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ABSTRACT. This paper studies one important aspect of distributed systems, locality, using a cal-

culus of distributed higher-order processes in which not only basic values or channels, but also pa-

rameterised processes are transferred across distinct locations. An integration of the subtyping of

λ-calculus and IO-subtyping of the π-calculus offers a tractable tool to control the locality of channel

names in the presence of distributed higher order processes. Using a local restriction on channel

capabilities together with a subtyping relation, locality is preserved during reductions even if we

allow new receptors to be dynamically created by instantiation of arbitrary higher-order values and

processes.

We also show that our method is applicable to more general constraints, based on local and

global channel capabilities.

1 Introduction

There have been a number of attempts at adapting traditional process calculi,

such as CCS and CSP, so as to provide support for the modelling of certain

aspects of distributed systems, such as distribution of resources and locality,

[3, 11, 22, 28, 34]. Most of these are based on first-order extensions of the π-

calculus [23]; first-order in the sense that the data exchanged between processes

are from simple datatypes, such as basic values or channel names. There are

various proposals for implementing the transmission of higher-order data using

these first-order languages, mostly based on [31]. However these translations, as

we will explain in Section 6, do not preserve the distribution and locality of the

source language. Consequently we believe that higher-order extensions of the π-

calculus should be developed in their own right, as formal modelling languages

for distributed systems.

In this paper we design such a language and examine one important aspect of

distributed systems, namely locality. The language is a simple conservative ex-

tension of the call-by-value λ-calculus [29] and the π-calculus [23], together with

primitives for distribution and spawning of new code at remote sites. The com-

bination of dynamic channel creation inherited from π-calculus and transmission

of higher-order programs inherited from λ-calculus offers us direct descriptions

of various distributed computational structures. As such, it has much in common
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with the core version of Facile [2, 9, 21] and CML [8] and can be regarded as an

extension of Blue-calculus [5] to a higher-order term passing language.

A desirable feature of some distributed systems is that every channel name is

associated with a unique receptor, which is called receptiveness in [32]; another

property called locality where new receptors are not created by received chan-

nels, has also been studied in [3, 4, 22, 38] for an asynchronous version of the

π-calculus. The combination of these constraints provides a model of a realistic

distributed environment, which regards a receptor as an object or a thread ex-

isting in a unique name space. A generalisation is also proposed in Distributed

Join-calculus where not only single receptor but also several receptors with the

same input channel are allowed to exist in the same location [11]; in this paper

we call this more general condition locality of channels. In distributed object-

oriented systems, objects with a given ID reside in a specific location even if

multiple objects with the same ID are permitted to exist for efficiency reasons,

as found for example in CONCURRENT AGGREGATES [7]. This locality constraint

should be obeyed even in the presence of higher-order parameterised object pass-

ing, which is recently often found in practice [12].

In this paper we show that, in a distributed higher-order process language,

locality of channels can be enforced by a typing system with subtyping. The

essential idea is to control the input capability of channels, guaranteeing at any

one time that this capability resides at exactly one location. As discussed in Sec-

tion 3, ensuring locality in higher order processes is much more difficult than in

systems which only allows name passing. However, using our typing system we

only have to static type-check each local configuration to guarantee the required

global invariance, namely locality of channels.

The main technical novelty of our work is an extension of the input/output

type system of [27, 15] to a higher-order setting. We use the more expressive set

of input/output types from [15], although the formalisation is somewhat differ-

ent in order to have a natural integration with the arrow types of the λ-calculus.

The order theoretic property of the subtyping relation, finite-bounded complete-

ness, satisfied in our formalism plays a pivotal role for a technical development

throughout this paper. The framework will be generally applicable for other pur-

poses where similar global constraints should be guaranteed using static local

type checking.

The paper is organised as follows. In the following section we study the

undistributed version of our language, πλ, a call-by-value λ-calculus with com-

munication primitives based on channels. Section 3 introduces a distributed ver-

sion of πλ, which we call Dπλ, by adding a process spawning operator and a

primitive notion of distribution. We then explain, using examples, the difficulty

of enforcing locality in Dπλ. Section 4 gives a typing system based on the in-

put/output typing in Section 2, which ensures locality of all channels in Dπλ by
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Term: P;Q; :::2 Term ::= V j P Q j

u?(x̃ : τ̃):P j u!hṼ iP j (νa :σ)P j �P j

P jQ j 0

Value: V;W; :::2 Val ::= u j λ(x :τ):P
Identifier: u;v; :::2 Id ::= l j a j x

Literal: l; l0; :::2 Lit ::= tt j ff j () j 0 j 1 j ::: j 1:1 j :::

FIGURE 1. Syntax of πλ

local static type-checking. In Section 5, we discuss applications of our work; ex-

tendibility of our typing system to more general global/local channel constraints

studied by [34] in a higher-order setting, the proof of a multiple higher-order

replication theorem extended from [27, 32], and the type-checking. Section 6

concludes with discussion and related work.

2 A Higher-order π-calculus with IO-subtyping

In this section, we introduce a higher order concurrent calculus with subtyp-

ing, essentially the call-by-value λ-calculus [29] augmented with the π-calculus

primitives [23]. We illustrate the usage of this typing system by a few simple

examples.

SYNTAX The syntax of πλ is given in Figure 1. It uses an infinite set of names

or channels N, ranged over by a;b; :::, and an infinite set of variables V, x;y; :::.

We often use X ;Y; ::: for variables over higher order terms explicitly. It also uses

a collection of types, the discussion of which we defer until later.

The syntax is a mixture of a call-by-value λ-calculus and the π-calculus.

From the former there are values, consisting of basic values and abstractions,

together with application; the sequencing operator let x : τ = P in Q can be

viewed as an alternative notation for (λ(x :τ):Q)P.

From the latter we have input and output on communication channels, dy-

namic channel creation, iteration and the empty process. All bound variables and

names have associated with them a type, but for the moment these are ignored.

We use the standard notational conventions associated with the π-calculus, for

example ignoring trailing occurrences of the empty process 0 and omitting type

annotations unless they are relevant. We also use fn(P)/bn(P) and fv(P)/bv(P)

to denote the sets of free/bound names and free/bound variables, to respectively,

defined in the standard manner. We also assume all bound names are distinct and

disjoint from free names, and typically write λ():P for a thunk of P, λ(x :unit):P
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Reduction Rules:

(β) (λ(x :τ):P)V 7�! PfV=xg

(com) u?(x̃ : τ̃):P ju!hṼiQ 7�! PfṼ=x̃gjQ

(appl)
P 7�! P0

PV 7�! P0V
(appr)

Q 7�! Q0

PQ 7�! P Q0

(par) (res) (str)

P 7�! P0

P jQ 7�! P0

jQ
P 7�! P0

(νa :σ)P 7�! (νa :σ)P0

P� P0

7�! Q0

� Q
P 7�! Q

Structure Equivalence:

� P� Q if P�α Q.

� P jQ � Q jP (P jQ) jR � P j (Q jR) P j0 � P �P � P j �P

� (νa :σ)0 � 0 (νa :σ)(νb :σ0

)P � (νb :σ0

)(νa :σ)P.

(νa :σ)P jQ � (νa :σ)(P jQ) if a 62 fn(Q)

FIGURE 2. Reduction for πλ

assuming x 62 fv(P).

REDUCTION The reduction semantics of πλ is given in Figure 2 and is rela-

tively straightforward. The main reduction rules are value β-reduction, (β), for

the functional part of the language and communication, (com), for processes.

The final contextual rule, (str), uses a structural congruence borrowed from stan-

dard presentations of the π-calculus (Figure 2). We use 7�!! to denote multi-step

reductions.

EXAMPLES In this subsection, we show a couple of simple programs using πλ.

EXAMPLE 2.1. (Sq-server, 1) Suppose that in the language we have a literal

sq for squaring natural numbers; this is a simple example of a data processing

operation which may, in general, be quite complicated. For a given name a let

sq(a) represent the expression �a?(y;z): z!hsq(y)i, which we write as

sq(a)(= �a?(y;z): z!hsq(y)i

This receives a value on y to be processed together with a return channel z to

which the processed data is to be sent. It then processes the data (in this case

simply squaring it) and returns the processed data along the return channel. 2
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Type:

Term Type: ρ ::= proc j τ
Value Type: τ ::= unit j bool j nat j real j τ ! ρ j σ
Channel Type: σ ::= hS

I

;S

O

i with S

I

� S

O

, S

I

6= ? and S
O

6=>.

Sort Type: S ::= ? j > j (τ̃)

Ordering:

(base) proc � proc, nat � nat, S� S, etc.

(?;>) ?� S S �>

(vec) 8i: τi � τ0i ) (τ̃) � (τ̃0)
(!) τ� τ0; ρ� ρ0

) τ ! ρ� τ0 ! ρ0

(chan) σi = hSiI;SiOi; S1I � S2I; S1O � S2O ) σ1 � σ2.

FIGURE 3. Types for πλ

Many examples of this continuation-passing style programming can be found in

[28, 11]. However in our language, we can pass not only basic values and chan-

nels but also program abstraction, which would be instantiated by both channels

and higher-order terms.

EXAMPLE 2.2. (Sq-server, 2) A sq-server is a process which on requests sends

to the client the code for squaring values, which the client can initialise locally.

In πλ this can be defined by

sqServ(= � req?(r): r!hλ(x): sq(x)i

Here the process receives a request on the channel req, in the form of a return

channel r, to which the abstraction λ(x): sq(x) is sent. A client can now down-

load this code and initialise it by applying it to a local channel which will act as

the request channel for data processing:

Client(= (νr) req!hri: r?(X): (νa)( X a ja!h1;c1i ja!h2;c2i ja!h3;c3i j � � �)
2

IO-TYPES We use as types for πλ a simplification of the input/output capabil-

ities of [15] (in turn a strict generalisation of [27]). They are defined in Figure 3,

where we assume a given set of base types, such as nat, real and bool, and

a type for processes, proc. Value types, types of objects which may be trans-

mitted between processes or to which functions may be applied, may then be

constructed from these types using the exponential type constructor!, as in the

λ-calculus. However here in addition we may also use channel types, ranged over

by σ. These take the form hS

I

;S

O

i, a pair consisting of an input sort S

I

and an
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output sort S

O

; these input/output sorts are in turn either a vector of value types or

>, denoting the highest capability, or?, denoting the lowest. The representation

of IO-types as a tuple [16, 15] makes the definition of the subtyping relationship,

also given in Figure 3, more natural when we integrate with arrow types of the

λ-calculus; the ordering of input types is covariant, whereas that of output types

is contravariant. The condition on channel types, S

I

� S

O

is necessary to ensure

that a receiver can take from a channel at most the capabilities sent to it. Then,

as already discussed in [15], IO-types in [27] are represented as a special case of

our IO-types; to denote them, we introduce the following abbreviations.

(input only) (τ̃)I for h(τ̃);?i

(output only) (τ̃)O for h>; (τ̃)i

(input/output) (τ̃)IO for h(τ̃); (τ̃)i

Note that (τ̃)IO � (τ̃)I �h>;?i and (τ̃)IO � (τ̃)O � h>;?i. Note also h>;?i 6=>

because the former is a type for a channel which is only used as a value (i.e.

empty capability), while the latter is the top of sort types. Then the key order-

theoretic property of the set of types follows (The reader is referred to [15] for

the definition of a finite bounded complete partial order).

PROPOSITION 2.3. (Ordering) The subtyping relation over types defined in

Figure 3 is a finite bounded complete partial order, FBC.

Proof The proof is similar to that of Proposition 6.2 in [15] and is omitted. 2

The required partial meet operator u and partial join operator t can be de-

fined directly, based on the following clauses.1

(base) ρuρ def

= ρtρ def

= ρ
(>;?) ?uS

def

= ?;>tS
def

= > and

?tS
def

= >uS
def

= S.

(abs) (τ1 ! ρ1)u (τ2 ! ρ2)

def

= τ1t τ2 ! ρ1uρ2 and

(τ1 ! ρ1)t (τ2 ! ρ2)

def

= τ1u τ2 ! ρ1tρ2

(vec) (τ̃)t (τ̃0) def

= (τ̃00) with τ00i = τit τ0i and

(τ̃)u (τ̃0) def

= (τ̃00) with τ00i = τiu τ0i
(chan) hS

I

;S

O

ithS0
I

;S0
O

i

def

= hS

I

tS0
I

;S

O

uS0
O

i and

hS

I

;S

O

iuhS0
I

;S0
O

i

def

= hS

I

uS0
I

;S

O

tS0
O

i if S

I

� S0
O

and S0
I

� S

O

;

else undefined.

1Note that we do not include > and ? for base and arrow types for simplicity. The side coditions

S

I

6=? and S

O

6=> in the channel types ensure that a term which misuses arity constraints, and as

a!hVi ja!hV1V2i can not be typed.
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For sort types (but not value, term or channel types) we can ensure that both

u and t are total; in all cases of Su S0 (respectively St S0) not covered by the

above clasues (for example if they are structually dissimilar or do not satisfy the

IO constraint), then we set SuS0 =? (respectively StS0 =>).

THE IO TYPING SYSTEM Type environments, ranged over by Γ;∆; : : :, are

functions from a finite subset of N[V to the set of value types. We use the

following notation:

� dom(Γ) denotes fu j u :τ 2 Γg and Γ=A denotes fu :τ 2 Γ j u 62 Ag.

� Γ;u :τ means Γ[fu :τg, together with the assumption u 62 dom(Γ).

� ∆� Γ means 8 u 2 dom(Γ); ∆(u)� Γ(u).

The partial meet u and partial join t, defined on types, are generalised to type

environments in the standard manner:

� Γu∆ def

= Γ=dom(∆)[∆=dom(Γ)[fu:(∆(u)uΓ(u)) j u2 dom(Γ)\dom(∆)g

� Γt∆ def

= fu : (∆(u)tΓ(u)) j u 2 dom(Γ)\dom(∆)g

One can easily check that they satisfy the properties of partial meets and partial

joins respectively.

Typing Assignments are formulas P : ρ for any term P and any type ρ. We

write Γ ` P : ρ if the formula P : ρ is provable from a typing environment Γ using

the Standard Typing System given in Figure 4. This is divided in two parts. The

first is inherited from the λ-calculus, while the second is a simple adaptation of

the IO-typing system from [27, 15].

EXAMPLE 2.4. (Typed sq server) We may now revisit the example discussed

above, assigning appropriate types to the channel names and variables involved.

In the definition of sq(a) a pair of values are input, a natural number and a

channel respectively, and this channel will be used to transmit a natural number.

So the following annotation would be reasonable:

sq(a)(= �a?(y :int;z : (int)IO): z!hsq(y)i

However with this typing a user of this process, when transmitting to it a return

channel, is also giving the process permission to receive on that channel. To

provide protection against possible misuse a more appropriate type annotation

would be

sq(a)(= �a?(y :int;z : (int)O): z!hsq(y)i

where the process only receives the output capability on the return channel.

Now we have Γ ` sq(a) : proc for any typing function Γ such that Γ(a) �

(int; (int)

O

)

I. Then by ABS in Figure 4, we have:

` λ(x : (int; (int)O)I): sq(x) : (int; (int)O)I ! proc



8 Nobuko Yoshida and Matthew Hennessy

Common Typing Rules:

ID: Γ;u :τ` u : τ SUB:
Γ ` P : ρ ρ� ρ0

Γ ` P : ρ0

Functional Typing Rules:

CONST: Γ ` 1 : nat etc. ABS:
Γ;x :τ ` P : ρ

Γ ` λ(x :τ):P : τ ! ρ

APP:
Γ ` P : τ! ρ Γ ` Q : τ

Γ ` P Q : ρ

Process Typing Rules:

IN:
Γ ` u : (τ̃)I Γ; x̃ : τ̃ ` P : proc

Γ ` u?(x̃ : τ̃):P : proc

NIL: Γ ` 0 : proc

OUT:
Γ ` u : (τ̃)O Γ `Vi : τi Γ ` P : proc

Γ ` u!hṼ iP : proc

REP:
Γ ` P : proc

Γ ` �P : proc

RES:
Γ;a :σ ` P : proc

Γ ` (νa :σ)P : proc

PAR:
Γ ` P : proc Γ ` Q : proc

Γ ` P jQ : proc

FIGURE 4. Standard Typing System for πλ

which means that should x be instantiated by a channel whose capability is dom-

inated by (int; (int)

O

)

I, then it becomes a safe process. 2

EXAMPLE 2.5. (comparison with [27]) Our general form of IO-types, where

input and output capabilities on a channel may be different [16, 15], gives us

more typable terms than [27], which immediately arise when we integrate with

the subtyping of the functional types. Suppose nat � real,2 a literal succ for

successing natural numbers which has a type nat ! nat, and a literal sq for

squaring real numbers which has a type real! real.

P
def

= a!hbi jb?(x :nat): c!hsucc(x)i jb!h1i

Q
def

= a!hdi jd?(x :real): e!hsq(x)i jd!h1:1i

R
def

= a?(x): (x?(y :real): e!hsq(x)i jx!h1i)

Then we can find both interactions between P and R, and Q and R, do not disturb

the manner of the value constraints. In our typing system, P jQ jR is typable in

2All theorems of this paper are extended to the atomic subtyping system [20] which includes nat

� real.
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the following environment.

Γ = a : (h(real); (nat)i)IO;b : (nat)IO; c : (nat)O; d : (real)IO; e : (real)O

But it is impossible to assign any type to a based on the ordering of [27]. If

we assign ((nat)

IO

)

IO or ((real)

IO

)

IO which are types in [27] to a, processes

behave inconsistently. Consider the following process in which a has a type

((nat)

IO

)

IO.

R0

def

= a?(x): (x?(y :nat): c!hsucc(x)i jx!h1i)

The reader can easily check the communication between R0 and Q violates the

value usage. Note the similar example can be given only in the π-terms without

adding any functional expressions (simply replace, e.g. nat with ()

IO and real

with ()

O, respectively). Hence our subtyping ordering based on [15] is not only

natural to integrate with functional subtypes, but also strictly more general than

that of [27] even in the pure polyadic π-calculus. 2

This standard typing system satisfies the usual requirements of a reasonable

typing system, such as Weakening and Type Specialisation, together with the

following subject reduction theorem.

THEOREM 2.6. (Subject Reduction)

If Γ ` P : ρ and P 7�!! P0, then we have Γ ` P0 : ρ.

Proof See Appendix A. 2

3 Locality of Channels in Distributed Higher Order π-calculus

In this section we first extend the language by introducing an explicit, but simple,

representation of distribution of processes. Then we discuss the main topic of the

paper, difficulty to ensure locality of names in Dπλ.

DISTRIBUTED HIGHER ORDER π-CALCULUS The extended syntax for dis-

tributed processes is given by in Figure 5. Intuitively N kM represents two

systems N; M running at two physically distinct locations, while the process

Spawn(P) creates a new location at which the process P is launched. A more

comprehensive representation of distribution could be given, as in [6, 15, 34], by

associating names with locations and allowing these names to be generated dy-

namically and transmitted between processes. However the simple syntax given

above is sufficient for our purposes: the development of a static typing system

which guarantees the locality of channels in a distributed setting. We believe that

our results will be adaptable without difficulty to more complicated languages.

The reduction semantics of the previous section is extended to the new lan-

guage, Dπλ, in a straightforward manner, by defining a reduction relation N �!

N 0 between system; we use N �!! N 0 to denote the corresponding multi-step
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Syntax:

System: M;N; ::: 2 System ::= P j N kM j (νa :σ)N

Term: P;Q; ::: 2 Term ::= Spawn(P) j � � � as Figure 1

Value: as Figure 1

Distributed Reduction Rules:

(process) P 7�! P0

P�! P0

P 7�! P0 from Figure 2

(spawn) (� � �Q jSpawn(P))�! (� � �Q)kP

(coms) (u?(x̃ : τ̃):P j � � �)k (u!hṼ iQ j � � �)�! (PfṼ=x̃gj � � �)k (Q j � � �)

(pars) (ress) (strs)

M �!M0

M kN �!M0

kN
N �! N 0

(νa :σ)N �! (νa :σ)N 0

N � N 0

�!M0

� M
N �!M

FIGURE 5. Syntax and Distributed Reduction in Dπλ

relation. The definition is outlined in Figure 5 and uses a structural equivalence

on systems, defined by changing “ j” to “ k ” and P;Q;R to M;N;N 0 in Figure 2.

The first two rules are the most important, namely spawning of a process at a

new location (spawn) and communication between physically distinct locations,

(coms).

DEFINING LOCALITY We require that every input channel name is associated

with a unique location. This is violated in, for example,

a?(y): P k (a?(z): Q jb?(x1): R1 jb?(x2): R2)

because the name a can receive input at two distinct locations. Note however that

the name b is located uniquely, although at that location a call can be serviced in

two different ways.

A formal definition of this concept (or rather its complement), locality error,

is given in Figure 6, using a predicate on systems, N
lerr

�!. Intuitively this should

be read as saying: in the system N there is a runtime error, namely there is some

name a which is ready to receive input at two distinct locations. The definition

is by a straightforward structural induction on systems and uses an auxiliary

predicate P # aI which is satisfied when P can immediately perform input on

name a. Formally we would like to develop a type system such that for the

system N, being well-typed ensures N 6

lerr

�!.
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Input Predicate:

a?(x̃): P # aI

P # aI

(P jQ) # aI

Q # aI

(P jQ) # aI

P # aI a 6= b

(νb)P # aI

P # aI

�P # aI

M # aI

(N kM) # aI

N # aI

(N kM) # aI

N # aI a 6= c

(νc)N # aI
Locality Error:

N # aI M # aI

(N kM)

lerr

�!

N
lerr

�!

(N kM)

lerr

�!

N
lerr

�!

(M kN)

lerr
�!

N
lerr

�!

(νc)N
lerr

�!

FIGURE 6. Locality Error

Such a typing system is given by the Distributed Typing Rules in Figure 7,

where the judgements take the form Γ `
l

N, with Γ being again a typing envi-

ronment. The most essential rule is PARl ; this says that N1 kN2 is typable with

respect to an environment ∆ if ∆ can be written as Γ1uΓ2, where Γ1 and Γ2 are

system composable, Γ1 �l

Γ2 and Ni is typable with respect to Γi.

DEFINITION 3.1. Γ1 and Γ2 are composable, written by Γ1 � Γ2, if Γ1uΓ2 is

defined, and Γ1 and Γ2 are system-composable, written by Γ1 �l

Γ2, if Γ1 � Γ2

and u : hSiI;SiOi 2 Γi (i = 1;2) implies S1I = > or S2I = >. 2

Now let us say a channel type σ is local if σ has an input capability, i.e σ =

h(τ̃);S
O

i. We also call a channel u is local under Γ if Γ(u) is local. Then intu-

itively Γ1 and Γ2 being system composable means that if a channel a is local in

Γ1 it must not be local in the other environment Γ2, and vice-versa.

To prove Type Safety for the typing system, that is eliminates locality er-

rors, we first require a correspondence between the input capability and the input

predicate:

LEMMA 3.2.

(1) (process) P # aI and Γ ` P : proc imply Γ ` a : (τ̃)I for some τ̃.

(2) (system) N # aI and Γ `
l

N imply Γ ` a : (τ̃)I for some τ̃.

Proof An easy by induction on the proof of P # aI and N # aI. 2

THEOREM 3.3. (Type Safety) Γ `
l

N implies N 6

lerr

�!.

Proof By induction on derivation of Γ `
l

N.

� Γ `
l

N is inferred by Γ `
l

P� N. Then it is vacuous since P 6

lerr

�!.



12 Nobuko Yoshida and Matthew Hennessy

Local Distributed Rules:

SPAWN:
Γ ` P : proc

Γ ` Spawn(P) : proc

INTRO: PARl : RESl :

Γ ` P : proc

Γ `
l

P
Γ `

l

N ∆ `
l

M Γ�
l

∆
Γu∆ `

l

N kM
Γ;a :σ `

l

M
Γ `

l

(νa :σ)M

FIGURE 7. Local Distributed Typing Rules

� Γ `
l

(νa : σ)N because Γ;a : σ `
l

N. Then by induction, we have N 6

lerr

�!.

Hence we have (νa :σ)N 6

lerr

�!.

� Γ1 uΓ2 `l M kN is inferred by Γ1 `l M and Γ2 `l N with Γ1 �l

Γ2. By

induction, we know M 6

lerr

�! and N 6

lerr

�!. So the only possibility to infer

M kN
lerr

�! is to use the first rule. We show that is impossible. Suppose

M # aI. By Lemma 3.2, we have Γ1 `l a : (τ̃)I. Since Γ1 �l

Γ2, this means

Γ2(a) = h>;Si for some S. Hence Γ1 6` a : (τ̃0)I for any τ̃0. Applying the

lemma again, we have M 6# aI.

However it is easy to see that typability, as defined above, is not closed under

reduction: N 6

lerr

�! and N �!! N 0 does not imply N 0

6

lerr

�!. Various counter-

examples will be given in the next subsection.

DIFFICULTIES IN PRESERVING LOCALITY IN Dπλ There are basically two

reasons why locality is not preserved after communication. The first reason is

the use of a name received from another location as an input subject. The second,

which is more complicated, concerns the parameterisations of processes and the

instantiation of variables which occur in outgoing values.

We first start with a simple example which does not involve process passing.

EXAMPLE 3.4. Consider the system

a?(x): P jb!hai k b?(y): y?(z): Q

Then it is easy to check that this can be typed with PARl in Figure 6. However

after one reduction step, the communication along b, we obtain (up to structural

equivalence)

a?(x): P k a?(z): Q

which is no longer typable.

The problem in the first system occurs because, although a is already located,

an input capability on a is also transmitted along b to another location; in any
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typing Γ of the system we must have Γ(b)� (σ)

I, for some σ.

This misbehaviour can be eliminated by revising the typing system for pro-

cesses, Figure 4, so as to restrict the transmission of such capabilities. Indeed the

typing system which enforces locality in the π-calculus given in [3, 22] can be

viewed in this manner. However the presence of higher-order processes makes

the situation more complicated, as the following example shows.

EXAMPLE 3.5. Let V denote the value λ():sq(a) in the slightly modified sys-

tem

a?(x): P jb!hVi k b?(Y ): Y ()

Once more this is a typable configuration; nevertheless, after the transmission of

the value V to the new site and a reduction we get a system which violates our

locality conditions.

Next consider a similar code where V denotes λ(x):sq(x).

a?(x): P jb!hVi k b?(Y): (Y c) jc?(x): Q

Then this does not destroy the locality conditions.

Certain values are sendable in that their transfer from location to location will

never lead to a locality error. For example, the first value λ():sq(a) is imme-

diately not sendable, although λ(x):sq(x) will be sendable, because it contains

no free occurrence of input channels. However the algebra of sendable and non-

sendable terms is not straightforward.

EXAMPLE 3.6. Let V be a seemingly sendable value λ(x):sq(x) in the system

d?(X): X() jb!hVi k b?(Y ): d!hλ():(Y c)i jc?(x): Q

Here V is transmitted along b across locations, where it is used to construct a

new value, λ():(V c); this is then transmitted across locations via d and when it

is run we obtain once more a locality error.

More interestingly, the following does not disturb locality although we pass

λ():sq(c) directly:

d?(X): X() k b!hλ():sq(c)i jb?(Y): Y () jc?(x): Q

However, the following does violate the locality conditions.

d?(X): X() k b!hλ():sq(c)i jb?(Y): d!hY i jc?(x): Q

Again the problem in the first example is the non-sendable values λ():(V c),

which does not appear in the original system, but constructed dynamically. Sim-

ilarly in the third example, only Y appears an object of d!hY i, but it was dynam-

ically instantiated by non-sendable value.

We need a new set of types which includes sendable/non-sendable types and

a typing system which controls the formation of values and ensures that in every
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Types:

Term Type: ρ ::= π j τ
Process Type: π ::= proc j s(proc)

Value Type: τ ::= unit j nat j bool j σ j s(τ) with τ 6= σ

j τ ! ρ with ρ � s(ρ0

)) τ � s(τ0)

Channel Type: σ ::= hS

I

;S

O

i with S

I

� S

O

, S

I

6=? and S

O

6= >

j s(h>;S

O

i)

Sort Type: S ::= as in Figure 3.

Ordering: All rules from Figure 3 and

(trans) ρ1 � ρ2 ρ2 � ρ3 ) ρ1 � ρ3

(mono) ρ� ρ0

) s(ρ)� s(ρ0

)

(sendable) s(ρ)� ρ
(id) s(ρ)� s(s(ρ))

(lift) s(τ)! s(ρ)� s(s(τ)! s(ρ))

FIGURE 8. Locality types for Dπλ

occurrence of b!hV i, where the term V can be exported to another location, it can

only evaluate to a value of sendable type.

4 Type Inference System for Locality

This section formalises a new typing system for processes. The important point

of our typing is that if each process in each location is statically type-checked, we

can automatically ensure that, in the global environment, input capability always

resides at a unique location even after arbitrary computation.

LOCAL TYPING SYSTEM We add a new type constructor s(ρ) for sendable

terms; the formation rules and ordering are given in Figure 8. The side con-

dition of arrow types simply avoids, as we will see, a sendable term having a

non-sendable subterm; e.g. if either P or Q is non-sendable, then P Q will auto-

matically be non-sendable. A similar side condition on arrow types can be found

in the passive types in [26].

The first rule ensures that� is a preorder. The second extra ordering says that

the constructor s( ) preserves subtyping, and the third that all sendable values

are also values. In conjunction with (id), this rule implies that sendability is

idempotent, s(s(ρ)) ' s(ρ) with '

def

= � \ �. Similarly with (lift), we have:

s(s(τ)! s(ρ)) ' s(τ)! s(ρ). Indeed this can be generalised:
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LEMMA 4.1. For any k � 0, we have:

s(s(τ1)! �� �! s(τk)! s(ρ)) ' s(τ1)! �� �! s(τk)! s(ρ) :

Proof A simple induction on k. 2

We will change the distributed typing system by ensuring a value V will only be

exportable to another location if it can be assigned a type of the form s(τ). How-

ever because our typing system has a subsumption rule a more general statement

would be that to be exportable we assign to V a type τ0 such that τ0 � s(τ), for

some τ. This leads to a formal definition of sendable types.

DEFINITION 4.2. Let Sble, the set of sendable types, be the least set of types

which satisfies:

� s(ρ) 2 Sble for any type s(ρ).

� τ; ρ 2 Sble implies τ! ρ 2 Sble.

We say ρ is sendable if ρ 2 Sble.

The main properties of the set of sendable types is given in the following propo-

sition:

PROPOSITION 4.3.

1. Sble is downwards closed with respect to subtyping: ρ0

� ρ and ρ 2 Sble

implies ρ0

2 Sble

2. ρ 2 Sble if and only if ρ' s(ρ)

3. ρ 2 Sble if and only if ρ� s(ρ0

) for some ρ0.

Proof

1. The proof is by structural induction on ρ0; so we can assume that the state-

ment is true of all ρ00 which are structurally less than ρ0. We now do a further

induction on the proof of ρ0

� ρ. Most of the cases are straightforward; for

example the use of any of the axioms in Figure 8 are immediate. The only

non-trivial case is when ρ0

; ρ have the structure τ1 ! ρ1; τ2 ! ρ2, respec-

tively, where τ2 � τ1 and ρ1 � ρ2. We know ρ2 2 Sble and therefore by

induction ρ1 2 Sble. Also because of the constraint on the formation of ar-

row types we know that τ1 � s(τ3), for some τ3. By construction s(τ3)2 Sble

and therefore, again by induction τ1 2 Sble. It follows that τ1 ! ρ1 2 Sble.

2. Suppose ρ 2 Sble. A simple proof by induction on why ρ 2 Sble gives ρ '

s(ρ), remembering that for any type ρ0 we have s(ρ0

)� ρ0 (if s(ρ0

) is defined).

The case when ρ is an arrow type uses Lemma 4.1. The converse follows

immediately from part one.

3. Now follows from parts one and two.
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The last statement of this Proposition is particularly relevant; in our revised typ-

ing system a value can only be exported to a new site if it can be assigned a type

in Sble. Note also that τ ! ρ 2 Sble if and only if both τ 2 Sble and ρ 2 Sble;

in other words τ! ρ is sendable only if both τ and ρ are sendable. We can also

restate the condition on the formation on arrow types in Figure 8 as saying that

if ρ is sendable then τ ! ρ is a valid type only if τ is sendable. However note

that s(τ ! ρ) is sendable even if τ and ρ are not sendable.

At first sight it may be natural to allow types such as h>;S

O

i to also be in Sble.

However if this were allowed, Sble is no longer be downward closed with respect

to�, a property required in the proof of Lemma 4.12 (2), in turn a technical result

crucial in our proof of the Subject Reduction Theorem.

We can also state a normal form theorem for valid types:

LEMMA 4.4. (Normal form) For every valid type ρ there exists some k� 0 such

that one of the following holds:

(1) ρ ' s(τ1)! �� �! s(τk)! s(ρ1),

(2) ρ ' τ1 ! �� �! τk ! ρG,

(3) τ ' s(τ1 ! �� �! τk ! ρG)

where ρ1 takes the form of (2) and ρG is either proc, hS

I

;S

O

i or a base type.

Proof By structural induction on τ, using Lemma 4.1 and Proposition 4.3. 2

The essential order theoretic property on the subtyping relation is also pre-

served in this extension.

PROPOSITION 4.5. (Ordering) The subtyping relation over types defined in

Figure 8 is finite bounded complete, FBC.

Proof We first extend the definition of u and t in § 2.3 to the sendable types as

follows.

� s(ρ1)u s(ρ2) = s(ρ1uρ2) and s(ρ1)t s(ρ2) = s(ρ1tρ2)

� s(ρ1)u ρ2 = s(ρ1uρ2) and s(ρ1)t ρ2 = ρ1tρ2 with ρ2 6= s(ρ0

2)

The non-trivial cases in the proof that u and t are indeed partial glb and lub

operators are arrow types and channel types. We use Proposition 4.3, together

with Lemma 4.4. See Appendix B.1 for the proofs. 2

The new type inference system, with judgements of the form Γ `
l

P : ρ, is given

in Figure 9 and uses the notion of sendable type environments, environments

which only use sendable types.

DEFINITION 4.6. A typing environment ∆ is sendable, written ∆ `

l

SBL, if

u :τ2 ∆ implies τ 2 Sble or a :σ2 ∆ implies σ 2 h>;S

O

i. 2
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Send Rules:

CONSTl :
Γ `

l

l : nat

Γ `
l

l : s(nat)

etc. CHANl :
Γ `

l

a : h>;Si
Γ `

l

a : s(h>;Si)

TERM l :
∆ `

l

P : ρ ∆ `
l

SBL ∆� Γ
Γ `

l

P : s(ρ) SPAWNl :
Γ `

l

P : s(proc)

Γ `
l

Spawn(P) : s(proc)

Common Rules: as in Figure 4.

Functional Rules: as in Figure 4.

Process Rules:

OUTd :

Γ `
l

u : ( ˜s(τ))O

Γ `
l

Vi : s(τi) Γ `
l

P : π
Γ `

l

u!hṼ iP : π OUTl :

Γ `
l

u : h(τ̃0); (τ̃)i

Γ `
l

Vi : τi Γ `
l

P : proc

Γ `
l

u!hṼ iP : proc

NIL,REP,PAR,RES as in Figure 4 with proc replaced by π , and IN the same as

in Figure 4.

Local Distributed Rules: PARl and RESl as in Figure 7 and INTRO as in Figure

7 with ` replaced by `
l

in INTRO.

FIGURE 9. Locality Typing System for Dπλ

In Figure 9 the Send Rules determine which values can be exported to other

locations, either by spawning or by communication. All constants and output

capabilities on channels are automatically sendable. The crucial rule is TERMl ,

which says that in a general term is sendable only if it can be derived from a

sendable type environment.

The rules for processes also require minor modifications. We can create a

process by spawn if it is sendable. In OUTd we require that values which will

be sent across locations to have sendable types. However if the transmission is

only done in the same location, this condition is relaxed; in OUTl , the message is

guaranteed to be transmitted within the same location since name a has an input

capability. Note also an input process has always the non-sendable type proc.

EXAMPLE 4.7. (Sq-server) In the following, we offer a non-trivial example of

the use of sendability in typing. Recall Examples 2.1 and 2.4, and let us define

σ = (int; (int)

O

)

I τ = σ! proc σ0

= (int; (int)

O

)

IO

First we note λ(x :σ): sq(x) has a sendable type s(σ ! proc); the derivation is

similar to that in Example 2.4, followed by an application of the rule TERMl .
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Then SqServ is typed as follows:

req: ((τ)O)I `
l

� req?(r : (τ)O):r!hλ(x :σ): sq(x)i : proc

Here the type declaration “(τ)O” of r ensures that SqServ does not create a new

input subject by a value received though channel “req”.

Next for Client, first let us define its body as P� ( X a ja!h1;c1i j � � �). To ac-

cept λ(x :σ): sq(x) from the server and create sq(a) by applying a to λ(x :σ): sq(x),

a will be used with both input/output capabilities in P. Hence P is typed as:

X : τ; a : σ0

`

l

P : proc. Now let us define Γ = req : ((τ)O)O; r : (τ)IO. Since

(τ)IO � (τ)I, by applying RES and IN, we have:

Γ `
l

r?(X :τ): (νa :σ0

)P : proc

To output r through “req”, r should have a sendable type. Then, by (τ)IO � (τ)O

and CHANl rule, we have:

Γ `
l

r : (τ)O

Γ `
l

r : s((τ)O)

The type of the channel “req” in the client is inferred by s((τ)O) � (τ)O as well

as the contravariance of output capability:

Γ `
l

req: (s((τ)O))O

Combining these three, we now infer:

req: ((τ)O)O `
l

(νr : (τ)IO)req!hrir?(X :τ): (νa :σ0

)P� Client : proc

Finally since freq:((τ)O)Ig �
l

freq:((τ)O)Og, both systems are system compos-

able.

req: ((τ)O)IO `
l

SqServ k Client

Observe that:

(1) The sendable type s(σ! proc) of λ(x :σ): sq(x) makes it possible to create

a new server sq(a) in the client side.

(2) r is declared with both input and output capabilities in the Client. The Client

itself uses the input capability but, because of the type of “req” it only sends

the output capability to SqServ. This form of communication is essential

to represent a continuation passing style programming in the π-calculus as

studied in [17, 27, 31, 32]. Moreover it demonstrates the need for non-trivial

subtyping on channels.

We now give a series of examples which show that our typing systems elim-

inates various forms of behaviour which destroy our locality conditions.

EXAMPLE 4.8. Recall the first system in Example 3.4.

a?(x): P jb!hai k b?(y): y?(z): Q
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Suppose Γ1 ` a?(x): P jb!hai and Γ2 `l b?(y): y?(z): Q. Then we have Γ2(b) �

((σ)

I

)

I for some σ. Since a should have a sendable type in Γ1, Γ1(b)� (s(σ0

))

O

for some σ0. Now suppose Γ1 �l

Γ2. Then by definition, Γ1 uΓ2 is defined,

which is impossible. In this (hypothetical) environment the output capability

associated with b must be dominated by the input capability, which would in

turn require s(σ0

) � (σ)

I. However this constraint can never be satisfied for

channel types.

EXAMPLE 4.9. If Γ `
l

λ():sq(a) : τ then τ 62 Sble.

Because of the subsumption rule SUB the proof of this statement is not im-

mediate. However first consider any derivation of Γ0

`

l

sq(a) : ρ. This will

consist of a sequence of applications of SUB and an application of IN. By induc-

tion on this sequence we can establish that ρ 62 Sble and Γ0

6`

l

SBL; the case of

an application of SUB is handled by the fact that Sble is downwards closed with

respect to subtyping. In other words if we can derive Γ0

`

l

sq(a) : ρ then ρ must

be proc.

Now let us examine a derivation of Γ `
l

λ():sq(a) : τ. This again will use the

rules SUB, and ABS. We may also use TERMl . By induction on the derivation

we can show that τ 62 Sble. Because of our previous reasoning, τ must take the

form either s(τ0 ! proc) by TERMl rule or τ0! proc. The former is impossible

since there is no Γ � Γ0 such that Γ0

`

l

SBL and Γ0

;x : unit `
l

sq(a) by the

same argument in the above. The latter can not be in Sble because proc is not

sendable; subsequent applications of SUB can not infer a sendable type, again

because Sble is downwards closed with respect to subtyping.

EXAMPLE 4.10. Recall the first system in Example 3.5:

a?(x): P jb!hVi k b?(Y ): Y ()

where V is the value λ():sq(a).

Since V can not be assigned a sendable type, if the right-hand side location is

typable, then b should be local by OUTl . Then it can not be system-composable

with the left-hand side where b is local too.

EXAMPLE 4.11. Recall the third system in Example 3.6.

d?(X): X() k b!hλ():sq(c)i jb?(Y): d!hY i jc?(x): Q

Since d is not local in the left-hand side, if b?(Y : τ): d!hY i is typable for some

τ then τ must be in Sble. Suppose Γ types this system and that Γ(b) has the

form h(τ

I

); (τ

O

)i. To be a valid type we need τ

O

� τ

I

and since τ

I

� τ 2 Sble we

have τ

O

2 Sble. However the type assigned to b!hλ():sq(c)i, say τ0, must satisfy

τ0 � τ

O

, that is τ0 must be an element of Sble. From Example 4.9 we know this is

impossible.

Note that this example demonstrates the need for s( ) as a constructor on
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types. By asserting that the type on the bound variable Y is in Sble we can reject

inappropriate inputs on the channel b. In a typing system based on the simple

assertions of the form

` τ is sendable

where τ is a type from Section 2, such reasoning would be difficult.

SUBJECT REDUCTION In this subsection we prove locality is preserved under

reduction. We take for granted that the revised type system satisfies the usual

properties such as Narrowing, Weakening etc.; these may be checked by the

reader.

LEMMA 4.12.

(1) (Algebra on environments) Γ1 ` SBL and Γ2 ` SBL imply Γ1uΓ2 ` SBL, and

∆1 �l

∆2 and ∆1 �l

∆3 implies ∆1 �l

∆2u∆3.

(2) (Sendable types) If ρ 2 Sble then Γ `
l

P : ρ implies there exists ∆ s.t. ∆� Γ,

∆ `
l

SBL, and ∆ `
l

P : ρ.

(3) (Local substitution) Suppose Γ;x : τ `
l

P : ρ and Γ `
l

V : τ. Then we have

Γ `
l

PfV=xg : ρ.

Proof See Appendix B. 2

The proof of the second property relies directly on the constraint on the construc-

tion of arrow types: τ! ρ with ρ2 Sble is only a valid type if τ2 Sble. Relaxing

this constraint would allow us to type many more terms as sendable. Typical ex-

amples take the form (λxy:x)PQ, with P being sendable and Q non-sendable.

Indeed such terms may be exported between locations without violating locality

constraints. But inventing a typing system which allows this behaviour is a topic

for further serious research (cf. [26]).

The second property is also the most important to prove the third. In the type

system there are many different ways of inferring a sendable type, for example

using CONSTl , CHANl , SUB or APP. However we can regard all sendable types

as being inferred in a uniform manner by an application of TERMl .

Note that this lemma does not alleviate the need for the constructor s( ) on

types. We have already seen in Example 4.11 how it is used to eliminate potential

mistyping. It is also used in the following more complicated example which

shows that the first system in Example 3.6 is untypable.

EXAMPLE 4.13. Recall the first system in Example 3.6.

d?(X): X() jb!hV i k b?(Y): d!hλ():(Y c)i jc?(x): Q

with V is the sendable value λ(x):sq(x). Suppose this is typed as λ(x :σ0):sq(x)

with some σ0. Then by definition of sq(x) in Example 2.4, σ0 should satisfy

σ0 � (int; (int)

O

)

I.
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Now suppose Γ types the above system, and Γ(b) has the form h(τ

I

); (τ

O

)i.

Assume b?(Y :τ0): d!hλ():(Y c)i is typable for some τ0. Since V should be send-

able in the right hand side location, to infer b!hV i, there should be Γ(b) �

(s(σ0

0 ! proc))

O for some σ0

0 � σ0. Hence we require s(σ0

0 ! proc) � τ

O

�

τ

I

� τ0.
Next, since d is not local in the right-hand side, by Lemma 4.12 (2), there

exists ∆ such that ∆ `Y c : proc with ∆ ` SBL. We show there does not exist such

∆. Suppose ∆ `Y c : proc. Then we must have the following derivation.

∆ `
l

Y : τ0 τ0 � σ0

! proc

∆ `
l

Y : σ0

! proc ∆ `
l

c : σ0

∆ `
l

Y c : proc
By proc 62 Sble, s(σ0

0 ! proc) � σ0

! proc can be derived only by σ0

0 !

proc� σ0

! proc by the definition of�. Thus we should have: σ0

� σ0

0 � σ0 �

(int; (int)

O

)

I by the ordering of arrow types. Since ∆(c)� σ0, ∆(c) should have

the input capability, which means ∆ in the above should be non-sendable. Thus

this system is not typable under any environment Γ. 2

The main lemma requires the order-theoretic property, FBC, of our subtyping

relation, together with Lemma 4.12.

LEMMA 4.14. (Main Lemma) Suppose Γ1;x : τ0 `
l

P : π and Γ2 `l V : s(τ)

with Γ1 �l

Γ2 and τ0 � s(τ). Then there exists ∆ such that:

(1) Γ2 � ∆ with ∆ `
l

SBL and ∆ `
l

V : s(τ),
(2) Γ1u∆ `

l

PfV=xg : π , and

(3) Γ1u∆uΓ2 = Γ1uΓ2 with Γ1u∆�
l

Γ2.

PROOF. (1) By Lemma 4.12 (2).

(2) Let us define Γ = Γ1 �l

Γ2. Then we have Γ � Γ1 and Γ � Γ2 � ∆, which

implies that Γ1 u∆ defined and Γ1 u∆ � Γ1. Then by the standard narrowing

property, Γ1u∆;x :τ0 ` P : ρ and Γ1u∆ `V : s(τ). Hence Γ1u∆ `V : τ0 by SUB.

Applying Lemma 4.12 (3) to these, we have done.

(3) First by the proof of (2) above, we know Γ1 � ∆. Then by the commutativity

ofu, we have (Γ1u∆)uΓ2 = Γ1u(∆uΓ2)= Γ1uΓ2. Since ∆`
l

SBL, ∆�
l

Γ1;2.

Then by Lemma 4.12 (1), we have Γ1u∆�
l

Γ2, as required.

LEMMA 4.15. (Struct)

� For processes P; Q if Γ `
l

P : π and P� Q, then Γ `
l

Q : π .

� For systems N; M if Γ `
l

N and N � M, then Γ `
l

M.

Proof The proof of both statements are virtually identical. We examine the only

non-trivial case (for systems), the scope opening rule.
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Suppose Γ `
l

(νa : σ)M kN. Then by induction, there are Γ1 and Γ2 which

satisfy Γ1;a : σ `

l

M, Γ2 `l N and Γ1 �l

Γ2. Since a 62 dom(Γ2), we have

Γ1;a : σ �

l

Γ2. Hence we have Γ1;a : σu Γ2 `l M kN which implies, since

Γ1;a :σuΓ2 = Γ1uΓ2;a :σ, that Γ1uΓ2 `l (νa :σ)(M kN), as required.

For the other direction, suppose Γ `
l

(νa : σ)(M kN) with a 62 fn(N). Then

by induction, we have: Γ0

1 `l M and Γ0

2 `l N such that Γ0

1uΓ0

2 = Γ;a :σ. Since

a 62 fn(N), we know that Γ0

2=a `
l

N. Then by (Γ0

1 ufa : σg)(a) = σ, we have

Γ0

1ufa :σg `
l

M, which implies Γ0

1=a `
l

(νa :σ)M. Finally by Γ0

1=a �
l

Γ0

2=a,

we have done. 2

THEOREM 4.16. (Subject Reduction Theorem)

� If Γ `
l

P :ρ and P 7�! Q, then Γ `
l

Q :ρ.

� If Γ `
l

N and N �!M, then Γ `
l

M.

Proof The proof for processes is identical to that of Theorem 2.6 and therefore

we concentrate on that for systems. We use induction on the derivation of N �!

M and because of the previous Lemma, and the first part of the Theorem, there

are only two non-trivial cases:

(1) (� � �Q jSpawn(P)) �! (� � �Q)kP

(2) (u?(x̃ : τ̃):P j � � �)k (u!hṼ iQ j � � �)�! (PfṼ=x̃gj � � �)k (Q j � � �).

Case (1): Assume Γ `
l

(� � �Q jSpawn(P)) and therefore in particular that Γ `
l

Spawn(P) : proc. Then Γ`
l

P : s(proc). Hence by Lemma 4.12 (2), there exists

∆ `
l

SBL such that Γ� ∆ and ∆ `
l

P : proc. It follows that Γ `
l

(� � �Q)kP since

Γ = Γu∆ and Γ �
l

∆.

Case (2): Let us just consider the case

u?(x̃ : τ̃): Pku!hṼ i: Q �! PfṼ=x̃gkQ (4.1)

We know that Γ has the form Γ1uΓ2 where Γ1 `l u?(x̃ : τ̃): P : proc and Γ2 `l

u!hṼ i: Q : proc with Γ1 �l

Γ2. We show that for some Γ0

1 such that Γ1uΓ2 =

Γ0

1uΓ2 and Γ0

1 �l

Γ2, we have Γ0

1 `l PfṼ=x̃g and Γ2 `l Q.

First, since u is not local in the left-hand side location, Γ2 `l u!hṼ i: Q : proc

should be inferred by OUTd . Hence we have the following derivations, for each

Vi in Ṽ (0� n):

Γ2 ` u : ( ˜s(τ0))O; Γ2 ` u : Vi : s(τ0i) and Γ2 ` Q : proc (4.2)

By Lemma 4.12 (2), there exists ∆i such that ∆i `
l

SBL and ∆i `
l

Vi : s(τ0i).
Set ∆ = u∆i. Then we have ∆ � Γ1 and ∆ `

l

SBL by Lemma 4.12 (1). The

required Γ0

1 is Γ1u∆, and by Lemma 4.14 (3), we have: Γ1uΓ2 = Γ0

1uΓ2 with

Γ0

1 �l

Γ2, but we need to prove Γ0

1 `l PfṼ=x̃g.

From Γ1 `l u?(x̃ : τ̃): P : proc we have

Γ1 ` u : (τ̃)I and Γ1; x̃ : τ̃ ` P : proc (4.3)
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Now assume (ΓiuΓ j)(u) = hS

I

;S

O

i (Note we do not have s(hS

I

;S

O

i) since S

I

6=

>). Then by Γ1uΓ2 � Γ1 and Γ1uΓ2 � Γ2, we know hS

I

;S

O

i � Γ1(u) � (τ̃)I

and hS

I

;S

O

i � Γ2(u)� (

˜s(τ0))O. Since S

I

� S

O

by definition, we get (τ̃)� (

˜s(τ0)),
hence τi � s(τ0i) for each i. Therefore we apply Lemma 4.14 (2) for each i to

obtain the required Γ0

1 `l PfṼ=x̃g : proc. 2

COROLLARY 4.17. (Type Safety) Γ `
l

N and N �!! M imply M 6

lerr

�!.

Proof Theorem 3.3 can be trivially adapted to the judgements Γ `
l

N. 2

5 Further Development

Here we examine some issues which arise naturally from the ideas introduced in

the previous section.

5.1 Generalisation to Global/Local Subtyping

Our typing system has a static view of the role of channels. From the point of

view of a given location they can only be used for input locally whereas there is

global access to its output capability. A more general view is proposed in [34],

whereby the input/output capabilities of each channel can be designated to be

either global or be restricted to being local. Here we show that our typing system

can be adapted to this more general framework.

In this extension channel types are labelled by one of the locality modes,

fGG;LG;GL;LLg, ranged over by m;m0

; : : :. Their meaning is as follows:

� GG – a channel is allowed to be used as the input and output subjects any-

where.

� GL (resp. LG) – a channel is used as the input (resp. output) subject anywhere,

while as the output (resp. input) subject only inside this location.
� LL – a channel is used as the input and output subjects only in this location.

A partial order on these modes is given by:

LL

GL

==

|

|

|

|

|

|

|

|

LG

aaB

B

B

B

B

B

B

B

GG

aaB

B

B

B

B

B

B

B

==

|

|

|

|

|

|

|

|

and this in turn is reflected in the ordering on the extended channel types, which

are given by mhS

I

;S

O

i. Here m denotes how the channel is used as the subject

while S

I

;S

O

in hS

I

;S

O

i stand for the types of objects which it carries.
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We now briefly outline how our typing system can be adapted to these more

general types; In the revised system judgements take the form

Γ `
g

P : ρ

First we need a more general replacement for the rule CHANl in Figure 9 to

indicate when channels, or more precisely channel capabilities, may themselves

be transferred between locations.:

CHANg

Γ `
g

a : LLhS

I

;S

O

i

Γ `
g

a : s(GGh>;?i)

Γ `
g

a : LGhS

I

;S

O

i

Γ `
g

a : s(GGh>;S

O

i)

Γ `
g

a : GLhS

I

;S

O

i

Γ `
g

a : s(GGhS

I

;?i)

Γ `
g

a : GGhS

I

;S

O

i

Γ `
g

a : s(GGhS

I

;S

O

i)

In general a capability can only be transmitted if it has the form GGhS

I

;S

O

i for

some S

I

;S

O

; moreover the input type S

I

and the output type S

O

is determined by

the mode of the channel type. As an example if this is GL, then it is prohibited

from being used as the output subject in an other location; hence it can only be

sent as the capability hS

I

;?i, with the mode GG.

The input/output rules require minor modifications:

INgl :

Γ `
g

u : LL(τ̃)I

Γ; x̃ : τ̃ `
g

P : proc

Γ `
g

u?(x̃ : τ̃):P : proc

OUTgl :

Γ `
g

u : LLh(τ̃0); (τ̃)i

Γ `
g

Vi : τi

Γ `
g

P : proc

Γ `
g

u!hṼ iP : proc

OUTgd :

Γ `
g

u : LL( ˜s(τ))O

Γ `
g

Vi : s(τi)

Γ `
g

P : proc

Γ `
g

u!hṼ iP : proc

The remaining rules of the local typing system remain unchanged. However in

this extended type system we rely entirely on the rule TERMl to infer processes

have the sendable type s(proc). This may be alleviated somewhat by the two

optional rules:

Γ `
g

u : GL(τ̃)I

Γ; x̃ : τ̃ `
g

P : s(proc)

Γ `
g

u?(x̃ : τ̃):P : s(proc)

Γ `
g

u : LG( ˜s(τ))O

Γ `
g

Vi : s(τi) Γ `
g

P : s(proc)

Γ `
g

u!hṼ iP : s(proc)

Finally to extend a system to a composition of systems we need a more gen-

eral definition of system composable.

DEFINITION 5.1. Then two environments Γ1 and Γ2 are composable, denoted

by Γ1 �g

Γ2, if Γ1 � Γ2 and if u : mihSiI;SiOi 2 Γi (i = 1;2), then (1) mi = LL

implies S jI = > and S jO = ?, (2) mi = LG implies S jI = >, and (3) mi = GL

implies S jO = ? with i 6= j. 2
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This leads to the final change to the typing rules:

PARg :
Γ `

g

M ∆ `
g

N Γ�
g

∆
Γu∆ `

g

M kN

THEOREM 5.2. (Subject Reduction) If Γ `
g

N and N �!!M, then Γ `
g

M.

Proof Omitted. 2

The definition of run-time error is however somewhat more complicated. In

general whether or nor there is a violation of the locality requirements depends

on an apriori decision of which channel capabilities can be used globally. For

example if a typing dictates that input on a channel a is global then no run-time

error occurs if the input prefix a?x occurs at two distinct locations.

Thus to formalise run-time errors we require a notion of a tagged version

of the language along the lines of [27] or [15]. The reader familiar with this

technique should be easily convinced that such a tagged language could be de-

veloped, together with an appropriate version of a Type Safety Theorem.

5.2 Behavioral Equivalence

Typing systems impose constraints on the communication structure of processes

and various authors, for example [27, 32, 37] have used this to define relativised

behavioural equivalences. These have proved useful for example in studying the

properties of translations between languages, [22, 3, 32, 37].

This technique can also be applied to Dπλ, thereby opening up the possibil-

ity of obtaining interesting relativised behavioural theories for higher-order pro-

cesses. Let �Γ (resp. �Γ) denote a typed weak (resp. strong) barbed reduction-

closed congruence defined by input/output predicates and reduction-closure prop-

erty as in [27, 37, 2, 32, 18]. Various properties of �Γ and �Γ, proved for vari-

ations of the π-calculus, can easily be generalised to Dπλ; a simple example

is closure under β-reduction (see page 10 in [2]). We can also prove various

distributed equations, such as

(P jSpawn(Q))kR �∆ (PkQ)kR �∆ Pk (Q jR)

Pk (a!hṼ i jQ) �∆ (P ja!hṼ i)kQ

We also have the following multiple higher-order strong replication theorem:

PROPOSITION 5.3. Let us define R
def

= �a?(x̃): R1 j � � � j �a?(x̃): Rn with Ri send-

able. Then we have: (νa)(RkPkQ) �Γ (νa)(R jP)k (νa)(R jQ)

Proof As in [27, 37], we only have to consider a closure of the parallel compo-

sition with a system (note that systems are closed under only k and ν ). We take

the set R of all pairs of the form

h(N k (νa)(RkP kQ)); (N k (ν a)(R jP)k (νa)(R jQ))i (5.4)
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where both systems in the pair are typable under environment Γ. We show this

relation is a strong barbed reduction-closed up to �Γ and restriction.

To establish this, we first define the same notion of Definition 5.3.1 in [27];

we say a is only used as a trigger in P if Γ ` C[P] : proc and there exists ∆
s.t. ∆ � Γ, ∆ `

l

P : proc and ∆(a) = h>;S

O

i or ∆(a) � s(τ). Then we observe

that:

1. Suppose R is sendable. Then Γ `

l

(P jR) kQ iff Γ `

l

P k R kQ, and

(P jR)kQ�Γ PkRkQ.

2. If R is sendable, then all free names in R are only used as a trigger.

3. a is only used as a trigger in P and Q since the left-hand side of the above

equation is typable. Hence P and Q may only export the sendable value V

via a.

4. If a is used as a trigger in Q and V is sendable, then a in QfV=Xg is again

only used as a trigger.

Now take the set R0 of typable pairs of the form

h(ν a)(Nfa=a0gkRkPfa=a0gkQfa=a0g); (νa;a0)(N k (R jP)k (Rfa0=agjQ))i

where a0 62 fn(R) and a and a0 are used as triggers in N,Ri, P and Q (note this is

a simple extension of the equation (25) in Appendix B in [27]). To establish R is

in �Γ, we show the above relation R0 is again a strong barbed reduction-closed

up to �Γ, using 1 to 4 above. 2

Note we do not require any side condition for P and Q, for example stating

that P and Q must be of a certain syntactic form; instead the typing system

enforces implicit constraints on the various components of the systems. Note

also that this proposition can not be derived in the framework of [32] since a is

neither a linear nor an ω-receptive name.

Such theorems will be useful for reasoning about object-oriented systems

where templates are shared among locations. Further extension of typed equiva-

lences studied in π-calculus (e.g. [32, 37]) to distributed higher-order processes

is an interesting research topic which we intend to pursue.

5.3 Type Checking

For a practical use of a typing system, it is essential that we can check the well-

typedness of a system N against a global type environment Γ. For this purpose,

first we propose a typing system (Minπλ) which can induce the minimum type

of a given term P and Γ (if it has a type) in πλ in Section 2, by deleting SUB and

modifying APP, OUT and IN in Figure 4 as follows.

APPm :
Γ ` P : τ1 ! ρ Γ ` Q : τ2 τ2 � τ1

Γ ` P Q : ρ
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INm:

Γ(u) � (τ̃)I

Γ; x̃ : τ̃ ` P : proc

Γ ` u?(x̃ : τ̃):P : proc

OUTm :

Γ `Vi : τi Γ(u)� (τ̃)O

Γ ` P : proc

Γ ` u!hṼ iP : proc
PROPOSITION 5.4.

(1) (ordering) ρ1 � ρ2 is decidable.

(2) (the minimum type in πλ) In the typing system in Figure 4, if Γ ` P : ρ then

there exists ρ0 such that Γ ` P : ρ0 and, for any ρ0, if Γ ` P : ρ0, then ρ0

� ρ0.

(3) (algorithm) There is a type-checking algorithm that given type environment

Γ and term P, computes the minimum type ρ such that Γ ` P : ρ if one exists.

PROOF. (1) we first note functional types of our system correspond the regular

system in [20] (see Theorem 5 in [20]). Next we observe that a subtyping be-

tween channel types hS1I;S1Oi � hS2I;S2Oi are also computed in the same way

as the arrow types; hence the subtyping relation is decidable.

(2) by easy induction on the derivations of Γ ` P : ρ in Minπλ, we obtain (a)

if Γ ` P : ρ is derived from Minπλ, then it is also derived from the system in

Figure 4, (b, unique type) Γ ` P : ρ1 and Γ ` P : ρ2 are derived in Minπλ, then

ρ1 = ρ2, and (c, Minπλ has smaller types) If Γ` P : ρ is derived from the system

in Figure 4, then Γ ` P : ρ0 is derived from Minπλ for some ρ0 such that ρ0

� ρ.

By (a,b,c), (2) is straightforward.

(3) It can be constructed straightforwardly based on Minπλ. See Appendix C for

that algorithm.

To construct the typing checking algorithm for the local Dπλ in Section 4,

we need to eliminate not only the subsumption rule, but also TERMl in Figure 9

to obtain a syntax directed system. The basic idea is to keep the sendable flag

s( ) as much as possible during inference using the partial meet operator. We

define a typing system, SblDπλ, in Figure 10. In SblDπλ, we assume every type

takes either of the following three forms, which correspond (1,2,3) in Lemma

4.4, respectively (k� 0).

(1) s(s(τ1)! s(s(τ2)! s(s(τ3)! �� �! s(ρ1)) � � �)),

(2) τ1 ! τ2 ! τ3 ! �� �! ρG, or

(3) s(τ1 ! τ2 ! τ3 ! �� �! ρG)

where ρ1 takes the form of (2) and ρG is either proc, hS

I

;S

O

i or a base type. We

use the following function, up(ρ0) which changes ρ0 to the least non-sendable

type ρ0 such that ρ0 � ρ0.
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up(ρ0) = s(τ1)! s(τ2) � � �s(τn)! ρ1 if ρ0 is in the form of (1) above

up(ρ0) = ρ else if ρ0 = s(ρ)

up(ρ0) = ρ0 else

We can easily observe that if ρ � ρ0, then up(ρ) 62 Sble and ρ� up(ρ) � ρ0.

Then we have the following propositions.

PROPOSITION 5.5.

(1) Γ1 � Γ2, Γ1 �l

Γ2 and Γ `
l

SBL are decidable.

(2) (sendable) Given Γ and P, there is an algorithm that computes Γ `
l

P : s(ρ)

for some ρ if one exists.

(3) (algorithm) Given Γ and N, there is a type-checking algorithm that computes

Γ `
l

N if one exists.

PROOF. (1) First, given ρ1 and ρ2, it is decidable to check whether ρ1u ρ2 is

defined or not sinceu and t are directly defined in § 2.3 and § 4.1, and the size of

substructures of types in these definitions is always decreased. Then Γ1 � Γ2 is

decidable since this problem is reducible to check definedness of Γ1(a)uΓ2(a)

for each a 2 dom(Γ1)\ dom(Γ2). The second case is easy from the first. The

third case is obvious. For (2), we note that (a) Γ
l

P : s(ρ) implies Γ `
l

SBL and

(b) if Γ
l

P : ρ, then Γ `
l

P : ρ, and (c) If Γ ` P : ρ, then Γ0



l

P : ρ0 is derived

for some ρ0

;Γ0 such that ρ0

� ρ, and Γ � Γ0. Then (2) is constructed based on

the rules in Figure 10. (3) is given using (2), together with the fact that Γ1 �l

Γ2

is decidable. See Appendix C for this algorithm.

6 Discussion and Related Work

We have proposed a static local typing system for a simple higher-order dis-

tributed process language Dπλ and we used it to show that a global safety condi-

tion can be guaranteed by static type-checking of each local configuration. Our

typing system does not require additional information on the resources available

at different locations to ensure that higher-order processes can be safely passed

between locations without violating locality constraints on channels. The notion

of sendable values and the corresponding sendable types plays an essential role

in our typing system. Other schemes for restricting capabilities of higher-order

terms by types may also be found in various different contexts; for example, in

reference types [26], agent migration [30], an implementation of network proto-

cols [19], and a location-based Linda language [25].

The distributed component of Dπλ is rather primitive, but we believe that

the type inference system can easily be adapted to languages where, for exam-

ple, locations can be named and dynamically generated, such as those discussed

in [3, 15], or where there is more significant interplay between the concurrent
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Common Rules:

CONs : 

l

1 : s(nat) etc. VARs : x :τ
l

x : τ

CHANs :

(1) : a : h>;S

O

i 

l

a : s(h>;S

O

i) (2) : a : hS

I

;S
O

i 

l

a : hS

I

;S

O

i

WEAKs :

(1) (2) (3)

Γ
l

P : s(ρ)

u : s(τ);Γ
l

P : s(ρ)

Γ
l

P : s(ρ)
a : h>;Si;Γ

l

P : s(ρ)
Γ

l

P : ρ
u :τ;Γ

l

P : up(ρ)

Functional Rules:

ABS:

(1) (2) (3)

Γ;x : s(τ) 
l

P : s(ρ)
Γ

l

λ(x :τ):P : s(s(τ)! s(ρ))
Γ;x :τ

l

P :ρ Γ `
l

SBL

Γ
l

λ(x :τ):P : s(τ! ρ)

Γ;x :τ
l

P :ρ
Γ

l

λ(x :τ):P :τ! ρ

APPs :

τ = τ1 ! ρ or τ = s(τ1 ! ρ)

Γ1 l

P : τ Γ2 l

Q : τ2 τ2 � τ1 Γ1 � Γ2

Γ1uΓ2 l

P Q : ρ

Process Rules:

NILs : 

l

0 : s(proc)

OUTs :
(1)

Γ(u)� (

˜s(τ))O

Γi 
l

Vi : s(τi) Γ� Γi

Γ
l

P : π
ΓuΓ1�i�n l

u!hṼ iP : π (2)

Γ(u) � h(τ̃0); (τ̃)i

Γi 
l

Vi : τi Γ� Γi

Γ 
l

P : proc

ΓuΓ1�i�n l

u!hṼ iP : proc

Pars :
Γi 

l

Pi : π i Γ1 � Γ2

Γ1uΓ2 l

P1 jP2 : π 1uπ 2
RESs :

Γ;a :σ
l

P : proc Γ `
l

SBL

Γ
l

(νa :σ)P : s(proc)

REP, RES, SPAWNl from Figure 9 and INm from Minπλ.

Under each heading the rules must be applied in the enumerated order.

FIGURE 10. Sendable Typing Rule (SblDπλ)
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and the functional aspects of the language, as in Facile [9]. However extensions

of our capability based typing systems to more advanced distributed primitives,

such as hierarchical location spaces [36], process mobility [6, 33, 11], and cryp-

tographic constructs [1, 14] will be more challenging. Since in our language we

inherit the standard subtyping of the λ-calculus, it is also be possible to con-

sider the introduction of richer subtyping relations, for example those based on

records, recursive types, or polymorphic types into type systems for distributed

languages.

As argued in [9, 8, 21, 25, 33], many practical applications call for parame-

terised higher-order process passing, which may be difficult to represent directly

without functional constructions, even in languages which support migration of

the processes. Moreover their presence leads to a natural and powerful program-

ming style; an example is given in Appendix D.

It has been argued that in some sense there is no need for higher-order con-

structs in π-calculus based languages. For example in [31] there is a concise

translation of processes using higher order values into a first order process lan-

guage where only channel names are transmitted. However the translation is

rather complicated and would be difficult to use as a basis for reasoning directly

about the behaviour of higher-order processes. Moreover, as we will now argue

in the context of Dπλ, certain information is lost in such translations.

The basic idea of the translation is to replace the transmission of an abstrac-

tion with the transmission of a newly generated trigger. An application to the

abstraction is then replaced by a transmission of the data to the trigger, which

provides a copy of the abstraction body to process the data. Using this idea

sqServ is replaced by

[[sqServ]](= � req?(r): (ν tr) (r!htri j Str) with Str(= � tr?(x): sq(x)

Here when a request is received, a new trigger is generated, and then returned

to the client. Associated with the trigger is a trigger server, Str which receives

data on the trigger and then executes the body, namely z!hsq(x)i. Suppose we

have the following Client2 who may already have a square server, for example

for faster parallel evaluation.

Client2(= (νar)(req!hri: r?(X): X a j sq(a) j a!h1;c1i j a!h2;c2i j � � �)
Then the client is replaced by

[[Client2]](= (νar)(req!hri: r?(tr): tr!hai j sq(a) j a!h1;c1i j a!h2;c2i j � � �)

The application in Client2 is replaced by a transmission of a to the trigger, which

was received in response to the request.

However there is an essential difference between the two systems:

sqServ k Client2 [[sqServ]]k [[Client2]]
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In the former, the new receptor sq(a) is created in the client location, whereas in

the latter sq(a) is created on the server side:

sqServ k Client2 �!! sqServ k (νa)(sq(a) j sq(a) j � � �)

[[sqServ]]k [[Client2]] �!! (νa)(sq(a) j [[sqServ]] k sq(a) j a!h1;c1i � � �)

This disturbs the locality constraints on the channel a. Actually we can check

that for all Γ, we have: Γ 6`
l

[[Client2]] k [[sqServ]], since a should be used as

input capability in the server side to create a new sq(a). But sqServ k Client2 is

typable, as seen in Example 4.7.

This example shows that it would be extremely difficult to adapt the transla-

tion technique in [31] so that the local typing structure is preserved; it provides at

least one reason why the semantics of higher order distributed calculi are worthy

of investigation, independently of their translations into first order calculi.

Preserving the locality of channels has been studied extensively for the π-

calculus, [3, 22, 4, 38, 11]. For example the (untyped) local π-calculus [22, 4, 38]

is simply defined with the following input restriction rule

a?(x): P if x does not appear as a free input subject in P

If we consider the subset of Dπλ, where the abstraction mechanisms are omitted

and only a single location is used then the typing system automatically enforces

this restriction on well-typed terms. However it would be wrong to generalise

this restriction to higher-order terms by imposing the constraint:

λx:P if x does not appear as a free input subject in P

This is too strong; new receptors can never be created by β-reduction, hence

Example 4.7 would longer be typable. Moreover this idea does not work if we

wish to control higher-order abstractions and variables, as seen in Example 3.6.

A locality condition similar to ours is used in [11] in describing various kinds

of encodings in Distributed Join-Calculus. Our approach is more general; we

have a formal typing system for arbitrary higher-order process passing and in-

stantiation which ensures locality of receptors, although new receptors can be

created inside the same location.
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A Proofs of Section 2

This appendix gives proofs of Theorem 2.6. First we need the following standard

lemma.

LEMMA A.1.
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(i) (substitution) If Γ;x :τ ` P : ρ and Γ `V : τ. Then Γ ` PfV=xg : ρ.

(ii) (struct) If Γ ` P : proc and P� Q, then we have Γ `Q : proc.

PROOF. (1) is proved by the induction on P in the standard way. For (2), since

P� Q is defined only between processes, the proof follows the standard manner

as done in [35, 27, 15]. Hence we omit the proofs.

Now we prove Theorem 2.6. Then by Lemma A.1 (2) above, we only have

to prove the following two cases.

(1) Suppose Γ ` (λ(x : τ):Q)V : ρ and (λ(x : τ):Q)V 7�! QfV=xg. Then we

have: Γ ` QfV=xg : ρ.

(2) Suppose Γ` u?(x̃:τ̃):P ju!hṼiQ : proc and u?(x̃:τ̃):P ju!hṼ iQ 7�!PfṼ=x̃gjQ.

Then we have: Γ ` PfṼ=x̃gjQ : proc.

Case (1): Suppose Γ ` ((λ(x :τ):P)V ) : ρ0. Then we have the following deriva-

tion.

Γ;x :τ `
l

P : ρ1 Γ `
l

V : τ2 τ2 � τ ρ1 � ρ0

Γ ` (λ(x :τ):P)V : ρ0

Then by SUB, we have Γ `

l

V : τ. Hence by Lemma A.1 (1), we get: Γ `

PfV=xg : ρ1. By applying SUB again, we have Γ ` PfV=xg : ρ, as desired.

Case (2): Suppose Γ ` u?(x̃ : τ̃):Q ju!hṼiR : proc. Then we have the following

derivations:

Γ ` u : (τ̃)I; and Γ; x̃ : τ̃ ` Q : proc

and

Γ ` u : (τ̃0)O; Γ ` u : Vi :τ0i; and Γ ` R : proc

Let us define Γ(u) = hS

I

;S

O

i. Then by SUB, we know: S

I

� (τ̃) and S

O

� (τ̃0).
Since always S

O

� S

I

by definition, we know (τ̃0) � (τ̃), which implies Γ ` u :

Vi :τi by SUB. Now applying Lemma A.1 (1), we have Γ ` PfṼ=x̃gjQ : proc.

B Proofs of Section 4

B.1 Proof of Proposition 4.5

As in the proof of Proposition 6.2 in [15], we show the operators,u andt defined

in the proof of Proposition 4.5 are partial meet and join operators. We only have

to show, for every type α;β;γ,

(a) α� β and α� γ imply βu γ defined and α� βu γ
(b) β� α and γ� α imply βt γ defined and βt γ� α
(c) βu γ implies βu γ� β
(d) βt γ implies β� βt γ
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By Lemma 4.4, we can consider every type takes a form either (1),(2) or (3) in

Lemma 4.4. Only interesting cases are β is sendable but γ is not sendable. Others

are easy by inductive hypothesis on types.

Base case (k = 0 in (2,3) of Lemma 4.4): The only interesting case is channel

types. Suppose β = s(h>;S1Oi) and γ = hS2I;S2Oi. For (a), suppose α � β and

α� γ. Then α� β implies α = s(h>;S2Oi) by Proposition 4.3. Then by this and

α � γ, we have S2I = >. By induction on S1O and S2O, S1O t S2O always exists,

and we have S1O tS2O � S0O. Hence βu γ = s(h>;S1O t S2Oi) is always defined,

and α� βuγ. For (b), we first note that γ� α implies α should be non-sendable,

and, by β� α, we can set α = h>;S2Oi. Then the rest of reasoning is just similar

with (a). (c) and (d) are also similar with (a) and (b), respectively.

Inductive Case (k � 1 in Lemma 4.4): The only interesting cases are β is in (1)

in Lemma 4.4, while γ is in (2) or (3). Here we must check operations βu γ and

βtγ do not induce illegal arrow types τ! ρ such that ρ 2 Sble but τ 62 Sble. We

only show the case of γ in (3). The case (2) is just similar. For (a), suppose

β ' s(τ11)! �� �! s(τk1)! s(ρ1) and γ' s(τ12 ! �� �τk2 ! ρ2)

where α � β and α � γ for some α. First we immediately know α can not

take the form (2) in Lemma 4.4 by α � β and Proposition 4.3. So let us define

α ' s(τ1 ! �� � ! ρ). Then α � β implies ρ � s(ρ1), hence by Proposition 4.3

again, we have ρ ' s(ρ0

) for some ρ0. By the formation of arrow type, we have:

τi ' s(τ0i). Hence α should take a form

α ' s(τ01)! �� �s(τ0k)! s(ρ0

)

for some τ0i and ρ0 with s(τ0i) � s(τi1), s(τ0i) � τi2, s(ρ0

) � s(ρ1), and s(ρ0

) �

ρ2. Then we can set s(τ0i2) ' τi2 for some τ0i2 because of s(τ0i) � τi2 and by

Proposition 4.3 again. Now by inductive hypothesis, we have s(τi1)t s(τ0i2) =

s(τi1t τ0i2)� s(τi) and s(ρ1)uρ2 = s(ρ1uρ2)� s(ρ), which implies

βu γ ' s(τ11t τ012)! �� �s(τk1t τ0k2)! s(ρ1uρ2)

is a well-formed arrow type, and α� βu γ. Other cases are similar.

B.2 Proofs of Lemma 4.12

The proof of (1) is obvious. For (2), we use induction on the derivation of Γ `
l

P : τ. We examine the last inference used in this derivation. If this uses the

rule TERMl in Figure 9, then the result is obvious. We consider a representative

sample of other cases.

Case ID: P = u. Take ∆ = fΓ(u)g.

Case SUB: Follows by induction, since Sble is downwards closed with respect

to subtyping.

Case CONST: Take ∆ =

/0.
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Case APP: Then there is a derivation such that

Γ `
l

Q : τ ! ρ Γ `
l

R : τ
Γ `

l

Q R : ρ
for some τ. By the constraint on arrow types we know that τ2 Sble and therefore

τ ! ρ is also in Sble. This enables us to apply induction to obtain sendable

environments ∆i such that Γ � ∆i, ∆1 `l Q : τ ! ρ and ∆2 `l R : s(τ). The

required sendable environment is ∆ = ∆1 u∆2 since one can easily show that

∆ `
l

Q R : τ.

Case ABS: Suppose we have the following inference

Γ;x :τ`
l

Q : ρ
Γ `

l

λ(x :τ):Q : τ! ρ
where τ ! ρ 2 Sble. Then we know τ; ρ 2 Sble and we can use induction to

find a sendable environment ∆1 such that Γ;x : τ � ∆1 and ∆1 `l Q : ρ. Then

∆1ufx :τg `
l

Q : ρ from which we can derive ∆ `
l

λ(x :τ):Q : τ ! ρ, where ∆
is the sendable environment obtained by eliminating x from ∆1ufx :τg.

(3) We only have to think the case ρ = s(ρ0

), x 2 fv(P) and Γ `
l

P : ρ is inferred

by TERMl rule. Other cases are standard. Then by Lemma 4.12 (2) above, we

have the derivations such that Γ1;x :τ0 ` P : ρ for some Γ� Γ1 and Γ1 ` SBL and

τ0 ' s(τ0) � τ. Hence automatically V is a sendable value. Then, by Lemma

4.12 (2) again, there is a derivation Γ2 ` V : τ with Γ2 ` SBL. We then need to

prove the following stronger property.

Γ1;x :τ` P : ρ and Γ2 `V : τ with Γ1 � Γ2 implies Γ1uΓ2 ` PfV=xg : ρ.

Note for the case of ρ = s(ρ0

), we can take Γ1 and Γ2 as sendable environments.

Since Γ1uΓ2 � Γ and Γ1uΓ2 ` SBL by Lemma 4.12 (1), applying TERMl again,

we will get the required result.

Case P � x. Then x : τ `
l

x : s(ρ) with τ � s(ρ). Then there is a derivation

Γ0

2 `V : τ with Γ0

2 `l SBL. By applying SUB, we have Γ0

2 `V : s(ρ), as required.

Case P� λ(y :τ0):Q. Then we have the following derivations.

Γ1;x :τ;y :τ0 `
l

Q : ρ0 τ1 � τ0 ρ0

� ρ1

Γ1;x :τ`
l

λ(y :τ0):Q : τ1 ! ρ1 Γ1;x :τ` SBL

Γ1;x :τ`
l

λ(y :τ0):Q : s(τ1 ! ρ1)

Then by inductive hypothesis, we have:

Γ1uΓ2;y :τ0 `
l

QfV=xg : ρ0

Then applying ABS again, we have:

Γ1uΓ2 `l λ(y :τ0):QfV=xg : τ0 ! ρ0
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By SUB and TERMl , we obtain Γ1uΓ2 `l λ(x :τ0):Q : s(τ1 ! ρ1), as desired.

Case P � Q R. It is easy by induction on Q and R, together with Lemma 4.12

(2).

Case P� (Q jR). Then there is a derivation such that

Γ1;x :τ`
l

P : proc Γ1;x :τ`
l

Q : proc

Γ1;x :τ`
l

P jQ : proc

with Γ1 `l SBL. Then by inductive hypothesis and Γ1uΓ2 ` SBL, we have

Γ1uΓ2 `l PfV=xg : s(proc) and Γ1uΓ2 `l QfV=xg : s(proc)

Then applying PAR to the above, we have done.

Case P� u!hṼ iP; (a :σ)Q and �Q. Easy by inductive hypothesis on Vi, Q and R

as the same as the above.

C Type Checking Algorithms

In this subsection, we give type checking algorithms for πλ and Dπλ using

the typing rules in 5.3, combining the ideas of [24] and [35]. The predicate

Check(ρ � ρ0

) returns true if ρ� ρ0, else returns false.3

TYPE CHECKING ALGORITHM FOR πλ We input the following tuple (1) a

term P with all bounds names/variables renamed to be distinct, (2) a union of

∆ and typings x : τ of all bound names/variables in P. Then for given ∆ and

P, the algorithm G(∆[fx̃ : τ̃g;P) given in Figure 11 produces a provable typing

∆`P : ρ. We can see if G(∆; P)= ∆ ` P : ρ, then ∆=(bv(P)[bn(P))`P : ρ, and

if ∆ ` P : ρ and ∆0 is typings of all bound names/variables of P, then G(∆[∆0

;P)

succeeds and produces the minimum type ρ0 s.t. ∆ ` P : ρ0 and ρ0

� ρ.

TYPE CHECKING ALGORITHM FOR Dπλ We construct the algorithm for the

local Dπλ, using a partial meet operator. For the local processes, we input the

same tuple as G above. We presuppose all arrow types are either (1), (2) or (3)

as in Section 5.3. The algorithm Gl(Γ[fx̃ : τ̃g; P) given in Figure 12 produces

a provable typing P : ρ together with a higher environment Γ such that Γ � ∆. If

Γ `
l

SBL, then term P is sendable and ρ = s(ρ0

). We can see if Gl(∆; P) = ∆ `

l

P : ρ, then ∆=(bv(P)[bn(P)) ` P : ρ, and if Γ ` P : ρ and Γ0 is a set of typings

of all bound names/variables of P, then Gl(Γ[Γ0

;P) succeeds.

Using Gl , an algorithm which computes Γ `
l

N (if one exits), Gs is simply

constructed as defined in Figure 13 (note Γ�
l

Γ0 is always decidable by Propo-

sition 5.5 (2)).

3As discussed in 5.3, an algorithm of Check( ) is constructed by extending that for subtyping in

λ-calculus (cf. [20, 24]).
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G(∆; u) = ∆ ` u : ∆(x)

G(∆; l) = ∆ ` l : nat etc.

G(∆; P Q) = let ∆ ` P : τ1 ! ρ = G(∆; P)

∆ ` Q : τ2 = G(∆; Q)

in if Check(τ2 � τ1) then ∆ ` P Q : ρ
G(∆; λ(x :τ):P) = let ∆ ` P : ρ = G(∆; P)

in ∆ ` λ(x :τ):P : τ! ρ with x :τ 2 ∆
G(∆; 0) = ∆ ` 0 : proc

G(∆; P jQ) = let ∆ ` P : proc = G(∆; P)

∆ ` Q : proc = G(∆; Q)

in ∆ ` P jQ : proc

G(∆; �P) = let ∆ ` P : proc = G(∆; P)

in ∆ ` �P : proc

G(∆; (νa :σ)P) = let ∆ ` P : proc = G(∆; P)

in ∆ ` (νa :σ)P : proc with a :σ 2 ∆
G(∆; u?(x̃ : τ̃):P) = let ∆ ` P : proc = G(∆; P)

in if Check(∆(u)� (τ̃)I) then ∆ ` u?(x̃ : τ̃):P : proc

G(∆; u!hṼ iP) = let ∆ ` P : proc = G(∆; P)

∆ ` Vi : τi

in if Check(∆(u)� (τ̃)O) then ∆ ` u!hṼ iP : proc

FIGURE 11. Algorithm for πλ

D Example of higher-order programming: Distributed Databases

In this appendix, we show that the ability to transmit higher-order abstractions

provides a powerful programming mechanism for distributed systems.

First we introduce a simple agent, called a switcher, which sends a value V

to the received channel z.

sw(aV )(= �a?(z): z!hV i

Suppose the client (A) wants to ask for information of books to the nearest book-

store (B); for example he might only know the title of the first book (“title1”),

and the author (“author2”) of the second. (A) sends his script as a program ab-

straction λ(A;D;T): (AD(title1);DT (author2)) with the continuation a to (B).

Then (B) automatically applies the fixed several services (here query-functions

?author, ?date and ?title) to the requested information.

ClientA (= b!hλ(A;D;T): (AD(title1);DT (author2));ai
BStoreB (= �b?(Y;z): (let y =Y (?author;?date;?title) in c!h λ(X):(X y); zi)
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Gl(∆; x) = ∆;x :∆(x) `
l

x : ∆(x)

Gl(∆; l) = ∆; /0 `

l

l : s(nat)

Gl(∆; a) = ∆;a :h>;S

O

i `

l

a : s(h>;S

O

i) with ∆(a) = hS
I

;S

O

i

or ∆;a :∆(a) `
l

a :∆(a)

Gl(∆; P Q) = let ∆;Γ1 `
l

P : τ1 = Gl(∆; P)

∆;Γ2 `
l

Q : τ2 = Gl(∆; Q)

with τ1 = s(τ0 ! ρ) or τ1 = τ0 ! ρ
in if Check(τ0 � τ2) then ∆;Γ1 uΓ2 `

l

P Q : ρ
Gl(∆; λ(x :τ):P) = let ∆;Γ `

l

P : ρ = Gl(∆; P)
τ = Γ(x)

in if ρ = s(ρ0)^τ = s(τ0)

then ∆;Γ=x `
l

λ(x :τ):P : s(τ ! ρ)

else if Γ=x `
l

SBL then ∆;Γ=x `
l

λ(x :τ):P : s(τ! up(ρ))

else ∆;Γ=x `
l

λ(x :τ):P : τ! up(ρ)

Gl(∆; 0) = ∆; /0 `

l

0 : s(proc)

Gl(∆; P jQ) = let ∆;Γ1 `
l

P : π1 = Gl(∆; P)

∆;Γ2 `
l

Q : π2 = Gl(∆; Q)

in ∆;Γ1uΓ2 `

l

P jQ : π1 uπ2

Gl(∆; �P) = let ∆;Γ `

l

P : π = Gl(∆; P)

in ∆;Γ `

l

�P : π
Gl(∆; (νa :σ)P) = let ∆;Γ `

l

P : π = Gl(∆;Γ; P)

σ = ∆(a)

in if Γ=a = SBL then ∆;Γ=a `

l

(νa :σ)P : s(proc)

else ∆;Γ=a `

l

(νa :σ)P : proc.

Gl(∆; u?(x̃ : τ̃): P) = let ∆ `

l

P : π = Gl(∆; P)

in if Check(∆(u)� (τ̃)I)

then ∆;Γ=xufu :(τ̃)Ig `
l

u?(x̃ : τ̃): P : proc

Gl(∆; u!hṼ i: P) = let ∆;Γ `

l

P : π = Gl(∆; P)

∆;Γ0

`

l

Vi : τ
in if τi = s(τ0

i) ^ Check(∆(u)� (τ̃)O)

then ∆;ΓuΓ0

ufu :(τ̃)Og `
l

u!hṼ i: P : π
else let ∆(u) = hS

I

;S

O

i

in if S

I

6=>^Check(∆(u)� (τ̃)O)

then ∆;ΓuΓ0

ufu :hS

I

;(τ̃)ig `
l

u!hṼ i: P : proc

FIGURE 12. Algorithm for terms in Local Dπλ

If the result is evaluated (to a value) by (B), and then sent the to the publisher

(C) to ask whether the requested books are available or not. Finally (C) puts the

completed information in the switcher of the shared database (D) which is made
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Gs(∆; P) = let ∆;Γ `

l

P : π = Gl(∆; P)

in Γ `

l

P

Gs(∆; N1 kN2) = let Γ1 `

l

N1 = Gs(∆; N1)

Γ2 `

l

N2 = Gs(∆; N2)

in if Check(Γ1 �
l

Γ2) then Γ1uΓ2 `

l

N1 kN2

Gs(∆; (a :σ)N) = let Γ `

l

N = Gs(∆; N)

in Γ=a `

l

(a :σ)N with a :σ 2 ∆

FIGURE 13. Algorithm for systems in Local Dπλ

accessible to the client (A) at at d0.

PublisherC (= �c?(Z;z): let y = (Z ?exist) in d!hy;zi

SharedDBD (= �d?(y;z): (νd0

)(z!hd0

i j sw(d0y))

Then we compose these systems in the following way.

ClientA k (νcd)(BStoreB k PublisherC k SharedDBD)

We note:

(1) sending the script (the program abstraction) prepared by the client side is

essential to apply the fixed and incremental services (here query-functions)

available by each server (here (B) and (C)),

(2) the let expression, available because of the call-by-value evaluation strategy,

guarantees the partial evaluation of queries and subsequent transmission to

the next server, and

(3) (A) does not need to know the publisher’s name c and the shared database

name d, but it can be offered a series of services from (C) and (D); the ne-

cessity of hiding such communication points from the outside is often found

in real distributed database systems, often for security reason.

More generally, we can describe distributed service systems in Dπλ using the

following schema:

ClientA (= b1!hλ(x1): (x1(V1);x1(V2); :::);ci

k Service1 (= �b1?(Y;z): let y = (Y f1) in b2!h λ(x2):(x2 y);zi

k Service2 (= �b2?(Y;z): let y = (Y f2) in b3!h λ(x3):(x3 y);zi

� � �

k Servicen (= �bn?(Y;z): let y = (Y fn) in d!hy;di
Finally Servicen sends the final information to the shared database (D) to store

and possibly make it selectively available.
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