
Strong Bisimulations for a Calculus of Broadcasting Systems

�

M. Hennessy, J. Rathke

University of Sussex

January 17, 1995

Abstract

We develop a version of barbed bisimulation equivalence for the broadcast calculus CBS

and characterise the associated congruence using a new notion of noisy bisimulation. We

then give two syntactic characterisations of noisy bisimulation equivalence over �nite CBS

terms. The �rst is an equational characterisation over closed terms but in this setting an

in�nitary inference rule is required to accommodate processes of the form x 2 S?t. The

second is in terms of a proof system for open term where an in�nitary rule is not necessary

but judgements of the proof system are relative to properties of the data domain.

1 Introduction

The classical approach to communication in process algebra is to consider handshaking com-

munication as primitive [8, 1]. Broadcast communication is then an implementable feature.

However recent work on multiway rendezvous [10] shows that any implementation of an n-

way synchronisation using m-way synchronisations as primitives will not yield true n-way

rendezvous whenever m < n. Such considerations aside, if we treat broadcast communica-

tion as an implemented operator then this has consequences for proving congruence between

processes which use broadcast. Each time one has a proof obligation concerning broadcast

to ful�l, one has to use this implementation to translate the broadcast into handshake com-

munications. Thus the complexity of this implementation directly a�ects the complexity of

congruence proofs. It is evident then that this approach is not an e�cient way of reasoning

about broadcast comunication.

The alternative to the classical approach is to introduce a multiway synchronisation opera-

tor. This has been investigated in [12] in the context of pure process algebras, i.e. actions are

unanalysed. However pure process algebras exceed their limitations when value-passing is to

be considered [4]. Therefore a natural generalisation of the multiway synchronisation operator

of [12] in the setting of a value-passing calculus would be desirable. In fact this is to be found

in CBS [13].

CBS is presented in the style of value-passing CCS (VCCS). The main departure from

VCCS lies in the use of channel names. VCCS explicitly names the medium or channel on

which each communication takes place. This gives rise to the notions of local channels and

communication topology. Unfortunately channel names do not sit well in a broadcast setting

because communication takes place between all agents in the network not just ones with com-

munication capabilities on a particular channel, i.e. the communication topology is discrete. For

this reason CBS uses but a single channel often referred to as the ether. This does not preclude

local message passing; local communication is achieved by tagging messages with an identi�er.

A tagged message is not a distinguished piece of data and is treated simply as another value or

message. This approach to local messages necessitates the use of pattern matching of values.

�

This work has been supported by the ESPRIT/BRA CONCUR2 project and the EPSRC grant GR/H16537

1

Pattern matching in value-passing calculi is usually e�ected by a post-reception boolean test;

the recipient deciding, having received the value, what action to take. We propose that the

pattern matching in CBS is to be done prior to reception. A process not intended to receive

a particular class of values will simply not receive them. In some sense the matching is done

by the ether. As we shall see this choice has a notable e�ect on the proof system for semantic

equivalence.

So far it would appear that there will be little di�erence between congruence proofs in

VCCS and CBS. So long as we restrict our attention to the �nite sublanguages of each of these

the di�erence in the communication mechanism is accounted for by using di�erent expansion

rules for parallelism. So why is the theory signi�cantly di�erent? The answer lies in the notion

of observational equivalence we use. In a handshaking calculus it seems quite reasonable to

treat reception as an observable action. This is due to the fact that in order to receive some

data the recipient has to make its presence known to the sender. However when we move to a

broadcasting calculus observability of reception is not so obvious. In fact a process which has

just transmitted a value onto the ether has no real way of telling which other processes, if any,

received that value. The di�erence in the notion of observable actions between a handshaking

and a broadcasting calculus provide the di�erences in the theories of the calculi. In this paper

we look at the e�ect this has on the notion of strong bisimulation for a broadcast calculus.

This leads to a new type of bisimulation which we call noisy bisimulation and we justify our

interest in these by appealing to the idea of barbed bisimulations of [16].

We then furnish the calculus with sound and complete proof systems for resulting semantic

equivalence, which we call noisy bisimulation equivalence. Following the approach of [4] we do

not give a detailed description of what constitutes a value domain, or even the language of

boolean expressions; we merely state assumed properties of such. Consequently any proof sys-

tem presented for our language must rely upon auxiliary proof systems for reasoning about data.

Using proof systems identical to those in [4] is advantageous as it facilitates a straightforward

implementation in VPAM [6], a veri�cation system designed with this parametric approach to

data in mind.

We now give a brief outline of the content of the paper. The next section introduces the

language and its operational semantics. This is very similar to the language considered in [14]

except that the input pre�x construct x?T is replced by the family of input pre�x constructs

x 2 S?T where S ranges over arbitrary subsets of values; thus informally we continue to refer

to our language as CBS. We then derive our notion of bisimulation by de�ning barbed bisim-

ulation [16] in CBS. Barbed bisimulation uses simple uncontentious observability predicates

which circumvent the question of observability of reception. The resulting equivalence, barbd

bisimulation equivalence �

barb

, is preserved by very few of the operators of the language but we

give a simple characterisation of the largest congruence contained in �

barb

. This is noisy bisim-

ulation equivalence �

n

, de�ned in terms of the new kinds of bisimulations, noisy bisimulations ,

referred to above.

The remainder of the paper is devoted to syntactic characterisations of �

n

in terms of

axioms and proof systems. In Section 3 we present a proof system for closed terms of a core

sublanguage of �nite CBS which only contains the pre�x and choice operators. Moreover for

simplicity the only input pre�x construct alowed is x?T which can be taken to be a notation

for x 2 V al?T where Val is the universe of allowed values. Although this may seem like a

trivial language its treatment will identify the essential properties of noisy bisimulation.

Because the proof system presented in Section 3 deals with closed terms only it is necessarily

contains an in�nitary rule in order to handle the input pre�x construct x?T , [4]. We improve

on this in Section 4 by presenting an open term proof system for the same sublanguage. Here

2

the judgements of the proof system take the form

b � T = U

where b is a boolean expression over the data domain. Intuitively this means that T is seman-

tically equivalent to U in all instantiations or worlds which satisy b. The proof of completeness

here relies on using symbolic bisimulations, [3] and therefore we have to present an abstract

operational semantics and de�ne a notion of symbolic bisimulation appropriate for this sub-

language.

Pattern-matching is reintroduced in Sections 5 and 6, each dealing with modi�cations of

the proof systems of Sections 3 and 4 respectively. Having done this we now have enough

expressive power to reason about �nite CBS terms. This is outlined briey in the �nal section,

Section 7.

Related work:

Many programming examples of CBS in practice can be found in [14, 15]. These examples

exploit the power of the broadcast operator and serve to illustrate how various algorithms

can be formulated in broadcasting terms with relative ease. The only proof system we are

aware of for CBS is that given in [17] which contains a sound and complete proof system for

the conventional notion of strong bisimulation applied to an abstract version of CBS without

value-passing. Motivations for and the development of symbolic bisimulations, which are central

to our completess proofs, are presented in [3] while examples of their use are found in [4, 7].

2 The Broadcast Calculus

The calculus we consider is a minor variation on that of [14]. The syntax may be described by

the following grammar:

T ::= O j e!T j x 2 S?T j b� T j

X

i2I

T

i

j T jT j T

(f;g)

j A(~v):

It has many of the usual operators of CCS , [8], including the nil process O, parallel operator j,

indexed sums

P

i2I

and process constants A, from some prede�ned set, which will used to de�ne

recursive processes. Input pre�xes are guarded by sets of values, the process x 2 S?P may only

receive values present in S. In this language communication is achieved by broadcasting values

to all processes in the environment. The process e!P broadcasts the value of the expression

e while x 2 S?P is a process which, on hearing the value v proceeds to act like the process

P [v=x] providing v 2 S; otherwise the value is ignored. The construct b� T allows the testing

of values while T

(f;g)

is a form of scoping or translation of data. Let V al represent the set

of values which can be broadcast and � a special value not in V al; � represents noise in the

system, i.e. broadcasts of values which can not be deciphered by any process. Then in T

(f;g)

both f and g are strict functions from V al [� to V al [� in the sense that f(�) = g(�) = � .

They are used to implement restriction and renaming and allow messages to be made local

to particular processes. The strictness condition enforces the constraint that noise cannot be

translated into an interpretable value.

This syntax presupposes an set of data expressions V alexp, ranged over by e and a set of

boolean expressions BoolExp, ranged over by b. We do not give a precise syntax for these

languages but simply assume they have a minimal set of properties. Thus we assume V alexp

contains the set of values V al [f�g and a set of variables V ar, ranged over by x, and that

for each pair e; e

0

of value expressions, e = e

0

2 BoolExp. We also assume that evaluations,

functions � from V ar to V al, behave in a reasonable manner when extended to V alExp and

3

BoolExp; when e (or b) is closed, i.e. contains no occurrences of variables, then the value of

the expression e is independent of � and we denote it by [[e]]. Substitutions in data and boolean

expressions are written as e[e

0

=x]; b[e

0

=x] respectively, meaning the substitution in e; b of all

occurrences of x by e

0

. This substitution is extended to process terms T homomorphically in

the obvious way, denoted by T [e=x], except that only free occurrences of x are substituted; as

is usual in the term y 2 S?U y acts as a binder for all occurrences of y in U and this gives rise

to the set of free variables of a term T , fv(T), and �-equivalence �

�

between terms. Finally

we use T; U; : : : to range over arbitrary process terms whereas P;Q; : : : denote closed process

terms or agents , i.e. terms with no free variables.

We now consider an operational semantics for this language, CBS; again this more or less

coincides with that presented in [14]. Throughout we assume that with each constant name A

we have an associated de�nition:

A(~x)

def

= T

where ~x contains all of the free variables that appear in T , and A occurs guarded in T . The most

notable di�erence between the operational semantics of CCS , [8], and CBS is the introduction

of a new kind of transition called discard, written T

w:

�! T . CBS is neither a wholly synchronous

nor asynchronous calculus; the transmission of data is an autonomous action and agents may

asynchronously do so. However, reception is reactive and agents that are ready to receive must

synchronise with transmitting agents. In order to present this operationally the semantics is

given in the manner of a synchronous calculus and the apparent asynchrony is codi�ed by using

these discard transitions.

The operational semantics is presented in Figure 1. It consists of three di�erent kinds

of binary relations over agents, P

v?

�! Q representing the e�ect of inputing a value v, P

w!

�!

Q; w 2 V al[� , representing the output of the value w and the novel discard relation P

w:

�! Q.

The reader is refered to [14] for more explanation and discussion of these rules.

Some simple properties of these relations are given in the following lemma:

Lemma 2.1 For every agent P

� if P

w:

�! Q then Q is P

� P

v:

�! P if and only if there does not exist a Q such that P

v?

�! Q

� P

� :

�! P

Proof. By induction on the rules of inference in Figure 1. 2

Intuitively a process discards a value when it is in a state in which values can not be received.

So the �rst property of this Lemma is very natural: ignoring or discarding a broadcasted value

does not change the state of a process. The second property states that discarding a value is

exactly the same as not being able to receive it. The �nal property states that all processes

ignore noise. This relies on the fact that in all guarded input terms x 2 S?T , S is a subset of

V al, i.e. does not contain � .

At the level of labelled transition systems CBS appears to be very similar to the value-

passing process algebras of [4] and the operational semantics given above corresponds very

much to the early operational semantics of that paper. However it is worth pointing out that

at least one expected property is not true: P

v?

�! Q does NOT imply that for every value v

0

there is a process Q

v

0

such that P

v

0

?

�! Q

v

0

. One reason is the use of guarded inputs, x 2 S?T ;

here a value can be input only if it is in S. However even if the only input construct allowed

is x 2 V al?T the property still does not hold. For example the process (x 2 V al?P)

(f;g)

can

only receive the values from V al which g doesn't map to � .

4

Discard Input Output

O

w:

�! O

w 62 S

x 2 S?P

w:

�! x 2 S?P

v 2 S

x 2 S?P

v?

�! P [v=x]

e!P

w:

�! e!P

[[e]] = w

e!P

w!

�! P

P

w:

�! P Q

w:

�! Q

P +Q

w:

�! P + Q

P

v?

�! P

0

P +Q

v?

�! P

0

P

w!

�! P

0

P +Q

w!

�! P

0

[[b]] = false

b� P

w:

�! b� P

P

w:

�! P

b� P

w:

�! b� P

P

v?

�! P

0

[[b]] = true

b� P

v?

�! P

0

P

w!

�! P

0

[[b]] = true

b� P

w!

�! P

0

P [~v=~x]

w:

�!

A(~v)

w:

�!

P [~v=~x]

v?

�! P

0

A(~v)

v?

�! P

0

P [~v=~x]

w!

�! P

0

A(~v)

w!

�! P

0

P

gw:

�! P

0

P

(f;g)

w:

�! P

0

(f;g)

P

gv?

�! P

0

P

(f;g)

v?

�! P

0

(f;g)

P

w!

�! P

0

P

(f;g)

fw!

�! P

0

(f;g)

P

�

�! P

0

Q

�

�! Q

0

P jQ

���

�! P

0

jQ

0

� � � 6=?

� w! w? w :

w! ? w! w!

w? w! w? w?

w : w! w? w :

Figure 1: Operational semantics for closed agents (upto symmetry of + operator).

Based on this operational semantics we wish to develop a version of strong bisimulation, [8],

appropriate for CBS . However there is quite a range of possible de�nitions of when a relation

over agents should be considered a strong bisimulation. Should only input and output moves

be considered ? Should discards also be taken into account ? If so under what circumstances, if

any, should input moves be allowed to be matched by discards ? Rather than develop a range

of di�erent theories we take the approach advocated in [16] by de�ning a version of barbed

bisimulation for CBS, �

barb

. This is straightforward and uncontroversial since it relies only on

1. a notion of reduction, which we have in

� !

�!,

2. a notion of when agents have the ability to produce values, which we have in

v!

�!.

5

The \correct" version of strong bisimulation for CBS will then be that version, if it exists,

which coincides with the CBS congruence generated by �

barb

.

For any value v let P # v mean that P

v!

�! P

0

for some P

0

. Then a symmetric relation R

between agents is called a barbed bisimulation if whenever (P;Q) 2 R then:

if P

� !

�! P

0

then 9Q

0

:Q

� !

�! Q

0

and P

0

RQ

0

if P # v then Q # v:

We use �

barb

to denote the maximal such relation which is obviously an equivalence. However

it is preserved by very few of the operators of CBS and is not very interesting as a semantic

equivalence. Instead we concentrate on the associated congruence.

De�nition 2.2 For agents P and Q let P �

c

barb

Q if C[P] �

barb

C[Q] for every CBS context

C[].

The remainder of this section is devoted to giving a bisimulation type characterisation of �

c

barb

.

The characterisation is easiest to explain in terms of a new relation. In a broadcasting calcu-

lus an observer can not see whether a given process can actually input a particular broadcasted

value or simply discard it; it reacts internally to the broadcast either by accepting the value

and adjusting its internal state or ignoring the broadcast entirely. These di�erent reactions

can not be observed externally. This is captured by the following de�nition.

let P

v??

�! Q if P

v?

�! Q or P

v:

�! Q.

With this new arrow we de�ne a new kind of bisimulation relation. A symmetric relation R

between agents is called a noisy bisimulation if whenever (P;Q) 2 R then:

if P

w!

�! P

0

then 9Q

0

:Q

w!

�! Q

0

and P

0

RQ

0

if P

v??

�! P

0

then 9Q

0

:Q

v??

�! Q

0

and P

0

RQ

0

We let P �

n

Q if there exists some noisy bisimulation R such that (P;Q) 2 R, i.e. �

n

is the

largest noisy bisimulation.

Because of Lemma 2.1 noisy bisimulations can be simpli�ed considerably:

Proposition 2.3 Let R be a symmetric relation over agents. Then R is a noisy bisimulation

if and only if when (P;Q) 2 R then

1. P

w!

�! P

0

implies there is some Q

0

such that P

0

RQ

0

and Q

w!

�! Q

0

and

2. P

v?

�! P

0

implies there is some Q

0

such that P

0

RQ

0

and either Q

v?

�! Q

0

or Q

v:

�! Q

0

Proof. Suppose R satis�es the conditions of the Proposition. We need only check that a

discard move P

v:

�! P

0

, where (P;Q) 2 R, can be matched by a move from Q. We know from

the �rst part of Lemma 2.1 that P

0

must be P . In fact if Q

v:

�! Q

0

then Q

0

must also be Q

and we are done. Therefore we assume that Q

v:

�!6 Q. The second part of Lemma 2.1 tells us

that Q

v?

�! Q

0

for some Q

0

. This implies, using the second property of R, that P

v??

�! P

0

with

(P

0

; Q

0

) 2 R. It follows, again from Lemma 2.1, that P

v?

�!6 and so we know that P

0

is P and

(P;Q

0

) 2 R. 2

Proposition 2.4 The relation �

n

is preserved by all of the CBS operators except choice.

6

Proof. As in [8], to show that noisy bisimulation is preserved by composition, say, we simply

let

R = f(P jR); (QjR) j for all P;Q;R such that P �

n

Qg

and show that R is a noisy bisimulation. The other operators are treated in a similar way. 2

We can also capture noisy bisimulation equivalence from�

barb

using static contexts, i.e. contexts

in which the `hole' does not appear as a summand in a choice.

Proposition 2.5 If C[P] �

barb

C[Q] for every static context C[] then P �

n

Q.

Proof. Given P;Q de�ned over a value set V al, we suppose that C[P] �

barb

C[Q] for every

static context C and we assume the existence of a larger value set V al

+

def

= V al[V al

0

[fa; bg,

where V al

0

is a set of values such that for each v 2 V al there exists exactly one v

0

in V al

0

with

v

0

62 V al and a; b 62 V al [V al

0

. Let f : V al

+

[� ! V al

+

[� be de�ned thus

f(w) =

(

� if w 2 V al

w otherwise.

Let D be the constant with associated de�nition

D = x 2 V al?(a!O+ x

0

!O+ � !D) +

X

v2V al

v!(b!O+ v

0

!O+ � !D)

and let C[] be the context (jD)

[f;Id]

:

Let S = f(R; S) j C[R] �

barb

C[S]; R; S : V alg, where R : V al means that R is a closed term

de�ned over the value set V al. We know that (P;Q) 2 S by hypothesis, so we aim to show

that S is a noisy bisimulation.

Suppose that P

v

0

!

�! P

0

. Then C[P]

� !

�! C

0

v

0

[P

0

], where

C

0

v

0

[] = (j(a!O+ v

0

0

!O+ � !D))

[f;Id]

:

We know that C[P] �

barb

C[Q] so C[Q]

� !

�! R for some R �

barb

C

0

v

0

[P

0

]. Now C

0

v

0

[P

0

] # a

so R # a necessarily, thus Q

v

1

!

�! Q

0

and R � C

0

v

1

[Q

0

] for some v

1

; Q

0

. We also know that

C

0

v

0

[P

0

] # v

0

0

. So it must be that R # v

0

0

, which forces v

1

= v

0

. We have that Q

v

0

!

�! Q

0

and must

now show that (P

0

; Q

0

) 2 S.

Observe that C

0

v

0

[P

0

]

� !

�! C[P

0

]. It must be the case that R

� !

�! R

0

with R

0

�

barb

C[P

0

]

because R �

barb

C

0

v

0

[P

0

]. But C[P

0

] 6# v for all v and so R

0

v cannot hold for any v. Thus

R

0

� C[Q

0

], that is (P

0

; Q

0

) 2 S.

Suppose P

v

0

?

�! P

0

. Then C[P]

� !

�! C

00

v

0

[P

0

], where

C

00

v

0

[] = (j(b!O+ v

0

0

!O+ � !D))

[f;Id]

:

We have C[Q]

� !

�! R for some R �

barb

C

00

v

0

[P

0

]. Now C

00

v

0

[P

0

] # b, so R # b. This means

R � C

00

v

1

[Q

0

] for some v

1

; Q

0

; such that Q

v

1

??

�! Q

0

. We know C

00

v

0

[P

0

] # v

0

0

. So it must be that

R # v

0

0

, which forces v

1

= v

0

. We have Q

v

0

??

�! Q

0

and must show that (P

0

; Q

0

) 2 S.

It is clear that C

00

v

0

[P

0

]

� !

�! C[P

0

]. So there exists an R

0

such that R

� !

�! R

0

with R

0

�

barb

C[P

0

]. Now C[P] 6# v for all v, so it is also the case that R

0

6# v for all v. Thus R

0

� C[Q

0

],

which means that (P

0

; Q

0

) 2 S.

Suppose P

� !

�! P

0

. Then C[P]

� !

�! C[P

0

], so C[Q]

� !

�! R for some R �

barb

C[P

0

]. But

C[P

0

] 6# a; b, so it is also the case that R 6# a; b. This means that no communication can have

taken place between the context and Q. Thus Q

� !

�! Q

0

with R � C[Q

0

], so (P

0

; Q

0

) 2 S. 2

7

Unlike strong bisimulation it turns out that noisy bisimulation is not preserved by the choice

operator +. For example

x 2 V al?O �

n

O

but

v!O+ x 2 V al?O 6�

n

v!O+O

because the agent on the right hand side can perform the sequence of actions w??v! which is

not possible for that on the left hand side. However it can be easily modi�ed to take choice

contexts into account.

De�nition 2.6 Let P '

n

Q be given by

if P

w!

�! P

0

then 9Q

0

:Q

w!

�! Q

0

and P

0

�

n

Q

0

if P

v?

�! P

0

then 9Q

0

:Q

v?

�! Q

0

and P

0

�

n

Q

0

:

We say that P and Q are strong noisy congruent.

Theorem 2.7 P �

c

barb

Q if and only if P '

n

Q.

Proof. It is straightforward to adapt Proposition 2.4 to show that '

n

is preserved by all CBS

operators. Since P '

n

Q trivially implies that P �

barb

Q it follows immediately that P '

n

Q

implies P �

c

barb

Q.

Conversely, suppose P �

c

barb

Q. Let v be a new value not occurring in P;Q. Then P + x 2

V al?v!O �

n

Q + x 2 V al?v!O implies P '

n

Q. But P �

c

barb

Q means that for every static

context C[], C[P + x 2 V al?v!O] �

barb

C[Q+ x 2 V al?v!O] and therefore by Proposition 2.5

it follows that P + x 2 V al?v!O �

n

Q+ x 2 V al?v!O. 2

This theorem justi�es our choice of '

n

as the appropriate version of strong bisimulation equiv-

alence for CBS and will be studied in the next two sections.

3 Characterising Strong Noisy Congruence over Simple Agents

In this section we give an algebraic characterisation of Strong Noisy Congruence over a simple

class of �nite agents. In fact we restrict our attention to closed terms of the simple language

given by:

T ::= O j e!T j x?T j b� T j T + T:

In order to obtain a �nite language we have replaced the summation operator

P

I

with the

binary choice +. We have also removed the guards from the input pre�xes, the syntax x?T being

shorthand for x 2 V al?T . The extra CBS operators, parallel and restriction or translation,

will be accommodated later. In order to accommodate these though the patterned guards on

inputs will have to be reintroduced; we attend to this in Section 5. Let us use SA to denote

the set of agents de�nable in this sub-language.

Unlike CBS , processes in SA have the very simple property that if they can discard one

value then they can discard every value, or equivalently if they can input one value they can

input every value:

Lemma 3.1 For all processes P in SA if there exists some value v such that P

v:

�! then for

every value v; P

v:

�!.

Proof. By structural induction on P . 2

8

This property will prove invaluable in developing the axiomatisation of noisy congruence over

SA. For convenience let us introduce the notation P

:

�! to denote the fact that P can discard.

The axioms required to characterise strong bisimulation equivalence over CCS terms are

simply the idempotency, symmetry and associativity of + together with the fact that O is a

zero for +, which we call A:

X +O = X

X +X = X

X + Y = Y +X

(X + Y) + Z = X + (Y + Z):

In the setting of CBS this is insu�cient. For example

� !(v!P + x?v!P) '

n

� !v!P

because

v!P + x?v!P �

n

v!P:

Indeed if Q is any process which can discard, i.e. Q

:

�!, then

Q+ x?Q �

n

Q

because Q can discard any value. This in turn means that

v!(Q+ x?Q) '

n

v!Q:

This phenomenon can be captured by a new axiom schema, Noisy:

Noisy: v!(P

!

+ x?P

!

) = v!P

!

where P

!

is a meta-variable standing for any agent which can discard. For the present sublan-

guage SA this means any closed term of the form

X

i2I

v

i

!P

i

for some �nite index set I . We use A

N

to denote the set of equations A together with the

axiom schema Noisy.

There is an added complication for CBS which also exists for standard value-passing pro-

cessing algebras, [4]. In a �-algebra the congruence generated by a set of equations is easily

characterised in terms of substitution of equals for equals and the application of instances of

the axioms. For agents in CBS more powerful rules are required. For although we can infer

v!P '

n

v!Q from P '

n

Q it is not possible, in general, to infer x?T '

n

x?U from any �nite set

of statements about agents; we can not require the establishment of T '

n

U because these are

open terms and the proof system only allows the manipulation of closed terms.

To overcome this problem, following [5], we introduce an in�nitary proof rule:

T [v=x] = U [v=x] for every v 2 V al

x?T = x?U

In fact because the operational semantics we have given to CBS is an early operational seman-

tics, [4, 9] we need a more complicated version of this rule:

� !T [v=x] +

P

j2J

� !U

j

[v=x] =

P

j2J

� !U

j

[v=x]

x?T +

P

j2J

x?U

j

=

P

j2J

x?U

j

9

EQUIV

T = T

T = U

U = T

T = U U = V

T = V

AXIOM

T = U 2 AX

T� = U�

CONG

T

1

= U

1

T

2

= U

2

T

1

+ T

2

= U

1

+ U

2

�-CONV

x?T = y?T [y=x]

y 62 fv(T)

cl-INPUT

� !T [v=x] +

P

j2J

� !U

j

[v=x] =

P

j2J

� !U

j

[v=x] for every v 2 V al

x?T +

P

j2J

x?U

j

=

P

j2J

x?U

j

OUTPUT

T = U; [[e]] = [[e

0

]]

[[e]]!T = [[e

0

]]!U

BOOL

[[b]] = tt

b� T = T

[[b]] = �

b� T = O

Figure 2: Inference Rules

In short, for agents in SA, instead of considering the congruence generated by a set of axioms

AX we consider the identities derivable in the proof system given in Figure 2.

For any agents P;Q let A

N

`

cl

P = Q mean that P = Q can be derived in this proof system

from the axioms A together with the schema Noisy .

Theorem 3.2 (Soundness and Completeness) A

N

`

cl

P = Q if and only if P '

n

Q. 2

We omit the proof of this theorem as it can be reconstructed from that of Theorem 4.2 and

Theorem 4.12.

4 Characterising Strong Noisy Congruence over Open Terms

The proof system of the previous section is only of theoretical interest since it contains an

in�nitary rule of inference. In this section we show that this can be avoided by developing a

proof system for open terms. In such a system the identity x?T = x?U can be inferred from

T = U but because of open terms the proof system needs to be more complicated.

Judgements are of the form

b � T = U

where b is a boolean expression and T and U are arbitrary terms. We will use the notation,

� j= b to mean [[b�]] = tt and b j= b

0

to mean that for every � such that � j= b then � j= b

0

.

The inference rules for the system are given in Figure 3. For a detailed explanation of the

proof rules, and discussion of the general approach we refer the reader to [4], which uses an

identical system save for small notational di�erences. The axioms for the proof system appear

10

EQUIV

tt � T = T

b � T = U

b � U = T

b � T = U b � U = V

b � T = V

AXIOM

T = U 2 AX

tt � T� = U�

CONG

b � T

1

= U

1

b � T

2

= U

2

b � T

1

+ T

2

= U

1

+ U

2

�-CONV

tt � x?T = y?T [y=x]

y 62 fv(T)

INPUT

b � � !T +

P

j2J

� !U

j

=

P

j2J

� !U

j

b � x?T +

P

j2J

x?U

j

=

P

j2J

x?U

j

x 62 fv(b)

OUTPUT

b j= e = e

0

b � T = U

b � e!T = e

0

!U

TAU

b � T = U

b � � !T = � !U

GUARD

b ^ b

0

� T = U b ^ :b

0

� O = U

b � b

0

� T = U

CUT

b j= b

1

_ b

2

b

1

� T = U b

2

� T = U

b � T = U

ABSURD

� � T = U

Figure 3: Inference Rules

in Figure 4; these consists of A used in the previous section together with a version of the

Noisy schema appropriate for open terms. Here T

!

stands for any term of the form

X

i2I

!

b

i

� e

i

!:T

i

:

Note that any closed instantiation of such a term discards every transmitted value since it can

not receive an input. Allowing a slight abuse of notation let us again use A

N

to refer to this

collection of axioms and for a given set of axioms B let B ` b � T = U mean that b � T = U

can be derived in the proof system of Figure 3 from the axioms in B.

Lemma 4.1 (Axiom Noisy is sound) For all �, if x 62 fv(T

!

) then (e!(T

!

+ x?T

!

))� '

n

(e!T

!

)�.

Proof. Consider an arbitrary closed instantiation of Noisy : v!(P + x?P) '

n

v!P where

x 62 fv(P) and P has the form P

!

. It is su�cient then to show that P + x?P �

n

P . Let

I be the identity relation over agents. We show that I

0

= I [f(P + x?P; P); (P; P + x?P)g

is a noisy bisimulation. The only non-trivial move to match is P + x?P

v?

�! P [v=x]. Since

11

Ident : X +O = X

Idemp : X +X = X

Symm : X + Y = Y +X

Assoc : (X + Y) + Z = X + (Y + Z)

Noisy : e!(T

!

+ x?T

!

) = e!T

!

if x 62 fv(T

!

)

Figure 4: Axioms A + Noisy

x 62 fv(P) the agent P [v=x] coincides with P . Also since P is P

!

we know P

v?

�!6 and therefore

P

v:

�! P , which is the required match for P + x?P

v?

�! P [v=x]. 2

Proposition 4.2 (Soundness) If A

N

` b � T = U and � j= b then T� '

n

U�.

Proof. It is su�cient to check that all of the individual rules and axioms are sound which is

straightforward; the only novelty is the axiom schema Noisy which is treated in the previous

Lemma. 2

In order to prove the completeness of our proof system we employ the techniques of [4]

which unfortunately requires a notion of symbolic noisy bisimulations. These are de�ned using

abstract transition relations which are presented in Figure 5. The abstract transitions

b;�

�! are

labelled not only with actions but also with boolean expressions which are intended to act as

guards for the move. Note that in the transition

b;�

�! � has the form :; x? or e!. Intuitively the

move � is enabled whenever the guard b is true. This is made precise in the following

Proposition 4.3

(i) if T�

� !

�! Q then 9b; T

0

� T

b;� !

�! T

0

where � j= b; Q �

�

T

0

� and conversely if T

b;� !

�! T

0

and

� j= b then 9Q � T�

� !

�! Q and Q �

�

T

0

�

(ii) if T�

v!

�! Q then 9b; e; T

0

� T

b;e!

�! T

0

where � j= b; �(e) = v;Q �

�

T

0

� and conversely if

T

b;e!

�! T

0

and � j= b; �(e) = v then 9Q � T�

v!

�! Q and Q �

�

T

0

�

(iii) if T�

v?

�! Q then 9b; x; T

0

�T

b;x?

�! T

0

where x 62 fv(T); � j= b; Q �

�

T

0

�[v=x] and conversely

if T

b;x?

�! T

0

where x 62 fv(T) and � j= b then 9Q � T�

v?

�! Q and Q �

�

T

0

�[v=x]

(iv) T�

v:

�! T� if and only if 9b � � j= b and T

b;:

�! T

Proof. A minor variation on Lemma 3.2 of [4]. 2

We call a �nite set, B, of boolean expressions a b-partition if

W

B � b.

Let S =

�

S

b

j b 2 BoolExp

	

be a family of symmetric relations on terms, indexed by

boolean expressions. De�ne NSB(S) by

(T; U) 2 NSB(S)

b

if whenever T

b

1

;�

�! T

0

(� � x? or e!) with bv(�)\ fv(b; T;U) =

;, there is a b ^ b

1

-partition, B, such that for each b

0

2 B there exists a U

b

2

;�

0

�! U

0

such that b

0

j= b

2

and

- if � � e! then �

0

� e

0

! with b

0

j= e = e

0

and (T

0

; U

0

) 2 S

b

0

12

Discard Input Output

O

tt;:

�! O

y 62 fv(x?T)

x?T

tt;y?

�! T [y=x]

e!T

tt;:

�! e!T e!T

tt;e!

�! T

T

b;:

�! T U

b

0

;:

�! U

T + U

b

0

^b;:

�! T + U

T

b;x?

�! T

0

T + U

b;x?

�! T

0

T

b;e!

�! T

0

T + U

b;e!

�! T

0

b

0

� T

:b

0

;:

�! b

0

� T

T

b;:

�! T

b

0

� T

b;:

�! b

0

� T

T

b;x?

�! T

0

b

0

� T

b

0

^b;x?

�! T

0

T

b;e!

�! T

0

b

0

� T

b

0

^b;e!

�! T

0

Figure 5: Abstract operational semantics

- if � � x? then (�

0

� x? or �

0

�:) and (T

0

; U

0

) 2 S

b

0

.

We call S a noisy symbolic bisimulation if S � NSB(S) (point-wise inclusion) and denote

the largest such relation by

�

�

b

n

	

. It is evident that this relation is not a congruence for the

language as it is not preserved by summation. As before we modify it so that we obtain the

largest CBS congruence contained within it:

let T '

b

n

U if whenever T

b

1

;�

�! T

0

(� � x? or e!) with bv(�)\ fv(b; T;U) = ;, there

is a b ^ b

1

-partition, B such that for each b

0

2 B there exists a U

b

2

;�

0

�! U

0

such that

b

0

j= b

2

and

- If � � e! then �

0

� e

0

! with b

0

j= e = e

0

and T

0

�

b

0

n

U

0

- If � � x? then �

0

� x? and T

0

�

b

0

n

U

0

The procedure now is to show completeness of the proof system with respect to

�

'

b

n

	

, that

is T '

b

n

U if and only if A

N

` b � T = U . Given this we then need only relate the symbolic

congruence to the concrete congruence. This is done in a straightforward way in the following

theorem.

Theorem 4.4 T '

b

n

U if and only if 8� �� j= b implies T� '

n

U�. In particular for agents we

have that P '

tt

n

Q if and only if P '

n

Q

Proof. As in [4], we use Proposition 4.3 to prove that whenever S is a noisy symbolic bisim-

ulation then

R

S

def

=

�

(T�; U�) j 9b � � j= b and (T; U) 2 S

b

	

is a noisy bisimulation. Similarly, whenever R is a noisy bisimulation then

S

b

R

def

= f(T; U) j � j= b implies (T�; U�) 2 Rg

forms a noisy symbolic bisimulation. The result follows easily from this. 2

13

The exposition of the proof of completeness of our system with respect to symbolic noisy

bisimulation requires, as usual, the ability to rewrite arbitrary terms into special forms. First,

a standard form T is a term of the form

X

i2I

!

b

i

� e

i

!:T

i

+

X

i2I

?

b

i

� x

i

?T

i

for some �nite indexing sets I

?

and I

!

. We call the left hand sum T

!

and the right hand sum T

?

.

It is easy to see that every term can be transformed within the proof system into a standard

form. However the following syntactic form will also be useful.

De�nition 4.5 A process T is said to be a normal form if it has the form

X

i2I

c

i

� (

X

k2I

i

�

ik

:T

ik

)

where c

i

^ c

j

� � whenever i 6= j and

W

I

c

i

= tt.

In order to prove that every term can be transformed into a normal form we �rst state a

few simple facts about the proof system; the proofs are left to the reader.

Proposition 4.6

(i) b j= b

0

implies A ` b � T = b

0

� T

(ii) A ` b� (T + U) = (b� T) + (b� U)

(iii) A ` (b� T) + (b

0

� T) = b _ b

0

� T .

2

Lemma 4.7 For every term T , there exists a normal form nf(T) such that A ` T = nf(T).

Proof. Let the standard form of T be

P

j2J

b

j

� �

j

:T

J

. For each K � J we de�ne c

K

to

be the boolean expression

V

k2K

b

k

^

V

k

0

2J�K

:b

k

0
. Thus we have

W

c

K

� tt; c

K

^ c

K

0
� �

whenever K 6= K

0

. Using the previous proposition we can show

A ` tt � T =

X

K

c

K

� (

X

k2K

b

k

� �

k

:T

k

):

Using CUT and the proposition we can obtain, for each K,

A ` c

K

� T =

X

K

c

K

� (

X

k2K

�

k

:T

k

):

Thus, given that

W

c

K

� tt, CUT gives

A ` tt � T =

X

K

c

K

� (

X

k2K

�

k

:T

k

):

2

The �rst use of these normal forms is in generalising the rule INPUT to deal with guarded

terms; this generalisation will be used in the completeness theorem.

Proposition 4.8 Suppose x 62 fv(b; c

i

; d

j

). Then

INPUT

�

b � c� � !T +

P

j2J

d

j

� � !U

j

=

P

j2J

d

j

� � !U

j

b � c� x?T +

P

j2J

d

j

� x?U

j

=

P

j2J

d

j

� x?U

j

14

is a derived rule of the proof system.

Proof. See Proposition 3.7 of [4]. 2

The following notion of a discard condition, DC(T) for a normal form will be useful. This

DC(T) represents the weakest condition under which the normal form T is triggered to discard.

i.e., T

DC(T);:

�! T and whenever T

b;:

�! T then b j= DC(T). Given a normal form T �

P

i2I

c

i

�

(

P

k2I

i

�

ik

:T

ik

) then we de�ne a predicate ?

T

on I by

?

T

(i)

def

= (9k 2 I

i

; x 2 V ar � �

ik

� x?)

and de�ne DC(T)

def

=

V

?

T

(i)

:c

i

.

Although DC is de�ned on normal forms the idea of a discard condition is not exclusive to

them. We have a similar notion for standard forms and the construction of such is somewhat

easier. In fact, we see that these constructions coincide for the two types of syntactic forms.

Lemma 4.9 Let T �

P

I

b

i

� �

i

:T

i

be a standard form, T

0

�

P

K2PI

c

K

� (

P

i2K

�

K

i

:T

K

i

)

be the normal form constructed from T as described in Lemma 4.7. Then

V

i2I

?

:b

i

is logically

equivalent to DC(T

0

).

Proof. Suppose � j=

V

i2I

?

:b

i

. Then � 6j= (

V

j2K

b

j

)^ (

V

j2I�K

:b

j

) whenever I

?

\K 6= ;. This

amounts to saying that � 6j= c

K

whenever ?

T

0

(K). That is, � j= c

K

for all K such that ?

T

0

(K)

and so � j= DC(T

0

).

Conversely suppose that � j= DC(T

0

) and suppose for contradiction that there is an i

0

2 I

?

such that � j= b

i

0

. We let K

0

= fi

0

g and de�ne a strictly increasing sequence of subsets of I

K

0

� K

1

� � � � � K

n

� � � �

with the property that � j= b

j

for all j 2 K

n

for all n. Given K

n

we know that ?

T

0
(K

n

) because

i

0

2 K

n

. We know then that � j= :c

K

n

. Recall that :c

K

n

= (

W

j2K

n

:b

j

) _ (

W

j2I�K

n

b

j

). We

know that there must exist a j

0

2 I �K

n

such that � j= b

j

0

because of the property of K

n

that

� j= b

j

for each j 2 K

n

. Let K

n+1

= K

n

[fj

0

g. This de�nes a strictly increasing sequence

which is bounded by the �nite set I , which is a contradiction. 2

We come now to the theorem which lies at the heart of the completeness theorem. It

relates the symbolic noisy bisimulation relation to the symbolic noisy congruence relation. The

completeness theorem for �nite CCS terms with respect to weak bisimulation congruence �

c

,

[8], page 156, relies on a similar relationship between weak bisimulation, �, and bisimulation

congruence, �

c

: if P � Q then either P �

c

Q; P �

c

�:Q or �:P �

c

Q. For CBS the

corresponding relation is if P �

n

Q then either P '

n

Q; P '

n

x?Q + Q or x?P + P '

n

Q

where x is a new variable. However, at the symbolic level the relationship is a little more

complicated.

Theorem 4.10 If T; U are normal forms then T �

b

n

U if and only if there exists a b-partition,

B, such that for x 62 fv(T; U; b

0

) for each b

0

2 B one of the following holds:

1. (T '

b

0

n

U)

2. (T '

b

0

n

U + x?U) and b

0

j= DC(U)

3. (T + x?T '

b

0

n

U) and b

0

j= DC(T).

15

Proof. The `(' direction is quite simple to prove using Theorem 4.4 so we concentrate on the

`)' direction. One approach to proving this would be to prove the corresponding result about

closed terms and then use Theorem 4.4 to translate to open terms. A more illuminating direct

approach is given here.

We have normal forms for T and U , that is, T �

P

i2I

c

i

� (

P

k2I

i

�

ik

:T

ik

) and U �

P

j2J

d

j

� (

P

l2J

j

�

jl

:U

jl

).

Let B

0

def

= fb ^ c

i

^ d

j

j i 2 I; j 2 Jg. Then we know that

W

B

0

= b. Consider b

0

� b^c

i

^d

j

2

B

0

. We know that T �

b

0

n

U because b

0

j= b. So whenever T

c

i

;x?

�! T

k

, there exists a b

0

-partition, B

k

such that for each b

k

i

2 B

k

there is a matching move from U . Similarly, there is a b

0

-partition,

B

l

for each move U

d

j

;x?

�! U

l

. We have a set of n partitions fB

k

1

; B

k

2

; : : : ; B

k

n

g and m partitions

fB

l

1

; B

l

2

; : : : ; B

l

m

g, say. If n = m = 0 then we de�ne B

b

0

to be fb

0

g. Otherwise we consider

all conjunctions of length n + m whose conjucts are drawn one from each partition. De�ne

B

b

0

=

(

(

n

V

i=1

b

i

) ^ (

m

V

j=1

b

j

) j b

i

2 B

k

i

; b

j

2 B

l

j

)

. Then

W

B

b

0

= b

0

and furthermore B

b

0

enjoys the

following property:

For each b

00

2 B

b

0

we have that T �

b

00

n

U and whenever T

c

i

;x?

�! T

0

then there is a U

0

such that

U

d

j

;x?

�! U

0

with T

0

�

b

00

n

U

0

or U

DC(U);:

�! U with T

0

�

b

00

n

U . Similarly for U .

So we let B =

S

b

0

2B

0

B

b

0
and consider the three cases which arise. Take b

00

2 B

b

0
.

Case 1. There exists a T

c

i

;x?

�! T

0

such that for all U

d

j

;x?

�! U

jl

, T

0

6�

b

00

n

U

jl

.

Therefore U

DC(U);:

�! U and T

0

�

b

00

n

U (and b

00

j= DC(U)) since T �

b

00

n

U . We now show that

T '

b

00

n

U + x?U .

Recall that b

00

corresponds to just one of the c

i

and d

j

, in the sense that b

00

^c

i

0
= b

00

^d

j

0
= �

whenever i

0

6= i; j

0

6= j. Therefore we need only consider moves of the form T

c

i

;�

�! and U

d

j

;�

�!.

Suppose then that T

c

i

;e!

�! T

ik

. Since T �

b

00

n

U we know there exists a b

00

-partition, B

00

, such

that for each b

1

2 B

00

there exists a U

d

j

;e

0

!

�! U

jl

with b

1

j= d

j

; b

1

j= (e = e

0

) and T

ik

�

b

1

n

U

jl

. As

U + x?U

d

j

;e

0

!

�! U

jl

also, we have a match for T

c

i

;e!

�! T

ik

.

Suppose T

c

i

;x?

�! T

ik

. As b

00

j= d

j

and b

00

j= DC(U) then b

00

j= :d

j

0
for each j

0

such that

?

U

(j

0

). Clearly then it cannot be the case that ?

U

(j) holds because b

00

j= d

j

. Therefore no

l 2 J

j

and no variable x are such that �

jl

is x?. Thus U

d

j

;x?

�!6 and therefore U

DC(U);:

�! U with

T

ik

�

b

00

n

U . Given this we use b

00

to partition itself, U + x?U

tt;x?

�! U being the matching move.

Suppose that U + x?U

d

j

;e!

�! U

jl

. Then, as before, we use the fact that T �

b

00

n

U to get a

matching partition and move. Suppose that U + x?U

d;x?

�! U

0

. By assumption, d is d

j

or tt.

Clearly d cannot be d

j

because, as we have already established, U

d

j

;x?

�!6 U

0

. Thus d must be tt

and U

0

must be U . Again, b

00

partitions itself to get the matching move T

c

i

;x?

�! T

ik

.

Case 2. Symmetrical argument of case one which yields T + x?T '

b

00

n

U and b

0

j= DC(T).

Case 3. Neither of the above.

That is, for every T

c

i

;x?

�! T

ik

there exists a U

d

j

;x?

�! U

jl

such that T

ik

�

b

00

n

U

jl

. Also, for every

U

d

j

;x?

�! U

jl

there exists a T

c

i

;x?

�! T

ik

such that T

ik

�

b

00

n

U

jl

. It is easy to show then that T '

b

00

n

U .

2

We now see that Theorem 4.10 can be lifted to deal with the simpler notion of standard

form. We also reinterpret the statement b

0

j= DC(T) in terms of provability in the proof

system.

16

Corollary 4.11 If T; U are standard forms

P

I

c

i

� �

i

:T

i

;

P

J

d

j

� �

j

:U

j

respectively, then

T �

b

n

U if and only if there exists a b-partition, B, such that for x 62 fv(T; U; b

0

) for each b

0

2 B

one of the following holds:

1. (T '

b

0

n

U)

2. (T '

b

0

n

U + x?U) and A

N

` b

0

� U = U

!

3. (T + x?T '

b

0

n

U) and A

N

` b

0

� T = T

!

Proof. We construct nf(T); nf(U) as directed in Lemma 4.7. We know T '

b

n

nf(T) and

U '

b

n

nf(U) by Soundness. Now apply Theorem 4.10 to get the three cases. The �rst case

yields nf(T) '

b

n

nf(U) and transitivity gives T '

b

n

U . In the second case we must show

A ` b

0

� U = U

!

. We have b

0

j= DC(U) and Lemma 4.9 tells us that b

0

j=

V

j2J

?

:d

j

.

It is simple to show that A ` b

0

� U

!

= U

!

. So we need only show A ` b

0

� U

?

= O. To

do this we show that for each j 2 J

?

we have A ` b

0

� d

j

� x

j

?U

j

= O. This is simply a

matter of using ABSURD to get A ` b

0

^ d

j

� x

j

?U

j

= O and then using GUARD to get

A ` b

0

� d

j

� x

j

?U

j

= O.

The last case can be dealt with similarly. 2

The proof of completeness is carried out by induction on a measure of the depth of a term:

- d(O) = 0

- d(x?T) = d(e!T) = 1 + d(T)

- d(b� T) = d(T)

- d(T

1

+ T

2

) = max fd(T

1

); d(T

2

)g

Theorem 4.12 (Completeness) T '

b

n

U implies A

N

` b � T = U

Proof. We assume that T; U are the standard forms

P

i2I

c

i

� �

i

:T

i

;

P

j2J

d

j

� �

j

:U

j

respec-

tively and proceed by induction on d(T) + d(U).

We only show A

N

` b � T

?

= U

?

. The proof of A

N

` b � T

!

= U

!

is similar and is omitted.

Combining both of these we get the required A

N

` b � T = U .

Suppose we can prove

A

N

` b ^ c

i

� U

?

+ c

i

� x

i

?T

i

= U

j

for each i 2 I

?

. Then an application of GUARD will yield

A

N

` b � U

?

+ c

i

� x

i

?T

i

= U

?

Using CONG we can then combine these to get

A

N

` b � U

?

+ T

?

= U

?

and an entirely symmetric argument will give us that

A

N

` b � T

?

= U

?

(= T

?

+ U

?

):

Therefore we only have to ful�l the obligation of showing

A

N

` b ^ c

i

� U

?

+ c

i

� x

i

?T

i

= U

?

17

for an arbitrary i.

Let z be a variable not in fv(b; T;U), let T

z

?

denote

P

I

?

c

i

� z?T

i

[z=x

i

] and T

�

?

denote

P

I

?

c

i

� � !T

i

[z=x

i

]. Let U

z

?

; U

�

?

denote the corresponding terms for U . Consider T

?

c

i

;z?

�!

T

i

[z=x

i

]. Since T '

b

n

U we know there exists a b ^ c

i

-partition, B, such that for each b

0

2 B

there exists a U

d

j

;z?

�! U

j

[z=y

j

] such that b

0

j= d

j

and T

i

[z=x

i

] �

b

0

n

U

j

[z=y

j

]. By Theorem 4.11

there exists a b

0

-partition, B

0

, such that for each b

00

2 B

0

1 T

i

[z=x

i

] '

b

00

n

U

j

[z=y

j

] or

2 T

i

[z=x

i

] '

b

00

n

U

j

[z=y

j

] + x?U

j

[z=y

j

] or

3 T

i

[z=x

i

] + x?T

i

[z=x

i

] '

b

00

n

U

j

[z=y

j

].

In each of these cases we will show how to deduce A

N

` b

00

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

].

Case 1. We apply induction and then use the rule TAU.

Case 2. We apply induction again to get

A

N

` b

00

� T

i

[z=x

i

] = U

j

[z=y

j

] + x?U

j

[z=y

j

]

In this case we also know that

A

N

` b

00

� U

j

[z=y

j

] = (U

j

[z=y

j

])

!

Using axiom Noisy and TAU will then give

A

N

` b

00

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

]

Case 3. Symmetric to case 2.

For each b

00

2 B

0

we have proved A

N

` b

00

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

] so we can use CUT to

obtain A

N

` b

0

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

]. Given that b

0

j= c

i

; b

0

j= d

j

we can use Proposition 4.6

and axiom Idemp to produce

A

N

` b

0

� d

j

� � !U

j

[z=y

j

] = (c

i

� � !T

i

[z=x

i

]) + (d

j

� � !U

j

[z=y

j

])::

Adding in the other summands of U we get

A

N

` b

0

� U

�

?

= U

�

?

+ c

i

� � !T

i

[z=x

i

]

A further application of CUT gives

A

N

` b ^ c

i

� U

�

?

= U

�

?

+ c

i

� � !T

i

[z=x

i

]

Finally, we apply INPUT

�

to get A

N

` b ^ c

i

� U

z

?

= U

z

?

+ c

i

� z?T

i

[z=x

i

]. The result is

obtained now by �-conversion. 2

5 Adding Pattern Matching

In this section we add to the �nite language the pattern matching construct x 2 S?T and show

how the two proof systems have to be adapted.

Let SPA denote the collection of all closed terms or agents generated by adding this

construct to the language of Section 3. With the addition of this construct Lemma 3.1 is no

18

longer true. For example the agent x? 2 f0; 1g:O discards the value 3 but it can not discard

either of the values 0 or 1.

We �rst consider the characterisation of closed agents by seeing what adjustments need to

be made to the proof system of Section 3. The main di�culty is that in the presence of pattern

matching agents the axiom schema Noisy is no longer su�ciently powerful. In SA this schema

is based on the fact that for any process P which can discard values

P '

n

P + x?P:

In SPA the corresponding fact is that

P '

n

P + x 2 S?P

provided that S does not contain any of the values which P can input. This set, I(P), can be

de�ned by structural induction on terms.

- I(O) = ;

- I(e!P) = ;

- I(x 2 S?T) = S

- I(P +Q) = I(P) [I(Q)

- I(b� P) =

(

I(P) if [[b]] = tt

; otherwise

Proposition 5.1 For every agent P , v 2 I(P) if and only if P

v?

�!.

Proof. By structural induction on P . 2

In addition to this we see that the two processes x 2 S?T + x 2 S

0

?T and x 2 S [S

0

?T are

strong noisy congruent, yet there is no way of showing this in the closed term proof system as

there is no rules to manipulate pattern sets.

The actual changes we make to the proof system then are these: The axiom schema Noisy

is replaced by the schema P-Noisy:

e!(P + x 2 S?P) = e!P if S \ I(P) = ;:

The axiom Pattern is added,

x 2 S?X + x 2 S

0

?X = x 2 S [S

0

?X

and the cl-INPUT rule is adapted to

cl-P-INPUT

� !T [v=x] + � !U [v=x] = � !U [v=x] for every v 2 S

x 2 S?T + x 2 S

0

?U = x 2 S

0

?U

S � S

0

:

Notice that the condition S � S

0

is essential. Without it we could prove, for instance, that

for any terms T; U;

x 2 f0g?T + x 2 f1g?(x = 0� T + U) = x 2 f1g?(x = 0� T + U)

which is in general not true. Also notice that, unlike the proof systems for SA, summation

is not required in this rule. With an early semantics it is often the case that without this

19

summation the proof system would fail to be complete. For example, in the proof systems for

SA the agents de�ned over the naturals, N ,

x 2 N?(x > 1� P) + x 2 N?(x � 1� P)

and

x 2 N?P + x 2 N?O

can not be proven congruent without the summation on the input rule. However we now have

the use of the axiom Pattern, wherein lies the di�erence. In order to prove the above agents

congruent we would �rst use Pattern to transform the latter agent into

x 2 f0; 1g?P + x 2 f2; 3; : : :g?P + x 2 f0; 1g?O+ x 2 f2; 3; : : :g?O;

use the modi�ed Input rule, cl-P-INPUT, and then use Pattern again. This is similar to the

technique used in [11] to give proof systems for early semantics for the �-calculus.

Finally, we also need the single axiom

x 2 ;?T = O;

which we call Empty .

Let A

P

denote the set of axioms A augmented with the three axioms: P-Noisy, Pattern

and Empty. Use A

P

`

cl

P = Q to denote that P = Q can be derived from these axioms using

the proof system in Figure 2 but with the rule cl-P-INPUT instead of the rule cl-INPUT. We

intend to prove soundness and completness of this modi�ed proof system. However it is �rst

necessary to present a result about closed terms analogous to Theorem 4.10 (Note that the

depth of a patterned input pre�x is, as expected d(x 2 S?T) = 1 + d(T)).

Theorem 5.2 Let P;Q 2 SPA then

P �

n

Q i� P + x 2 (I(Q)� I(P))?P '

n

Q+ x 2 (I(P)� I(Q))?Q:

Moreover, when I(Q)� I(P) and I(P)� I(Q) are both non-empty there exist P

0

; Q

0

such that

d(P

0

) < d(P); d(Q

0

) < d(Q) and P

0

�

n

P �

n

Q �

n

Q

0

:

Proof. We outline the `)' direction. If P

v?

�! P

0

then we know there exists a Q

0

such that

Q

v??

�! Q

0

with P

0

�

n

Q

0

because P �

n

Q. If v 2 I(Q) then we know that Q

v?

�! Q

0

. Otherwise

v 62 I(Q) and Q

v:

�! Q

0

(� Q). In this case though v 2 I(P) � I(Q) which means that

x 2 I(P)� I(Q)?Q

v?

�! Q matches the move from P .

We know that x 2 I(Q) � I(P)?P

v?

�! P whenever v 2 I(Q) � I(P). So we require a

match from Q. Q

v?

�! Q

0

as v 2 I(Q) and v 62 I(P) so P

v:

�! P . We know then that P �

n

Q

0

necessarily because P �

n

Q.

When the two sets are both non-empty we let v

1

2 I(Q)� I(P); v

2

2 I(P) � I(Q), then

P

v

2

?

�! P

0

for some P

0

. We know v

2

62 I(Q) so Q

v

2

:

�! Q must match this move, that is, P

0

�

n

Q.

Similarly, we get Q

0

�

n

P using v

1

. Transitivity of �

n

gives the result. 2

Theorem 5.3 (Soundness and Completeness) For all agents P; Q

A

P

`

cl

P = Q if and only if P '

n

Q

20

Proof. The soundness is simply a matter of checking the validity of the axioms and that

the new rule preserves the semantic congruence. So we con�ne our outline to the proof of

completeness. Again the proof is by induction on the combined depth of P and Q.

Because of the newly introduced axiom Empty we can assume that any closed term can be

transformed to a patterned standard form, i.e. a term of the form

X

I

e

i

!P

i

+

X

J

x 2 S

j

?T

j

;

where each set S

j

is non-empty. So let us assume that P and Q have the forms

X

I

e

i

!P

i

+

X

J

x 2 S

j

?T

j

;

X

K

e

k

!Q

k

+

X

L

x 2 S

l

?U

l

respectively. It is su�cient to prove that that

A

P

`

cl

X

I

e

i

!P

i

=

X

K

e

k

!Q

k

and

A

P

`

cl

X

J

x 2 S

j

?T

j

=

X

L

x 2 S

l

?U

l

and as an example we consider the latter. To establish this it is su�cient, by symmetry, to

prove for an arbitrary j 2 J that

A

P

`

cl

x 2 S

j

?T

j

+

X

L

x 2 S

l

?U

l

=

X

L

x 2 S

l

?U

l

:

For each v 2 S

j

we know that P

v?

�! T

j

[v=x]. We know that Q

v?

�! U

l

[v=x] for some l 2 L

such that v 2 S

l

and T

j

[v=x] �

n

U

l

[v=x] because P '

n

Q. Let S

j

l

= fv 2 S

j

\ S

l

j U

l

[v=x] �

n

T

j

[v=x]g. This gives a �nite partition fS

j

l

g

l2L

of S

j

such that S

j

l

� S

l

for each l 2 L. Then, by

the idempotency of + and the new axiom Pattern it is su�cient to show for each l 2 L that

A

P

`

cl

x 2 S

j

l

?T

j

+ x 2 S

l

?U

l

= x 2 S

l

?U

l

:

This can be inferred from the rule cl-P-INPUT if we can prove for each v 2 S

j

l

A

P

`

cl

� !T

j

[v=x] + � !U

l

[v=x] = � !U

l

[v=x]:

So let us �x a particular v 2 S

j

l

and see how this can be inferred. We know that v 2 S

l

and

T

j

[v=x] �

n

U

l

[v=x]. We will show that

A

P

`

cl

� !T

j

[v=x] = � !U

l

[v=x]:

For convenience let P;Q denote T

j

[v=x]; U

l

[v=x] respectively. We now apply Theorem 5.2 to

get

P + x 2 U?P '

n

Q+ x 2 V ?Q

Where U = I(Q)� I(P) and V = I(P)� I(Q). We have four cases to consider.

1. U = V = ;

Since x 2 ;?T '

n

O we can immediately conclude that P '

n

Q and apply induction to

obtain A

P

`

cl

P = Q and therefore the required A

P

`

cl

� !P = � !Q.

2. U = ;; V 6= ;

Here we have P '

n

Q + x 2 V ?Q: and again we can use induction to obtain A

P

`

cl

� !P = � !(Q+ x 2 V ?Q). Now we can apply the P-Noisy schema to obtain A

P

`

cl

� !Q =

� !(Q+ x 2 V ?Q) from which the required result follows.

21

3. U 6= ;; V = ;

Similar.

4. U 6= ;; V 6= ;

Here we have P +x 2 U?P '

n

Q+x 2 V ?Q and in this case we can not apply induction

immediately as the combined size of the terms has not decreased. But Thereom 5.2

tells us that there exists P

0

; Q

0

such that d(P

0

) < d(P) and d(Q

0

) < d(Q) such that

P

0

�

n

P and Q

0

�

n

Q. Suppose without loss of generality that d(P) � d(Q). Then, since

� !P '

n

� !P

0

we can use induction to obtain A

P

`

cl

� !P = � !P

0

. Then a simple application

of the cl-P-INPUT rule gives A

P

`

cl

x 2 U?P = x 2 U?P

0

. This in turn implies that

P + x 2 U?P

0

'

n

Q+ x 2 V ?Q and here we can apply induction since the combined size

has decreased. So we obtain, as before, A

P

`

cl

� !(P + x 2 U?P

0

) = � !(Q + x 2 V ?Q).

Using the fact that A

P

`

cl

x 2 U?P = x 2 U?P

0

we obtain A

P

`

cl

� !(P + x 2 U?P) =

� !(Q+ x 2 V ?Q) from which the required A

cl

0
` � !P = � !Q follows by two applications

of the P-Noisy rule.

2

6 Pattern Matching with Open Terms

We look at adapting the open term proof system of Section 4 to deal with pattern matching

on inputs. Reasoning as for the closed case we see that the modi�cations necessary are similar

to those made in the previous section. Explicitly, we augment A with the axioms Pattern and

Empty, modify the INPUT rule and axiom Noisy.

The INPUT rule becomes

P-INPUT

b ^ x 2 S � � !T + � !U = � !U

b � x 2 S?T + x 2 S

0

?U = x 2 S

0

?U

if x 62 fv(b); S � S

0

Note that, as before, we can derive a guarded version of this rule called P-INPUT

�

using

Proposition 4.6.

What is to be done about axiom Noisy? In the previous section we presented P-Noisy using

the construction I(P), the set of values which a process can receive. Unfortunately there is not

such a clean notion as this for open terms. We need to talk about the set of values a term can

receive relative to a boolean world. We will denote this by I(b; T). An obvious property which

we will require I(b; T) to satisfy is

� j= b implies I(b; T) = I(T�):

This I(b; T) is not a trivial notion to characterise. For example consider the agent

T � b

0

� x 2 S

1

?T

0

+ :b

0

� x 2 S

2

?T

00

:

What would be the set of values which T can receive in the boolean world tt, say? In any

evaluation we know that either b

0

or :b

0

will be satis�ed. So for some evaluations we may have

I(T�) = S

1

and for some we may have I(T�) = S

2

. If I(b; T) is to satisfy the property stated

above then it clearly makes no sense to ask what I(tt; T) should be. The approach we take

is to characterise the boolean expressions b for which I(b; T) can have a meaningful de�nition

which satis�es the required property.

Given a standard form

T �

X

i2I

!

b

i

� e

i

!T

i

+

X

i2I

?

b

i

� x 2 S

i

?T

i

22

and a boolean expression b, we say that b is T -uniform if there exists a set K � I

?

such that

b j= b

K

, where b

K

is de�ned

^

i2K

b

i

^

^

i

0

2I

?

�K

:b

i

0

The generalisation of I(P) is de�ned

I(b; T) =

[

fS

i

j i 2 I

?

; b j= b

i

g :

We show that this is a reasonable de�nition by relating I(b; T) to I(T�) where � is an

evaluation such that � j= b.

Lemma 6.1 If b is T -uniform then

� j= b implies I(T�) = I(b; T)

Proof. If b is T -uniform there exists a set K � I

?

such that b j= b

K

. This gives us that

I(b; T) =

S

i2K

S

i

, which is exactly I(T�). 2

Given this then we can present axiom P-Noisy for standard forms

b � � !(T + x 2 S?T) = � !T If x 62 fv(T); b is T -uniform and I(b; T)\ S = ;:

Again we simply write A

P

` b � T = U to mean that b � T = U can be derived from the

axioms in A

P

(A plus P-Noisy, Pattern, and Empty) using the proof system in Figure 3 with

the modi�ed input rule, P-INPUT.

Proposition 6.2 (Soundness)

If A

P

` b � T = U and � j= b then T� '

n

U�:

Proof. We need only show that the modi�ed rules/axioms are sound. The Pattern axiom and

Empty axiom are evident.

For P-Noisy this amounts to showing that T + x 2 S?T �

b

pn

T . Now we know that b is

T -uniform. Thus by Lemma 6.1 � j= b implies I(T�) = I(b; T). Given this we only need to

show that T�+ x 2 S?T� �

n

T� whenever S \ I(T�) = ; for � j= b

0

. This follows easily.

For the rule P-INPUT, suppose � j= b. We need to show that (x 2 S?T)�+ x 2 S

0

?U� '

n

x 2 S

0

?U)�. The only non-trivial move to match is of the form (x 2 S?T)�

v?

�! Q. Here Q

must be of the form T�[v=x] where v 2 S. Since x 62 fv(b) we have that �[v=x] j= b^x 2 S. So

by assumption we have � !T�[v=x]+� !U�[v=x])'

n

� !U�[v=x] which means T�[v=x]�

n

U�[v=x].

We know that S � S

0

and so v 2 S

0

. Therefore (x 2 S

0

?U)�

v?

�! U�[v=x] to match the move

from P . 2

Completeness is somewhat harder to prove and once more we have to appeal to to symbolic

bisimulations. The general approach, and indeed the general outline of the proof, is very

similar to that used in Section 4. However, we have added the pattern sets to the syntax of the

language and therefore changes are necessary both to the de�nition of symbolic bisimulations

and the associated proofs. Moreover the details are su�ciently subtle to warrant an exposition

of the required modi�cations.

We extend our abstract operational semantics to incorporate the pattern sets in Figure 6.

Recalling the abbreviation x?T for the term x 2 V al?T we see that the extension is a conserva-

tive one. The transitions relations are, as before, labelled with boolean values acting as guards.

23

Discard Input Output

O

tt;V al:

�! O

x 2 S?T

tt;V al�S:

�! x 2 S?T

y 62 fv(x 2 S?T)

x 2 S?T

tt;y2S?

�! T [y=x]

e!T

tt;V al:

�! e!T e!T

tt;e!

�! T

T

b;S:

�! T U

b

0

;S

0

:

�! U

T + U

b

0

^b;S\S

0

:

�! T + U

T

b;x2S?

�! T

0

T + U

b;x2S?

�! T

0

T

b;e!

�! T

0

T + U

b;e!

�! T

0

b

0

� T

:b

0

;V al:

�! b

0

� T

T

b;S:

�! T

b

0

� T

b;S:

�! b

0

� T

T

b;x2S?

�! T

0

b

0

� T

b

0

^b;x2S?

�! T

0

T

b;e!

�! T

0

b

0

� T

b

0

^b;e!

�! T

0

Figure 6: Patterned abstract operational semantics

The di�erences occur in transitions of the form

b;x2S?

�! now decorated with the patterned input,

and

b;S:

�! where S records the set of values which may be discarded.

Having changed the abstract operational semantics we consider the changes in the de�nition

of symbolic bisimulation. We give the de�nition of patterned noisy symbolic bisimulations.

Suppose

�

R

b

	

is a family of symmetric relations. Let set(x 2 S?) = set(S :) = S. De�ne

PNSB(R)

b

as follows:

(T; U) 2 PNSB(R)

b

if whenever

- T

b

0

;e!

�! T

0

there exists a b^b

0

-partition, B, such that for each b

00

2 B there exists U

d;e

0

!

�! U

0

such that b

00

j= d; b

00

j= e = e

0

and (T

0

; U

0

) 2 R

b

00

- T

b

0

;x2S?

�! T

0

such that x 62 fv(b; T; U) there exists a b ^ b

0

^ x 2 S-partition, B, such that

for each b

00

2 B there exists U

d;�

�! U

0

with � 2 fx 2 S

0

?; S

0

:g such that b

00

j= d; b

00

j=

x 2 set(�) and (T

0

; U

0

) 2 R

b

00

.

We call

�

R

b

	

a patterned noisy symbolic bisimulation if R

b

� PNSB(R)

b

for each b and denote

the largest such R by

n

�

b

pn

o

. Once again we now use the de�nition of �

b

pn

to de�ne '

b

pn

the

largest congruence contained in �

b

pn

:

T '

b

pn

U if whenever

- T

b

0

;e!

�! T

0

there exists a b^b

0

-partition, B, such that for each b

00

2 B there exists U

d;e

0

!

�! U

0

such that b

00

j= d; b

00

j= e = e

0

and (T

0

; U

0

) 2 R

b

00

- T

b

0

;x2S?

�! T

0

such that x 62 fv(b; T; U) there exists a b ^ b

0

^ x 2 S-partition, B, such that

for each b

00

2 B there exists U

d;x2S

0

�! U

0

such that b

00

j= d; b

00

j= x 2 S

0

and (T

0

; U

0

) 2 R

b

00

.

We see once more that this version of symbolic bisimulation characterises the corresponding

concrete version.

24

Proposition 6.3 For any T; U 2 SPA

T '

b

pn

U i� (8� � � j= b implies T� '

n

U�):

Proof. The `only if' part is straightforward: given a symbolic noisy bisimulation

�

S

b

	

, we

de�ne R =

�

(T�; U�) j 9b � � j= b and (T; U) 2 S

b

	

and show that this is a noisy bisimulation.

For the `if' part we suppose that we have a noisy bisimulation R and de�ne

S

b

= f(T; U) j � j= b implies (T�; U�) 2 Rg :

We aim to show that S

b

� PNSB(S)

b

. Suppose that T

b

0

;x2S?

�! T

0

. Let

U =

�

U

0

j U

b(U

0

);�(U

0

)

�! U

0

; �(U

0

) 2 fx 2 S

0

?; S

0

:g

�

and let U

0

2 U . De�ne b

aux

U

0

such that � j= b

aux

U

0

i� (T

0

�; U

0

�) 2 R and de�ne

b

U

0

= b(U

0

) ^ x 2 set(�(U

0

))^ b

aux

U

0

:

We let B be the set fb ^ b

0

^ x 2 S ^ b

U

0
j U

0

2 Ug. It is clear that

W

B j= b ^ b

0

^ x 2 S and

we show the converse. Suppose � j= b ^ b

0

^ x 2 S. Then � = �[v

0

=x] for some v

0

2 S and

(T�; U�) 2 R. By a simple generalisation of Proposition 4.3 we know that T�

v?

�! T

0

�[v=x], for

any v 2 S. So we know that there exists a matching move U�

v?

�! U

v

�[v=x] or U�

v:

�! U

v

�[v=x]

such that (T

0

�[v=x]; U

v

�[v=x]) 2 R.

By the same result we see there exists a U

v

2 U such that U

b(U

v

);�(U

v

)

�! U

v

with � j= b(U

v

)

and v 2 set(�(U

v

)). In particular we have this for v

0

and so (T

0

�; U

v

0

) 2 R. Which implies

that � j= b

U

v

0

. Therefore � j=

W

B.

This gives us the partition required. For each b

00

= b ^ b

0

^ x 2 S ^ b

U

0
2 B we have

U

b(U

0

);�(U

0

)

�! U

0

with b

00

j= b(U

0

); b

00

j= x 2 set(�(U

0

)) and b

00

j= b

aux

u

0

. This implies that

(T

0

�; U

0

�) 2 R, hence (T

0

; U

0

) 2 S

b

00

.

The symbolic transmissions from T can be dealt with in a similar, slightly simpler, manner.

2

Having developed a suitable notion of patterned symbolic bisimulation we develop a version

of Theorem 5.2 for open terms.

Theorem 6.4 If T and U are standard forms then T �

b

pn

U if and only if there exists a

b-partition, B, such that each b

0

2 B is both T and U -uniform and

T + z 2 S?T '

b

0

pn

U + z 2 S

0

?U

where z 62 fv(b; T; U); S = (I(b

0

; U)� I(b

0

; T)) and S

0

= (I(b

0

; T)� I(b

0

; U)). Moreover, when

both S and S

0

are non-empty, there exist T

0

; U

0

such that d(T

0

) < d(T); d(U

0

) < d(U) and

T

0

�

b

0

pn

T; U

0

�

b

0

pn

U .

Proof. We use Lemma 6.1 We exhibit two b-partitions, B

1

; B

2

such that each b

1

2 B

1

is

T -uniform and each b

2

2 B

2

is U -uniform. These are simply B

1

= fb ^ b

K

j K � I

?

g and

B

2

= fb ^ b

L

j L � J

?

g where I

?

; J

?

are the indexing sets of T

?

and U

?

respectively. We let

B = fb

1

^b

2

j b

1

2 B

1

; b

2

2 B

2

g. By Lemma 6.1 B has the property that for each b

0

2 B; � j= b

0

implies I(T�) = I(b

0

; T) and I(U�) = I(b

0

; U). Suppose � j= b

0

. Then T� �

n

U�. We apply

Theorem 5.2 to get

T�+ z 2 S?T� �

n

U�+ z 2 S

0

?U�

25

where S = I(U�)� I(T�) and S

0

= I(T�)� I(U�). By properties of the partition we know

that S = I(b

0

; U)� I(b

0

; T) and S

0

= I(b

0

; T)� I(b

0

; U). This is true for each � j= b

0

so we have

that T + z 2 S?T �

b

0

pn

U + z 2 S

0

?U .

What remains to be proved is the existence of T

0

; U

0

; in the case where S; S

0

; are non-empty.

This also follows from Theorem 5.2, save for a mild complication. For each � j= b

0

there is

a P

0

; Q

0

such that P

0

�

n

T� and Q

0

�

n

U

0

�. These P

0

; Q

0

are obtained by considering two

values v

1

2 S; v

2

2 S

0

and using the fact that T�

v

2

?

�! P

0

and U�

v

1

?

�! Q

0

. This means that P

0

is

of the form (T

i

[v

2

=x])� and similarly Q

0

is of the form (U

j

[v

1

=x])�. Let T

0

�

denote this T

i

[v

2

=x]

and let U

0

�

denote U

j

[v

1

=x]. For di�erent � these T

0

�

; U

0

�

may be di�erent although there are

only �nitely many such agents.

To resolve this we partition b

0

further. De�ne

�

ij

=

n

� j � j= b

0

and T

0

�

= T

i

[v

2

=x] and U

0

�

= U

j

[v

1

=x]

o

and de�ne � j= b

ij

if and only if � 2 �

ij

. These fb

ij

g partition b

0

and for each � j= b

ij

we have

terms T

0

; U

0

such that T

0

� �

n

T� and U

0

� �

n

U�. 2

Theorem 6.5 (Completeness) T '

b

pn

U implies A

P

` b � T = U .

Proof. As before we adopt standard forms for T; U and proceed by induction on the sum of

the depths, d(T) + d(U). Again it is su�cient to show

A

P

` b � T

!

= U

!

and A

P

` b � T

?

= U

?

independently. We concentrate on the latter though we must �rst modify the standard forms

slightly. Suppose

T

?

�

X

I

?

c

i

� x

i

2 S

i

?T

i

where z 62 fv(b; T;U). Then we have (for each i) that T

c

i

;z2S

i

?

�! T

i

[z=x

i

]. Since T '

b

pn

U we

know that there exists a matching b ^ c

i

^ z 2 S

i

-partition, B. Because z 62 fv(b; c

i

) we know

that each element of B is logically equivalent to something of the form b

0

^ z 2 S

i

k

(for some

indexing set K) where

W

b

0

� b ^ c

i

and

S

S

i

k

= S

i

. We use the axiom Pattern to decompose

the summand x

i

2 S

i

?T

i

of T into the sum

P

k2K

x

i

2 S

i

k

?T

i

and Proposition 4.6 to distribute

c

i

across this sum. We repeat this for each i 2 I

?

and also for U .

Having done this we show A

P

` b � T

?

= U

?

where T

?

�

P

I

c

i

� x

i

2 S

i

?T

i

and U

?

�

P

J

d

j

�

x

j

2 S

j

?U

j

. Let U

z

?

denote the term

X

j2J

?

d

j

� z 2 S

j

?U

j

[z=y

j

]:

It is su�cient to show

A

P

` b ^ c

i

� U

z

?

= U

z

?

+ c

i

� z 2 S

i

?T

i

[z=x

i

]

for each i 2 I?. For once we have obtained this we can apply GUARD and add to get

A

P

` b � U

z

?

= U

z

?

+ (

X

i2I

c

i

� z 2 S

i

?T

i

[z=x

i

]):

Repeating this argument we obtain a symmetric version of this which results in A

P

` b �

P

i2I

c

i

� z 2 S

i

?T

i

[z=x

i

] = U

z

?

. The �nal result follows by �-conversion.

26

So for an arbitrary i 2 I

?

we now show

A

P

` b ^ c

i

� U

z

?

= U

z

?

+ c

i

� z 2 S

i

?T

i

[z=x

i

]:

Suppose that T

c

i

;z2S

i

?

�! T

i

[z=x

i

]. Since T '

b

pn

U we know there exists a b^ c

i

^ z 2 S

i

-partition,

B

i

, such that each element of B

i

is of the form b

0

^ z 2 S

i

(where the b

0

partition b ^ c

i

) such

that there exists U

d

j

;z2S

j

?

�! U

j

[z=y

j

] such that b

0

^ z 2 S

i

j= d; b

0

^ z 2 S

i

j= z 2 S

j

and

T

i

[z=x

i

] �

b

0

pn

U

j

[z=y

j

]. The fact that b

0

^ z 2 S

i

j= z 2 S

j

gives us that S

i

� S

j

. This will

witness the side condition of the P-INPUT rule.

By Theorem 6.4 we get a b

0

^ z 2 S

i

-partition, B

0

, such that for each b

00

2 B

0

we have that b

00

is both T

i

[z=x

i

] and U

j

[z=y

j

]-uniform and that

T

i

[z=x

i

] + x 2 S?T

i

[z=x

i

] '

b

00

pn

U

j

[z=y

j

] + x 2 S

0

?U

j

[z=y

j

]

where S is I(b

00

; U

j

[z=y

j

])�I(b

00

; T

i

[z=x

i

]) and S

0

is I(b

00

; T

i

[z=x

i

])�I(b

00

; U

j

[z=y

j

]). Once again

we have four cases to consider. In each of which we demonstrate

A

P

` b

00

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

]:

1. S = S

0

= ;.

Since x 2 ;?T '

tt

pn

O we conclude that T

i

[z=x

i

] '

b

00

pn

U

j

[z=y

j

] and apply induction to

obtain A

P

` b

00

� T

i

[z=x

i

] = U

j

[z=y

j

]. Whence A

P

` b

00

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

].

2. S = ;; S

0

6= ;.

We have T

i

[z=x

i

] '

b

00

pn

U

j

[z=y

j

] + x 2 S

0

?U

j

[z=y

j

]. Again we apply induction and use

axiom Noisy to obtain A

P

` b

00

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

].

3. S 6= ;; S

0

= ;.

Similar.

4. S 6= ;; S

0

6= ;.

By Theorem 6.4 there exists T

0

; U

0

such that T

i

[z=x

i

] �

b

00

pn

T

0

and U

j

[z=y

j

] �

b

00

pn

U

0

.

Without loss of generality, suppose that d(T) � d(U). By induction we get A

P

` b

00

�

� !T

i

[z=x

i

] = � !T

0

. Whence A

P

` b

00

� x 2 S?T

i

[z=x

i

] = x 2 S?T

0

by P-INPUT. We can

deduce that

T

i

[z=x

i

] + x 2 S?T

0

'

b

00

np

U

j

[z=y

j

] + x 2 S

0

?U

j

[z=y

j

]

and see that induction is applicable here also. Therefore we get

A

P

` b

00

� T

i

[z=x

i

] + x 2 S?T

0

= U

j

[z=y

j

] + x 2 S

0

?U

j

[z=y

j

]:

Using the previous result we can substitute T

0

for T

i

[z=x

i

] then apply TAU and axiom

Noisy twice to get A

P

` b

00

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

] as required.

So we have seen that for each b

00

2 B

0

we can prove A

P

` b

00

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

] so

we apply CUT to give A

P

` b

0

^ z 2 S

i

� � !T

i

[z=x

i

] = � !U

j

[z=y

j

] . We know that b

0

j= c

i

^ d

j

and we can use Proposition 4.6 to give

A

P

` b

0

^ z 2 S

i

� d

j

� � !U

j

[z=y

j

] = (d

j

� � !U

j

[z=y

j

] + c

i

� � !T

i

[z=x

i

]):

This facilitates application of P-INPUT

�

to give

A

P

` b

0

� d

j

� z 2 S

j

?U

j

[z=y

j

] = d

j

� z 2 S

j

?U

j

[z=y

j

] + c

i

� z 2 S

i

?T

i

[z=x

i

]:

27

Adding in the rest of the U

j

[z=y

j

] for the j 2 J

?

we get

A

P

` b

0

� U

z

?

= U

z

?

+ c

i

� z 2 S

i

?T

i

[z=x

i

]:

This is true for each b

0

so we can apply CUT to give

A

P

` b ^ c

i

� U

z

?

= U

z

?

+ c

i

� z 2 S

i

?T

i

[z=x

i

]:

2

7 Finite CBS

Having now dealt with the pattern matching construct it remains only to to consider the parallel

and translation constucts in order to have a proof system for all of �nite CBS . The standard

approach is to introduce axioms or axiom schemas which are su�cient to translate agents of

�nite CBS into agents of SPA. The parallel operator is usually treated using an expansion

theorem while translations, being generalisations of the restriction and renaming operators of

CCS , can be handled by a set of axiom schemas which when used as rewrite rules can reduce

a term of the form P

(f;g)

, where P 2 SPA, to a term in SPA. We give a brief outline of the

necesary axiom schemas but leave much of the details to the reader.

The expansion theorem presented in [14] is not su�cient here as we need to deal with the

pattern sets. However a suitable adaption of this is obtained:

Proposition 7.1 Suppose fv(T) \ bv(U) = fv(U) \ bv(T) = ; and

T �

X

i2I

w

i

!T

i

+

X

j2J

x 2 S

j

?T

j

and

U �

X

k2K

w

k

!U

k

+

X

l2L

x 2 S

l

?U

l

:

Then, writing

�

S

L

def

=

T

l2L

(V al�S

l

), writing L

w

i

def

= fl 2 L j w

i

2 S

l

g and writing

�

I

L

def

= fi 2

I j w

i

2

�

S

L

or w

i

= �g we have

T j U '

n

P

i2I; l2L

w

i

w

i

!(T

i

j U

l

[w

i

=x]) +

P

k2K; j2J

w

k

w

k

!(T

j

[w

k

=x] j U

k

) +

P

i2

�

I

L

w

i

!(T

i

j U) +

P

k2

�

K

J

w

k

!(T j U

k

) +

P

j2J; l2L

x 2 S

j

\ S

l

?(T

j

j U

l

) +

P

j2J

x 2 (S

j

\

�

S

L

)?(T

j

j U) +

P

l2L

x 2 (S

l

\

�

S

J

)?(T j U

l

):

Proof. Su�cient to prove that P jQ

�

�! P

0

if and only if the RHS

�

�! P

0

for any closed in-

stantions P;Q of T; U respectively. This can be proved directly from the operational semantics;

the details are left to the reader. 2

28

To accommodate the translation functions we use the following coding de�ned inductively

on terms. Let dom (g) = fv 2 V al j g(v) 6= �g.

- hOi

(f;g)

= O

- he!T i

(f;g)

= f(e[g(~x)=~x])!hT i

(f;g)

- hx 2 S?T i

(f;g)

= x 2 S \ dom (g)?hT i

(f;g)

- hb� T i

(f;g)

= b[g(~x)=~x]� hT i

(f;g)

- h

P

i2I

T

i

i

(f;g)

=

P

i2I

hT

i

i

(f;g)

- hT

(f

0

;g

0

)

i

(f;g)

= hT i

(f �f

0

; g

0

�g)

Proposition 7.2 hT i

(f;g)

'

n

T

(f;g)

:

Proof. Structural induction on T . 2

The identity in Proposition 7.1 can be viewed as an axiom schema, which we call EXP,

while TRANS is used to denote the obvious axiom schemas underlying the above encoding;

each line gives rise to a separate axiom schema.

Theorem 7.3 For any two terms of �nite CBS, T and U ,

T '

n

U i� A

P

; EXP; TRANS ` T = U:

Proof. Use soundness of translations along with soundness and completeness results of the

previous section. 2

A similar result can be obtained for the proof system for closed terms, but we leave the

details to the reader.

29

References

[1] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical

Computer Science 18. Cambridge University Press, 1990.

[2] E. Best, editor. Proceedings CONCUR 93, Hildesheim, volume 715 of Lecture Notes in

Computer Science. Springer-Verlag, 1993.

[3] M. Hennessy and H. Lin. Symbolic bisimulations. Technical Report 1/92, University of

Sussex, 1992.

[4] M. Hennessy and H. Lin. Proof systems for message-passing process algebras. In Best [2],

pages 202{216.

[5] M. Hennessy and G.D. Plotkin. A term model for CCS. In P. Dembi�nski, editor, 9

th

Sym-

posium on Mathematical Foundations of Computer Science, volume 88 of Lecture Notes in

Computer Science, pages 261{274. Springer-Verlag, 1980.

[6] Huimin Lin. A veri�cation tool for value-passing processes. Computer Science Report

8/93, University of Sussex, 1993.

[7] Huimin Lin. Symbolic bisimulations and proof systems for the pi-calculus. Computer

Science Report 7/94, University of Sussex, 1994.

[8] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood

Cli�s, 1989.

[9] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I + II. Infor-

mation and Computation, 100(1):1{77, 1992.

[10] P. Panangaden and J. Reppy. The relative expressiveness of multiway rendezvous. In

Proceedings of the Express Workshop, CWI, 1994.

[11] J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Technical Report

ECS-LFCS-93-262, Laboratory for Foundations of Computer Science, Computer Science

Department, Edinburgh University, 1993.

[12] A. Pnueli. Linear and branching structures in the semantics and logics of reactive systems.

In Wilfried Brauer, editor, Proceedings 12

th

ICALP,Nafplion, volume 194 of Lecture Notes

in Computer Science, pages 15{32. Springer-Verlag, July 1985.

[13] K.V.S. Prasad. A calculus of broadcast systems. In TAPSOFT 91 Volume 1: CAAP.

Springer Verlag, 1991.

[14] K.V.S. Prasad. A calculus of value broadcasts. Technical report, Dept. of Computer

Science, Chalmers, 1992.

[15] K.V.S. Prasad. Programming with broadcasts. In Best [2].

[16] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms. PhD thesis, University of Edinburgh, 1993.

[17] Martin Weichert. Algebra of communicating systems. In Winterm�otet Tanum Strand,

draft proceedings, 1993.

30

