behaviour is

not simply a function of input and output, but models responses to stimuli over time. Transition

systems themselves are considered to give excessive detail when describing processes so the usual

approach to studying transition system semantics is to construct a graph and then quotient the

graph by some notion of equivalence. The three most notable equivalences used are

� trace equivalence (or language equivalence, as it is referred to in automata theory) [51],

� testing equivalence [39], and

� bisimulation equivalence, [80, 74].

Both trace and testing equivalence are coarser than bisimulation which is widely considered to

be the finest equivalence one need study for transition systems. Roughly speaking, a bisimulation

is a binary relation on processes such that if p and q are related and p can perform some action

then q must also be able to perform the same action and the resulting states reached must also be

related. Symmetrically, if q can perform some action then this must be matched by p. We say that

p and q are bisimulation equivalent, or bisimilar, if there exists a bisimulation containing (p;q).

Bisimulation has pleasing algebraic properties. It can be characterised equationally or by using

a form of modal logic, [44] and it has also been shown that the theory of non-well founded sets
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is closely related to transition systems quotiented by bisimulation equivalence [2]. Bisimilarity

is coinductively defined and proofs of equivalence by finding witnessing bisimulation relations

provide an elegant example of coinductive reasoning. A measure of the success of bisimulation

is that transition systems and bisimulation equivalence are now also being used as a convenient

model of and coinductive proof technique for sequential computation in the functional setting

[31, 32].

We have been describing what is referred to as strong bisimulation equivalence. There is in fact

a much coarser notion of bisimulation equivalence called weak bisimulation. The distinguishing

property of weak bisimulation is that communication is no longer treated as an observable action.

In CCS this is codified by denoting the act of communication explicitly using a dummy symbol τ.

Strong bisimulation takes τ actions into account and keeps track of internal computations whereas

weak bisimulation treats this as unobservable and abstracts from them. We consider bisimulation

based equivalences exclusively in this thesis and refer the reader to [52] for a treatment of the

semantics of testing equivalence for value-passing languages.

One might argue that labelled transition systems are perfectly adequate to model the actual

behaviour of systems. Their appropriateness seems to lie in their ability to capture the branching

structure of processes, which is clearly the interesting part of process behaviour in the concurrent

setting. However, in order to model a value-passing process as a labelled transition system we need

to invoke Milner’s ubiquitous encoding and the structural integrity of the process is compromised.

A proposal for modelling value-passing processes directly in some sort of first-order transition

system is found in [40]. Hennessy and Lin propose symbolic graphs as a suitable generalisation

of transition systems.

We use the term symbolic to represent the fact that a syntactic approach to data is adopted in

order to build our graphs. Thus, values and value-expressions are uninterpreted and are represented

solely by their function symbols. With this in mind, one might consider syntactic graphs to be a

acceptable alternative name for symbolic graphs. We prefer to use the term symbolic to reflect its

usage in the work of Burch et al [17]. The more general use of the word symbolic in [17] refers

to finding an appropriate representation of a problem’s state-space, rather than working with the

state-space explicitly. For example, using BDDs to represent transition relations and formulas for

model checking in the modal µ-calculus, [23], is an instance of a symbolic approach. Our symbolic

graphs provide a symbolic representation of the underlying graphs in the sense of Burch et al.

Symbolic graphs provide a means of retaining the commendable ability of transition systems

to model the branching structure of processes and at the same time do not allow the detrimental

effects of Milner’s encoding of value-passing languages to impinge upon this structure. Although

symbolic graphs carry an amount of syntactic baggage, and this is clearly an undesirable feature

of basic models, we see that the actual syntax used in the graphs relates to data only. All of the real

process information is modelled exactly as one would model a pure process in a labelled transition

system.

We demonstrate how symbolic graphs capture structures of processes which evade transition

systems with the following example. Consider a simple value domain containing only the values 0

and 1. Let p be the process (c?x:(x = 0)! p0)+(c?x:(x= 1)! p0) which can receive either value

and, depending on the value received, deadlock or continue to behave like p0 with x substituted

by the appropriate value. The choice means that, when offered a communication, the process will

decide whether to use the left or the right summand and the liveness of the process then depends

upon the value received. In contrast to this we let q be the process c?y:p0+c?y:O which again can

receive either of the values 0 or 1 on the channel c and then deadlock or continue to behave as

p0. With q however, after the choice whether to use the left or right summand is made, there is no

dependency upon the data to determine whether deadlock occurs. This subtlety is not captured by

the transition system models of p and q:



Chapter 1. Introduction 4
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It is clear to see that the transition system models of p and q are identical. The standard

notion of bisimulation for value-passing processes that one obtains via Milner’s encoding into

pure languages, and adopting Park’s original notion of bisimulation [80] for the resulting transition

systems, is called early bisimulation [75]. It is no surprise that p and q are deemed to be early

bisimilar. There is an acceptable alternative definition of bisimulation for value-passing languages

called late bisimulation [75]. This equivalence is more sensitive to branching structures than early

bisimulation and consequently would distinguish p and q. In order to obtain late bisimulation as

an instance of Park’s definition, a modification of the graphs for p and q is required. That is, we

must use a different semantics in order to study the finer equivalence. There seems to be no clear

argument as to which of these equivalences is the more suitable and it depends largely on whether

one believes late bisimulation to be just too fine.

The symbolic graph models of p and q take the readily distinguishable forms

x = 0! p0 : : :
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and we see that symbolic semantics are discriminating enough to model late bisimulation. It is

also possible to give a characterisation of early bisimulation using the same symbolic semantics.

We see in the next chapter that the difference between early and late equivalence is shown clearly

by symbolic semantics. We refer to these characterisations of bisimulation upon symbolic graphs

as symbolic bisimulation.

It is our opinion that symbolic graphs provide a suitable semantics for modelling the structure

of value-passing processes. It is said that the proof of the pudding is in the eating, so we must

demonstrate that the symbolic approach is in fact useful and provides a better understanding of

value-passing processes than that obtainable from the transition system models. A general philos-

ophy behind the symbolic approach is that we are interested in process, but not data reasoning.

This is reflected by the fact that symbolic semantics capture the structure of processes yet leave

the syntax of data intact. In accordance with this policy we work parametrically in the data lan-

guage, although, without a clear definition of a language of data, we cannot hope to provide total

verifications of properties of value-passing processes. We therefore content ourselves with estab-

lishing partial verifications: on the assumption that certain properties of data hold we can verify

properties of processes. In most cases our work involves reducing judgements about value-passing

process terms down to judgements about data only. One of the benefits of this approach is that

we can more easily identify the rôle of data in the description of a process. For instance, although

it is known that bisimulation is decidable for various classes of infinite state transition systems

[19, 20, 102], it is unknown whether bisimulation is decidable for regular value-passing processes,
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say, because such a question depends ultimately on the domain of values used and the expressivity

of the data expressions allowed. The algorithms for partially deciding bisimulations of symbolic

graphs in [40] entail the result that, given languages of data expressions and boolean conditions

upon data such that validity in the first-order boolean language is decidable, then bisimulation for

the class of regular processes yielding finite symbolic graphs, defined over that data language, is

also decidable. Thus, any undecidability here would be due to data and not process behaviour.

Another area in which the symbolic approach has been useful is the area which we plumb in

this thesis, viz the development of proof systems for value-passing processes. One can think of the

nodes of a symbolic graph as representing an open term of a first-order process language. Thus we

would use symbolic semantics to reason at the level of open terms. This is precisely the approach

which is adopted in [41, 43], say, in which finitary proof systems are developed to reason about

value-passing languages by working with open terms directly, rather than closed instantiations of

open terms.

The notable feature of the proof systems in [41] and [43] is that they are proof systems for

reasoning about open process terms and as such, judgements of these proof systems are made

relative to boolean expressions. Thus, to characterise bisimulation we have equations of the form

` b� t = u

where b is some boolean predicate expression and t and u are open process terms. We should

point out that throughout this thesis we will refer to boolean expressions drawn from two different

languages. Firstly, there is the formal language of boolean predicates which can be used in the

syntax of value-passing languages and symbolic graphs; we refer to this language as BoolExp.

Secondly, we allow ourselves some freedom in using a metalanguage of boolean properties. This

metalanguage is not specified precisely and we will liberally assume certain expressive powers

here - BoolExp ought to be contained in the metalanguage at least. The boolean b in the sequent

above will typically be expressed in the boolean metalanguage.

We can understand boolean guarded sequents as a collection of closed term sequents, one for

each instantiation of the free variables of b such that b holds true. In each instantiation, δ, say, we

instantiate the free variables of t and of u according to δ and the resulting sequent is ` tδ = uδ.

The important point is that where we would have needed an infinitary proof rule to state that input

prefixing preserves bisimulation,

` t[v=x] = u[v=x] 8v 2Val

` c?x:t = c?x:u

for closed processes c?x:t = c?x:u, the open term equivalent of this rule is simply that

` b� t = u

` b�c?x:t = c?x:u

provided that x does not occur freely in b.

Certain proof rules in [41] and [43] carry side-conditions involving data, for instance, the rule

which states that output prefixing preserves bisimulation is

` b� t = u

` b�c!e:t = c!e0:u
if b implies e = e0:

Typically these are statements about the boolean language of data expressions. We might think of

these side-conditions as proof obligations which can be proved in an auxiliary proof system for

reasoning with data alone. Thus the side-conditions would be some kind of interface to a proof

system for data, so rather than becoming burdened with the intricacies of data reasoning we simply

assume an oracle for deciding questions of data. All results such as soundness and completeness

will rely on this oracle and will consequently be relative soundness and completeness results. It
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is the fact that the work is parametric with respect to data domains that demands that verifica-

tions be relative to data. Throughout the thesis we will occasionally use the terms soundness or

completeness without the relative qualification.

In this thesis we study the benefits of symbolic semantics for developing proof systems for

value-passing languages. In particular we concern ourselves with the specific problems of finding

proof systems for characterising bisimulation equivalence for a language featuring broadcast com-

munication, developing a modal specification logic and model checker for generic value-passing

languages, and investigating the proof technique of unique fixpoint induction for value-passing

CCS. We describe each of these topics in turn in the following three sections.

1.1 Value-passing by broadcast

Many process calculi, including CCS and ACP, use handshaking communication as a primitive

notion. In contrast to this there are languages which prefer to adopt a multiway synchronisation

operator such as Hoare’s CSP, LINDA [18, 60] and ESTEREL [11, 12]. In [85, 86, 87] Prasad

argues that multiway or broadcast communication is a more natural concurrency primitive than

the handshake communication of CCS, say. The argument centres upon the use of broadcast

communication in Local Area Networks and Ethernet, [68] and an analogy is drawn with human

speech as a communication mechanism. He also argues that multiway synchronisation [84] is

unsuitable for modelling broadcast communication because abstract actions are not typed as input

or output actions; in a broadcast exchange there should be a unique sender with multiple recipients.

Thus Prasad introduces his Calculus of Broadcasting Systems, CBS, as a variant of value-passing

CCS which uses broadcast communication as a primitive in place of the familiar handshake.

The calculus CBS differs from CCS in the use of channel names: the implicit name matching,

which is central to synchronisation in CCS, determines which agents in a network may com-

municate with each other so that there is a fixed network of communication. This unsatisfying

monolithic view of networks led some to develop calculi for dynamic descriptions of network

connections, the most notable of these being the π-calculus [75], whereas those using broadcast

communication take the extremist view of considering totally dense networks. All agents may

communicate with each other, rendering channel names obsolete, but this does not preclude pass-

ing messages in localised parts of the network. CBS provides a facility for modifying the data

flowing in and out of an agent. This can be thought of as an encryption/decryption service which

can make messages private by enciphering them in such a way that only the local agents can re-

ceive them. Preventing certain agents from receiving enciphered messages necessitates a form of

pattern-matching on inputs. Where a CCS process listening for a value on some channel c is in

fact always listening for all values, a CBS process listening for a value can be listening for some

designated set of values. This is one feature of CBS that makes its theory of interest and demands

a generalised form of symbolic semantics.

On the surface it would appear that there shouldn’t be too much difference between the theory

of value-passing CCS and CBS. So long as we restrict our attention to the finite sublanguages of

each of these the difference in the communication mechanism is accounted for by using different

expansion rules for parallelism. The reason the theory is actually significantly different is a result

of the notion of observational equivalence which we use. In a handshaking calculus it seems quite

reasonable to treat reception as an observable action. This is due to the fact that in order to receive

some data the recipient has to make its presence known to the sender. However, when we move to

a broadcasting calculus, observability of reception is not so obvious, because a process which has

just transmitted a value has no real way of telling which other processes, if any, received that value.

The difference in the notion of observable actions between a handshaking and a broadcasting

calculus provide the differences in the theories of the calculi. We consider an original notion of

bisimulation which we call noisy bisimulation and we justify our interest in this equivalence by

appealing to barbed bisimulation, [76, 94].



Chapter 1. Introduction 7

Barbed bisimulation is advocated by Milner and Sangiorgi as a general purpose observational

equivalence which is definable in most process languages. The idea is that one defines a bisimula-

tion type relation, much in the same way as the standard definition, except that one considers how

processes perform computations rather than actions. In CCS, computation is an internal τ action

corresponding to the result of a synchronisation, whereas, in CBS, computation is the action of

transmitting noise or indecipherable messages. The reason barbed bisimulation is described as

an observational equivalence is that one typically studies the congruence obtained by consider-

ing barbed bisimulation in all contexts. Thus we observably test processes by situating them in

contexts which induce them to perform computations.

1.2 Model checking

The equational approach to verification consists of specifying a process in some calculus, imple-

menting this process in the same calculus and then showing that the two descriptions are equal

according to some notion of equivalence for the calculus. An alternative to this approach is to

specify properties of a process in some language which is distinct from the process language it-

self. We then define a satisfaction relation between processes and specifications and proceed to

show that this relation holds for the particular process and property under examination. In par-

ticular, an instance of this approach is where the specification language is the modal µ-calculus,

[88, 61]. The property logic is interpreted over the class of transition systems being used to model

processes. Satisfaction can then be defined straightforwardly by saying that a process satisfies a

formula if its representation as a transition system is present in the interpretation of the formula.

We refer to this sort of validation as model checking.

There has been a great deal of activity investigating this approach to verification for pure

process calculi and labelled transition systems, [21, 89, 22, 59, 24, 103, 107, 25, 23, 4]. Many of

these are concerned with efficiency of the technique and concentrate on aspects such as taming

the state explosion problem with Binary Decision Diagrams (BDDs) [16], and improving tableaux

based algorithms. There has been much success in this area and a high level of automation has been

achieved [17]. In addition to this we see that elegance and good structural reasoning underpin this

method of property verification; papers such as [101, 103, 107] present insightful characterisations

of the satisfaction relation using proof tableaux and games.

For the most part, research on model checking is with respect to finite models. Clearly, using

BDD models and tableaux based checkers will be infeasible for value-passing processes and even

with finite value-domains the state spaces can be so large as to make automation impractical. An

investigation into model checking µ-calculus properties for arbitrary infinite state systems is car-

ried out in [14] where a sound and complete model checker for arbitrary transition systems is pre-

sented. This model checker is indeed suitable for model checking value-passing processes (using

Milner’s encoding) but the completeness proof contained in [14] is necessarily non-constructive.

This is due to the undecidability of satisfaction of µ-formulae over infinite state systems. What we

are lacking is a constructive method for model checking µ-formulae for value-passing processes.

There has been some recent work also addressing the issue of model checking for value-

passing processes in [38]. Here, a generalisation of the µ-calculus suitable for specification of

value-passing processes is introduced. The logic proposed, independently, in [38] is very similar

to our own property logic in terms of both syntax and expressive power. A compositional proof

system for soundly establishing satisfaction is proposed although the power of this system is not

yet determined. In a similar vein, modal logics for mobile processes have been developed in [27, 3]

and sound and complete tableaux systems for deciding satisfaction are presented there.

1.3 Unique fixpoint induction

We briefly describe the proof method of unique fixpoint induction for equational reasoning with

recursively defined processes. This is employed by Milner in [72, 73] and is based on the fact
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that declarations used for defining recursive processes yield unique behaviours. The property of

bisimulation equivalence we exploit is that, given a declaration

X (= E

and two processes p and q such that p is bisimilar to E[p=X ] and q is bisimilar to E[q=X ], then

p and q must themselves be bisimilar. This property does not hold for arbitrary process descrip-

tions E, but is guaranteed for guarded descriptions where occurrences of X in E are within the

scope of an action prefix. The same property holds for processes with respect to trace equivalence,

[51]. It is shown in [74] that this proof technique alone, along with rules for removing unguard-

edness is sufficient for characterising bisimulation equivalence for regular process terms. This is

unsurprising as the unique fixpoint induction proof rule seems to capture the coinductive flavour

of bisimilarity perfectly. The principle can be expressed as an inference rule

` p = E[p=X ]

` p = X

where X (= E is guarded; it is the guardedness that ensures the soundness of this rule. A suc-

cessful proof by unique fixpoint induction corresponds roughly to finding matching loops in the

underlying transition graphs of processes and is somewhat analogous to reasoning by invariants.

With regards to value-passing calculi, the use of unique fixpoint induction is a recent develop-

ment. It was anticipated that the technique could be integrated comfortably into the proof system

of [41] and recent work [42] began this investigation. The use of unique fixpoint induction for

reasoning in the π-calculus has also been studied in [64, 62].

1.4 Overview of the thesis

The aim of this thesis is to pursue the development of the symbolic approach to the semantics

of value-passing languages and argue that substantial gains in the theory of processes can be ob-

tained by dispensing with the traditional approach of encoding value-passing processes into pure

algebras. We also wish to demonstrate the versatility of the symbolic approach by applying it

to various problems concerning the verification of processes with data. As with any new proof

technique, a solid theoretical foundation is essential for recognition as a useful and insightful tool

for the analysis of programs. We hope that the work presented here will strengthen the position

of symbolic semantics and at the same time provide a better understanding of the particular prob-

lems that we tackle. The overall structure and interdependencies of the chapters of the thesis are

illustrated in Figure 1.1.

- In Chapter 2 we recall the definitions of transition systems and bisimulation and we also

motivate the difference between early and late bisimulation for value-passing languages.

A description of what one requires of a language of data expressions is presented and a

category of symbolic graphs is described on top of the category of data languages. We

describe a functor from symbolic graphs to labelled transition systems called concretion.

Transition systems obtained via concretion are shown to be strongly bisimilar to standard

transition system semantics. Symbolic bisimulation as an equivalence on symbolic graphs

is defined and its relationship, via concretion, to bisimulation on labelled transition systems

is established. Finally, a brief mention of a recent extension of symbolic graphs called

symbolic graphs with assignment is also made.

- Our study of the calculus of broadcasting systems begins in Chapter 3 by focussing on the

strong bisimulation equivalence relation. We describe the calculus in detail and argue, us-

ing the technique of barbed bisimulations, for the suitability of a novel type of bisimulation

equivalence which we call noisy equivalence. We proceed to characterise this new equiv-

alence equationally for the finite sublanguage of CBS. This characterisation is achieved in
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three stages. Firstly, we consider a finite sublanguage of CBS which is very close to finite

value-passing CCS in that pattern-matching on inputs is removed. A sound and complete

proof theoretic characterisation for this simple sublanguage is presented for closed terms.

This proof system features infinitary inference rules but we obviate the need for these by

developing an equivalent proof system for open terms using the symbolic technique. The

facility of pattern-matching on inputs is reintroduced explicitly and we show how the the-

ory which has already been developed can be modified for this case. Finally, finite CBS

is incorporated in the theory via expansion theorems. We show that the broadcast operator

can be reduced to interleaving non-determinism and, more surprisingly, that the translation

functions of CBS can be simulated by syntactic manipulations on action prefixes.

- The content of Chapter 4 follows on directly from that of Chapter 3. Again, we study the

use of the symbolic semantics for the broadcast calculus, CBS, but now we are concerned

with the weak equivalence. Weak equivalence for CBS is a coarser notion of equivalence

wherein the transmission of noise is unobservable. To an observer placed within a network,

the transmission of noise can signify local activity which it is not a party to and can thus be

thought of as private or internal communication much like τ actions in CCS. We adopt weak

barbed bisimulations as the basis for our weak equivalence and discover that these do in fact

coincide with a notion of weak bisimulation proposed by Prasad [86]. The proof systems of

the previous chapter are extended with the necessary axioms for describing the abstraction

of noise and we present soundness and completeness results for the larger proof system. A

short discussion on why late semantics are inappropriate for CBS concludes the chapter.

- In Chapter 5 we address the problem of model checking for value-passing processes. A

generalised, first-order, modal µ-calculus suitable for value-based specifications is presented

such that this new logic is a direct extension of the modal logic without fixpoints first pro-

posed in [43]. A standard interpretation of the logic is given using concreted symbolic

graphs, a subclass of transition systems, as the models. We show that the logic fully char-

acterises late bisimulation equivalence and a tableaux style proof system for local model

checking is presented. The use of symbolic semantics is crucial to our model checker as it

was designed to allow one to establish properties of open process terms. Another essential

ingredient of our proof system is a generalisation of Winskel’s tag set method, [107], for

recording the unfolding of fixpoint formulae but, rather than simply using nodes of a tran-

sition system as the tag information, we move to using nodes of a symbolic graph. This

corresponds to reasoning about open terms instead of closed process terms. Soundness of

the proof system is established in a standard manner and we prove that the first-order µ-

calculus is too expressive for our proof system to be relatively complete, even for finite

symbolic graphs. The basic problem is that inductive properties of the data domain can

be described by least fixpoint formulae and our proof system does not yet allow induction

over data. However, we show that, if one considers the sub-logic without least fixpoint for-

mulae, we do in fact have a relatively complete model checker for finite symbolic graphs.

Rather than dispensing with least fixpoint formulae entirely we also consider a different

sub-logic which uses a restricted form of parameterisation. We argue that by reinterpreting

this sub-logic symbolically we can show relative completeness for finite symbolic graphs.

An example proof is presented at the end of the chapter.

- The power of unique fixpoint induction for value-passing processes is examined in Chap-

ter 6. Recent research in this area [42] shows that the proof systems of [41] can be naturally

extended with unique fixpoint induction and that the resulting system is sound and relatively

complete with respect to strong bisimulation equivalence. The completeness result holds for

a restricted class of regular processes. In particular, the use of parameterisation is heavily

restricted in that parameters are assumed to be vectors of names alone. We show how an
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Figure 1.1. Chapter dependencies

intuitive generalisation of the unique fixpoint induction rule, which is derivable from Hen-

nessy and Lin’s proposed rule, can be used to lift the restriction on parameters. We show

relative completeness with respect to strong bisimulation for guarded regular processes. Ex-

tending this work further, we go on to characterise observation congruence and discover that

the familiar τ laws due to Milner [74] can still be used to abstract from internal actions. A

discussion on the relationship between parameterisation and parallel composition for value-

passing languages is given and we conclude the chapter with an example equivalence proof.

- We end the thesis with a short chapter stating our conclusions and avenues for future re-

search.

1.4.1 Pre-requisites

Although we review the basic definitions of transition systems, bisimulation and value-passing

CCS, familiarity with pure process calculi would be a distinct advantage in reading this thesis. We

refer the reader to the textbooks [74, 51, 6] for a good introduction to the subject. Issues relating

to value-passing semantics are explained in full and no prior experience with such languages is

required. The property logic, first-order µ-calculus, presented in Chapter 5 is based on the modal

µ-calculus due to Kozen and Pratt [61, 88], and acquaintance with the use of modal languages to

specify properties of processes would be useful; we refer the reader to the handbook chapter by

Stirling [99].



Chapter 2

Symbolic Graphs and Symbolic Bisimulation

2.1 Transition systems

We recall the basic definition of labelled transition systems and refer the reader to [108] for further

details of their categorical structure. A transition system is essentially a set of states with a relation,

called the transition relation, which describes how the system may progress from one state to

the next. A part of this description is to designate an event which is observed whilst doing this

progression.

A labelled transition system is a triple (N;L;�!) where

� N is a set of states, or nodes,

� L is a set of labels and

� �!� N�L�N is the transition relation.

We will write n
a
�! n0 to denote (n;a;n0) 2�!.

Given two transition systems T1 = (N1;L1;�!1) and T2 = (N2;L2;�!2), a morphism of

these, f : T1 ! T2, is a pair (σ;λ) where σ : N1 ! N2 is a function on the nodes and λ : L1 * L2

is a partial function on labels such that whenever n
a
�!1 n0 then either λ(a) is undefined and

σ(n) = σ(n0) or σ(n)
λ(a)
�!2 σ(n0).

Transition systems form a category TS by taking transition systems as objects with the mor-

phisms as above, where composition is given by pointwise composition of functions and identities

are pairs of identity functions.

2.2 Data domains

It is evident that the description of any message-passing, or value-based, process language is

parameterised by a language for describing the data which are being communicated. This data

language will be explicit in both the syntax and semantics of the process language. The philosophy

of our work, and indeed that of the symbolic approach in general, is that a precise exposition of any

data domain is unnecessary and the approach we advocate is to divorce reasoning about data from

reasoning about processes as much as possible. We do not concern ourselves with the former and

concentrate entirely on the latter. Our method of establishing properties of value-based processes

is therefore partial, in that we reduce such properties to properties of the data domain only.

To this end we wish to impose as few restrictions on the language as possible and reason

parametrically. Previous presentations of symbolic graphs simply assume certain properties of

data languages to hold. We prefer to explicitly state the conditions a data domain is required to
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satisfy. Essentially these just say that we have identified sets of variables and values and we have

signatures of expressions incorporating these which support substitution and evaluation.

A data language D is a quadruple (Var;ΣV; I;Pr) such that the following conditions apply.

� Var is a countable set of variables.

� ΣV is a signature of value expressions. We let Val denote the set of 0-arity functions of ΣV .

Let ΣV+ denote the signature obtained from ΣV by adding the constants Var and let ValExp

be the (initial) term algebra of this extended signature.

� I is a ΣV -algebra with carrier Val such that vI = v for each v 2 Val.

� Pr is a set of predicates, Q and functions QI which interpret these Q. That is, if Q has arity

n then QI : Valn
!ftt; ffg.

Given such data we can define a function f v which returns the set of variables of a term of

ValExp by describing f v as the unique ΣV+ -homomorphism from ValExp to the ΣV+ -algebra A,

which has carrier PVar (where P denotes powerset) and

� vA =
/0 for each v 2Val.

� xA = fxg for each x 2Var

� fA(S1; : : : ;Sn) =
S

Si for all other functions f 2 ΣV .

A term e 2ValExp such that f v(e) = /0 is called closed. Note that the expressions in the term

algebra of ΣV are the closed terms of ValExp. We define an evaluation function [[ ]] on closed

terms therefore as the unique ΣV -homomorphism from the term algebra of ΣV into the ΣV -algebra

I.

We define the boolean language BoolExp to be first-order predicate logic with predicates given

by the set Pr. For each Q 2 Pr of arity n and for all expressions e1; : : : ;en in ValExp we have

the predicate Q(e1; : : : ;en) in BoolExp. The variables of this predicate are simply the union of

the variables of the ei and we can extend the definition of [[ ]] to closed boolean expressions by

simply interpreting the closed predicates Q(e1; : : : ;en) as QI([[e1]]; : : :; [[en]]) and interpreting the

connectives of first-order logic in the usual manner.

We notice that evaluation is restricted to closed expressions only. The operation of substitution

in both ValExp and BoolExp is well understood so in order to evaluate an arbitrary expression, e or

b say, we can substitute closed expressions for each of its (free) variables. It suffices to substitute

values rather than closed expressions. By instantiating the free variables to values we provide an

environment in which to interpret the arbitrary expression e or b. We describe such environments

using functions: a function δ : Var !Val is a data environment or simply an environment. We

define [[e]]δ 2 Val to be [[e[v̄=x̄]]] where v̄ = δ(x̄) and x̄ = f v(e). Similarly, for b 2 BoolExp we

define [[b]]δ to be [[b[v̄=x̄]]] and write δ j= b iff [[b]]δ = tt. Formally, δ extends the ΣV -algebra I to a

ΣV+ -algebra with carrier Val and [[ ]]δ is the unique ΣV+ -homomorphism from the term algebra to

this extended algebra. We will often want to consider data environments which have been modified

by some substitution, that is given δ and a substitution [e=x] we describe an updated environment

which behaves exactly as δ except that it maps the variable x to [[e]]δ; this environment will be

notated δ[e=x]. Note the following simple property of BoolExp:

δ j= b[e=x] () δ[e=x] j= b

which follows from the standard Substitution Lemma of predicate logic.
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2.2.1 Morphisms of data languages

Given two data languages D = (Var;ΣV ; I;Pr) and D0

= (Var0;ΣV 0
; I0;Pr0) it makes sense to ask

what a map between these consists of. We allow a change of variable names so we have a bijection

dV :Var!Var0 and we have an arity preserving map dΣ : ΣV !ΣV 0 . We notice that any ΣV 0-algebra

A, may be considered to be a ΣV -algebra by interpreting f 2 ΣV as the interpretation of dΣ( f ) in

A. In particular this applies to the term algebra of ΣV 0 and the algebra I0. Thus we induce two ΣV -

homomorphisms, d�Σ being the map between the term algebras and dI
Σ : I ! I0. The latter of these

is obtained by considering the restriction of dΣ to Val. We will also require an arity preserving

map dP : Pr ! Pr0 such that the interpretation of dP(Q) is precisely dP(QI).

So, a morphism d : D ! D0 is a triple (dV ;dΣ;dP). Now that we have a notion of morphism

we can describe the category of data domains, Data: Objects are data domains and morphisms are

the data domain morphisms with pointwise composition.

Proposition 2.2.1 Data is a category.

2.2.2 Examples of data domains

We give a few examples of data domains which we will have occasion to use throughout the thesis.

The natural numbers N are the example we use most frequently. We assume a countably

infinite set of variables Var = fx1;x2; : : :g and have a signature (N ;+;�;�;�;mod;div). The

interpretation algebra is the obvious algebra of the arithmetic operations listed and we have predi-

cates > and =.

The one-point value domain 1 has a single variable x and a signature containing only the

constant �. The interpretation I must be the singleton set f�g and we have no predicates.

2.2.3 More about data environments

Given an environment δ : Var ! Val for a data domain D and a morphism d : D ! D0 we can

induce an environment δd on D0. We define δd to be the unique environment which makes the

following diagram commute.

Var
dV

//

δ
��

Var0

δd

��

Val
dΣ

// Val0

A unique environment exists by virtue of the fact that dV is a bijection. We write b j=d b0

with b 2 BoolExp and b0 2 BoolExp0 if for each δ such that δ j= b we have δd j=
0 b0. This is a

transitive relation with respect to composing data morphisms and coincides with the usual notion

of implication when d is the identity map.

2.3 Symbolic graphs

We are now in a position to describe what Hennessy and Lin’s original symbolic graphs consist

of. Recall that they are intended as a generalisation of labelled transition systems and therefore

can be loosely described as a collection of nodes with an edge labelling relation. More formally,

a symbolic graph G, is a quintuple (D;N;Ch;Nτ; 7�!) where

� D is a data domain.

� N is a set of nodes for which each element n, has an associated set of free variables denoted

by f v(n). We have f v(n)� Var.

� Ch is a set of channel names.
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� Nτ is a set of neutral or internal actions.

� 7�!: N�BoolExp�Act �N is the edge labelling relation where

Act = fc?x j c 2Ch;x 2 Varg

[ fc!e j c 2Ch;e 2ValExpg

[ Nτ:

We write n
b;α
7�! n0 if (n;b;α;n0) 27�!.

It is easy to lift the definition of free variables to actions by letting f v(c?x) = f v(a) = /0
whenever a2Nτ and f v(c!e) = f v(e). We also define the complementary notion of bound variable

of an action by bv(c!e) = bv(a) = /0 and bv(c?x) = fxg.

Given these we ask that the following rationality conditions on free variables hold. If n
b;α
7�! n0

then

f v(b)[ f v(α)� f v(n)

and

f v(n0)� f v(n)[bv(α):

We give an example symbolic graph in an obvious graphical notation. The free variable sets

associated with the nodes are not depicted but we can assume that f v(p) = /0 and f v(q) = f v(r) =

fxg.

p
tt ; c?x

// q

/. -,

even(x); c!x+1

��

() *+

odd(x); c!x

OO

r
tt ; c?x

oo

One might imagine the graph depicted describes a process p which can always receive a value

on channel c and then output that same value if it is odd, or one greater if it is even. The node r

has the same outgoing edges as p, in fact the nodes only differ in their free variable sets.

2.3.1 Morphisms of symbolic graphs

Symbolic graphs are generalisations of labelled transition systems and as such should have a sim-

ilar notion of graph morphism. As yet there has been no attempt to describe these morphisms.

Recall that a morphism of transition systems consists of two functions, one between the sets of

nodes and the other, partial function, between the sets of labels. Similarly, a morphism of symbolic

graphs will consist of a function between nodes of the graphs in question and a function between

the sets of actions. However, since the sets of actions are built from Ch;Nτ and D, we ask for

functions for each of these.

Given symbolic graphs G = (D;N;Ch;Nτ; 7�!) and G 0

= (D0

;N0

;Ch0;N0

τ; 7�!
0

) a morphism

f : G !G 0 is a quadruple of maps (σ;λ;λτ;d) where

� σ : N ! N0

� λ : Ch *Ch0 is a partial function.

� λτ : Nτ * N0

τ is a partial function.

� d : D!D0 is a data morphism.
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The following conditions must hold on f : we require that the free variables of each node

are preserved. This can be described easily using the powerset functor on Set by asking that the

following diagram commutes.

N
σ

//

f v

��

N0

f v0

��

PVar
PdV

// PVar0

Furthermore, we require that transitions be preserved. This is a rather awkward condition to

state concisely. Firstly, we say that f (α) is undefined if α is a 2 Nτ and λτ(a) is undefined or α is

a c! or c? action and λ(c) is undefined. In the case where α is a c?x action and f (α) is undefined

we must ask that the bound variable x does not appear in either (and hence both) of the source or

target nodes of the transition. If the source and target nodes of a c?x transition do both have x as

a free variable then we notice that the use of x in the source differs from that in the target. Were a

morphism f to collapse these nodes then these two uses would be, incorrectly, identified.

Suppose n
b;α
7�! n0. We require that either f (α) is undefined and σ(n) =σ(n0) or f (α) is defined

and σ(n) b0

;β
7�! σ(n0) where b j=d b0 and

β =

8

<

:

λτ(a) if α� a

λ(c)!d(e) if α� c!e

λ(c)?d(x) if α� c?x:

Composition of symbolic graph morphisms is given by pointwise composition of the con-

stituent morphisms. It is a simple enough matter to check that this composition is well-defined by

noting the functoriality of P and transitivity of j=d . So we can define the category SG with objects

as symbolic graphs and morphisms described above.

Proposition 2.3.1 SG is a category.

2.3.2 Symbolic graphs to transition systems

It is the intention that nodes of symbolic graphs are an abstract representation of the open terms of

a value-passing language. In a similar vein, the closed terms of this language could be modelled

by nodes in a transition system. It is well understood that we can close a term by substituting

instantiations of values for each of its free variables and also that such an instantiation can be

presented as a data environment. Therefore we ought to be able to describe a functor from SG to

TS which closes nodes of symbolic graphs with data environments to obtain transition systems.

We call this functor the concretion functor Conc. Let G = (D;N;Ch;Nτ; 7�!) be a symbolic

graph. The action of Conc on objects is to pair up nodes of G with data environments and allow

a transition from this pair if a symbolic edge leaving the node exists and the environment satisfies

the boolean guard of this symbolic transition. Formally, Conc(G) = (Nδ;L;�!) where

Nδ = f[n;δ]
�

j n 2 N;δ : Var!Valg:

The equivalence relation � is defined so that (n;δ)� (n;δ0) if and only if δ � f v(n) = δ0 � f v(n),

and

L = Nτ[fc!v;c?v j c 2Ch;v 2Valg:

The transition relation�! is defined by the rules in Figure 2.1.

Conc can be lifted to morphisms very simply: Conc(σ;λ;λτ;d) = (σc;λc) where

σc[n;δ] = [σ(n);δd]
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n
b;τ
7�! n0

[n;δ] τ
�! [n0;δ]

δ j= b

n
b;c!e
7�! n0

[n;δ] c!v
�! [n0;δ]

δ j= b;v = [[e]]δ

n
b;c?x
7�! n0

[n;δ] c?v
�! [n0;δ[v=x]]

δ j= b; any v

Figure 2.1. Defining the concretion functor

and (where defined)
λc(a) = λτ(a)

λc(c!v) = λ(c)!d(v)
λc(c?v) = λ(c)?d(v):

Proposition 2.3.2 Conc : SG! TS is a functor.

Proof We first check that (σc;λc) is a well-defined morphism of transition graphs. Observe that

(n;δ)� (n;δ0) implies that (σ(n);δd)� (σ(n);δ0d). We need to check that transitions are preserved.

Suppose that [n;δ] α
�! [n0;δ0]. If λ or λτ is undefined at α then λc is, moreover σ(n) = σ(n0). Now

δ can differ from δ0 by at most a bound variable in the case when α is c?x. But λ is undefined at

α and σ identifies n and n0 and, being a symbolic graph morphism, in this case we have assumed

that x 62 f v(n;n0), hence σc[n;δ] = σc[n
0

;δ0]. Otherwise we have that λ and λτ are defined at

α and simple checking shows that the required transition exists. For example, if α is c!v then

we know that n
b;c!e
7�! n0 for some boolean b such that δ j= b and some expression e such that

v = [[e]]δ. Thus σ(n)
b0

;λ(c)!d(e)
7�! σ(n0) with b j=d b0. Because δ j= b we know that δd j= b0 so

[σ(n);δd]
λ(c)![[de]]δd
�! [σ(n0);δd] where [[de]]δd is just d(v).

Functoriality is simple enough, clearly the identity morphisms in SG are mapped to the iden-

tities in TS. For composition we see that Conc( f � g) = Conc(σ f �σg; : : :;d f � dg) where σ f ;d f

denote the obvious components of the map f . Now Conc( f � g)[n;δ] = [σ f �σg(n);δd f�dg
]. It is

easy to see that δd f�dg
= (δdg

)d f
and from this it follows that Conc( f �g)1 =Conc( f )1 �Conc(g)1.

We see that Conc( f �g)2 = Conc( f )2 �Conc(g)2 follows easily. �

2.3.3 Symbolic graphs over 1

We now consider the specific subcategory of SG for which all the objects have the one-point data

domain 1, all of the nodes of each graph have no free variables and all morphisms have the identity

data morphism. Let us denote this category SG1. This subcategory is of interest because if graphs

are built over a data domain with only one value this should be equivalent in some way to forgetting

about values completely. We cannot expect to obtain any strong notion of equivalence between the

categories SG1 and TS, because the labels on the transitions in SG1 are typed so that each action

is a ! action or a ? action or a neutral action. The morphisms of symbolic graphs must preserve

these types whereas TS has no such structure on its labels. Instead we look for an adjunction.

We have already described a functor Conc which will take us from SG to TS. Roughly, the

effect this functor has on the subcategory SG1 is to map a symbolic graph to a transition graph

with the same nodes with transitions
tt;c!�
7�! and

tt;c?x
7�! converted to transitions labelled c!� and c?�.

This translation into transition systems is too fine for our present purpose. We need to forget about

the typing information ! and ? and, while we are in the business of forgetting, we will also forget

the redundant value �. Define the functor F : SG1 ! TS as follows: On objects,
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F(1;N;Ch;Nτ; 7�!) = (N;Ch+Nτ;�!)

where

� n
a
�! n0 if n

b;a
7�! n0 with a 2 Nτ and [[b]] = tt

� n
c
�! n0 if n

b;c!�
7�! n0 with c 2Ch and [[b]] = tt

� n
c
�! n0 if n

b;c?x
7�! n0 with c 2Ch and [[b]] = tt

and on morphisms

F(σ;λ;λτ; id) = (σ;λ+λτ):

We look for a right adjoint to this functor. We know that any type information about a transition

which has been thrown away by F must be replaced by the adjoint functor. The only guaranteed

way of doing this is to map each transition
a
�! of the transition system to three transitions in the

symbolic graph, one for each type. Formally then,

G(N;L;�!) = (1;N;L;L; 7�!)

where n
tt;a
7�! n0 and n

tt;a!�
7�! n0 and n

tt;a?x
7�! n0 if n

a
�! n0. We also have three corresponding symbolic

transitions guarded with ff if n
a
�!6 n0. G acts on morphisms in the obvious way taking the map

(σ;λ) to the symbolic morphism (σ;λ;λ; id).

Proposition 2.3.3 G is right adjoint to F.

Proof We need to demonstrate a natural isomorphism φ : TS(F ; )

�

=

SG1( ;G ). Given a sym-

bolic graph g and transition system t and a morphism (σ;λ) : Fg! t recall that the nodes of g and

t are preserved by both the functors F and G so we can let φ preserve the node component σ. Also

the label set of Fg is the disjoint sum of Ch and Nτ of g which lets us use the injections ι1; ι2 to

pick out the apposite maps on Ch and Nτ, that is, φ maps (σ;λ) to (σ;λ� ι1;λ� ι2; id). There is an

obvious inverse to φ, namely φ�1
(σ;Ch;Nτ; id) = (σ; [Ch;Nτ]). Naturality is easy to verify. �

2.4 Value-passing CCS

We have stated that symbolic graphs can be used for modelling many value-passing calculi. We

give, by way of an example, the method proposed by Hennessy and Lin [40] for constructing

a symbolic graph for a process written in such a calculus. Value-passing CCS is chosen as the

archetypal language to demonstrate this procedure. In order to describe the language we must first

choose a data domain over which the language is defined, call this D = (Var;ΣV ; I;Pr) and a label

set for channel names, call this Ch. The abstract syntax for the language we consider is given by

the grammar

t ::= nil j α:t j b! t j t + t j tjt j tnc j A(ē)

A ::= X j λx̄:t

which contains the usual CCS operators (save for renaming) together with a boolean testing con-

struct, b! where b 2 BoolExp. For each constant, X , we assume a declaration of the form

X (= λx̄:t

where the free variables of t all occur in x̄. The term λx̄:t will be referred to as an abstraction;

abstractions are closed terms. Application of an abstraction f , or constant X , to a vector of data

expressions ē is written as f (ē) and X(ē) respectively. In these cases it will be assumed that the

arity of f and X matches the length of the vector ē. The prefixes α are of the form τ, c!e or c?x
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τ:p τ
�! p c!e:p

c![[e]]
�! p

8v 2Val

c?x:t
c?v
�! t[v=x]

p
α
�! p0

b! p
α
�! p0

if [[b]] = tt

p
α
�! p0

p+q
α
�! p0

q
α
�! q0

p+q
α
�! q0

p
α
�! p0

pnc
α
�! p0nc

if α doesn’t use c

p
α
�! p0

pjq
α
�! p0jq

q
α
�! q0

pjq
α
�! pjq0

p
c!v
�! p0 q

c?v
�! q0

pjq
τ
�! p0jq0

p
c?v
�! p0 q

c!v
�! q0

pjq
τ
�! p0jq0

t[ē=x̄]
α
�! p0

(λx̄:t)(ē)
α
�! p0

f (ē)
α
�! p0

X(ē)
α
�! p0

if X (= f

Figure 2.2. (Early) Operational semantics for value-passing CCS.

where e 2ValExp, c 2Ch and x 2Var. The prefix c?x:t binds occurrences of the variable x in the

subterm t and we let f v(t) be the set of variables of t which are not bound.

Before showing how to create a symbolic graph for this language we first present the traditional

labelled transition system model. The nodes of the transition system will be closed terms (but not

abstractions) of the language, that is terms t such that f v(t) = /0. We will typically use letters,

p;q : : : to denote closed process terms, f ;g : : : to denote abstractions and t;u; : : : to denote arbitrary

terms. The label set contains τ, c!v and c?v for all c 2 Ch and v 2 Val. The transition relation is

defined as the least relation satisfying the rules in Figure 2.2. We identify a process, or closed

term, p with the corresponding node of the transition system described above.

The symbolic graph derived from value-passing CCS will have data domain D and arbitrary

terms t will serve as nodes with f v(t) being the set of variables occurring unbound in t. The label

set Ch will be the channel names and there is but a single neutral action τ. The transition relation

is given by the symbolic operational semantics of CCS given in Figure 2.3 Again we identify a

term t with the corresponding node of the graph described above. We also make use of a function

called new which, given a subset of Var, will return a new variable not present in that subset.

The transition system of value-passing CCS obtained by first compiling a symbolic graph and

then applying the concretion functor of Section 2.3.2 is strictly finer than the transition system

obtained directly from the operational semantics of Figure 2.2 although we will see in the next

section that the two constructions are equivalent up to strong bisimulation.

2.5 Bisimulation

Bisimulation equivalence has enjoyed much success as a semantic equivalence in process theory.

It is deemed to be the finest equivalence relation one need consider for the category of transition
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α:t tt;α
7�! t

t
b0

;α
7�! t 0

(b! t)
b^b0

;α
7�! t 0

t
b;α
7�! t 0

t +u
b;α
7�! t 0

u
b;α
7�! u0

t +u
b;α
7�! u0

t
b;α
7�! t 0

tnc
b;α
7�! t 0nc

if α doesn’t use c

t
b;α
7�! t 0

tju
b;α
7�! t 0ju

u
b;α
7�! u0

tju
b;α
7�! tju0

α is not a c? action

t
b;c?x
7�! t 0

tju
b;c?y
7�! t 0[y=x]ju

u
b;c?x
7�! u0

tju
b;c?z
7�! tju0[z=x]

y = new( f v(t 0ju));

z = new( f v(tju0))

t
b;c?x
7�! t 0 u

b0

;c!e
7�! u0

tju
b^b0

;τ
7�! t 0[e=x]ju0

t
b;c!e
7�! t 0 u

b0

;c?x
7�! u0

tju
b^b0

;τ
7�! t 0[e=x]ju0

t[ē=x̄]
b;α
7�! t 0

(λx̄:t)(ē)
b;α
7�! t 0

f (ē)
b;α
7�! t 0

X(ē)
b;α
7�! t 0

if X (= f

Figure 2.3. Symbolic operational semantics of CCS.
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systems and has been characterised in various abstract forms [44, 56, 100, 105]. We recall the def-

inition of (strong) bisimulation for transition systems here and consider this relation with regards

to the transition system generated by the operational semantics of Figure 2.2 for value-passing

CCS.

Given two transition systems T1 = (N1;L1;�!1) and T2 = (N2;L2;�!2) we call a relation

R � N1�N2 a bisimulation if for each (p;q) 2 R we have

� whenever p
α
�!1 p0 then q

α
�!2 q0 for some q0 such that (p0;q0) 2 R

� whenever q
α
�!2 q0 then p

α
�!1 p0 for some p0 such that (p0;q0) 2 R

We say that p and q are bisimulation equivalent or bisimilar, written p � q, if there exists a

bisimulation containing (p;q).

In the previous section we showed how to construct a transition system from the value-passing

language CCS. If we use bisimulation equivalence on this transition system then we obtain a

notion of equivalence for process terms, that is p and q as processes are equivalent iff p � q as

nodes of the transition system for value-passing CCS. This notion of equivalence has been dubbed

early bisimulation in the literature [75]. Bisimulation equivalence can be lifted to abstractions by

defining f � g iff, for all values v̄, we have f (v̄)� g(v̄).

As promised we now show that the transition systems constructed directly and by concreting

a symbolic graph are equivalent up to bisimulation. In the following, tδ will represent the closed

process obtained from t by substituting its free variables by the corresponding values of δ (and

thus will represent the node of the transition system for that closed process). We will also use the

notation [t;δ] of Section 2.3.2 and � to denote syntactic identity.

Proposition 2.5.1

(1) tδ α
�! p0 implies [t;δ] α

�! [t 0;δ0] for some t 0;δ0 such that p0 � t 0δ0.

(2) [t;δ] α
�! [t 0;δ0] implies tδ α

�! t 0δ0.

Proof Easy induction on the derivation of the transitions. �

Corollary 2.5.2 p� [t;δ] whenever p� tδ.

There seem to be two acceptable generalisations of bisimulation equivalence when talking

about value-passing languages; one of which is early bisimulation equivalence presented above, its

counterpart being late bisimulation [75]. Late bisimulation is strictly finer than early bisimulation

so we give a typical example of how they differ. Consider the processes over N

p(= (c?x:c!x:nil)+(c?x:(x� 0! nil))

and

q(= (c?x:(x > 0)! c!x:nil)+(c?x:(x = 0)! c!x:nil):

It is quite easy to see that p and q are early bisimilar because both p and q have the ability to receive

a value and then output it again on channel c or to receive a value and then deadlock. Bisimulation

is designed to be a branching time equivalence, meaning that it respects the branching structure of

processes, but closer inspection of the above example reveals that there is some subtlety involved

in interpreting respects the branching structure when dealing with value-based languages. To

match the move p
c?v
�! c!v:nil we choose a move from q but this choice is contingent upon the

value v — if v is 0 then we can take the right branch otherwise we can take the left branch. We

see that, when using an early semantics, the branch of q used to match the input actions from

the left branch of p may vary with the value being received. One might consider this property
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τ:p τ
�! p c!e:p

c![[e]]
�! p c?x:t

c?
�! (x)t

p
α
�! p0

b! p
α
�! p0

if [[b]] = tt

p
α
�! p0

p+q
α
�! p0

q
α
�! q0

p+q
α
�! q0

p
α
�! p0

pnc
α
�! p0nc

if α doesn’t use c

p
α
�! p0

pjq
α
�! p0jq

q
α
�! q0

pjq
α
�! pjq0

α is not a c? action

p
c?
�! (x)t

pjq
c?
�! (x)(tjq)

q
c?
�! (x)u

pjq
c?
�! (x)(pju)

p
c?
�! (x)t q

c!v
�! q0

pjq
τ
�! t[v=x]jq0

p
c!v
�! p0 q

c?
�! (x)u

pjq
τ
�! p0ju[v=x]

t[ē=x̄]
α
�! p0

(λx̄:t)(ē)
α
�! p0

f (ē)
α
�! p0

X(ē)
α
�! p0

if X (= f

Figure 2.4. (Late) Operational semantics for value-passing CCS.

undesirable of an equivalence which is meant to respect branching structure. This property holds

purely because the early semantics of Figure 2.2 actually treat the term c?x:t as if it were a sum

∑
v2Val

c?v:t[v=x]

thereby confusing the branching structure of the original process term. To see how this summation

confuses we need only look at the transition systems for p and q: they are not only bisimilar but

actually isomorphic!

Late bisimulation is a remedy to this problem and as such clearly requires a different opera-

tional semantics, we give these in Figure 2.4. Notice that the action c?v has now been decomposed

into the action c? and substitution (cf. the communication rule). The term (x)t has also been

called an abstraction [75] and may be thought of as a function from Val to closed terms; to avoid

confusion with the previous use of abstraction we will, wherever necessary, refer to (x)t as an ?-

abstraction. The result of a communication is to pass a value across a parallel, apply this function

to it and β reduce. We can now define the notion of late bisimulation using the late operational

semantics. We build a transition system similar to the one of Section 2.4 by taking the nodes to

be the closed process terms of the language along with ?-abstractions (x)t. The transition relation

�!L is defined so that p
α
�!L r (where r is a closed term or ?-abstraction) according to the rules in

Figure 2.4 and for each v we have (x)t
@v
�!L t[v=x], where @v is a new kind of action. The relation

� on this transition system is called late bisimulation and can be characterised more simply on

closed processes in the following way.
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Processes p0 and q0 are late bisimilar if there exists a relation R containing (p0;q0) such that

for each (p;q) 2 R (omitting symmetric rules for q)

� whenever p
α
�! p0 (for α not c?) then q

α
�! q0 for some q0 such that (p0;q0) 2 R

� whenever p
c?
�! (x)t then q

c?
�! (y)u for some (y)u such that (t[v=x];u[v=y]) 2 R for all

v 2 Val

This is in fact the standard definition of late bisimulation in the literature. We will denote both

early and late bisimilarity as p � q or as p �E q and p �L q respectively, whenever the use is

unclear from the context. There is of course an analogous result to Proposition 2.5.1 for the late

semantics and a modified late version of the concretion functor. But we forgo the details here.

Returning to our example though we see that p and q fail to be late bisimilar because any late

bisimulation containing them must be able to match p
c?
�! (x)(c!x:nil). Clearly there are only

two possible matches q
c?
�! (x)(x> 0! c!x:nil) and q

c?
�! (x)(x = 0! c!x:nil) neither of which

suffice.

2.5.1 Symbolic bisimulation

So far we have shown how to construct a transition system from CCS and have given an equiv-

alence called bisimulation on this transition system. We have also shown how to construct a

symbolic graph from CCS and then concrete it to a transition system bisimilar to the directly con-

structed system. What is missing from this picture is an equivalence at the symbolic level. That

is, a definition of bisimulation for symbolic graphs which is preserved by the concretion functor

— this is symbolic bisimulation.

Unfortunately symbolic graphs do not come equipped with substitution and α-conversion.

This causes a slight problem for giving a definition of bisimulation for them. For example, consider

the following two graphs

t
c?x
7�! t 0

c!x
7�! �

and

u
c?y
7�! u0

c!y
7�! �

Now any reasonable notion of bisimulation ought to identify t and u as they differ only by a bound

variable. One might expect that to match t
c?x
7�! t 0 we use u

c?y
7�! u0 and then ask that t 0[z=x] and

u0[z=y] be related for some fresh variable z. The problem is how to interpret t 0[z=x].

Hennessy and Lin define what they call a term to be a node of a symbolic graph, paired up

with a substitution σ : Var!Var. They proceed to define symbolic bisimulations on terms rather

than on the nodes of graphs themselves. The approach we take is to identify a class of graphs

for which such an expression would make sense, that is, those graphs which for each node n and

substitution [z=x] there is a node n0 which behaves like n under this substitution. This property is

easily defined using the construction described below which saturates a graph with substitutions.

Given a graph G = (D;N;Ch;Nτ; 7�!) we create a graph SSat(G) = (D;Nss
;Ch;Nτ; 7�!ss)

where

Nss
= f(n;σ) j n 2 N;σ : Var!Varg

and 7�!ss is defined by the following rules.

n
b;τ
7�! n0 implies (n;σ) bσ;τ

7�!ss (n
0

;σ)
n

b;c!e
7�! n0 implies (n;σ) bσ;c!eσ

7�! ss (n
0

;σ)
n

b;c?x
7�! n0 implies (n;σ) bσ;c?z

7�! ss (n
0

;σ[z=x]) where z = new(fσ(y) j y 2 f v(n)g)
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We may consider Nss as a transition system, with the pairs b;α as labels, and therefore have a

bisimulation equivalence relation �ss on Nss. Let SSat(G)=�ss be the graph SSat(G) quotiented

by this equivalence relation.

We say that a graph G is substitution saturated if G is isomorphic to SSat(G)=�ss. Here

isomorphism means there are mutually inverse graph morphisms whose components for channel

renaming and data are identities. Note that for each node n of a substitution saturated graph, G,

and for each σ : Var!Var there is a node (n;σ) in SSat(G) and, via the isomorphism, a node n0 in

G which behaves exactly like nσ. This fact enables us to write nσ unambiguously for substitution

saturated graphs.

Proposition 2.5.3 (1) The symbolic graph for CCS is substitution saturated.

(2) SSat(G)=�ss is substitution saturated for all G.

Proof (1) A term t is mapped to the equivalence class [t; id] and, inversely, the class [t;σ] is

mapped to the term tσ. This is an isomorphism because for any t 0;σ such that t � t 0σ we know

that (t; id)�ss (t
0

;σ). This can be shown by constructing a relation

R =

�

(t;σ);(t 0;σ0 �σ) j tσ � t 0σ0 �σ
	

and using structural induction on t to show that R��ss.

(2) We need to show that SSat(G)=�ss is isomorphic to SSat[SSat(G)=�ss]=�ss. To embed

the former in the latter we simply take [n;σ] to [[n;σ]; id]. This has an inverse which maps [[n;σ];ξ]
to [n;ξ�σ]. Of course this uses the fact that [[n;σ]; id] is bisimilar to [[n;σ0];ξ] whenever σ = ξ�σ0.

�

So although we cannot define symbolic bisimulation on graphs in general we can at least use

the previous proposition to define symbolic bisimulation upon the saturation of an arbitrary graph.

Given two substitution saturated graphs (D;N1;Ch1;Nτ1
; 7�!1) and (D;N2;Ch2;Nτ2

; 7�!2) over

the same data domain D, let S =

�

Sb
� N1�N2

	

be a boolean indexed family of relations. The

booleans here do not necessarily belong to BoolExp but rather the boolean metalanguage used to

reason about data properties. Define SB(S) to be the family of relations such that

(t;u) 2 SB(S)b if whenever t
b1;α
7�!1 t 0 there exists a variable z such that z 62 f v(b; t;u) and a

finite collection of booleans B such that b^ b1 j=
W

B, so B is a b^ b1-partition, and for each

b0 2 B there exists a u
b2;β
7�!2 u0 such that b0 j= b2 and

� if α 2 Nτ then β� α and (t 0;u0) 2 Sb0

� if α is c!e then β� c!e0 with b0 j= e = e0 and (t 0;u0) 2 Sb0

� if α is c?x then β� c?y for some y and (t 0[z=x];u0[z=y])2 Sb0

There is of course a symmetric condition on transitions from u.

A family of relations S is called an early symbolic bisimulation if S� SB(S). Furthermore, if

the fresh variable z never appears in the partition B then the family S is a late symbolic bisimula-

tion.

We write t �b
E u (respectively t �b

L u) if there is an early (late) symbolic bisimulation S such

that (t;u)2 Sb.

We now give an example of two early bisimilar processes, p and q. We demonstrate that they

are related in the most general boolean world tt.

� q0

odd(x); c!x2

##

H

H

H

H

H

H

H

H

H

H

H

p

c?x

;;

v

v

v

v

v

v

v

v

v

v

v

c?x
##

H

H

H

H

H

H

H

H

H

H

q

c?x

;;

v

v

v

v

v

v

v

v

v

v

v

c?x
##

H

H

H

H

H

H

H

H

H

H

�

p0
c!x2

//

� q00
even(x); c!4(x=2)2

;;

v

v

v

v

v

v

v

v

v

v
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To show p�tt q we must find matching partitions and moves for each of the transitions from

both p and q. We describe the matches for the transition p
tt;c?x
7�! p0. What we require is a tt-partition

such that for each boolean b in this partition we know that b guarantees a c?x transition from q

to a node which is at least b related to p0. The partition we require then is feven(x);odd(x)g. If

we take even(x) we see that q
tt;c?x
7�! q00 with p0 �even(x) q00 and for odd(x) we use q

tt;c?x
7�! q0 with

p0 �odd(x) q0. No further partitioning is required and we note that the bound variable x occurs in

the partition making this an early rather than late bisimulation.

We previously suggested that symbolic bisimulation ought to be preserved by concretion. This

amounts to saying that

t �tt u implies tδ � uδ for all δ:

The relationship between concrete and symbolic bisimulation is in fact much tighter.

Proposition 2.5.4 t �b u if and only if tδ� uδ for all δ j= b.

Proof See [40] �

2.6 Symbolic graphs with assignment

A shortcoming of symbolic graphs is that, although they are good at modelling infinitely branch-

ing processes finitely, there are still many value-passing processes which are intuitively finite in

structure, but are modelled by infinite symbolic graphs. For example, the process X(0) declared

by

X (= λx:c!x:X(x+2)

repeatedly outputs the sequence of even numbers on c. The structure of this process is very simple:

there is a single state from which there is a c output transition. The actual transition graph, which

also happens to be the symbolic graph, for this process looks like

X(0)
c!0

// X(2)
c!2

// X(4)
c!4

//

: : :

An infinite graph is being used to model a relatively simple structure.

One approach to rectifying this situation was presented, independently, by Lin and Paczowski,

[65, 78]. There was also a similar solution prescribed in [96] using a different formalism to

symbolic graphs. Lin and Paczowski’s solution involved introducing explicit assignments, or sub-

stitutions into the arcs of the graphs. Thus regular behaviours such as the example X(0) can be

described by their transitions along with a substitution to describe how the data part of the process

is affected by transition. The symbolic graph with assignment for X(0) now looks like

�

x:=0 ; c!x
//

fxg
*+

-,/.

x:=x+2 ; c!x

��

More generally, a symbolic graph with assignment is a symbolic graph whose edges are now

labelled with a triple (b;θ;α) where b 2 BoolExp, α 2 Act and θ is an assignment x̄ := ē. We

write m
b;θ;α
7�! n to denote arcs of the graph and ask that f v(b; ē)� f v(m), f v(α)� x̄ and f v(n)�

x̄[bv(α).
Symbolic graphs with assignment can be unfolded into symbolic graphs in a similar manner to

saturating a symbolic graph with substitutions. Rather than using simple substitutions, however,

we saturate with arbitrary substitutions. Thus, we can create a symbolic graph, roughly, by the

rule

m
b;θ;α
7�! n

(m;σ) bσ;αθσ
7�! (n;θσ)
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This allows us to define symbolic bisimulation over graphs with assignment simply by asking that

their respective symbolic graphs be bisimilar.

An important feature of graphs with assignments is that any term of regular, value-passing

CCS, that is, the sublanguage without parallel composition and restriction, is modelled by a finite

graph with assignment. This fact is exploited in [65, 78] in order to present an algorithm for

reducing the decidability of strong bisimulation down to deciding validity of boolean expressions

about data. The particular language that these boolean expressions are described in is essentially

first-order predicate logic with parameterised fixpoints.

In Chapter 6 we present a proof system for reasoning about regular value-passing CCS pro-

cesses. We don’t use symbolic graphs with assignment explicitly although one might consider the

standard declarations of that chapter as a syntax for such graphs. However, we do make use of the

algorithms of [65, 78] for calculating boolean expressions which guarantee bisimilarity between

finite graphs with assignment. Moreover, we also make use of the fact that the class of finite sym-

bolic graphs with assignment is closed under parallel composition, whereas this is certainly not

the case for finite symbolic graphs. We demonstrate this with the following example: consider the

graphs

�

c!0

��

�

c?x

��

�

d?y

��

� �

o!x

��

�

*+

-,

c!y

oo

�

*+

-,

d!(x+1)

oo

Their parallel composition, hiding channels c and d, as defined in [65], expands to the infinite

symbolic graph

�

τ
//

�

o!0
//

�

τ
//

�

τ
//

�

o!1
//

�

τ
//

� � �

for a process which implements an incremental counter, outputting on channel o.



Chapter 3

Strong Bisimulation for a Calculus of

Broadcasting Systems

We turn to the world of broadcasting systems for our first demonstration of the symbolic tech-

nique. The language we consider is CBS, a value-passing process calculus where communication

between agents is effected by the broadcasting of values. The language is similar in style to

value-passing CCS but has a multiway synchronisation operator in place of the handshaking par-

allel of CCS. Another departure from CCS is the lack of channel names. The channel names of

CCS explicitly name the medium, or channel, on which each communication takes place. This

gives rise to the notions of local channels and a communication topology. Such a description

of communication sits uncomfortably in a broadcast model. The idea behind broadcasting is that

communication takes place between all of the agents in a network and not just ones with particular

communication capabilities on a given channel, i.e., the communication topology is discrete. So

we dispense with channel names entirely and assume that all communication takes place in some

medium called the ether. Local message passing can still be achieved by tagging the messages

with an identifier or translating the messages into messages which can only be understood by se-

lect processes. For example, following Prasad’s analogy with human conversation, in a room full

of french speaking people, if an individual were to start speaking in esperanto they would find that

their message would not be received throughout the room but only by a lucky few. This approach

to value-passing necessitates the use of pattern-matching. Pattern-matching in value-passing cal-

culi is typically conceived as a post-reception boolean test; the recipient deciding, having received

the value, what action to take. In contrast to this the pattern-matching in CBS can also be done

prior to reception. A process not intended to receive a value will simply not receive it and its state

will remain unchanged. In some sense the pattern-matching is being done by the ether.

The ideas behind the Broadcast Calculus are due to Prasad [85, 86, 87]. We are concerned

with applying the symbolic techniques described to provide the calculus with a finitary equational

theory and proof system for establishing process identities. Existing work [86] introduces a notion

of both strong and weak bisimulation for CBS. Also, a complete axiomatisation for the strong

equivalence is given for a pure version of the calculus. For the remainder of this chapter we

reinvestigate the notion of strong equivalence for CBS and use symbolic techniques to give a

complete axiomatisation of this equivalence. In order to use the symbolic approach we give a

symbolic operational semantics for CBS. These semantics do not define a symbolic graph as in

Section 2.3 because of the pattern-matching present in the language. However, we will see later

that a slight modification of symbolic bisimulation allows the technique to be applied smoothly.
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3.1 The broadcast calculus

The calculus we consider is a minor variation on that of [86]. The syntax is described by the

following grammar:

t ::= O j e!t j x 2 S?t j b� t j ∑
i2I

ti j tjt j t
( f ;g) j A(ē):

It has many of the usual operators of CCS, [74] but communication is achieved by broadcasting

values to all processes in the environment. The language is of course a value-passing language and

as such the syntax presupposes a data domain D. Thus we will freely use the terms Val, ValExp,

etc. The process e!p broadcasts the value of the data expression e while x 2 S?t is a process which,

on hearing the value v proceeds to act like the process t[v=x] provided v 2 S; otherwise the value

is ignored.

Let τ be a special value in Val; τ represents noise in the system, i.e. broadcasts of values which

can not be deciphered by any process. We ask that the sets S guarding input prefixes never contain

the value τ. In general v will range over non-τ values and w will range over all of Val, including

τ. The restriction and renaming operators of CCS are replaced by the one translation construct

t
( f ;g). Here both f and g are functions from Val to Val, strict in the sense that f (τ) = g(τ) = τ. In

t
( f ;g) the behaviour of t is translated using f for use by the environment while the behaviour of the

environment is translated by g for use by t. The strictness condition enforces the constraint that

noise cannot be translated into an interpretable value.

The operational semantics for this language, CBS is given in Figure 3.1; it more or less coin-

cides with that presented in [86]. We note that this is an early semantics and that the notion of

equivalence that we derive from these will in fact be an early form of bisimulation. Throughout

we assume that with each constant name A we have an associated definition: A(= λx̄:tA where x̄

contains all of the free variables that appear in tA, and A always occurs within the scope of an ac-

tion prefix in tA. The rules determine three different kinds of binary relations over agents, p
v?
�! q

representing the effect of inputting a value v, p
w!
�! q; w2Val, representing the output of the value

w and the novel discard relation p
w:
�! q. The reader is referred to [86] for more explanation and

discussion of these rules.

The most notable difference between the operational semantics of CCS, [74], and CBS is this

discard relation. It is essentially a negation of the transition p
v?
�! p0 for some p0 (see Lemma 3.1.1

below) and is used to facilitate the presentation of the semantics for the parallel operator.

Some simple properties of these relations are given in the following lemma:

Lemma 3.1.1 For every agent p

� if p
w:
�! q then q is p

� p
v:
�! p if and only if there does not exist a q such that p

v?
�! q

� p
τ:
�! p

Proof By induction on the rules of inference in Figure 3.1. �

Intuitively a process discards a value when it is in a state in which values can not be received.

So the first property of this Lemma is very natural: ignoring or discarding a broadcasted value does

not change the state of a process. The second property states that discarding a value is exactly the

same as not being able to receive it. The final property states that all processes ignore noise. This

relies on the fact that in all guarded input terms x 2 S?t, S is a subset of Val not containing τ.

Using the operational semantics given above we can describe a labelled transition system

semantics for CBS. Such a semantics would be similar to those given for (early) value-passing

CCS in Chapter 2 but with a notable difference. It is no longer true that p
v?
�! q implies that for
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Discard Input Output

O
w:
�!O

w 62 S

x 2 S?t
w:
�! x 2 S?t

v 2 S

x 2 S?t
v?
�! t[v=x]

e!p
w:
�! e!p

[[e]] = w

e!p
w!
�! p

8i 2 I � pi
w:
�! pi

∑I pi
w:
�! ∑I pi

9i 2 I � pi
v?
�! p0

∑I pi
v?
�! p0

9i 2 I � pi
w!
�! p0

∑I pi
w!
�! p0

[[b]] = ff

b� p
w:
�! b� p

p
w:
�! p

b� p
w:
�! b� p

p
v?
�! p0 [[b]] = tt

b� p
v?
�! p0

p
w!
�! p0 [[b]] = tt

b� p
w!
�! p0

tA[ē=x̄]
w:
�! tA[ē=x̄]

A(ē)
w:
�! A(ē)

tA[ē=x̄]
v?
�! p0

A(ē)
v?
�! p0

tA[ē=x̄]
w!
�! p0

A(ē)
w!
�! p0

p
gw:
�! p

p
( f ;g)

w:
�! p

( f ;g)

p
gv?
�! p0

p
( f ;g)

v?
�! p0

( f ;g)

p
w!
�! p0

p
( f ;g)

f w!
�! p0

( f ;g)

p
α
�! p0 q

β
�! q0

pjq
α�β
�! p0jq0

α�β 6=?

� w! w? w :

w! ? w! w!

w? w! w? w?

w : w! w? w :

Figure 3.1. Operational semantics for closed agents.
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every value v0 there is a process qv0 such that p
v0?
�! qv0. One reason is the use of guarded inputs,

x 2 S?t which are conspicuously absent from CCS; here a value can be input only if it is in S.

However even if the only input construct allowed is x 2 Val?t the property still does not hold. For

example the process (x 2 Val?t)
( f ;g) can only receive the values from Val which g doesn’t map to

τ.

One might reasonably ask if this discard behaviour might be modelled in CCS using reception,

boolean testing and recursion. That is, x 2 S?t might be written as

X (= c?x(x 2 S ! t)+(x 62 S! X):

This has a behaviour corresponding to x2 S?t in CBS but with the crucial difference that any move

from X in a choice context will resolve that choice, whereas discard moves from x 2 S?t will not.

3.1.1 Strong bisimulation for CBS

Given a transition system semantics for CBS there is a standard definition of bisimulation which

can be applied to this transition system. This would yield a notion of equivalence, identical to

Prasad’s strong bisimulation, for the broadcast calculus but we question whether this equivalence

is appropriate in this setting. For instance, the use of handshaking communication in CCS requires

the protocol that in order for a value to be communicated the sending process must synchronise

with a unique receiver. The observable effect is that the resulting action of this communication

is hidden using an internal τ action. So if a process’ environment offers to send it a value we

can directly observe whether the process chooses to receive the value by observing whether the

handshake was effected. In CBS the situation is a little different; there is no notion of an internal

action so the observed result of a communication is simply a value being offered. If a CBS process’

environment offers to send it a value we have no recourse to the communication protocol to observe

whether the process chooses to receive it or ignore it, the observed effect is identical in both

cases. With this in mind it is unclear at best whether the receipt of a value should be treated as an

observable action in CBS. What we would like then is a means of defining a notion of bisimulation

equivalence based on broadcast actions alone. We find this in barbed bisimulation.

Barbed bisimulation was proposed in [94] as a means of finding an appropriate definition of

bisimulation for the higher-order π-calculus. The approach is straightforward and uncontroversial

since it relies only on a notion of reduction, which we have in
τ!
�!, and a notion of when agents

have the ability to produce values, which we have in
v!
�!. This satisfies our criterion that the

definition uses broadcast actions only.

For any value v let p # v mean that p
v!
�! p0 for some p0. Then a relation R between agents is

called a barbed bisimulation if for each (p;q) 2 R we have

� whenever p
τ!
�! p0 then q

τ!
�! q0 for some q0 such that (p0;q0) 2 R

� whenever q
τ!
�! q0 then p

τ!
�! p0 for some p0 such that (p0;q0) 2 R

� p # v if and only if q # v.

We use �barb to denote the maximal such relation which is obviously an equivalence. How-

ever it is itself not very interesting as a semantic equivalence as it is an extremely coarse relation.

For example, any processes x 2 S?t and y 2 S0?u will be �barb related. The equivalence we are in-

terested in is the congruence generated by �barb. That is, we relate processes which can broadcast

the same values when sitting in a common context.

For agents p and q let p �c
barb q if C[p] �barb C[q] for every CBS context C[ ]. We will

sometimes want to specify over which data language the CBS contexts are built. To indicate that

a particular value set V is used we write (p�c
barb q) : V



Chapter 3. Strong Bisimulation for CBS 30

This is a fairly intractable definition of equivalence so the remainder of this section is devoted

to giving a simple bisimulation type characterisation of �c
barb. In order to do this we appeal to

our intuitive ideas about a process reacting to a broadcast value by indistinguishably accepting the

value or ignoring it, and define the reaction v?? as follows:

let p
v??
�! q if p

v?
�! q or p

v:
�! q.

With this new arrow we define a new kind of bisimulation relation. A relation R between agents

is called a noisy bisimulation if for each (p;q) 2 R we have

� whenever p
w!
�! p0 then q

w!
�! q0 for some q0 such that (p0;q0) 2 R

� whenever p
v??
�! p0 then q

v??
�! q0 for some q0 such that (p0;q0) 2 R

� whenever q
w!
�! q0 then p

w!
�! p0 for some p0 such that (p0;q0) 2 R

� whenever q
v??
�! q0 then p

v??
�! p0 for some p0 such that (p0;q0) 2 R .

We let p�n q if there exists some noisy bisimulation R such that (p;q) 2 R .

Because of Lemma 3.1.1 noisy bisimulations can be simplified considerably:

Proposition 3.1.2 Let R be a relation over pairs of agents. Then R is a noisy bisimulation if and

only if for each (p;q)2 R we have

� whenever p
w!
�! p0 then q

w!
�! q0 for some Q0 such that (p0;q0) 2 R

� whenever p
v?
�! p0 then q

v??
�! q0 for some q0 such that (p0;q0) 2 R

(Plus symmetric conditions on q).

Proof Suppose R satisfies the conditions of the Proposition. We need only check that a discard

move p
v:
�! p0, where (p;q) 2 R , can be matched by a move from q. We know from the first part

of Lemma 3.1.1 that p0 must be p. In fact if q
v:
�! q0 then q0 must also be q and we are done.

Therefore we assume that q
v:
�!6 q. The second part of Lemma 3.1.1 tells us that q

v?
�! q0 for some

q0. This implies, using the second property of R , that p
v??
�! p0 with (p0;q0) 2 R . It follows, again

from Lemma 3.1.1, that p
v?
�!6 and so we know that p0 is p and (p;q0) 2 R . �

The reader should note that this noisy bisimulation equivalence differs from the strong bisim-

ulation equivalence proposed by Prasad in [86]. Unlike strong bisimulation it turns out that, be-

cause of the pre-emptive power of the reception of inputs, noisy bisimulation is not preserved by

the choice operator. For example x 2 Val?O�n O but v!O+ x 2 Val?O 6�n v!O+O. However it

is preserved by all of the other operators.

Proposition 3.1.3 The relation�n is preserved by all of the CBS operators except choice.

Proof As in [74], to show that noisy bisimulation is preserved by composition, say, we simply let

R = f(pjr);(qjr) j for all p;q;r such that p�n qg

and show that R is a noisy bisimulation. The other operators are treated in a similar way. �

We can also capture noisy bisimulation equivalence from �barb using static contexts, i.e. con-

texts in which the hole does not appear in sub-terms of the form t+u. In the following proposition

we need to consider a larger value set than the underlying set Val. More specifically we use the set

Val+
de f
= Val[Val0[fa;bg, where Val0 is a set of values such that for each v 2Val (save τ) there

exists exactly one v0 in Val0 with v0 62Val and a;b 62Val[Val0. The contexts that we use to obtain

noisy bisimulation are defined over Val+ rather than Val.
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Proposition 3.1.4 If C[p0]�barb C[q0] for every static context C[ ] defined over Val+ then p0 �n

q0.

Proof Given p0;q0 defined over a value set Val, we suppose that C[p0]�barb C[q0] for every static

context C defined over Val+. Let f : Val+!Val+ be defined f (w) = τ if w 2 Val and f (w) = w

otherwise. We also define g(w) = w0 if w 2 Val and g(w) = w otherwise. Let + denote binary

choice and let D be the constant with associated definition

D(= x 2 Val?(a!O+g(x)!O+τ!D)+ ∑
v2Val

v!(b!O+g(v)!O+τ!D)

and let C[ ] be the context ( jD)

( f ;Id): Note that we do not require that g be in the language

ValExp as we can simply use (x!O)

(g;Id) in place of g(x)!O.

Let S = f(p;q) jC[p]�barb C[q]; p;q : Valg, where p : Val means that p is a closed term de-

fined over the value set Val. We know that (p0;q0) 2 S by hypothesis, so we aim to show that S is

a noisy bisimulation.

Suppose that p
v0!
�! p0. Then C[p]

τ!
�!C0

v0
[p0], where

C0

v0
[ ] = ( j(a!O+g(v0)!O+τ!D))

( f ;Id):

We know that C[p] �barb C[q] so C[q]
τ!
�! r for some r �barb C0

v0
[p0]. Now C0

v0
[p0] # a so r # a

necessarily, thus q
v1!
�! q0 and r � C0

v1
[q0] for some v1; q0. We also know that C0

v0
[p0] # v00. So it

must be that r # v00, which forces v1 = v0. We have that q
v0!
�! q0 and must now show that (p0;q0)2 S.

Observe that C0

v0
[p0]

τ!
�!C[p0]. It must be the case that r

τ!
�! r0 with r0 �barb C[p0] because

r �barb C0

v0
[p0]. But C[p0] 6# v for any v so r0 # v cannot hold for any v. Thus r0 � C[q0], that is

(p0;q0) 2 S.

Suppose p
v0?
�! p0. Then C[p]

τ!
�!C00

v0
[p0], where

C00

v0
[ ] = ( j(b!O+g(v0)!O+τ!D))

( f ;Id):

We have C[q]
τ!
�! r for some r �barb C00

v0
[p0]. Now C00

v0
[p0] # b, so r # b. This means r � C00

v1
[q0]

for some v1;q
0

; such that q
v1??
�! q0. We know C00

v0
[p0] # v00. So it must be that r # v00, which forces

v1 = v0. We have q
v0??
�! q0 and must show that (p0;q0) 2 S.

It is clear that C00

v0
[p0]

τ!
�!C[p0]. So there exists an r0 such that r

τ!
�! r0 with r0 �barb C[p0].

Now C[p] 6# v for any v, so it is also the case that r0 6# v for all v. Thus r0 �C[q0], which means that

(p0;q0) 2 S.

Suppose p
τ!
�! p0. Then C[p]

τ!
�!C[p0], so C[q]

τ!
�! r for some r �barb C[p0]. But C[p0] 6# a;b,

so it is also the case that r 6# a;b. This means that no communication can have taken place between

the context and q. Thus q
τ!
�! q0 with r �C[q0], so (p0;q0) 2 S. �

Although noisy bisimulation equivalence is not preserved by choice this can easily be taken

into account.

Definition 3.1.5 Let p'n q if (omitting symmetric clauses for q)

� whenever p
w!
�! p0 then q

w!
�! q0 for some q0 such that p0 �n q0

� whenever p
v?
�! p0 then q

v?
�! q0 for some q0 such that p0 �n q0.

We say that p and q are noisy congruent.
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Theorem 3.1.6 (p�c
barb q) : Val+ if and only if (p'n q) : Val.

Proof It is straightforward to adapt Proposition 3.1.3 to show that 'n is preserved by all CBS

operators. Since (p'n q) : Val trivially implies that (p�barb q) : Val+ it follows immediately that

(p'n q) : Val implies (p�c
barb q) : Val+.

Conversely, suppose (p �c
barb q) : Val+. Let a be the new value, not occurring in Val used

to define Val+. Then p+ x 2 Val?a!O �n q+ x 2 Val?a!O implies (p 'n q) : Val. But (p �c
barb

q) : Val+ tells us that for every static context C[ ] over Val+, C[p+ x 2 Val?a!O]�barb C[q+ x 2

Val?a!O] and therefore by Proposition 3.1.4 it follows that p+x 2Val?a!O�n q+x 2Val?a!O.

�

This theorem justifies our choice of'n as the appropriate version of strong bisimulation equiv-

alence for CBS. For this reason, the relation'n will be studied in the next few sections.

3.2 Characterising strong noisy congruence over simple agents

Our intention is to give an axiomatic characterisation of strong noisy congruence over the finite

sublanguage of CBS. Finite CBS is the sub-language of CBS where summation is restricted to be

finite and agent declarations for recursion are not used. We will pursue this goal in three stages:

firstly we will cut down the finite language to a very restricted class of simple agents SA in which

there is no parallelism, no translation functions and no pattern matching on the input prefixes.

A suitable characterisation is given for this language which provides a basic understanding of

how noisy and strong bisimulation differ. Then the pattern matching facility is accounted for by

extending the class SA to simple patterned agents SPA and we show how to integrate this feature

with the previous characterisation. Finally, we describe an expansion theorem for the CBS parallel

operator and give codings for the translation functions to map agents of finite CBS into SPA.

So, we describe the class SA by the following grammar:

t ::= O j e!t j x?t j b� t j t + t:

The syntax x?t is shorthand for x 2 Val?t and we use binary summation. We will often write ∑I ti
for nested binary sums of all the agents ti. Unlike CBS, processes in SA have the very simple

property that if they can discard one value then they can discard every value, or equivalently if

they can input one value they can input every value:

Lemma 3.2.1 For all processes p in SA if there exists some value v such that p
v:
�! then for every

value v; p
v:
�!.

Proof By structural induction on p. �

This property will prove invaluable in developing the axiomatisation of noisy congruence over

SA. For convenience let us introduce the notation p
:

�! to denote the fact that p can discard.

Consider the four axioms required to characterise strong bisimulation equivalence over CCS

terms

X +O = X

X +X = X

X +Y = Y +X

(X +Y )+Z = X +(Y +Z):

Noisy bisimulation strictly contains strong bisimulation so we will require at least these four ax-

ioms in order to characterise the noisy equivalence. Call these axioms A.

We ask what further properties of noisy bisimulation equivalence fail to be captured by the

axioms of A. Recall that noisy equivalence reflects the fact that the reception and discard of a
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EQUIV
p = p

p = q

q = p

p = q q = r

p = r

AXIOM
p = q 2 Axioms

p = q

CONG
p1 = q1 p2 = q2

p1 + p2 = q1 +q2

α-CONV
x?t = y?t[y=x]

y 62 f v(t)

cl-INPUT
∑i2I τ!ti[v=x] = ∑ j2J τ!u j[v=x] for every v 2Val

∑i2I x?ti = ∑ j2J x?u j

OUTPUT
p = q; [[e]]= [[e0]]

e!p = e0!q

BOOL
[[b]] = tt

b� p = p

[[b]] = ff

b� p = O

Figure 3.2. Inference Rules

value by a process p is considered to be identical providing that the future behaviour of p does not

depend upon the receipt of the value. This means, for example, that

v!p+x?v!p �n v!p

for any process p. Note that p is closed so x does not occur freely in v!p and therefore cannot affect

the future behaviour of the term v!p. Indeed if q is any process which can discard, i.e. q
:

�!, then

q+x?q �n q

because q can discard any value. This in turn means that

w!(q+x?q) 'n w!q:

The content of this observation can be captured by a new axiom schema, cl-Noisy :

cl-Noisy : w!(p+x?p) = w!p if p
:

�!

The side-condition p
:

�! can be replaced by a syntactic condition that p is of the form

∑
i2I

bi � ei!pi

for some finite index set I. We will use the meta-variable p! for such a p. Let AN be the set of

equations A together with the axiom schema cl-Noisy . The inference rules required to support

these axioms by allowing them to be applied within contexts are listed in Figure 3.2. CBS is

a value-passing algebra and as such demands more powerful rules than the ability to substitute

equals for equals within context, cf. rules OUTPUT, BOOL, cl-INPUT. We would like to draw

attention to the rule for inferring input prefixing, cl-INPUT. It is not generally possible to infer



Chapter 3. Strong Bisimulation for CBS 34

x?t = x?u from the hypothesis t = u because the proof rules only allow manipulation of closed

terms. An obvious approach to remedy this might be to introduce an infinitary rule, as suggested

by [45],

t[v=x] = u[v=x] for every v 2 Val

x?t = x?u
:

But this rule, although sound, isn’t powerful enough for early operational semantics. See [41] for

further details.

So, rather than considering the congruence generated by a set of axioms Axiom, we consider

the identities derivable in the proof system given in Figure 3.2. For any agents p;q let AN `cl p= q

mean that p = q can be derived in this proof system from the axioms AN , i.e. the axioms A and

the axiom schema cl-Noisy .

Theorem 3.2.2 (Soundness and Completeness) For all agents p;q2 SA, AN `cl p= q if and only

if p'n q.

We omit the proof of this theorem as it can be reconstructed from those of Theorem 3.2.5 and

Theorem 3.2.12.

3.2.1 A characterisation over open terms

In this section the symbolic approach comes to the fore as we show how the need for an infinitary

rule of inference in the proof system above may be obviated by developing a proof system for open

terms. The rule for inferring x?t = x?u could then require the simple hypothesis that t = u except

that the presence of boolean conditionals in the language complicate judgements about open terms

slightly. Our sequents now will be of the form

b� t = u

where b is a boolean expression. The idea is that a sequent t = u would abstractly represent the

collection of seqents tδ = uδ for all data environments δ. The sequent b� t = u decorated with

a boolean similarly represents the collection of sequents tδ = uδ where δ is such that δ j= b. As

an example, consider booleans c1;c2;d1;d2 such that c1 _ c2 = d1 _ d2. Then the collection of

sequents tδ = uδ represented by the abstract sequents c1� t = u and c2� t = u are in fact exactly

the same collection of sequents represented by d1� t = u and d2� t = u but differently grouped.

Thus booleans are a convenient method of describing ways of partitioning collections of sequents.

This partitioning corresponds to the ability to perform case analysis in the proof system.

We adapt the inference rules of Figure 3.2 to incorporate the new form of sequent and include

various structural rules for manipulating the booleans guarding sequents. These rules, listed in

Figure 3.3, are almost identical to those in [41] save for small notational differences. The structural

rules for booleans allow the following intuitive properties of sequents to be derived.

Proposition 3.2.3

(i) b j= b0 implies ` b� t = b0� t

(ii) ` b� (t +u) = (b� t)+(b� u)

(iii) ` (b� t)+(b0� t) = b_b0 � t

(iv) ` b� (b0� t) = b^b0 � t

(v) ` t = t +b� t

(vi) ` b^b0� t = u implies ` b�b0 � t = b0� u.
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EQUIV
tt� t = t

b� t = u

b�u = t

b� t = u b�u = v

b� t = v

AXIOM
t = u 2 Axioms

tt� t = u

CONG
b� t1 = u1 b� t2 = u2

b� t1 + t2 = u1+u2

α-CONV
tt�x?t = y?t[y=x]

y 62 f v(t)

INPUT
b�∑i2I τ!ti = ∑ j2J τ!u j

b�∑i2I x?ti = ∑ j2J x?u j
x 62 f v(b)

OUTPUT
b j= e = e0 b� t = u

b�e!t = e0!u

TAU
b� t = u

b�τ!t = τ!u

GUARD
b^b0� t = u b^:b0�O = u

b�b0 � t = u

CASE
b j= b1_b2 b1� t = u b2� t = u

b� t = u

ABSURD
ff� t = u

Figure 3.3. Inference Rules
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Proof See [41]. �

Using the modified proof system for open terms we now show that the axioms A, along with

a generalisation of axiom schema cl-Noisy to open terms, provide a sound and complete axioma-

tisation for strong noisy congruence over SA. The generalisation of cl-Noisy is

Noisy : e!(t! +x?t!) = e!t! if x 62 f v(t!)

where t! is a term of the form

∑
i2I

bi � ei!ti:

Note that any closed instantiation of such a term discards every transmitted value since it can not

receive an input. Allowing a slight abuse of notation let us again use AN to refer to the axioms A
along with the generalised axiom Noisy . We also write AN ` b� t = u to mean that b� t = u can

be derived in the proof system of Figure 3.3 from the axioms in AN .

Lemma 3.2.4 (Axiom Noisy is sound) For all δ, if x 62 f v(t!) then (e!(t! + x?t!))δ'n (e!t!)δ.

Proof Consider an arbitrary closed instantiation of Noisy : w!(p + x?p) 'n w!p and p has the

form p!. It is sufficient to show that p+ x?p �n p. Let I be the identity relation over agents.

We show that I 0 = I [f(p+x?p; p)g is a noisy bisimulation. The only non-trivial move to match

is p+ x?p
v?
�! p[v=x]. Since x 62 f v(p) the agent p[v=x] coincides with p. Also since p is p! we

know that p
v:
�! p, which is the required match for p+x?p

v?
�! p[v=x]. �

Proposition 3.2.5 (Soundness) If AN ` b� t = u and δ j= b then tδ'n uδ.

Proof It is sufficient to check that all of the individual rules and axioms are sound. This is

straightforward and the only novelty is the axiom schema Noisy which is treated in the previous

Lemma. �

The converse of this Proposition, completeness, is much harder to prove. In fact this will be

our first demonstration of the use of symbolic semantics and symbolic bisimulations. We proceed

by giving a symbolic operational semantics for the class of agents SA and these naturally define a

substitution saturated symbolic graph for SA in the same way that Figure 2.3 defines a saturated

symbolic graph for value-passing CCS. The graph for CBS has a single channel name, which we

omit, and a single neutral action : which denotes discard. We can then define noisy symbolic

bisimulation �b
n on this graph. We show an analogue of Proposition 2.5.4 for noisy congruence.

Using this result, completeness of the proof system for open terms is then expressed as

t 'b
n u implies AN ` b� t = u:

We present the inference rules used to generate the symbolic transition relation 7�! in Figure 3.4.

Symmetric rules for the choice operator have been omitted. Note that in the transition
b;α
7�!, α has

the form :; x? or e!.

Proposition 3.2.6

(i) if tδ τ!
�! q then 9b; t 0 � t

b;τ!
7�! t 0 where δ j= b;q� t 0δ and conversely if t

b;τ!
7�! t 0 and δ j= b then

9q � tδ τ!
�! q and q� t 0δ

(ii) if tδ v!
�! q then 9b;e; t 0 � t

b;e!
7�! t 0 where δ j= b; [[e]]δ= v;q� t 0δ and conversely if t

b;e!
7�! t 0 and

δ j= b; [[e]]δ= v then 9q � tδ v!
�! q and q� t 0δ

(iii) if tδ v?
�! q then 9b;x; t 0 � t

b;x?
7�! t 0 where δ j= b;q � t 0δ[v=x] and conversely if t

b;x?
7�! t 0 where

δ j= b then 9q � tδ v?
�! q and q� t 0δ[v=x]
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Discard Input Output

O
tt;:
7�!O

x?t
tt;x?
7�! t

e!t
tt;:
7�! e!t e!t

tt;e!
7�! t

t
b;:
7�! t u

b0

;:
7�! u

t +u
b0

^b;:
7�! t +u

t
b;x?
7�! t 0

t +u
b;x?
7�! t 0

t
b;e!
7�! t 0

t +u
b;e!
7�! t 0

b0� t
:b0

;:
7�! b0� t

t
b;:
7�! t

b0� t
b;:
7�! b0� t

t
b;x?
7�! t 0

b0� t
b0

^b;x?
7�! t 0

t
b;e!
7�! t 0

b0� t
b0

^b;e!
7�! t 0

Figure 3.4. Abstract operational semantics

(iv) tδ v:
�! tδ if and only if 9b �δ j= b and t

b;:
7�! t

Proof A minor variation on Lemma 3.2 of [41]. �

Let S =

�

Sb
j b 2 BoolExp

	

be a boolean indexed family of relations. Define N SB(S) to be

the family of relations such that

(t;u) 2 N SB(S)b if whenever t
b1;α
7�! t 0 (α � x? or e!) there exists a variable z such that z 62

f v(b; t;u) and a b^ b1-partition, B, and for each b0 2 B there exists a u
b2;β
7�! u0 such that b0 j= b2

and

� if α is e! then β� e0! with b0 j= e = e0 and (t 0;u0) 2 Sb0

� if α is x? then β� y? for some y and (t 0[z=x];u0[z=y])2 Sb0

or β�: and (t 0[z=x];u0) 2 Sb0

(Symmetric condition on transitions from u omitted).

We call S a noisy symbolic bisimulation if S�N SB(S) (point-wise inclusion) and denote the

largest such relation by
�

�

b
n

	

. It is evident that this relation is not a congruence for the language

as it is not preserved by summation. As before we modify it so that we obtain the largest CBS

congruence contained within it:

Let t 'b
n u if whenever t

b1;α
7�! t 0 (α � x? or e!) there exists a variable z such that z 62 f v(b; t;u)

and a b^b1-partition, B, and for each b0 2 B there exists a u
b2;β
7�! u0 such that b0 j= b2 and

� if α is e! then β� e0! with b0 j= e = e0 and t 0 �b0

n u0

� if α is x? then β� y? for some y and t 0[z=x]�b0

n u0[z=y]

(Symmetric condition on transitions from u omitted).

Theorem 3.2.7 t 'b
n u if and only if 8δ �δ j= b implies tδ'n uδ. In particular for agents we have

that p'tt
n q if and only if p 'n q
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Proof As in [41], we use Proposition 3.2.6 to prove that whenever S is a noisy symbolic bisimu-

lation then

RS
de f
=

n

(tδ;uδ) j 9b �δ j= b and (t;u) 2 Sb
o

is a noisy bisimulation. Similarly, whenever R is a noisy bisimulation then

Sb
R

de f
= f(t;u) j δ j= b implies (tδ;uδ) 2 R g

forms a noisy symbolic bisimulation. The result follows easily from this. We should note here

that the proof of this theorem demands a great expressiveness of the boolean metalanguage. Es-

sentially, we require the power to describe given sets of environments. This issue is discussed in

[40]. �

A typical property one requires in order to prove completeness of a proof system is the ability

to transform terms into certain syntactic forms. We make use of two types of these syntactic forms:

standard forms which allow us to isolate the individual summands of a term, and normal forms

which afford a tighter analysis of the boolean guards contained within a term.

Firstly, a term t is said to be in standard form if it is of the form

∑
i2I!

bi � ei!ti + ∑
i2I?

bi � xi?ti

where I! and I? are finite indexing sets. We will call the left hand sum t! and the right hand sum t?.

A term t is called a normal form if it is of the form

∑
i2I

ci � (∑
k2Ii

αik:tik)

where ci^c j � ff whenever i 6= j and
W

I ci = tt.

An important property of standard/normal forms is that the rearrangement required within a

term in order to rewrite it into one of these forms is provable in the proof system. We also require

that the depth of terms is preserved. We can write this more precisely by defining a depth function,

d(p), on terms. Let d(p) be defined inductively as follows:

- d(O) = 0

- d(x?t) = d(e!t) = 1+d(t)

- d(b� t) = d(t)

- d(t1 + t2) = maxfd(t1);d(t2)g

Lemma 3.2.8 For every term t, there exist standard and normal forms s f (t);n f (t) (respectively)

such that d(t) = d(s f (t) = d(n f (t)) and

A ` t = s f (t) and A ` t = n f (t):

Proof It is easy to see that every term can be provably transformed into a standard form by

using Proposition 3.2.3, part (ii) to distribute booleans across sums and using axioms A to remove

occurrences of O. So, let the s f (t) be ∑ j2J b j � α j:tJ. For each K � J we define cK to be the

boolean expression
V

k2K bk^
V

k0

2J�K:bk0 . Thus we have
W

cK = tt;cK^cK0
= ff whenever K 6=K0.

Using Proposition 3.2.3 we can show

` tt� t = ∑
K

cK � (∑
k2K

bk � αk:tk):
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Using CASE and Proposition 3.2.3 we can obtain, for each K,

` cK � t = ∑
K

cK � (∑
k2K

αk:tk):

Thus, given that
W

cK = tt, CASE gives

` tt� t = ∑
K

cK � (∑
k2K

αk:tk):

It is clear that the depth of the term t is unchanged as a result of these transformations. �

As an example of how the mutually exclusive guards of normal forms can be useful we refer

the reader to [41], Proposition 3.7 and note that the proof there can also be used to conclude that

INPUT�
b�∑i2I ci � τ!ti = ∑ j2J d j � τ!u j

b�∑i2I ci � x?ti = ∑ j2J d j � x?u j

(where x 62 f v(b;ci;d j)) is a derived rule of the proof system.

Given a standard form t � ∑i2I bi � αi:ti we notice that we can give boolean conditions to

describe when t can input or discard. For instance, we know that the boolean b will guarantee that

t has the ability to receive a value if b j=
W

I?
bi. Similarly, b will guarantee a discard move from t

if b j=
V

I?
:bi. This motivates the following definition.

For an arbitrary term t, the discard condition, DC(t) is the weakest condition under which t

is triggered to discard, i.e. t
DC(t);:
7�! t and whenever t

b;:
7�! t then b j= DC(t). We can give syntactic

descriptions of DC(t) whenever t is a standard or a normal form.

Lemma 3.2.9 Let t be a standard form ∑i2I bi � αi:ti, and let t 0 � ∑K2P I cK � (∑i2K αKi
:tKi

) be

the normal form constructed from t as described in Lemma 3.2.8. Then

DC(t) =
^

i2I?

:bi =

^

?(K)

:cK

where ?(K) holds if there exists an i 2 K such that αKi
is of the form x? for some x.

Proof Let b denote
V

i2I?
:bi and let c denote

V

?(K)

:cK . It is easy to see from the symbolic

operational semantics that t
b;:
7�! t so we immediately have that b j= DC(t) by definition.

Conversely, suppose δ j= DC(t). We know t
DC(t);:
7�! t so, by Proposition 3.2.6, we know that

tδ v:
�! tδ for any v. Suppose δ j= bi for some i 2 I?. Then we have a contradiction because t

bi;x?
7�! t 0

for some x, whence tδ v?
�! q for some v, q. Thus δ 6j= bi for all i 2 I?, that is to say δ j=

V

i2I?
:bi.

To show the latter equality we first observe that δ j= b implies δ 6j= (

V

j2K b j)^ (

V

j2I�K:b j)

whenever I?\K 6=
/0. This amounts to saying that δ 6j= cK whenever ?(K). That is, δ j= :cK for all

K such that ?(K) and so δ j= c.

Conversely, suppose that δ j= c and suppose for contradiction that there is an i0 2 I? such that

δ j= bi0 . We let K0 = fi0g and define a strictly increasing sequence of subsets of I

K0 � K1 � �� � � Kn � �� �

with the property that δ j= b j for all j 2Kn for all n. Given Kn we know that ?(Kn) because i0 2Kn.

We know then that δ j= :cKn
because δ j= c. Recall that :cKn

= (

W

j2Kn
:b j)_ (

W

j2I�Kn
b j). We

know that there must exist a j0 2 I�Kn such that δ j= b j0 because of the property of Kn that δ j= b j

for each j 2 Kn. Let Kn+1 = Kn [f j0g. This defines a strictly increasing infinite sequence which

is bounded by the finite set I, which is a contradiction. Thus δ 6j= bi for each i 2 I?, hence δ j= b. �

We come now to the theorem which lies at the heart of the completeness theorem. It relates the

noisy symbolic bisimulation relation to the noisy symbolic congruence relation. The completeness
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theorem for finite CCS terms with respect to weak bisimulation congruence �c, [74], page 156,

relies on a similar relationship between weak bisimulation, �, and bisimulation congruence, �c:

if p � q then either p�c q; p �c τ:q or τ:p�c q. For CBS the corresponding relation is if p �n q

then either p 'n q; p 'n x?q+ q or x?p+ p'n q. However, at the symbolic level the relationship

is a little more complicated. We first express this relationship between normal forms and then use

Lemma 3.2.9 to discover the relationship for standard terms.

Theorem 3.2.10 If t;u are normal forms then t �b
n u if and only if there exists a b-partition, B,

such that for x 62 f v(t;u;b0) for each b0 2 B one of the following holds:

1. (t 'b0

n u)

2. (t 'b0

n u+x?u) and b0 j= DC(u)

3. (t +x?t 'b0

n u) and b0 j= DC(t).

Proof The ‘(’ direction is quite simple to prove using Theorem 3.2.7 so we concentrate on the

‘)’ direction. One approach to proving this would be to prove the corresponding result about

closed terms and then use Theorem 3.2.7 to translate to open terms. A more illuminating direct

approach is given here.

We have normal forms for t and u, that is, t � ∑i2I ci � (∑k2Ii
αik:tik) and u � ∑ j2J d j �

(∑l2J j
β jl:u jl).

Let B0
de f
= fb^ci^d j j i 2 I; j 2 Jg. Then we know that

W

B0 = b. Consider b0 � b^ ci^ d j 2

B0. We know that t �b0

n u because b0 j= b. So whenever t
ci;x?
7�! tk, there exists a b0-partition, Bk

such that for each bki
2 Bk there is a matching move from u. Similarly, there is a b0-partition,

Bl for each move u
d j;x?
7�! ul. We have a set of n partitions fBk1

;Bk2
; : : : ;Bkn

g and m partitions

fBl1 ;Bl2; : : : ;Blmg, say. If n = m = 0 then we define Bb0 to be fb0g. Otherwise we consider all

conjunctions of length n+m whose conjucts are drawn one from each partition. Define Bb0

=

(

(

n
V

i=1

bi)^ (

m
V

j=1

b j) j bi 2 Bki
;b j 2 Bl j

)

. Then
W

Bb0
= b0 and furthermore Bb0 enjoys the following

property:

For each b00 2Bb0 we have that t�b00

n u and whenever t
ci;x?
7�! t 0 then there is a u0 such that u

d j;x?
7�! u0

with t 0 �b00

n u0 and b00 j= d j or u
DC(u);:
7�! u with t 0 �b00

n u and b00 j= DC(u). Similarly for u.

So we let B =

S

b0

2B0

Bb0 and consider the three cases which arise. Take b00 2 Bb0.

Case 1 There exists a t
ci;x?
7�! t 0 such that for all u

d j;x?
7�! u jl, t 0 6�b00

n u jl .

Therefore u
DC(u);:
7�! u with t 0 �b00

n u and b00 j= DC(u) since t �b00

n u. We now show that t 'b00

n

u+x?u.

Recall that b00 corresponds to just one of the ci and d j, in the sense that b00^ ci0 = b00^ d j0 = ff

whenever i0 6= i; j0 6= j. Therefore we need only consider moves of the form t
ci;α
7�! and u

d j;α
7�!.

Suppose then that t
ci;e!
7�! tik. Since t �b00

n u we know there exists a b00-partition, B00, such that

for each b1 2 B00 there exists a u
d j;e

0!;u
7�! jl with b1 j= d j; b1 j= (e = e0) and tik �

b1
n u jl . This means

u+x?u
d j;e

0!
7�! u jl also so we have a match for t

ci;e!
7�! tik.

Suppose t
ci;x?
7�! tik. As b00 j= d j and b00 j= DC(u) then, by Lemma 3.2.9, b00 j= :d j0 for each j0

such that ?( j0). Clearly then it cannot be the case that ?( j) holds because b00 j= d j. Therefore no

l 2 J j and no variable x are such that β jl is x?. Thus u
d j;x?
7�!6 and therefore u

DC(u);:
7�! u with tik �

b00

n u.

Given this we use b00 to partition itself, u+x?u
tt;x?
7�! u being the matching move.
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Suppose that u+ x?u
d j;e!
7�! u jl. Then, as before, we use the fact that t �b00

n u to get a matching

partition and move. Suppose that u+x?u
d;x?
7�! u0. By assumption, d is d j or tt. Clearly d cannot be

d j because, as we have already established, u
d j;x?
7�!6 u0. Thus d must be tt and u0 must be u. Again,

b00 partitions itself to get the matching move t
ci;x?
7�! tik.

Case 2 There exists a u
d j;x?
7�! u0 such that for all t

ci;x?
7�! tik, u0 6�b00

n tik. Symmetrical argument of

Case one which yields t+x?t 'b00

n u and b0 j= DC(t).

Case 3 Neither of the above. That is, for every t
ci;x?
7�! tik there exists a u

d j;x?
7�! u jl such that

tik �
b00

n u jl . Also, for every u
d j;x?
7�! u jl there exists a t

ci;x?
7�! tik such that tik �

b00

n u jl . It is easy to show

then that t 'b00

n u. �

As a corollary we show that Theorem 3.2.10 can be lifted to deal with the simpler notion

of standard form which will be used to prove completeness. We also reinterpret the statement

b0 j= DC(t) in terms of provability in the proof system.

Corollary 3.2.11 If t;u are standard forms ∑I ci � αi:ti; ∑J d j � β j:u j respectively, then t �b
n u

if and only if there exists a b-partition, B, such that for x 62 f v(t;u;b0) for each b0 2 B one of the

following holds:

1. (t 'b0

n u)

2. (t 'b0

n u+x?u) and AN ` b0�u = u!

3. (t +x?t 'b0

n u) and AN ` b0� t = t!

Proof We construct n f (t);n f (u) as directed in Lemma 3.2.8. We know t 'b
n n f (t) and u 'b

n

n f (u) by Soundness. Now apply Theorem 3.2.10 to get the three cases. The first case yields

n f (t)'b
n n f (u) and transitivity gives t 'b

n u. Similarly, in the second case we use transitivity and

congruence properties of 'b
n, moreover we must show AN ` b0�u = u!. We have b0 j= DC(u) so

Lemma 3.2.9 tells us that b0 j=
V

j2J?
:d j.

It is simple to show that AN ` b0� u! = u!. So we need only show AN ` b0� u? = O. To do

this we show that for each j 2 J? we have AN ` b0� d j � x j?u j = O. This is simply a matter of

using ABSURD to get AN ` b0^ d j� x j?u j = O and then using GUARD to get AN ` b0� d j �

x j?u j = O.

The last case can be dealt with similarly. �

Theorem 3.2.12 (Completeness) t 'b
n u implies AN ` b� t = u

Proof By using Lemma 3.2.8 we can assume that t and u are the standard forms ∑i2I ci � αi:ti
and ∑ j2J d j � β j:u j respectively and proceed by induction on d(t)+d(u).

We only show AN ` b� t? = u?. The proof of AN ` b� t! = u! is similar and is omitted.

Combining both of these we get the required AN ` b� t = u.

Suppose we can prove

AN ` b^ci�u? +ci � xi?ti = u?

for each i 2 I?. Then an application of GUARD will yield

AN ` b�u? +ci � xi?ti = u?

Using CONG we can then combine these to get

AN ` b�u? + t? = u?
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and an entirely symmetric argument will give us that

AN ` b� t? = u? (= t?+u?):

Therefore we only have to fulfil the obligation of showing

AN ` b^ci�u? +ci � xi?ti = u?

for an arbitrary i.

Let z be a variable not in f v(b; t;u), let tz
? denote ∑I?

ci � z?ti[z=xi] and tτ
? denote ∑I?

ci �

τ!ti[z=xi]. Let uz
?;u

τ
? denote the corresponding terms for u. Consider tz

?

ci;z?
7�! ti[z=xi]. Since t 'b

n u

we know there exists a b^ ci-partition, B, such that for each b0 2 B there exists a uz
?

d j;z?
7�! u j[z=y j]

such that b0 j= d j and ti[z=xi]�
b0

n u j[z=y j]. We can find standard forms for these terms and then by

Theorem 3.2.11 there exists a b0-partition, B0 and some fresh variable x such that for each b00 2 B0

1 ti[z=xi]'
b00

n u j[z=y j] or

2 ti[z=xi]'
b00

n u j[z=y j]+x?u j[z=y j] or

3 ti[z=xi]+x?ti[z=xi]'
b00

n u j[z=y j].

In each of these cases we will show how to deduce AN ` b00�τ!ti[z=xi] = τ!u j[z=y j].

Case 1 We apply induction and then use the rule TAU.

Case 2 We apply induction again to get

AN ` b00� ti[z=xi] = u j[z=y j]+x?u j[z=y j]

In this case we also know that

AN ` b00�u j[z=y j] = (u j[z=y j])!

Using axiom Noisy and TAU will then give

AN ` b00�τ!ti[z=xi] = τ!u j[z=y j]

Case 3 Symmetric to case 2.

For each b00 2 B0 we have proved AN ` b00� τ!ti[z=xi] = τ!u j[z=y j] so we can use CASE to

obtain AN ` b0� τ!ti[z=xi] = τ!u j[z=y j]. Given that b0 j= ci; b0 j= d j we can use Proposition 3.2.3

and the idempotence axiom of A to produce

AN ` b0�d j � τ!u j[z=y j] = (ci � τ!ti[z=xi])+(d j � τ!u j[z=y j]):

Adding in the other summands of u we get

AN ` b0�uτ
? = uτ

? +ci � τ!ti[z=xi]

A further application of CASE gives

AN ` b^ci�uτ
? = uτ

? +ci � τ!ti[z=xi]

Finally, we apply INPUT� to get AN ` b^ ci� uz
? = uz

? + ci � z?ti[z=xi]. The result is obtained

by α-conversion. �
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3.3 Agents with pattern-matching on inputs

We now extend our characterisations of strong noisy congruence to a larger class of agents which

have the facility to be selective about which values they are prepared to receive. We call this

pattern-matching and we recall that this can be described by the syntax x 2 S? for input prefixes.

The pattern, S, is a set of values not containing τ. We will let SPA denote this extended class of

agents. With the addition of this construct Lemma 3.2.1 is no longer true. For example the agent

x? 2 f0;1g:O discards the value 3 but it can not discard either of the values 0 or 1.

We are going to show how to adapt the proof systems of Section 3.2 to incorporate this pattern-

matching on input prefixes. The main difficulty this presents is that the axiom schema cl-Noisy is

no longer sufficient. Recall that cl-Noisy states that

p 'n p+x?p if p
:

�!

The condition that p
:

�! means that p can discard every value which is clearly too strong a

condition to demand in the presence of pattern-matching. If we examine the proof of Lemma 3.2.4

then we see that this side-condition on the axiom is required in order to match the move

p+x?p
v?
�! p

for every value v. If we only demand that p discards values from the set S then we can no longer

expect p 'n p+ x?p to hold because we can no longer match the transition above for every v, we

can match it for just those v contained in S. Instead we see that p 'n p+ x 2 S0?p, provided S0 is

contained in S. To express this observation as an axiom we give a syntactic definition of I(p), the

set of values which the process p is immediately ready to receive and then, using Lemma 3.1.1,

we obtain a description of which values the process p can discard.

The set I(p) is defined inductively as follows:

- I(O) =
/0

- I(e!p) = /0

- I(x 2 S?t) = S

- I(p+q) = I(p)[ I(q)

- I(b� p) =

�

I(p) if [[b]] = tt

/0 otherwise

Proposition 3.3.1 For every agent p, v 2 I(p) if and only if p
v?
�!.

Proof By structural induction on P. �

The axiom schema cl-Noisy is replaced by the schema

cl-P-Noisy : w!(p+x 2 S?p) = w!p if S\ I(p) = /0.

Of course, the condition S\ I(p) = /0 merely states, in light of the previous proposition, that S is

contained in the set of values which p may discard.

This modification alone is insufficient to capture the behaviour of pattern-matching agents.

Consider the two processes x 2 S?t + x 2 S0?t and x 2 S [ S0?t. They are clearly strong noisy

congruent, yet there is no way of showing this in the closed term proof system as there are no rules

to manipulate pattern sets. In fact we equate these directly with the new axiom schema

Pattern : x 2 S?X +x 2 S0?X = x 2 S[S0?X .
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We also need the single axiom

Empty : x 2 /0?X = O.

We should note that these additional axioms could be expressed using the single axiom scheme

∑
I

x 2 Si?X = x 2
[

I

Si?X

and we recognize Empty as the nullary version of Pattern .

With regards to the inference rules of Figure 3.2, we will obviously need to allow pattern-

matching in the rule for α-conversion, i.e.

α-CONV
x 2 S?t = y 2 S?t[y=x]

if y 62 f v(t),

and the rule cl-INPUT is replaced with its modified version

cl-P-INPUT
t[v=x] = u[v=x] for every v 2 S

x 2 S?t = x 2 S?u
.

Notice that, unlike the proof systems for SA, we express this INPUT rule without using sum-

mation. With an early semantics it is often the case that without this summation the proof system

would fail to be complete. For example, in the proof systems for SA the agents defined over the

naturals, N ,

x 2 N ?(x > 1� p)+x 2N ?(x� 1� p)

and

x 2 N ?p+x 2N ?O

can not be proven congruent without the summation on the input rule. However we now have the

use of the axiom Pattern , wherein lies the gain. In order to prove the above agents congruent we

would first use Pattern to transform the latter agent into

x 2 f0;1g?p+x 2 f2;3; : : :g?p+x 2 f0;1g?O+x 2 f2;3; : : :g?O;

use the modified Input rule, cl-P-INPUT, and then use Pattern again.

Let AP denote the set of axioms A augmented with the three axioms: cl-P-Noisy , Pattern and

Empty . Use AP `cl p = q to denote that p = q can be derived from these axioms using the proof

system in Figure 3.2 but with the modified rule for α-conversion and with rule cl-P-INPUT instead

of the rule cl-INPUT.

This modified proof system is indeed both sound and complete for strong noisy congruence

over SPA however in order to prove this we must first provide an analogue of Theorem 3.2.10

(The depth of a patterned input is simply d(x 2 S?p) = 1+d(p)).

Theorem 3.3.2 Let p;q 2 SPA then

p�n q iff p+x 2 (I(q)� I(p))?p'n q+x 2 (I(p)� I(q))?q:

Moreover, when I(q)� I(p) and I(p)� I(q) are both non-empty there exist p0;q0 such that d(p0)<

d(p);d(q0)< d(q) and p0 �n p�n q�n q0:

Proof We outline the ‘)’ direction. If p
v?
�! p0 then we know there exists a q0 such that q

v??
�! q0

with p0 �n q0 because p �n q. If v 2 I(q) then we know that q
v?
�! q0. Otherwise v 62 I(q) and

q
v:
�! q0 (� q). In this case though v 2 I(p)� I(q) which means that x 2 I(p)� I(q)?q

v?
�! q

matches the move from p.



Chapter 3. Strong Bisimulation for CBS 45

We know that x 2 I(q)� I(p)?p
v?
�! p whenever v 2 I(q)� I(p). So we require a match from

q. q
v?
�! q0 as v 2 I(q) and v 62 I(p) so p

v:
�! p. Because p �n q we then know that p �n q0

necessarily.

When the two sets are both non-empty we let v1 2 I(q)� I(p); v2 2 I(p)� I(q), then p
v2?
�! p0

for some p0 with depth smaller than p. We know v2 62 I(q) so q
v2:
�! q must match this move, that

is, p0 �n q. Similarly, we get q0 �n p using v1. Transitivity of �n gives the result. �

Theorem 3.3.3 (Soundness and Completeness) For all agents p; q 2 SPA

AP `cl p = q if and only if p 'n q:

Proof The soundness is simply a matter of checking the validity of the axioms and that the new

rule preserves the semantic congruence. So we confine our outline to the proof of completeness.

Again the proof is by induction on the combined depth of p and q.

Because of the newly introduced axiom Empty we can assume that any closed term can be

provably transformed to a patterned standard form of equal depth, i.e. a term of the form

∑
I

ei!pi +∑
J

x 2 S j?t j;

where each set S j is non-empty. So let us assume that p and q have the forms

∑
I

ei!pi +∑
J

x 2 S j?t j; ∑
K

ek!qk +∑
L

x 2 Sl?ul

respectively. It is sufficient to prove that that

AP `cl ∑
I

ei!pi = ∑
K

ek!qk

and

AP `cl ∑
J

x 2 S j?t j = ∑
L

x 2 Sl?ul

and as an example we consider the latter. To establish this it is sufficient, by symmetry, to prove

for each j 2 J that

AP `cl x 2 S j?t j +∑
L

x 2 Sl?ul = ∑
L

x 2 Sl?ul:

Given this we can add each of these to obtain

AP `cl ∑
J

x 2 S j?t j +∑
L

x 2 Sl?ul = ∑
L

x 2 Sl?ul:

Now, this argument can be repeated, symmetrically, to yield

AP `cl ∑
J

x 2 S j?t j +∑
L

x 2 Sl?ul = ∑
J

x 2 S j?t j

from which the result follows by TRANS.

So, choose an arbitrary j. For each v 2 S j we know that p
v?
�! t j[v=x]. We know that q

v?
�!

ul[v=x] for some l 2 L such that v2 Sl and t j[v=x]�n ul[v=x] because p'n q. Let S
j

l
= fv2 S j\Sl j

ul[v=x]�n t j[v=x]g. This gives a finite partition fS
j
l
gl2L of S j such that S

j
l
� Sl for each l 2 L. Then,

by the idempotency of + and the new axiom Pattern it is sufficient to show for each l 2 L that

AP `cl x 2 S
j
l ?t j +x 2 S

j
l ?ul = x 2 Sl?ul:

This can be inferred from the rule cl-P-INPUT if we can prove for each v 2 S
j
l

AP `cl τ!t j[v=x] = τ!ul[v=x]:
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So let us fix a particular v 2 S
j

l
and see how this can be inferred. We know that v 2 Sl and

t j[v=x] �n ul[v=x]. For convenience let p;q denote t j[v=x]; ul[v=x] respectively. We now apply

Theorem 3.3.2 to get

p+x 2U?p'n q+x 2V?q

Where U = I(q)� I(p) and V = I(p)� I(q). We have four cases to consider.

1. U =V =
/0

Since x 2 /0?t 'n O we can immediately conclude that p'n q and apply induction to obtain

AP `cl p = q and therefore the required AP `cl τ!p = τ!q.

2. U =
/0;V 6=

/0
Here we have p'n q+x2V?q and again we can use induction to obtain AP `cl τ!p = τ!(q+

x 2V ?q). Now we can apply the cl-P-Noisy schema to obtain AP `cl τ!q = τ!(q+x2V ?q)

from which the required result follows.

3. U 6=
/0;V =

/0
Similar.

4. U 6=
/0;V 6=

/0
Here we have p+ x 2 U?p 'n q+ x 2 V ?q and in this case we can not apply induction

immediately as the combined size of the terms has not decreased. But Thereom 3.3.2 tells us

that there exists p0;q0 such that d(p0)< d(p) and d(q0)< d(q) such that p0 �n p and q0 �n q.

Suppose without loss of generality that d(p) � d(q). Then, since τ!p 'n τ!p0 we can use

induction to obtain AP `cl τ!p = τ!p0. Then a simple application of the cl-P-INPUT rule

gives AP `cl x 2U?p = x2U?p0. This in turn implies that p+x 2U?p0 'n q+x 2V?q and

here we can apply induction since the combined size has decreased. So we obtain, as before,

AP `cl τ!(p+x2U?p0)= τ!(q+x2V?q). Using the fact that AP `cl x2U?p= x2U?p0 we

obtain AP `cl τ!(p+x 2U?p) = τ!(q+x2V?q) from which the required AP `cl τ!p = τ!q

follows by two applications of the cl-P-Noisy rule.

�

3.3.1 Pattern-matching with open terms

So far we have shown how to adapt the proof system of Section 3.2 based on closed terms to

incorporate pattern-matching. Of course what we are really interested in is how to adapt the proof

system based on open terms but, as a useful guide, we can follow the approach above to find the

appropriate generalisation.

We first examined the axiom schema cl-Noisy to obtain a version of this suitable for SPA,

namely cl-P-Noisy . Recall that this schema used the construction I(p), the set of values which a

process can receive. In order to state cl-P-Noisy for open terms we would need to construct the

set of values which a term can receive. Unfortunately this can’t be defined as cleanly as I(p). In

fact, we need to talk about the set of values a term can receive relative to a boolean world. We will

denote this by I(b; t). An obvious property which we will require I(b; t) to satisfy is

δ j= b implies I(b; t) = I(tδ):

This I(b; t) is not a trivial notion to characterise. For example consider the agent

t � b0 � x 2 S1?t 0+:b0 � x 2 S2?t 00:

What would be the set of values which t can receive in the boolean world tt, say? In any evaluation

we know that either b0 or :b0 will be satisfied. So for some evaluations we may have I(tδ) = S1

and for others we may have I(tδ) = S2. If I(b; t) is to satisfy the property stated above then it
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clearly makes no sense to ask what I(tt; t) should be. The approach we take is to characterise

the boolean expressions b for which I(b; t) can have a meaningful definition which satisfies the

required property.

The following function, Bgs, defined inductively over terms, will be useful in describing the

booleans we are interested in.

- Bgs(O) =
/0

- Bgs(e!t) = /0

- Bgs(x2 S?t) = f(tt;S)g

- Bgs(t+u) = Bgs(t)[Bgs(u)

- Bgs(b� t) = f(b^b0;S) j (b0;S) 2 Bgs(t)g

We can then define

I(b; t) =
[

�

S j (b0;S) 2 Bgs(t);b j= b0
	

:

Notice though that this definition, whilst intuitively appealing, may not accurately describe the set

of values that are guaranteed to be received by t in the boolean world b. For instance, if we apply

this definition of I(tt; t) to the example above we see that we get the empty set of values. This is

to be expected as we have already explained that we simply shouldn’t be interested in I(tt; t). The

booleans b, for which I(b; t) does yield a meaningful result are those booleans such that there is

some subset K of Bgs(t) with

b j=
^

(bk;Sk)2K

bk^

^

(b j ;S j)2Bgs(t)nK

:b j:

We call such booleans t-uniform.

We now show that this is a reasonable definition by relating I(b; t) to I(tδ) where δ is an

evaluation such that δ j= b.

Lemma 3.3.4 If b is t-uniform then

δ j= b implies I(tδ) = I(b; t)

Proof b is t-uniform so there exists a set K � Bgs(t) with the required property. We suppose that

δ j= b and show by structural induction on t that I(tδ) = I(b; t).

The cases for O, and prefixing are trivial. We show the remaining two cases here.

Suppose that t is of the form t1 + t2. Then I(tδ) = I(t1δ)[ I(t2δ). Using the sets Ki = K \

Bgs(ti), for i = 1;2, we can see that b is both t1 and t2-uniform so by induction we get that I(tδ) =
I(b; t1)[ I(b; t2). But this is just I(b; t1+ t2).

Suppose that t is b0 � t1 and that δ 6j= b0. We immediately have that b 6j= b0 which means

I((b0 � t1)δ) = /0 = I(b;b0 � t1). We assume then that δ j= b0. There are now two cases to

consider: if K is empty then we know that

b j=
^

(b j;S j)2Bgs(t)

:b j

and by definition, I(b; t) = /0. We also know that b^b0 must be t1-uniform because each (b j;S j) 2

Bgs(b0 � t) is of the form b j � b0 ^ b00j with (b00j ;S j) 2 Bgs(t1) so b j= :(b0^ b00j ) for each j; in
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other words b^b0 j= :b00j for each j. Given this we can apply induction to obtain I(tδ) = I(t1δ) =
I(b^b0; t1). But this set is clearly empty. Hence I(tδ) = I(b; t) = /0.

So we must consider the case where K is non-empty. By uniformity we must have that b j= b0.

This follows because each bk in K is of the form b0 ^ b00k for some b00k . In this case b must be

t1-uniform and induction gives

I(tδ) = I(t1δ) = I(b; t1):

But

I(b; t1) =

[

�

S j (b00;S) 2 Bgs(t1);b j= b00
	

=

[

�

S j (b0^b00;S) 2 Bgs(b0� t1);b j= b0^b00
	

= I(b;b0� t1)

�

We are now at a stage where we can state the axiom schema cl-P-Noisy for open terms.

P-Noisy : b�e!(t +x 2 S?t) = e!t If x 62 f v(t); b is t-uniform and I(b; t)\S =
/0.

The axioms Pattern and Empty can be used directly, without modification for open terms.

However, we do need to attend to the rule for INPUT. The appropriate version of the input rule is:

P-INPUT:
b^x 2 S�∑I τ!ti = ∑J τ!u j

b�∑I x 2 S?ti = ∑J x 2 S?u j
if x 62 f v(b).

Note that, as before, we can derive a guarded version of this rule called P-INPUT� using Propo-

sition 3.2.3.

Once again we write AP ` b� t = u to mean that b� t = u can be derived from the axioms in

AP (A plus P-Noisy , Pattern and Empty ) using the proof system in Figure 3.3 with the modified

input rule, P-INPUT.

Proposition 3.3.5 (Soundness)

If AP ` b� t = u and δ j= b then tδ'n uδ:

Proof We need only show that the modified rules/axioms are sound. The Pattern axiom and

Empty axiom are evident.

For P-Noisy we know that b is t-uniform so by Lemma 3.3.4 δ j= b implies I(tδ) = I(b; t).

Given this we only need to show that tδ+ x 2 S?tδ �n tδ whenever S\ I(tδ) = /0 for δ j= b. This

follows easily.

For the rule P-INPUT, suppose δ j= b. We need to show that ∑I(x 2 S?ti)δ 'n ∑J x 2 S?u j)δ.

The only non-trivial move to match is of the form (x 2 S?ti)δ
v?
�! q. Here q must be of the

form tiδ[v=x] where v 2 S. Since x 62 f v(b) we have that δ[v=x] j= b^ x 2 S. So by assumption

we have ∑I τ!tiδ[v=x] 'n ∑J τ!u jδ[v=x] which means tiδ[v=x] �n u jδ[v=x] for some j. Therefore

(∑J x 2 S?u j)δ
v?
�! u jδ[v=x] matches the move from p. �

The remainder of this Section is the proof of completeness which, as before, requires heavy use

of symbolic bisimulations. The addition of pattern sets to the syntax of the language necessitates

enriching both the definition of the symbolic semantics of Figure 3.4, and of symbolic bisimula-

tion. This takes us beyond the standard symbolic graphs described in Chapter 2. Firstly, we extend

our abstract operational semantics to incorporate the pattern sets: see Figure 3.5. Again, symmet-

ric rules for + have been elided. Recalling the abbreviation x?t for the term x 2 Val?t we see that
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Discard Input Output

O
tt;Val:
7�! O

x 2 S?t
tt;ValnS:
7�! x 2 S?t

x 2 S?t
tt;x2S?
7�! t

e!t
tt;Val:
7�! e!t e!t

tt;e!
7�! t

t
b;S:
7�! t u

b0

;S0:
7�! u

t +u
b0

^b;S\S0:
7�! t +u

t
b;x2S?
7�! t 0

t +u
b;x2S?
7�! t 0

t
b;e!
7�! t 0

t +u
b;e!
7�! t 0

b0� t
:b0

;Val:
7�! b0� t

t
b;S:
7�! t

b0� t
b;S:
7�! b0� t

t
b;x2S?
7�! t 0

b0� t
b0

^b;x2S?
7�! t 0

t
b;e!
7�! t 0

b0� t
b0

^b;e!
7�! t 0

Figure 3.5. Patterned abstract operational semantics

the extension is a conservative one. The transitions relations are, as before, labelled with boolean

values acting as guards. The differences occur in transitions of the form
b;x2S?
7�! now decorated with

the patterned input, and
b;S:
7�! where S records the set of values which may be discarded. Our next

move is to present the notion of a patterned noisy symbolic bisimulation which takes into account

that a term demanding a matching transition for t
b;x2S?
7�! t 0, does so in a boolean world b^ x 2 S.

That is to say, the fact that x only ranges over values in S is accommodated in the condition which

is partitioned.

Suppose S =

�

Sb
	

is a boolean indexed family of relations. Define PN SB(S) to be the family

of relations such that

(t;u)2 PN SB(S)b if whenever

- t
b1;e!
7�! t 0 there exists a b^b1-partition, B, and for each b0 2 B there exists a u

b2;e
0!

7�! u0 such that

b0 j= b2; b0 j= e = e0 and (t 0;u0) 2 Sb0

- t
b1;x2S?
7�! t 0 there exists a variable z such that z 62 f v(b; t;u) and a b^ b1^ z 2 S-partition, B,

and for each b0 2 B there exists u
b2;y2S0?
7�! u0 for some y and some S0 such that b0 j= b2; b0 j=

z 2 S0 and (t 0[z=x];u0[z=y]) 2 Sb0

or there exists u
b2;S

0:
7�! u such that b0 j= b2, b0 j= z 2 S0 and

(t 0[z=x];u)2 Sb0

(There are symmetric conditions for u also).

We call
�

Sb
	

a patterned noisy symbolic bisimulation if Sb
� PN SB(S)b for each b and

denote the largest such S by
�

�

b
pn

	

. Once again we now use the definition of �b
pn to define 'b

pn,

the largest congruence contained in �b
pn:

t 'b
pn u if whenever

- t
b1;e!
7�! t 0 there exists a b^b1-partition, B, and for each b0 2 B there exists a u

b2;e
0!

7�! u0 such that

b0 j= b2; b0 j= e = e0 and t 0 �b0

pn u0
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- t
b1;x2S?
7�! t 0 there exists a variable z such that z 62 f v(b; t;u) and a b^ b1 ^ z 2 S-partition,

B, such that for each b0 2 B there exists a u
b2;y2S0?
7�! u0 such that b0 j= b2; b0 j= z 2 S0 and

t 0[z=x]�b0

pn u0[z=y]

(Again symmetric conditions on u are omitted).

Once more, this version of symbolic bisimulation characterises the corresponding concrete

version.

Proposition 3.3.6 For any t;u 2 SPA

t 'b
pn u iff (8δ �δ j= b implies tδ'n uδ):

Proof We show that the proposition holds for �b
pn as the result follows easily from this. The

only if part is straightforward: given a noisy symbolic bisimulation
�

Sb
	

, we define the relation

R =

�

(tδ;uδ) j 9b �δ j= b and (t;u) 2 Sb
	

and show that this is a noisy bisimulation.

For the if part we suppose that we have a noisy bisimulation R and define

Sb
= f(t;u) j δ j= b implies (tδ;uδ) 2 Rg :

We aim to show that Sb
� PN SB(S)b. Suppose that (t;u)2 Sb and that t

b1;x2S?
7�! t 0. Let

U =

�

u0 j u
b(u0

);α(u0

)

7�! u0;α(u0) 2
�

x 2 S0?;S0 :
	

�

and let u0 2 U. Define baux
u0

such that δ j= baux
u0

iff (t 0δ;u0δ) 2 R and define

bu0
= b(u0)^x 2 S0^baux

u0

where S0 is the set given by the action α(u0). We have defined baux
u0

abstractly here and we simply

assume that such a boolean exists in our property metalanguage. This is the same expressivity

requirement used in the proof of Theorem 3.2.7. We let B be the set fb^b1^x 2 S^bu0

j u0 2Ug.

It is clear that
W

B j= b^ b1 ^ x 2 S so we show the converse. Suppose δ j= b^ b1^ x 2 S. Then

δ = δ[v0=x] for some v0 2 S and (tδ;uδ) 2 R. By a simple generalisation of Proposition 3.2.6

we know that tδ v?
�! t 0δ[v=x], for any v 2 S. So we know that there exists a matching move

uδ v?
�! uvδ[v=x] or uδ v:

�! uvδ[v=x] such that (t 0δ[v=x];uvδ[v=x]) 2 R.

By the same generalised proposition we see there exists a uv 2U such that u
b(uv);α(uv)

7�! uv with

δ j= b(uv) and v 2 S0 (S0 being the set of α(uv)). In particular we have this for v0 so (t 0δ;uv0
δ) 2 R.

Which implies that δ j= buv0
. Therefore δ j=

W

B.

This gives us the partition required. For each b0 = b^b1^x 2 S^bu0
2 B we have u

b(u0

);α(u0

)

7�! u0

with b0 j= b(u0); b0 j= x 2 S0 and b0 j= baux
u0

. This implies that (t 0δ;u0δ) 2 R, hence (t 0;u0) 2 Sb0

.

The symbolic transmissions from t can be dealt with in a similar, slightly simpler, manner. �

Having developed a suitable notion of patterned symbolic bisimulation we develop a version

of Theorem 3.3.2 for open terms.

Theorem 3.3.7 If t and u are standard forms then t �b
pn u if and only if there exists a b-partition,

B, such that each b0 2 B is both t and u-uniform and

t + z 2 S?t 'b0

pn u+ z 2 S0?u

where z 62 f v(b; t;u); S = (I(b0;u)� I(b0; t)) and S0 = (I(b0; t)� I(b0;u)). Moreover, when both S

and S0 are non-empty, there exist t 0;u0 such that d(t 0)< d(t);d(u0)< d(u) and t 0 �b0

pn t;u0 �b0

pn u.
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Proof The if direction is easy so we show the converse. We use Lemma 3.3.4 We exhibit two

b-partitions, B1; B2 such that each b1 2 B1 is t-uniform and each b2 2 B2 is u-uniform. Let

t �∑
I

ci � αi:ti and u�∑
J

d j � β j:u j

be the standard forms and, given K � I? we define

bK =

^

k2K

ck ^

^

i2I?nK

:ci

(similarly for L � J). The two partitions are simply B1 = fb^ bK j K � I?g and B2 = fb^ bL j

L � J?g. We let B = fb1 ^ b2 j b1 2 B1;b2 2 B2g and it is trivial to see that each b0 2 B is in

fact t and u-uniform and, by Lemma 3.3.4 B has the property that for each b0 2 B; δ j= b0 implies

I(tδ) = I(b0; t) and I(uδ) = I(b0;u). Suppose δ j= b0. Then tδ �n uδ. We apply Theorem 3.3.2 to

get

tδ+ z 2 S?tδ 'n uδ+ z 2 S0?uδ

where S = I(uδ)� I(tδ) and S0 = I(tδ)� I(uδ). By properties of the partition we know that

S = I(b0;u)� I(b0; t) and S0 = I(b0; t)� I(b0;u). This is true for each δ j= b0 so it follows from

Proposition 3.3.6 that t + z 2 S?t 'b0

pn u+ z 2 S0?u.

What remains to be proved is the existence of t 0;u0; in the case where S;S0; are non-empty. This

also follows from Theorem 3.3.2, save for a mild complication. For each δ j= b0 there is a p0; q0

such that p0 �n tδ and q0 �n uδ. These p0; q0 are obtained by considering two values v1 2 S;v2 2 S0

and using the fact that tδ v2?
�! p0 and uδ v1?

�! q0. This means that p0 is of the form (ti[v2=x])δ and

similarly q0 is of the form (u j[v1=x])δ. Let t 0δ denote this ti[v2=x] and let u0δ denote u j[v1=x]. For

different δ these t 0δ; u0δ may be different terms although there are only finitely many of them to

choose from.

To resolve this we partition b0 further. Define

Σi j =
�

δ j δ j= b0 and t 0δ � ti[v2=x] and u0δ � u j[v1=x]
	

and define δ j= bi j if and only if δ 2 Σi j. These fbi jg partition b0 and for each δ j= bi j we have

terms t 0;u0, independent of δ, such that t 0δ�n tδ and u0δ�n uδ. �

Theorem 3.3.8 (Completeness) t 'b
pn u implies AP ` b� t = u.

Proof As before we adopt standard forms for t;u and proceed by induction on the sum of the

depths, d(t)+d(u). Again it is sufficient to show

AP ` b� t! = t! and AP ` b� t? = u?

independently. Suppose

t? �∑
I?

ci � z 2 Si?ti

where z 62 f v(b; t;u). We wish to assume the property that whenever t
ci;z2Si?
7�! ti we get a matching

partition such that each element is of the form b0^ z 2 Si where the b0 form a b^ ci-partition. We

can grant this assumption if we transform the standard forms slightly, as follows.

We have (for each i) that t
ci;z2Si?
7�! ti. Since t 'b

pn u we know that there exists a matching

b^ ci ^ z 2 Si-partition, B. Because z 62 f v(b;ci) we know that each element of B is logically

equivalent to something of the form b0^ z 2 Sik (for some indexing set K) where
W

b0 � b^ci and
S

Sik = Si. We use the axiom Pattern to decompose the summand xi 2 Si?ti of t into the sum

∑k2K xi 2 Sik ?ti and Proposition 3.2.3 to distribute ci across this sum. We repeat this for each i 2 I?

and also for u.



Chapter 3. Strong Bisimulation for CBS 52

Having done this we show AP ` b� t? = u? where t? � ∑I ci � z 2 Si?ti and u? � ∑J d j � z 2

S j?u j are now the modified standard forms. It is sufficient to show

AP ` b^ci�u? = u? +ci � z 2 Si?ti

for each i 2 I?. For once we have obtained this we can apply GUARD and add to get

AP ` b�u? = u? + t?:

Repeating this argument we obtain a symmetric version of this which results in AP ` b� t? = u?

by TRANS.

So for an arbitrary i 2 I? we now show

AP ` b^ci�u? = u? +ci � z 2 Si?ti:

Suppose that t
ci;z2Si?
7�! ti. Since t 'b

pn u we know there exists a b^ ci ^ z 2 Si-partition, Bi,

with the property that each element of Bi is of the form b0^ z 2 Si (where the b0 partition b^ ci)

and, for each such b0, there exists u
d j;z2S j?
7�! u j such that b0^ z 2 Si j= d j; b0^ z 2 Si j= z 2 S j and

ti �
b0

^z2Si
pn u j. Let Ji � J? denote the set of j indices used in this particular partition. The fact that

b0^ z 2 Si j= z 2 S j gives us that Si � S j for each j 2 Ji.

The approach we take is to prove that

AP ` b0�ci � z 2 Si?ti + ∑
j2Ji

d j � z 2 Si?u j = ∑
j2Ji

d j � z 2 Si?u j

for each b0 2 B. We can then use the CASE rule to obtain

AP ` b^ci�ci � z 2 Si?ti + ∑
j2Ji

d j � z 2 Si?u j = ∑
j2Ji

d j � z 2 Si?u j:

If we now add u? to each side, we can use idempotence of + and axiom Pattern (because Si � S j

for each j 2 J?) to get

AP ` b^ci�ci � z 2 Si?ti +u? = u?

as required.

We know that for each b0 we have ti �
b0

^z2Si
pn u j for some j 2 Ji. Assuming standard forms for

ti and u j we appeal to Theorem 3.3.7 for a b0^ z 2 Si-partition, B0, such that for each b00 2 B0 we

have that b00 is both ti and u j-uniform and that

ti +x 2 S?ti '
b00

pn u j +x 2 S0?u j

where S is I(b00;u j)� I(b00; ti) and S0 is I(b00; ti)� I(b00;u j). Once again we have four cases to

consider. In each of which we demonstrate

AP ` b00�τ!ti = τ!u j:

1. S = S0 = /0.

Since x2 /0?t 'tt
pn O we conclude that ti '

b00

pn u j and apply induction to obtain AP ` b00� ti =

u j. Whence AP ` b00�τ!ti = τ!u j.

2. S =
/0;S0 6= /0.

We have ti '
b00

pn u j + x 2 S0?u j. Again we apply induction and use TAU and axiom P-Noisy

to obtain AP ` b00�τ!ti = τ!u j.

3. S 6= /0;S0 = /0.

Similar.
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4. S 6= /0;S0 6= /0.

By Theorem 3.3.7 there exists t 0;u0 such that ti �
b00

pn t 0 and u j �
b00

pn u0 and d(t 0)< d(ti), d(u0)<

d(u j). Without loss of generality, suppose that d(t) � d(u). By induction we get AP `

b00�τ!ti = τ!t 0. Whence AP ` b00�x 2 S?ti = x 2 S?t 0 by P-INPUT. We can deduce that

ti +x 2 S?t 0 'b00

pn u j +x 2 S0?u j

and see that induction is applicable here also. Therefore we get

AP ` b00� ti +x 2 S?t 0 = u j +x 2 S0?u j:

Using the previous result we can substitute t 0 for ti then apply TAU and axiom P-Noisy twice

to get AP ` b00�τ!ti = τ!u j as required.

So we have seen that for each b00 2 B0 we can prove AP ` b00� τ!ti = τ!u j so we apply CASE

to give AP ` b0^ z 2 Si�τ!ti = τ!u j. We know that b0 j= ci^d j and we can use Proposition 3.2.3

to give

AP ` b0^ z 2 Si�ci � τ!ti +d j � τ!u j = d j � τ!u j:

We add in the rest of the Ji to get

AP ` b0^ z 2 Si�ci � τ!ti + ∑
j2Ji

d j � τ!u j = ∑
j2Ji

d j � τ!u j

followed by an appllication of the P-INPUT� rule which yields the result

AP ` b0�ci � z 2 Si?ti + ∑
j2Ji

d j � z 2 Si?u j = ∑
j2Ji

d j � z 2 Si?u j:

�

3.4 Finite CBS

In the previous sections we have given a number of proof systems for the class of simple agents,

SPA. In order to extend these to full finite CBS it remains only to to consider the parallel and

translation constructs. The standard approach is to introduce axioms or axiom schemas which are

sufficient to translate agents of finite CBS into agents of SPA. The parallel operator is usually

treated using an expansion theorem while translations, being generalisations of the restriction and

renaming operators of CCS, can be handled by a set of axiom schemas which when used as rewrite

rules can reduce a term of the form p
( f ;g), where p 2 SPA, to a term in SPA. We give an outline

of the necessary axiom schemas.

The expansion theorem presented in [86] is not sufficient here as we need to deal with the

pattern sets on inputs. Moreover, the expansion is complicated by the fact that we are working

over open terms. However a suitable version of expansion is presented in Figure 3.6:

Proposition 3.4.1 Suppose x 62 f v(t;u) and

t � ∑
i2I!

ci � ei!ti + ∑
i2I?

ci � x 2 Si?ti

and

u� ∑
j2J!

d j � e j!u j + ∑
j2J?

d j � x 2 S j?u j:

Then tju'n Exp(tju).
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Writing S̄K
de f
=

T

k2K

(Val�Sk), let

Exp(t j u) = ∑
i2I!; j2J?

(ci^d j ^ei 2 S j)� ei!(ti j u j[ei=x])

+ ∑
i2I? ; j2J!

(ci^d j ^e j 2 Si)� e j!(ti[e j=x] j u j)

+ ∑
i2I!;K�J?

(ci^
V

k2K:dk^ei 2 S̄J?�K)� ei!(ti j u)

+ ∑
j2J!;K�I?

(

V

k2K:ck ^d j ^e j 2 S̄I?�K)� e j!(t j u j)

+ ∑
i2I?; j2J?

(ci^d j)� x 2 Si\S j?(ti j u j)

+ ∑
i2I? ;K�J?

(ci^
V

k2K:dk)� x 2 (Si\ S̄J?�K)?(ti j u)

+ ∑
j2J? ;K�I?

(

V

k2K:ck ^d j)� x 2 (S j\ S̄I?�K)?(t j u j):

Figure 3.6. Expansion laws for CBS parallel

Proof This can easily be proved directly from the operational semantics. �

To accommodate the translation functions we use the following coding defined inductively on

terms. This coding requires that we extend the signature of the data-domain with the function

symbols used to express the f and g translation functions. Let g�1
(S) = fv2Val j g(v)2 Sg. Note

that τ 62 g�1
(S) as τ 62 S and g is strict. We use Λ to denote a function from Var to translation

functions and we let eΛ denote the substitution e[g(x)=x j x 2 f v(e);g = Λ(x)].

- hOi
( f ;g;Λ)

= O

- he!ti
( f ;g;Λ)

= f (eΛ)!hti
( f ;g;Λ)

- hx 2 S?ti
( f ;g;Λ)

= x 2 g�1
(S)?hti

( f ;g;Λ[g=x])

- hb� ti
( f ;g;Λ)

= bΛ�hti
( f ;g;Λ)

- h∑i2I tii
( f ;g;Λ)

= ∑i2Ihtii( f ;g;Λ)

- ht
( f 0

;g0

)

i

( f ;g;Λ)

= hti
( f � f 0

;g0

�g;Λ)

The idea here is to ensure that any broacast transmission from hti
( f ;g;Λ)

is translated using the

function f . When a process p
( f ;g) appears to receive a value v we expect the continuing process

to be something of the form p0[v=x] but we see by the operational semantics, Figure 3.1, that the

process p
( f ;g), whilst appearing to receive v, actually receives the value g(v) and continues to

behave like p0[g(v)=x]. To capture this behaviour in the coding we need to record, using the Λ
function, exactly which translation g was used when x became unbound and then subsequently use

that translation wherever x occurs.

Lemma 3.4.2 If Λ(x) = Id then hti
( f ;g;Λ[h=x])δ[v=x]� hti

( f ;g;Λ)

δ[h(v)=x].

Proof Structural induction on t. the interesting cases are when t is a prefixed term.

Suppose t is e!t 0. then

hti
( f ;g;Λ[h=x])δ[v=x]� f (eΛ[h=x]δ[v=x])!ht 0i

( f ;g;Λ[h=x])δ[v=x]:
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Which, by induction, is equivalent to

f (eΛδ[h(v)=x])!ht 0i
( f ;g;Λ)

δ[h(v)=x]:

But this is just hti
( f ;g;Λ)

δ[h(v)=x].

Suppose t is y 2 S?t 0 and suppose without loss of generality that x 6= y. We have

hti
( f ;g;Λ[h=x])δ[v=x]� y 2 g�1

(S)?ht 0i
( f ;g;Λ[h=x][g=y])δ[v=x]:

We can write Λ[h=x][g=y] as Λ[g=y][h=x] and apply induction to see that

hti
( f ;g;Λ[h=x])δ[v=x]� y 2 g�1

(S)?ht 0i
( f ;g;Λ[g=y])δ[h(v)=x]

which is hti
( f ;g;Λ)

δ[h(v)=x]: �

Proposition 3.4.3 If we write 1 for the Λ function which is constantly the identity translation then

hti
( f ;g;1)'n t

( f ;g):

Proof Structural induction on t. Again we show the interesting cases where t is a prefixed term.

Suppose t is e!t 0, then hti
( f ;g;1)= f (e)!ht 0i

( f ;g;1). Induction tells us that this is f (e)!t 0
( f ;g)

which

is easily seen to be 'n-equivalent to t
( f ;g).

Suppose t is x 2 S?t 0. We need to show that for any δ we have a matching transition for

x 2 g�1
(S)?ht 0i

( f ;g;[g=x])δ
v?
�! ht 0i

( f ;g;[g=x])δ[v=x]

for all v such that g(v)2 S. Clearly, if g(v)2 S then t
( f ;g)

v?
�! t 0

( f ;g)δ[g(v)=x]. We know by induction

that t 0
( f ;g)

δ[g(v)=x]'n ht
0

i

( f ;g;1)δ[g(v)=x] and by the previous Lemma that this is ht 0i
( f ;g;[g=x])δ[v=x].

A similar argument applies for finding matches for transitions from t
( f ;g). �

The identity in Proposition 3.4.1 can be viewed as an axiom schema, which we call EXP, while

TRANS is used to denote the obvious axiom schemas underlying the above encoding; each line

gives rise to a separate axiom schema.

Theorem 3.4.4 For any two terms of finite CBS, t and u,

t �b
pn u iff AP ;EXP;TRANS ` b� t = u:

Proof Use soundness of translations along with soundness and completeness results of the previ-

ous section. �

By specialising the above Theorem a similar result can be obtained for the proof system for

the class of closed terms of CBS.



Chapter 4

Weak Bisimulation for a Calculus of

Broadcasting Systems

In the previous chapter we addressed the question of finding a suitable, bisimulation based, se-

mantic equivalence for the language CBS [86]. The equivalence we studied was derived under

the assumption that the production of noise τ! in the language was treated no differently than the

production of any other value. The present chapter seeks to investigate this same equivalence but

this time treating noise as unobservable. This gives us the semantic notion of weak bisimulation

equivalence. As before we define our equivalence by considering agents’ possible broadcast ac-

tions within contexts, i.e. weak barbed bisimulation. Symbolic techniques, similar to those of

Chapter 3, are used to show how a complete axiomatisation of this weakened bisimulation may be

obtained.

4.1 Weak barbed bisimulation

Recall that the definition of barbed bisimulation simply required a notion of reduction p
τ!
�! p0

and a notion of barb p # v. The corresponding weak version of this equivalence also requires these

two elements in a weaker form. We define weak transitions, traditionally denoted by a double

arrow, as the least relations between agents of CBS such that

� p
ε

=) p

� p
α
�! q implies p

α
=) q

� p
τ!
�!

α
=) q implies p

α
=) q

� p
α

=)

τ!
�! q implies p

α
=) q

where α 2 fw!;v?;w :g and ε is a dummy symbol. We will occasionally use the notation P
τ!α
=) Q

to mean P
τ!

=)

α
=) Q, and we will define α̂ to be ε when α = τ! and α otherwise.

We turn now to the definition of a weak semantic equivalence, which abstracts away from the

occurrence of τ! actions. For any value v let p # v mean that there exists a p0 such that p
v!
�! p0.

A relation R between agents is called a weak barbed bisimulation if for each (p;q) 2 R we

have

� whenever p
τ!
�! p0 then q

ε
=) q0 for some q0 such that (p0;q0) 2 R

� whenever q
τ!
�! q0 then p

ε
=) p0 for some p0 such that (p0;q0) 2 R
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� if p # v then q
ε

=) q0 for some q0 such that q0 # v

� if q # v then p
ε

=) p0 for some p0 such that p0 # v.

We write p�barb q if there exists a weak barbed bisimulation containing (p;q).

Of course �barb is uninteresting in itself and we are really concerned with the congruence

associated with this relation.

For agents p and q let p�
=barb q if C[p]�barb C[q] for every CBS context C[ ].

Again we will write (p�
=barb q) : V to specify that the contexts used are built over the value set

V . The intention is to characterise �
=barb as a weakened version of noisy bisimulation. In order to

express noisy bisimulation neatly we introduced the idea of a reaction relation p
v??
�! q. Similarly

we will write

p
v??
=) q iff p

v?
=) q or p

v:
=) q:

The characterisation is as follows: A relation R is a weak bisimulation if for each (p;q) 2 R we

have

� whenever p
w!
�! p0 then q

ŵ!
=) q0 for some q0 such that (p0;q0) 2 R .

� whenever p
v??
�! p0 then q

v??
=) q0 for some q0 such that (p0;q0) 2 R

� whenever q
w!
�! q0 then p

ŵ!
=) p0 for some p0 such that (p0;q0) 2 R .

� whenever q
v??
�! q0 then p

v??
=) p0 for some p0 such that (p0;q0) 2 R .

We write p� q if there exists a weak bisimulation R such that (p;q) 2 R .

This is the definition of weak bisimulation proposed in [86], and here we justify the choice

using�
=barb.

In Proposition 3.1.2 we proved that discard need not be taken into account when defining noisy

bisimulation. Unfortunately the same is not true for weak bisimulation in CBS. To illustrate this

suppose that �0 is the largest of the relations R such that for each (p;q) 2 R we have

� whenever p
w!
�! p0 then q

ŵ!
=) q0 for some q0 such that (p0;q0) 2 R .

� whenever p
v?
�! p0 then q

v??
=) q0 for some q0 such that (p0;q0) 2 R

(with symmetric conditions on q). Then it is easy to see that τ!p�0 p for any agent p although τ!p

is not, in general, weakly bisimilar to p. A counter-example to illustrate this is

τ!x 2 Val?x!O 6� x 2Val?x!O:

This is because the agent τ!x?x!O
v:
�! τ!x?x!O for any value v 2Val. In order to match this move

the agent x 2 Val?x!O must perform a reception, i.e. x 2 Val?x!O
v?
�! v!O and the resulting pro-

cesses are not weakly bisimilar. The counter-example also serves to show that�0 is not preserved

by parallel composition by using the context v!v0!Oj[ ] for v 6= v0. In fact the relation obtained by

closing�0 under parallel composition coincides with�.

Proposition 4.1.1

p� q iff (pjr)�0

(qjr) for all r : Val+:

Proof It is simple to show that� is preserved by parallel, j. So we see that p� q implies pjr� qjr

for any r, which means that pjr �0 qjr because ���0.
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The converse requires the construction of a particular agent r0 which will serve to show p� q.

Let

r0 (= ∑
v2Val

v!(v0!O+τ!r0)

where the v0 2 Val+ cannot appear in p;q. A simple argument now shows that

R =

�

(p;q) j (pjr0)�
0

(qjr0)
	

is a weak bisimulation. The non-trivial part of the proof is how to match a move p
v:
�! p, for

(p;q) 2 R . We see that pjr0
v!
�! p0 where p0 � pj(v0!O + τ!r0). The condition pjr0 �

0 qjr0

guarantees us a move qjr0
v!

=) r0 such that p0 �0 r0. We can discover that r0 must be of the form

q0j(v0!O+ τ!r0), with q
v??
=) q0, by considering the barb p0 # v0. The move p0

τ!
�! pjr0 will ensure

that r0
ε

=) (q00jr0) where q0
ε

=) q00 and pjr0 �
0 q00jr0 so that (p;q00) 2 R . �

Proposition 4.1.2 � is preserved by all of the CBS operators except summation.

Proof Standard, see [74]. �

We now show that it is possible to obtain this definition of weak bisimulation by considering

barbed bisimulations in static contexts, that is contexts in which the hole does not appear as a

summand in a choice. The contexts will be built over an extended value set Val++ which is

defined to be the disjoint union of the sets Val, Val0
de f
= fv0 j v 2 Valg;fin;out;cg and N ; we

assume a successor function on N also.

Proposition 4.1.3 If C[p]�barb C[q] for every static context C[ ] built over Val++ then p� q.

Proof We only outline the proof here as the details are similar to those in [94]. We define trans-

lation functions on Val++

[fτg as follows:

g(w) =

�

w0 if w 2 Val

w otherwise.

f (w) =

�

τ if w 2 Val[fcg

w otherwise.

h(w) =

�

τ if w = c

w otherwise.

We recall that the notation g(x)!O and g(v)!O is shorthand for (x!O)

(g;Id) and (v!O)

(g;Id)

respectively. Armed with these translation functions we can build a collection of static contexts

Cn[ ] similar to those in [94]. A full explanation of the construction of Sangiorgi’s contexts can

be found in his thesis. Ours differ only in that we explicitly translate communicated values into

τ actions using the translation functions and we require the use of a distinguished value c which

plays the rôle of a private channel for communicating with and incrementing the counter.

We let + denote binary choice and define

Count (= λn:n!:O+x 2 fcg?Count(n+1)

and the constant D

D (= x 2Val?c!c!(τ!(g(x)!O+out!O)+τ!D)

+ ∑
v2Val

v!c!c!(τ!(g(v)!O+ in!O)+τ!D)

+ τ!0!O

+ τ!1!O
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The contexts we require are defined by

Cn[ ](= ([ ]

(Id;h)jDjCount(n))
( f ;Id):

Given these we define a relation S = f(p0;q0) j 9n �Cn[p
0

]�barb Cn[q
0

]g where p0 and q0 range

over agents defined over the value set Val. Following Theorem 3.3.2 in [94] we can show that S is

a weak bisimulation and the result follows. �

As one might expect the relation � is not a congruence for CBS owing to the fact that it is

not preserved by the summation operator. This fact is ascribed to the so called pre-emptive power

of τ to resolve choices [74]. In CCS we define observation congruence as the largest congruence

relation strictly contained in weak bisimulation and a characterisation of this observation congru-

ence tells us that for two agents p and q to be related, any τ move from p must be matched by at

least one τ move from Q. That is, for every possible choice made by one agent, then at least one

choice must be made by the other agent and vice-versa. This helps in understanding the following

definition.

Observation congruence, �
=

, is the relation defined by p�
=

q if

� whenever p
w!
�! p0 then q

w!
=) q0 for some q0 such that p0 � q0

� whenever p
v?
�! p0 then q

v?
=) q0 for some q0 such that p0 � q0

or q
τ!v:
=) q0 such that p0 � q0

� whenever p
v:
�! p then q

v:
�! q

(with symmetric conditions on q omitted).

An important consequence of this definition is that if p �
=

q then we know that I(p) must be

equal to I(q). This follows from the third clause that discards must be matched with discards, and

Proposition 3.1.1

Theorem 4.1.4 (p�
=barb q) : Val++ if and only if (p�

=

q) : Val.

Proof We leave the reader to check that �
=

is preserved by all the operators in CBS and since

p �
=

q trivially implies that p�barb q we conclude that p�
=

q implies p�
=barb q.

Conversely, suppose (p �
=barb q) : Val++. Then C[p+ v0!O] �barb C[q+ v0!O] for all static

contexts C[ ] over Val++, where v0 is some distinguished value not in Val. It follows from

Proposition 4.1.3 that p+v0!O � q+v0!O.

We now prove that p+ v0!O � q+ v0!O implies p �
=

q. As an example we show p
v:
�! p

implies q
v:
�! q; the remaining requirements are similar. From p

v:
�! p it follows that p+v0!O

v:
�!

p+v0!O also. By the hypothesis we know that q+v0!O
v??
=) q0 for some q0� p+v0!O. This means

that q0 is q+v0!O, otherwise q0
v0!
=)6 . So we have that q+v0!O

v:
�! q+v0!O which in turn implies

that q
v:
�! q. �

4.2 Characterising observation congruence over simple agents

We are going to provide an axiomatic characterisation of observation congruence over the class

SPA of agents. We then show how to use the symbolic technique to lift this characterisation to

open terms. Both characterisations extend to finite CBS by using the translation of finite CBS into

SPA of Section 3.4. The proof systems that we use to describe these characterisations are those

of Section 3.3. Because noisy congruence is strictly contained in observation congruence all we

need to do is to augment the axiom set AP with the axioms required to abstract away from noisy τ
actions. To guide us in our search for these extra axioms we consider the three familiar τ laws of

CCS, [74]:

T1 α:τ:X =ccs α:X .
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T2 α:(X +τ:Y)+α:Y =ccs α:(X +τ:Y ).

T3 X +τ:X =ccs τ:X .

Unfortunately the obvious versions of T1 and T3 for CBS are not sound. We have already

seen, for example, that p is not, in general, weakly bisimilar to τ!p which implies that v!τ!p 6�
=

v!p.

For T3, p+τ!p = τ!p, we run into difficulties when p is allowed to recieve a value v, say. For then

τ!p may discard v but p+ τ!p is obliged to receive it. We must look for analagous rules which

respect �
=

.

Notice that there is, in the presence of T3, an equipotent version of T1 for CCS:

T10 α:(τ:X+X) = α:X :

This will stand us in good stead because we do have the property p+ τ!p� p in CBS. Therefore

we can include the axiom

Tau1 : e!(τ!X +X) = e!X .

The second axiom, T2, can be directly incorporated as

Tau2 : α:(X +τ!Y )+α:Y = α:(X +τ!Y ).

The third axiom T3 causes us a little more trouble. We must consider under what conditions

the equivalence p+ τ!p �
=

τ!p will hold. We have already stated that the problem lies with p’s

potential to input. Bringing p out from under the τ action may unveil potential input moves. We

could consider the situation where p has no input moves, wherein the rule mooted would be sound.

Alternatively we could consider the case where the terms p+ τ!p and τ!p are sitting in a context

where discard moves are impossible, for instance

x 2Val?O+(p+τ!p) �
=

x 2Val?O+τ!p:

This is indeed sound but we can give a more general description of such a situation as

q+ p+τ!p �
=

q+τ!p

where I(p) � I(q). We only need to ask that no new input moves become possible as p is un-

covered. This rule would serve perfectly well as our third axiom but for technical reasons, to be

consistent with the axioms to be presented for open terms, we analyse the form of p a little further

and split the third axiom into two:

Tau3 : X +x 2 S?Z +τ!(Y +x 2 S?Z) = X +τ!(Y +x 2 S?Z) if S� I(X)

and

Tau4 : e!X +τ!(Y +e!X) = τ!(Y +e!X).

Let APτ denote the set AP along with the four τ axioms Tau1 through Tau4 . We will write

APτ `cl p = q if we can derive p = q from the axioms in APτ using the proof rules of Section 3.3.

Theorem 4.2.1 (Soundness) APτ `cl p = q implies p �
=

q.

Proof Simple induction on proof of APτ `cl p = q. �

The remainder of this section deals with the proof of the converse of this, completeness. The

exposition of the completeness proof will require the use of standard form and depth of a term. In

fact we use a more refined notion of standard form in which the actions are saturated in the sense

that if an action may occur weakly, then it can occur directly, without prior τ actions.

We call a standard form, p, saturated if
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(i) p
w!
=) p0 implies p

w!
�! p0.

(ii) v 2 I(p) and p
v?

=) p0 implies p
v?
�!

ε
=) p0.

(iii) v 2 I(p) and p
τ!v:
=) p0 implies p

v?
�! p0.

The side condition that v 2 I(p) in cases (ii) and (iii) should be clear; we anticipate that we

can prove p congruent to a saturated version of p. In order to do this we must not introduce any

new input actions into the saturated version of p by pulling a v? action, say, out from behind a τ
action. The condition v 2 I(p) guarantees that any input action introduced was already possible.

Lemma 4.2.2 (Derivation Lemma) For any standard form p 2 SPA; p
w!
=) q implies APτ `cl

p = p+w!q.

Proof By induction on the length of the derivation p
w!
=) q.

The base case is straightforward: If p
w!
�! q then w!q is a summand of p because p is standard.

Idempotence of + gives the proof APτ `cl p = p+w!q.

Suppose that p
w!
�! p0

τ
=) q. Then by induction we know that

APτ `cl p0 = p0+τ!q:

We also know that w!p0 is a summand of p so APτ `cl p = p+w!p0 . Putting these together gives

APτ `cl p = p+w!(p0+τ!q):

An application of axiom Tau2 yields

APτ `cl p = p+w!(p0+τ!q)+w!q

from which we can obtain APτ `cl p = p+w!q.

Now suppose that p
τ
�! p0

w!
=) q. We can easily see that

APτ `cl p = p+τ!(p0+w!q)

by induction and using the fact that τ!p0 is a summand of p. Axiom Tau4 can be applied directly

to this to give

APτ `cl p = p+w!q+τ!(p0 +w!q)

whence APτ `cl p = p+w!q. �

Proposition 4.2.3 Given any agent p 2 SPA, there exists a saturated standard form p̂ such that

d(p) = d(p̂) and APτ `cl p = p̂:

Proof We know that p can be transformed into a standard form and we show that this standard

form can be saturated. Essentially the proof proceeds by using the Derivation Lemma to saturate

p with respect to all w! derivatives.

We can use the Derivation Lemma repeatedly to ensure that for any p
w!
=) q we let p̂ have w!q

as a summand and provability is given. Thus p̂
w!
�! q.

Suppose p
v?

=) q with v 2 I(p). Consider the move p
v?

=) q decomposed as follows (there are

simpler cases, we omit them here),

p
τ!

=) p0
v?
�! q0v

ε
=) q:
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Now we know that APτ `cl p = p+ τ!p0 by the Derivation Lemma. We also know that we can

prove APτ `cl p0 = p0+x 2 S?q0 for some set S and some term q0 such that v 2 S and q0v is q0[v=x].

Combining these gives

APτ `cl p = p+τ!(p0+x 2 S?q0):

Now axiom Tau3 would be applicable if S � I(p) but we cannot ensure this. However, by using

the Pattern axiom we can deduce

APτ `cl p = p+τ!(p0+x 2 S\ I(p)?q0)

and then apply axiom Tau3 . This gives

APτ `cl p = p+x 2 S\ I(p)?q0

so we include the summand x 2 S\ I(p)?q0 in p̂ and note that v 2 S\ I(p) so p̂
v?
�! qv

ε
=) q.

Finally, suppose that p
τ!v:
=) p0 for some p0. We show that APτ `cl p = p+ x 2 S?p0 for some

set S containing v. We can break the move p
τ!v:
=) p0 up into p

τ!
=) qv

v:
�! qv

ε
=) p0 for some agent

qv such that v 62 I(qv). Axiom Noisy tells us that

APτ `cl τ!qv = τ!(qv+x 2 S?qv)

where S is the set (Val n I(qv))\ I(p); note that v 2 S by hypothesis. Saturation with respect to τ!

moves allows us to assume that APτ `cl p = p+τ!qv. Axiom Tau3 will give

APτ `cl p = p+x 2 S?qv:

If qv is p0 we are finished. Otherwise again we can use saturation with respect to τ moves to obtain

APτ `cl qv = qv + τ!p0 and axiom Tau2 to give APτ `cl p = p+ x 2 S?p0. Again, we include this

summand in p̂ and note that p̂
v?
�! p0. �

We observe that, in CBS, both reception and τ-actions cause weak bisimulation to fail to be

preserved by choice. This property was called pre-emptive power over choice in [74]. Proposi-

tion 11, Chapter 7 of [74], accounts for the pre-emptive power of τ by relating observation con-

gruence for CCS to weak bisimulation. In Theorem 3.3.2 we proved a decomposition theorem for

SPA which relates noisy bisimulation to noisy bisimulation, thus providing an analogous account

of the pre-emptive power of reception. What we require here is a happy combination of these two

decomposition theorems.

Theorem 4.2.4 (Decomposition) Let S = I(q) n I(p) and S0 = I(p) n I(q). Then p � q iff one of

the following holds:

(i) p+x 2 S?p�
=

q+x2 S0?q and when S and S0 are both non-empty there exist p0;q0 such that

d(p0)< d(p);d(q0)< d(q) and p0 � p;q0 � q.

(ii) p + x 2 S?p + τ!p �
=

q+ x 2 S0?q and when S0 is non-empty there exist p0; q0 such that

d(p0)< d(p); d(q0)< d(q) and p0 � p; q0 � q.

(iii) p+x2 S?p�
=

q+x2 S0?q+τ!q and when S is non-empty there exist p0; q0 such that d(p0)<

d(p); d(q0)< d(q) and p0 � p; q0 � q.

Proof The if direction is standard. So suppose p� q. There are three cases.
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� Suppose there exists a pτ such that p
τ!
�! pτ and for each q0 such that q

τ!
=) q0 we have

pτ
6� q0. In this case we show that (iii) holds.

We first notice that

I(p+x 2 S?p) = I(p)[ I(x 2 S?p)

= I(p)[ (I(q)n I(p))

= I(p)[ I(q)

= I(q)[ (I(p)n I(q))

= I(q+x 2 S0?q+τ!q):

This means that p+ x 2 S?p
v:
�! p+ x 2 S?p if and only if q+ x 2 S0?q+ τ!q

v:
�! q+ x 2

S0?q+τ!q.

Suppose p+ x 2 S?p
v!
�! p0. Then p

v!
�! p0. Because p � q we know that q

v!
=) q0 for

some q0 such that p0 � q0. Therefore q+ x 2 S0?q+ τ!q
v!

=) q0 also. Similarly if q+ x 2

S0?q+τ!q
v!
�! q0.

Suppose p+x 2 S?p
τ!
�! p0. Then p

τ!
�! p0. So we know that q

ε
=) q0 for some q0 such that

p0 � q0. Therefore q+x 2 S0?q+τ!q
τ!

=) q0. Conversely suppose q+x 2 S0?q+τ!q
τ!
�! q0.

Here there are two possibilities: If τ!q
τ!
�! q0 � q then we have p

τ!
=) pτ with pτ

� q.

Otherwise we must have q
τ!
�! q0. In which case we know that pτ

� q so we have a p0 such

that pτ ε
=) p0 with p0 � q0. But we also have that p

τ!
�! pτ. Therefore p

τ!
=) p0.

Suppose p+x 2 S?p
v?
�! p0.

If p
v?
�! p0 we know that q

v??
=) q0 for some q0 such that p0 � q0. Therefore τ!q

τ!v??
=) q0 and so

q+x 2 S0?q+τ!q
v?
=) q0 or q+x 2 S0?q+τ!q

τ!v:
=) q0.

On the other hand, if it is the case that x 2 S?p
v?
�! p0 � p, so that v 2 S, we then know that

v 62 I(p) and p
v:
�! p. Because p � q we know that there exists a q0 such that q

v??
=) q0 and

p� q0. Thus τ!q
τ!v??
=) q0 which gives q+x 2 S0?q+τ!q

v?
=) q0 or q+x 2 S0?q+τ!q

τ!v:
=) q0.

If q+ x 2 S0?q+ τ!q
v?
�! q0 where q

v?
�! q0 then there exists a p0 such that p

v??
=) p0 and

p0� q0. If p
v?
=) p0 or p

τ!v:
=) p0 then we have a match, otherwise we know that p

v:
�! p

ε
=) p0

which entails that v 2 I(q)n I(p). Thus we have x 2 S?p
v?
�!

ε
=) p0.

It only remains to check the case x 2 S0?q
v?
�! q0. We see that v 62 I(q), v 2 I(p) and, in this

case, q0 must be q. Since p� q and q
v:

=) q we know that there exists a p0 such that p
v??
=) p0

with p0 � q but since v 2 I(p) we must have p
v?
=) p0 or p

τ!v:
=) p0.

This completes the proof that p+x2 S?p�
=

q+x 2 S0?q+τ!q. Now suppose S is non-empty.

We have to find p0; q0 such that d(p0)< d(p); d(q0)< d(q) and p0 � p; q0 � q. We already

know that pτ
� q and transitivity gives pτ

� p; so the required p0 is pτ. To find the required

q0 let v0 be any value from the non-empty set S. Since v0 62 I(p) this means p
v0:
�! p. So

there exists a q0 such that q
v0??
=) q0 and p� q0; by transitivity this means q0� q. But v0 2 I(q)

which forces q
v0?
=) q0 or q

τ!v0:
=) q0; either way d(q0)< d(q) holds.

� Suppose there exists a qτ such that q
τ!
�! qτ and for each p0 such that p

τ!
=) p0 we have

p0 6� qτ.

This is a symmetric version of the first case and in a similar manner one can show that (ii)

holds.
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� If neither of these two conditions apply then one can show by simple checking that case (i)

holds.

�

Theorem 4.2.5 (Completeness) For all agents p;q 2 SPA,

p�
=

q implies APτ `cl p = q

Proof The proof is by induction on the combined depth of p and q.

Because of Lemma 4.2.3 we can assume that p and q can be transformed to saturated standard

forms

∑
I

ei!pi +∑
J

x 2 S j?t j; ∑
K

ek!qk +∑
L

x 2 Sl?ul

respectively. It is sufficient, because of saturation, to prove that

APτ `cl ∑
I

ei!pi = ∑
K

ek!qk

and

APτ `cl ∑
J

x 2 S j?t j = ∑
L

x 2 Sl?ul

and as an example we consider the latter. To establish this it is sufficient, by symmetry, to prove

for an arbitrary j 2 J that

APτ `cl x 2 S j?t j +∑
L

x 2 Sl?ul = ∑
L

x 2 Sl?ul:

For each v 2 S j we know that p
v?
�! t j[v=x]. This means v 2 I(p) and, since p�

=

q, then v 2 I(q).

We also know, because p�
=

q and q is saturated, that q
v?
�! ul[v=x]

ε
=) qv

l for some l 2 L such that

v 2 Sl and t j[v=x] � qv
l . Let S

j
l = fv 2 S j\ Sl j qv

l � t j[v=x]g. This gives a finite partition fS
j
l gl2L

of S j such that S
j

l
� Sl for each l 2 L. Then, by the idempotency of + and the axiom Pattern it is

sufficient to show, for each l 2 L, that

APτ `cl x 2 S
j
l ?t j +x 2 S

j
l ?ul = x 2 S

j
l ?ul:

This can be inferred from the rule cl-P-INPUT and Tau2 if we can prove for each v 2 S
j
l

APτ `cl τ!(τ!t j[v=x]+ul[v=x]) = τ!ul[v=x]:

So let us fix a particular v 2 S
j
l

and see how this can be inferred. We know that t j[v=x] � qv
l so

from this we will show that

APτ `cl τ!t j[v=x] = τ!qv
l

and the result will follow by the Derivation Lemma and rule TAU.

For convenience let p;q denote t j[v=x]; qv
l respectively. We now apply Theorem 4.2.4 to get

one of three possibilities

(i) p+x 2U?p�
=

q+x 2V?q

(ii) p+x 2U?p+τ!p �
=

q+x 2V?q

(iii) p+x 2U?p�
=

q+x 2V?q+τ!q

where U = I(q)n I(p) and V = I(p)n I(q). We show how to deal with case (iii) and leave cases (i)

and (ii) to the reader. We have two eventualities to consider.
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1. U =
/0

Here we have p �
=

q+ x 2 V ?q+ τ!q and we can use induction to obtain APτ `cl τ!p =

τ!(q+x 2V ?q+τ!q). Now we can apply the Noisy scheme to obtain

APτ `cl τ!p = τ!(q+x 2 V?q+τ!(q+x 2V?q))

from which APτ `cl τ!p = τ!(q+x 2V ?q) follows by Tau1 . Another appplication of Noisy

gives the required result.

2. U 6=
/0

Here we have p+ x 2U?p �
=

q+ x 2 V?q+ τ!q and in this case we cannot apply induction

immediately as the combined depth of the terms has not decreased. But Thereom 4.2.4 tells

us that there exists p0;q0 such that d(p0)< d(p) and d(q0)< d(q) such that p0 � p and q0� q.

Suppose without loss of generality that d(p) � d(q). Then, since τ!p �
=

τ!p0, we can use

induction to obtain APτ `cl τ!p = τ!p0. A simple application of the cl-P-INPUT rule gives

APτ `cl x 2U?p = x2U?p0. This in turn implies that p+x 2U?p0 �
=

q+x 2V?q+τ!q and

here we can apply induction since the combined size has decreased. So we obtain

APτ `cl τ!(p+x 2U?p0) = τ!(q+x 2 V?q+τ!q):

Using the fact that APτ `cl x 2U?p = x 2U?p0 we get

APτ `cl τ!(p+x 2U?p) = τ!(q+x 2V ?q+τ!q)

from which the required APτ `cl τ!p = τ!q follows by applications of the Noisy and Tau1

axioms.

�

4.3 Characterising weak bisimulation symbolically

Once again we turn to the symbolic approach to show how the proof system of the previous system

may be made finitary. The tools we use should now be familiar: The abstract operational semantics

of Figure 3.5 form a symbolic graph for SPA upon which weakened symbolic transitions
b;α
=) are

used to define weak symbolic bisimulations. The notions from Section 3.3.1 of t-uniformity and

the relativised input set I(b; t) for open terms will also be prevalent.

The characterisation we present in this section extends the proof system of Section 3.3.1 by

adding appropriate laws for manipulating τ-prefixes. We can see from the previous section that

the extra τ-laws that we require will be the four axioms Tau1 to Tau4 , adapted for open terms. A

quick inspection tells us that, of these four, only Tau3 ,

X +x 2 S?Z +τ!(Y +x 2 S?Z) = X +τ!(Y +x 2 S?Z) if S � I(X)

cannot be used for open terms because of the side-condition S � I(X). We use the approach of

Section 3.3.1 and invoke the uniformity condition. Axiom Tau3 can be expressed for open terms

as follows:

b�X +x 2 S?Z +τ!(Y +x 2 S?Z) = X +τ!(Y +x 2 S?Z)

if b is X-uniform and S � I(b;X).

To recap, we will write APτ for the set of axioms AP along with the four τ-laws, Tau1 to Tau4

where Tau3 is defined over open terms. We will also write APτ ` b� t = u to mean that b� t = u

may be deduced from the axioms in APτ using the rules of Section 3.3.1.

Theorem 4.3.1 (Soundness) If APτ ` b� t = u then (8δ �δ j= b implies tδ�
=

uδ)
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Proof This is simply a matter of checking that each axiom and rule is sound with respect to the

appropriate semantic equivalence. As an example we check Tau3 with respect to �
=

.

Given δ such that δ j= b. b is t-uniform so I(b; t) = I(tδ). We need to show that tδ+ x 2

S?u1δ+τ!(u2δ+x2 S?u1δ)�
=

tδ+τ!(u2δ+x2 S?u1δ) for any terms u1 and u2 given that S� I(tδ).
The only interesting moves to match are the discards:

I(tδ+x 2 S?u1δ+τ!(u2δ+x 2 S?u1δ)) = S[ I(tδ) = I(tδ)

and

I(tδ+τ!(u2δ+x 2 S?u1δ)) = I(tδ):

�

Completeness is obtained using symbolic semantics. We recall the symbolic graph defined by

the symbolic operation semantics in Figure 3.5. Using the relation 7�! we define the weakened

symbolic transition relation as the least relation satisfying the following rules:

t
tt;ε
=) t

t
b;α
7�! t 0 implies t

b;α
=) t 0

t
b;τ!
7�! t 0

b0

;α
=) t 00 implies t

b^b0

;α
=) t 00

t
b;α
=) t 0

b0

;τ!
7�! implies t

b^b0

;α
=) t 00.

We must remark that weak symbolic transitions do not enjoy the property that f v(b)� f v(t)

whenever t
b;α
=) t 0, which is demanded of strong symbolic transitions. However, this causes no

real problems for the ensuing theory of because CBS induces saturated graphs which support α-

conversion. Thus to avoid clashes of free and bound variables we can assume that if x 2 f v(b) is

bound by α, then x 62 f v(t).

The definition of weak symbolic bisimulation is the obvious one, viz. the weakened version of

patterned noisy symbolic bisimulations of Section 3.3.1. Suppose S =

�

Sb
	

is a boolean indexed

family of relations. Define W SB(S) to be the family of relations such that

(t;u)2 W SB(S)b if whenever (omitting symmetric conditions on u)

- t
b1;e!
7�! t 0 there exists a b^b1-partition, B, and for each b0 2 B there exists a u

b2;ê
0!

=) u0 such that

b0 j= b2; b0 j= ê = ê0 and (t 0;u0) 2 Sb0

- t
b1;x2S?
7�! t 0 there exists a variable z such that z 62 f v(b; t;u) and a b^ b1^ z 2 S-partition, B,

and for each b0 2 B there exists u
b2;y2S0?
=) u0 for some y and some S0 such that b0 j= b2; b0 j=

z 2 S0 and (t 0[z=x];u0[z=y]) 2 Sb0

or there exists u
b2;S

0:
=) u such that b0 j= b2, b0 j= z 2 S0 and

(t 0[z=x];u)2 Sb0

.

- t
b1;S:
7�! t there exists a variable z such that z 62 f v(b; t;u) and a b^b1 ^ z 2 S-partition, B, and

for each b0 2 B there exists u
b2;y2S0?
=) u0 for some y and some S0 such that b0 j= b2; b0 j= z 2 S0

and (t;u0[z=y])2 Sb0

or there exists u
b2;S

0:
=) u such that b0 j= b2, b0 j= z 2 S0 and (t;u)2 Sb0

.

Here we generalise the notation used previously by letting ê denote ε if e is τ and e otherwise.

We call
�

Sb
	

a weak symbolic bisimulation if Sb
� W SB(S)b for each b and denote the largest

such S by
�

�

b
	

. Once again we now use the definition of �b to define �
=

b the largest congruence

contained in�b:

t �
=

b u if whenever
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- t
b1;e!
7�! t 0 there exists a b^b1-partition, B, and for each b0 2 B there exists a u

b2;e
0!

=) u0 such that

b0 j= b2; b0 j= e = e0 and t 0 �b0

u0

- t
b1;x2S?
7�! t 0 there exists a variable z such that z 62 f v(b;T;U) and a b^ b1 ^ z 2 S-partition,

B, such that for each b0 2 B there exists a u
b2;y2S0?
=) u0 for some y, such that b0 j= b2; b0 j=

z 2 S0 and t 0[z=x] �b0

u0[z=y] or there exists a u
b2;τ!S0:
=) u0 such that b0 j= b2; b0 j= z 2 S0 and

t 0[z=x]�b0

u0.

- t
b1;S:
7�! t there exists a u

b2;S
0:

7�! u such that b^b1 j= b2 and S� S0

(Symmetric conditions on u are omitted).

It is a simple to matter to adapt the proof of Theorem 3.3.6 to weak terms to yield:

Theorem 4.3.2 For any terms t and u,

t �
=

b u iff (8δ �δ j= b implies tδ�
=

uδ):

This and Theorem 4.2.4 give a decomposition theorem for open terms directly.

Theorem 4.3.3 (Decomposition) If t and u are standard forms and t �b u then there exists a b-

partition, B, such that for each b0 2 B, b0 is both t and u-uniform and one of the following holds,

where S = I(b0;u)n I(b0; t) and S0 = I(b0; t)n I(b0;u).

(i) t +x 2 S?t �
=

b0

u+x 2 S0?u and when S and S0 are both non-empty there exist t 0;u0 such that

d(t 0)< d(t);d(u0)< d(u) and t 0 �b0

t;u0 �b0

u.

(ii) t+x 2 S?t +τ!t �
=

b0

u+x2 S0?u and when S0 is non-empty there exist t 0; u0 such that d(t 0)<

d(t); d(u0)< d(u) and t 0 �b0

t; u0 �b0

u.

(iii) t+x 2 S?t �
=

b0

u+x2 S0?u+τ!u and when S is non-empty there exist t 0; u0 such that d(t 0)<

d(t); d(u0)< d(u) and t 0 �b0

t; u0 �b0

u.

Proof Simple adaption of the proof of Theorem 3.3.7. �

The next step towards the completeness proof is to develop the notion of saturation for open

terms. Unfortunately there are inconvenient side conditions for saturation in the open term proof

system which make it impractical to work with a notion of a saturated form. Instead we present a

weaker form of saturation. First however, we make a few comments about abstract discard moves.

Given a term t? �∑i2I?
bi � xi 2 Si?ti. Consider how a possible discard transition t?

b;S:
7�! t? may

occur. It is not difficult to see that b must be of the form
V

i2K :bi and S of the form
T

i2I?nK(ValnSi)

for some K � I?. Therefore any discard t?
b;S:
7�! t? can be described by a set K � I?; we call such a

set the discard index of t?
b;S:
7�! t?.

Discard moves from general standard forms still have a discard index. If t is a standard form

with indexing sets I! and I?, and if t
b;S:
7�! t then there exists a set K � I? such that b j=

V

i2K:bi and

S =

T

i2I?nK(Val nSi).

The following proofs make use of these derivable variants of the axiom Tau3

t +b0 � τ!(b� x 2 S?u) = t +b0 � τ!(b� x 2 S?u)+b � x 2 S?u

(if b j= b0, b is t-uniform and S� I(b; t))

and the P-INPUT rule

b^x 2 S�∑I bi � τ!ti = ∑J b j � τ!u j

b�∑I bi � x 2 S?ti = ∑J b j � x 2 S?u j
if x 62 f v(b;bi;b j):

We call these Tau3 � and P-INPUT� respectively.
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Lemma 4.3.4 (Derivation Lemma) For any term t

(i) If t
b;e!
=) t 0 then APτ ` t = t +b � e!t.

(ii) If b is t-uniform, S � S0 \ I(b; t), and b j= b1 ^ b2 where t
b1;ε
=)

b2;x2S0

7�! t 0 then we have that

APτ ` t = t +b � x 2 S?t 0.

(iii) If b is t-uniform, S� S0\ I(b; t), and b j= b0 where t
b0

;τ!S0:
=) t 0 then APτ ` t = t+b� x 2 S?t 0

for some x 62 f v(b; t).

Proof

(i) This is straightforward. We use induction on the derivation of t
b;e!
=) t 0.

(ii) We assume, without loss of generality, that t is a standard form. Case t
b2;x2S0?
7�! t 0. So we

know b2 � x 2 S0?t 0 is a summand of t.

Idempotence APτ ` t = t +b2 � x 2 S0?t 0

b j= b2; S� S0 APτ ` t = t +b� x 2 S?t 0:

Case t
b1;τ!
=) u

b2;x2S0?
7�! t 0.

Suppose that u? � ∑I?
bi � xi 2 Si?ui. For each K � I? let

bK =

^

i2K

bK ^

^

i2I?nK

:bi:

Define Bu = fb^ bK j K � I?g: Clearly then Bu is a u-uniform partition of b. Choose any

bu(= b^bK 6= ff) 2 Bu. We know that bu j= b j= b2 so b2 must be bi0 for some i0 2 K. This

means that S0 = Si0 � I(bu;u). Therefore

APτ ` u = u+bu � x 2 S0?t 0:

This is true for each bu 2 Bu so we can add to get

APτ ` u = u+∑
Bu

bu � x 2 S0?t 0:

Thus, by manipulating the boolean guards using Proposition 3.2.3 and remembering that Bu

is a b partition, we get

APτ ` u = u+b � x 2 S0?t 0;

whence

APτ ` u = u+b� x 2 S?t 0:

Using part (i) we know that

APτ ` t = t+b1 � τ!(u+b� x 2 S?t 0):

Recall that b j= b1, b is t-uniform and S� I(b; t) so we can apply Tau3 � to get the result.
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(iii) Again, we assume, without loss of generality, that t is a standard form. We know that

t
b0

;τ!S0:
=) t 0 so suppose

t
b1;τ!
=) u

b2;S
0:

7�! u
b3;ε
=) t 0

where b0 = b1^b2^b3. Suppose also that u? � ∑I?
bi � x 2 Si?ui. Then

b2 =

^

j2J

:b j and S0 =
\

j2I?nJ

(Val nS j)

for some discard index J � I?. We let Bu = fb^bK j K � I?g be a u-uniform b partition and

observe that whenever j 2 K\J we have that b^bK j= b j and b^bK j= b2 j= :b j. Reading

this contrapositively we have that b^bK 6= ff implies K\J =
/0.

Our intention is to prove

APτ ` b^bK �τ!u = τ!(u+x 2 S?u)

by applying axiom P-Noisy (or ABSURD when b^bK = ff) to u for each b^bK. In order to

do this we need to show that S\ I(b^bK;u) = /0 whenever b^bK 6= ff.

Suppose then that b^ bK 6= ff and suppose for contradiction that v 2 S\ I(b^ bK;u). This

means that v 2 S and v 2 S j0 for some j0 2 K. But v 2 S � S0 implies that v 2 S0 =
T

j2I?nJ(ValnS j), that is v 62 S j for each j 2 I? nJ. Therefore j0 62 I? nJ and we conclude that

j0 2 J, which contradicts K\J =
/0.

We can now apply axiom P-Noisy (ABSURD) for each b^ bK in Bu and then use CASE to

obtain

APτ ` b�τ!u = τ!(u+x 2 S?u):

Boolean manipulation and part (i) gives

APτ ` t = t +b � τ!(u+b � x 2 S?u):

So an application of axiom Tau3 � yields

APτ ` t = t +b � x 2 S?u:

The result follows easily now; if u is t 0 we are done, otherwise we use part (i) to give

APτ ` t = t +b � x 2 S?(u+τ!t 0)

and apply axiom Tau2 to finish.

�

Theorem 4.3.5 (Completeness)

t �
=

b u implies APτ ` b� t = u:

Proof We proceed by induction on the sum of the depths of t and u. Recall from the proof of

Theorem 3.3.8 that, given a standard form

t �∑
I!

ci � ei!ti +∑
I?

ci � z 2 Si?ti

where z 62 f v(b;T;U), it is possible to manipulate this form so that the we can assume the property

that:
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whenever t
ci;z2Si?
7�! ti we get a matching partition such that each element is of the form

b0^ z 2 Si where the b0 form a b^ci-partition, B.

Moreover, this partition can be made u-uniform by defining

Bu = fb0^dK j b0 2 B; K � J?g

where J? is the indexing set of u and dK is defined to be

^

j2K

d j^

^

j2J?nK

:d j:

Therefore we assume that this property holds of both t and u which have standard forms

∑
i2I!

ci � ei!ti + ∑
i2I?

ci � z 2 Si?ti

and

∑
j2J!

d j � ei!u j + ∑
j2J?

d j � z 2 S j?u j

respectively.

It is sufficient, due to symmetry, to prove for every transition t
b0

;α
7�! t 0 that

APτ ` b�b0 � α:t 0+u = u

where α is of the form e! or x 2 S? We show how to deal with the latter, the former being slightly

easier.

Fix i 2 I? and consider t
ci;z2Si?
7�! ti. We know that there exists a u-uniform, b^ ci ^ z 2 Si-

partition Bu such that each bu 2 Bu is of the form b0^ z 2 Si where the fb0g form a b^ci partition.

Furthermore, each b0 is of the form b00 ^ dK for some K � J?. For each such bu there exists a

u
d1;ε
=)

d2;z2S?
7�! u00

d3;ε
=) u0 with b0 j= d1^ d2^ d3 (in this case we write b0(?) and we define db0 to be

d1 ^ d2^ dK) or a u
d;τ!S:
=) u0 with b0 j= d, Si � S and ti �

bu u0 (in this case we write b0(τ :) and we

define db0 to be d ^ dK). Note that bu j= db0, z 62 f v(db0) and db0 is u-uniform. Suppose that we

can prove

APτ ` bu�τ!ti +τ!u0 = τ!u0 (4.1)

for each bu. If u00 differs from u0 then it follows from Lemma 4.3.4, Part (i) that

APτ ` bu�u00 = u00+τ!u0:

From which we deduce

APτ ` bu�τ!ti +τ!u00 = τ!u00

by using rule TAU and axiom Tau2 . Let

uτ
= ∑

b0

(?)

db0� τ!u00+ ∑
b0

(τ:)

db0� τ!u0

and let

u?
= ∑

b0

(?)

db0 � z 2 Si?u00+ ∑
b0

(τ:)

db0� z 2 Si?u0:

Then, assuming (4:1), we can prove that

APτ ` bu�ci � τ!ti +uτ
= uτ
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for each bu 2 Bu. An application of CASE will give us that

APτ ` b^ci^ z 2 Si�ci � τ!ti +uτ
= uτ

and then P-INPUT� yields

APτ ` b^ci�ci � z 2 Si?ti +u?
= u?

:

We know that, because I(b0;u) = I(db0;u), provided we can establish the hypothesis that Si �

I(b0;u), Lemma 4.3.4, Part (ii), gives us that

APτ ` u = u+db0 � z 2 Si?u0

in the case that b0(τ :), and that

APτ ` u = u+db0 � z 2 Si?u00

for b0(?). Adding these together we establish APτ ` u = u+u? whence

APτ ` b^ci�ci � z 2 Si?ti +u = u:

Application of GUARD will then give the result required.

So let us establish the hypotheses of Lemma 4.3.4. Now b0 j= b so t �
=

b0

u. We consider the

discard from u with discard index J? nK (remember b0 = b00^dK), viz,

u
bdc;Sdc :
7�! u

where bdc =
V

j2J?nK:d j and Sdc =
T

j2K(Val nS j): This must be matched by t
b�

;S�:
7�! t where

b0^bdc j= b� and Sdc � S�:

We know that b0 j= ci and therefore b� 6j= :ci. This means that i is not in the discard index of

t
b�

;S�:
7�! t which in turn means that Si � (Val n S�). But Val n S� � Val n Sdc =

S

j2K S j = I(b0;u) so

we have Si � I(b0;u).

We also fulfil our obligation in proving (4:1):

APτ ` bu�τ!ti +τ!u0 = τ!u0:

For convenience let t 0 denote ti. We know that t 0 �bu u0 so we can apply the Decomposition

Theorem 4.3.3 to obtain a bu-partition, B0 which is both t 0 and u0-uniform such that for each

b00 2 B0 one of three cases holds. We aim to prove that

APτ ` b00�τ!t 0 = τ!u0

for each b00 2 B0. We consider the case

t 0+x 2 S?t 0 �
=

b00

u0+x 2 S0?u0+τ!u0

(S = I(b00;u0)� I(b00; t 0); S0 = I(b00; t 0)� I(b00;u0)) as an example, the other cases can be dealt with

similarly. If S is empty then we have that

t 0 �
=

b00

u0+x 2 S0?u0+τ!u0

so induction and TAU give

APτ ` b00�τ!t 0 = τ!(u+x 2 S0?u0+τ!u0):
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We obtain the result using P-Noisy and Tau1 . Assume then that S is not empty. We cannot

apply induction immediately because the joint depths of the terms has not decreased. However,

the Decomposition Theorem 4.3.3 gives terms t 00 and u00 such that d(t 00) < d(t 0), d(u00) < d(u0),

t 00 �b00

t 0 and u00 �b00

u0. Without loss of generality we assume that d(t 0) � d(u0). By induction it

follows that APτ ` b00�τ!t 0 = τ!t 00, whence APτ ` b00� z 2 S?t 0 = z 2 S?t 00 by P-INPUT. It is clear

that

t 0+x 2 S?t 00 �
=

b00

u0+x 2 S0?u0+τ!u0

and induction is applicable here yielding

APτ ` b00� t 0+x 2 S?t 00 = u0+x 2 S0?u0+τ!u0:

Using the previous result we can substitute t 0 for t 00 and apply TAU and axiom P-Noisy to get

APτ ` b00�τ!t 0 = τ!(u0+x 2 S0?u0+τ!u0):

the result follows as in the case where S is empty. Application of CASE and Idempotence will

now yield

APτ ` bu�τ!t 0+τ!u0 = τ!u0:

�

This finishes our completeness proof. The result can be lifted to cope with finite CBS by

using the codings of Section 3.4 in exactly the same way as the proof systems for strong noisy

congruence. This provides CBS with a powerful equational theory of observation congruence.

Recall that the congruence we considered was derived from barbed bisimulations using an early

semantics for CBS — we seem to have neglected the late semantics entirely. Therefore we end

this Chapter with some comments about late bisimulations in CBS.

4.4 A late semantics for CBS?

We consider what the late semantics for CBS might be and argue that they do not make good

computational sense in this paradigm. We recall from Chapter 2 that the move to a late semantics

involved breaking up a reception c?x:t
c?v
�! t[v=x] into two parts: First we consider the move

c?x:t
c?
�! (x)t

to a ?-abstraction, that is a function from Val to closed terms. Then we consider the behaviour

of (x)t after application, that is the behaviour of the term t[v=x], for each value v 2 Val. So a

late semantics for CBS might follow a similar approach albeit complicated by the use of pattern-

matching. The move x 2 S?t
v?
�! t[v=x] would have to be broken up into

x 2 S?t
?
�! (x 2 S)t

where the ?-abstraction is no longer a function from Val to closed terms but from the possibly

smaller domain S. We have written (x2 S)t to highlight this fact. For convenience we will annotate

the transition label x 2 S?t
S?
�! (x 2 S)t with the set S also.

Now, suppose that we had developed a late semantics with abstractions of the form (x 2 S)t.

We consider the following processes:

p ( x 2 f1;2g?t and q( y 2 f2;3g?u:

What would the (late) transitions from (pjq) be? We recall that the parallel operator of CBS

demands that each of p and q participate in any transition of (pjq). For each input transition of

p we must have an input or discard transition from q. How to enforce this discipline in a late
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semantics is not at all clear. The reason for this is that the communication protocol is driven by

agents’ reactions to values being offered. The agent p and q respond to the value 1 by receiving

and discarding respectively, but they respond to the value 2 by both receiving. The problem here

is that the late semantics for p want to treat the values 1 and 2 in one block of values. There is a

single input move from p, this being

p
f1;2g?
�! (x 2 f1;2g)t;

which demands a single reaction from q, but of course q cannot provide a single reaction to this

transition. For this reason we consider the multiway rendezvous of CBS to be unsuitable to support

a late semantics and do not pursue this issue any further.



Chapter 5

Local Model Checking for Value-Passing Processes

In this chapter we consider the problem of model checking for value-passing processes. Model

checking refers to the verification that a system, represented as a point of some model, satisfies a

property expressed in a particular property logic. One approach to such verification is to interpret

properties as sets of points of the model, calculate the relevant set of points for the property which

we are interested in and look to see if our system lies in this set. A major drawback here is that the

sets of points which interpret formulae can be very costly to calculate. As we are only interested

in whether a particular point lies within the property set we need not calculate the whole set. It is

often sufficient to check a localised part of the model. This approach to verification is referred to

as local model checking, [98], and has been pursued extensively, [98, 59, 103, 107, 14].

The property logic which we are going to use is based upon the modal µ-calculus, [61, 88].

This is a very expressive branching time logic, which contains the usual boolean connectives,

modal operators to express the ability to perform actions, and maximal and minimal fixpoint oper-

ators to express safety and liveness properties. It was shown in [44] that the finite sub-logic of the

modal µ-calculus, without fixpoint operators (typically referred to as Hennessy-Milner Logic or

HML), is powerful enough to distinguish non-bisimilar (finite branching) processes. Conversely,

modal µ-formulae cannot distinguish bisimilar processes, [99]. Although the modal µ-calculus is a

very powerful logic we find it lacking for the specification of properties of value-passing processes.

Consider the process p(= i?x:(x < N ! o!(x+1):O). We might want to express the property of

p that, after any value is received on i then p makes an output move and the data which is output

is one greater than the data received. In HML we could write the formula Fv � [i?v]ho!(v+ 1)itt,

which specifies exactly that property for a single value, v. In order to specify the property for all

values we would need to use a, possibly infinite, conjunction
V

v2Val Fv. This is clearly undesir-

able from a specification point of view. These considerations led Hennessy and Liu to develop a

first-order version of HML [43] in which the above property is expressed as

[i?]8x:ho!yiy = x+1:

We extend this first-order HML by adding maximal and minimal fixpoint operators to the logic.

Now, consider the process p(0) where

p(= λx:a!x:p(x+2):

An evident feature of this process is that it successively outputs the even numbers on data channel

a. How could we express such a property in first-order HML with fixpoints? To express that p

successively outputs on channel a would require a modality ha!xi and a ν-fixpoint. We would have

a formula of the form νX :ha!xiB^X where B is some predicate which says that x is two greater

than the previous output. To be able to remember what the previous output actually was requires
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some form of parameterisation. If we call this parameter z we would have the formula

νX :ha!xi(x = z+2)^X(x=z):

We can then instantiate this fixpoint’s parameter to have an initial value of 0 to express the desired

property. Thus we conceive the first-order µ-calculus as the extension of the first-order HML of

[43] with maximal and minimal parameterised fixpoints.

We intend to build a tableaux style proof system to verify whether a process satisfies a first-

order µ-formula. One of the notable features of such proof systems is the mechanism used to

keep track of unfolding fixpoint formulae. There are two common, equivalent, approaches to this

problem: introducing constants which name occurrences of fixpoints and using a global rule of

inference to detect previous unwindings [103] and introducing tags into fixpoint formulae [107],

which remember exactly which points of the model have been visited before. We adopt the latter of

the two methods, due to Winskel, so we give a brief outline of this to motivate the generalisation.

Suppose we are using a transition system model

p a
// q

-,/.

a

��

and we express the safety property I can perform an infinite sequence of a actions using the

formula

νX :haiX :

Let us try to establish that p satisfies this property; formally we write

` p : νX :haiX :

We can derive this sequent by unwinding the fixpoint formula, but as we unwind we remember

that point of the model we are currently at. This is recorded by writing

` p : haiνX :[p]haiX

where the fixpoint formula is now decorated with a tag, [p]. An obvious rule for modalities reduces

this sequent to

` q : νX :[p]haiX :

Here we must unfold the fixpoint formula once more because we have not met the point q before,

so we reduce our goal to

` q : haiνX :[p;q]haiX:

This time recording the fact that we are checking the formula at point q. Another use of the

modality rule will yield an obligation,

` p : νX :[p;q]haiX ;

at which point we can terminate as p is in the tag set of the formula. We have found a loop in the

transition system, which guarantees the possible infinite behaviour.

The way our work differs from Winskel’s is that not only do we consider a more expressive

property logic, the underlying models that we will use for value-passing processes will in fact be

symbolic graphs. It should be clear that the judgements ` p : F for checking a pure process term

against a modal µ-formula are insufficient in this setting. Recall that nodes of symbolic graphs

correspond roughly to open terms of the process language. Our judgements will need to reflect

verification that an open process term satisfies a formula possibly containing free data variables

and, as such, will be of the form

B ` t : F
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where B is some boolean condition on data variables, t is the node of a symbolic graph, and F is a

formula of first-order µ-calculus with free data variables.

We illustrate how we generalise the proof system a little with the following example. Consider

the fixpoint formula

A� νX :ha!xi(x = zmod 2)^X :(z�2 1=z)

where �2 denotes addition modulo 2. We can instantiate A’s parameter z to have an initial value of

0 by using the formula A:(0=z). This formula would then state that any process satisfying it could

engage in an infinite sequence of output actions on channel a, with the alternating values 0 and 1.

We construct the symbolic graph model

t
%$

"# !

a!1

OO

"#

%$'&

a!0

��

and demonstrate that

tt ` t : A:(0=z): (5.1)

We wish to apply an unwinding rule in order to deal with the fixpoint expression. However, we

do not do this immediately as a key rule of the new proof system presented here is a rule which

enables us to abstract away from particular instantiations of parameters and deal with fixpoints

with arbitrary instantiations of parameters instead. The rule is, roughly, of the form

Subst
B ` t : A

B[ē=z̄] ` t : A:(ē=z̄)
:

We could now choose the boolean B to be the formula z = 0 and notice that tt j= (z = 0)[0=z] to

reduce the goal (5.1) to

z = 0 ` t : A:

We can unwind the fixpoint formula A now but we must be careful to note that this judgement is

relative to the boolean condition z = 0, thus this information must also be recorded in the tag set

as we unwind A. Our goal is thus reduced to

z = 0 ` t : ha!xi(x = zmod 2)^A0:(z�2 1=z)

where A0 � νX [(z = 0; t)]ha!xi(x= zmod 2)^X :(z�2 1=z). Generally, tag sets will contain pairs

consisting of a boolean expression and a node of a symbolic graph. We can use a modality rule

from [43] and a rule for conjunction to lead to the two judgements

z = 0 ` t : 0 = zmod 2 and z = 0 ` t : A0:(z�2 1=z):

The former sequent is easily established but the latter requires a further use of the rule Subst. This

time we use the boolean expression z = 1 which (because z = 0 j= (z = 1)[z�2 1=z]) allows us to

reduce our obligation to establishing

z = 1 ` t : A0:

Now the node t does appear in the tag set of A0 but we cannot terminate yet because it does so

relative to the boolean z = 0, not z = 1. Thus we need to unwind the formula A0 once more, now

including (z = 1; t) in the tag set. We continue with similar reasoning and see that we arrive at the

sequent

z = 1 ` t : A00:(z�2 1=z)
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where A00 is as A0 but with (z = 1; t) also in the tag set. Once again we apply rule Subst using the

boolean z = 0. Notice that z = 1 j= (z = 0[z�2 1=z]). This leads to the judgement

z = 0 ` t : A00

and this time we can terminate the proof as we do have the pair (z = 0; t) as a tag.

We have successfully established that t satisfies the property A:(0=z) although in a rather un-

satisfactory manner. For instance, we had to unwind the formula twice before we could terminate

the proof despite there being only one possible node of the model which we could visit. Also,

what if the parameters were not updated by addition modulo 2 but by successor on the naturals?

The proof would never terminate as we would keep including pairs

(z = 0; t);(z= 1; t);(z= 2; t);(z= 3; t); : : :

in the increasing tag set of the formula.

The clear problem with the previous proof is that the initial choice of boolean, z = 0, for use

with the Subst rule, was not general enough. We resort to checking the fixpoint abstraction first

at the single point z = 0, and then at the point z = 1. We refer to this approach as the pointwise

approach.

Had we chosen the boolean z = 0_ z = 1 we would see that the proof terminates after one un-

winding of the formula. Rather than deal with each point individually we adopt an approach which

allows us to consider collections of points together. We refer to this as the abstract approach. If

we were considering successor on the naturals rather than successor modulo 2, we could use the

abstract approach and choose the initial boolean to be even(z)_odd(z)which would guarantee ter-

mination after a single unwinding. The abstract approach proves most useful for tackling formulae

which have arbitrary data expressions as parameters to fixpoints because we cannot guarantee a

bound on the number of points that will be encountered. However, the pointwise approach does

serve a purpose. In a later section of this chapter we will consider a logic whose parameters are

such that it will be guaranteed that only finitely many points can be encountered. We benefit by

the pointwise approach in that the booleans required for use with the Subst rule are much simpler

than those required using the abstract approach.

An essential problem of constructing successful tableaux is the choice of the booleans used

with Subst. Proving completeness of our tableaux checker using the abstract approach will involve

constructing these booleans to be as general as possible so that each occurrence of a fixpoint

formula need only be unwound at most once.

We ought to mention the rôle of tags with respect to least fixpoint formulae. The recurrence

of a node in the tag of a greatest fixpoint formula is deemed to be a successful completion of a

tableaux. A loop has been found in the model so that infinite behaviour can be guaranteed. In

contrast to this, a loop in the model is disastrous for inferring that behaviours are finite. Such

properties are specified by least fixpoint formulae and therefore the recurrence of a node in the tag

set of a least fixpoint formula is deemed a failure. The tableaux need not continue as it is destined

to fail. This property of least fixpoints is reflected by a side-condition on the µ-unwinding rule

which forbids further unwinding if a node is found in the tag set. So, whilst tags are useful for

inferring satisfaction of maximal fixpoint formulae, they are only useful for inferring failure for

minimal fixpoint formulae.

5.1 The specification logic and its interpretation

We give a three-level grammar to describe the logic, K µ, in Figure 5.1. We assume an ambient

data language and let B range over BoolExp, c range over Ch and X range over a set of recur-

sion variables called RecVar; note that we generally use lower case x;y; : : : to denote variables

from Var and upper case X ;Y; : : : to denote recursion variables. The variable X is bound in the

formula νX [A]F; write FV(F) for the free recursion variables of F . We use F to range over the
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F ::= B j F _F j F ^F j hτiF j [τ]Fjhc!xiF j [c!x]F j hc?iG j [c?]G j A:(ē=x̄)

G ::= 9x:F j 8x:F

A ::= X j νX [A]F j µX [A]F

Figure 5.1. Grammar for the logic

main syntactic category of modal formulae while G ranges over quantified formulae. The modal

operators hc!xi and [c!x] act as binders for the variable x as do the quantifiers 9x and 8x; write

f v(F) for the free data variables of F . This notion is clear for formulae without fixpoints. Finally

A ranges over fixpoint abstractions but these may only be used to define modal formulae by the

construction A:(ē=x̄). This denotes the application of the abstraction A to the substitution [ē=x̄].

This construction binds all of the free data variables of x̄ in A, thus we have that

f v(A:(ē=x̄)) = f v(e)[ ( f v(A)nfx̄g)

where f v(e) is given by the data-domain and f v(A) is defined by

f v(νX [A]F) = f v(µX [A]F) = f v(A)[ f v(F) and f v(X) =
/0:

The definition of f v(A) is the obvious one. A formula F is called recursion closed if FV(F) is

empty and is called data closed if f v(F) is empty. If A is of the form νX [A]F or µX [A]F then

we refer to just the free data variables of F as the recursion parameters of A. We will use z̄ to

denote recursion parameters rather than x̄ which denotes an arbitrary vector of data variables. In

these formulae we say that the set A is the tag set for the variable X . This tag set A will contain

pairs (B; t) of boolean expressions and nodes of a symbolic graph. Recall that the occurrence

of a node in tag set represents a previous encounter with that node. This means that we must

ensure that no information about that previous state is lost, for example, nodes in tag sets cannot

be α-converted or substituted into. For this reason, when we write F [v=x] for a formula F with

v substituted through for free occurrences of x we understand it to mean substitution for the free

occurrences of x outside of tag sets. Similarly, we must assume that ! modalities and quantifiers

do not bind variables occurring in tag sets. This assumption can be maintained during unfolding

of formulae by α-converting to avoid variable capture during substitution. It is important that the

free data variables occuring in tag sets correspond exactly to the data variables of the nodes of

the symbolic graph being used. We assume that data substitutions behave homomorphically with

respect to formula connectives and that they commute with substitutions of formulae for fixpoint

abstractions.

The choice to bind the recursion parameters of the formula A � νX [A]F at the stage of ap-

plication may appear rather unorthodox. For example one might expect that a parameterised (re-

cursion closed) fixpoint formula A is a closed formula of type Valn
! K µ. This is indeed the

case for more standard presentations of parameterised fixpoints where the arity of identifiers is

fixed, [67, 66, 79]. In our setting the interpretation of the fixpoint νX [A]F depends on the data

variables appearing freely in the tag set, A, as well as the free data variables in F . As we unwind

the formula we may need to include additional terms in this tag set, thus the number of variables

in νX [A]F may increase dynamically. This means that what we might consider to be the arity

of an abstraction A could increase through unfolding. Considering the abstractions to be closed,

with type Valn
! K µ, for some n, would mean that abstractions must be typed dynamically. For

this reason it is convenient to consider a recursion closed A simply to be a function from data

environments to closed formulae, that is, type (Var!Val)!K µ. Using this type has the benefit

that we can give a static type to formulae and also that we can exploit the fact that open formulae

may also be construed as functions from data environments to closed formulae in order to give a

semantics to fixpoints. In this way, all recursion closed formulae, including abstractions have type



Chapter 5. Local Model Checking for Value-Passing Processes 79

[[B]]ρδ =

�

Conc(G) If δ j= B

/0 Otherwise

[[F ^F 0

]]ρ = [[F]]ρ\ [[F 0

]]ρ
[[F _F 0

]]ρ = [[F]]ρ[ [[F 0

]]ρ
[[hτiF]]ρδ =

n

p j 9p0 � p
τ
�! p0 and p0 2 [[F]]ρδ

o

[[[τ]F]]ρδ =

n

p j 8p0 � p
τ
�! p0 implies p0 2 [[F]]ρδ

o

[[hc!xiF]]ρδ =

n

p j 9p0;v � p
c!v
�! p0 and p0 2 [[F[v=x]]]ρδ

o

[[[c!x]F]]ρδ =

n

p j 8p0;v � p
c!v
�! p0 implies p0 2 [[F[v=x]]]ρδ

o

[[hc?iG]]ρδ =

n

p j 9(x)p0 � p
c?
�! (x)p0 and (x)p0 2 [[G]]ρδ

o

[[[c?]G]]ρδ =

n

p j 8(x)p0 � p
c?
�! (x)p0 implies (x)p0 2 [[G]]ρδ

o

[[9x:F]]ρδ = f(y)[t;δ] j 9v 2Val � ((w)[t[w=y];δ])v2 [[F[v=x]]]ρδg
[[8x:F]]ρδ = f(y)[t;δ] j 8v 2Val � ((w)[t[w=y];δ])v2 [[F[v=x]]]ρδg
[[A:(ē=z̄)]]ρδ = ([[A]]ρ)δ[ē=z̄]

[[X ]]ρ = ρ(X)

[[νX [A]F]]ρ = ν f :([[F]]ρ[ f=X ][λA)

[[µX [A]F]]ρ = µ f :([[F]]ρ[ f=X ]nλA)

where w = new((y)t;8x:F), λA(δ) = f[t;δ] j (B; t) 2 A and δ j= Bg and [;\ and n denote point-

wise union, intersection and set difference respectively.

Figure 5.2. Interpretation of logic.

(Var ! Val)! K µ. This blurring of concepts enables us to give a cleaner presentation of both

the semantics of K µ and the proof system of Section 3.

In the sequel, for convenience, we will assume that the recursion parameter variables in each

fixpoint abstraction are distinct from any variables used in the process terms.

The models of our logic, K µ, which we shall consider are a subclass of labelled transition

systems. In particular, we are interested in exactly those transition systems which are generated

as the image of a symbolic graph under concretion. This restriction is only necessary in order

to interpret the tags in the fixpoint formulae. The standard transition system models may be

used to interpret formula with empty tag sets. Thus, given a symbolic graph, G, we interpret

closed formulae as sets of nodes of Conc(G). An open formula will require two environments

before it can be interpreted: an environment ρ : RecVar ! ((Var ! Val)! PConc(G)), which

provides a meaning for free recursion variables, and an environment δ :Var!Val, which provides

a meaning for free data variables. The meaning of a formula, F, in the environments ρ and δ is

written as [[F]]ρδ. We will let p range over nodes of Conc(G) and denote by (x)[t;δ0] the function

λv:[t;δ0[v=x]]. Sometimes it will be convenient to write t
b;c?
7�! (x)t 0 to mean t

b;c?x
7�! t 0. The term

(x)t can be thought of as a node of a substitution saturated graph with a specified free variable.

Rather than working up to α-equivalence on terms, in order to interpret tag sets cleanly it will

be useful to choose a canonical α-equivalence representative for abstractions (x)t. To this end,

because Var is countable we assume that it is linearly ordered and define a function new which

takes an abstraction (x)t and a quantified formula G and returns the least variable which does not

occur freely in (x)t and G, except in tag sets. Details of how the interpretations are defined are

listed in Figure 5.2, and are as expected. We define a satisfaction relation on open process terms

and open formulae using these semantics:

t j=ρ;B F iff [t;δ] 2 [[F]]ρδ for every δ such that δ j= B:

When we are using recursion closed formulae this relation is independent of ρ and we simply write

t j=B F . For the sub-logic without fixpoint expressions, this satisfaction relation coincides with the
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one proposed in [43] where it is shown to be characteristic for late bisimulation equivalence. We

see that the fixpoints provide no extra distinguishing power over processes.

Proposition 5.1.1 t �b
L u if and only if for all recursion closed formulae F with empty tag sets,

t j=b F iff u j=b F

Proof Suppose δ j= b, and let p;q denote [t;δ] and[u;δ] respectively. The if direction is proved in

[43] because finite formula suffice to distinguish non-bisimilar processes. We show the converse.

Suppose p�L u. We need to show p 2 [[F]]ρδ iff q 2 [[F]]ρδ. The difficulties arise in the cases

of fixpoint formulae. We cannot deal with fixpoints directly but it is sufficient to show that the

result holds for their ordinal unwindings. It is well known that [[µX :F]]ρδ =

S

α[[µ
αX :F]]ρδ, [61],

where the µ-formulae annotated with an ordinal are interpreted as

[[µ0X :F]]ρδ =
/0

[[µα+1X :F]]ρδ = [[F[µαX :F=X ]]]ρδ
[[µγX :F]]ρδ =

S

α<γ[[µ
αX :F]]ρδ

where γ is a limit ordinal. Similarly, for greatest fixpoints we have a dual interpretation.

If p�L q and p 2 [[µX :F]]ρδ then p 2 [[µαX :F]]ρδ for some α. If we can prove that p 2 [[F]]ρδ
iff q 2 [[F]]ρδ for F in the logic featuring only ordinal approximations to fixpoints then this would

tell us that q 2 [[µαX :F]]ρδ so that q 2 [[µX :F]]ρδ. A similar argument holds for maximal fixpoint

formulae. Therefore we can reduce our obligation to proving the result for a logic with fixpoint

approximations.

So, to fulfil our obligation we use well-founded induction over ordinals. Explicitly, we let

F1 < F2 iff F1 is a proper sub-formula of F2 or F1 is µβX :F and F2 is µαX :F with β < α. This is

evidently a well-founded order. We need to consider formulae with free recursion variables. Let

θ range over maps from RecVar to recursion closed fixpoint formulae. We let H(F) denote the

hypothesis, on closed terms, 8δ:(p 2 [[F]]ρδ iff q 2 [[F]]ρδ), and use this to define the hypothesis

Ho
(F) : 8θ � ((8X 2 FV (F) �H(θX)) implies H(θF)):

It is clear that Ho and H coincide on recursion closed formulae so we choose an arbitrary F and

suppose that Ho
(F 0

) holds for all F 0

< F. We are to show that Ho
(F). Suppose θ is such that

H(θX) for each X 2 FV(F). Consider the possible cases of F.

The base case F is Y for some Y follows by assumption.

For the case F � A:(ē=z̄): Suppose that p 2 [[θA:(ē=z̄)]]ρδ. Then p 2 [[θA]]ρδ[ē=z̄]. We know

that H(θA), by induction, so we have q 2 [[θA]]ρδ[ē=z̄] whence q 2 [[θA:(ē=z̄)]]ρδ. By a symmetric

argument we have H(θF).

If F is a fixpoint approximation µαX :F 0 we proceed as follows. If α is 0 then H(θF 0

) follows

trivially. If α is a limit ordinal then H(µβX :θF 0

) holds for all β < α by induction. We notice that

p 2 [[µαX :θF 0

]]ρδ implies p 2 [[µβX :θF 0

]]ρδ for some such β. Thus, we obtain q 2 [[µβX :θF 0

]]ρδ
and q 2 [[µαX :θF0

]]ρδ accordingly. If α is a successor ordinal β + 1, say, then we notice that

H(µβX :θF 0

) by induction. We define θ0 on FV(F 0

) by

θ0(Y) =
�

µβX :θF 0 if Y � X

θY otherwise.

We know that H(θ0Y ) holds for each Y 2 FV(F 0

) and also that F 0

< F , so Ho
(F 0

). This tells us

that H(θ0F 0

) which is just H(θF 0

[µβX :θF 0

=X ]). It is easy to see then that H(µαX :θF 0

).

The case for maximal fixpoint approximations can be done similarly.
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The other cases for F are all dealt with, structurally, in [43]. �

This provides a modal characterisation for late bisimulation equivalence but there is a similar

result for early bisimulation if we use a coarser logic. Consider the sub-logic of K µ which only

uses the input modalities in the following way

hc?i9x:F and [c?]8x:F:

We can prove that this sub-logic characterises early bisimulation in a similar manner to Proposi-

tion 5.1.1. We omit the details here as they are very close to [43].

There now follows a technical Lemma which is a generalisation of the so called Reduction

Lemma of [107], the essence of the tag set method.

Lemma 5.1.2 (Reduction Lemma) Let L = V ! PT be a complete lattice and let ϕ : L ! L be

a monotone functional. Let B � V and write f �B g to mean 8v 2 B: f (v) � g(v). Then for any

f 2 L,

f �B νx:ϕ(x) iff f �B ϕ(νx:(ϕ(x)[λ[B] f ))

where λ[B] f (v) = f (v) if v 2 B and is empty otherwise.

Proof Straightforward generalisation of the proof in [107]. �

It is interesting to note at this point that the corresponding theorem for least fixpoints

f �B µx:ϕ(x) iff f �B ϕ(µx:(ϕ(x)nλ[B] f ))

does not hold. To see how this fails consider the following example:

Using the sets T;V;B = fa;bg and letting λ/0 denote the constant empty function we define

φ(λ/0) = f where f (a) = fag; f (b) = /0 and φ(g) = d where d(a) = d(b) = fag whenever g 6= λ/0.

It is easy to see that d = µx:φ(x), but notice that d 6� φ(µx:(φ(x)nd)) = f .

Lemma 5.1.3 If (B0; t) 62 A for all B0 then

t j=B νX [A]F iff t j=B F [νX [A;(B; t)]F=X ]:

Proof Uses Lemma 5.1.2 and simple properties about substitutions. �

5.2 The proof system

We now present a proof system for verifying whether a formula of the logic holds at a particular

point of the model. The system is similar in style to those of [43, 27] in that the proof rules

carry side conditions which leave proof obligations of checking implication in some language of

boolean conditions and of calculating transitions in a graph. The judgements of the proof system

are sequents of the form B ` t : F where B is a boolean expression, t is a node of a substitution

saturated symbolic graph and F is a recursion closed (but not necessarily data closed) formula of

the logic. The proof rules for the system are listed in Figures 5.3 and 5.4. The former imports

all of the rules from [43], the latter introduces the rules necessary for the treatment of the fixpoint

operators. These new rules are the obvious adaptions of the unfolding rules of [107] to the current

setting with the exception of rules Subst and η. Note that the assumption that t does not contain

any of the recursion parameters z̄ is vital for soundness in Subst.

The side condition on the µ rule ensures that a term t, say, appearing in a tag set more than

once, does so in disjoint boolean worlds. This may seem overly restrictive but it is necessary for

soundness. For example we could use the µ-rule to deduce

tt ` t : µX [(B0; t)]tt_X



Chapter 5. Local Model Checking for Value-Passing Processes 82

Id
B ` t : B

Case
B1 ` t : F; : : : ;Bn ` t : F
W

1�i�n Bi ` t : F

Cons
B1 ` t : F

B2 ` t : F
(B2 j= B1) Ex

B ` t : F

9x:B ` t : F
(x 62 f v(t;F))

α B ` t 0 : F 0

B ` t : F
(t 0 � t; F 0

� F) ^

B ` t : F1 B ` t : F2

B ` t : F1^F2

_L
B ` t : F1

B ` t : F1_F2
_R

B ` t : F2

B ` t : F1 _F2

hτi B ` t 0 : F

B^b ` t : hτiF t
b;τ
7�! t 0

[τ]
B^b1 ` t1 : F; : : : ;B^bn ` tn : F

B ` t : [τ]F
where f(b1; t1); : : : ;(bn; tn)g= f(b; t 0) j t

b;τ
7�! t 0g

hc!i
B ` t 0 : F[e=x]

B^b ` t : hc!xiF
t

b;c!e
7�! t 0

[c!]
B^b1 ` t1 : F [e1=x]; : : : ;B^bn ` tn : F [en=x]

B ` t : [c!x]F

where f(b1; t1;e1); : : : ;(bn; tn;en)g= f(b; t 0;e) j t
b;c!e
7�! t 0g

hc?i
B ` (y)t 0 : G

B^b ` t : hc?iG
(t

b;c?
7�! (y)t 0)

[c?]
B^b1 ` (y1)t1 : F; : : : ;B^bn ` (yn)tn : G

B ` t : [c?]G

where f(b1;(yn)t1); : : : ;(bn;(yn)tn)g= f(b;(y)t 0) j t
b;c?
7�! (y)t 0g

8

B ` t : F

B ` (x)t : 8x:F
(x 62 f v(B)) 9

B ` t : F

B ` (x)t : 9x:F

Figure 5.3. Local model checking rules.
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Subst
B ` t : A:(z̄=z̄)

B[ē=z̄] ` t : A:(ē=z̄)
z̄ 62 f v(t) η B ` t : A

B ` t : A:(z̄=z̄)

ν0
B ` t : νX [A]F

(B; t)2 A ν1
B ` t : F [νX [A[ (B; t)]F=X ]

B ` t : νX [A]F

µ
B ` t : F[µX [A [ (B; t)]F=X ]

B ` t : µX [A]F
8B0:(B0; t) 2 A implies B^B0 j= ff

Figure 5.4. Fixpoint rules.

since tt ` t : tt is trivially derivable. However

[[µX [(B0; t)]tt_X ]]ρδ = Conc(G)n

�

[tδ0] j δ0 j= B0
	

which is different from Conc(G) provided there is some δ such that δ j= B0. This counter-example

is mildly pathological in that the false sequent which we derive contains non-empty tags. One

might envisage that the side-condition could be replaced with a global condition on proofs which

says that if a derivation of a fixpoint sequent can be extended to a derivation of a sequent without

tags then the resulting, tag free sequent will be sound. For instance, the example given above could

be extended to yield the sequent

B0 ` t : µX [
/0]tt_X ;

which happens to be valid.

Theorem 5.2.1 (Soundness) If B ` t : F then t j=B F.

Proof By induction on the length of the derivation B ` t : F. The soundness of the crucial rule

ν1 is guaranteed by Lemma 5.1.3 while that of ν0 follows in a straightforward manner from the

interpretation of tagged fixpoints. The soundness of the µ rule is relatively straightforward. We

suppose δ j= B and assume, by induction, that

[t;δ] 2 [[F[µX [A[ (B; t)]F=X ]]]ρδ:

Monotonicity of formulae ensures that

[t;δ] 2 [[F[µX [A]F=X ]]]ρδ

and δ 6j= B0 for any (B0; t) 2 A implies

[t;δ] 2 [[F[µX [A]F=X ]]]ρδnλA(δ):

But this is just to say that

[t;δ] 2 [[µX [A]F]]ρδ

by the semantics of the fixpoint abstraction. We now show the case for the Subst rule. Sup-

pose δ j= B[ē=z̄]. Then we know that δ[ē=z̄] j= B and thus, by induction, we have [t;δ[ē=z̄]] 2

[[A:(z̄=z̄)]]ρδ[ē=z̄]. Now z̄ 62 f v(t) so we have [t;δ] 2 [[A:(z̄=z̄)]]ρδ[ē=z̄] which is, by definition,

[t;δ] 2 [[A:(ē=z̄)]]ρδ. Therefore t j=B[ē=z̄] A:(ē=z̄). �

Having proved the soundness of our proof system we turn to the question of completeness.

It is clear that we will not obtain a general completeness results for arbitrary symbolic graphs.

Thus we restrict our attention to finite graphs. Even with this restriction, however, we find that the

system is incomplete for the full logic. The problem lies with the least fixpoint formulae. Consider

the following example:
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Let Val be the natural numbers and let the graph G have two nodes t1; t2 with an edge t1
a!x
7�! t2.

The abstraction µX [
/0]F, where F is (ha!yiy = z)_X :(z+ 1=z), states there exists an output on

channel a of a value at least as large as z. We instantiate z at 0 to get the formula which simply

reads there exists an output, on channel a, of some value. Therefore it should be clear that

t1 j=tt (µX [
/0]F):(0=z)

We now argue that tt ` t1 : (µX [
/0]F):(0=z) is not derivable. First consider the sequence of

formulae F0
= ff and Fn+1

= F [Fn
[e=z]=X :(e=z)]. To see that t1 6j= Fk

[0=z] for all k < ω we

suppose the contrary, that is t1 j= Fk
[0=z] for some k. Hence for every δ we get that [t1;δ] 2

[[Fk
[0=z]]]ρδ. Now [[Fk

[0=z]]]ρδ=
S

n<k f[t1;δ0] j δ0(x) = ng. So choose δ0 such that δ0(x) = k+1

then by assumption [t1;δ0] 2
S

n<k f[t1;δ0] j δ0(x) = ng. This is a contradiction. From this we can

conclude that t1 j= Fk
[0=z] for no k < ω.

We now prove that if a term provably satisfies a least fixpoint then it provably satisfies a

finite unwinding of this fixpoint. Having done this we easily see, by soundness, that tt ` t1 :

(µX [
/0]F):(0=z) is not derivable.

Proposition 5.2.2 If B ` t : µX [A]F, then there exists 0� k < ω such that B ` t : Fk.

Proof We prove, by induction over depth of proofs, a more general statement: Let F 0 be an open

formula with X as the only possible free recursion variable. Suppose B ` t : F 0

[µX [A]F=X ] and

let k be the maximum number of occurrences of the µ-rule, using t and X , on any branch of this

derivation. Then we have that B ` t : F 0

[Fk0

=X ] for all k0 � k.

This is reasonably straightforward except for the following illustrative cases on which rule was

last used:

Case: Conjunction.

^

B ` t : F1[µX [A]F=X ] B ` t : F2[µ[A]F=X ]

B ` t : (F1^F2)[µX [A]F=X ]

:

Suppose without loss of generality that the maximum number of occurrences of the µ-rule appear

on the left branch. Then by induction we get B ` t : Fk0

1 for k0 � k. Because we chose k to be

maximum across all branches then we also know by induction that B ` t : Fk0

2 for all k0 � k2 where

k � k2; in particular, we have this derivation for all k0 � k. Therefore, using rule ^ we get the

result.

Case: Fixpoints. Suppose that the last rule used in the derivation of B ` t : F 0

[µX [A]F=X ] was

the µ-rule. There are two cases to consider. If F 0 is simply the formula X then we have

µ
B ` t : F [µX [A;(B; t)]F=X ]

B ` t : µX [A]F
:

Induction gives B ` t : F[Fk0

=X ] for all k0 � k�1, but this is just B ` t : Fk0

+1. Otherwise F 0 must

be of the form µY [A 0

]F 00 and we have, writing A for µX [A]F,

µ
B ` t : (F 00

[A=X ])[µY[A 0

;(B; t)]F00[A=X ]=Y ]

B ` t : µY [A 0

]F 00

[A=X ]

:

We can reorder the premise to read B ` t : (F 00

[µY [A 0

;(B; t)]F00=Y ])[A=X ] and hence by induction

we get

B ` t : (F 00

[µY [A 0

;(B; t)]F00=Y ])[Fk0

=X ]:

Again, by reordering and using the µ-rule on Y we get B ` t : µY:[A 0

]F 00

[Fk0

=X ] as required.

Case: Subst.
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[[B]]ξ = B

[[Q1_Q2]]ξ = [[Q1]]ξ_ [[Q2]]ξ
[[Q1^Q2]]ξ = [[Q1]]ξ^ [[Q2]]ξ
[[B!Q]]ξ = B! [[Q]]ξ
[[9x:Q]]ξ = 9x:[[Q]]ξ
[[8x:Q]]ξ = 8x:[[Q]]ξ

[[QA:(ē=z̄)]]ξ = ([[QA]]ξ)[ē=z̄]

[[X ]]ξ = ξ(X)

[[νX :Q]]ξ =

_

fb j b = [[Q]]ξ[b=X ]g

Figure 5.5. Interpretation of first-order fixpoint logic.

We know that F 0 is a formula A:(ē=z̄) and that B is of the form B0[ē=z̄]. We apply induction to

obtain B0 ` t : A:(z̄=z̄)[Fk0

=X ] and then use the Subst rule. In the case where F 0 is X :(ē=z̄) we need

a further (easy) induction to show that if B0 ` t : Fk0

then B0[ē=z̄] ` t : Fk0

[ē=z̄]. �

It is clear from this that the proof system is incomplete for the full logic. Therefore in order

to obtain any kind of completeness results we must either augment the proof system or consider

sub-logics. We opt for the latter and consider two restricted versions of the logic. In the next

section we will prove completeness for the sub-logic obtained by disallowing all µ-formula — a

sub-logic of safety properties. In a later section we reintroduce µ-formulae but we restrict the type

of expressions that may be passed to them as parameters.

5.3 Completeness for safety properties

In [43] it was shown how it is possible, for finite F, to reduce the statement t j= F to a first-order

formula (t satF), thereby reducing the question of a process term satisfying a modal formula down

to validity of a boolean expression. We adopt the same approach here. However, to cope with the

added complexity of parameterised fixpoints we reduce the statement t j= F to a greatest fixpoint

formula over a first-order predicate.

Although first-order logic with fixpoints is a rather unwieldy language with which to reason

about data, we benefit by the ability to mechanically describe the most general conditions for

which satisfaction will hold; this ability leads us directly to a completeness proof. For example,

the conditions even(z) and odd(z), used in the example above would be automatically generated

as the solutions of the appropriate fixpoint formulae.

The following grammar describes the logic, Lν of first-order predicates with fixpoints.

Q ::= B j Q_Q j Q^Q j B! Q j 9x:Q j 8x:Q j QA:(ē=z̄)

QA ::= X j νX :Q

Here we understand B to be a predicate from BoolExp. We present the semantics of this logic

by first translating into (possibly open) terms of a first-order logic with infinite disjunction and

then interpreting the translations in a completely standard manner. Given a recursion environment

ξ : RVar! BoolExp, we translate formulae [[Q]]ξ as described in Figure 5.5 and define δ j= [[Q]]ξ
to be the obvious satisfaction relation. If Q has no free occurrences of recursion variables then

[[Q]]ξ is independent of ξ and we simply write [[Q]]. In such a case we will write δ j= Q to mean

δ j= [[Q]] and Q ` t : F to mean [[Q]]` t : F .

The construction of (t satF) proceeds by structural induction over F. But each time we en-

counter a new fixpoint abstraction, νX :F 0 say, whilst considering term t, a formula νXt: : : : is
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t satB = B

t satF1^F2 = t satF1^ t satF2

t satF1_F2 = t satF1_ t satF2

t sathτiF =

W

t
b0 ;τ
7�!t0

b0^ (t 0 satF)

t sat [τ]F =

V

t
b0 ;τ
7�!t0

b0! (t 0 satF)

t sathc!xiF =

W

t
b0 ;c!e
7�!t0

b0^ (t 0 satF [e=x])

t sat [c!x]F =

V

t
b0 ;c!e
7�!t0

b0! (t 0 satF [e=x])

t sathc?iG =

W

t
b0;c?
7�!(x)t0

b0^ ((x)t 0 satG)

t sat [c?]G =

V

t
b0;c?
7�!(x)t0

b0! ((x)t 0 satG)

(y)t sat8x:F = 8w:(t[w=y]satF[w=x]) w = new((y)t;8x:F)

(y)t sat9x:F = 9w:(t[w=y]satF[w=x]) w = new((y)t;9x:F)

t satA:(ē=z̄) = (t satA):(ē=z̄)

t satνX [A]F =

�

bBc if (B; t)2 A
νXt:(t satF[νX [A+

]F=X ]) otherwise

where bBc= Xt if B� t satνX [A 0

]F and bBc= B otherwise. Also, A+

= A [ (t satνX [A]F; t)

Figure 5.6. The sat construction.

created. Here the function sat has two arguments, taking the form t satF , where t is a node of a

symbolic graph and F is a recursion closed formula F . The intention is that t satF describes the

weakest condition, B, which guarantees t j=B F .

We list the construction in Figure 5.6. The definition of sat appears to be non-well-founded.

There are two reasons for this. Firstly, in the case for fixpoints, we assume that no evaluation

of sat formulae occurs inside tag sets. More precisely, consider the tag (t satνX [A]F; t) which is

included in the tag set as we unwind a formula against t. While the expression t satνX [A]F is

referred to in the context of being in a tag set then we treat it as a symbol only, it is the name of

a formula rather than the formula itself. Including the expression t satνX [A]F in the tag sets is

rather gratuitous as we only really need to remember that t has been encountered before. However,

this extra information eases presentation of the following theorems significantly. Secondly, the sat

construction will fail to terminate for arbitrary graphs but, if we restrict ourselves to finite graphs,

then we see later that the side conditions for defining sat for fixpoints ensure termination. The

only problem here though is that t satF is not a well-defined function when F contains two entries

for t in a single tag set. Thus we describe a condition on the tag sets in a given formula which

guarantees that t satF is in fact well-defined. We call this condition tag restriction. A fixpoint

formula νX [A]F is tag restricted if each node t appears at most once in A. More generally, call a

formula, F , tag restricted if each of its fixpoint abstractions are tag restricted. Note that a formula

with empty tag sets is always tag restricted.

Notice that, in calculating t satF , for some node t of a graph G and some formula F, we need

to consider nodes of the form t 00σ, where t 00 is reachable from t and σ is a simple substitution

used for renaming with fresh variables. We use reachable here to mean that there is a sequence of

symbolic transitions from t to t 00. This requires that G be a substitution saturated graph. The need

for substitution saturation here is, of course, due to the use of α-conversion in the construction of



Chapter 5. Local Model Checking for Value-Passing Processes 87

sat . This α-conversion plays two rôles in this construction: firstly, we need to ensure that variables

which are re-bound have distinct occurrences in the sat formula. Recall that we do not work up

to α-equivalence but with canonical representatives of such classes. Secondly, the connection

between the bound variable in the process term and the bound variable which is quantified in the

formula is forged merely by converting both to the same variable.

If we write NG for the number of all of the free variables contained in the nodes of G and NF

for F the number of variables (free and bound) in F , then we only ever have a maximum of Nt +NF

free variables to deal with. This means that, by careful re-use of fresh variables for renaming, we

can restrict our data domain to having only a finite set Var of variables. Thus, given a finite graph,

G, over this restricted data domain we know that the saturated graph SSat(G)=�ss is also finite.

Hence, we may assume that we are now working with finite, substitution saturated graphs. This is

important because nodes of such graphs appear in tag sets. Provided that each term only appears

once in each tag set, we have a bound (the size of the graph) on the size of tag sets. We now use

this fact to give a well-founded ordering to formulae. We write F �G F 0 iff F 0 is not a fixpoint

formula and F is a proper sub-formula of F 0, otherwise F is of the form F1[νX [A 0

]F1=X ] and F 0

is νX [A]F1 where A � A 0 contain only nodes from G. We aim to show that the transitive closure

�

+

G of this relation is a well-founded order on tag restricted formulae whenever G is finite. Given

a sequence of vectors v̄1; : : : ; v̄n : : : we will write vi
n to denote the ith entry of the nth vector.

Proposition 5.3.1 If G is finite then �+

G is a well-founded order on tag restricted formulae.

Proof It is clearly sufficient to prove that �G is well-founded. Suppose otherwise, that there is

an infinite decreasing chain

C = : : :Fn � : : :� F1 � F0

of tag-restricted formulae. We aim to show that, eventually, as we progress down the chain, the

tag sets of each fixpoint abstraction must contain all possible terms of T , allowing no further

unwinding. To do this we consider the partial order @ which describes the nesting of fixpoint

abstractions of F0. Assume, without loss of generality, that F0 is a fixpoint abstraction and that

all fixpoint sub-formulae of F0 have uniquely bound recursion variables. Suppose X and Y are

distinct recursion variables in F0 and define X @ Y if Y is bound within the scope of X . It is clear

that @ is a partial order so we can let

fX1;X2; : : : ;XKg

be the set of all recursion variables in F0 topologically sorted with respect to@. That is, if Xi @ X j

then i< j. We will now use Ai to denote an occurrence of a fixpoint sub-formula of some Fn which

uses the recursion variable Xi and we will write Ai @ A j if Xi @ X j.

It is clear that, because formulae have finite depth, there must be infinitely many fixpoint

unwindings in the chain C . That is, there is an infinite subsequence C 0 of C . Such that each Fn of

C 0 is a fixpoint abstraction Ai. The proof proceeds by defining a sequence of vectors fv̄ng which

count the size of the tag sets of occurrences of each Ai in formulae. Loosely speaking, vi
n will

represent jGj less the size of the tag sets of Ai (denoted jAijn) in the nth formula F of C 0. More

formally, we define

vi
0 = jGj� jAij0 for each i

vi
n+1 =

�

jGj� jAijn if Ai is in Fn+1

vi
n otherwise.

It is important to note that the sizes of the tag set for each occurrence of an abstraction Ai in all

formulae Fn 2 C 0 are equal so jAijn is well-defined.

For each n there is always some fixpoint abstraction being unwound at C 0

n, so there is always

some i, such that vi
n+1 < vi

n. Moreover, the tag set of Ai is the only tag set which may increase,

thus v
j
n+1 � v

j
n for j 6= i. If it is the case that v

j
n+1 > v

j
n for some j, then we note that this can only
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occur in the situation where the tag set of A j decreases in size passing from formula Fn to Fn+1.

We show that the only way this can happen is if Ai @ A j.

This is slightly tricky to establish. We introduce the idea of a chain with pointers. The pointers

are designed so that each A j in each Fn 2 C points back to some A j0 at Fn0 in C 0 (or to some A j0

in F0). We can define the pointers so that all Ai in F0 point to the smallest sub-formula A j of

F0 such that A j @ Ai, with the sub-formula F0 actually pointing to itself. Subsequently, if Fn has

pointers, then Fn+1 inherits the pointers from Fn and, in the case where Fn is νX [A]F and Fn+1

is F[νX [A+

]F=X ] for some X , we let each occurrence of the newly created sub-formula, νX [A]F

in Fn+1, point to Fn. An invariant of these pointers is that: Ai in Fn points to the formula A j at

Fn0 only if n0 = 0 and A j @ Ai or n0 6= 0 and i = j and the tag set of Ai is greater than that of

A j. We easily establish this invariant by the definition of pointers at F0. To see that the invariant

is maintained along C we choose some Fn for which it holds and consider why Fn+1 � Fn. If

Fn+1 is a sub-formula of Fn then any surviving pointers are inherited and the invariant still holds.

Otherwise Fn+1 is obtained by unfolding, in which case the new pointers satisfy the second part of

the invariant.

Resuming our proof, we suppose the chain has such pointers assigned to it. Then we can now

see that, in order for the tag set of A j to decrease in passing from Fn to Fn+1, the invariant on

pointers tells us that every occurrence of A j in Fn+1 must point to Ai at F0 with Ai @ A j.

This proves that Ai @ A j whenever v
j
n+1 > v

j
n. But topological sorting tells us that i < j, thus

v̄n+1 < v̄n in the lexicographic ordering on vectors because vi
n+1 < vi

n. This is true for each n so

we have an infinite descending chain of vectors with respect to the lexicographic ordering, which

is clearly a contradiction.

�

Now, to see that the definition of t satF is well-founded for t drawn from a finite graph G, and

tag-restricted F, we note that

F[νX [A+

]F=X ]�G νX [A]F

and that such an unfolding preserves tag-restrictedness.

As another application of the well-foundedness of�G we show that the characteristic formula

construction corresponds to our semantics according to our intentions. The sat construction was

designed to characterise satisfaction for formula with empty tag sets. Clearly, as formulae unfold,

tag sets become non-empty, however, the booleans in tags are not arbitrary and have very specific

forms. In order to help us describe these forms we utilise the notion of a generated pair, (t;F).

Generated pairs represent the pairs of nodes of a graph and formulae that one encounter in de-

veloping a proof tableaux by using the sat construction. To define this concept fully we use the

rewriting relation� defined in Figure 5.7. So, we say that a pair (t;F) is generated from (t0;F0)

(where F0 has empty tag sets) if (t;0)��

(t;F). It should be clear that all formulae F of generated

pairs are tag restricted.

Theorem 5.3.2 For finite G and empty tag set F0,

δ j= t0 satF0 iff [t0;δ] 2 [[F0]]ρδ:

Proof We proceed by well-founded induction with respect to �+

G over formulae of pairs gen-

erated from (t0;F0). We will actually prove a stronger result that δ j= [[t satF ]]η iff [t;δ] 2 [[F]]ρδ
where η is some greatest fixpoint environment to be defined below and (t;F) is generated from

(t0;F0).

We know that (t;F) is generated from (t0;F0) so there is a sequence

(t0;F0)�
�

(t1;F1)�
�

: : :�

�

(tn;Fn)�
�

(t;F)
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(t;F1^F2) � (t;F1) and (t;F1^F2) � (t;F2)

(t;F1_F2) � (t;F1) and (t;F1_F2) � (t;F2)

(t;hτiF) � (t 0;F) for each t
b;τ
7�! t 0

(t; [τ]F) � (t 0;F) for each t
b;τ
7�! t 0

(t;hc!xiF � (t 0;F[e=x]) for each t
b;c!e
7�! t 0

(t; [c!x]F) � (t 0;F[e=x]) for each t
b;c!e
7�! t 0

(t;hc?iG) � ((x)t 0;G) for each t
b;c?x
7�! t 0

(t; [c?]G) � ((x)t 0;G) for each t
b;c?x
7�! t 0

((x)t;8y:F) � (t[w=x];F[w=y]) where w = new( f v((x)t;8y:F))

((x)t;9y:F) � (t[w=x];F[w=y]) where w = new( f v((x)t;8y:F))

(t;A:(ē=z̄)) � (t;A)

(t;νX [A]F) � (t;F[νX [A+

]F=X ]) if t 62 A

where A+

= A [ (t satνX [A]F; t).

Figure 5.7. The generated pairs rewriting relation

such that each Fi is of the form νXi[Ai]F
0

i and no fixpoint formulae are encountered between

each Fi and Fi+1. We define η1 to be [[[t1 satF1]]=X1t1
]. Subsequently we define ηi+1 to be

ηi[[[ti+1 satFi+1]]ηi=Xi+1ti+1
]. We will simply write η for ηn and notice that η enjoys the following

property:

if F is of the form νX [A]F0 and (B; t) 2 A, then B is of the form t satνX [A 0

]F 00 for

some A 0 and F 00 with η(Xt) = [[B]]η.

We can now proceed with our well-founded induction. We show a couple of the interesting

cases.

Case: Application.

δ j= [[t satA:(ē=z̄)]]η
iff δ j= ([[(t satA)]]η):(ē=z̄) definition of sat

iff δ[ē=z̄] j= [[t satA]]η
iff [t;δ[ē=z̄]]2 [[A]]ρδ[ē=z̄] by induction.

iff [t;δ] 2 [[A:(ē=z̄)]]ρδ: as z̄ 62 f v(t).

Case: ν-fixpoint with t 2 A. Then (B; t) 2 A for with η(Xt) = [[B]]η.

δ j= [[t satνX [A]F]]η
iff δ j= [[Xt]]η definition of sat

iff δ j= η(Xt)

iff δ j= [[B]]η
iff [t;δ] 2 [[νX [A]F]]ρδ because (B; t)2 A.

Case: ν-fixpoint with t 62 A. Let A 0

= A [ (t satνX :[A]F; t) so that (t;F[νX [A 0

]F=X ]) is also

generated from (t0;F0).

δ j= [[t satνX [A]F]]η
iff δ j= [[νXt:t satF [νX [A 0

]F=X ]]]η definition of sat

iff δ j= [[t satF[νX [A 0

]F=X ]]]η definition of η
iff [t;δ] 2 [[F[νX [A 0

]F=X ]]]ρδ well-founded induction

iff [t;δ] 2 [[νX [A]F]]ρδ Lemma 5.1.3
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�

Lemma 5.3.3 For finite G and pairs (t;F) generated from (t0;F0) with η as above:

[[t satF ]]η ` t : F:

Proof Similar to the proof in [43] although we use well-founded induction on formulae of gen-

erated pairs. The only cases of interest here are application and fixpoint formulae. If t appears in

the tag set of the fixpoint formula νX [A]F, then rule ν0 and the definition of η gives the result.

Otherwise, by induction we know that

[[t satF [νX [A 0

]F=X ]]]η ` t : F [νX [A 0

]F=X ]

where A 0

= A [ (t satνX [A]F; t). But [[t satF[νX [A 0

]F=X ]]]η is easily seen to be [[t satνX [A]F]]η
so by rule ν1 we have our result.

If F is the formula A:(ē=z̄) then induction tells us that [[t satA]]η ` t : A. We notice that

[[t satA]]η = [[(t satA):(z̄=z̄)]]η and apply the rules η and Subst to obtain

[[(t satA)]]η[ē=z̄] ` t : A:(ē=z̄)

from which the result follows. �

Theorem 5.3.4 (Completeness) For finite G and empty tag set F: If t j=B F then B ` t : F.

Proof Suppose t j=B F. Then Theorem 5.3.2 implies that for every δ j= B we have δ j= t satF ,

which is to say B j= t satF. The previous Lemma tells us that t satF ` t : F is derivable so an

application of Cons gives B ` t : F. �

5.4 Restricted parameters

We now consider an alternative way of restricting the logic in order to obtain a completeness result.

Instead of removing least fixpoints completely we limit the usage of the parameters fed to them.

We lift the restriction of the previous section so that formulae F may now contain µ-fixpoints.

Instead, we say that a formula F has restricted parameters if for each sub-formula in F of the

form A:(ē=z̄) we have that for each ei 2 ē either

� ei = z for some z, so that ei is simply a recursion parameter of F, or

� var(ei)\ z̄ = /0 so ei contains no recursion parameters at all.

Expressions such as (z0+1=z) are excluded. For the remainder of this section we assume that

F has restricted parameters.

The effect of this restriction is to reduce the role of parameters to that of remembering values

(or value expressions) which occur on the arcs of the underlying graphs. When dealing with a

finite graph there will be only finitely many value expressions passed as parameters as a formula

is unwound. Consider the following example of a formula which demonstrates that the expressive

power of our logic is not compromised excessively under parameter restriction: The abstraction

A f ib is restricted but makes an essential use of parameterisation:

A f ib = µX :[c!x](x = z1^ [c!y](y = x+ z2 ^X :(x+y;y=z1;z2))):

We see that the formula A f ib:(1;0=z1;z2) states I can perform a finite output stream on channel c

which follows the Fibonacci sequence.

The key result of this section then is that, under reasonable conditions, the proof system of

Section 5.2 is complete for finite symbolic graphs and restricted parameter formulae.
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Theorem 5.4.1 (Completeness) For all formulae F with empty tag sets, finite G, f v(B)� f v(t),

t j=B F implies B ` t : F:

The remainder of this section is devoted to establishing this. We design a new semantics, called

the symbolic semantics, for the logic to get our completeness result. A symbolic interpretation

takes a recursion environment and a boolean expression, rather than a data environment, in order

to interpret the free data variables. The boolean represents the set of all data environments which

satisfy it. It will be useful to maintain, throughout the completeness proof, a very strict form for

these boolean expressions. We assume that they have the form

B^ (z̄ = ē)

where B is a boolean expression not containing any recursion parameters and ē is a finite vector

of data expressions also not containing any recursion parameters. For notational convenience

we describe such a boolean as follows. Let ε range over substitutions of the form [ē=z̄] where

ē contains no recursion parameters (note that the identity substitution is the special case of this

where the vectors are zero length). Given ε = [ē=z̄] and a boolean expression B not containing

recursion parameters we writebε for the boolean expression z̄ = ē and Bbε for B^bε. Using this strict

form of boolean environment we present the symbolic interpretation of our logic in Figure 5.8.

The first thing that we ought to check is that these symbolic semantics coincide in the correct way

with the data environment based semantics. We write t j=s
ρ;Bbε F iff t 2 [[F]]sρBbε. By correct we

mean that j=s coincides with j= for formulae without tag sets. The crucial difference between the

semantics is in fact the way tags are handled.

Proposition 5.4.2 If F is a recursion closed formula which has empty tag sets then t j=Bbε F iff

t j=s
Bbε F.

Proof Again, it is sufficient to use ordinal unwindings of fixpoints. We prove the result by well-

founded induction, with respect to the sub-formula ordering and ordinals, using the hypothesis

H(F) : t j=Bbε F iff t j=s
Bbε F

on recursion closed formulae and

Ho
(F) : 8θ � ((8X 2 FV (F) �H(θX)) implies H(θF))

on open formulae. Choose any F and suppose that Ho
(F 0

) holds for any F 0

< F. We are to show

that Ho
(F). To this end we suppose θ is such that H(θX) holds for each X 2 FV(F) and consider

the possible cases for F .

Case: Atomic Boolean, F is B0.

We know that θF � B0 and that t j=Bbε B0 iff Bbε j= B0 iff t j=s
Bbε B0. Thus Ho

(B0) holds easily.

Case: Recursion variable. Holds by assumption.

Case: Conjunction. Simple.

Case: Disjunction. F is F1 _F2.

We can assume that H(Fi) holds for i = 1;2. The if direction is straightforward. t j=s
Bbε θF1 _

θF2 implies that there exists two booleans B1;B2 such that Bbε j=B1_B2 with t j=s
Bibε

θFi, for i= 1;2.

By induction we get t j=Bibε θFi for i = 1;2 so whenever δ j= Bbε we know that δ j= Bi for i = 1 or

i = 2, in either case [t;δ] 2 [[θ(F1_F2)]]ρδ. Hence t j=Bbε θ(F1_F2).
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[[B0]]sρBbε =

�

G If Bbε j= B0

/0 Otherwise

[[F ^F 0

]]sρBbε = [[F]]sρBbε\ [[F 0

]]sρBbε
[[F _F 0

]]sρBbε =

S

f[[F]]sρB1bε\ [[F 0

]]sρB2bε j Bbε j= B1_B2g

[[hτiF]]sρBbε =

(

t j 9fcigI �Bbε j=
W

I ci;8i:9t
bi;τ
7�! t 0i with ci j= bi

and t 0i 2 [[F]]sρ(B^ci)bε

)

[[[τ]F]]sρBbε =

�

t j 8t
b0

;τ
7�! t 0 implies t 0 2 [[F]]sρ(B^b0)bε

�

[[hc!xiF]]sρBbε =

(

t j 9fcigI:Bbε j=
W

I ci � 8i:9t
bi;c!ei
7�! t 0i with ci j= bi

and t 0i 2 [[F[ei=x]]]sρ(B^ci)bε

)

[[[c!x]F]]sρBbε =

�

t j 8t
b0

;c!e
7�! t 0 implies t 0 2 [[F[e=x]]]sρ(B^b0)bε

�

[[hc?iG]]sρBbε =

(

t j 9fcigI:Bbε j=
W

I ci � 8i:9t
bi;c?
7�! (yi)t

0

i with ci j= bi

and (yi)t
0

i 2 [[G]]sρ(B^ci)bε

)

[[[c?]G]]sρBbε =

�

t j 8t
b0

;c?
7�! (y)t 0 implies (y)t 0 2 [[G]]sρ(B^b0)bε

�

[[9x:F]]sρBbε =

�

(y)t j 9b(w);w = new((y)t;9x:F) �Bbε j= 9w:b(w)

and t[w=y] 2 [[F[w=x]]]sρ(B^b(w))bε

�

[[8x:F]]sρBbε = f(y)t j 9w = new((y)t;8x:F) � t[w=y] 2 [[F[w=x]]]sρBbεg

[[A:(ẽ=z̃)]]sρBbε = ([[A]]sρ)B\[ε(ẽ)=z̃]

[[X ]]sρ = ρ(X)

[[µX [A]F]]sρ = µ f :([[F]]sρ[ f=X ]nλA)

[[νX [A]F]]sρ = ν f :([[F]]sρ[ f=X ][λA)

where λA(b) = ft j (b0; t)2 A and b j= b0g and n and [ denote pointwise set difference and union

respectively.

Figure 5.8. Symbolic interpretations of formulae
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Conversely, suppose that t j=Bbε θ(F1_F2). Let (for i = 1;2) Bi be defined by δ j= Bi iff δ j= Bbε
and [t;δ] 2 [[θFi]]ρδ. Then Bbε j= B1_B2 by hypothesis and induction gives t j=s

Bibε
θFi for i = 1;2.

Thus t j=s
Bbε θ(F1_F2).

Case:hαi. We show the case where α is τ.

Suppose t j=Bbε hτiθF 0, so that [t;δ] 2 [[hτiθF0]]ρδ whenever δ j= Bbε. Consider the set

�

(bi; t
0

i)
	

I
=

�

(b0; t 0) j t
b0

;τ
7�! t 0

�

of all symbolic τ transitions from t. We know that whenever δ j= Bbε there exists an i 2 I such

that δ j= bi and [t 0i;δ] 2 [[θF0

]]ρδ. Define ci so that δ0 j= ci iff δ0 j= (B^bi)bε and [t 0i ;δ0] 2 [[θF0

]]ρδ.

We then have ci j= bi, Bbε j=
W

I ci and, by induction, ti 2 [[θF0

]]sρ(B^ ci)bε. This tells us that

t j=s
Bbε hτiθF0.

Conversely suppose that t 2 [[hτiθF0

]]sρBbε. By definition we know that there exists fcigI such

that Bbε j=
W

I ci and for each i 2 I there is a t
bi;τ
7�! t 0 such that ci j= bi and t 0 2 [[θF0

]]sρ(B^ ci)bε.

Let δ j= Bbε, then δ j= ci for some i. Thus δ j= bi so we know [t;δ] τ
�! [t 0;δ], and, by induction,

[t 0;δ] 2 [[θF0

]]ρδ. Therefore [t;δ] 2 [[hτiθF0

]]ρδ.

Case: [α]. We show the case where α is c!x.

Suppose [t;δ] 2 [[[c!x]θF0

]]ρδ whenever δ j= Bbε. Now suppose that t
b0

;c!e
7�! t 0 for some b0; t 0 and

that δ j=Bbε^b0. We know that [t;δ] c!v
�! [t 0;δ] for v= [[e]]δ. This means that [t 0;δ]2 [[(θF0

)[e=x]]]ρδ
whenever δ j= (B^ b0)bε. Notice that (θF 0

)[e=x] � θ(F 0

[e=x]) as θ substitutes fixpoint abstrac-

tions for variables. Thus, by induction, we have t 0 2 [[θF 0

[e=x]]]sρ(B^ b0)bε. This tells us that

t 2 [[[c!x]θF0

]]sρBbε.

Conversely, suppose that t 2 [[[c!x]θF0

]]sρBbε. We know that t 0 2 [[θF 0

[e=x]]]sρ(B^ b0)bε when-

ever t
b0

;c!e
7�! t 0. Induction tells us that

[t 0;δ] 2 [[θF0

[e=x]]]ρδ whenever δ j= (B^b0)bε and t
b0

;c!e
7�! t 0 (5.2)

Now, let δ j= Bbε and suppose that [t;δ] c!v
�! p. We know that there must exist t 0;b0 and e such

that t
b0

;c!e
7�! t 0 where δ j= b0, v = [[e]]δ and p � [t 0;δ]. By (5.2) we know it must be the case that

[t 0;δ] 2 [[θF0

[e=x]]]ρδ, whence [t;δ] 2 [[[c!x]θF0

]]ρδ.

Case: Quantifiers. We show 9, the other case is similar.

Suppose that (y)[t;δ]2 [[9x:θF 0

]]ρδ whenever δ j= Bbε. This means that for each δ j= Bbε there

is a vδ such that [t;δ[vδ=y]] 2 [[θF 0

[vδ=x]]]ρδ. Note that this v can be chosen so that it depends

only on the free variables of (y)t and 9x:θF 0. We can choose a fresh variable, w and define b(w)

abstractly as δ j= b(w) iff δ j= Bbε and δ(w) = vδ. We immediately notice that Bbε j= 9w:b(w)

because δ j= Bbε implies δ[vδ=w] j= b(w). Now, whenever δ j= (B^b(w))bε we have that δ[vδ=w] =

δ. Corollary 2.5.2 tells us that [t[w=y];δ[v=w]]� [t;δ[v=y]], so, by Proposition 5.1.1 we know that

[t[w=y];δ]2 [[θF0

[w=x]]]ρδ and, by induction, t[w=y] 2 [[θF 0

[w=x]]]sρ(B^b(w))bε. This tells us that

(y)t 2 [[9x:θF0

]]sρBbε.

Conversely, suppose (y)t 2 [[9x:θF 0

]]sρBbε. Then there exists a fresh variable, w and a boolean

b(w) such that δ j= Bbε implies δ[v=w] j= b(w) for some v with t[w=y] 2 [[θF 0

[w=y]]]sρ(B^b(w))bε.

So, if δ j= Bbε then there is some v such that [t[w=y];δ[v=w]]2 [[θF 0

[w=x]]]ρδ[v=w], by induction.

Similarly, by Corollary 2.5.2 and Proposition 5.1.1 we know that [t;δ[v=y]]2 [[θF 0

]]ρδ[v=x]. This

is to say that (y)[t;δ] 2 [[9x:θF 0

]]ρδ.

Case: Application.

Suppose t j=Bbε θA:(ē=z̄) so that whenever δ j= Bbε we know [t;δ] 2 [[θA]]ρδ[ē=z̄]. Let ε0 =
[ε(ē)=z̄]. Now δ0 j= bε0 implies δ0 = δ[ē=z̄] for some δ j= ε. Therefore, by induction, we know

t j=s
Bbε0

θA, whence t j=s
Bbε θA:(ē=z̄). The converse is similar.
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Case: Fixpoint approximations. We show the case F is µαX :F 0.

Suppose t j=Bbε µαX :θF 0. If α is 0 then H(θF) holds trivially. If α is a limit ordinal then

H(µβX :F 0

) holds for all β < α. If t j=Bbε θF then t j=Bbε µβX :θF 0 for some such β. This means that

t j=s
Bbε µβX :θF 0, whence t j=s

Bbε µαX :θF0. Suppose then that α is β+ 1. We know that H(µβX :θF 0

)

holds by well-founded induction on ordinals. So define

θ0(Y) =
�

µβX :θF 0 if Y � X

θY otherwise.

It is easy to see that H(θY) holds for all Y 2 FV(F 0

) and, because F 0

< F implies that Ho
(F 0

), we

know that H(θ0F 0

). This is just H(θF0

[µβX :θF 0

=X ]), which, by definition, gives H(θF). �

We now see how fruitful the symbolic semantics are by returning to the Reduction Lemma,

Lemma 5.1.2, which failed for least fixpoints previously.

Lemma 5.4.3 (Reduction lemma revisited) Let M be the lattice of monotone functions from the

partial order (B;�) to (PT;�) and let ϕ : M !M be monotone. Then for any t 2 T;b 2 B,

t 2 νx:ϕ(x)(b) iff t 2 ϕ(νx:(ϕ(x)[λ(b; t)))(b)

and

t 2 µx:ϕ(x)(b) iff t 2 ϕ(µx:(ϕ(x)nλ(b; t)))(b)

where λ(b; t)(b0) =
�

ftg If b0 � b

/0 otherwise.

Proof The result for greatest fixpoints is similar to [107]. We consider the least fixpoint. The

if direction is easy. For the only if direction we suppose that t 2 µx:ϕ(x)(b). Standard fixpoint

theory [61] tells us that there exists an ordinal α such that t 2 ϕα
(b) where ϕ0

= λ/0 (the constant

empty function), ϕn+1
= ϕ(ϕn

) and ϕγ
=

S

β<γ ϕβ when γ is a limit ordinal. Let α be the least such

ordinal. M is a lattice of monotone functions so for all β < α and b0 � b we have that t 62 ϕβ
(b0)

and so ϕβ
= ϕβ

nλ(b; t). The result now follows from the monotonicity of ϕ. �

Lemma 5.4.4 If (B0; t) 2 A implies B0 6j= Bbε then

(1) t j=s
Bbε µX [A]F iff t j=s

Bbε F[µX [A [ (Bbε; t)]F=X ]

(2) t j=s
Bbε νX [A]F iff t j=s

Bbε F[νX [A[ (Bbε; t)]F=X ].

Proof Follows from previous lemma taking T to be T (G) and B to be the boolean expressions

(up to equivalence) ordered by j=�1. �

The approach to proving completeness is the same as the proof of the previous section. That

is we define a characteristic formula t satF which is the solution a fixpoint formula over a first-

order language of boolean expressions. We no longer require parameterised fixpoint formulae

as we deal with the recursion parameters using the Bbε statements. This requires knowing the ε
part of the environment when calculating (t satF). Figure 5.9 shows how this is done. For each

variable X , each term t, and each environment ε, we have a new variable Xtε and create a formula

νXtε : : :. We do not require a similar construction for least fixpoints here because, as we saw in

Proposition 5.2.2, any proof involving least fixpoints can be transformed into a proof involving

finite unwindings and therefore any boolean information required to do this proof can also be

expressed without least fixpoints. Again we note that the tag sets will contain more information

than is strictly necessary to define sat ; for fixpoints we only need to record the term t and the

environment ε in the tag sets but for the sake of a cleaner presentation later on we include the extra

syntax.
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ε. t satB = B[ε(z̄)=z̄]

ε. t satF1 ^F2 = ε. t satF1^ε. t satF2

ε. t satF1 _F2 = ε. t satF1_ε. t satF2

ε. t sathτiF =

W

t
b0;τ
7�!t0

b0^ε. t 0 satF

ε. t sat [τ]F =

V

t
b0;τ
7�!t0

b0! ε. t 0 satF

ε. t sathc!xiF =

W

t
b0 ;c!e
7�!t0

b0 ^ε. t 0 satF[e=x]

ε. t sat [c!x]F =

V

t
b0 ;c!e
7�!t0

b0! ε. t 0 satF[e=x]

ε. t sathc?iG =

W

t
b0 ;c?
7�!(x)t0

b0^ε. (x)t 0 satG

ε. t sat [c?]G =

V

t
b0 ;c?
7�!(x)t0

b0! ε. (x)t 0 satG

ε. (y)t sat8x:F = 8w:(ε. t[w=y]satF[w=x]) w = new((y)t;ε;8x:F)

ε. (y)t sat9x:F = 9w:(ε. t[w=y]satF[w=x]) w = new((y)t;ε;9x:F)

ε. t satA:(ē=z̄) = [ε(ē)=z̄]. t satA

ε. t satνX [A]F =

�

bBc if 9(Bbε0; t) 2 A with Bbε0 j=bε
νXtε:(ε. t satF [νX [A+

]F=X ]) otherwise

ε. t satµX [A]F =

�

ff if 9(Bbε0; t) 2 A with Bbε0 j=bε
(ε. t satF [µX [A+µ

]F=X ]) otherwise

where A+

= A [ ((ε. t satνX [A]F)

bε; t) and A+µ
= A [ ((ε. t satµX [A]F)

bε; t).

Figure 5.9. Sat construction for symbolic semantics
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DApps(B) = DApps(X) =
/0

DApps(F1^F2) = DApps(F1_F2) = DApps(F1)[DApps(F2)

DApps(hαiF) = DApps([α]F) = DApps(F)

DApps(8x:F) = DApps(9x:F) = DApps(F)

DApps(µX [A]F) = DApps(νX [A]F) = DApps(F)

DApps(A:(e=z)) =

�

DApps(A) If e = z

DApps(A)[feg Otherwise.

Figure 5.10. Definition of function DApps over formulae.

We define what it means for a formula F to be tag restricted in a similar manner to before;

νX [A]F (or µX [A]F) is tag restricted if each node appears at most once in A for each substitution

ε. A formula F is tag restricted if all of its abstraction sub-formulae are tag restricted. A term t

can now appear more than once in the tag set of a tag restricted formula. However, any given term

t along with a substitution ε may appear at most once.

This change will of course affect our ordering �+. The relation � given in the previous

section is also well-founded for formulae of this sub-logic; this depends on the fact that only a

finite number of substitutions, ε, are used as we unwind a formula against a finite graph.

Proposition 5.4.5 If G is finite then�G is well-founded on parameter and tag restricted formulae.

Proof We suppose without loss of generality that our fixpoint formulae only use a single recursion

parameter, z. Because the new notion of tag restriction allows a term t to appear several times in

each tag set, one for each different ε, it is sufficient, in light of Proposition 5.3.1, to check that

we only encounter finitely many ε environments as we calculate (ε . t satF). By inspecting the

definition of (ε . t satF) we notice that given an ε = [e=z] then a new ε0 is created only at the

application stage, that is

ε. t satA:(e0=z) = ε0 . t satA

where ε0 = [ε(e0)=z]. Now the restriction on parameters tells us that either

� ε0 = [e=z] when e0 is simply the parameter z or

� ε0 = [e0=z] when e0 does not contain recursion parameters.

This observation allows us to describe a general form which the ε must satisfy as we calculate

(ε. t satF). We need to describe the possible data expressions which e;e0 may be.

We define the function DApps inductively over the depth of formulae in Figure 5.10 and note

that DApps(F) is finite for any formula F. We let

Outs(G) =

n

e 2ValExp j 9t; t 0 2 G:t
b;c!e
7�! t 0 for some b;c

o

be the collection of the data expressions which appear on the output arcs of G. For finite G we see

that this set is also finite. Var is the finite set of variables used in G. Let BV?(F) be the variables

bound by quantifiers in F and let BV !(F) be the variables bound by hc!i and [c!] modalities in F .

We may assume that BV?(F) and BV !(F) are disjoint by α-conversion and they are clearly both

finite.

All environments ε0 used when calculating ε. t satF are described by the general form

�

e[w̄; ē0=x̄; ȳ]=z
�
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where e 2 DApps(F), x̄ 2 BV?(F), ȳ 2 BV !(F), w̄ 2Var, and ē0 2 Outs(G). All of the above sets

are finite hence there can be finitely many different ε. �

We must modify the definition of a generated pair slightly. Now we will consider triples

(ε; t;F) which can be reached using the � rewriting relation. We adapt this relation slightly by

decorating the rules of Figure 5.7 with ε substitutions in the obvious manner so that

(ε; t;A:(ē=z̄))� ([ε(ē)=z̄]; t;A);

and

(ε; t;νX [A]F)� (ε; t;F[νX [A+

]F=X ]) if (Bbε; t) 62 A for any B

where A+

= A [ ((ε. t satνX [A]F)

bε; t). There is a similar rule for least fixpoints.

Proposition 5.4.6 For all recursion closed formulae, F0, with empty tag sets, finite G

Bbε0 j= ε0 . t0 satF0 iff t0 j=
s
Bbε0

F0:

Proof We prove by well-founded induction, on triples generated from (ε0; t0;F0), that, with η
defined as in Theorem 5.3.2, we have

Bbε j= [[ε. t satF]]η iff t j=s
Bbε F:

Case: Boolean. If t 2 [[B0]]sρBbε then Bbε j= B0. Now, δ j= Bbε implies δ = δ[ε(z̄)=z̄], so

δ[ε(z̄)=z̄] j= B0. Thus δ j= B0[ε(z̄)=z̄], which gives δ j= [[ε. t satB0]]η as required.

Case: Conjunction. Trivial.

Case: Disjunction.

Suppose t 2 [[F1 _ F2]]sρBbε so that t 2 [[F1]]sρB1bε and t 2 [[F2]]sρB2bε for some B1;B2 such

that Bbε j= B1 _B2. By induction we know that B1bε j= [[ε . t satF1]]η and B2bε j= [[ε . t satF2]]η.

Thus Bbε j= (B1_B2)bε j= [[ε . t satF1 _ ε . t satF2]]η� [[ε . t sat(F1_F2)]]η. The converse is given

immediately by induction.

Case: hαi. We show the case α is τ.

Suppose t 2 [[hτiF]]sρBbε. Then there exists fcigI such that Bbε j=
W

ci and for each i 2 I we

have t
bi;τ
7�! t 0i with ci j= bi and t 0i 2 [[F]]ρ(B^ci)bε. Induction tells us that (B^ci)bε j= [[ε. t 0i satF]]η.

So, for each δ j= Bbε we know that δ j= ci for some i. Thus δ j= bi and δ j= [[ε. t 0i satF]]η also. This

tells us that

δ j= [[

_

t
b0;τ
7�!t0

b0^ε. t 0 satF]]η;

which implies Bbε j= [[ε. t sathτiF]]η.

Conversely, if Bbε j= [[ε . t sathτiF]]η then we simply let ci be bi^ [[ε. t 0i satF ]]η and we are

done.

Case: [α]:F. We show the case α is c!x.

Suppose that t 2 [[[c!x]F]]sρBbε. We know that whenever we have a transition t
b0

;c!e0

7�! t 0 we have

t 0 2 [[F[e0=x]]]sρ(B^ b0)bε. If we assume that δ j= Bbε and δ j= b0 for some b0 such that t
b0

;c!e0

7�! t 0

then, by induction, we know that δ j= [[ε . t 0satF [e0=x]]]η, thus Bbε j= [[b0! ε . t 0 satF[e0=x]]]η for

all such b0. Whence Bbε j= [[ε. t sat [c!x]F ]]η.

Conversely, suppose that Bbε j= [[ε . t sat [c!x]F]]η. Then (B^ b0)bε j= [[ε . t 0 satF[e0=x]]]η for

each b0;e0 such that t
b0

;c!e0

7�! t 0. This implies that t 0 2 [[F[e0=x]]]sρ(B^ b0)bε and consequently t 2

[[[c!x]F]]sρBbε.
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Case: Quantifiers. Simple.

Case: Application.

Firstly, let ε0 denote [ε(ē)=z̄] and suppose t 2 [[A:(ē=z̄)]]sρBbε. Then t 2 [[A]]sρBbε0 and, by

induction, we know Bbε0 j= [[ε0 . t satA]]η. Let δ j= Bbε so that δ[ē=z̄] j= Bbε0. This gives us that

δ[ē=z̄] j= [[ε0 . t satA]]η and, because z̄ does not appear free in [[ε0 . t satA]]η, we have δ j= [[ε0 .
t satA]]η� [[ε. t satA:(ē=z̄)]]η.

Conversely, Bbε j= [[ε.A:(ē=z̄)]]η implies that Bbε j= [[ε0 . t satA]]η. Now, because z̄ does not

appear free in [[ε0 . t satA]]η we have that Bbε0 j= B j= [[ε0 . t satA]]η and hence, by induction, t 2

[[A:(ē=z̄)]]sρBbε.

Case: Fixpoints.

Straightforward. Uses Lemma 5.4.4 and well-founded induction. �

The next ingredient in the completeness proof is provabilty from the sat assumption. The side-

condition used to define sat at least fixpoints is not strict enough to guarantee the side-condition

of the µ proof rule. We recall that this proof rule

µ
B ` t : F[µX [A [ (B; t)]F=X ]

B ` t : µX [A]F

had a necessary side-condition that whenever (B0; t) appeared in the tag set A then B and B0 were

disjoint. With the symbolic interpretation of formulas we can now relax this condition so that we

now only require that B0 6j= B. This is sufficient to allow us to establish

Lemma 5.4.7 For all finite G and triples (ε; t;F) generated from (ε0; t0;F0) with η as above,

[[(ε. t satF)]]ηbε ` t : F:

Proof Again we use � for well-founded induction on F . For the most part the proof is similar to

that in [43] with the following notable differences:

The base case for atomic propositions requires that B[ε(z̄)=z̄]^bε ` t : B. This follows from Id

and Cons because B[ε(z̄)=z̄]^bε j= B.

The case for application goes as follows: We know by induction that [[(ε0. t satA)]]ηbε0 ` t : A is

derivable (where ε0 = [ε(ē)=z̄]). Using rules η and Subst we get [[(ε0. t satA)]]ηbε0[ē=z̄]` t : A:(ē=z̄).

Then, as bε j=bε0[ē=z̄], we see, by Cons, that [[(ε. t satA:(ē=z̄))]]ηbε ` t : A:(ē=z̄).

For fixpoints we simply use induction and the unfolding rules when t;ε is not in the tag set and

use rule ν0 or an empty Case otherwise. �

Proof (Theorem 5.4.1, Completeness)

We prove a slightly different statement, that is, t j=s
Bbε F implies Bbε ` t : F and witness the

theorem, via Proposition 5.4.2, as an instance of this when ε is the identity. Suppose t j=s
Bbε F ,

then by Proposition 5.4.6 we get Bbε j= ε . t satF. The previous Lemma provides a derivation of

(ε. t satF)

bε ` t : F so an application of Cons will complete the proof. �

5.5 Example

We now present an extended example of a proof that a finite symbolic graph, compiled from

a process declaration, satisfies a property expressed in our logic. In particular, the property is

expressed using restricted parameters only and uses both minimal and maximal fixpoint formulae.

The process that we declare allows an input stream of non-negative integers on channel i and for

each input received performs an output of the maximum value received so far on channel o. The

process may be rendered as the parallel composition of two components: A process Main which

determines the greater of its two inputs on i and k and sends the result on another internal channel

m, and a process Split which splits the input received on channel m by rerouting it on both o and

k. The whole process is illustrated in Figure 5.11.
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Figure 5.11. Flow diagram for process Max
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Figure 5.12. Symbolic graph for Max.

Using this description a syntactic version of this process Max, is easily obtained.

Max
de f
= (Main j k!0:Split)nfk;mg

where

� Main(= k?x:i?y:(x> y !m!x:Main;m!y:Main)

+ i?y:k?x:(x> y !m!x:Main;m!y:Main)

� Split (= m?x:o!x:k!x:Split

Given a syntactic description of a process it is a simple matter to compile it down to a symbolic

graph. This treatment can be given to Max and we see in Figure 5.12 that the resulting graph is

in fact finite. We should point out that at node t1 in this graph the τ transition leaving this node is

guarded by the boolean y � 0. In light of the fact that y is an non-negative integer we elide this

guard. Also, as a companion to this τ transition, there is another τ move with false guard y < 0.

We prune this branch of the graph for the sake of clarity.

The property that we wish Max to satisfy is that for every input on channel i there is an output

on channel o of the maximum value received so far. Naturally there are internal actions to be
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accounted for so we will consider weak modalities, hhαii and [[α]]. A term will satisfy hhαiiF if it

can do finitely many τ transitions followed by an α transition to a term which satisfies F. Because

we demand only finitely many τ transitions we use least fixpoints to define these modalities:

hhαiiF � (µX :hτiX :(z̄=z̄)_hαiF):(x̄=z̄)

where x̄ = f v(F). Similarly for box modalities

[[α]]F � (µX :[τ]X :(z̄=z̄)^ [α]F):(x̄=z̄):

We write the specification as a greatest fixpoint formula,

FMax � [[i?]]8y:A:(y;0=z;z0)

where z is a parameter which represents the last value input, z0 is a parameter which represents

the maximum value received so far and A is defined to be νX :(F1^F2). We use two formulae F1

and F2 to reflect the fact that, in addition to immediately outputting after an input, the process is

able to receive (at most) the next input to be compared before any output transition occurs. These

formulae can be written.

F1 � hho!xii[[i?]]8y0:F3 and F2 � [[i?]]8y0:hho!xiiF3

where

F3 � ([x = z0^ z0 > z]_ [x = z^ z� z0])^X :(y0;x=z;z0):

It is possible to give a proof that tt ` t0 : FMax, however, purely in order to make the proof

concise, we use more specific formulae to replace F1 and F2. We actually will use

F1 � hho!xii[[i?]]8y0:(hτi)F3_F3)

and

F2 � [[i?]]8y0:ho!xihτiF3:

These formulae differ from the former two only in their τ modalities.

In the following proof B ` t; t 0 : F will be an abbreviation for the two sequents B ` t : F and

B ` t 0 : F and BMax will denote the boolean expression [x = z0 ^ z0 > z]_ [x = z^ z � z0] so that

F3 � BMax^X :(y0;x=z;z0).

The goal tt ` t0 : FMax follows from rules 8, [τ]; [i?];^;µ and Subst if we can establish

tt ` t 00; t1 : A:(y;0=z;z0):

These can be obtained by using Subst and ν1 unfolding from

bε0 ` t 00; t1 : (F1^F2)[A1=X ]

where bε0 � z = y^z0 = 0 and A1 = νX [A]F1^F2 with A = (

bε0; t
0

0) (or, accordingly, (bε0; t1)). These

judgements can be broken up into the four judgements

bε0 ` t 00; t1 : F1[A1=X ] and bε0 ` t 00; t1 : F2[A1=X ]

by using the rule ^. Taking each of these in turn we see that the former pair can be reduced, by

using µ unfolding and hτi rules (twice for the t 00 case) and then a ho!i rule to get

bε0 ` t2 : [[i?]]8y0(hτiF3_F3)[A1=X ][y=x]: (5.3)

Secondly we reduce the latter pair of sequents to

bε0 ` t3 : ho!xihτiF3[A1=X ] (5.4)
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again by using µ-unfoldings and [τ] rules and a [i?] rule. Now both (5.3) and (5.4) can be reduced to

the single judgement bε0 ` t4 : F3[A1=X ][y=x] by using the appropriate modality rules. We notice that

bε0 j=BMax[y=x] so, using rules^, Cons and Id, our proof obligation becomes bε0 ` t4 : A1:(y
0

;y=z;z0).

We strip the outer application with rule Subst to get

bε1 ` t4 : A1

where bε1 � z = y0^ z0 = y. This judgement is ready to be ν unfolded to become

bε1 ` t4 : (F1^F2)[A2=X ]

where A2 = νX :[A;(bε1; t4)]F1^F2. At this point we do a case analysis on y and y0. This is done by

using the Case rule to get the two sequents

y > y0^ bε1 ` t4 : (F1^F2)[A2=X ] (5.5)

and

y0 � y^ bε1 ` t4 : (F1^F2)[A2=X ]: (5.6)

We deal with (5.5) first: this judgement can be divided, using ^, and then each branch dealt with

by using the appropriate modality and µ unfolding rules to obtain the sequent y > y0 ^ bε1 ` t4 :

F3[A2=x][y=x]. In each case we are using the τ transition going back to node t 01 and following the

diamond of transitions to return to t4. To close this branch of proof we note that y > y0 ^ bε1 j=

BMax[y=x], so we can reduce the statement to y > y0^ bε1 ` t4 : A2:(y
0

;y=z;z0) and, after using rule

Subst, that ν0 is applicable as (bε1; t4) is in the tag set of A2.

We must now turn our attention to establishing (5.6). Similarly we can divide the judgement

into two using ^ and in both cases follow the appropriate transitions down to the lower part of the

graph and through the diamond to get to

y0 � y^ bε1 ` t5 : F3[A2=X ][y0=x]:

This judgement is reduced to y0 � y^ bε1 ` t5 : A2:(y;y
0

=z;z0) by noting that y0 � y^ bε1 j= BMax[y
0

=x]

and using the ^ and Cons rules. We then must apply rule Subst to get

bε2 ` t5 : A2

where bε2 � z = y^ z = y0. Now ν0 is not yet applicable so we must unfold once more to get

bε2 ` t5 : (F1^F2)[A3=X ]

where A3 = νX [A;(bε1; t4);(bε2; t5)]F1^F2. The proof now continues in a similar manner to before;

we do a case analysis on y and y0 to reduce to

y0 > y^ bε2 ` t5 : (F1^F2)[A3=X ] and y� y0^ bε2 ` t5 : (F1^F2)[A3=X ]:

The left branch follows the modalities back around the lower diamond of the graph and uses the

tag (

bε2; t5) to close the proof. The right branch uses the τ transition travelling back to the upper

part of the graph and uses the tag (

bε1; t4) to close the proof and then we are done.



Chapter 6

Unique Fixpoint Induction in Value-Passing CCS

The proof systems of Chapters 2 and 3, and indeed the proof system of [41] upon which these

were based suffer from the fact that their use is restricted to the finite terms of the languages CBS,

and value-passing CCS respectively. A vital feature of process languages is the ability to describe

recursive processes. For this reason the proof systems for the sublanguages of finite terms that we

have considered are of limited interest. However, they do provide a good basis for the development

of more general proof systems for recursively defined agents. In [74] we saw that just three extra

inference rules, at least for strong bisimulation, were required for the amelioration of the proof

system for finite terms to be able to handle recursively defined agents. The approach used to great

effect in [72, 73, 74] is that of Unique Fixpoint Induction.

Milner used a fixpoint notation fix(X = E) to allow recursion in CCS. We prefer to adopt a

declarative notation with which a recursive agent can be defined as

X (= p

where p is a term which may contain the agent constant X . In fact to allow mutual recursion we

use a declaration, which is a finite set

fXi (= pigI ;

where I is some indexing set with a designated element 1 called the leading element. Any of the

constants may appear in each pi. Suppose for now that we have the singly declared agent, X (= p.

We can recast Milner’s rule of [74] as

UFI
` q = p[q=X ]

` q = X

provided that p is guarded, that is any occurrence of the constant X in p must fall within the scope

of an action prefix. So that X is guarded in α:X but not in X +α:X . At first glance this rule appears

to be allowing us to assume that q is provably substitutable for X and then, using this somehow,

infer that they are in fact provably equal. Although, in logical terms, this seems a bit like assuming

φ to prove φ, we actually have our assumption about guardedness to make the rule sound. Insisting

that p be guarded and substituting q for X ensures that the assumption that q = X cannot be used

immediately. The UFI rule presented above could not be rendered as follows:

q = X ` q = p

` q = X

because we ought not to have access to the assumption q = X until we have stripped away any

prefixes guarding X in p.
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The soundness of the proof technique UFI, holds principally due to the coinductive definition

of bisimilarity. Consider the two agents

X (= α:X and Y (= α:Y +α:X :

We would happily convince ourselves that X and Y are bisimilar by reasoning similar to the reason-

ing we would use for UFI. We would consider each α-move from Y and match it with a move from

X . For example Y
α
�! Y is matched by X

α
�! X and here, but not before, we assume that X and

Y are bisimilar. Formally we would construct R = f(X ;Y);(X ;X)g as a witnessing bisimulation

and then appeal to the coinduction principle which tells us that R ��.

The UFI rule using a full declaration, fXi (= pigI , is similar in spirit to the previous rule. We

simultaneously establish the hypotheses that

` qi = pi[q̄=X̄]

for terms fqigI and guarded declarations fpigI. From this we infer that q1 = X1.

The purpose of this chapter is to investigate the use of unique fixpoint induction in a value-

passing language in order to characterise bisimulation equivalences over a class of recursively

defined agents. The particular language we consider is value-passing CCS but we anticipate that

the discussion will be applicable to a wider class of process languages, including CBS.

Recently, attempts have been made to generalise this proof technique to process calculi which

feature communication of data, [42, 64]. These attempts were reasonably successful in that com-

plete proof systems for strong bisimulation equivalence were found for regular, guarded, terms

of both the π-calculus and value-passing CCS. In the latter case, however, completeness was ob-

tained for a class of processes whose parameters were restricted to vectors of names alone. We

re-examine this proof system to ascertain why this restriction was necessary and whether we can

remove it.

6.1 Abstractions and UFI

The first issue we address in adapting the UFI rule to a value-passing language is the problem

of substitution. The hypothesis of the UFI rule utilises the operation [q̄=X̄ ], substitution of agent

constants. What is the correct analogy in a value-passing language? Recall that agent constants for

value-passing allow parameterisation, we wish to write terms of the form X(v̄). This requires that

the constants be considered as functions from values to terms, that is, abstractions. Declarations

are of the form

X (= λx̄:t

where all of the free variables of t occur in x̄. The substitution operation then will apply to ab-

stractions. We write t[ f=X ] for the term t with all occurrences of the abstraction identifier X

syntactically replaced by f . So it is clear that, in order for this expression to be well-formed, f

and X must be of the same arity necessarily. More generally we write [ f̄=X̄ ] as an abbreviation for

the operator [ fi=Xi j i 2 I], the simultaneous substitution of the abstractions fi for the constants Xi.

A precise definition of this operator can be found in [104], as can the following simple facts:

(i) t[ f̄=X̄ ][ḡ=Ȳ ]� t[ ¯f [ḡ=Ȳ ]; ḡ=X̄ ;Ȳ ]. Moreover, when the constants appearing in f̄ are disjoint

with Ȳ then t[ f̄=X̄ ][ḡ=Ȳ ]� t[ f̄ ; ḡ=X̄ ;Ȳ ]

(ii) t[ē=x̄][ f̄=X̄ ]� t[ f̄=X̄ ][ē=x̄].

Consider a first attempt at a generalised UFI rule. Recall that the proof systems of [41] and

those of Chapters 3 and 4 have sequents of the form b� t = u where t and u are process terms, not

abstractions. Therefore the UFI rule might look like

` b�ui = ti[ f̄=X̄ ]

` b�u1 = X1(x̄1)
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where fi � λx̄i:ui and fXi (= λx̄i:tig is a guarded declaration. This rule, naively stated as above,

is unsound. Hennessy and Lin, [42], provide the following example to show this. Let

Y (= λx:c!jxj:c?z:Y(z)

and

X (= λx:c!x:c?z:X(z):

The judgement` x� 0�X(x) =Y (x) can be proven using the putative UFI rule above but X(x)δ�
Y (x)δ is clearly untrue for any δ j= x � 0. To apply the rule we would have to establish the

hypothesis

` x � 0�λx:X(x) = c!jxj:c?z:Y(z)[λx:X(x)=Y]:

This can easily be achieved by β-reducing, unfolding and by virtue of the fact that x� 0 j= x = jxj.

We consider why this rule fails to be sound. Recall that the unique fixpoint induction described

for pure CCS allows one, to assume that q = X , after doing some work in stripping away prefixes,

in order to prove q = X . The analogue of this in the previous example would be to assume x �

0�X(z) = Y (z). This is clearly a false assumption, which leads to a false conclusion. A single

unwinding of recursive declarations is used for this would-be proof by unique fixpoint induction;

the boolean condition x � 0 is enough to guarantee soundness on the first unwinding only and

looks no further ahead. To ensure soundness here we would need to know that x � 0 j= z = jzj.

The problem with the unsound rule stems from the fact that we are trying to establish properties

of process terms like X(x̄), whilst the substitution [ f̄=X̄ ] tells us that we are assuming properties

of abstractions. This evident disparity can be rectified by considering abstractions in the proof

system directly. Instead of using UFI to establish properties of process terms we use it to establish

properties of abstractions. This would make the proof rule look like this:

` tt� fi = λx̄i:ti[ f̄=X̄ ]

` tt� f1 = X1
:

Abstractions are always closed terms so no boolean conditions are necessary. This is a sound rule

and directs the development of the proof system towards allowing sequents whose terms may be

abstractions.

6.1.1 The proof system

We have already mentioned that the proof systems that we will present are drawn directly from

[42], which are based on those of [41] for finite CCS terms. The extra detail carried around by

sequents is the name of an underlying declaration. A set of definitions

fXi (= λx̄i:ti j i 2 Ig

is called a declaration provided that the following conditions hold:

� 1 is a designated element of I,

� the constants appearing in ti are contained in fXigI .

� Xi = X j implies i = j.

We say that Xi is guarded in the declaration D if each occurrence of Xi in any of the terms t j falls

within the scope of an action prefix. That is, Xi is a subexpression of some subexpression α:t of

t j. The whole declaration D is guarded if Xi is guarded in D for each i 2 I. We will write TD for

the class of terms which can be built using only the identifiers which have been declared in D.

So, sequents are now of the form

`D b� t = u and `D b� f = g
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where D is a declaration. The declaration given on a sequent is used to identify how to unfold a

recursively defined constant. That is, the unfolding rule

`D tt�X = f
if X (= f 2 D

uses D to determine f , the body of X . This could be achieved without having to carry the name D

around by simply assuming an underlying declaration, D, and referring to this in side-conditions.

However, the declaration is named explicitly on a sequent in order to allow declarations to be

extended mid-proof. For example, suppose a proof we are attempting leads to the subgoal

`D b� t = u

where t and u are both in TD. We conceivably might have to introduce a new agent constant X by

extending D with an extra definition and then prove

`D[fX(=λx:t0g b� t = X(x) and `D[fX(=λx:t0g b�X(x) = u:

Transitivity would only allow us to conclude

`D[fX(=λx:t0g b� t = u

but not the desired sequent. We notice though that the terms t and u do not contain the constant X

at all and therefore this judgement is valid in the smaller declaration D. We introduce a proof rule

which allows us to shrink declarations:

`D[E b� t = u

`D b� t = u
if t;u 2 TD

and conclude that `D b� t = u. Had we merely assumed an underlying declaration we could not

conclude with this sequent.

A full listing of the proof rules of [41], suitably decorated with declarations, appears in Fig-

ure 6.1 and the additional rules required for handling constants and abstractions of [42] are given

in Figure 6.2. The reader should notice the similarity between the rules of Figures 3.3 and 6.1.

The input rule we present here is called L-INPUT to reflect the fact that we will, initially, be

characterising late bisimulation; a simple modification to this rule alone suffices to capture early

bisimulation. Clearly, the useful properties concerning the manipulation of boolean guards listed

in Proposition 3.2.3 also hold for the current proof system and we shall use these liberally.

The set of axioms A from Chapters 2 and 3 comprises the four laws which state that choice, +,

forms a commutative, idempotent monoid with nil as unit. These four axioms are precisely what

is required in the present setting to provide a complete axiomatisation of strong bisimulation.

Generally, we will write B `D b� t = u to mean that the sequent `D b� t = u can be derived using

the inference rules above and the axioms in B. For readability we will omit the B whenever it is

either irrelevant or clear from context.

As it stands, performing even simple derivations in this proof system is somewhat labori-

ous. However, much of the work involved lies in repetitive applications of β-reductions and

λ-eliminations. In an attempt to make the proof system more accessible one might show that

common derivation steps can be packaged up into a single derivable rule. For example, the rule

SUBST
`D b� t = u

`D bσ� tσ = uσ

is derivable, for any substitution σ. Hennessy and Lin, [42], conceived the following, derivable,

rule of inference:
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EQUIV
`D tt� t = t

`D b� t = u

`D b�u = t

`D b� t = u `D b�u = v

`D b� t = v

AXIOM
t = u 2 Axioms

`D tt� t = u

CONG
`D b� t1 = u1 `D b� t2 = u2

`D b� t1 + t2 = u1+u2

α-CONV
`D tt�c?x:t = c?y:t[y=x]

if y 62 f v(t)

L-INPUT
`D b� t = u

`D b�c?x:t = c?x:u
if x 62 f v(b)

OUTPUT
b j= e = e0 `D b� t = u

`D b�c!e:t = c!e0:u

TAU
`D b� t = u

`D b�τ:t = τ:u

GUARD
`D b^b0� t = u `D b^:b0�nil = u

`D b�b0 ! t = u

CONS
`D b0� t = u

`D b� t = u
if b j= b0

CASE
`D b1� t = u : : : `D bn� t = u

`D

W

1�i�n bi� t = u

Figure 6.1. Inference rules for finite CCS
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dec-I
`D b� t = u

`D[E b� t = u

dec-E
`D[E b� t = u

`D b� t = u
if t;u 2 TD

FIX
`D tt�X = f

if X (= f 2 D

UFI
8i 2 I `D tt�gi = fi[ḡ=X̄ ]

`D[E tt�g1 = X1

where E = fXi (= figI

is a guarded declaration

λ-I
`D b� f (x̄) = g(x̄)

`D b� f = g
if x̄ 62 f v(b) and xi 6= x j for i 6= j

λ-E
`D b� f = g

`D b� f (ē) = g(ē0)
if b j= ē = ē0

β
`D tt� (λx̄:t)(ē) = t[ē=x̄]

Figure 6.2. New inference rules for constants and abstractions

If E = fXi (= λx̄i(bi ! ti)gI is a guarded declaration then

UFI�O
8i 2 I `D bi� fi(x̄i) = ti[ f̄=X̄ ]

`D[E b1� f1(x̄1) = X1(x̄1)

where fi � λx̄i(bi ! ui) for some terms ui.

It is this version of the UFI rule that lies at the heart of the completeness proofs of [42]. For this

reason we take a closer look at the rule and ask why it is sound.

Firstly, imagine an application of this rule in which we are trying to establish b1� f1(x̄1) =

X1(x̄1) by assuming that bi � fi = Xi is valid for each i, with the restriction that we only use

these assumptions in the scope of an action prefix. Now, suppose we are trying to establish the

hypothesis bi� fi(x̄i) = ti and in doing so, after we remove a prefix from ti, we reach a subgoal

which requires us to show

bi^b0� f j(ē) = X j(ē) (6.1)

for some boolean b0. Hennessy and Lin now observed that we can only soundly use the assumption

b j � f j = X j in the boolean world b j not bi ^ b0. In order to ensure that we will always be in

the world b j when the assumption is to be used they insisted that the boolean, b j, guard both the

declared identifier X j and the abstraction f j. Also, in a similar vein, they found that the assumption

b j� f j = X j cannot be used to prove (6.1) unless it is the case that ē = x̄ j. Demanding this leads

to using a restricted language where the parameter ē is a vector of variables alone. This restriction

allows a saturation of declarations with all possible permutations of this vector, which is enough

to guarantee that ē = x̄ j will hold.

A valid application of the unique fixpoint induction proof method, to prove that recursive

processes p and q are bisimilar, corresponds roughly to finding matching loops in the underlying

transition graphs of p and q. In the current value-passing setting we consider symbolic graphs

with assignment to be the underlying models. Finding matching loops in symbolic graphs with
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assignments involves not only finding loops with corresponding actions but also ensuring that the

data which is output from each graph is equivalent and also that the assignments made during the

loop are equivalent. In other words, we need to establish a loop invariant, b, which guarantees

that the output is equivalent, and we need to show that the invariant is preserved by assignments.

For example, consider the processes X(x) and Y (y) where

X (= λx:c!x:X(x+1)

and

Y (= λy:c!(�y):Y(y�1):

These definitions describe the same process under the constraint x = �y. Thus, a successful

application of a more general version of UFI would establish x = �y as the loop invariant and

show that x =�y implies x+1 = �(y�1).

Drawing upon our analogy with loop invariants we now see that the restrictions that Hennessy

and Lin impose are more than is necessary. We simply require that the invariant(s) fbigI be pre-

served by the substitutions created by recursive calls such as X j(ē) in (6.1). This amounts to asking

that

bi^b0 j= b j[ē=x̄ j]

whenever we encounter a subgoal such as (6.1). To formalize this we syntactically define a func-

tion Calls(Xi) on identifiers in D which returns the set of (b; j; ē) such that X j(ē) appears as a

subexpression of ti guarded by the boolean condition b. This is done by defining the relation� by

induction on terms, having first ensured that bound names appear uniquely within terms by using

α-conversion:

- X j(ē)
tt
� ( j; ē)

- t
b
� ( j; ē) implies α:t

b
� ( j; ē) and tnc

b
� ( j; ē)

- t1
b
� ( j; ē) or t2

b
� ( j; ē) implies t1 + t2

b
� ( j; ē) and t1jt2

b
� ( j; ē)

- t
b0

� ( j; ē) implies b! t
b^b0

� ( j; ē)

Given this relation we define Calls(Xi) simply to be the set

�

(b; j; ē) j ti
b
� ( j; ē)

�

:

We see how the ideas about loop invariants translate into a new version of the UFI rule:

If E = fXi (= λx̄i:tigI is a guarded declaration and fi � λx̄i:ui is a collection of ab-

stractions. Then

UFI� Inv
`D bi� fi(x̄i) = ti[ f̄=X̄] 8i 2 I

`D[E b1� f1(x̄1) = X1(x̄1)

provided that bi^b j= b j[ē=x̄ j] whenever (b; j; ē) 2Calls(Xi).

Intuitively one can see that our version of UFI is sound. Moreover, it gives a tighter analysis of the

structural reasoning involved in a proof by unique fixpoint induction for value-passing processes.

A testament to its power is the fact that we will now obtain stronger completeness results than

those present in [42, 64]. Firstly, though, we show that UFI-Inv is compatible with Hennessy

and Lin’s proof system by deriving it from UFI. Note that this derivation requires congruence

properties of j and nc in the proof system. These congruence properties will be provable in the

presence of the expansion laws of Figure 6.3.
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Proposition 6.1.1 UFI-Inv is a derivable rule.

Proof We actually derive the rule from UFI-O which was itself proven to be derivable in [42].

Suppose

`D bi� fi(x̄i) = ti[ f̄=X̄ ]

for each i 2 I. Let f 0i � λx̄i(bi ! fi(x̄i)) and let E 0 be the declaration constructed from E by

replacing each Xi (= λx̄i:ti with X 0

i (= λx̄i(bi ! t 0i) and t 0i � ti[X̄ 0

=X̄ ]. It is easy to see that

`D bi� fi(x̄i) = f 0i (x̄i) (6.2)

and

`D[E[E0 bi�Xi(x̄i) = X 0

i (x̄i):

By using the side-condition that bi^ b j= b j[ē=x̄ j] for each (b; j; ē) 2Calls(Xi), we use structural

induction on the term ti to prove that

`D[E[E0 bi� ti[ f̄=X̄ ] = t 0i [ f̄ 0=X̄ 0

]: (6.3)

Consider the structure of ti.

Case ti is X j(ē). Then (tt; j; ē) 2Calls(Xi). We need to show that

`D[E[E0 bi� f j(ē) = f 0j(ē):

This follows easily by β-reducing f 0j(ē), because bi^ tt j= b j[ē=x̄ j], by hypothesis.

Cases ti is α:t, t1+ t2 , t1jt2 and tnc are all similar in that we apply induction to their sub-terms

and then use the respective rules for congruence.

Case ti is b0 ! t. We know that if we have ti
b
� ( j; ē), then we must have t

b00

� ( j; ē) where

b = b0^b00. This means that we know bi^b0^b00 j= b j[ē=x̄ j] by hypothesis. Induction gives

`D[E[E0 bi^b0� t[ f̄=X̄ ] = t 0[ f̄ 0=X̄ 0

]

and boolean manipulation gives

`D[E[E0 bi� ti[ f̄=X̄ ] = t 0i [ f̄ 0=X̄ 0

]:

So, collecting derivations (6.2), (6.3) and the hypothesis together we get

`D[E[E0 bi� f 0i (x̄i) = t 0i [ f̄ 0=X̄ 0

];

whence

`D[E[E0 b1� f 01(x̄1) = X 0

1(x̄1)

by UFI-O. The result now follows easily by transitivity and dec-E. �

6.2 Soundness and completeness for strong bisimulation

Soundness of the proof system of the previous section, with respect to strong bisimulation, is due

to Hennessy and Lin. It is clear, because of derivability, that UFI-Inv, is a sound proof technique.

Proposition 6.2.1 (Soundness) If D is a guarded declaration and t;u 2 TD then A `D b� t = u

implies t �b
L u.
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Proof See [42] �

The converse of this is the interesting proposition of completeness. Clearly we cannot expect

any general completeness results. However, if we restrict ourselves to regular processes, that is,

recursively defined processes which make no use of parallelism or hiding, then we can obtain

completeness results provided that all recursions are guarded. We strengthen Hennessy and Lin’s

completeness results of [42] by allowing fully parameterised processes; we make no restrictions

on the form of parameters.

The exposition of this completeness result uses the symbolic technique but the general ap-

proach, however, is not entirely dissimilar from the original completeness proofs of [73].

The first step therefore is to develop some notion of normal form for regular terms. We will

find it convenient to work with declarations rather than arbitrary terms. To this end we show that

every regular term can be provably transformed into the leading identifier of a regular declaration.

Proposition 6.2.2 Let t be a regular term with identifiers in regular D. Then there exists a regular

declaration D0

= fXi (= figI such that

`D[D0 tt� t = X1(x̄);

where f v(t) = x̄. Moreover, if D is a guarded declaration then so is D0.

Proof We let D0 be the declaration D with the extra definition X1 (= λx̄:t� where t� is the term

obtained from t by replacing any unguarded occurrences of identifiers with their definitions from

D. It should be clear that D0 is guarded if D is, and

`D[D0 tt� t = X1(x̄)

follows easily by β-reduction and FIX. �

A regular, guarded, declaration D = fXi (= λx̄i:tigI is said to be a standard form if each ti is

of the form

∑
k2Ki

cik ! ∑
p2Pik

αikp:X f (ikp)(ēikp)

such that
W

k cik = tt for each i and cik ^ cik0
= ff for k 6= k0. We also ask that all input actions in D

use the same bound variable.

The proof that every regular declaration may be provably transformed into a standard form is

given in detail in [42] and involves using axioms in A to reorder summations with some simple

structural manipulation of booleans. This allows us to now work exclusively, without loss of

generality, with standard declarations.

We consider the definition of symbolic bisimulation given in Chapter 2. In particular, we notice

that, whenever t �b u holds, each symbolic transition from t may induce a different partition of

b. Similarly, every transition from u may induce different partitions of b. Because there are only

ever finitely many symbolic transitions from regular terms it is possible to combine the different

partitions which are induced into a single, very fine grain, partition. The following lemma from

[42] pursues this idea.

Lemma 6.2.3 Suppose t �∑I αi:ti and u�∑J β j:u j where bv(αi)\bv(β j)\ f v(b; t;u)= /0. Then

t �b
L u if and only if there exists a disjoint b-partition, B, with f v(B) � f v(b; t;u) such that for

each b0 2 B we have

� For each i 2 I there is a j 2 J such that b j= αi = β j and ti �
b0

L u j

� For each j 2 J there is an i 2 I such that b j= αi = β j and ti �
b0

L u j.
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Theorem 6.2.4 Let D1 = fXi (= figI and D2 = fYj (= g jgJ
be standard declarations such that

X1(ē1)�
b
L Y1(ē

0

1). Then there exists a standard declaration E = fZi j (= hi jgI�J such that

A `D1[E b�X1(ē1) = Z11(ē1; ē
0

1)

and

A `D2[E b�Y1(ē
0

1) = Z11(ē1; ē
0

1):

Proof We assume the declarations to have disjoint parameters and that all input prefixes bind the

same variable w, not a parameter of either D1 or D2. Thus, suppose

Xi (= λx̄i: ∑
k2Ki

cik ! ∑
p2Pik

αikp:X f (ikp)(ēikp)

and

Yj (= λȳ j: ∑
l2L j

d jl ! ∑
q2Q jl

β jlq:Xg( jlq)(ē jlq):

We intend to apply the UFI-Inv rule to obtain the two desired sequents. In order to do this we need

to find our loop invariants. For the time being we define these abstractly as the collection fbi jg of

booleans such that

(i) f v(bi j)� x̄i[ ȳ j

(ii) δ j= bi j if and only if Xi(x̄i)δ� Yj(ȳ j)δ.

The bi j are the most general booleans which guarantee the given equivalence and, as such, should

be suitable as loop invariants. In fact we notice that, in general,

Xi(ē)�
b
L Yj(ē

0

) implies b j= bi j[ē; ē
0

=x̄i; ȳ j]: (6.4)

This is easy to see by considering any δ j= b, so, by Theorem 2.5.4, we know that Xi(ē)δ�L Yj(ē)δ.

Because x̄i and ȳ j are disjoint, this can be rewritten as

Xi(x̄i)δ+ �L Yj(ȳ j)δ+ (6.5)

where δ+ is δ[ē; ē0=x̄i; ȳ j]. But notice that the second defining clause for bi j stipulates that any

environment satisfying (6.5) must satisfy bi j. This means that δ+ j= bi j, whence δ j= bi j[ē; ē
0

=x̄i; ȳ j].

The first instance of (6.4) we consider is that b j= b11[ē1; ē
0

1]. So, to prove the result, it suffices,

by using the rule CONS and the derivable rule SUBST, to find the common declaration E such

that

`D1[E b11�X1(x̄1) = Z11(x̄1; ȳ1) (6.6)

and

`D2[E b11�Y1(ȳ1) = Z11(x̄1; ȳ1): (6.7)

We let bi jkl be the boolean expression bi j^cik ^d jl for each i; j;k; l and notice that, because of the

disjoint guards, that tik �
bi jkl

L u jl , where

tik � ∑
p2Pik

αikp:X f (ikp)(ēikp)

and

u jl � ∑
q2Q jl

β jlq:Yg( jlq)(ē jlq):
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Furthermore, these pairs of terms satisfy the hypothesis of Lemma 6.2.3, so we apply this lemma

to obtain the partition Bi jkl . Now for each b0 2 Bi jkl we define

Ib0

=

n

(p;q) j b0 j= αikp = β jlq and X f (ikp)(ēikp)�
b0

L Yg( jlq)(ē jlq)

o

:

The properties of Bi jkl given by Lemma 6.2.3 ensure that Ib0

is a total and surjective relation on

Pik �Q jl . We use this relation in the construction of Zi j:

Let E be the standard declaration given by

8

>

>

<

>

>

:

Zi j (= λx̄iȳ j: ∑
k2Ki
l2L j

∑
b0

2Bi jkl

b0!V b0

9

>

>

=

>

>

;

where V b0

is ∑
(p;q)2Ib0

αikp:Z f (ikp)g( jlq)(ēikp; ē jlq).

In order to establish the sequent (6.7), we will use UFI-Inv on the declaration E, using the

invariants fbi jg and the terms g0i j � λx̄iȳ j:Yj(ȳ j). Let us first discharge the side-condition of this

rule. We need to show that

bi j ^b0 j= bi0 j0 [ēē0=x̄iȳ j]

whenever (b0; i0 j0; ēē0) 2Calls(Zi j). This follows easily if we consider what Calls(Zi j) actually is

in this case; for any (b0; i0 j0; ēē0) 2Calls(Zi j) we must have Xi0(ē) �
b0

L Yj0(ē
0

) because each call is

determined by the Ib0

and the construction of this relation guarantees this bisimilarity. Now, by the

property (6.4), we know that bi j^b0 j= b0 j= bi0 j0 [ēē0=x̄iȳ j], as required.

So, it only remains to establish the hypotheses of the UFI-Inv rule, that

`D2[E bi j�g0i j(x̄i; ȳ j) = ∑
k2Ki
l2L j

∑
b0

2Bi jkl

b0!V b0

[ḡ0=Z̄]:

Because
W

k cik =
W

l d jl = tt, this can be derived from the CASE rule and β-reduction if we can

show

`D2[E bi jkl�∑
l

d jl ! u jl = ∑
k2Ki
l2L j

∑
b0

2Bi jkl

b0!V b0

[ḡ0=Z̄]

for each k and l. This can, in turn, be derived from

`D2[E b0�u jl = V b0

[ḡ0=Z̄]

for each b0 2 Bi jkl. This relies upon the fact that both the guards d jl and the partition Bi jkl are

disjoint.

Recall that V b0

is ∑
(p;q)2Ib0

αikp:Z f (ikp)g( jlq)(ēikp; ē jlq), so our goal is, in fact,

`D2[E b0� ∑
q2Q jl

β jlq:Yg( jlq)(ē jlq) = ∑
(p;q)2Ib0

αikp:g
0

f (ikp)g( jlq)(ēikp; ē jlq):

We immediately see that, by β-reducing g0 we can derive this sequent from

`D2[E b0� ∑
q2Q jl

β jlq:Yg( jlq)(ē jlq) = ∑
(p;q)2Ib0

αikp:Yg( jlq)(ē jlq): (6.8)

We then note that Ib0

is surjective so for each q 2 Q jl there is a p 2 Pik such that (p;q) 2 Ib0

. Thus,

for each q 2 Q jl there is a p such that b0 j= αikp = β jlq. It is clear that

`D2[E b0�Yg( jlq)(ē jlq) = Yg( jlq)(ē jlq)
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so an application of TAU, OUTPUT, or L-INPUT will give us

`D2[E b0�β jlq:Yg( jlq)(ē jlq) = αikp:Yg( jlq)(ē jlq):

We repeat this for each q and add to obtain (6.8).

The sequent (6.6) is slightly easier to establish using a similar argument owing to the fact that

E is built in favour of D1 and each Ib0

is total. �

Theorem 6.2.5 (Completeness) Let t and u be regular terms with identifiers in D, where D is a

regular, guarded, declaration. Then

t �b
L u implies A `D b� t = u:

Proof We first transform t and u into declarations by using Proposition 6.2.2. This yields decla-

rations, D1 = fXig and D2 = fYjg such that

`D[D1
tt� t = X1(x̄) and `D[D2

tt�u = Y1(ȳ)

where f v(t) = x̄ and f v(u) = ȳ. Moreover, we may assume that D1 and D2 are standard forms and

have disjoint parameters. We know that X1(x̄)�
b
L Y1(ȳ) holds by hypothesis and soundness. This

allows us to apply Theorem 6.2.4 to obtain an E = fZi jg such that

`D[D1[E b�X1(x̄) = Z11(x̄; ȳ)

and

`D[D2[E b�Y1(ȳ) = Z11(x̄; ȳ):

The rule dec-I and transitivity gives `D[D1[D2[E b� t = u, whence `D b� t = u, by dec-E. �

6.3 The weak case

Having characterised strong (late) bisimulation over regular processes we consider whether the

same techniques apply to characterising weak (late) bisimulation, or more precisely, observation

congruence.

We recall the definition of weak bisimulation and observation congruence. In order to state

these equivalences we need to make use of the following notation:

� p
ε

=) p

� p
α
�! q implies p

α
=) q

� p
τ
�!

α
=) q implies p

α
=) q

� p
τ

=)

τ
�! q implies p

τ
=) q

� p
c!v
=)

τ
�! q implies p

c!v
=) q

Notice that, because we are using a late semantics, there can be no τ actions after the input transi-

tion whenever p
c?
=) (x)t.

We call a relation R , defined over pairs of value-passing CCS agents, a late weak bisimulation

if for each (p;q) 2 R we have

� whenever p
c?
�! (x)t then q

c?
=) (y)u for some (y)u such that for each v 2 Val, there is a q0

such that u[v=y]
ε

=) q0 and (t[v=x];q0) 2 R .
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� whenever p
α
�! p0 (α 6= c?) then q

α̂
=) q0 for some q0 such that (p0;q0) 2 R

with symmetric conditions for q. We write p�L q if there exists a late weak bisimulation R such

that (p;q)2R . We will drop the subscript L until we discuss the corresponding early equivalence.

Late observation congruence for value-passing CCS, �
=

, is the relation defined by p �
=

q if

� whenever p
c?
�! (x)t then q

c?
=) (y)u for some (y)u such that for each v 2 Val, there is a q0

such that u[v=y]
ε

=) q0 and t[v=x]� q0.

� whenever p
α
�! p0 (α 6= c?) then q

α
=) q0 for some q0 such that p0 � q0

along with the same conditions on q.

Extensive use of symbolic semantics for value-passing CCS will be used for the remainder of

this chapter. Thus we define late weak symbolic bisimulations and late symbolic congruence for

this language.

The symbolic version of the weak transition relation =) is defined as follows:

� t
tt;ε
=) t

� t
b;α
7�! u implies t

b;α
=) u

� t
b;τ
7�!

b0

;α
=) u implies t

b^b0

;α
=) u

� t
b;τ
=)

b0

;τ
7�! u implies t

b^b0

;τ
=) u

� t
b;c!e
=)

b0

;τ
7�! u implies t

b^b0

;c!e
=) u

Suppose S =

�

Sb
	

is a boolean indexed family of relations. Define W SB(S) to be the family

of relations such that

(t;u) 2 W SB(S)b if whenever t
b1;α
7�! t 0 there exists a variable z such that z 62 f v(b; t;u) and a

b^ b1-partition, B, such for each b0 2 B, z 62 f v(b0) and there exists a u
b2;β̂
=) u0 such that b0 j= b2

and

� if α is τ then β� τ and (t 0;u0) 2 Sb0

� if α is c!e then β� c!e0 with b0 j= e = e0 and (t 0;u0) 2 Sb0

� if α is c?x then β� c?y for some y and there exists a b0-partition B0 such that for each b00 2 B0

there is a u00 such that u0[z=y]
b0

2;ε
=) u00 with b00 j= b02 and (t 0[z=x];u00) 2 Sb00

.

We call
�

Sb
	

a late weak symbolic bisimulation if Sb
� W SB(S)b for each b and denote the

largest such S by
�

�

b
	

. Once again we now use the definition of �b to define �
=

b the largest

congruence contained in �b:

t�
=

b u if whenever t
b1;α
7�! t 0 there exists a variable z such that z 62 f v(b; t;u)and a b^b1-partition,

B, such that for each b0 2 B, z 62 f v(b0) and there exists a u
b2;β
=) u0 such that b0 j= b2 and

� if α is τ then β� τ and t 0 �b0

u0

� if α is c!e then β� c!e0 with b0 j= e = e0 and t 0 �b0

u0

� if α is c?x then β� c?y for some y and there exists a b0-partition B0 such that for each b00 2 B0

there is a u00 such that u0[z=y]
b0

2;ε
=) u00 with b00 j= b02 and t 0[z=x]�b00

u00
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(Symmetric conditions on u have been omitted in the above definitions).

We know from [40] that symbolic congruence captures observation congruence correctly:

Theorem 6.3.1 For any terms t and u,

t �
=

b u iff (8δ �δ j= b implies tδ�
=

uδ):

Proof See [40]. �

We now consider the proof system of the previous section and ask what modifications are

necessary to characterise late observation congruence. Firstly, there is the question of guardedness

for guaranteeing the soundness of the UFI rule. Up to now we have simply asked that declarations

be guarded, that is, that identifier names in declarations appear within the scope of actions. In

the weak setting the internal, τ, actions are abstracted away. For this reason we must ask that

identifier names in declarations be guarded by strong actions — not τ actions. This is tantamount

to asking that there are no τ loops in declarations, which is slightly tricky to formalize. To this

end, we say that an identifier is strongly guarded in a term t if every occurrence of X in t occurs

in some subexpression α:t 0 of t where α 6= τ. A term t is called strongly guarded if each identifier

in t is strongly guarded in t. Unfortunately strong guardedness is not preserved by τ reduction.

To see this we consider the example p � τ:(c!v:X jc?x:O). Now p is strongly guarded but can τ
reduce to X jO which is not strongly guarded. In [74], Milner avoided this situation by asking that

declarations be sequential as well as guarded. We say that a term t is sequential if for each X in t,

every subexpression of t which contains X (other than X itself) is of the form α:t 0 or t1 + t2. The

example process p given above is clearly not sequential because (c!v:X jc?x:O) is a subexpression

of p which contains X , but it is not one of the two allowable forms. We will be interested in

strongly guarded, sequential declarations.

Given a declaration D= fXi (= λx̄i:tigI , we define the relation; on identifiers in D by letting

Xi; X j if X j is not strongly guarded in ti

and we consider the transitive closure of this relation by defining

D is strongly guarded if it is guarded and Xi;6
+Xi for each i 2 I:

Moreover, D is sequential if each ti is a sequential term.

We now assume that the side-condition for the UFI rule demands that the declaration used be

strongly guarded and sequential.

Clearly we will also need some additional axioms to abstract away the internal actions in the

proof system. The well known τ rules from [74] serve this purpose adequately:

T1 : α:τ:X = α:X

T2 : X +τ:X = τ:X

T3 : α:(X +τ:Y )+α:Y = α:(X +τ:Y )

We will write Aτ to denote the four axioms A along with the axioms T1 through T3 above.

The notation Aτ `D b� t = u will now mean that the sequent `D b� t = u can be derived using

the proof rules of Figures 6.1, 6.2 and axioms in Aτ.

The first question we ask about this modified proof system is whether it remains sound for

observation congruence. The following results help to prove that this is indeed the case. These are

generalisations of Lemma 12 and Proposition 13 of Chapter 7.3 of [74].

Lemma 6.3.2 Suppose C is a strongly guarded, sequential term with identifiers in X̄. Also suppose

that C[ f̄=X̄]δ α
�! p for some δ. Then there is a sequential term C0 such that p � C0

[ f̄=X̄ ]δ (or

p� (x)C0

[ f̄=X̄ ]δ if α is c?) and for any ḡ we have C[ḡ=X̄ ]δ α
�!C0

[ḡ=X̄]δ. Moreover, if α is τ then

C0 strongly guarded.
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Proof Structural induction on the term C. Sequentiality makes most cases trivial. The case where

C is a choice C1 +C2 follows easily by induction and we consider the case where C is a prefixed

term β:C0. We notice that if α is c!v then β � c!e for some e such that v = [[eδ]]. Otherwise α is

β. We also notice that C[ḡ=X̄]δ α
�!C0

[ḡ=X̄]( or (x)C0

[ḡ=X̄ ]). Clearly sequentiality is preserved by

reduction and if α is τ then by strong guardedness C0 must be strongly guarded also. �

Proposition 6.3.3 Suppose D = fXi (= higI is a strongly guarded, sequential, declaration and

suppose f fi;gigI are terms such that f̄ �
=

h̄[ f̄=X̄ ] and ḡ�
=

h̄[ḡ=X̄ ]. Then f̄ �
=

ḡ.

Proof First we notice that we can unfold the expression h̄[ f̄=X̄] by replacing each f j in each hi

with h j[ f̄=X̄ ]. If we repeatedly perform this unfolding we will eventually obtain a sequence of

terms h̄� which are all sequential and strongly guarded, moreover f̄ �
=

h̄�[ f̄=X̄ ] by congruence

properties of �
=

. We can unfold h̄[ḡ=X̄ ] in a similar way and can obtain h̄� such that ḡ �
=

h̄�[ḡ=X̄ ]

also.

We now define

R =

�

C[ f̄=X̄ ]δ;C[ḡ=X̄]δ j 8δ;C 2 TD; sequential
	

and show that R is a weak bisimulation upto�, [74], [95]. To do this it is sufficient, by symmetry,

to show that C[ f̄=X̄]δ α
=) p implies that C[ḡ=X̄ ]δ α

=) q for some q such that p� R � q.

For ease of presentation we will simply write C[ f̄ ] for C[ f̄=X̄ ]. Suppose then, that C[ f̄ ]δ α
=) p.

We know that C[ f̄ ]�
=

C[h̄�[ f̄ ]], so we have C[h̄�[ f̄ ]]
α

=) p0 for some p0 such that p0 � p. Note that

the term C[h̄�] is sequential and strongly guarded.

If α is τ then we repeatedly apply Lemma 6.3.2 to obtain a C0 such that p0 � C0

[ f̄ ]δ and

C[h̄�[ḡ]]
α

=)C0

[ḡ]δ. We know that C[h̄�[ḡ]] �
=

C[ḡ] so we get a transition C[ḡ]δ α
=) q for some q

such that p�C0

[ f̄ ]δR C0

[ḡ]δ� q.

If α is not a τ action we can use Lemma 6.3.2 repeatedly on the transitions

C[h̄�[ f̄ ]δ ε
=)

α
�!C0

[ f̄ ]δ ε
=) p0

to obtain

C[h̄�[ḡ]δ ε
=)

α
�!C0

[ḡ]δ:

Now C0

[ f̄ ]δR C0

[ḡ]δ and C0

[ f̄ ]δ ε
=) p0 so by the previous case where α is τ we find C0

[ḡ]δ ε
=) q

such that p� p0 � R � q. �

Theorem 6.3.4 (Soundness) If D is a declaration and t;u2 TD then Aτ `D b� t = u implies t �
=

b u

Proof The proof proceeds by induction on the length of the derivation. The base cases involve

checking that each axiom in Aτ is sound. Otherwise we consider the last proof rule used in the

derivation of `D b� t = u. The only difficult case is where the UFI rule was last used. This case

is dealt with by the previous proposition. �

6.4 Completeness for observation congruence

We aim to prove the converse of Theorem 6.3.4. Once again we restrict our attention to regular

terms. It is useful to note that any regular term must immediately be sequential. The approach

to proving completeness follows the example of the strong case — we find standard forms for

terms and show provability for these. In this case however we manipulate the standard forms

a little more before we engage on the completeness proof proper. Given a standard declaration

D = fXi (= λx̄i:tigI where each ti is of the form

∑
k2Ki

cik ! ∑
p2Pik

αikp:X f (ikp)(ēikp);
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then we say that D is saturated if

Xi(ē)
b;α
=) X j(ē

0

) implies Xi(ē)
b;α
7�! X j(ē

0

):

Proposition 6.4.1 Every regular declaration D, can be provably transformed into a standard,

saturated, declaration.

Proof We know from [42] that every regular declaration can be made standard. We show here

that saturation is possible. It is enough to prove the following lemma. �

Lemma 6.4.2 (Absorption) If D is the standard form described above and Xi(ē)
b;α
=) X j(ē

0

) with

f v(b)\bv(α) = /0, then

Aτ `D Xi(ē) = Xi(ē)+b! α:X j(ē
0

):

Proof We use induction on the length of the transition Xi(ē)
b;α
=) X j(ē

0

).

Case Xi(ē)
b;α
7�! X j(ē

0

). Then we know that b is cik[ē=x̄i] for some ik and that α� αikp[ē=x̄i] for

some p such that f (ikp) = j, and that ē0 � ēikp[ē=x̄i]. It should be clear that

` Xi(x̄i) = Xi(x̄i)+cik ! αikp:X j(ēikp)

and then by the derived SUBST rule we get our result.

Case Xi(ē)
b1;τ
=) X j0(ē

00

)

b2;α
7�! X j(ē

0

) with b = b1^b2. We know by induction that

` Xi(ē) = Xi(ē)+b1 ! τ:X j0(ē
00

)

and

` X j0(ē
00

) = X j0(ē
00

)+b2 ! α:X j(ē
0

):

Combining these we obtain

` Xi(ē) = Xi(ē)+b1 ! τ:(X j0(ē
00

)+b2 ! α:X j(ē
0

)):

We can now use axiom T2 with suitable manipulation of booleans to obtain

` Xi(ē) = Xi(ē)+b1 ! b2 ! α:X j(ē
0

)

from which the result follows easily.

Case Xi(ē)
b1;α
=) X j0(ē

00

)

b2;τ
=) X j(ē

0

) with b = b1^b2. We know by induction that

` Xi(ē) = Xi(ē)+b1 ! α:X j0(ē
00

)

and

` X j0(ē
00

) = X j0(ē
00

)+b2 ! τ:X j(ē
0

):

Together, these give

` Xi(ē) = Xi(ē)+b1 ! α:(X j0(ē
00

)+b2 ! τ:X j(ē
0

)):

We know that f v(b2)\ bv(α) = /0 so we can use a derivable form of axiom T3 decorated with

booleans, [41], to give us

` Xi(ē) = Xi(ē)+b1 ! α:(X j0(ē
00

)+b2 ! τ:X j(ē
0

))+b1 ! b2 ! α:X j(ē
0

);

whence

` Xi(ē) = Xi(ē)+b1 ! b2 ! α:X j(ē
0

):

Once again, the result follows easily. �

We now present a technical lemma which will assist in the proof of completeness. This is is a

version of Lemma 6.2.3 suitable for weak bisimulation equivalence.
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Lemma 6.4.3 Suppose we have standard, saturated declarations

Xi (= λx̄i: ∑
k2Ki

cik ! ∑
p2Pik

αikp:X f (ikp)(ēikp)

and

Yj (= λȳ j: ∑
l2L j

d jl ! ∑
q2Q jl

β jlq:Xg( jlq)(ē jlq):

Also suppose that Xi(x̄i)�
b^cik^d jl Yj(ȳ j), then tik �

b^cik^d jl u jl where

tik �∑
Pik

αikp:X f (ikp)(ēikp)

and

u jl �∑
Q jl

β jlq:Yg( jlq)(ē jlq):

Moreover there exist disjoint b^cik ^d jl -partitions Bc!
i jkl;B

c?
i jkl and Bτ

i jkl such that

� For each b0 2 Bc!
i jkl and for each p 2 Pik such that αikp � c!e, there exists a q 2 Q jl such that

β jlq � c!e0 with b0 j= e = e0 and X f (ikp)(ēikp)�
b0

Yg( jlq)(ē jlq).

� For each b0 2 Bτ
i jkl and for each p2 Pik such that αikp� τ, then either X f (ikp)(ēikp)�

b0

Yj(ȳ j)

or there exists a q 2 Q jl such that β jlq � τ with X f (ikp)(ēikp)�
b0

Yg( jlq)(ē jlq)

� For each b0 2 Bc?
ik jl and for each p 2 Pik such that αikp � c?w, there exists a q 2Q jl such that

β jlq � c?w and there exists a disjoint b0-partition, B0p;b0

such that for each b00 2 B0p;b0

we have

X f (ikp)(ēikp)�
b00

Yg( jlq)(ē jlq) or Yg( jlq)(ē jlq)
d;τ
7�!Yj(b00

)

(ē(b00)) for some j(b00) and ē(b00) with

b00 j= d and X f (ikp)(ēikp)�
b00

Yj(b00

)

(ē(b00))

(Similar conditions for each q 2 Q jl follow by symmetry).

Proof We will write bi jkl as an abbreviation for b^ cik ^ d jl . We know that Xi(x̄i) �
bi jkl Yj(ȳ j)

so, by disjointness of the ciks and d jls we easily see that tik �
bi jkl u jl . Choose some p 2 Pik and

consider the three cases of the form of αikp.

Case αikp is c!e. We know that Xi(x̄i) �
bi jkl Yj(ȳ j) and that Xi(x̄i)

cik;c!e
7�! X f (ikp)(ēikp). This

means that there exists a bi jkl-partition, Bc!
p such that for each bp 2 Bc!

p there exists a u0 such that

Yj(ȳ j)
d;c!e0

=) u0 such that bp j= e = e0, bp j= d and X f (ikp)(ēikp)�
bp u0. But we know, by saturation,

that, for some q 2 Q jl , we must have d � d jlq, β jlq � c!e0, and u0 � Yg( jlq).

Case αikp is τ. Similarly we know that there exists a bi jkl-partition, Bτ
p, and for each bp 2 Bτ

p

the matching move may either be empty, in which case X f (ikp)(ēikp) �
bp Yj(ȳ j), or non-empty,

which, by saturation, reduces to a single τ-transition so that X f (ikp)(ēikp)�
bp Yg( jlq)(ē jlq) for some

q.

Case αikp is c?w. By similar reasoning we know that there exists a bi jkl-partition, Bc?
p such

that for each bp 2 Bc?
p we obtain a further partition, B0p;bp

with the relevant matching transitions.

Symmetrically, we can obtain the partitions Bα
q . Given these we define Bc!

i jkl as follows: Let

fp1; : : : png denote the set of all p 2 Pik such that αikp is of the form c!e. Let

Dc!
=

(

^

1�i�n

bi j bi 2 Bc!
pi
;1� i� n

)

:
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Similarly, if fq1; : : :;qmg is the set of all q 2 Q jl such that β jlq is of the form c!e then we let

Ec!
=

(

^

1�i�m

bi j bi 2 Bc!
qi
;1� i� m

)

:

The partition Bc!
i jkl will contain conjunctions of booleans chosen pairwise from Dc! and Ec!. For-

mally, this is

Bc!
i jkl =

�

b^b0 j b 2 Dc!
;b0 2 Ec!

	

:

It is a simple matter to check that Bc!
i jkl is indeed a bi jkl-partition. Moreover, given any b0 2 Bc!

i jkl

and any p 2 Pik such that αikp � c!e, we know that p is represented in b0 by one of the pis. This

means that b0 j= bp for some bp 2 Bc!
p and the required properties of b0 follow easily. We define the

partitions Bτ
i jkl and Bc?

i jkl in an identical manner. For b0 2 Bc?
i jkl and p 2 Pik we know that b0 j= bp for

some bp 2 Bc?
p and that bp is further partitioned into B0p;bp

. We actually need a b0-partition called

B0p;b0

here, but this is obtained simply by defining
n

b00^b0 j b00 2 B0p;bp

o

.

It is a trivial exercise to make all of the Bα
i jkl partitions disjoint. �

The proof of the theorem we are about to present will be similar to that of the previous section,

Theorem 6.2.4. That is, given two declarations, D1;D2, we build a third declaration, E, which

exhibits common behaviour and use UFI-Inv to show that each of D1 and D2 are provably equiva-

lent to E. The terms used in the application of UFI-Inv previously were essentially the identifiers

of D1 (and D2 respectively). The fact that observation congruence is defined in terms of weak

bisimulation complicates matters here. In [73], Milner showed that for substitutivity, the terms

needed in the application of UFI sometimes needed to be prefixed by a τ action. He used the terms

f fig where each fi is either an identifier X of D1 or is of the form τ:X . We cannot rely on this

neat solution because in one boolean world we may need to use Xi as fi and in another we may

need to use τ:Xi. This problem is easily rectified by noticing that, by virtue of axiom T2, Milner

could have easily used X + τ:X instead of the term τ:X . We exploit this idea later in the proof of

Theorem 6.4.5 but first we show a couple more useful facts.

Lemma 6.4.4 If fbigI is a disjoint b-partition and f v(b)\bv(α) = /0, then

(i) Aτ ` b�τ:(t +∑i2I0 bi ! τ:t) = τ:t for any I0 � I

(ii) ` b�∑i2I bi ! τ:ui = τ:∑i2I bi ! ui

Proof For (i), we choose an arbitrary i 2 I and show that ` bi� τ:(t +∑i2I0 bi ! τ:t) = τ:t. An

application of CASE gives the result. Firstly we notice that

` bi�τ:(t + ∑
j2I0

b j ! τ:t) = τ:(t+ ∑
j2I0

bi^b j ! τ:t):

Now there are two cases to consider: if i 62 I0 then each bi ^ b j is ff, by disjointness. It is easily

seen that, in this case, the result holds. Otherwise, i 2 I0 and bi^b j = ff for each j 6= i. Thus

` bi�τ:(t + ∑
j2I0

b j ! τ:t) = τ:(t+bi ! τ:t):

Simple boolean manipulation gives

` bi�τ:(t + ∑
j2I0

b j ! τ:t) = τ:(t+τ:t);

from which, using T1 and T2 we achieve the result.
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Part (ii) follows by showing

` bi�∑
i2I

bi ! τ:ui = τ:∑
i2I

bi ! ui

for each i 2 I — the result follows by CASE. This is simple to establish by noticing

` bi�∑ j2I b j ! τ:u j = ∑ j2I bi^b j ! τ:u j

= bi ! τ:ui

= τ:bi ! ui

= τ:∑ j2I bi^b j ! u j

= τ:∑ j2I b j ! u j:

�

Theorem 6.4.5 Let D1 = fXi (= gigI and D2 =

n

Yj (= g0j

o

J
be standard, saturated, strongly

guarded declarations such that X1 does not appear in any gi and Y1 does not appear in any g0j. If

X1(ē1)
�

=

b Y1(ē
0

1) then there exists a standard declaration E = fZi j (= hi jgI�J
such that

Aτ `D1[E b�X1(ē1) = Z11(ē1; ē
0

1)

and

Aτ `D2[E b�Y1(ē
0

1) = Z11(ē1; ē
0

1):

Proof As before we assume that the declarations have disjoint parameters and that all input

prefixes bind the same variable w, which is not a parameter of either D1 or D2. Suppose

Xi (= λx̄i: ∑
k2Ki

cik ! ∑
p2Pik

αikp:X f (ikp)(ēikp)

and

Yj (= λȳ j: ∑
l2L j

d jl ! ∑
q2Q jl

β jlq:Xg( jlq)(ē jlq):

Our loop invariants bi j will be defined abstractly by

(i) f v(bi j)� x̄i[ ȳ j

(ii) δ j= bi j if and only if Xi(x̄i)δ� Yj(ȳ j)δ for i; j 6= 1 and

(iii) δ j= b11 if and only if X1(x̄1)δ�= Y1(ȳ1)δ

We immediately see that b j= b11[ē1; ē
0

1=x̄1; ȳ1] so it is enough to prove

`D1[E b11�X1(x̄1) = Z11(x̄1; ȳ1)

and

`D2[E b11�Y1(ȳ1) = Z11(x̄1; ȳ1):

For each i; j and each k 2 Ki; l 2 L j , write bi jkl for the boolean bi j ^ cik ^ d jl so that Xi(x̄i) �
bi jkl

Yj(ȳ j). We can now apply Lemma 6.4.3 to obtain the Bα
i jkl partitions of bi jkl with the concomitant

properties. These partitions allow us to define the indexing relations used to define E. For each

b0 2 Bc!
i jkl;B

τ
i jkl or Bc?

i jkl, we let
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Ic!
b0

=

n

(p;q) j b0 j= αikp = β jlq and X f (ikp)(ēikp)�
b0

Yg( jlq)(ē jlq)

o

Iτ
b0

=

n

(p;τ) j if αikp � τ and X f (ikp)(ēikp)�
b0

Yj(ȳ j)

o

[

n

(τ;q) j if β jlq � τ and Xi(x̄i)�
b0

Yg( jlq)(ē jlq)

o

[

n

(p;q) j αikp = β jlq � τ and X f (ikp)(ēikp)�
b0

Yg( jlq)(ē jlq)

o

Ic?
b0

=

n

(p;B0p;b0

) j αikp � c?w
o

[

n

(B0q;b0

;q) j β jlq � c?w
o

The partitions B0p;b0

referred to in the definition of Ic?
b0

are those provided by Lemma 6.4.3 for

matching c? moves. We notice that the properties of the Bα
i jkl partitions guarantee that each p 2 Pik

and each q 2 Q jl are related to something in one of the Iα
b0

relations.

We are now in a position to describe the common declaration E. We let

E =

8

>

>

<

>

>

:

Zi j (= λx̄iȳ j: ∑
k2Ki
l2L j

V τ
i jkl +∑

c

(V c!
i jkl +V c?

i jkl)

9

>

>

=

>

>

;

where

V c!
i jkl = ∑

b0

2Bc!
i jkl

b0 ! ∑
(p;q)2Ic!

b0

αikp:Z f (ikp)g( jlq)(ēikp; ē jlq)

V τ
i jkl = ∑

b0

2Bτ
i jkl

b0 ! ∑
(p;q)2Iτ

b0

τ:Z f (ikp)g( jlq)(ēikp; ē jlq)

+ ∑
(p;τ)2Iτ

b0

τ:Z f (ikp) j(ēikp; ȳ j)

+ ∑
(τ;q)2Iτ

b0

τ:Zig( jlq)(x̄i; ē jlq)

V c?
i jkl = ∑

b0

2Bc?
i jkl

b0 ! ∑
(p;B0

p;b0
)2Ic?

b0

c?w: ∑
b00

2B0

p;b0

b00! Z f (ikp) j(b00

)

(ēikp; ē(b
00

))

+ ∑
(B0

q;b0
;q)2Ic?

b0

c?w: ∑
b00

2B0

q;b0

b00! Zi(b00

)g( jlq)(ē(b
00

); ē jlq):

Notice that E is a strongly guarded declaration because both D1 and D2 are strongly guarded.

This will allow us to conclude

`D2[E b11�X11(ȳ1) = Z11(x̄1; ȳ1)

as a valid application of UFI-Inv if we can establish the hypotheses required. The other sequent

required can be derived in a similar manner. In order to apply UFI-Inv we need to identify which

terms f figI to use. We have mentioned already that these cannot simply be the identifiers of D1,

but must account for some possible extra τ actions. We define the terms as follows

fi j = λx̄iȳ j:

2

6

6

4

Xi(x̄i)+ ∑
k2Ki
l2L j

∑
b0

2Bτ
i jkl

∑
(τ;q)2Iτ

b0

b0! τ:Xi(x̄i):

3

7

7

5
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We know that X1(x̄1)
�

=

b11 Y1(ȳ1) so by definition, there are no (τ;q) entries in the Iτ
b0

relation for

any b0 in any Bτ
1k1l, thus `D1

f11(x̄1; ȳ1) = X1(x̄1) by β reduction. In fact, we notice a more general

property of the fi j terms:

`D1
b0�α: fi j(ē; ē

0

) = α:Xi(ē) if b0 j= bi j[ē; ē
0

=x̄i; ȳ j] (6.9)

To prove this we first notice that

`D1
bi jkl�α:τ:

2

4Xi(x̄i)+ ∑
b0

2Bτ
i jkl

∑
(τ;q)2Iτ

b0

b0! τ:Xi(x̄i)

3

5

= α:τ:Xi(x̄i)

follows directly from Lemma 6.4.4, part (i), and the respective prefixing rules. The guards fcikgKi

and
�

d jl

	

are disjoint so we can harmlessly add in all of the terms given by Ki and L j to get

`D1
bi jkl�α:τ:

2

6

6

4

Xi(x̄i)+ ∑
k2Ki
l2L j

∑
b0

2Bτ
i jkl

∑
(τ;q)2Iτ

b0

b0! τ:Xi(x̄i)

3

7

7

5

= α:τ:Xi(x̄i);

but this is just `D1
bi jkl�α:τ: fi j(x̄i; ȳ j) = α:τ:Xi(x̄i). This is true for each k and l so CASE and T1

will give us `D1
bi j�α: fi j(x̄i; ȳ j) = α:Xi(x̄i) and (6.9) follows by SUBST and CONS.

Let us now show that the side-condition of UFI-Inv holds, with this definition of fi j. Con-

sider an arbitrary element of Calls(Zi j). We know, by construction, that this must have the form

(b0; i0 j0; ēē0) where X 0

i (ē)�
b0

Y 0

j(ē)
0. From this we know that b0 j= bi0 j0 [ē; ē

0

=x̄i0 ; ȳ j0 ] by definition of

bi0 j0 (note that i0 j0 cannot be 11 here by assumption). This proves the side-condition of UFI-Inv,

so all that remains to do is establish the hypotheses of this proof rule. This requires us to show

`D1[E bi j� fi j(x̄i; ȳ j) = ∑
k2Ki
l2L j

V τ
i jkl +∑

c

(V c!
i jkl +V c?

i jkl)[ f̄=Z̄]:

If we express

∑
p2Pik

αikp:X f (ikp)(ēikp)

as the sum of terms tτ
+∑c(t

c!
+ tc?

) in the obvious way then, by disjointness of the guards we can

reduce our obligation to the goals.

` bi jkl�V c!
i jkl[ f̄=Z̄] = tc! (6.10)

` bi jkl�V c?
i jkl[ f̄=Z̄] = tc? (6.11)

and

` bi jkl�V τ
i jkl[ f̄=Z̄] = tτ

+ ∑
k2Ki
l2L j

∑
b0

2Bτ
i jkl

∑
(τ;q)2Iτ

b0

b0! τ:Xi(x̄i) (6.12)

The easiest of these is (6.10) so we attend to this first.

We take an arbitrary b0 2 Bc!
i jkl and show ` b0�V c!

i jkl[ f̄=Z̄] = tc!. Then, we obtain (6.10) as an

instance of the rule CASE. So,

` b0�V c!
i jkl[ f̄=Z̄] = ∑

(p;q)2Ic!
b0

αikp:Z f (ikp)g( jlq)(ēikp; ē jlq)[ f̄=Z̄]

= ∑
(p;q)2Ic!

b0

αikp: f f (ikp)g( jlq)(ēikp; ē jlq)

= ∑
(p;q)2Ic!

b0

αikp:X f (ikp)(ēikp); by (6.9).

= tc!.
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The last step holds because each p 2 Pik such that αikp is some c!e appears in Ic!
b0

.

Similarly, we now choose an arbitrary b0 2 Bc?
i jkl. We should note that w 62 f v(b0) because we

are considering a late symbolic equivalence. We aim to show that ` b0�V c?
i jkl[ f̄=Z̄] = tc? and use

CASE to yield (6.11). Write V c?
i jkl as ∑b0

2Bc?
i jkl

b0!V1+V2 where

V1 = ∑
(p;B0

p;b0
)2Ic?

b0

c?w: ∑
b00

2B0

p;b0

b00! Z f (ikp) j(b00

)

(ēikp; ē(b
00

))

and

V2 = ∑
(B0

q;b0
;q)2Ic?

b0

c?w: ∑
b00

2B0

q;b0

b00! Zi(b00

)g( jlq)(ē(b
00

); ē jlq):

We now see that

` b0�V1[ f̄=Z̄] = ∑
(p;B0

p;b0
)2Ic?

b0

c?w: ∑
b00

2B0

p;b0

b00! f f (ikp) j(b00

)

(ēikp; ē(b
00

))

= ∑
(p;B0

p;b0
)2Ic?

b0

c?w: ∑
b00

2B0

p;b0

b00! τ:X f (ikp)(ēikp)

(This follows from the axiom T1, Lemma 6.4.4 part (ii), (6.9) and the fact that

b00 j= b f (ikp)i(b00

)

[ēikp; ē(b
00

)=x̄ f (ikp); ȳ j(b00

)

]).

= ∑
(p;B0

p;b0
)2Ic?

b0

c?w:b0! τ:X f (ikp)(ēikp)

= ∑
(p;B0

p;b0
)2Ic?

b0

c?w:X f (ikp)(ēikp) by T1 and w 62 f v(b0)

= tc?

Again, the last step follows from the property that each relevant p occurs in Ic?
b0

. We now show that

V2[ f̄=Z̄] can be absorbed by tc? in the world b0. Using T1, Lemma 6.4.4, part (ii), and (6.9) we

know that

` b0�V2[ f̄=Z̄] = ∑
(B0

q;b0
;q)2Ic?

b0

c?w: ∑
b00

2B0

q;b0

b00! τ:Xi(b00

)

(ē(b00)) (6.13)

Choose any (Bq;b0
;q) 2 Ic?

b0

, so we know that, for each b00 2 B0q;b0

there is some p such that either

X f (ikp)(ēikp)
b00

;τ
7�!Xi(b00

)

, or i(b00) is just f (ikp). For simplicity assume that the former always holds.

Thus

` X f (ikp)(ēikp) = X f (ikp)(ēikp)+b00 ! τ:Xi(b00

)

(ē(b00))

by Lemma 6.4.2. We know that the B0q;b0

partition is disjoint so we can add across it and use

Lemma 6.4.4, part (ii), to obtain

` b00�X f (ikp)(ēikp) = X f (ikp)(ēikp)+τ: ∑
b00

2B0

q;b0

b00! Xi(b00

)

(ē(b00))

for each b00, and so it follows by CASE and L-INPUT that

` b0�c?w:X f (ikp)(ēikp) = c?w:

2

4X f (ikp)(ēikp)+τ: ∑
b00

2B0

q;b0

b00! Xi(b00

)

(ē(b00))

3

5

:
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We can use T3 to obtain, for each b0,

` b0�c?w:X f (ikp)(ēikp) = c?w:X f (ikp)(ēikp)+c?w: ∑
b00

2B0

q;b0

b00! Xi(b00

)

(ē(b00))

which, by adding in the rest of tc? and using (6.13), gives us

` b0� tc?
= tc?

+V2[ f̄=Z̄]:

Therefore we have our result because

` b0�V c?
i jkl[ f̄=Z̄] = V1[ f̄=Z̄]+V2[ f̄=Z̄]

= tc?
+V2[ f̄=Z̄]

= tc?

Finally, we show (6.12) by demonstrating

` b0�V τ
i jkl[ f̄=Z̄] = tτ

+ ∑
k2Ki
l2L j

∑
b0

2Bτ
i jkl

∑
(τ;q)2Iτ

b0

b0! τ:Xi(x̄i)

for each b0 2 Bτ
i jkl. Now,

` b0�V τ
i jkl[ f̄=Z̄] = ∑

(p;q)2Iτ
b0

τ: f f (ikp)g( jlq)(ēikp; ē jlq)

+ ∑
(p;τ)2Iτ

b0

τ: f f (ikp) j(ēikp; ȳ j)

+ ∑
(τ;q)2Iτ

b0

τ: fig( jlq)(x̄i; ē jlq)

= ∑
(p;q)2Iτ

b0

τ:X f (ikp)(ēikp)

+ ∑
(p;τ)2Iτ

b0

τ:X f (ikp)(ēikp)

+ ∑
(τ;q)2Iτ

b0

τ:Xi(x̄i) by (6.9).

= tτ
+ ∑

b0

2Bτ
i jlk

∑
(τ;q)2Iτ

b0

b0! τ:Xi(x̄i) by disjointness of Bτ
i jkl.

= tτ
+ ∑

k2Ki
l2L j

∑
b0

2Bτ
i jkl

∑
(τ;q)2Iτ

b0

b0! τ:Xi(x̄i) by disjointness of cis and d js.

�

Theorem 6.4.6 (Completeness) Let t and u be regular terms with identifiers in D, where D is a

regular, strongly guarded, declaration. Then

t �
=

b u implies Aτ `D b� t = u:

Proof As before we transform t and u into declarations by using Proposition 6.2.2. This yields

declarations, D1 = fXi (= gig and D2 =

n

Yj (= g0j

o

such that

`D[D1
tt� t = X1(x̄) and `D[D2

tt�u = Y1(ȳ)

where f v(t) = x̄ and f v(u) = ȳ. Moreover, we notice that, by construction, D1 and D2 are strongly

guarded and that X1 and Y1 will never appear in any gi and g0j respectively. Also, we can assume
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that D1 and D2 are standard forms and have disjoint parameters. We know that X1(x̄) �=
b Y1(ȳ)

holds by hypothesis. This allows us to apply Theorem 6.4.5 to obtain an E = fZi jg such that

`D[D1[E b�X1(x̄) = Z11(x̄; ȳ)

and

`D[D2[E b�Y1(ȳ) = Z11(x̄; ȳ):

The rule dec-I and transitivity gives `D[D1[D2[E b� t = u, whence `D b� t = u, by dec-E. �

Recall that, in the proof of Theorems 6.2.4, 6.4.5, we extracted the loop invariants, bi j, by

defining these expressions abstractly. A reasonable question one might ask is whether we can

define these invariants in a more concrete manner. The answer to that is yes, up to a point. We

have already stated that the seemingly appropriate finite models for regular, guarded, terms of our

language are symbolic graphs with assignment. Recent studies of these models [65, 78] provide

algorithms for calculating the most general boolean expressions which guarantee pairs of nodes of

symbolic graphs with assignment to be bisimilar. This is true for strong bisimulation, at least, but

modification of these algorithms ought to be able to generate such expressions for weak bisimula-

tion on graphs without τ loops also. The notable feature of the expressions which are generated,

however, is that they are not always expressible in first-order predicate logic. Both [65] and [78]

require the use of parameterised fixpoints over first-order logic. Therefore the completeness re-

sults presented here are relative to judgements about the data-language expressed in first-order

predicate logic augmented with greatest fixpoints.

6.5 The early case

In this chapter, we have concentrated on late bisimulation. So we now consider the companion

equivalence, early bisimulation. We saw in Chapter 2 that the essential difference between early

and late strong symbolic bisimulation is whether we are allowed to partition over bound variables

of terms in order to find matching terms. The same holds true for the weak equivalence but we

notice that the freedom to partition over bound variables in the early case gives rise to a simpler

definition of weak symbolic bisimulation.

Firstly, weak symbolic transitions can be generalised slightly in the early case by defining

t
b;α
=) u implies t

b;α
=)e u

and t
b1;α
=)

b2;τ
7�! u implies t

b1^b2;α
=) e u

so that weak input transitions
b;c?x
=)e have possible τ transitions after the input move.

Suppose S =

�

Sb
	

is a boolean indexed family of relations. Define EW SB(S) to be the family

of relations such that

(t;u)2 EW SB(S)b if whenever t
b1;α
7�! t 0 there exists a variable z such that z 62 f v(b; t;u) and a

b^b1-partition, B, such for each b0 2 B there exists a u
b2;β̂
=)e u0 such that b0 j= b2, and

� if α is τ then β� τ and (t 0;u0) 2 Sb0

� if α is c!e then β� c!e0 with b0 j= e = e0 and (t 0;u0) 2 Sb0

� if α is c?x then β� c?y for some y and (t 0[z=x];u0[z=y])2 Sb0

.

We call
�

Sb
	

an early weak symbolic bisimulation if Sb
� EW SB(S)b for each b and denote

the largest such S by
�

�

b
E

	

. We also use the definition of�b
E to define�

=

b
E , the largest congruence

contained in�b
E :

t �
=

b
E u if whenever t

b1;α
7�! t 0 there exists a variable z such that z 62 f v(b; t;u) and a b^ b1-

partition, B, such that for each b0 2 B there exists a u
b2;β
=)e u0 such that b0 j= b2 and
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� if α is τ then β� τ and t 0 �b0

u0

� if α is c!e then β� c!e0 with b0 j= e = e0 and t 0 �b0

u0

� if α is c?x then β� c?y for some y and t 0[z=x]�b0

u0[z=y].

(There are of course symmetric conditions on u required in the above definitions.)

Unsurprisingly the only changes to the proof system which are required are concerned with

input prefixes. The easiest way to modify the proof system to reflect an early semantics is to adapt

the rule L� INPUT to be:

` b�∑I τ:ti = ∑J τ:u j

` b�∑I c?w:ti = ∑J c?w:u j
if w 62 f v(b);

which we will call E� INPUT . A consequence of this rule is the axiom

Early : c?x:t +c?x:u = c?x:t +c?x:u+c?x:(b ! t +:b! u):

which is given in [42], and is based on ideas of [81] for the π-calculus. It is easy to see that this

axiom fails to be sound with respect to late bisimulation whenever x 2 f v(b). This is because, in

order to match the symbolic transition

c?x:(b! t +:b ! u)
tt;c?x
7�! (b! t+:b ! u);

the process c?x:t + c?x:u necessarily must partition tt into fb;:bg. This partition contains the

bound variable x, making this an early symbolic bisimulation. So we will write AE
` b� t = u to

mean that b�t = u can be derived using the axioms from A and the inference rules from Figure 6.1

along with E� INPUT . Accordingly, we write AE
τ ` b� t = u if we can derive this sequent from

Aτ with possible uses of E� INPUT .

Theorem 6.5.1 Suppose D is a regular, guarded, declaration and let t and u be regular terms with

identifiers in D. Then

AE
` b� t = u iff t �b

E u:

Moreover, if D is strongly guarded then

AE
τ ` b� t = u iff t �

=

b
E u:

Proof Soundness, in both cases is easy to establish by copying the proofs for the late case and

checking the extra axiom Early. Adapting the completeness proofs for the late bisimulation to

work for the early case is more involved so we demonstrate how this is achieved to show com-

pleteness with respect to�
=

b
E . The strong case can be achieved in a similar manner.

The first change we must make is in Lemma 6.4.3. We now let the third clause, on Bc?, read

� For each b0 2 Bc?
ik jl and for each p 2 Pik such that αikp � c?w, there exists a q 2Q jl such that

β jlq � c?w and we have X f (ikp)(ēikp) �
b0

E Yg( jlq)(ē jlq) or Yg( jlq)(ē jlq)
d;τ
7�! Yjb0

(ēb0

) for some

jb0 and ēb0 with b0 j= d and X f (ikp)(ēikp)�
b0

E Yjb0
(ēb0

)

The proof with this change goes through easily by appealing to saturation. In the proof of Theo-

rem 6.4.5, the definition of the Ic?
b0

relation must be altered to be

Ic?
b0

=

�

(p;( jb0
; ēb0

)) j αikp � c?w
	

[

�

((ib0
; ēb0

);q) j β jlq � c?w
	



Chapter 6. Unique Fixpoint Induction 127

where (ib0
; ēb0

) and ( jb0
; ēb0

) denote uniquely chosen relevant matches given by the early version of

Lemma 6.4.3 described above. The term V c?
i jkl has to be modified of course, this is simply seen as

cik ^d jl !V c?
1 +V c?

2 where

V c?
1 = ∑

αikp�c?w

c?w: ∑
b0

2Bb?
i jkl

b0! Z f (ikp) jb0
(ēikp; ēb0

)

and

V c?
2 = ∑

β jlq�c?w

c?w: ∑
b0

2Bb?
i jkl

b0! Zib0 g( jlq)(ēb0

; ē jlq):

The proof continues as in Theorem 6.4.5 until we are required to establish the goal (6.11).

This can be done in a similar way but with the following differences:

` bi jkl�V1[ f̄=Z̄] = ∑
αikp�c?w

c?w: ∑
b0

2Bb?
i jkl

b0! f f (ikp) jb0
(ēikp; ēb0

)

= ∑
αikp�c?w

c?w: ∑
b0

2Bb?
i jkl

b0! τ:X f (ikp)(ēikp)

= ∑
αikp�c?w

c?w:bi jkl ! τ:X f (ikp)(ēikp)

= ∑
αikp�c?w

c?w:X f (ikp)(ēikp) by T1 and w 62 f v(bi jkl)

= tc?

Then we show that V2[ f̄=Z̄] can be absorbed by tc? in the world bi jkl. Using T 1, Lemma 6.4.4, part

(ii), and (6.9) we know that

` bi jkl�V2[ f̄=Z̄] = ∑
β jlq�c?w

c?w: ∑
b0

2Bb?
i jkl

b0! Xib0
(ēb0

) (6.14)

We know that, for each q2 Q jl such that β jlq � c?w and for each b0 there is some p, dependent

upon b0, such that either X f (ikp)(ēikp)
d;τ
7�! Xib0

with b0 j= d, or ib0 is just f (ikp). For simplicity

assume that the former always holds. Thus

` X f (ikp)(ēikp) = X f (ikp)(ēikp)+b0 ! τ:Xib0
(ēb0

)

by Lemma 6.4.2.

We can prefix by τ actions, use T3 and add across the partition Bc?
i jkl to get

` ∑
αikp�c?w

τ:X f (ikp)(ēikp) = ∑
αikp�c?w

τ:X f (ikp)(ēikp)+ ∑
b0

2Bc?
i jkl

b0! τ:Xib0
(ēb0

):

Now we know that, after applying Lemma 6.4.4, part (ii),

` bi jkl� tc?
= tc?

+c?w ∑
b0

2Bc?
i jkl

b0! Xib0
(ēb0

)

is derivable from E� INPUT . Notice that this can be done for each q such that β jlq � c?w so we

add all such sequents together and use (6.14) to obtain our goal,

` bi jkl� tc?
= tc?

+V2[ f̄=Z̄]:

We now have our result because

` bi jkl�V c?
i jkl[ f̄=Z̄] = V1[ f̄=Z̄]+V2[ f̄=Z̄]

= tc?
+V2[ f̄=Z̄]

= tc?

No further modifications of the proofs for the late case are necessary and this completes our

proof. �
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We have the axioms for restriction:

Onc = O

(X +Y )nc = Xnc+Ync

(b! α:X)nc =

�

O if α is c!e or c?x

b! α:(Xnc) otherwise.

and, if we let X , Y denote ∑I ci !αi:Xi and ∑J d j ! β j:Yj with f v(X)\bv(β j) = f v(Y)\bv(αi) =

/0 for each i; j, then we have the axiom for parallel composition:

X jY = ∑I ci ! αi:(XijY)+∑J d j ! β j:(X jYj)

+ ∑I�J ci^d j !fτ:(XijYj[e=x]) j αi � c!e;β j � c?xg

+ ∑I�J ci^d j !fτ:(Xi[e=x]jYj) j αi � c?x;β j � c!eg :

In addition to these we must also reflect the fact that �
=

is preserved by these operators. This is

done in the two inference rules:

`D b� t = u

`D b� tnc = unc
and

`D b� t1 = u1 `D b� t2 = u2

`D b� t1jt2 = u1ju2

Figure 6.3. Expansion laws for parallel and restriction

6.6 Networks of regular processes

The completeness results that we have presented so far in this chapter have all been restricted to

the use of regular terms, which we defined as expressions written without parallel composition

and restriction. We can improve our completeness results, for strong bisimulation, in this chapter

by showing that a network of regular terms, that is, a term of the grammar

N := NjN j Nnc j t

where t is a regular term, can be expanded, upto strong bisimulation, to a regular term itself. Thus

a proof that N1 � N2 can be approached by expanding each of N1 and N2 and performing the

proof on their expansions. This is a standard approach to dealing with parallel composition and

restriction in process algebra [74, 51, 6] and suitable, sound, expansion laws have been presented

for value-passing CCS in [41, 42]. We give these in Figure 6.3. We write AExp for the set of

axioms A along with the extra axiom schemes used for expansion, and we write AExp
`

N
D b� t = u

to mean that `D b� t = u can be derived using axioms from AExp and the extra derivation rules

for congruence with respect to j and n.

We saw in Section 2.6 that one of the problems concerning the expansion of parallel compo-

sitions in [42] is that the class of restricted parameter processes which Hennessy and Lin consider

is not closed under expansion. That is, there are regular, restricted parameter processes p and q

such that the expansion of pjq cannot be described by a single regular, restricted parameter, pro-

cess. In our setting we do not restrict the parameters of recursively defined processes and this

extra expressive power is used to prove that repeated expansions of regular terms do eventually

yield a regular term. Provided that the regular terms produced are still guarded then such a result

clearly implies that our completeness results, for strong bisimulation at least, are strengthened to

incorporate networks of regular terms.

Unfortunately the result of our expansion, below, of two strongly guarded declarations, is not

necessarily strongly guarded. The upshot of this is that, until we can show how to transform

guarded declarations into strongly guarded declarations by means of eradicating τ-loops, then

we cannot use expansion to obtain completeness with respect to observation congruence over

networks of regular terms.
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Given a declaration D =

�

Xi (= λx̄i: ∑
k2Ki

αik:X f (ik)(ēik)

�

I

then we can define the regular dec-

laration Dnc as
(

Zi (= λx̄i: ∑
αik 6=c!;c?

αik:Z f (ik)(ēik)

)

I

:

If, in addition we have the declaration E =

n

Yj (= λȳ j:∑L j
β jl:Yg( jl)(ē jl)

o

J
such that each x̄i is

distinct from each ȳ j, then we can define DjE as the regular declaration

8

<

:

Ri j (= λx̄iȳ j: ∑Ki
αik:R f (ik) j(ēik; ȳ j)+∑L j

β jl:Rig( jl)(x̄i; ē jl)

+ ∑k;l

�

τ:R f (ik)g( jl)(ēik; ē jl[e=x]) j αik � c!e;β jl � c?x
	

+ ∑k;l

�

τ:R f (ik)g( jl)(ēik[e=x]; ē jl) j αik � c?x;β jl � c!e
	

9

=

;

Proposition 6.6.1 Suppose Dnc and DjE are as above, then

AExp
`

N
D[Dnc X1(x̄1)nc = Z1(x̄1))

and

AExp
`

N
D[E[DjE (X1(x̄1)jY1(ȳ1)) = R11(x̄1; ȳ1)

Proof We obtain the first sequent by UFI-Inv using the new declaration Dnc and the set of terms

fλx̄i:Xi:(x̄i)ncgI . This requires us to show the hypothesis

` Xi(x̄i)nc = ∑
αik 6=c!;c?

αik:X f (ik)(ēik)nc:

This can be done by β-reducing the left-hand side, under the n operator and then using the axioms

for nc. The latter sequent is proved similarly, we use UFI-Inv with the declaration DjE and the

terms fλx̄iȳ j:Xi(x̄i)jYj(ȳ j)gI�J
. The parallel expansion rule and congruence of j provide the result.

�

Corollary 6.6.2 (Completeness) Suppose D is a regular guarded declaration and let N1 and N2

be regular networks with identifiers in D. Then

AExp
`

N
D b�N1 = N2 iff N1 �

b N2:

Proof Follows from the previous proposition and Theorems 6.5.1 and 6.4.6. �

6.6.1 Parameterised vs. Unparameterised declarations

An interesting feature of the expansion law for the parallel operator is that every network of regular

declarations can be written as an expansion into a single regular declaration. In particular, this is

true of declarations, D, which have no parameter variables, that is unparameterised declarations.

Notice however, that the resulting expansion may be parameterised! The possible parameterisation

creeps in at the stage of converting D into a form suitable for applying the expansion law. This

reflects the fact that the class of finite symbolic graphs is not closed under parallel composition.

We now seek some kind of inverse to expansion — to show that every regular, parametrised,

declaration can be transformed, upto equivalence, into a network of unparameterised declarations.

The idea we follow is loosely based on an example due to Stevens, [97]. A Cell process is con-

structed which can receive a piece of data on an internal channel and remember it until some other

process asks for it back. Having returned the data the Cell resumes its original state, dataless. The

Main process in the transformation needs to emulate the behaviour of the declaration, however it

cannot assume any knowledge of data, or parameters, initially. Main must request its parameters

from Cell before performing any actions of the declaration. Having executed the action from the
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declaration, Main then passes any data that the declaration would store as a parameter over to Cell

until Main resets itself.

Clearly, from this description we cannot expect the transformation to be equivalent to the

original declaration up to strong bisimulation. We show that the implementation is correct up to

weak bisimulation at least.

Proposition 6.6.3 Suppose D =

�

Xi (= λx̄i:∑k2Ki
bik ! αik:X f (ik)(ēik)

	

I
. There exists an unpa-

rameterised regular declaration D0 and a regular network N 2 TD0 such that X1(ē0)� N.

Proof We assume, for simplicity, that each of the vectors x̄i are of unit length. The proof can

be easily be generalised to arbitrary length vectors. Suppose that A = fci;digI are fresh channel

names not appearing in D. Let D0 contain the three definitions

St (= c1!e0

Main (= ∑i2I ci?xi:
�

∑k2Ki
bik ! αik:d f (ik)!eik:Main

�

Cell (= ∑i2I ∑k2Ki
d f (ik)?x f (ik):c f (ik)!x f (ik):Cell:

Then the network N which we require is (StjMainjCell)nA.

Let Ci denote the term

((∑
Ki

bik ! αik:d!eik:Main)jCell)nA;

let C0

i be (di!xi:MjCell)nA and let C00

i be (Mjci!xi:Cell)nA. For simplicity we also assume that ē0

is a closed data expression so we can define our witnessing bisimulation as

R = f(X1(e0);(StjMainjCell)nA)g

[ f(Xi(e);Ci[e=xi])g

[ f(Xi(e);C
0

i[e=xi])g

[ f(Xi(e);C
00

i [e=xi])g :

We must show that R is indeed a bisimulation. Suppose (p;q) 2 R , there are four cases to

consider:

(i) p� X1(e0) and q� (StjMainjCell)nA. If p
α
�! p0 for some p0 then it must be the case that

[[b1k[e0=x1]]] = tt for some k 2 K1 with α = α1k[e0=x1] and p0 � X f (1k)(e1k[e0=x1]). We can

match this transition with a τ move

q
τ
�!C1[e0=x1]

and then notice that C1[e0=x1]
α
�! q0 where q0 �C0

f (1k)
[e f (1k)[e0=x1]=x f (1k)]. It is clear that

(p0;q0) 2 R .

For the symmetric matching condition, we know that qnA
τ
�! C1[e0=x1] is the only tran-

sition possible from q. We can match this with the empty transition from p, noticing that

(p;C1[e0=x1])2 R .

(ii) p � Xi(e) and q � Ci[e=xi]. Suppose that p
α
�! p0 for some p0. Again it must be that

[[bik[e=xi]]] = tt for some k 2 Ki with α = αik[e=xi] and p0 � X f (ik)(eik[e=xi]). This means we

have an immediate matching transition

q
α
�! q0 �C0

f (ik)[e f (ik)[e=xi]=x f (ik)]

with (p0;q0) 2 R .

Similarly, any move from q must have the corresponding move from p available leaving us

in states (X f (ik)(eik[e=xi]);C
0

f (ik)
[e f (ik)[e=xi]=x f (ik)])2 R .
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k!0
/.

��

�

i
// Bu f f

r
//

k
// Sum

oo

m
// Split

o
//

*+() k

OO

�

Figure 6.4. Implementation of Spec

(iii) p � Xi(e) and q � C0

i [e=xi]. Suppose that p
α
�! p0 for some p0 so that [[bik[e=xi]]] = tt for

some k 2 Ki with α = αik[e=xi] and p0 � X f (ik)(eik[e=xi]). We know that

q
τ
�!C00

i [e=xi]
τ
�!Ci[e=xi]

α
�! q0

where q0 �C0

f (ik)
[e f (ik)[e=xi]=x f (ik)]. Thus (p0;q0) 2 R .

The single transition, q
τ
�!C00

i [e=xi] is matched by an empty transition from p.

(iv) p � Xi(e) and q � C00

i [e=xi]. Suppose that p
α
�! p0 for some p0 so that [[bik[e=xi]]] = tt for

some k 2 Ki with α = αik[e=xi] and p0 � X f (ik)(eik[e=xi]). This time we have

q
τ
�!Ci[e=xi]

α
�! q0

where q0 �C0

f (ik)
[e f (ik)[e=xi]=x f (ik)] with (p0;q0) 2 R .

Again, q
τ
�!Ci[e=xi] is matched by an empty transition from p.

�

6.7 Example

We conclude this chapter with a short example to demonstrate the use of UFI-Inv. Consider the

process: Spec = i?w:Σ(0;w) where

Σ (= λyy0:[i?w:o!(y+y0):Σ(y+y0;w)

+o!(y+y0):i?w:Σ(y+y0;w)]:

It is clear that Spec specifies a process which receives an input stream on i, and outputs the running

total on o. We use two parameters: the first represents the running total and the second, the

most recently received input. We implement this process using a parallel composition of three

components: a Sum process which makes a request for data � on channel r, and subsequently

receives two pieces of data, one being the next number on the input stream and the other the last

total. Having received these data, in either order, Sum passes the sum of them to the process Split.

The process Split receives its input from Sum on channel m and simply reroutes this input out on

o and back to Sum. The input interface is a buffer which can receive on i and pass to k as soon

as it has a request to do so from Sum. We picture the process in Figure 6.4. The whole process is

described syntactically as

P = (Sum j k!0:Split j Bu f f )nfk;r;mg

Sum (= r!� :k?x:k?y:m!(x+y):Sum

Split (= m?x:o!x:k!x:Split

Bu f f (= r?� :i?x:k!x:Bu f f :
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The diligent reader is invited to check that, using the expansion law for parallel and hiding that P

is provably congruent to P0 where

P0 (= τ:P1(0)

P1 (= λx:[τ:i?w:ττ:P2(x+w)+ i?w:P4(x;w)]

P2 (= λx:[o!x:τ:P1(x)+τ:[o!x:P1(x)+ i?w:P3(x;w)]]

P3 (= λxx0:[o!x:P4(x;x
0

)+τ:o!x:ττ:P2(x
0

+x)]

P4 (= λxx0:[τττ:P2(x+x0)+τττ:P2(x
0

+x)]

We can provably simplify this declaration to something more readable. It follows from λ-E and

some structural reasoning using the fact x+x0 = x0+x, that P2(x+x0) = P2(x
0

+x) is provable. This

allows us, by using axioms T1 and T2, to prove τ:P1(x)= τ:i?w:P2(x+w). By similar reasoning we

obtain i?w:P3(x;x
0

) = i?w:o!x:P2(x+x0). Given this then, P can be rendered in saturated, standard

form as X0 where D1 =

8

>

>

>

>

<

>

>

>

>

:

X0 (= τ:X1(0)+ i?w:X2(0+w)

X1 (= λx:i?w:X2(x+w)

X2 (= λx:[o!x:X1(x)+τ:X3(x)+ i?w:X4(x;w)]

X3 (= λx:[o!x:X1(x)+ i?w:X4(x;w)]

X4 (= λxx0:o!x:X2(x+x0)

9

>

>

>

>

=

>

>

>

>

;

The intention is to demonstrate that Spec �L P by deriving the sequent

` tt�τ:Spec = X0;

We follow the construction prescribed by the proof of completeness and transform τ:Spec into a

saturared standard form, Y0. Let D2 =

8

>

>

>

>

<

>

>

>

>

:

Y0 (= τ:Y1+ i?w:Y2(0;w)

Y1 (= i?w:Y2(0;w)

Y2 (= λyy0:[o!(y+y0):Y4(y+y0)+ i?w:Y3(y+y0;w)]

Y3 (= λyy0:o!y:Y2(y+y0)

Y4 (= λy:i?w:Y2(y;w)

9

>

>

>

>

=

>

>

>

>

;

We can now apply Theorem 6.4.5 to obtain the common declaration, E. We first list the invariants

fbi jgI�J we require. The majority of these are ff, those that aren’t are given below:

b00 = tt

b11 = x = 0

b22 = x = y+y0

b14 = x = y

b32 = x = y+y0

b43 = x = y^x0 = y0

We can now write down the declaration E = fZi jg, omitting the definition of all the Zi j such

that bi j = ff.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Z00 (= τ:Z11(0)+ i?w:Z22(0+w;0;w)

Z11 (= λx:b11 ! i?w:Z22(x+w;0;w)

Z22 (= λxyy0:b22 ! [o!x:Z14(x;y+y0)+τ:Z32(x;y;y
0

)+ i?w:Z43(x;w;y+y0;w))]

Z14 (= λxy:b14 ! i?w:Z22(x+w;y;w)

Z32 (= λxyy0:b32 ! [o!x:Z14(x;y+y0)+ i?w:Z43(x;w;y+y0;w)]

Z43 (= λxx0yy0:b43 ! o!x:Z22(x+x0;y;y0)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;
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This declaration indicates that, to apply UFI-Inv to prove `D2[E Y0 = Z00 we would use the

terms
f00 � Y0

f11 � λx:Y1

f22 � λxyy0:τ:Y2(y;y
0

)

f14 � λxy:Y4(y)

f32 � λxyy0:Y2(y;y
0

)

f43 � λxx0yy0:Y3(y;y
0

)

We leave it to the reader to check that the loop invariants are maintained and that the hypotheses

of the UFI-Inv can be established. Proving `D1[E X1(0) = Z11(0) is much easier and transitivity

and dec-I finish the derivation.



Chapter 7

Conclusion

7.1 Summary

Whilst it is acknowledged that proving properties of value-passing systems, and indeed devel-

oping proof tools for such tasks is, in general, a difficult task, the purpose of this thesis was to

demonstrate that partial solutions to this problem can be readily achieved. We can extract req-

uisite properties of the data which guarantee certain behavioural properties of processes and can

then analyse and reason about value-passing processes structurally. The manner in which we

extract and model these properties is through the mechanism of symbolic graphs, or by syntacti-

cally studying open terms. The use of symbolic semantics on open terms has been successful in

various settings already, [40, 41, 43, 64]. The present text has strengthened this corpus of work

considerably and, at the same time, provided some independently interesting results regarding the

semantics of value-passing calculi. At all stages of the thesis both the late and early semantics of

value-passing processes are considered.

A novel equivalence relation, based on barbed bisimulation, for Prasad’s calculus of broad-

casting systems, CBS, was discovered in Chapter 3. We then characterised this new relation al-

gebraically by developing a sound and relatively complete equational proof system for various

classes of finite CBS processes. This characterisation relied heavily upon the use of a new, sym-

bolic, semantics for CBS. These new semantics involve a modification of the semantics envisaged

by Hennessy and Lin, [40], in that pattern-matching of values on input prefixes need to be catered

for. The use of, and generalisations of, these semantics are investigated further in [77]. The char-

acterisations of Chapter 3 lay the foundation for tackling the open problem [86] of finding an

axiomatic description of weak bisimulation equivalence in CBS. In Chapter 4 we verified, again

using the barbed bisimulation approach, that Prasad’s weak equivalence is indeed suitable for this

language and proceeded to utilise the symbolic semantics developed in the previous chapter in

order to provide the sought after axiomatisation.

An entirely different problem was tackled in Chapter 5, that of model checking for value-

passing processes. A generalisation of the modal µ-calculus suitable for specifying properties not

only of the ability to perform actions but also of the data associated with actions was proposed.

This generalised specification logic is a direct extension of the logic presented in [43] and similar

logics have been developed, independently, by [38, 27, 3]. We showed that, by interpreting the

logic using concreted symbolic graphs we were able to generalise Winskel’s tag set method, [107],

for completing proof tableaux in a proof system developed to make use of the underlying symbolic

graph models. We discovered that, even for finite symbolic graphs, the specification logic is too

expressive for us to show any form of completeness result using our simple tableaux system. Two

different sub-logics provide enough restrictions, however, for us to achieve relative completeness

results for each. For one of these, a symbolic interpretation of formula in the spirit of [27] was
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necessary.

Finally, we considered the technique of unique fixpoint induction as a proof method for value-

passing processes. Work here naturally extends the work of [41] by providing proof systems

(relative to a language of boolean expressions) for recursively defined processes. It also extends

the recent work [42, 64] by

� Considering a larger class of recursively defined processes, and

� Providing a characterisation of observational equivalence as well as strong bisimulation

equivalence for this class of processes.

We finished this chapter with a discussion on the relationship between parameterisation and par-

allel composition of recursively defined value-passing processes.

Therefore, we can deem this thesis to be successful in that it provides an original analysis

of various problems using the symbolic approach; in each case results suggest that the reasoning

required in each of these scenario can be arranged so that reasoning about processes is reducible,

in an automatic manner, to reasoning about data. Furthermore, these studies indicate what sort of

properties about data one might be expected to prove. For instance, Chapters 5 and 6 both require

the use of properties of data expressed in a language of fixpoints.

7.2 Related work

7.2.1 Symbolic bisimulation vs. Abstract interpretation

An alternative approach to verification for value-passing processes, quite similar in spirit to our

own, is that of abstract interpretation. The technique of abstract interpretation has been used

successfully for many years now for the analysis of sequential programs [55, 1]. More recently,

this approach has been applied to reactive systems and, in particular, labelled transition systems

[9, 23, 28, 26]. The idea being that enough structure of some transition systems can sometimes

be preserved after abstracting, or collecting together, certain labels. By enough structure we mean

a level of structural information which still allows the property which one is interested in to be

verified. The clear benefits of this approach are that the transition models become smaller and

verification becomes more feasible. This approach was followed by Cleaveland and Riely, [26],

in order to verify testing equivalences in value-passing languages. Abstract interpretation of value

domains induce abstract transition models for processes. In some cases, if a coarse enough ab-

straction is used, then the transition systems can be reduced from infinite concrete systems down

to finite abstract systems.

This is an elegant approach to verification of equivalences for value-passing languages. The

abstract transition systems can be considerably smaller than the actual transition systems, thereby

improving effectiveness and efficiency. However the approach is not without its drawbacks. There

can be a considerable amount of work involved in actually creating an abstraction of the data

language. Each value must be given an abstract value and each function in the signature of data

expressions must be interpreted abstractly in a safe manner. One might envisage libraries of stan-

dard abstractions being created to avoid much of the effort here. Such considerations aside there

is still the initial choice of which abstract values to use, which is largely determined by educated

guesswork. One must find an interpretation which is coarse enough to reduce your transition sys-

tem to a manageable size yet at the same time provide, safe, accurate results. Thus, much of the

efficiency and practicality gained through the abstract interpretation approach may be lost in the

search for a good abstraction.

In contrast to this we see that symbolic graphs provide an easily obtained form of abstract

interpretation. The expression x in the label c!x appearing on an arc of a symbolic graph can be

viewed, roughly, as the range of values that x could be instantiated to. Recall arcs of the graph are

guarded by boolean triggers which may restrict the range of values which x can take. In a suitable
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sense, sets of concrete values can be seen as abstract values. The difference in approach lies in

the interpretation of the functions in the data signature. Our approach allows for a kind of precise

interpretation only; interpretation of functions is determined by the abstraction on values. So the

abstract meaning fA, of a function f of arity one, is defined as

fA(V) = f f (v) j v 2 Vg

where V , being an abstract value, is a set of concrete values from Val. Thus we are unable to

reap some of the benefits of general abstraction. For example, if we wish to demonstrate deadlock

freedom of the process p(x), where

p(= λy:c!y:p(y+1)

then the symbolic semantics induces abstract values by considering the concrete values that x

may take. Initially, x could be any value, which we represent by the set Val. The second output

from p(x) would need to carry the abstract value Val+ 1. Our semantics demand that Val+ 1 be

the set Val n f0g and subsequently that (Val n f0g)+ 1 is Val n f0;1g and so on. Using abstract

interpretation proper, p(x) can be safely abstracted to the process

pA (= c!0:pA

where 0 is now the only abstract value. This is a situation where symbolic graphs fail, although

the work on symbolic graphs with assignment of [65, 78] and that of Chapter 6 provide more suc-

cess. In fact, the only regular value-passing processes of value-passing CCS, say, which cannot

be modelled finitely by a symbolic graph with assignment are those with unguarded recursions.

Another benefit of the symbolic approach is the fact that symbolic graphs are constructed automat-

ically. The abstractions involved are entirely syntax driven, which obviates the need for extensive

searching for a good abstraction.

7.2.2 µCRL

The work of Groote and Ponse, [34, 35, 37], amongst others, adopts a slightly different world view

to the symbolic approach to value-passing. It is our opinion that properties of data and the prop-

erties of the process behaviour should be made distinct, or at least, the properties of the process

behaviour which depend on aspects of the data should be extracted from the overall process de-

scription. For this reason we work parametrically with respect to the data language. The language

µCRL was designed with a different methodology in mind. The intention there is to integrate as

much as possible the description of the data language and the process language. The programmer

defines which data and data expressions can be used by means of algebraic specification as in

the ISO-standard LOTOS specification language [53], in contrast though, data live as first class

citizens in µCRL. Thus proofs of properties of µCRL processes are not relative to any unspeci-

fied data language but are total verifications. Consequently, the lion’s share of the work involved

in both specifying processes and verification is, to a large extent, due to data. This situation is

acknowledged in [37] which catalogues some widely applicable data specifications and inductive

proof techniques. There has been commendable success, with realistic examples, using the µCRL

language as a verification tool [33, 57, 36]. However, the theory underpinning the approach is still

in development. Groote and Ponse provide sound proof systems for establishing bisimilarity be-

tween µCRL processes but it is unclear how powerful these proof systems actually are. An anaylsis

of the dependency of a process on its data component is made difficult by integrating proof sys-

tems for data and for process terms. The actual structure of a process is not made explicit and

is obscured by syntax. Whereas the symbolic graph models provide such structural information,

only retaining syntactic descriptions of data.
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7.3 Directions for future work

The work in this thesis raises several issues that deserve further attention.

- Having developed a notion of morphism for symbolic graphs it would be interesting to

consider if symbolic bisimulation upon saturated graphs could be characterised as by spans

of open morphisms in the style of Joyal, Nielsen, and Winskel, [56]. This programme would

involve identifying a suitable notion of a path of observations, akin to a trace, for symbolic

graphs.

- The relationship between abstract interpretation and the symbolic approach is not well un-

derstood. For instance, could we allow for some more general form of abstraction by relax-

ing the conditions of symbolic graphs somehow? Such analysis could improve the efficiency

of symbolic reasoning greatly. A formal description of symbolic graphs as abstractly inter-

preted transition systems would be desirable.

- The proof systems of Chapters 3 and 4 deal with finite CBS only. There is no evident reason

why the unique fixpoint induction proof method would not prove useful for characterising

equivalence of regular CBS terms. We anticipate that a programme analagous to that of

Chapter 6 could be followed without great difficulty.

- The work of Chapter 5 attacks the model checking problem for symbolic graphs. Relative

completeness results are obtained for finite symbolic graphs only. It should be clear from

Chapter 6 that finite symbolic graphs are somewhat limited in their scope for modelling

value-passing processes and that using symbolic graphs with assignment yields finite models

in many more cases. For this reason then, it would be desirable to investigate the model

checking problem for symbolic graphs with assignment. The modality rules in the proof

system are easily adapted to this setting, for example hc!i would become

B ` t 0θ : F [eθ=x]

B^b ` t : hc!xiF
t

b;θ;c!e
7�! t 0:

The difficulties lie in using the tag sets effectively. A node of a symbolic graph represents

an open process term, but a node of a symbolic graph with assignment has no such coun-

terpart. It has to represent an open term possibly with many different substitutions of the

free variables with data expressions. Thus the semantics of a tag would necessarily need

to account for this fact. Beyond this problem though, the approach of Chapter 5 ought to

follow through without further difficulty.

Another logical extension to the work would be to consider incorporating some kind of

inductive reasoning on data in order to obtain completeness results for the logic with least

fixpoints and arbitrary parameters. Based on a technique from [5, 14] a global proof rule

following this idea is included in the proof system of [38]. The side-condition of this rule

involves establishing a well-founded order on the value domain.

- The shortfall in the theory of Chapter 6 concerns the issue of unguarded recursions or, in the

weak case, recursions with τ loops. In the pure case it was shown in [74] that unguardedness

and τ loops could be effectively removed from declarations. The main rule for achieving

this,

If X (= X + p then ` X = p;

relies upon the fact that the unguarded occurrence of X creates no new actions. That is, X+ p

can still only perform the actions that p could perform because of idempotence of +. In

the value-passing setting the situation differs because of parameterisation. Each unguarded
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identifier’s body may become instantiated at a different value after each unfolding. For

example, the process

X (= λx:(X(x+1)+a!x:O);

when instantiated at 0 has an infinitely branching symbolic graph. Guarded recursions al-

ways have finitely branching symbolic graphs so it is clear that X cannot be reduced to a

guarded declaration. Two immediate approaches spring to mind: restrict the form of the

parameters allowed in unguarded recursions or introduce some kind of inductive reasoning

on data to allow proofs between unguarded recursive declarations. We can predict success

for the former of these approaches in the case where parameters are restricted to be vari-

ables alone. Such a restriction is in place in the π-calculus where recent work by Lin, [62],

shows that unguardedness can be tackled by saturating declarations with permutations of

variables. The latter approach is somewhat more uncertain. The principle that one might

use is that if, given two declarations whose guarded parts are provably equal, we know that

the unguarded occurrences in each side give rise to the same instantiations of the guarded

parts of the declarations, then we can deem the two declarations to be equal. Roughly, this

might look like: if

X (= λx̄:X(e1)+ : : :+X(en)+ t

and

Y (= λx̄:Y(e01)+ : : :+Y (e0m)+u

with t and u guarded, then, writing Xg
(= λx̄:t[Xg

=X ] and similarly for Y g,

` Xg
= Y g

` X = Y

if ei1 � ei2 � : : :� eik = e0j1 � e0j2 � : : : � e0jl for any sequences of expressions. A good account

of unguardedness, and more importantly, τ loops, would finally establish the proof systems

for value-passing processes on the same footing as the proof systems for pure processes -

modulo the data.

- In order to obtain relative completeness results in Chapters 5 and 6 we needed to consider

a logic of fixpoints over boolean predicates. We found this necessary to describe the condi-

tions on data required to guarantee certain properties of the processes. This is not an entirely

satisfactory situation as first-order logic with fixpoints is a rather hefty logic. In many cases

it will be that these fixpoints are actually expressible in the base languange BoolExp; how-

ever, in general, we cannot guarantee this. An interesting topic of research would be to

attempt to classify data languages for which these fixpoints have first-order solutions, or are

even expressible in some decidable second-order theory.

- We have referred to the use of a symbolic approach to the π-calculus, [63, 64, 62] at various

points in this thesis. We can think of such work as an instance of the general symbolic

technique where the values of the data language and the channel names coincide. There

are further technicalities involved but this is the case in principle. Similarly, adopting the

symbolic techinque in other areas might also prove useful. For instance, work on utilising

symbolic bisimulations for a theory of timed processes has already begun, [13]. Recent work

on location equivalences has recourse to a symbolic semantics, [49]. Such an approach may

even prove useful for considering the theory of higher-order process algebras such as Chocs

[106], Facile [30] or CML based languages [93, 29, 54].
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Tau3 �, 76

barbed bisimulation, 7, 34

Bgs, 53
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DC, see discard condition
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