
Full Abstractness for a Functional/Concurrent Language With

Higher-Order Value-Passing

Takis Hartonas Matthew Hennessy

�

fhartonas, matthewhg@cogs.susx.ac.uk

COGS

University of Sussex at Brighton

Falmer, Brighton BN1 9QH, UK

Abstract

We study an applied typed call-by-value �-calculus which in addition to the usual types

for higher-order functions contains an extra type called proc, for processes; the constructors for

terms of this type are similar to those found in standard process calculi such as CCS.

We �rst give an operational semantics for this language in terms of a labelled transition

system which is then used to give a behavioural preorder based on contexts; the expression N

dominatesM if in every appropriate context ifM can produce a boolean value then so can N.

Based on standard domain constructors we de�ne a model, a prime algebraic lattice, which

is fully abstract with respect to this behaviour preorder; expressions are related in the model

if and only if they are related behaviourally.

The proof method uses concepts which are of independent interest. It involves character-

ising the domain using �lters of a property logic for program expressions and developing a

program logic for relating program expressions with property formulae.

1 Introduction

A number of new languages for describing distributed systems have emerged in recent years. These

include, among others, CML [23], the �-calculus [16], the Join Calculus [9] and Facile [7]. In this

paper we choose to study this last. It can be construed to be an applied simply typed �-calculus.

The core version described in [3] contains base types such as bool and int and exponential types

� ! � for functions, and the formation rules for expressions of these types are exactly as those

found in the �-calculus, [4]. There is one new type, proc, for processes. The syntax for expressions

with this type is borrowed from the process algebra CCS, [15], in particular the value-passing

version. A set of communication channel names, N , is assumed, each with an associated type.

Thus �![M]N is an expression of type proc if N is an expression of type proc and M has the same

type as that of the channel �. The reader familiar with process algebras will recognise it as a

process which can output on the channel � and then proceed as its residual N. Similarly �?M is

an expression of type proc, assuming M is a functional expression of type � ! proc where � is the

type of the channel �, which can apply an input received from � to the function represented by

M. There are also constructors such as M jN for placing processes in parallel.

�

Research supported by EPSRC grant GR/K60701

1

Processes communicate by exchanging values along a common channel and since the reception

of values here is implemented, at least partially, using function application, it is therefore natural

to interpret the sequential part of the language in a call-by-value fashion. Thus in function

application, (�X:M)N and in the output of values, �![N]M, the expression N is �rst reduced to

a value. For basic types values are predetermined while for functional types a natural choice is

to take �-abstractions. For the type proc there is no obvious choice for the set of values. For this

reason there is one complication in the type system. A subset of types, called the transmittable

types, is de�ned by limiting functional types to be of the form � ! � , where � is either a base type

or, recursively, a transmittable type. This precludes application expressions MN, where N is a

process, and, since channels must have associated with them transmittable types, �![N]M. Thus

the transmission of processes is not allowed, which is natural. But abstractions over processes,

values of type unit ! proc, which are often called scripts, may be freely exchanged. In short the

core Facile, described in [3] is an elegant and powerful combination of �-calculus and CCS.

We will study a language, which for convenience we call mini-Facile, very similar to core Facile.

The major omission is the local scoping mechanism for channel names. For reasons of de�nability

we will also introduce two extra operators; both of these are very natural but they do not appear

in the language studied in [3]. In Section 3 we give an operational semantics to this language based

on labelled transition systems. In the de�nition there are three kinds of judgements between closed

expressions:

� M �!N.

This generalises the call-by-value reduction relation of the �-calculus. It incorporates �-

reduction, the application of an abstraction to a value, and for expressions of type proc it

represents communication, the exchange of values between processes.

� P

�?

�! �X:Q where both P;Q are of type process.

This represents the ability of the process P to input a value from the channel �; when

received it will be fed as an argument to the abstraction �X:Q

� P

�!

�! [v]Q where both P; Q are processes.

This states that the process P is capable of outputing the value v along the channel �. If

this output is accepted the residual Q is activated.

Based on this operational semantics we de�ne a contextual preorder over arbitrary expressions

in the spirit of [18, 2, 5]. The idea is to start with a basic set of observation predicates O. Then we

say two expressions of the same type are related, M

�

<

O

N, if for every appropriate context C[]

whenever C[M] satis�es an observation so does C[N]. We examine two possible sets of predicates.

The �rst is the ability to produce a boolean value while the second is the ability of a process to

produce a value on a channel. Because of the constructs in our language it is straightforward to

show that these two variations coincide.

In Section 4 we give a denotational model for the language. With each type we associate a

domain for interpreting expressions of that type. For transmittable types � this has the form

T (D

�

), where D

�

is a domain of values of that type, a bounded-complete algebraic dcpo, and T

is a suitable monad on the category of bounded-complete algebraic dcpo's. Intuitively T (D

�

) is a

domain of computations, in the spirit of Moggi [17]. Following these ideas the value domains are

constructed in the standard manner. For base types suitable bounded-complete algebraic dcpo's

2

are chosen while values of functional type �

1

! �

2

are taken to be [D

�

1

! T (D

�

2

)], the set of

morphisms (continuous functions) from the domainD

�

1

of values of type �

1

to the domain T (D

�

2

)

of computations of type �

2

. The monad used in these constructions is the composition T = P

H

(�)

?

of the Hoare powerdomain monad with the lifting monad. This means that the domains in which

terms of the language are interpreted have the structure of prime algebraic lattices.

However the type proc introduces a complication. Intuitively there are no values of this type

and therefore this domain, D

proc

has to be considered separately. Moreover the value domains of

type � ! proc must also be considered separately; they will have the simple form [D

�

! L(D

proc

)]

where L is the lifting monad L(D) = D

?

.

The domain D

proc

is de�ned as the initial solution of a domain equation with coe�cients in

the category of algebraic dcpo's, and by construction will also be a prime algebraic lattice. The

equation has the form

Y

�2N

(C(D

�(�)

;D

proc

)� A(D

�(�)

;D

proc

))

where C and A are suitable constructors modeling concretions and abstractions. This equation

encapsulates the view that each process is determined by its potential to input/output on each

channel �.

To model the input potential (abstractions) we will not use the space of functions from D

�

to

T (D

proc

), for reasons discussed just above but also because this space introduces distinctions that

can not be detected by our notion of observation. The terms �X:(P�Q) and �X:P� �X:Q are

operationally distinguishable and are interpreted di�erently in the domain T (D

�!proc

). However

this di�erence cannot be observed in the terms �?�X:(P�Q) and �?(�X:P��X:Q). To take this

phenomenon into account input potential is represented as a function in a space A(D

�(�)

;D

proc

) =

[D

�(�)

! L(D

proc

)].

The output potential is represented, approximately, by a pair of objects, one from D

�(�)

representing the value to be output, and one from D

proc

itself, representing its residual after this

output is performed. The non-determinism at the level of evaluation imposes that we in fact

represent output along a port � by a pair consisting of a computation of type �(�), hence an

element of the domain T (D

�(�)

) and a residual process. However we can not use the standard

Cartesian product to combine these two components because of the distributivity of pre�xing over

internal choice, �; behaviourally �![M�N]P is identi�ed with �![M]P��![N]P and �![M](P�Q)

with �![M]P� �![M]Q. However, using cartesian product would also identify �![M�N]P�Q

with �![M]P� �![N]Q. Instead we use a bilinear tensor product
. Further a process such as

�![M]K, where M can not reduce to a value can never output on �; communication is call-by-

value. This means that to properly represent the output potential of processes a left-strict tensor

s

 is required.

The major contribution of this paper is, �rst, the construction of a fully abstract model and,

second, a complete proof system for satis�ability that can be then used to argue about properties

of programs. The functional fragment of our language is essentially a version of call-by-value, non-

deterministic PCF. Thus we aim at reusing the model of [24], extending it in a way that preserves

the full-abstraction result for PCF

nv

reported in [24]. Our proof technique for full abstraction

is di�erent in that it uses the approach advocated in [2]. In analogy with [6] the domains are

characterised using the �lters of a typed logic for program properties; similar characterisations,

using di�erent logics, appear in [2, 5, 12]. The interpretation of the language is characterised in

terms of a program logic whose judgements take the form � `

�

M : � where M is a language

3

expression, � is a formula representing a property and � is a set of assumptions about the free

variables possibly occuring in M. In fact, the distinction between values and computations is re-

ected in the logical language; the language is sorted on each type � of transmittable expressions,

introducing a distinction between properties of values and properties of computations, alongside

the properties for processes. The logic then uses two provability predicates j� and ` , with appro-

priate interaction rules. Our aim is to provide a complete logical proof system that can be used to

argue about operational behaviour. Results of this kind have been produced for CCS and SCCS,

independently of the full abstraction question, [14, 26, 27, 30]. As a step in this direction we �rst

give a denotational semantics for the logic, based on an interpretation of formulae as compact

elements of the model, and prove a completeness theorem for this semantic notion. The details

are in Section 5.

Completeness of the program logic in the denotational semantics together with a sound be-

havioural interpretation of the program logic, based on the operational semantics, is su�cient to

establish the �rst main result of the paper, Adequacy :

for closed expressions M, the interpretation of M is di�erent than ? if and only if

M +, i.e intuitively M can produce some value operationally.

From adequacy it is not too di�cult to establish one half of full-abstraction; if two expressions

are related denotationally they are related operationally . The converse requires a de�nability

result. Our language is su�ciently expressive to de�ne all compact elements in the domains. This

theorem is the subject of Section 7. It should be pointed out that it depends on the powerful

parallel operator

A

j

B

introduced in [12] together with a novel operator for extracting a value from

a process; the expression res

�

(P) evaluates to any value output by the process P on the channel

�. We show that full abstraction fails without this latter operator.

The full abstractness results are given in Section 7. This section also contains various com-

pleteness results for the logics which have been introduced in the course of the paper. In particular,

using the de�nability result the program logic is shown complete for the operational semantics.

2 Mathematical Preliminaries

To facilitate the reading of the paper we devote this section to gathering together the notation used,

explaining the constructions required to model our programming language and drawing attention

to some details of signi�cance in later developments. For basic concepts and terminology of domain

theory and category theory the reader is referred to any standard reference, e.g. [1].

We interpret mini-Facile in the cartesian closed category of bounded-complete algebraic dcpo's

with continuous functions as morphisms. More precisely, the model is speci�ed by a domain equa-

tion with parameters the discrete dcpo's of integers, booleans and the one-element unit domain,

to be solved for function space and for the process domain. It will follow from the form of the

domain equation and given relevant closure properties of the category of prime algebraic lattices

that the value domains for functional terms and the domain for processes are prime algebraic

lattices.

For an algebraic dcpo D, K(D) and KP(D) denote, respectively, the sets of compact and

compact-prime elements of D, where recall that a compact element p is prime provided p � d_ d

0

implies p � d or p � d

0

. Prime algebraic lattices can be constructed from any partial order (P;�

p

)

with a bottom element ?. Let Fin(P) be the set of all �nite nonempty subsets of P ordered by the

4

lower Egli-Milner order (F �

`

G i� 8u 2 F9v 2 G u �

p

v). Idl(Fin(P)) is the ideal completion of

P (recall that an ideal is a lower directed subset); we denote this construction by P

l

(P)

Lemma 2.1 Let (P;�

p

) be any partial order with bottom. Then P

l

(P) is a prime algebraic lattice

with the embedding of P as primes and the embedding of Fin(P) as its compact elements.

A particular instance of this construction is the powerdomain construction. Recall that a

powerdomain functor P

�

is a free functor delivering, for each dcpo D, the free semilattice dcpo

P

�

(D) satisfying a pre-determined set of equations with respect to the semilattice operation {[of

formal union. As usual, fj�jg : D ! P

�

(D) denotes the formal singleton (insertion of generators)

continuous map. We use P

H

(D) to denote the lower (Hoare) powerdomain of D.

Theorem 2.2 If D is an algebraic dcpo, then D

�

=

Idl(K(D)) and P

H

(D)

�

=

Idl(Fin(K(D))).

Proof: See for example [1], vol. 3.

A continuous function over domains f is linear provided f(d _ d

0

) = fd _ fd

0

. If f has more

than one argument, (for example f : D �D

0

! E) then we say it is multilinear if it is linear in

each of its arguments. We will often use the following fact.

Theorem 2.3 Let D, E be domains and f : D ! E a function. Then f is continuous i� it is

determined by its e�ect on the compact elements of D and linear i� it is determined by its e�ect

on the prime elements of D.

A similar result holds for functions with more than one argument. By means of a tensor

product construction, which we will use in our domain equation, multilinear functions can be

dispensed with, in favor of linear functions.

Proposition 2.4 Let C be the category of domains (prime algebraic lattices) with linear mor-

phisms. If hD� E; "i is the category of (bi)linear maps with domain D � E, then there exists a

linear morphism lin

D;E

that is initial in hD�E; "i.

Proof: The codomain of lin

D;E

will be written as D
E (the tensor product of D and E).

Initiality for lin

D;E

: D � E ! D
E simply means that if f : D � E ! E

0

is any (bi)linear

morphism, then there exists a unique linear morphism

^

f : D
E ! E

0

making the relevant

triangle commute, i.e. such that f =

^

f � lin

D;E

.

The function lin

D;E

is the insertion of generators map into P

`

(P), where P is the partial order

of pairs (p; q) with p prime in D and q prime in E, ordered coordinatewise. Recall that P

`

(P)

abbreviates Idl(Fin(P)). Initiality of lin follows from the universal property of ideal completions.

Following established practice in algebra, we write p
 q rather than lin

D;E

(p; q) and then

linearly extend
 to all elements d 2 D; e 2 E by setting d
e =

W

p�d

W

q�e

p
q. Thus
 is used

both as a constructor on domains and as a binary operation on elements. It is immediate to see

that a
b � a

0

b

0

i� a � a

0

and b � b

0

. Since the construction is easily seen to be functorial, we

also use the notation f
g for the result of applying the tensor functor to the linear maps f and g.

The de�nition of f
g is the obvious one, (f
g)(d
e) = (fd)
(ge). Symmetry and associativity

of
 can be easily shown, as they are inherited from the corresponding properties of the cartesian

product.

Because of call-by-value we are unable to use
directly for the interpretation of concretions; we

need a left-strict version. A (bi)linear function f :D�D

0

! E is left-strict provided f(?

D

; d

0

) =

?

E

. By similar argument as in the proof of Proposition 2.4 we can show that

5

Lemma 2.5 For each pair D, E of prime algebraic lattices, there is an initial left-strict bilinear

morphism on D�E.

The codomain of this initial map will be denoted by D

s

E. Because of universality of the tensor

product
 of Proposition 2.4 there exists a linear morphism left

?

: D
E ! D

s

E such that

left

?

(?
d) = ? 2 D

s

E. The initial morphism from the cartesian product into D

s

E must

then be the composition left

?

� lin

D;E

. Since we will only have use for the left-strict version of

the tensor product we hereafter use A
B to denote the left-strict tensor product of A and B.

Our domain equation associates a domain D

�

of values to each transmittable type � while

the domains of computations of type � take the form T (D

�

) where T is the composite monad

T = LP

H

() obtained from the Hoare powerdomain and the lifting monad. The unit � of the

monad is the map � = fj()

?

jg and the multiplication � is the obvious map � : T

2

! T , dropping

the outermost pair of formal set-braces and outermost lifting. For an algebraic dcpo A, T (A)

will always be a prime algebraic lattice, with join operation supplied by the formal union map {[.

Thus values of type �

0

! � will be interpreted in the space [D

�

0

! T (D

�

)] while computation of

that type will be interpreted in T ([D

�

0

! T (D

�

)]). The monad T comes equiped with extension

maps

ext : [A! TB] �! [TA! TB] ext

(2)

: [A�B! TC]] �! [TA� TB! TC]

where given f : A ! TB, ext(f) is de�ned as the composition TA

T (f)

�! T

2

B

�

�! TB, where

� is the multiplication of the monad. The map ext

(2)

is derived from ext using the categorical

structure and its set-theoretic de�nition is

ext

(2)

:= �f: ext(�a 2 A:(ext�b 2 B:fab)

In other words, ext and ext

(2)

are de�ned on continuous functions f; h as the strict functions

ext(f); ext

(2)

(h), letting ext(f)fj?jg = ? and similarly for ext

(2)

, then determining their action on

primes by

ext(f)fjcjg = fc ext

(2)

(h)(fjcjg; fjkjg) = h(c; k)

and �nally linearly extended to all elements. Hence ext(f)(I) is the ideal generated by the set

of ext(f)fjcjg with fjcjg � I and similarly for ext

(2)

. We set apply

T

= ext

(2)

(apply) where apply

is the standard application continuous morphism supplied by the cartesian closed structure of

bounded complete algebraic dcpo's. Since the ideal generated by the ext(f)fjcjg with fjcjg � I is

simply the join in TB of the ext(f)fjcjg this allows us to use similar extension maps for the case

of application for functions into processes, where recall that we set D

�!proc

= D

�

! L(D

proc

).

Given the map apply

A;LB

: [A! L(B)]�A �! L(B) and provided B is a complete lattice, as is

the case for D

proc

, the map ext

(2)

(apply) : T (A! L(B))� TA �! L(B) is de�ned as above for

primes and linearly extended to arbitrary elements using the join of B. We use apply

T

for both

cases discussed. Context will determine the details of application.

3 Language and Operational Semantics

In this section we describe the programming language and its operational semantics. It contains

many of the features of Facile; the main signi�cant absent feature being private channel creation.

6

Type Inference System The type system for the programming language is given by the gram-

mar

�

G

2 GType ::= unit j bool j int

� 2 VType ::= �

G

j � ! �

� 2 Type ::= � j p

There is a special type for processes, proc, and a separate set of types for transmittable values,

objects which can be sent and received by processes. These are either base types or abstractions

over transmittable value types. Thus, for example, functions may be exchanged between processes.

We do not allow terms of type proc to be exchanged in this manner, but, since unit ! proc is a

transmittable value type, objects which may be construed as delayed processes may be exchanged.

The language, which for convenience we call mini-Facile, is given by the grammar below, where

X ranges over a set Var of variables and � is a communication channel name from a set N ; we

assume these channel names have a unique transmittable value-type associated to them and write

� 2 N

�

or sometimes treat � as a function and write �(�) for the value-type of �.

` 2 Lit(eral) ::= tt j � j n (n 2 N) j ()

v 2 Val(ue) ::= ` j �X�Y:M j

M 2 Exp(ression) ::= v j M = N j X j MM j

if M then M else M j M�M j M+M

nil j M

A

j

B

M j res

�

M j

�?M j �![M]M

The language may be viewed as an applied call-by-value �-calculus, with a recursion operator.

We abbreviate �X�Y:M as �Y:M when X does not occur free in M and we typically write �():M

for functionals of type unit ! � . In addition to some literals for ground types there are a series

of special constructors for process terms. These include standard pre�x and choice operators, a

parameterised parallel operator, and a new operator, res

�

, for extracting a value from a process.

The language is typed using typing judgements of the form H �M : � , where H is a typing

context, i.e. a �nite set of pairs X

1

: �

1

; : : : ; X

s

: �

s

, where �

i

2 VType. In writing H;X : ��M : �

it is assumed that X does not already occur in the typing context H . We let H be the set of all

typing contexts. The type inference system is given in Table 1 and is an extension of the standard

typing system for the �-calculus.

Operational Semantics In the sequel we use P;Q to range over well-typed expressions of type

proc while M;N will range over well-typed expressions of arbitrary type. A term M is closed i�

for any typing context H , and in particular for the empty context, H�M : � is derivable for some

type � . We then say that M is of type � , usually denoted by M : � . A closed value expression

will usually be refered to as a value.

The operational semantics for the language is given in Table 2. This is given in terms of

a binary reduction relation �! between well-typed closed expressions of the same type. On

expressions of transmission value type this relation is similar to call-by-value reduction in the

�-calculus, where values are either literals, for ground types, or �-abstractions for higher types,

7

Table 1: Type Inference System

�tt : bool �� : bool �n : int

�() : unit �nil : proc X : � �X : �

H �M : �

H;X : � �M : �

(W)

H;X : � ! �; Y : � �M : �

H � �X�Y:M : � ! �

(�)

H �M : �

G

H �N : �

G

H �M = N : bool

(eq)

H �M : � ! � H �N : �

H �MN : �

(App)

H �M : � H �N : �

H �M�N : �

(IC)

H �P : proc H �Q : proc

H �P+Q : proc

(EC)

H �M : proc H �N : proc

H �M

A

j

B

N : proc

(P)

H �B : bool H �M : � H �N : �

H � if B then M else N : �

(Cond)

H �M : � H �N : proc

H � �![M]N : proc

(� 2 N

�

) (�!)

H �M : � ! proc

H � �?M : proc

(� 2 N

�

) (�?)

H �M : proc

H � res

�

(M) : �

(� 2 N

�

) (res)

while on process terms it is similar to internal moves,

�

�!, commonly used in process algebras. As

usual to de�ne this reduction relation over process terms we need two auxiliary relations

�?

�!;

�!

�!,

de�ned over well-typed closed process terms, which capture the potential for input and output

over the channel �.

Most of the rules are straightforward but note that recursion is only allowed over abstractions

and the unwinding of recursive de�nitions occurs at the point when an abstraction is applied to

a value. This accounts for the slightly complicated form of the call-by-value �-reduction rule

(�X�Y:M)v�!M[(�X�Y:M)=X][v=Y]

but note that this form of �-reduction will be also used to implement communication between

processes:

P

�!

�! [v]P

0

Q

�?

�! �X�Y:Q

0

P

A

j

B

Q �! P

0

A

j

B

(�X�Y:Q

0

)v

However only values may be exchanged in a communication. More speci�cally in the process

expression P

A

j

B

Q for a communication to occur between P and Q we must have that

� P is ready to output a value on a channel �, i.e. P

�!

�! [v]P

0

,

� Q is in a form of head normal form, ready to receive a value on �; Q

�?

�! �X�Y:Q

0

So, for example for a communication to occur in �![M]P

A

j

B

�?Q, �rst M must be reduced to a

value v, Q must be reduced to a �-abstracton and then the transmission of v may occur.

8

The two relatively non-standard operators we use are

� the parameterised form of communication P

A

j

B

Q, which restricts possible moves of the

construct P

A

j

B

Q to those in A when the action is due to P, or in B when the action is

due to Q, while allowing unrestricted communication between P and Q. This operator is

imported from [12] where it was originally introduced.

� the result function: The expression res

�

(P) has the same type as the channel �; it allows the

process P to compute until a value v can be produced on � and this value is then returned as

the value of the expression. The e�ect of this operator is to recycle back into the functional

fragment of the language values that have been output by processes. It is similar in spirit

to the special action

p

v

�! of (Ferreira et al. [8]).

We use both of these operators in our de�nability theorem, which states that all compact elements

in the denotational model are de�nable in the language.

The result function can be used to implement the internal choice operator between arbitrary

expressions of the same type. The expression

(res

�

(�![�():M]nil+ �![�():N]nil))()

behaves in much the same way asM�N, modulo some extra reductions. Here, and in the sequel,

we use �Y:M rather than �X�Y:M when X does not occur free in M and we write �():M when

the variable is of type unit.

This nondeterminism at the level of data also means that, in any reasonable semantics, the

�-rule will not be valid. One would expect the expressions M and �X:MX to be behaviourally

equivalent, for any functional expression P. However in mini-Facile these expressions, in addition

to being applied to arguments, can also be transmitted between processes. So one can easily

construct a context C[�] of the form

�![�]nil

A

j

B

�?�Y:M

which distinguishes between these expressions. For example for P = �X:1� �X:2, if M is

if Y () = 1 then (if Y () = 2 then �![0]N else nil) else nil

then C[�X:PX] can produce a value on the channel � whereas for C[P] this is impossible. Note

that this problem already occurs in the sub-language consisting of �-expressions, on the assumption

that we have an internal choice operator, as communication is partially implemented using �-

reduction.

Context and Testing Preorders The form of behavioural preorder we use is a variation on

the may testing of [11] and the testing of Boudol, [5].

We use the standard weak versions of the operational relations;

�

=) is the re
exive transitive

closure of silent reduction ! and

�

=), where � is �! or �?, is de�ned by

�

=)=

�

=)

�

�!

�

=).

The �rst preorder is based on direct observations of process expressions. For a closed process

expression P we write P + � if P

�

=); i.e. if P can send or receive some value on �. This leads

to an observational preorder between closed process terms: P � Q if for every � (of the form �?

or �!), P + � imples Q + �

9

Table 2: Operational Semantics

Axioms

M�N �!M; M�N �!N

�?(�X�Y:P)

�?

�! �X�Y:P

�![v]P

�!

�! [v]P

(�X�Y:M)v�!M[(�X�Y:M)=X][v=Y]

if tt then M else N �!M

if � then M else N �!N

` = ` �! tt

Rules

P �! P

0

P+Q �! P

0

+Q

Q �! Q

0

P+Q �! P+Q

0

P

�

�!M

P+Q

�

�!M

Q

�

�!M

P+Q

�

�!M

P �! P

0

P

A

j

B

Q �! P

0

A

j

B

Q

Q �! Q

0

P

A

j

B

Q �! P

A

j

B

Q

0

M �!M

0

N �!N

0

M = N �!M

0

= N

0

M �!M

0

MN �!M

0

N

M �!M

0

vM �! vM

0

M �!N

�?M �! �?N

M �!N

�![M]Q �! �![N]Q

P �! Q

res

�

(P) �! res

�

(Q)

P

�?

�! �X�Y:P

0

(� 2 A)

P

A

j

B

Q

�?

�! �X�Y:(P

0

A

j

B

Q)

Q

�?

�! �X�Y:Q

0

(� 2 B)

P

A

j

B

Q

�?

�! �X�Y:(P

A

j

B

Q

0

)

P

�!

�! [v]Q

res

�

(P) �! v

P

�!

�! [v]P

0

Q

�?

�! �X�Y:Q

0

P

A

j

B

Q �! P

0

A

j

B

(�X�Y:Q

0

)v

P

�?

�! �X�Y:P

0

Q

�!

�! [v]Q

0

P

A

j

B

Q �! (�X�Y:P

0

)v

A

j

B

Q

0

P

�!

�! [v]P

0

(� 2 A)

P

A

j

B

Q

�!

�! [v](P

0

A

j

B

Q)

Q

�!

�! [u]Q

0

(� 2 B)

P

A

j

B

Q

�!

�! [u](P

A

j

B

Q

0

)

B �! B

0

if B then M else N �! if B

0

then M else N

10

Definition 3.1 (May-Testing Preorder)

The may-testing preorder

�

<

T

is de�ned by H �M

�

<

T

N if

1. H �M : � and H �N : � for some type � ,

2. for every context C[�] such that both C[M] and C[N] are closed process expressions C[M] �

C[N].

This preorder is a minor variation on the may testing preorder of [11]; in the original de�nition

only contexts of a very restricted form were allowed in the testing of processes. But it will follow

from our results that this restriction is unimportant.

An alternative form of preorder, more directly in the spirit of the contextual testing of Morris,

[18], can also be de�ned. This is based on observations performed on the functional expresions of

the language; in fact we restrict observations to be performed on expressions of type bool. First

the possible to converge predicate + is generalised to closed terms of transmittable value-type by

letting M + v if M can evaluate to the value v, i.e. M

�

=) v. For expressions M, N of some

transmittable type � de�ne M � N i� for all values v, M + v implies N + v.

Definition 3.2 (Context Preorder) H �M

�

<

C

N if

1. H �M : � and H �M : � for some type � ,

2. for every context C[�] such that both C[M] and C[N] are closed expressions of type bool

C[M] � C[N].

There are natural variations on this preorder, for example allowing observations of integer type;

however this is unimportant. We can show that these preorders coincide.

Proposition 3.3 H �M

�

<

C

N implies H �M

�

<

T

N

Proof: Suppose C[M]; C[N] are both closed process expressions. There are two cases.

� C[M]

�!

=)

Then (�X:tt)res

�

(C[M]) + tt. From the hypothesis (�X:tt)res

�

(C[N]) + tt, which can only

be possible if C[N]

�!

=)

� C[M]

�?

=)

In this case we use the context (�X:tt)res

�

(C[�]

;

j

f�g

�![v]�![tt]nil).

Proposition 3.4 H �M

�

<

T

N implies H �M

�

<

C

N

Proof: Suppose C[M]; C[N] are both closed expressions of type bool and suppose C[M] + v

for some boolean value v. Let D[�] be the context

(�?�X:if x = v then �!v else nil)

f�g

j

;

�![C[�]]nil

Then D[M]

�

=) and by the hypothesis we have D[N]

�

=). By the construction of the context

D[�] this can only happen if C[N] + v.

11

4 Denotational Semantics

We determine the model, the collection of value domains, via a domain equation with \coe�cients"

in the category of bounded-complete algebraic dcpo's, to be solved in the types proc and � ! �

in the subcategory of prime algebraic lattices. The coe�cients are the constants of the equation,

the ground value domains for integers, booleans and for the unit type which we choose to be

the discrete cpo's IN, IB and U. The constructors used in the statement of the equation are the

continuous function space, cartesian product, the Hoare powerdomain and lifting monads P

H

(�)

and L and the tensor product functor discussed in Section 2.

The model is determined as the initial solution to the domain equation given in Figure 1.

Figure 1: A Domain Equation

[[int]] = D

int

= IN

[[bool]] = D

bool

= IB

[[unit]] = D

unit

= U

[[� ! �

0

]] = D

�!�

0

= [D

�

! T (D

�

0

)]

[[� ! proc]] = D

�!proc

= [D

�

! L(D

proc

)]

C

�

= T (D

�(�)

)

s

D

proc

F

�

= [D

�(�)

! L(D

proc

)]

[[proc]] = D

proc

=

Q

�2N

(C

�

� F

�

)

L(D) = D

?

T (D) = LP

H

(D)

�

=

P

H

(LD)

Theorem 4.1 The domain equation has an initial solution in the category of bounded complete

algebraic dcpo's with continuous morphisms such that D

proc

and D

�!�

for all �; � 2 Type are

prime algebraic lattices.

Proof: Fix a bounded-complete algebraic dcpo A

0

. Then for any prime algebraic lattice L, the

continuous function space [A

0

! L] is a prime algebraic lattice. The complete lattice structure

is induced by that of L and the primes of the function space are the step functions c ! p with

c compact in A

0

and p prime in L. The bottom element is the function �d 2 A

0

:?. That the

functor F

0

(X) = [A

0

! X] is continuous is easily seen by a local continuity argument.

Note also that, if N is a countable (perhaps in�nite) set and (F

�

)

�2N

is an N -indexed

family of continuous functors, then the functor F =

Q

�2N

F

�

is also continuous. Indeed, if

h(D

n

)

n2!

; (f

mn

)

m�n2!

i is a chain of embedding/projection pairs (where the projection deter-

mined by f

mn

is f

R

mn

) on pointed dcpo's and � = (D; (�

n

)

n2!

) is its canonical universal cone,

then by functoriality of F , F� is a commuting cone. Suppose (E; (�

m

)

m2!

) is another commuting

cone over the diagram hF (D

n

)

n2!

; F (f

mn

)

m�n2!

i. The projections �

�

m

: F (D

m

)!!F

�

(D

m

) are

associated to embeddings j

�

m

: F

�

(D

m

) ! F (D

m

) sending an element to an in�nite sequence

that is bottom everywhere except possibly for the �

th

-coordinate. This results in a commuting

cone (E; (�

�

m

)

m2!

) over the diagram hF

�

(D

m

)

m2!

; F

�

(f

mn

)

m�n2!

i. Continuity of the F

�

implies

12

existence of the appropriate embedding maps �

�

: F

�

(D) ! E. Then the map � : F (D) ! E

de�ned by � =

Q

�2N

�

�

: F (D) ! E can be veri�ed to be such that � � F (�

m

) = �

m

for each

m 2 !. This shows that F is continuous.

If T is the composite monad T (X) = P

H

(X)

?

�

=

P

H

(X

?

), then T is a continuous functor

sending a bc algebraic dcpo to a prime algebraic lattice whose primes are of the form ?; fjcjg

?

(or,

equivalently, fj?jg; fjc

?

jg) with c compact.

If D

�

, with � in a countable index set N , are prime algebraic lattices and we set F

�

(X) =

T (D

�

)

s

X and G

�

(X) = [D

�

! X

?

] then each of F

�

; G

�

is continuous and the category of prime

algebraic lattices is closed under F

�

and G

�

. Hence by the previous discussion it is also closed

under the construction H =

Q

�2N

(F

�

� G

�

) and H is a continuous functor, by the argument

given above, since both F

�

and G

�

are continuous functors.

Existence of an initial solution in the category of dcpo's follows by continuity of the functors,

discussed above. The ground domains are bc algebraic dcpo's and this category is closed under

all constructions used so that the initial solution lies in the category of bc algebraic dcpo's with

continuous morphisms. In fact, we can regard this equation as parametric on the choice of bc

algebraic dcpo's for the ground domains to be solved for higher types and for the process type. By

the discussion above the subcategory of prime algebraic lattices is closed under the constructions

involved and hence the solution in D

�!�

and D

proc

yields prime algebraic lattices.

Compact and Prime Elements: We now brie
y make some observations on the prime and

compact elements of our model that will be useful in the sequel.

In the continuous function space [A ! L] where A is only assumed to be algebraic and L is

a prime algebraic lattice the prime elements are the step functions c ! p where c is compact in

A and p is a compact prime of L. Hence the primes of the function spaces [D

�

! T (D

�

0

)], where

T is the monad T (D) = P

H

(D

?

)

�

=

P

H

(D)

?

, take the form c ! fj?jg, the bottom element of

the space, for any compact c, and c ! fjk

?

jg with k compact in D

�

0

(perhaps k = ? 2 D

�

0

).

Similarly, the primes of the continuous function space [D

�

! L(D

proc

)], where L is lifting, are

the step functions of the form c!?, the bottom element of the space, for any compact c of D

�

,

and c ! �

?

where � is a compact prime of D

proc

. The primes of D

proc

are !-sequences with

(?;?) everywhere except possibly for one index � where a prime of the cartesian product C

�

�F

�

occurs. This prime has one of the forms (p;?) or (?; q).

To have a better representation of the primes � of D

proc

we �rst de�ne the functions

�

out

: T (D

�(�)

)

s

D

proc

!D

proc

�

in

: [D

�(�)

! L(D

proc

)]!D

proc

where we let �

�

be the projection of D

proc

to the �

th

-coordinate:

�

�

�

out

(d) =

(

(?;?) If � 6= �

(d;?) Otherwise

�

�

�

in

(f) =

(

(?;?) If � 6= �

(?; f) Otherwise

Lemma 4.2 The functions �

in

and �

out

are strict and linear.

Proof: Immediate from the de�nition of �

in

; �

out

and of joins in a product domain.

13

In the next de�nition we introduce a notation for describing the prime elements of the domains

in a way that supports later proofs by induction on primes.

In the ground value domains compact and prime elements coincide and in fact every element

is a compact-prime since the order is discrete. We now de�ne sets A

�

KP

; A

�

K

by induction on the

type � .

Definition 4.3 The sets A

�

KP

; A

�

K

are the least sets such that

1. A

int

KP

= IN = A

int

K

and similarly for the types bool; unit

2. For any type � other than the ground types int; bool; unit, the sets A

�

K

� A

�

KP

consist of �nite

formal joins c = p

1

_ � � � _ p

s

with s � 1 and p

i

2 A

�

KP

3. A

�!�

0

KP

consists of a bottom element ? and formal step functions c ! k where c 2 A

�

K

and

k 2 A

�

0

K

4. A

�!proc

KP

consists of a bottom element ? and formal step functions c! � where c 2 A

�

K

and

� 2 A

proc

KP

5. A

proc

KP

consists of formal elements of the form

� ?

proc

� �

out

(c
�) where c 2 A

�(�)

K

and � 2 A

proc

KP

� �

in

(c! �) where c 2 A

�(�)

K

and � 2 A

proc

KP

.

Next we de�ne an ordering of the sets A

�

K

. Note that in the representation of prime elements

given above c! ? is to be distinguished from the bottom element of the function space since it

really represents the element c ! fj?

?

jg. Similarly, in �

out

(?
�) the left-strict product should

not reduce the concretion ?
� to a bottom element since this element really represents the prime

�

out

(fj?

?

jg
�). Similarly for �

in

(c! �). This explains why we introduced a fresh ? element for

each of the higher types and for proc.

Definition 4.4 The relations �

�

are the least re
exive, transitive and antisymmetric (i.e. partial

order) relations on A

�

K

such that

1. �

int

;�

bool

and �

unit

are the identity relations

2. they satisfy axioms/rules such that all mentioned formal joins become least upper bound

operators in the relevant ordering and all mentioned ? elements become the least elements

in the ordering

3. c! k �

�!�

c

0

! k

0

i� c

0

�

�

c and k �

�

k

0

4. �

out

(c
�) �

proc

�

out

(c

0

�

0

) provided c �

�(�)

c

0

and � �

proc

�

0

5. c! � �

�!proc

c

0

! �

0

i� c

0

�

�

c and � �

proc

�

0

6. �

in

(c! �) � �

in

(c

0

! �

0

) i� c! � �

�(�)!proc

c

0

! �

0

14

Since algebraic dcpo's are characterized by their bases of compact elements we have the fol-

lowing

Theorem 4.5 Let D

0

�

= Idl(A

�

K

) be de�ned as the ideal completions of the partial orders

(A

�

K

;�

�

). Then D

0

�

�

=

D

�

.

Proof: The proof follows by calculating the actual primes of the domains D

�

from the bilimit

construction of the initial solution to the domain equation. For example, the primes of the function

space [D

�

! T (D

�

0

)] are the step functions c! P with c 2 K(D

�

) and P a prime in T (D

�

0

), i.e.

an element of the form fj?jg or fjk

?

jg with k 2 K(D

�

0

). Similarly, the actual primes in the domain

of processes are in�nite sequences of pairs with (?;?) everywhere, in the case of the bottom

element, or except for at most one position, in the case of nontrivial primes, where a prime of one

of the forms (fjc

?

jg
�;?) or (?; c! �

?

) occurs.

Interpretation: Let Exp

H

�

be the set of terms in context H �M : � . The interpretation

function, presented in Table 3, is a partial map (de�ned on H �M : � provided it is derivable in

the type system) and it follows the standard pattern. For convenience, we de�ne an interpretation

function V [[�]] assigning to a value expression v a continuous function into the appropriate value

domain D

�

. Thus [[H � v : �]] is always obtained by composition with the unit � of the monad T :

[[H � v : �]] = � � V [[H � v : �]].

Table 3: Interpretation Function

V [[H � n : int]] = �x 2 [[H]]: n (Similarly for other litterals)

V [[H � �X�Y:M : � ! �]] = Y � curry(curry([[H;X : � ! �; Y : � �M : �]]))

[[H � v : �]] = � � V [[H � v : �]]

[[H � FM : �]] = apply

T

([[H � F : � ! �]]; [[H �M : �]])

[[H �M = N : bool]] = EQ � ([[H �M : �

G

]]; [[H �N : �

G

]])

[[H � if B then M else N : �]] = COND

�

� ([[H �B : bool]]; [[H �M : �]]; [[H �N : �]]

[[H �M�N : �]] = [[H �M : �]] _ [[H �N : �]]

[[H � P�Q : proc]] = [[H � P : proc]] _ [[H �Q : proc]]

[[H � P+Q : proc]] = [[H � P : proc]] _ [[H �Q : proc]]

[[H � nil : proc]] = �x: ?

[[H � res

�

(P) : �(�)]] = res

�

� ([[H �P : proc]]

[[H � P

A

j

B

Q : proc]] = PAR

A;B

� ([[H �P : proc]]; [[H �Q : proc]])

[[H � �![M]Q : proc]] = �

out

� ([[H �M : �(�)]]
[[H �Q : proc]])

[[H � �?N : proc]] = �

T

in

� ([[H �N : �(�)! proc]])

The map apply

T

is de�ned as ext

(2)

(apply) where ext

(2)

A;B;C

: (A � B ! TC) �! (TA �

TB ! TC) is the standard extension map of the monad T . Essentially the same de�nition

15

can be given for the case of functions into proc and we use apply

T

for both cases, as discussed

in Section 2. EQ and COND

�

are the natural equality and conditional morphisms. The map

res

�

: D

proc

�! T (D

�(�)

) is de�ned on primes (and then linearly extended to all elements) in the

obvious way: res

�

(�) = fjc

?

jg if � = �

out

(c
�

0

) and ? otherwise.

The interpretation PAR

A;B

of the parallel operator is somewhat more complex. Its de�nition

on primes is given in Table 4 where �

A

j

B

�

0

is the join of elements of the form listed in the third

column and where each such element appears in the join provided the related condition in column

four holds. Table 4 has been compiled after a similar table in Hennessy [12]. The choice operators�

and + are interpreted as joins of functions, where the join f_g is determined by the join operation

in the common codomain of f and g. The maps �

out

and �

in

, previously de�ned, are used to

interpret input and output on �. For input processes we use the natural linear strict extension

of the map �

in

: [D

�(�)

! L(D

proc

)] �! D

proc

to a map �

T

in

: T (D

�(�)

! L(D

proc

)) �! D

proc

,

setting �

T

in

(fj?jg) = ?; �

T

in

(fjc

?

jg) = �

in

(c).

A set-theoretic interpretation can be obtained from the interpretation in Table 3 in the stan-

dard way, in terms of maps � 2 Env

H

, the set of H-environments. Environments are restricted

to the maps assigning values to variables. They are �nite maps � such that there is a context

H 2 H; H = X

1

: �

1

; : : : ; X

s

: �

s

, such that dom(�) = fX

1

; : : : ; X

s

g and �(X

i

) 2 D

�

i

. For

reader's convenience and to facilitate later reference we list some of the clauses in the set-theoretic

interpretation.

1. V [[�X:M]]

�

= �v 2 D

�

: [[M]]

�[v=X]

2 D

�!�

2. V [[�X�Y:M]]

�

= lfp(�f 2 D

�!�

: V [[�Y:M]]

�[f=X]

)

3. Variables X assigned type � by a context H are interpreted, given an H-environment �, in

a similar fashion, namely V [[X

�

]]

�

= �(X) 2 D

�

4. [[v]]

�

= fj(V [[v]]

�

)

?

jg and [[X

�

]]

�

= fj�(X)

?

jg

5. [[M = N]]

�

=

(

[[tt]]

�

If 9` [[`]]

�

� [[M]]

�

\ [[N]]

�

? Otherwise

6. [[M�N]]

�

= [[M]]

�

{[[[N]]

�

2 T (D

�

)

7. [[P�Q]]

�

= [[P]]

�

_ [[Q]]

�

= [[P+Q]]

�

2 D

proc

Example 1 The interpretation speci�ed above identi�es the three processes �?:�X:(P + Q),

�?(�X:P� �X:Q) and (�?�X:P)� (�?�X:Q).

By de�nition, [[�?:�X:(P+Q)]]

�

= �

T

in

(fjV [[�X:(P+Q)]]jg) and again by de�nition this is

the same as �

in

(�v 2 D

�

: [[P]]

�[v=X]

_ [[Q]]

�[v=X]

). The interpretation of the second process is

�

T

in

([[�X:P]]

�

{[[[�X:Q]]

�

) which is the same as �

T

in

(fj�v 2 D

�

: [[P]]

�[v=X]

; �v 2 D

�

: [[Q]]

�[v=X]

jg)

which given the de�nition of �

T

in

is �

in

(�v 2 D

�

: [[P]]

�[v=X]

) _ �

in

(�v 2 D

�

: [[Q]]

�[v=X]

) where the

join is taken in D

proc

. Since �

in

is linear, this is identical to

�

in

(�v 2 D

�

: [[P]]

�[v=X]

_ �v 2 D

�

: [[Q]]

�[v=X]

)

16

Table 4: The Parallel Operator

� �

0

�

A

j

B

�

0

Condition

? ? ?

? �

out

(c
�

1

) �

out

(c
�

0

1

) �

0

1

� ?

A

j

B

�

1

, � 2 B

? �

in

(c! �

1

) �

in

(c! �

0

1

) �

0

1

� ?

A

j

B

�

1

, � 2 B

�

in

(c! �

1

) �

out

(k
�

2

) �

in

(c! �

0

1

) �

0

1

� �

1

A

j

B

�

0

; � 2 A

�

out

(k
�

0

2

) �

0

2

� �

A

j

B

�

2

; � 2 B

any �

0

� ?

A

j

B

�

2

� = �

any �

0

� �

1

A

j

B

�

2

� = � and k � c

�

in

(c! �

1

) �

in

(k! �

2

) �

in

(c! �

0

1

) �

0

1

� �

1

A

j

B

�

0

; � 2 A

�

in

(k! �

0

2

) �

0

2

� �

A

j

B

�

2

; � 2 B

�

out

(c
�

1

) �

out

(k
�

2

) �

out

(c
�

0

1

) �

0

1

� �

1

A

j

B

�

0

; � 2 A

�

out

(k
�

0

2

) �

0

2

� �

A

j

B

�

2

; � 2 B

where the main join inside the parenthesis is now taken in the complete lattice [D

�

! L(D

proc

)].

The join inside the parenthesis is identical to �v 2 D

�

: ([[P]]

�[v=X]

_ [[Q]]

�[v=X]

), since join is

de�ned pointwise on function spaces. Hence the interpretation of the �rst two processes is the

same. Similar small calculation shows that the interpretation of the third process is the same as

for the other two.

Some properties of the interpretation that will be frequently used are discussed below.

A substitution is a type respecting mapping from variables to expressions and we use Ms

to denote the result of applying the substitution s to the expression M. When s is a simple

substitution, such as the identity everywhere except on a variable X , we will continue to use

the notation M[s(X)=X]. We call s a value-substitution provide s(X) is a value for every X in

its domain. Since the interpretation of the language follows the standard schema we have the

following:

Proposition 4.6 (Substitution Lemma)

For every environment � and value-substitution s, [[Ms]]

�

= [[M]]

�[V[[s(X)]]

�

=X]

.

For ease of reference we also list the following

Lemma 4.7

1. V [[�X�Y:M]]

�

= V [[�Y:M[

�X�Y:M

=

X

]]]

�

2. apply(V [[�X�Y:M]]

�

; v) = [[M[

�X�Y:M

=

X

]]]

�[v=X]

.

It follows from the Substitution Lemma in combination with Lemma 4.7 and from the de�nition

of the parallel operator

A

j

B

that

17

Proposition 4.8

1. (Call-by-value �-Reduction) For any value v,

[[(�X�Y:M)v]]

�

= [[M[v=Y; �X�Y:M=X]]]

�

2. (Communication) For any value v and process expressions P, Q

[[�?�X�Y:Q

A

j

B

�![v]P]]

�

� [[(�X�Y:Q)v

A

j

B

P]]

�

Proof: The �rst follows from the observation that

apply

T

([[�X�Y:M]]

�

; [[v]]

�

) = apply

T

(fjV [[�X�Y:M]]

�

jg; fjV [[v]]

�

jg) = apply(V [[�X�Y:M]]

�

;V [[v]]

�

)

and then by combining the Substitution Lemma with Lemma 4.7.

For the second, to show that

[[(�X�Y:Q)v]]

�
A

j

B

[[P]]

�

� [[�?�X�Y:Q]]

�
A

j

B

[[�![v]P]]

�

let k be a compact element k � V [[v]]

�

, c ! �

1

a prime below V [[�X�Y:Q]]

�

and �

2

a prime

below [[P]]

�

. Then �

in

(c ! �

1

)

A

j

B

�

out

(k
�

2

) � [[�?�X�Y:Q]]

�
A

j

B

[[�![v]P]]

�

. Consulting Table 4

it follows that (c! �

1

)(k)

A

j

B

�

2

� �

in

(c! �

1

)

A

j

B

�

out

(k
�

2

).

We list here a property of the interpretation in relation to the operational semantics that will

be used in the course of the adequacy and de�nability proofs.

Lemma 4.9

1. For any M;N, M

�

=) N implies [[N]]

�

� [[M]]

�

2 For any process P

� If P

�?

=)M, then ? < [[�?M]] � [[P]]

�

� If P

�!

=) [v]Q, then ? < [[�![v]Q]]

�

� [[P]]

�

.

Proof: Both (1) and (2) are proven by transition induction. The only interesting cases are

�-reduction and communication which we have dealt with in Lemma 4.8.

The denotational model induces the following preorder on expressions.

Definition 4.10 (Denotational Preorder) For any terms M, N let H � M

�

<

D

N i�

[[H �M : �]] � [[H �N : �]] for some type � . For closed expressions this is abbreviated to

M

�

<

D

N.

Our aim is to show that the model is fully abstract for both of the operational preorders that

we have de�ned (context and may-testing preorders), namely that

H �M

�

<

C

N i� H �M

�

<

T

N i� H �M

�

<

D

N

As a �rst step towards this result we prove an adequacy result

For closed expressions, M + if and only if [[M]] 6= ?

18

One direction of this result is straightforward, as it simply says that the operational semantics is

re
ected correctly in the model. However to prove the converse we need a typed modal language L

of properties � of program terms. This is the subject of Section 5. The program logic we develop

is of independent interest and we aim to prove that it is complete in its natural operational

semantics, detailed in Section 5.

From the adequacy result one direction of the full-abstraction follows without much di�culty.

For the converse we need a de�nability result, essentially saying that all compact elements in

the domains D

�

are denotable by some closed expression from mini-Facile. This is the subject

of Section 6. Using de�nability we can also derive completeness of the program logic in the

operational semantics. The proof of full-abstraction is then given in Section 7.

5 Program Logic

Let T ;V ;P be the sets of closed expressions, value expressions and process expressions. The

operational semantics determines a many-sorted transition system hT ;V ;P ;+;

�!

=);

�?

=)i for which

we seek to provide a natural logical language of properties and associated proof systems.

In short, the logical language is generated by the grammar below on the signature of logical

operators f&;u;!;3; hh�!ii[]; hh�?iig where only 3 and hh�?ii are unary while every other connective

is binary:

S 2 AtFmla := S

n

(n 2 N) j S

tt

j S

�

j S

()

j !

proc

j !

L

�

j !

T

�

j

� 2 Fmla := S j �&� j � u � j � ! � j 3� j hh�!ii[�]� j hh�?ii�

We will sort the language separating properties of values, for each trype � 2 VType, from such

of computations and processes. For mnemonic reasons we use A;B;C; : : : for properties of values,

'; ; �; : : : for properties of processes and �; �; #; : : : for properties of arbitrary terms.

Remark 5.1 Nontrivial properties of computations of some type � are always either of the form

3A or conjunctions � u �, where at least one of �; � is a nontrivial property. Distinct conjunction

operations for properties of values as opposed to such of computations are needed. This becomes

clear when attempting to �nd a unique conjunction rule for the program logic that will be sound

in the denotational semantics. The join in the domain of values is to be logically distinguished

from the formal union operation in the domain of computations. Thus di�erent connectives and

associated rules are needed so that we can have the logical analogues of situations like fjc _ kjg � d

and fjc; kjg = fjcjg {[fjkjg � d.

Definition 5.2 The languages L

�

(V); � 2 VType;L

�

(T); � 2 Type are the least sets satisfying

the recursive conditions in Table 5.

Two sorts of semantics relations, indexed in types, j�

�

and j=

�

will be de�ned. The relation

j�

�

is a binary relation from values of some type � to sentences in L

�

(V) while j=

�

relates arbitrary

expressions of type � to sentences in L

�

(T), subject to the mutual recursive clauses of Table 6.

Lemma 5.3 By de�nition, M =) v and vj�

�

A implies M j=

�

3A. Furthermore, M =) N and

N j=

�

� 2 L

�

(T) implies M j=

�

�.

Proof: By structural induction on the sentence � 2 L

�

(T).

19

Table 5: A Modal Language of Properties

� L

int

(V) = fS

0

; S

1

; : : : ; S

n

; : : :g

and similarly for bool, unit.

� !

proc

2 L

proc

(T), !

L

�

2 L

�!proc

(V) and !

T

�

2 L

�

(T)

� A 2 L

�

(V) implies 3A 2 L

�

(T)

� { �; � 2 L

�

(T) implies � u � 2 L

�

(T)

{ A;B 2 L

�

(V) implies A&B 2 L

�

(V), provided � 62 GType

{ '; 2 L

proc

(T) implies '& 2 L

proc

(T)

� A 2 L

�

(V), � 2 L

�

(T) implies A! � 2 L

�!�

(V)

� A 2 L

�(�)

(V); 2 L

proc

(T) implies hh�!ii[A] 2 L

proc

(T)

� A 2 L

�(�)

(V); 2 L

proc

(T) implies hh�?iiA! 2 L

proc

(T).

Table 6: A two-sorted, typed Satisfaction Relation

v j�

�

G

S

`

i� v = `

v j�

�

A&B i� vj�

�

A and vj�

�

B

v j�

�!�

A! � i� 8u 2 V (uj�

�

A implies vu j=

�

�)

v j�

�!proc

!

L

�

always

M j=

�

!

T

�

always

M j=

�

3A i� 9v 2 V (M + v and vj�

�

A)

M j=

�

� u � i� M j=

�

� and M j=

�

�

P j=

proc

!

proc

always

P j=

proc

'& i� P j=

proc

' and P j=

proc

P j=

proc

hh�!ii[A] i� 9v 2 V 9Q 2 P (P

�!

=) [v]Q; vj�

�(�)

A and Q j=

proc

)

P j=

proc

hh�?iiA! i� 9v 2 V (P

�?

=) v and vj�

�!proc

A!)

20

Table 7: A Proof System G

E

for Semantic Entailment

(Id) Aj�

�

A (T1) � `

�

!

T

�

(T2) Aj�

�

0

!�

B ! !

T

�

(T3) Aj�

�!proc

!

L

�

(Cut1)

Aj�

�

B Bj�

�

C

Aj�

�

C

(Cut2)

� `

�

� � `

�

#

� `

�

#

(!)

Bj�

�

A � `

�

�

A! �j�

�!�

B ! �

(&R)

Aj�

�

B Aj�

�

C

Aj�

�

B&C

(&L1)

Aj�

�

C

A&Bj�

�

C

(&L2)

Bj�

�

C

A&Bj�

�

C

(3)

Aj�

�

B

3A `

�

3B

(T2) ' `

proc

!

proc

(�!)

Aj�

�(�)

B ' `

proc

hh�!ii[A]' `

proc

hh�!ii[B]

(�?)

Bj�

�(�)

A ' `

proc

hh�?iiA! ' `

�(�)!proc

hh�?iiB !

(&

'

L1)

' `

proc

�

'& `

proc

�

(&

'

L2)

 `

proc

�

'& `

proc

�

(&

'

R)

' `

proc

 ' `

proc

�

' `

proc

 &�

(uR)

� `

�

� � `

�

#

� `

�

� u #

(uL1)

� `

�

#

� u � `

�

#

(uL2)

� `

�

#

� u � `

�

#

Axiomatizing Semantic Entailment: We may think of formulae extensionally, as the sets of

terms that satisfy them. This induces notions of semantic entailment where for A;B 2 L

�

(V) and

�; � 2 L

�

(T)

� Aj�

�

B i� for all values v 2 V , vj�

�

A implies vj�

�

B

� � j=

�

� i� for all M, M j=

�

� implies M j=

�

�

Semantic entailment is axiomatized in a Gentzen-style implicational system, G

E

, in Table 7.

Lemma 5.4 The system G

E

is sound in the operational semantics. In other words, Aj�

�

B implies

Aj�

�

B, and � `

�

� implies � j=

�

�.

Proof: By the usual induction on length of proof.

To relate the logic with the model we �rst interpret sentences as compact elements. The

interpretation maps V [[�]] and [[�]], de�ned in Table 8 by mutual recursion, interpret properties of

values as compact elements of the value domains D

�

and properties of computations and processes

as compact elements of T (D

�

) and D

proc

, respectively.

21

Table 8: Interpretation of Sentences as Elements of the Domain

� V [[S

n

]] = n 2 IN and similarly for the other atomic sentences

� V [[A&B]] = V [[A]] _ V [[B]] (� 6= �

G

2 GType)

� V [[A! �]] = V [[A]]! [[�]]

� V [[!

L

�

]] = ? 2 [D

�

! L(D

proc

)]

� [[!

T

�

]] = fj?jg 2 T (D

�

)

� [[3A]] = fjV [[A]]

?

jg

� [[� u �]] = [[�]] {[[[�]]

� [[!

proc

]] = ? 2 D

proc

� [['&]] = [[']] _ [[]]

� [[hh�!ii[A]]] = �

out

(fjV [[A]]

?

jg
[[]])

� [[hh�?iiA!]] = �

in

(V [[A]]! [[]]

?

)

Remark: In the sequel we will leave lifting implicit and write, e.g.

�

in

(V [[A]]! [[]]); �

out

(fjV [[A]]jg
[[]]) and fjV [[A]]jg

Proposition 5.5

1. The interpretation of a sentence � is a compact element of the respective domain, depending

on the sorting and type of �. Conversely, for every compact element C of the domains

D

�

; T (D

�

) and D

proc

there is a sentence � of appropriate sort and type such that C = [[�]]

or C = V [[�]], as appropriate.

2. (Completeness of the System G

E

in the Denotational Semantics)

� Aj�

�

B i� V [[B]] � V [[A]] in L(D

�

)

� � `

�

� i� [[�]] � [[�]] in T (D

�

), and

� ' `

proc

 i� [[]] � [[']] in D

proc

.

Proof: For part 1, we only comment on the case of a sentence of the form A ! � u �. The

interpretation yields the element V [[A]]! [[�]] {[[[�]] where the formal union is the join operation

in T (D

�

0

). This function is identical to the compact element (V [[A]] ! [[�]]) _ (V [[A]] ! [[�]]) in

the model, where the join _ is now taken in the function space [D

�

! T (D

�

0

)]. Similarly for

A! '& .

For the second part, the soundness direction is proven by induction on the length of the proof

of e.g. � `

�

�. The completeness direction is proven by structural induction.

22

The structure of our modal language does not directly re
ect the fact that the transition system

is equiped with parallel operators

A

j

B

. Instead we interpret

A

j

B

as an operator on formulae; '

A

j

B

can be considered as a shorthand for a �nite conjunction of formula in L

proc

(T). The components

of this conjunction are de�ned by induction on the structure of ' and , as speci�ed below.

Whenever any of the conditions mentioned in the de�nition fails to hold we let the de�ned sentence

be equal to !.

� !

A

j

B

! = !

� !

A

j

B

hh�!ii[A]' = hh�!ii[A]

1

& � � �&hh�!ii[A]

s

provided !

A

j

B

' =

1

& � � �&

s

and � 2 B

� !

A

j

B

hh�?iiA�!' = !

A

j

B

hh�?iiA�!

1

& � � �&!

A

j

B

hh�?iiA�!

s

provided � 2 B and !

A

j

B

' =

1

& � � �&

s

The cases of the form �

A

j

B

! are de�ned in a symmetric way.

� hh�?iiA�!'

A

j

B

hh�?iiB�! = �

1

&�

2

&�

3

&�

4

, where

1. �

1

= hh�?iiA�!'

1

& � � �&hh�?iiA�!'

s

provided � 2 A and '

A

j

B

hh�?iiB�! = '

1

& � � �&'

s

2. �

4

= hh�?iiB�!

1

& � � �&hh�?iiB�!

r

provided hh�?iiA�!'

A

j

B

 =

1

& � � �&

r

and � 2 B.

� hh�!ii[A]'

A

j

B

hh�!ii[B] = �

1

&�

2

where

1. �

1

= hh�!ii[A]'

1

& � � �&hh�!ii[A]'

s

provided � 2 A and '

A

j

B

hhB!ii = '

1

& � � �&'

s

2. �

2

= hh�!ii[B]

1

& � � �&hh�!ii[B]

r

provided � 2 B and hh�!ii[A]'

A

j

B

 =

1

& � � �&

r

The remaining case involves a \communication" capability:

� hh�?iiA�!'

A

j

B

hh�!ii[B] = �

1

& � � �&�

5

,

where

1. �

1

= hh�?iiA�!'

1

& � � �&hh�?iiA�!'

s

if � 2 A and '

A

j

B

hh�!ii[B] = '

1

& � � �&'

s

2. �

3

= hh�!ii[B]

1

& � � �&hh�!ii[B]

r

if � 2 B and hh�?iiA�!'

A

j

B

 =

1

& � � �&

r

3. �

4

= !

A

j

B

 provided � = �

4. �

5

= '

A

j

B

 provided � = � and A `

�

B is derivable in G

E

The symmetric case hh�!ii[B]

A

j

B

hh�?iiA�!' is de�ned in an analogous manner.

The reader will have no doubt noticed the similarity between the de�nition of '

A

j

B

 and the

de�nition of the parallel operator on the primes of the domain D

proc

given in Table 4. The proof

of the following lemma follows from a close comparison of the two de�nitions.

Lemma 5.6 Let '; 2 L

proc

(T). Then [['

A

j

B

]] = [[']]

A

j

B

[[]].

23

A Proof System for Satis�ability - Program Logic So far, we provided a sound proof

system with judgements of the form � `

�

� (resp. Aj�

�

B), axiomatizing the relation of semantic

entailment � j=

�

� (resp. Aj�

�

B). The latter is de�ned by M j=

�

� implies M j=

�

�, where M is

any closed term of type � and similarly for Aj�

�

B, restricting to closed value terms. It is useful

to devise a proof system with judgments of the form M `

�

� and vj�

�

A meaning, intuitively,

that it is provable in the logic system that the term M, resp. v, has the indicated property. If,

moreover, the proof system is complete then it can be used to calculate behavioral properties of

complex program terms from properties of simpler terms. We will provide such a system in the

sequel. In fact, we �rst extend satisfaction to open terms, given assumptions � about properties

of closed terms substituted in for the variables. Given that reduction is call-by-value we may view

an assumption as a �nite map � from variables of the programming language to value sentences

in L

�

(V), for � 2 VType. We write �'s in the form X

1

: A

1

; : : : ; X

n

: A

n

. In writing �; X : A

as an assumption, we presume that X 62 dom(�). If � is an assumption and s is a closed value-

substitution, then we say that s j= � i� for each X in the domain of �, s(X)j�

�

�X .

Definition 5.7 � j=

O

�

M : � i� for any closed value-substitution s, if s j= � then Ms j=

�

�.

Similarly, for possibly open value-expressions, we may de�ne �j�

O

�

v : A i� s j= � implies vsj�

�

A.

It is easy to see that �j�

O

�

v : A i� � j=

O

�

v : 3A and we will typically only use the relation

� j=

O

�

M : �.

The program logic presented in Table 9 axiomatizes this notion of satis�ability between pro-

gram expressions and logical formulae. The relation of satis�ability induces a new operational

preorder between language expressions, based on their ability to satisfy logical formula.

Definition 5.8 H �M

�

<

L

N i�

� H �M : � and H �M : � for some type �

� for every assumption �, � j=

O

�

M : � implies � j=

O

�

N : �.

It is worth pointing out that by the introduction and elimination rules for 3, �j�

�

v : A i�

� `

�

v : 3A. The technical reason why we feel we need to use both `

�

and j�

�

relates to �nding a

unique rule for conjunction that would be sound in the denotational semantics we will introduce

shortly. This is because the join in the domain of values is to be logically distinguished from the

formal union operation in the domain of computations.

Proposition 5.9 (Soundness of G

S

in the Operational Semantics) The program logic is

sound in the operational semantics, i.e. � `

�

M : � implies � j=

O

�

M : �

Proof: The proof is by a standard induction on length of proofs which amounts to showing

that the axioms are sound and if the premiss of a rule is sound so is its conclusion. All cases are

straightforward. We discuss the Recursion, Application and Result rules as examples.

For the recursion rule, suppose s j= �. To show that (�X�Y:M)sj�

�!�

A! � let v be a value

and assume vj�

�

A. Set s

0

= s[Y 7! v]. Since s

0

j= �; Y : A it follows by the hypothesis that the pre-

miss of the (�) rule is sound thatM[�X�Y:M=X]s

0

j=

�

�, i.e. M[�X�Y:M=X; v=Y]s j=

�

�. From

the operational semantics and by the monotonicity Lemma 5.3 it follows that (�X�Y:M)vs j=

�

�

and hence, by de�nition, (�X�Y:M)sj�

�!�

A! �.

24

Table 9: A Proof System G

S

for Satis�ability: Program Logic

(Mon1)

�j�

�

v : A Aj�

�

B

�j�

�

v : B

(Mon2)

� `

�

M : � � `

�

�

� `

�

M : �

(Id) �; X : Aj�

�

X : A (T1) � `

�

M : !

T

�

(T2) �j�

�!proc

v : !

L

�

(T3) �j�

�

0

!�

v : A! !

T

�

(T

'

) � `

proc

P : !

proc

(`) �j�

�

G

` : S

`

(` = tt; �; ();n)

(3I)

�j�

�

v : A

� `

�

v : 3A

(3E)

� `

�

v : 3A

�j�

�

v : A

(B)

� `

�

G

M : 3S

`

� `

�

G

N : 3S

`

� `

bool

(M = N) : 3S

tt

(u)

� `

�

M : � � `

�

M : �

� `

�

M : � u �

(&)

�j�

�

v : A �j�

�

v : B

�j�

�

v : A&B

(&

'

)

� `

proc

P : ' � `

proc

P :

� `

proc

P : '&

(J1)

� `

�

M : �

� `

�

M�N : �

(J2)

� `

�

N : �

� `

�

M�N : �

(+1)

� `

proc

P : �

� `

proc

P+Q : �

(+2)

� `

proc

Q : �

� `

proc

P+Q : �

(App)

� `

�!�

M : 3(A! �) � `

�

N : 3A

� `

�

MN : �

(�)

�; Y : A `

�

M[

�X�Y:M

=

X

] : �

�j�

�!�

�X�Y:M : A! �

(res)

� `

proc

P : hh�!ii[A]�

� `

�(�)

res

�

(P) : 3A

(Cond1)

� `

bool

B : 3S

tt

� `

�

M : �

� `

�

if B then M else N : �

(Cond2)

� `

bool

B : 3S

�

� `

�

N : �

� `

�

if B then M else N : �

(� ?)

� `

�!proc

M : 3A

� `

proc

�?M : hh�?iiA

(� !)

� `

�

M : 3A � `

proc

P : '

� `

proc

�![M]P : hh�!ii[A]'

(Par)

� `

proc

P : ' � `

proc

Q : '

A

j

B

 ` �

� `

proc

P

A

j

B

Q : �

For the application rule (App), given s j= � and given soundness of the premisses it follows that

there exist values v, u such thatMs + v;Ns + u and vj�

�!�

A! �; uj�

�

A. ThenMN =) vu j=

�

�

and so, using the monotonicity Lemma 5.3 it follows MN j=

�

�.

Soundness of the premiss of the (res

�

) rule means that Ps j=

proc

hh�!ii[A] . This implies that

there is a value v and a process Q such that Ps

�!

=) [v]Q with vj�

�

A. Then res

�

(P) =) v and

vj�

�

A implies that res

�

j=

�

3A.

Completeness of the Program Logic in the Denotational Semantics The denotational

semantics induces a relation between closed program expressions and logical formulae; we write

j=

D

M : � if [[�]] � [[M]]. Similarly, j�

D

v : A i� V [[A]] � V [[v]]. In order to relate this to the program

logic we need to generalise it to arbitrary program expressions.

25

For an environment � and an assumption � let � j=

D

� i� for any variable X , V [[�(X)]]� �(X).

Definition 5.10 Let � j=

D

�

M : � if and only if for every environment �, if � j=

D

�, then

[[�]] � [[M]]

�

.

Similarly, we may let �j�

D

�

v : A i� for every environment �, if � j=

D

�, then V [[A]] � V [[v]]. Since

the latter inequality is equivalent to fjV [[A]]jg � fjV [[v]]jg, i.e. [[3A]] � [[v]], we may only use the

relations j=

D

�

.

We can show that the program logic is complete in the denotational semantics. A priori, there

is no reason why completeness with respect to this technical notion of semantics would have any

bearing on the completeness of the program logic in its natural, operational, semantics. Using our

de�nability results, however, we will be in a position to show in Section 7 that the operational

and denotational semantics for the program logic coincide.

Theorem 5.11 (Soundness-Completeness of G

S

in the Denotational Semantics)

� `

�

M : � if and only if � j=

D

�

M : �

Proof: Given an assumption �, de�ne the environment �

�

by �(X) = [[�(X)]]. Then it is

immediate that � j=

D

M : � i� [[�]] � [[M]]

�

�

. So the soundness and completeness claim is

equivalent to the claim � `

�

M : � if and only if [[�]] � [[M]]

�

�

, which we may alternatively use.

Soundness: The soundness part is proven by induction on length of proofs, and uses the sound-

ness in the denotational semantics of the proof system G

E

for semantic entailment, Proposition

5.5. It is mostly straightforward and we only do a few cases as an example.

For the monotonicity rule (Mon), if � j= � then V [[A]] � V [[v]]

�

and, by Proposition 5.5,

V [[B]] � V [[A]]. Then V [[B]] � V [[v]]

�

.

Proof of soundness for the conjunction rules is straightforward but it illustrates the need for

di�erent conjunction logical operators and justi�es our introduction of two semantic maps V [[�]]

and [[�]]. For the conjunction connective & for value-sentences, the hypothesis � j= � implies that

V [[A]] _ V [[B]] = V [[A&B]] � V [[v]]

�

. For soundness of the rule (u) for conjunctive properties of

computations the hypothesis � j= � implies that [[�]] {[[[�]] � [[M]]

�

. The left-hand side of the

inequality is [[� u �]] � [[M]]

�

and this shows soundness of the rule.

For the recursion rule (�), assume � j= � and set �

0

:= �[Y := V [[A]]] so that �

0

j= �; Y : A.

Then [[�]] � [[M[�X�Y:M=X]]]

�[V[[A]]=Y]

, assuming by induction soundness of the premiss. The

right-hand side of the inequality is equal to apply(V [[�Y:M[�X�Y:M=X]]]

�

;V [[A]]). It follows using

the second part of Lemma 4.7 that V [[A]]! [[�]] � V [[�X�Y:M]]

�

, hence

[[A! �]] = fjV [[A]]! [[�]]jg � fjV [[�X�Y:M]]

�

jg = [[�X�Y:M]]

�

For the rule (�!) and given � j= � we may assume [[3A]] = fjV [[A]]jg � [[M]]

�

and [[']] � [[P]]

�

.

Then

[[hh�!ii[A]']] = �

out

(fjV [[A]]jg
[[']]) � �

out

([[M]]

�

[[P]]

�

) = [[�![M]P]]

�

and this show that (�!) is sound.

For the rule (res

�

) and given � j= � we may assume that �

out

(fjV [[A]]jg
[[']]) � [[P]]

�

. Applying

the res function of the model to both sides of the inequality we obtain fjV [[A]]jg � res

�

([[P]]

�

) hence,

by de�nitions, [[3A]] � [[res

�

(P)]]

�

.

Soundness for the other rules is shown by similar arguments and we turn now to completeness,

showing that [[�]] � [[M]]

�

�

implies � ` M : � by structural induction on M and �.

26

Completeness: If � is any of !

T

�

or !

proc

the claim is trivial using one of the (T) axioms. If �

is of the form � u # we may use the induction hypothesis on �; # and then the conclusion follows

by using the appropriate conjunction rule. The remaining cases are � = 3A and � = ' of one of

the form hh�!ii[A] or hh�?iiA! . This means that [[�]] is a prime element of the model such that

[[�]] 6= ? and we consider now the cases for M.

(M � `) If M is a litteral ` of some ground type �

G

then � must be 3S

k

, for some litteral k of

type �

G

. The hypothesis implies k = ` and the conclusion follows by the axiom (`).

(M � �X�Y:N) Then � is of the form 3(A ! �) and the hypothesis implies that V [[A! �]] �

V [[�X�Y:N]]

�

�

. Since V [[A! �]] is the step function V [[A]]! [[�]] we obtain, by application

to V [[A]] on both sides, [[�]] � apply(V [[�X�Y:N]]

�

�

;V [[A]]). By Lemma 4.7 we have

[[�]] � apply(V [[�X�Y:N]]

�

�

;V [[A]]) = [[N[�X�Y:N=X]]]

�

�

[V[[A]]=Y]

and then by induction �; Y : A `

�

N[�X�Y:N=X] : �.

Using the rule (�) we obtain �j�

�!�

�X�Y:N : A! �. The 3-introduction rule allows us to

rewrite this as � `

�!�

�X�Y:N : 3(A! �).

(M � (N = K)) From ? 6= [[�]] � [[N = K]]

�

�

and the de�nition of [[N = K]]

�

it follows that

[[�]] � [[N = K]]

�

�

= fjttjg, hence � is 3S

tt

, and that there is some litteral ` such that

[[`]]

�

�

� [[N]]

�

�

\ [[K]]

�

�

. Hence [[`]]

�

�

= fj`jg = fjV [[S

`

]]jg = [[3S

`

]] � [[N]]

�

�

and similarly

[[3S

`

]] � [[N]]

�

�

. By induction, � `

�

G

N : 3S

`

and � `

�

G

K : 3S

`

. Then we may apply the

rule (B) to conclude that � `

bool

N = K : 3S

tt

.

(M � FN) Assume ? 6= [[�]] � [[FN]]

�

�

= apply

T

([[F]]

�

�

; [[N]]

�

�

). By strictness of apply

T

it follows

that [[F]]

�

�

6= ? and [[N]]

�

�

6= ?. By linearity of apply

T

, let p 6= fj?jg be a nontrivial prime

in T (D

�

) such that p � [[N]]

�

�

and [[�]] � apply

T

([[F]]

�

�

; p). The prime p is the formal

singleton of a join of primes of the domain D

�

and by logical de�nability of compact and

prime elements, Proposition 5.5, p = fjV [[A]]jg � [[N]]

�

�

for some A 2 L

�

(V). It follows

from [[�]] � apply

T

([[F]]

�

�

; fjV [[A]]jg) that [[A! �]] � [[F]]

�

�

. By induction we then obtain

� `

�!�

F : 3(A ! �) and � `

�

N : 3A. Using the application rule (App) we obtain

� `

�

FN : �.

(M � if B then N else N

0

) The argument is similar and uses the two rules (Cond) and (Cond

0

)

for the conditional.

(M � N�N

0

or M � P+Q) Use the rules (J1); (J2) and (+1), (+2), respectively.

(M � nil) Trivial.

(M � res

�

(P)) We now assume ? 6= [[�]] � res

�

([[P]]

�

�

). Observe �rst that � 2 L

�(�)

(T) is of the

form3B for some B 2 L

�(�)

(V). By linearity of res

�

let � be a prime � = �

out

(c
�

0

) � [[P]]

�

�

such that

[[3B]] = [[�]] � fjc

?

jg = res

�

(�

out

(c
�

0

)) � res

�

([[P]]

�

�

)

By logical de�nability of compact elements, Proposition 5.5, let A 2 L

�

(V) be a property of

values such that V [[A]] = c and ' 2 L

proc

(T) such that �

0

= [[']]. Then from [[3B]] � [[3A]]

27

and Proposition 5.5 it follows 3A `

�(�)

3B and from �

out

(fjV [[A]]jg
[[']]) � [[P]]

�

�

it follows

by induction that � `

proc

P : hh�!ii[A]'. By the res

�

rule, � `

�(�)

res

�

(P) : 3A. Using the

monotonicity rule it follows that � `

�(�)

res

�

(P) : 3B.

(M � �![N]Q) If ? 6= [[']] is a prime and [[']] � �

out

([[M]]

�

�

[[P]]

�

�

) then ' must be of the form

hh�!ii[A] so that [[']] = �

out

(fjV [[A]]jg
 [[]]). By induction it follows that � `

�(�)

M : 3A

and � `

proc

P : . Using the (�!) rule we obtain � `

proc

�![M]P : hh�!ii[A] .

(M � �?N) Assuming [[']] � [[�?N]]

�

�

and since by case assumption [[']] 6= ? and it is a

prime it follows that ' is of the form ' � hh�?iiA ! . Recall that �

in

([[A!]]) =

�

in

(fjV [[A]]! [[]]jg). The hypothesis then implies that [[3(A!)]] � [[N]]

�

�

and therefore,

by induction, � `

�!proc

N : 3(A !). By an application of the (�?) rule we obtain

� `

proc

�?N : hh�?iiA! .

(M � P

A

j

B

Q) Assume [[�]] � [[P

A

j

B

Q]]

�

�

= [[P]]

�

�

A

j

B

[[Q]]

�

�

. By primeness of [[�]] and linearity

of the operator

A

j

B

in the domain D

proc

let [[�]] � �

A

j

B

�

0

for some primes � � [[P]]

�

�

and

�

0

� [[Q]]

�

�

. By Proposition 5.5, let � = [[']]; �

0

= [[]] so that �

A

j

B

�

0

= [[']]

A

j

B

[[]] = [['

A

j

B

]]

where we also used Lemma 5.6. It now follows that [[�]] � [['

A

j

B

]]. Since '

A

j

B

 is a

�nite conjunction it follows that [['

A

j

B

]] is a compact element. By completeness of the

system G

E

in the denotational semantic, Proposition 5.5, we obtain '

A

j

B

 `

proc

�. By

induction, � `

proc

P : ' and � `

proc

Q : . An application of the rule (Par) then yields

� `

proc

P

A

j

B

Q : �.

(M � X) If M is a variable X and [[�]] � [[X]]

�

�

= [[�(X)]] then since assumptions only assign

properties of values to variables the hypothesis is equivalent to V [[A]] � V [[X]]

�

�

= �

�

(X) for

some A such that � = 3A. Since X 2 dom(�) we may set � = �; X : B for some B. By

the identity axiom �; X : Bj�

�

X : B. From V [[A]] � V [[X]]

�

�

= V [[B]] and Proposition 5.5

we also obtain Bj�

�

A from which, using the monotonicity rule, we obtain �j�

�

X : A. We

may then use the 3 rule to rewrite this in the form � `

�

X : � since � � 3A.

Hence the program logic is sound and complete for the denotational semantics.

The completeness result for the program logic entails that the model is adequate. We prove

the Adequacy theorem in this Section. It will then be used both in the course of the de�nability

proof and in the �nal section on full abstraction.

Theorem 5.12 (Computational Adequacy) For any closed expressionM,M * i� [[M]]

�

= ?.

Proof: Recall that if M is of some value type � then M + means that M converges to some

value v, and if M is of type proc then it means that M

�

=) for some channel �.

(() By induction on M we show that if M + then [[M]]

�

6= ?. If M is a value then obvious.

Otherwise by hypothesis M + v for some value v. By Lemma 4.9 ? 6= [[v]]

�

� [[M]]

�

.

The case where M is of type process follows immediately from the second part of the same

Lemma.

()) By induction on the type of M we show that [[M]]

�

6= ? implies M +. If [[M]]

�

6= ?, then

there is a prime p such that ? 6= p � [[M]]

�

. By Proposition 5.5, p = [[�]] for some sentence

� and moreover this sentence must be di�erent from !

proc

or !

T

�

, whichever is relevant

28

depending on the type of M. By completeness of the program logic in the denotational

semantics (Proposition 5.11) `

�

M : � follows from [[�]] � [[M]]

�

. By soundness (Proposition

5.9) of the program logic in the operational semantics M j=

�

�. If � is a basic type then �

is of the form 3S

`

and the de�nition of the satisfaction relation in that case implies that

M +. If the type is � ! � then again the de�nition implies that M + v for some value

v. For the case � = proc we proceed by structural induction on � 6= !

proc

. For example if

M j= hh�!ii[A]' then M

�!

=) [v]Q hence M

�

=).

Adequacy is su�cient for the proof of soundness of the model. The proof of the converse

requires a de�nability result to which we turn next.

6 De�nability

We show in this section, adapting to the speci�c features of our language and extending the

de�nability result of [24] for the functional fragment of our language, that every prime and compact

element of the model is de�nable in mini-Facile and that the partial order on compact and primes

can be captured operationally by appropriate tests. In order to increase readability throughout

this section we consistently use the notation for elements of the domain we introduced in Section

4, see De�nition 4.3 and Theorem 4.5. For a term M of functional type � ! � and an element

d 2 T (D

�

) or d 2 L(D

proc

), we will write [[M]]

�

(d) as an abbreviation for apply

T

([[M]]

�

; d). For

simplicity of notation we write P

�

j

0

Q for P

f�g

j

;

Q. We also write
 for a typical divergent term of

type � or deadlocked term of type proc, where for example

int

= (�X�Y:XY)0 (and similarly for

the other ground types) and

�!�

= (�X�Y:XY)(�Z:M). It is convenient to abbreviate nested

conditionals using a product term inductively de�ned by

if (

Q

i=n+1

i=1

B

i

) then M else N = if B

1

then (if (

Q

i=n

i=2

B

i

) then M else N) else N (1)

where the case n = 0 is the usual conditional. We will abbreviate �nite sumsM

1

�� � ��M

s

using

a summation notation,

P

i=s

i=1

M

i

.

To de�ne the prime elements of T (D

�

) it is su�cient to provide names N

?

for the bottom

element fj?jg and N

c

for the nontrivial primes fjc

?

jg where c is a compact element of the value

domain D

�

.

Definition 6.1 If c is a compact element ofD

�

, for some � 2 VType, then c is de�ned by the term

M

c

provided V [[M

c

]]

�

= c. Similarly, if � is a prime of D

proc

, then � is de�ned by N

�

provided

[[N

�

]]

�

= � 2 D

proc

.

In Table 10 we de�ne families of namesN

�

�

;N

�

C

;N

�

?

for prime elements � 2 D

proc

and compact

elements C 2 D

�

(hence primes of T (D

�

)) for � 2 VType, indexed by channel names � 2 N such

that [[N

�

�

]]

�

= � and [[N

�

?

]]

�

= fj?jg; [[N

�

c

]]

�

= fjcjg (we leave lifting implicit, for simplicity). To

obtain names for all primes we need to be also able to capture operationally the partial order

on prime and compact elements. This purpose is served by tests T

�

�

and T

�

C

, in the sense made

explicit in the statement of the De�nability Theorem.

Lemma 6.2 Let c 2 KD

�

; � 2 KPD

proc

and d 2 TD

�

; d

0

2 D

proc

. Then [[T

�

c

]]

�

(d) 2 f?; fttgg

and [[T

�

�

]]

�

�

j

0

d

0

2 f?; �

out

(fttg
?)g for any channel � not occuring in c or �.

29

Table 10: De�ning Terms for Primes

(int) N

�

?

=

N

�

n

= n

T

�

?

=�X:tt

T

�

n

=�X:if X = n then tt else

(bool) Similar

(unit) Similar

(� ! �) N

�

?

=

T

�

?

=�X:tt

(� ! �

0

) Set M

�

c!k

= if T

�

c

X then N

�

k

else

and where C =

W

i=s

i=1

c

i

! k

i

let

N

�

C

=�X:

P

i=s

i=1

M

�

c

i

!k

i

T

�

C

=�Y:if (

Q

i=s

i=1

T

�

k

i

(YN

�

c

i

)) then tt else

(� ! proc) Set M

�

c!�

= if T

�

c

X then N

�

�

else

and where C =

W

i=s

i=1

c

i

! �

i

let

N

�

C

=�X:

P

i=s

i=1

M

�

c

i

!�

i

T

�

C

=�Y:if (

Q

i=s

i=1

res

�

(T

�

�

i

�

j

0

YN

�

c

i

) then tt else

(proc) N

�

?

=nil

N

�

�

out

(c
�)

=�![N

�

c

]N

�

�

N

�

�

in

(c!�)

=�?N

�

c!�

T

�

?

=�![tt]nil

T

�

�

out

(c
�)

=�?�X:if T

�

c

X then T

�

�

else nil

T

�

�

in

(c!�)

=�![N

�

c

]T

�

�

30

Proof: The case c 2 KD

�

is obvious since the test T

�

c

is de�ned in terms of a conditional that

either converges to tt or diverges.

Now let � be a prime in D

proc

and d any element of D

proc

. Since the parallel operator on

D

proc

is linear, by its de�nition, we may assume that d = �

0

is a prime. We examine the cases for

� and �

0

.

� If � = ?

proc

, then T

�

�

= �![tt]nil and then �

out

(fjttjg
?)

�

j

0

�

0

can be computed using Table

4 with A = f�g and B = ;. Going through the cases for �

0

we obtain �

out

(fjttjg
?)

�

j

0

? =

�

out

(fjttjg
?) while for �

0

6= ? the result is ?.

� If � = �

out

(c
�

1

) then [[T

�

�

]]

�

= �

T

in

(fj�v 2 D

�(�)

: [[if T

�

c

X then T

�

�

1

else nil]]

�[v=X]

jg). By

the de�nition of �

T

in

we obtain [[T

�

�

]]

�

= �

in

(�v 2 D

�(�)

: [[if T

�

c

X then T

�

�

1

else nil]]

�[v=X]

).

Since both �

in

and the parallel operator are linear it is enought to consider c

0

! �

0

1

�

�v 2 D

�(�)

: [[if T

�

c

X then T

�

�

1

else nil]]

�[v=X]

and show that �

in

(c

0

! �

0

1

)

�

j

0

�

0

is either ? or

�

out

(fjttjg
?). By induction, [[T

�

c

X]]

�[c

0

=X]

= [[T

�

c

]]

�

(c

0

) evaluates to either ? or fjttjg and

hence the condition on c

0

! �

0

1

reduces to �

0

1

� [[T

�

�

1

]]

�

.

The value of �

in

(c

0

! �

0

1

)

�

j

0

�

0

is ? when �

0

= ? or when �

0

is of the form �

in

(k ! �̂).

Consulting Table 4 it follows that the only case where the resulting value may not be ?

is the case �

in

(c

0

! �

0

1

)

�

j

0

�

out

(k
 �̂) when, given that � 62 A = f�g;B = ;, the value of

the parallel is the join of all primes below �

0

1

�

j

0

�̂. Since �

0

1

� [[T

�

�

1

]]

�

this join is below

[[T

�

�

1

]]

�

�

j

0

�̂ which, by induction, is either ? or �

out

(fjttjg
?).

� If � = �

in

(c ! �

1

) then [[T

�

�

]]

�

= �

out

([[N

�

c

]]

�

 [[T

�

�

1

]]

�

). It is su�cient to show that if

c

0

� [[N

�

c

]]

�

and �

0

� [[T

�

�

1

]]

�

, then �

out

(c

0

�

0

)

�

j

0

�

0

must be either ? or �

out

(fjttjg
?).

Again consulting Table 4 the cases where �

0

is either ? or of the form �

out

(c

0

0

�

0

o

) result

in the value ? for �

out

(c

0

�

0

)

�

j

0

�

0

. The only case, given that � 62 A = f�g;B = ;, where

the value of the parallel may not be ? is when �

0

= �

in

(c

0

0

! �

0

0

). It follows from Table

4 that the value of the parallel in this case is below [[T

�

�

1

]]

�

j

0

�̂ given that we assume that

�

0

� [[T

�

�

1

]]

�

. By induction, [[T

�

�

1

]]

�

j

0

�̂ must be either ? or �

out

(fjttjg
?).

Corollary 6.3 For � not occurring in c or �, T

�

c

M + tt i� [[T

�

c

M]]

�

= fjttjg.

Similarly T

�

�

�

j

0

P

�!

=) [tt]
 (for some deadlocked process
) i� [[T

�

�

�

j

0

P]]

�

= �

out

(fjttjg
?)

i� res

�

(T

�

�

�

j

0

P) + tt. If, in addition, � does not occur in P, then the above are equivalent to

T

�;�

w

j

0

P

w!

=) where we de�ne T

�;�

= (�?�X:if T

�

tt

X then w![tt]nil else nil)

w

j

0

T

�

�

.

Proof: By de�nition of the tests T

�

c

, the expression T

�

c

M either diverges or else it converges

to tt. By Lemma 6.2 the interpretation [[T

�

c

M]]

�

is either ? or fjttjg. Then the claim T

�

c

M + tt

i� [[T

�

c

M]]

�

= fjttjg follows from Adequacy, Theorem 5.12. The other case is similar.

Theorem 6.4 (De�nability Theorem)

1. For every prime � 2 KP(D

proc

) and each channel � 2 N

1. If � does not occur in �, then � � �

0

in D

proc

i� res

�

(T

�

�

�

j

0

N

�

�

0

) + tt.

2. [[N

�

�

]]

�

= �

31

2. For every compact element c 2 K(D

�

) and each channel � 2 N

1. If � does not occur in c, T

�

c

N

�

c

0

+ tt i� c � c

0

in D

�

2. [[N

�

c

]]

�

= fjcjg

Proof: We prove both 1 and 2 by simultaneous induction, on the structure of the prime or

compact element � or c.

1.1. The proof is by induction on � and within that on �

0

.

(� = ?)

Since T

�

?

= �![tt]nil it is clear that T

�

?

�

j

0

P can make a move to [tt]nil hence res

�

(T

�

?

�

j

0

P)

evaluates to tt, for any P.

(� = �

out

(c
�

1

))

If �

0

is not an \out"-prime, i.e. of the form �

out

(c

0

�

0

1

), then T

�

?

�

j

0

N

�

�

0

is deadlocked (recall

that we assume � does not occur in �). In this case of course we have � 6� �

0

.

The only interesting case is when �

0

is of the form �

out

(c

0

�

0

1

). Then a communication

is possible and T

�

?

�

j

0

N

�

�

0

reduces to (if T

�

c

N

�

c

0

then T

�

�

1

else nil)

�

j

0

N

�

�

0

1

. By induction, the

boolean condition is satis�ed i� c � c

0

in which case the test reduces to T

�

�

1

�

j

0

N

�

�

0

1

. Since by

induction res

�

(T

�

�

1

�

j

0

N

�

�

0

1

) + tt i� �

1

� �

0

1

we may conclude that in all cases res

�

(T

�

�

�

j

0

N

�

�

0

) +

tt i� � � �

0

.

(� = �

in

(c! �

1

))

The only case of interest is when �

0

= �

in

(c

0

! �

0

1

) but it can be treated as in the previous

subcase.

1.2. Straightforward, using induction hypothesis.

2.1. If C = ? or an element of a ground domain then the claim is immediately seen to be true.

We now separate the two cases of C =

W

i=s

i=1

c

i

! k

i

in D

�!�

0

and C =

W

i=s

i=1

c

i

! �

i

in

D

�!proc

, for s � 1 in both cases. The �rst case is straightforward by unfolding de�nitions

and using the induction hypothesis. It reduces to examining whether for each i = 1; : : : ; s

the expression T

�

k

i

(N

�

C

0

N

�

c

i

) evaluates to tt. Given the de�nition of N

�

C

0

, for some C

0

=

W

j=r

j=1

c

0

j

! k

0

j

, this is the case exactly when for each i there can be found a j such that

c

j

! k

i

� c

0

j

! k

0

j

.

Now let C =

W

i=s

i=1

c

i

! �

i

and C

0

=

W

j=r

j=1

c

0

j

! �

0

j

. By the de�nition of T

�

C

and N

�

C

0

we

have

T

�

C

N

�

C

0

�! if

Q

i=s

i=1

res

�

(T

�

�

i

�

j

0

N

�

C

0

N

�

c

i

) then tt else

For each �xed i = 1; : : : ; s and by �-reduction we have

N

�

C

0

N

�

c

i

�! �

j=r

j=1

(if T

�

c

0

j

N

�

c

i

then N

�

�

0

j

else
)

By induction, for each i there is j and a reduction N

�

C

0

N

�

c

i

=) N

�

�

0

j

i� c

0

j

� c

i

. If such

j = j(i) can be found for each i = 1; : : : ; s then by induction T

�

C

N

�

C

0

+ tt if and only if

�

i

� �

0

j(i)

. By the way step functions are ordered this means that T

�

C

N

�

C

0

+ tt i� C � C

0

.

32

2.2 The only case of some interest is when � is of the form �

in

(c! �

1

). Then

[[N

�

�

]]

�

= [[�?�X:if T

�

c

X then N

�

�

1

else nil]]

�

Using linearity of �

in

it follows that [[N

�

�

]]

�

is the join of the primes �

in

(c

0

! �

0

) taken over

the c

0

! �

0

satisfying, after a small calculation, c � c

0

; �

0

� �

1

. Hence the join is just

�

in

(c! �

1

) which is the prime �.

Proposition 6.5 Let c; � be compact and prime elements of types � and proc, respectively, and

� a channel name not occuring in c or �. Then for closed expressions M; P of the respective

types

1. T

�

c

M + tt i� fjcjg � [[M]]

�

2. T

�

�

�

j

0

P

�!

=) [tt]
 i� � � [[P]]

�

.

Proof:

(() If fjcjg � [[M]]

�

then, for � not occurring in c, [[N

�

c

]]

�

� [[M]]

�

and hence monotonicity of

application implies [[T

�

c

N

�

c

]]

�

� [[T

�

c

M]]

�

. Since T

�

c

N

�

c

+ tt, by a trivial application of the

De�nability Lemma, it follows from Lemma 6.2 that [[T

�

c

M]]

�

= fjttjg and then by Corollary

6.3 T

�

c

M + tt. The case for processes is similar, using again Lemma 6.2 and Corollary 6.3.

()) The hypothesis T

�

C

M + tt implies that M + v, for some value v. We proceed by induction

on the structure of C.

If C = n 2 D

int

thenM must be of type int, hence v=m. The hypothesis implies thatm = n

and so fjnjg � fjmjg = [[v]]

�

� [[M]]

�

, where we used Lemma 4.9.

If C =

W

i=s

i=1

c

i

! k

i

is in D

�!�

0

then M is of the same type and so M + �X�Y:N for

some N. By inspecting the de�nition of the test T

�

C

and from the hypothesis it follows

that for each i 2 f1; : : : ; sg we must have T

�

k

i

((�X�Y:N)N

�

c

i

) + tt. By induction fjk

i

jg �

[[(�X�Y:N)N

�

c

i

]]

�

= [[�X�Y:N]]

�

(fjc

i

jg) = [[�Y:M[�X�Y:N=X]]]

�

(fjc

i

jg. It follows from the

de�nition of the interpretation that

k

i

� apply(�v 2 D

�

: [[M[�X�Y:N=X]]]

�[v=Y]

; c

i

)

from which it follows that c

i

! k

i

� �v 2 D

�

: [[N[�X�Y:N=X]]]

�[v=Y]

in D

�!�

0

, for each

i = 1; : : : ; s. Thus C � �v 2 D

�

: [[N[�X�Y:N=X]]]

�[v=Y]

and so

fjCjg � fj�v 2 D

�

: [[N[�X�Y:N=X]]]

�[v=Y]

jg = [[�X�Y:N]]

�

Since M + �X�Y:N using Lemma 4.9 we may conclude that fjCjg � [[M]]

�

.

Finally, if C 2 D

�!proc

; C =

W

i=s

i=1

c

i

! �

i

, it follows from the case assumption and from

the de�nition of the test T

�

C

that

res

�

(T

�

�

i

�

j

0

(�X�Y:N)N

�

c

i

) + tt

By induction and unpacking the de�nition of application

�

i

� apply(�v 2 D

�

: [[N[�X�Y:N=X]]]

�[v=Y]

; c

i

)

33

The argument can be now completed along the lines of the argument just given for the case

C 2 D

�!�

0

and we may thus conclude that fjCjg � [[M]]

�

.

It remains to show that T

�

�

�

j

0

P

�!

=) [tt]
 implies � � [[P]]

�

which we show by analysing the

cases for �.

If � = �

out

(c
�

1

) then T

�

�

= �?�X:if T

�

c

X then T

�

�

1

else nil. The hypothesis implies that

P

�!

=) [v]Q for some value v and residual process Q. It also implies that T

�

c

v + tt and

T

�

�

1

�

j

0

Q

�!

=) [tt]
. By induction �

1

� [[Q]]

�

and c � [[v]]

�

. Further, using Lemma 4.9 it

follows from P

�!

=) [v]Q that

[[�![v]Q]]

�

= �

out

([[v]]

�

[[Q]]

�

) � [[P]]

�

Since �

1

� [[Q]]

�

and c � [[v]]

�

it follows that � = �

out

(c
�

1

) � [[P]]

�

.

Finally suppose � = �

in

(c ! �

1

). Then T

�

�

= �![N

�

c

]T

�

�

1

and the hypothesis implies

that P

�?

=) �X�Y:M for some M and T

�

�

1

�

j

0

(�X�Y:M)N

�

c

�!

=) [tt]
. By induction �

1

�

[[(�X�Y:M)N

�

c

]]

�

from which it follows that c ! �

1

� [[�X�Y:M]]

�

. Then, using again

Lemma 4.9, we obtain � = �

in

(c! �

1

) � [[�?�X�Y:M]]

�

� [[P]]

�

.

7 Full Abstraction and Completeness Results

A �nal ingredient in the full abstraction proof is that the logic systems G

S

;G

E

introduced as an

axiomatization for semantic entailment and satis�ability are complete in the operational semantics.

We prove this in this section, using the de�nability result to show �rst that the denotational and

operational semantics for the program logic coincide.

Completeness of the Logic Proof Systems in the Operational Semantics

Lemma 7.1 For closed terms M, v

M j=

�

� =) [[�]] � [[M]]

�

and vj�

�

A =) V [[A]] � V [[v]]

�

(2)

Proof: Recall that �

�

(X) = [[�(X)]] for each X 2 dom(�) and where �(X) 2 L

�

(V) for

some � 2 VType. Hence �

�

(X) = [[�(X)]] = fjV [[�(X)]]jg. The proof is by induction on �; A. If

� = !

T

�

the claim is trivial and the case � = � u # is resolved using the induction hypothesis.

Suppose now � = 3A in which case � = � for some � in VType and A 2 L

�

(V). By de�nition

of the satisfaction relation it follows that M + v for some value v such that vj�

�

A. If A is

atomic, hence S

`

for some litteral ` or !

L

�

2 L

�!proc

(V) then the claim is trivial and the case

where A is a conjunction is resolved using the induction hypothesis. Suppose now that A is

of the form B ! �. By De�nability, Theorem 6.4, let u = N

�

V[[B]]

so that V [[B]] = V [[u]]. It

follows by soundness of the program logic in the denotational semantics that uj�

�

B and then, by

de�nition, vu j=

�

�. By induction � � [[vu]] = apply

T

([[v]]; [[u]]). By de�nition of the interpretation

of values and by construction of the map apply

T

this is equivalent to [[�]] � apply(V [[v]];V [[u]])

and since V [[u]] = V [[B]], by choice of u, it follows that V [[B]] ! [[�]] � V [[v]]. This implies that

[[3(B! �)]] � [[v]]. Hence using monotonicity, Lemma 4.9, we obtain [[�]] = [[3A]] � [[v]] � [[M]].

34

If � is a property of processes, � 2 L

proc

(T), then the cases !

proc

and '& are immediate. The

other two cases, hh�!ii[A] and hh�?iiA ! are proven using the second part of the monotonicity

Lemma 4.9 and induction.

Theorem 7.2

The operational and denotational semantics for the program logic coincide. In other words

� j=

O

�

M : � if and only if � j=

D

�

M : �

Proof: The direction (() is immediate since � j=

D

�

M : � is equivalent (by completeness of

the program logic in the denotational semantics, Theorem 5.11) to � `

�

M : �. By soundness of

the program logic in the operational semantic (Proposition 5.9) it follows that � j=

O

�

M : �.

Now consider the direction ()). Using Lemma 7.1 we now show that � j=

�

M : � implies

[[�]] � [[M]]

�

�

. By de�nability let s

�

be the value-substitution de�ned by s

�

(X) = N

�

V[[�(X)]]

where

we choose � not occurring in any of the V [[�(X)]]. Then s

�

j= � and therefore Ms

�

j=

�

�.

By induction on � the only interesting case is when � is of the form 3A. Then by de�nition

Ms

�

+ v for some value v such that vj�

�

A. Using the subclaim and monotonicity it follows that

[[�]] � [[v]]

�

� [[Ms

�

]]

�

. By the Substitution Lemma (Proposition 4.6) and given the de�nition of

s

�

and �

�

it follows that [[�]] � [[Ms

�

]]

�

= [[M]]

�

�

.

Corollary 7.3 (Completeness of the Proof System G

S

for Satis�ability)

� `

�

M : � if and only if � j=

O

�

M : �

Proof: Combine Theorem 7.2 on the equivalence of operational and denotational semantics for

the program logic and Theorem 5.11 on soundness and completeness of the program logic in the

denotational semantics.

Corollary 7.4 (Completeness of the Proof System G

E

for Semantic Entailment)

For any sentences �; �, � `

�

� if and only if � j=

�

�.

Proof: Soundness has been shown in Theorem 5.4. If � j=

�

� and since N

�

[[�]]

j=

�

� it follows

that N

�

[[�]]

j=

�

�. This is equivalent to j=

O

�

N

�

[[�]]

: �. By Theorem 7.2 this is equivalent to

j=

D

�

N

�

[[�]]

: �. By de�nition of this relation we obtain [[�]] � [[N

�

[[�]]

]]

�

�

= [[�]], where � = ;. By

completeness of the system G

E

in the denotational semantics, Proposition 5.5, this is equivalent

to � `

�

�.

Full Abstraction In this section we conclude with showing that the four preorders de�ned on

language expressions, and the induced equivalences, coincide. Because of Propositions 3.4, 3.3 it

is su�cient to establish the following:

Theorem 7.5 (Full Abstraction)

H �M

�

<

T

N

(1)

=) H �M

�

<

D

N

(2)

=) H �M

�

<

L

N

(3)

=) H �M

�

<

T

N

35

Proof: For (1), we �rst show that for closed process expressions P; Q, the hypothesisH�P

�

<

T

Q implies [[P]]

�

� [[Q]]

�

. To establish the latter we show that � � [[P]]

�

implies � � [[Q]]

�

for any

prime �. From the De�nability result we know that there are expressionsN

�

�

, such that [[N

�

�

]]

�

= �;

we choose an � which does not occur in �;P;Q. Then [[�![tt]nil]]

�

� [[T

�

�

�

j

0

N

�

�

]]

�

� [[T

�

�

�

j

0

P]]

�

.

It follows that T

�

�

�

j

0

P

�!

=) [tt]
, using Corollary 6.3. This remains true for � not occurring in

any of �;P;Q. By Lemma 6.2 it follows that T

�;�

w

j

0

P

w!

=) and then the hypothesis implies

T

�;�

w

j

0

Q

w!

=). Since we chose � not occurring in Q, Lemma 6.2 implies that T

�

�

�

j

0

Q

�!

=) [tt]nil.

Use Proposition 6.5 to conclude that � � [[Q]]

�

.

We next consider the case whenM; N are closed expressions of some transmittable value type.

Then M

�

<

T

N implies �![�():M]nil

�

<

T

�![�():N]nil and using the previous case we conclude

[[�():M]]

�

� [[�():N]]

�

. It follows that [[M]]

�

� [[N]]

�

.

Finally consider the case when M; N are arbitrary language expressions and assume that

H �M

�

<

T

N. It is su�cient to show that [[M]]

�

� [[N]]

�

for any compact environment �, i.e. any

environment such that �(X) is a compact element for every variable X . We can use the De�nability

result to de�ne a closed substitution s

�

such that [[s

�

(X)]]

�

= �(X) for every variable X . From

the Subsitution Lemma, Proposition 4.6, it follows that [[M]]

�

= [[Ms

�

]]

�

and similarily for N. Let

C[�] be the context �X

1

: : : �X

k

[�]s

�

(X

1

) : : :s

�

(X

k

), where X

1

: : :X

k

are all the variables used in

H . Then Ms

�

= C[M]. Moreover the expressions C[M]; C[N] are both closed and H�M

�

<

T

N

implies H � C[M]

�

<

T

C[N]. Now use the previous case to conclude [[C[M]]]

�

� [[C[N]]]

�

.

For (2), suppose H �M

�

<

D

N. We must show � j=

O

M : � implies � j=

O

N : �. Let s be a

closed substitution such that s j= � and Ms j= �. We must prove that Ns j= �.

Let C[�] denote the context used in the previous Proposition, �X

1

: : : �X

k

[�]s(X

1

) : : :s

(

X

k

),

where X

1

: : :X

k

are all the variables used in H . Then Ms = C[N] and Ns = C[N]. Also

H �M

�

<

D

N implies [[C[M]]]

�

� [[C[N]]]

�

.

The completeness result for the logic G

E

, Corollary 7.4, means that C[M] j= � implies [[�]] �

[[C[M]]]

�

and therefore [[�]] � [[C[N]]]

�

. Again using the logic comleteness we obtain C[N] j= �, i.e.

the required Ns j= �.

Finally, for (3), suppose H�M

�

<

L

N and C[�] is a context such that both C[M] and C[N] are

closed expressions of type proc and C[M]

�!

=) [v]Q for some v;Q. We must show that C[M]

�!

=).

Let p � [[v]] be a prime. Then p = [[A]] for some sentence A and it follows from the logic

completeness results that v j=

�

A. Then C[M] j=

proc

hh�!ii[A]!. The hypothesis implies that

C[N] j=

proc

hh�!ii[A]! and therefore C[N]

�!

=) as well.

The case when C[M]

�?

=) is similar.

The Operators res

�

The proof that the model is fully abstract has made signi�cant use of

the functionals res

�

for de�nability purposes. We conclude this section with a discussion on the

necessity of these operators for full abstraction purposes.

Theorem 7.6 Let L

{

be the fragment of the mini-Facile language without the functionals res

�

.

Then full abstraction for the context preorder on L

{

and de�nability fail.

Proof: The proof that the may testing and context preorders coincide made use of res

�

and

hence in L

{

the two cases need to be treated separately. For the context preorder it is rather

straightforward to see that full abstraction fails for the fragment L

{

. If C[] is any context (with

36

zero or more occurrences of the hole []) such that for P a closed process term C[P] : bool then

the hypothesis that C[P] + b 2 ftt; �g implies that for any closed process term Q there is also a

reduction C[Q] + b. The proof is by transition induction and, since there are no rules allowing an

inference of a reduction step M �!N for terms of some transmittable type � 2 VType from some

reduction P

1

�! P

2

of process terms, it reduces to the case of one-step reductions C[P] �! b.

Inspecting the axioms it follows that C[Q] �! b. Hence any two process terms P, Q are context-

equivalent while, for example, [[�![tt]nil]]

�

6= [[�![�]nil]]

�

.

We next show that de�nability fails for the fragment L

{

. It follows from the above argument

that there can exist no functional term F of type (unit ! proc) ! bool in the fragment L

{

such

that for any process term P the following are equivalent:

1. F�():P +

2. F�():P + tt

3. P

�!

=) [tt]Q, for some process Q.

This is because setting C[] � F�():[] we must have C[�![tt]nil] + tt, while C[�![�]nil] *, contra-

dicting the conclusion derived above that all process terms are context-equivalent in L

{

. If the

model becomes unsound for the testing preorder on the fragment L

{

then of course it is not fully

abstract. We may then assume that [[M]] � [[N]] implies M

�

<

T

N. Note also that restriction

to the fragment L

{

does not invalidate the following properties of the interpretation, proven by

transition induction.

M =)N implies [[N]] � [[M]] and P

�!

=) [v]Q implies [[�![v]Q]] � [[P]]

Let ? be the unique element of the unit domain. Then f = (? ! �

out

(fjttjg
?)) ! fjttjg is

a compact element of the domain [D

unit

! L(D

proc

)] ! T (D

bool

). We claim that for any P,

conditions 1-3 above would be equivalent for a name F for f , assuming one could exist in L

{

.

From [[F]] = fjf jg it follows that [[F�():P]] 2 f?; fjttjgg. If F�():P + then for some value v we

have

? < fjV [[v]]

?

jg = [[v]] � [[F�():P]] 2 f?; fjttjgg

and so v = tt, i.e. F�():P + implies F�():P + tt. If P

�!

=) [tt]Q for some process Q, then

[[�![tt]Q]] � [[P]] and hence, given that F names f it follows

fjttjg = [[F�():�![tt]Q]] � [[F�():P]]

and soundness implies F�():P + tt. Finally, assuming that F�():P converges to tt implies that

�

out

(fjttjg
?) � [[P]] and soundness again implies �![tt]nil

�

<

T

P, hence P

�!

=) [tt]Q for some Q.

Hence the hypothesis that a name for f exists contradicts the fact that there can be no term F

such that for any process term P 1-3 above are equivalent. So either the model becomes unsound

for the testing preorder (hence not fully abstract) or else de�nability fails.

A small variation of the argument shows that any function of the form (?! �

out

(fj`jg
?) !

fjbjg, b 2 ftt; �g, is not de�nable in the fragment L

{

. We conjecture, but have not rigorously

shown at this moment, that failure of de�nability entails that the model is not complete for

the testing preorder. The idea is to consider terms of the form M � �X:(X�():�![tt]nil); N �

37

�X:(X�():�![�]nil) : ((unit ! proc) ! bool) ! bool. Then for a process context K[] to detect

the di�erence between M and N it needs to be shown that there must be an evaluation step

where M;N are applied to a term F of type (unit ! proc) ! bool. It is easy to see however that

MF + b 2 ftt; �g if and only if NF + b.

8 Conclusions

In this report we studied a language that combines sequential and concurrent features. The

functional fragment of the language resembles a call-by-value, non-deterministic version of PCF,

as studied in [24]. The full language incorporates the pre�xing, choice and concurrency primitives

of value-passing CCS and resembles the core Facile language, modulo the absence in our case of the

dynamic channel generation features familiar from the �-calculus. This we leave to a subsequent

report.

The main problem was to extend the standard Morris-style equivalence of �-calculus terms

to the new setting of a language combining sequentiality with concurrency and to provide a

fully abstract denotational semantics. This was accomplished by casting our model, speci�ed by

a domain equation, in a logical form and providing the relevant completeness and de�nability

results. In the course of the full abstraction argument we provided a proof system for satis�ability

and proven it complete in the operational semantics (using the de�nability result). This system

is of interest on its own and independently of the full abstraction result as it can be used to

compute properties of complex program terms from such of simple terms. The logical language

we have introduced can be thought of as specifying a type system for the programming language.

We have kept this system simple, introducing logical operators (type constructors) only to the

extent necessary for our main results. However it would be interesting to make the type system

more expressive, for example by adding a �xpoint operator, and in this way obtain a language for

expressing non-trivial behavioural properties of processes and an associated proof system.

We end with some pointers to related work on the use of type systems and �lter models. The

technique was originally used in [6] to obtain models of the �-calculus and in [2] a very general

theory for the construction of such models is developed. In [5] a logic is developed for characterising

an extension of the �-calculus with a parallel operator while in [12, 10] the technique is extended

to languages for processes, Chocs [28, 29] and Cml [23] respectively. It should be emphasised

that all of these models, including that presented in the present paper, are constructed with may

testing in mind and none accommodate the static scoping of channel names. Thus the major

challenges are to extend the mathematical framework so that a proper scoping of channel names

can be properly modelled, possibly using the ideas of [25], and to extend the property logics so

as to capture behavioural preorders �ner than may testing. We believe that whatever techniques

will emerge will be equally applicable to a wide range of concurrent languages including Facile,

Chocs and Cml.

References

[1] S. Abramsky, D.M. Gabbay and T.S.E.Maibaum, (eds) Handbook of Logic in Computer

Science vol 1-6, Oxford Science Publications, Clarendon Press, Oxford 1994.

38

[2] S. Abramsky, \Domain Theory in Logical Form", Annals of Pure and Applied Logic, vol

51, pp. 1-77, 1991.

[3] R. M. Amadio, \Translating Core Facile", Technical Report ECRC-1994-3, European

Computer-Industry Research Center, Munich, 1994.

[4] H.P. Barendregt, The �-Calculus, its Syntax and Semantics, North-Holland, Amsterdam,

1984.

[5] G. Boudol, \A �-Calculus for (Strict) Parallel Functions", Information and Computation,

vol 108, pp. 51-127, 1994.

[6] H. Barendregt, M. Coppo and M. Dezani-Ciancaglini, \A Filter Model and the Com-

pleteness of Type Assignment", Journal of Symbolic Logic, vol 48, pp. 931-940, 1983.

[7] A. Giacalone, P. Mishra and S. Prasad, \FACILE: A symmetric integration of Concur-

rent and Functional Programming", International Journal of Parallel Programming, vol 15,

No 2, pp. 121-160, 1989.

[8] W. Fereira, M. Hennessy and A. Jeffrey, \Combining the Typed �-Calculus with

CCS", Report 2/96, University of Sussex, Computer Science, May 1996.

[9] C. Fournet andG. Gonthier, \The Re
exive CHAM and the Join-Calculus", Proc. POPL

94, 1994.

[10] A. Jeffrey, \A Fully Abstract Semantics for a Concurrent Functional Language with

Monadic Types", Proc. LICS'95, 1995.

[11] M. Hennessy, An Algebraic Theory of Processes, MIT Press, Cambridge, MA, 1988.

[12] M. Hennessy, \A Fully Abstract Denotational Model for Higher-Order Processes", Infor-

mation and Computation vol. 112, No 1, pp. 55-95, 1994.

[13] M. Hennessy, \Higher-Order Processes and their Models", ICALP '94.

[14] K.G. Larsen, \ Proof Systems for Satis�ability in Hennessy-Milner Logic with Recursion",

Theoretical Computer Science vol 72, 265-288, 1990.

[15] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cli�s, NJ, 1989.

[16] R. Milner, J. Parrow and D. Walker, \A Calculus of Mobile Processes I, II", Informa-

tion and Computation vol 100, pp 1-40, pp 41-77, 1992.

[17] E. Moggi, \Notions of Computation and Monads", Information and Computation 93, 1991,

pp. 55-92.

[18] J. Morris, \Lambda-Calculus Models of Programming Languages", Ph.D. Thesis, MIT,

1968.

[19] G. Plotkin, \A Powerdomain Construction", SIAM Journal on Computation, vol 5, pp

452-487, 1976.

39

[20] G. Plotkin, \LCF Considered as a Programming Language", Theoretical Computer Science

vol 5, pp. 323-355, 1997.

[21] J.H. Reppy, \A Higher-Order Concurrent Language", in Proceedings of the ACM SIGPLAN

'91 PLDI, SIGPLAN Notices, No 26, pp. 294-305, 1991.

[22] J.H. Reppy, Higher-Order Concurrency, Ph.D. thesis, Cornell University, 1991.

[23] J. Reppy, \CML: A Higher-Order Concurrent Language", in Proc. ACM-SIGPLAN 91,

Conf. on Programming Language Design and Implementation, 1991.

[24] K. Sieber, \Call-by-Value and Nondeterminism", in Typed �-Calculi and Applications, eds.

M. Bezen and J.F.Groote, LNCS 664, Springer-Verlag 1993.

[25] I. Stark, \A Fully-Abstract Domain Model for the �-Calculus", Proc. LICS'96, 1996.

[26] C. Stirling, \A Proof-Theoretic Characterization of Observational Equivalence", Theoret-

ical Computer Science vol 39, 27-45, 1985.

[27] C. Stirling, \Modal Logics for Communicating Systems", Theoretical Computer Science

vol 49, 311-347, 1987.

[28] B. Thomsen, Calculi for Higher-Order Communicating Systems, Ph.D. thesis, Imperial Col-

lege, 1990.

[29] B. Thomsen, \Plain Chocs: A Second Generation Calculus for Higher Order Processes",

Acta Informatica vol 30, pp 1-59, 1993.

[30] G. Winskel, \A Complete Proof System for SCCS with Modal Assertions", LNCS vol 206,

392-410, 1985.

40

