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Abstract

Many process algebras are de�ned by structural operational semantics (SOS). Indeed, most

such de�nitions are nicely structured and �t the GSOS format of [13]. In [2] B. Bloom, F.

Vaandrager and I presented a procedure for converting any GSOS language de�nition to a �nite

complete equational axiom system which precisely characterizes strong bisimulation of processes.

For recursion theoretic reasons, such a complete equational axiom system included, in general,

one in�nitary induction principle | essentially a reformulation of the Approximation Induction

Principle (AIP) [7, 6].

However, it is well-known that AIP and other in�nitary proof rules are not necessary for

the axiomatization of, e.g., strong bisimulation over regular behaviours (see [29, 8, 31]). In

this paper, following [1], I characterize a class of in�nitary GSOS speci�cations, obtained by

relaxing some of the �niteness constraints of the original format of Bloom, Istrail and Meyer,

which generate regular processes. I then show how the techniques of [2] can be adapted to give a

procedure for converting any such language de�nition to a complete equational axiom system for

strong bisimulation of processes which does not use in�nitary proof rules. Equalities between

recursive, regular processes can be established in the resulting inference systems by means

of standard axioms to unwind recursive de�nitions, and the so-called Recursive Speci�cation

Principle (RSP) [6].

It turns out that not all the in�nitary GSOS systems from [1] which generate �nite labelled

transition systems are amenable to the development of a corresponding equational theory �a l�a

[2]. A new class of in�nitary GSOS systems which a�ord a nice algebraic treatment emerges from

this study. I believe that this new class of in�nitary GSOS speci�cations has some independent

interest.
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1 Introduction

Since de Simone's pioneering work on the expressivity of the calculi SCCS [28] andMeije [3] (cf. the

references [35, 36]), there has been considerable interest in the metatheory of process algebras. As
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many process algebras are de�ned by structural operational semantics (SOS) [34], this way of giving

semantics to programming and speci�cation languages has been a natural handle for proving results

for classes of languages. In particular, several formats for SOS rules have emerged in the literature

(see, e.g., [35, 13, 20, 19, 14, 37, 5, 40, 10]) and a wealth of properties that hold for all languages

speci�ed in terms of rules which �t these formats have been established. (In addition to the previous

references, the interested reader may wish to consult, e.g., [9, 33, 26, 38, 2, 4, 39, 11, 12, 15, 1] for

examples of this kind of metatheoretic results).

In [2] I gave a contribution to this line of research by presenting, together with B. Bloom and

F. Vaandrager, a procedure for converting any language de�nition in the GSOS format of Bloom,

Istrail and Meyer [13, 9] to a �nite complete equational axiom system which precisely characterizes

strong bisimulation of processes. Such a complete equational axiom system included, in general,

one in�nitary induction principle | essentially a reformulation of the Approximation Induction

Principle (AIP) [7, 6]. An in�nitary proof rule like AIP is indeed necessary to obtain completeness

for arbitrary GSOS systems because, as shown in [2], testing bisimulation over GSOS systems is

�

0

1

-complete.

However, it is well-known that AIP and other in�nitary proof rules are not necessary for the

axiomatization of, e.g., strong bisimulation over regular behaviours (see the classic references [29,

8, 31]). Thus it should be possible to �ne tune the methods of [2] to produce complete inference

systems for strong bisimulation over classes of GSOS systems that generate regular behaviours

which do not rely on in�nitary proof rules like AIP. This is the aim of this paper.

1.1 Results

In this paper, I give a procedure for extracting from a GSOS speci�cation that generates regular

processes a complete axiom system for strong bisimulation equivalence. This axiom system is

equational, except for one conditional equation, and does not rely on in�nitary proof rules.

First of all, following [1], I characterize a class of in�nitary GSOS speci�cations, obtained

by relaxing some of the �niteness constraints of the original format of Bloom, Istrail and Meyer

[13, 9], which has some of the basic sanity properties of the original GSOS format. For example,

it will ensure that the transition relation induced by the rules will be �nitely branching. Syntactic

restrictions are then imposed on the rules in these in�nitary GSOS speci�cations to ensure that

the semantics of processes is given by �nite process graphs. The result is a class of in�nitary GSOS

systems that includes most of the standard operations used in the literature on process algebras.

I then show how the techniques of [2] can be adapted to give a procedure for converting any

such language de�nition to a complete equational axiom system for strong bisimulation of processes

which does not use in�nitary proof rules. Equalities between recursive, regular processes can be

established in the resulting inference systems by means of standard axioms to unwind recursive

de�nitions, and the so-called Recursive Speci�cation Principle (RSP) [6].

Interestingly, it turns out that not all the in�nitary GSOS systems from [1] which generate

�nite labelled transition systems are amenable to the development of a corresponding equational

theory �a l�a [2]. In particular, operations that use their arguments in unboundedly many di�erent

ways can still generate �nite process graphs, but cannot be axiomatized in �nitary fashion | at

least not using the techniques of [2]. As an example, consider the operation f with rules (one such

rule for each i 2 ! and j � i):

x

a

i

! y

f(x)

a

j

! 0

(1)

For each process P that can initially perform only a �nite number of di�erent actions, the semantics
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of f(P ) is given by a �nite process graph. However, such an operation cannot be axiomatized in

�nitary fashion using the techniques of [2] because there is no upper bound on the number of

di�erent rules for it which have the same hypothesis. (See Proposition 5.10). Similarly, operations

that have no upper bound on the number of positive hypotheses for their arguments, i.e. antecedents

like x

a

i

! y in rule (1), do not lend themselves to a clean algebraic description using the methods of

[2]. (See Proposition 5.14).

However, for GSOS systems whose operations are de�ned by rules without negative hypotheses,

it is possible to give a reasonably aesthetic axiomatization of operations like the one given by

the rules (1). A revised strategy that can be used to axiomatize these operations is presented

in Section 7.1. When applied to the operation f described by the rules (1), the revised strategy

produces the following natural equations:

f(0) = 0

f(x+ y) = f(x) + f(y)

f(a

i

:x) =

X

1�j�i

a

j

:0 (a

i

2 Act)

A new class of in�nitary GSOS systems which a�ord a nice algebraic treatment emerges from this

study. I believe that this new class of in�nitary GSOS speci�cations has some independent interest,

and will form the basis for a general treatment of in�nitary GSOS languages which enjoy most of

the sanity properties of the original proposal of Bloom, Istrail and Meyer.

1.2 Outline of the Paper

The paper is organized as follows. Section 2 is devoted to a review of background material from

the theory of structural operational semantics and process algebras that will be needed in this

study. Section 3 introduces the class of regular in�nitary GSOS systems that will be axiomatized

in Section 5. This is a subclass of the in�nitary simple GSOS systems from [1] which a�ord a

clean algebraic treatment. Section 5 presents an adaptation of the techniques from [2] to regular

in�nitary GSOS systems and two simple impossibility results which motivate the restriction to the

class of systems under consideration. The algorithm of Section 5 produces an equational theory

which is strongly head normalizing for all processes, i.e., that allows one to prove that a process

P is equivalent to the sum of its initial derivatives. In Section 6, I discuss the completeness

of the inference system obtained by extending the resulting equational theory with the recursive

speci�cation principle. Section 7.1 presents an alternative strategy that can be used to axiomatize

positive GSOS operations, i.e. operations whose operational semantics is de�ned by rules without

negative hypotheses. This revised strategy can be used to axiomatize operations that, like the one

given by the rules (1), are bounded, but not uniformly bounded, in the sense of De�nition 3.2.

Finally, in Section 7.2, I discuss some directions for further research.

Familiarity with [2, 1] will be helpful, but not necessary, in reading the paper. As this is not

an introductory paper on deriving complete axiomatizations from SOS rules, I shall often refer the

reader to the literature for examples and motivations. Precise pointers to the literature will be

given wherever necessary.

2 Preliminaries

I assume that the reader is familiar with the basic notions of process algebra and structural oper-

ational semantics; see, e.g., [25, 23, 30, 6, 34, 20, 13, 9] for more details and extensive motivations.
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Let Var be a denumerable set of process variables ranged over by x; y. (For technical convenience,

I shall assume throughout that the set Var can always be extended). A signature � consists of a

set of operation symbols, disjoint from Var, together with a function arity that assigns a natural

number to each operation symbol. The set (�) of terms over � is the least set such that

� Each x 2 Var is a term.

� If f is an operation symbol of arity l, and P

1

; : : : ; P

l

are terms, then f(P

1

; : : : ; P

l

) is a term.

I shall use P;Q; : : : to range over terms and the symbol � for the relation of syntactic equality on

terms. T(�) is the set of closed terms over �, i.e., terms that do not contain variables. Constants,

i.e. terms of the form f(), will be abbreviated as f . A (closed) �-substitution is a mapping � from

the set of variables Var to the set of (closed) terms over �. The notation fP

1

=x

1

; : : : ; P

n

=x

n

g, where

the P

i

s are terms and the x

i

s are distinct variables, will often be used to denote the substitution

that maps each x

i

to P

i

, and leaves all the other variables unchanged.

A �-context C[~x] is a term in which at most the variables ~x appear. C[

~

P ] is C[~x] with x

i

replaced by P

i

wherever it occurs. In this paper, substitutions of open terms for variables will only

be used in the absence of binding operations. For this reason, I take the liberty of using this simple

de�nition of substitution, and omit the standard details of the formal de�nition.

Besides terms I have actions, elements of some given countable

1

set Act, which is ranged over

by a; b; c.

De�nition 2.1 (GSOS Rules and In�nitary GSOS Systems) Suppose � is a signature. A

GSOS rule � over � is an inference rule of the form

2

:

S

l

i=1

n

x

i

a

ij

! y

ij

j1 � j � m

i

o

[

S

l

i=1

n

x

i

b

ik

9 j1 � k � n

i

o

f(x

1

; : : : ; x

l

)

c

! C[~x; ~y]

(2)

where all the variables are distinct, m

i

; n

i

� 0, f is an operation symbol from � with arity l, C[~x; ~y]

is a �-context, and the a

ij

, b

ik

, and c are actions in Act.

An in�nitary GSOS system is a pair G = (�

G

; R

G

), where �

G

is a countable signature and R

G

is

a countable set of GSOS rules over �

G

.

It is useful to name components of rules of the form (2). The operation symbol f is the principal

operation of the rule, and the term f(~x) is the source. C[~x; ~y] is the target (sometimes denoted by

target(�)); c is the action; the formulas above the line are the antecedents (sometimes denoted by

ante(�)); and the formula below the line is the consequent. If, for some i, m

i

> 0 then I say that

� tests its i-th argument positively. Similarly if n

i

> 0 then I say that � tests its i-th argument

negatively. An operation f tests its i-th argument positively (resp. negatively) if it occurs as

principal operation of a rule that tests its i-th argument positively (resp. negatively).

GSOS systems have been introduced and studied in depth in [13, 9]. The reader familiar with

those references may have noticed that in�nitary GSOS systems, unlike the GSOS systems in

[13, 9], are not required to consist of a �nite signature and a �nite set of GSOS rules. This slight

generalization of the original de�nition will allow me to deal with calculi which, like CCS [30] and

1

A set X is countable if it is empty or if there exists an enumeration of X, that is a surjective mapping from the

set of positive integers onto X.

2

The format for GSOS rules considered in this paper is the original one of Bloom, Istrail and Meyer. However,

all the results in this paper hold for a generalized version of GSOS rule in which an in�nite number of negative

antecedents is allowed.
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Meije [3], postulate an in�nite action set. In the setting of this paper, it will also be natural to

treat languages with a denumerable set of operations. (See, e.g., Section 4).

Intuitively, an in�nitary GSOS system gives a language, whose constructs are the operations in

the signature �

G

, together with a Plotkin-style structural operational semantics [34] for it de�ned

by the set of conditional rules R

G

. Informally, the intent of a GSOS rule is as follows. Suppose that

we are wondering whether f(

~

P ) is capable of taking a c-step. We look at each rule with principal

operation f and action c in turn. We inspect each positive antecedent x

i

a

ij

! y

ij

, checking if P

i

is

capable of taking an a

ij

-step for each j and if so calling the a

ij

-children Q

ij

. We also check the

negative antecedents; if P

i

is incapable of taking a b

ik

-step for each k. If so, then the rule �res and

f(

~

P )

c

! C[

~

P ;

~

Q]. Roughly, this means that the transition relation associated with an in�nitary

GSOS system, notation !

G

, is the one de�ned by structural induction on terms using the rules in

R

G

. This essentially ensures that a transition f(

~

P )

a

!

G

Q exists between the closed terms f(

~

P ) and

Q i� there exist a closed substitution �, and a rule for f whose antecedents hold when instantiated

with �, and whose instantiated target yields Q. The interested reader is referred to [13, 9] for the

details of the formal de�nition of !

G

.

As usual, the operational semantics for the closed terms over �

G

will be given in terms of the

notion of labelled transition system.

De�nition 2.2 (Labelled Transition Systems and Process Graphs) Let A be a set of la-

bels. A labelled transition system (lts) is a pair (S;!), where S is a set of states and!� S�A�S

is the transition relation. As usual, I shall write s

a

! t in lieu of (s; a; t) 2!. A state t is reachable

from state s if there exist states s

0

; : : : ; s

n

and labels a

1

; : : : ; a

n

such that

s = s

0

a

1

! s

1

a

2

! � � �

a

n

! s

n

= t

The set of states which are reachable from s, also known as the set of derivatives of s, will be

denoted by der(s).

A process graph is a triple (r; S;!), where (S;!) is an lts, r 2 S is the root, and each state in S

is reachable from r. If (S;!) is an lts and s 2 S then graph(s; (S;!)) is the process graph obtained

by taking s as the root and restricting (S;!) to the part reachable from s. I shall write graph(s)

for graph(s; (S;!)) whenever the underlying lts (S;!) is understood from the context.

An lts (S;!) is �nite i� S and ! are �nite sets. A process graph graph(s; (S;!)) is �nite if the

restriction of (S;!) to the part reachable from s is.

The lts speci�ed by an in�nitary GSOS system G is then given by lts(G) = (T(�

G

);!

G

) and the

process graph de�ning the operational semantics of a closed term P is graph(P; lts(G)) (abbreviated

to graph(P ) when the in�nitary GSOS system G is clear from context).

The basic notion of equivalence among terms of an in�nitary GSOS system I shall consider in

this paper is that of bisimulation [32, 28].

De�nition 2.3 Suppose G is an in�nitary GSOS system. A binary relation � � T(�

G

)�T(�

G

)

over closed terms is a bisimulation if P � Q implies, for all a 2 Act,

1. If P

a

!

G

P

0

then, for some Q

0

, Q

a

!

G

Q

0

and P

0

� Q

0

.

2. If Q

a

!

G

Q

0

then, for some P

0

, P

a

!

G

P

0

and P

0

� Q

0

.

I write P
$

{{

G

Q if there exists a bisimulation � relating P and Q. The subscript G is omitted when

it is clear from context.
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Lemma 2.4 Suppose G is an in�nitary GSOS system. Then

$

{{

G

is an equivalence relation and a

congruence for all operation symbols f of G, i.e., (8i : P

i

$

{{

G

Q

i

) ) f(

~

P )
$

{{

G

f(

~

Q).

Proof: In�nitary GSOS systems are well-founded, strati�able transition systems speci�cations

in ntyft format in the sense of Bol and Groote [19, 14], with the number of operation symbols

in a term providing the strati�cation. The result then follows immediately from the congruence

theorems given in the aforementioned references. 2

For an in�nitary GSOS system G, I shall write Bisim(G) for the quotient algebra of closed �

G

-terms

modulo bisimulation. That is, for P;Q 2 (�

G

),

Bisim(G) j= P = Q , (8 closed �

G

-substitutions � : P�

$

{{

G

Q�):

The following notion from [2] will be useful in the remainder of this paper.

De�nition 2.5 An in�nitary GSOS system H is a disjoint extension of an in�nitary GSOS system

G, notation G v H, if the signature and rules of H include those of G, and H introduces no new

rules for operations of G.

If H disjointly extends G then H introduces no new outgoing transitions for terms of G. This

means in particular that, for P;Q 2 T(�

G

), P
$

{{

G

Q , P
$

{{

H

Q.

The notion of disjoint extension of an in�nitary GSOS system is closely related to that of sum

of two transition system speci�cations due to Groote and Vaandrager [20, De�nition 7.3].

De�nition 2.6 Let �

0

and �

1

be signatures whose arity functions agree over their common oper-

ation symbols. The sum of �

0

and �

1

, notation �

0

� �

1

, is the signature whose operation symbols

are those occurring in �

0

or �

1

, and whose function arity is the one with graph given by the union

of the graphs of the arity functions of �

0

and �

1

.

Let G

i

= (�

G

i

; R

G

i

) (i = 0; 1) be two in�nitary GSOS systems with �

0

� �

1

de�ned. The sum

of G

0

and G

1

, notation G

0

�G

1

, is the in�nitary GSOS system:

G

0

� G

1

= (�

G

0

� �

G

1

; R

G

0

[ R

G

1

)

It is immediate to see that if an in�nitary GSOS system H disjointly extends G then H = G�H .

Conversely, if H = G�H and H introduces no new rules for operations of G, then G v H .

In this paper, I shall be interested in equations which are preserved by taking disjoint extensions

of in�nitary GSOS systems. Following [2], I thus introduce, for G an in�nitary GSOS system, the

class BISIM(G) of all algebras Bisim(G

0

), for G

0

a disjoint extension of G. Thus we have, for

P;Q 2 (�

G

),

BISIM(G) j= P = Q , (8G

0

: G v G

0

) Bisim(G

0

) j= P = Q):

3 Regular In�nitary GSOS Systems

In this section, I shall brie
y show how to impose syntactic restrictions on the format of rules in an

in�nitary GSOS system G which ensure that graph(P ) is a �nite process graph for each P 2 T(�

G

).

Some of the results to follow are from [1], and I refer the reader to that reference for intuition and

examples. The class of in�nitary GSOS systems which will be considered in this paper will be a

subclass of the simple GSOS systems of [1] which allows for the development of a clean algebraic

theory.
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In order to obtain that graph(P ) is a �nite process graph for each closed term P , it is necessary

to impose restrictions on the class of in�nitary GSOS systems under consideration, ensuring that

the transition relation be �nitely branching and that the set of states reachable from P be �nite.

Finite branching of the transition relation !

G

is one of the basic sanity properties of the original

GSOS format of Bloom, Istrail and Meyer [13, 9]. However, in the presence of a possibly in�nite

action set and signature, it is easy to specify operations which give rise to in�nitely branching

process graphs, and explicit constraints ruling out this pathology must be imposed on in�nitary

GSOS systems.

De�nition 3.1 The positive trigger of rule (2) is the l-tuple over 2

Act

he

1

; : : : ; e

l

i, where

e

i

= fa

ij

j1 � j � m

i

g

When writing positive triggers, I shall often identify a singleton set fag with the action a.

De�nition 3.2 (Boundedness and Uniform Boundedness) An operation f in an in�nitary

GSOS system is bounded i� for each positive trigger, the corresponding set of rules for f is �nite.

An in�nitary GSOS system is bounded i� each of its operations is.

An operation in an in�nitary GSOS system is uniformly bounded i� there exists an upper

bound n

f

on the number of distinct rules for f having the same positive trigger. An in�nitary

GSOS system is uniformly bounded i� each of its operations is.

The notion of bounded in�nitary GSOS system is from [1], and is inspired by ideas developed by

Vaandrager [39, De�nition 3.2] for de Simone systems. The notion of uniform boundedness is new

in this paper, and will play an important role in Section 5.1. (In particular, it will be crucial in

the proof of Proposition 5.9). Of course, every uniformly bounded operation is also bounded. The

following example shows that the converse is not true.

Example: Let Act = fa

i

j i � 1g be a denumerable set of actions. Consider an in�nitary GSOS

system G comprising a unary operation f and constant 0, with rules (one such rule for each i 2 !

and j � i):

x

a

i

! y

f(x)

a

j

! 0

(3)

Then f is bounded, as there are exactly i rules with trigger a

i

for each i � 1. However, f is not

uniformly bounded.

All the standard operations used in the literature on process algebras are uniformly bounded.

A bounded in�nitary GSOS system associates a �nitely branching process graph with each

term. (A fortiori, this property is also true of uniformly bounded in�nitary GSOS systems).

Lemma 3.3 ([1]) For each in�nitary, bounded GSOS system G, the transition relation !

G

is

�nitely branching, i.e. for all P 2 T(�

G

), the set

n

Q j 9a 2 Act : P

a

!

G

Q

o

is �nite.

In order to characterize an interesting class of in�nitary GSOS systems which generate �nite process

graphs, I shall now introduce a further restriction on in�nitary GSOS systems that ensures that

processes have a �nite set of derivatives. The following notions are from [1].
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De�nition 3.4 A GSOS rule of the form (2) is simple i� C[~x; ~y] is either a variable in ~x; ~y or it

is of the form g(z

1

; : : : ; z

n

) where each z

i

is a variable in ~x; ~y. An operation is simple i� all the

rules for it are. An in�nitary GSOS system G = (�

G

; R

G

) is simple i� each operation in �

G

is.

De�nition 3.5 Let G = (�

G

; R

G

) be a simple, in�nitary GSOS system. The operator dependency

graph associated with G is the directed graph with

� �

G

as set of nodes, and

� set of edges E given by: (f; g) 2 E i� there exists a rule � 2 R

G

with f as principal operation

and target g(z

1

; : : : ; z

n

), for some z

1

; : : : ; z

n

2 Var.

I shall write f �

G

g i� fE

?

q in the operator dependency graph for G, where E

?

denotes the re
exive

and transitive closure of E.

De�nition 3.6 (Very Simple GSOS Systems) Let G = (�

G

; R

G

) be a simple, in�nitary GSOS

system. An operation f 2 �

G

is very simple i� it is uniformly bounded and fg j f �

G

gg is �nite.

A simple, in�nitary GSOS system is very simple i� every operation in its signature is.

The following result can be shown by structural induction on closed terms following the lines

of [1, Theorem 5.5].

Proposition 3.7 Let G = (�

G

; R

G

) be a very simple GSOS system. Then, for all P 2 T(�

G

),

graph(P ) is a �nite process graph.

The following de�nition introduces the subclass of very simple GSOS systems that I shall study

in the remainder of this paper. The following de�nition is new in this paper, and will play an

important role in Section 5.2. (In particular, it will be crucial in the proof of Proposition 5.13).

De�nition 3.8 (Regular GSOS Systems) Let G = (�

G

; R

G

) be an in�nitary GSOS systems.

An operation f 2 �

G

has limited fan-in i� for every argument i for f there exists an upper bound

m

(f;i)

on the number of distinct positive antecedents for argument i in the rules for f in R

G

. I

say that an operation f 2 �

G

is regular i� it is very simple, and has limited fan-in. An in�nitary

GSOS systems is regular i� every operation in its signature is.

Most of the standard operations used in the literature on process algebras are regular. An example

of a very simple operation which is not regular is presented below.

Example: Let Act = fa

i

j i � 1g be a denumerable set of actions. Consider the very simple GSOS

operation g with rules (one such rule for each i 2 !):

n

x

a

j

! y

j

j 1 � j � i

o

g(x)

a

i

! 0

(4)

Then g is not regular as it has a rule with n positive antecedents for its one argument for each

n 2 !.

The following result is an immediate corollary of the previous theory.

Corollary 3.9 Let G = (�

G

; R

G

) be a regular GSOS system. Then, for all P 2 T(�

G

), graph(P )

is a �nite process graph.
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4 The Problem

The main problem addressed in [2] was to �nd a complete axiomatization of bisimulation on closed

terms { that is, equality in Bisim(G) { for an arbitrary GSOS system speci�cation G. In that

reference it was shown how to �nd a �nite (conditional) equational theory T such that for all closed

terms P;Q 2 T(�

G

),

T ` P = Q , Bisim(G) j= P = Q:

The theory T generated by the methods in [2] was purely equational, apart from the presence of one

in�nitary conditional equation which is a reformulation of the Approximation Induction Principle

(AIP) familiar from the literature on ACP [6]. Indeed, by recursion theoretic considerations spelled

out in [2], it is not possible to do without an in�nitary proof rule like AIP for general GSOS

speci�cations.

However, for classes of GSOS systems generating regular behaviours, it should be possible to

obtain complete axiomatizations of bisimulation on closed terms that do not rely on in�nitary

proof rules. In the remainder of this paper, I shall present a way of obtaining such complete

axiomatizations of bisimulation for the regular GSOS speci�cations introduced in De�nition 3.8.

The presentation will follow [2] quite closely, and the reader will be referred to that paper for some

of the details, and examples of applications of the theory.

In [2], it was shown how to reduce the completeness problem for arbitrary GSOS speci�cations

to that for FINTREE, a simple fragment of CCS suitable for expressing �nite trees, which was solved

by Hennessy and Milner in [24]. Here I shall follow the same approach, by showing how to reduce

the completeness problem for regular GSOS speci�cations to that for �nite process graphs, which

was solved by Milner in [29]. (See also [8, 31]).

The in�nitary GSOS system FINTREE has a constant symbol 0 denoting the null process; unary

operation symbols a(�), one for each action in Act, denoting action pre�xing; and a binary symbol

+ for nondeterministic choice. The null process is incapable of taking any action, and consequently

has no rules. For each action a there is a rule ax

a

! x. The operational semantics of P + Q is

de�ned by the rules (one pair of rules for each a 2 Act):

x

a

! x

0

x+ y

a

! x

0

y

a

! y

0

x+ y

a

! y

0

(5)

The set of guarded FINTREE terms is the least subset of (�

FINTREE

) such that:

� 0 is a guarded FINTREE term;

� a:P is a guarded FINTREE term for all P 2 (�

FINTREE

);

� P + Q is a guarded FINTREE term if P and Q are.

Intuitively, a FINTREE term P is guarded if every occurrence of a variable in it is within the scope

of an action pre�xing operation.

A recursive speci�cation E is a set of equations fx = P

x

j x 2 V

E

g with V

E

a �nite set of variables

and every P

x

a guarded FINTREE term with variables in V

E

.

The in�nitary GSOS system RCCS is obtained by disjointly extending FINTREE with constants

of the form hx j Ei for each recursive speci�cation E and variable x 2 V

E

. The variables in

V

E

are bound in hx j Ei. Intuitively, hx j Ei denotes the x-component of a solution of E. Let

E = fx = P

x

j x 2 V

E

g be a recursive speci�cation, and P be an RCCS term. Then, following the

9



standard ACP practice (see, e.g., [6, 18]), hP j Ei denotes the term obtained by replacing each

free occurrence of x 2 V

E

in P by hx j Ei, i.e., hP j Ei stands for Pfhx j Ei=x j x 2 V

E

g. The

operational semantics of each constant hx j Ei is given by the (�nite) set of axioms, one such axiom

for each (a;Q) 2 init(P

x

):

hx j Ei

a

! hQ j Ei

where, for every guarded FINTREE term P , init(P ) is given by structural recursion on P as:

� init(0) = ?;

� init(a:Q) = f(a;Q)g;

� init(Q+R) = init(Q) [ init(R).

With the above de�nitions, it is easy to see that, for all Q 2 T(�

RCCS

) and a 2 Act,

hx j Ei

a

!

RCCS

Q , hP

x

j Ei

a

!

RCCS

Q

The following fact is well-known (see, e.g., [29, 8]):

Lemma 4.1 For every P 2 T(�

RCCS

), graph(P ) is �nite.

Bisimulation equivalence over regular processes has been completely axiomatized by Milner [29],

and Bergstra and Klop [8] without the use of in�nitary proof rules like AIP. To pave the way to the

extension of these results to regular GSOS systems, I shall now show that the axioms in Figure 1

are complete for equality in Bisim(RCCS) by adapting Milner's proof to the language RCCS. In

view of axioms (S1){(S2) in Figure 1, for I = fi

1

; : : : ; i

n

g a �nite index set, I write

P

i2I

P

i

for

P

i

1

+ � � �+ P

i

n

. By convention,

P

i2?

P

i

stands for 0.

x + y = y + x (S1)

(x+ y) + z = x+ (y + z) (S2)

x + x = x (S3)

x+ 0 = x (S4)

hx j Ei = hP

x

j Ei (Rec)

E

x = hx j Ei

E guarded (RSP)

Figure 1: The theory T

RCCS

The following notion from [29, 31] will be important in the remainder of the paper.

De�nition 4.2 Let G be an in�nitary GSOS system that disjointly extends RCCS, and T be an

collection of �

G

-equations. A term P 2 T(�

G

) T -provably satis�es a recursive speci�cation E =

fx = P

x

j x 2 V

E

g in the variable x

0

2 V

E

i� there are terms Q

x

for x 2 V

E

with P � Q

x

0

, such

that for all x 2 V

E

,

T ` Q

x

= P

x

fQ

y

=y j y 2 V

E

g

Proposition 4.3 The following statements hold:

10



1. BISIM(RCCS) j= T

RCCS

;

2. T

RCCS

is complete for equality in Bisim(RCCS), i.e., for all P;Q 2 T(�

RCCS

),

Bisim(RCCS) j= P = Q) T

RCCS

` P = Q

Proof: (Sketch.) The soundness of T

RCCS

with respect to equality in Bisim(G), for G a disjoint

extension of RCCS, can be shown by adapting the well-known soundness proofs of the axioms with

respect to Bisim(RCCS). (See, e.g., [29, Proposition 4.4]). Here I shall concentrate on sketching the

strategy of the proof of completeness. This can be delivered in three steps:

� Step 1 : For each P 2 T(�

RCCS

), it is possible to prove a strong head normalization property

for T

RCCS

, namely

T

RCCS

` P =

X

n

a:Q j P

a

!

RCCS

Q

o

This statement can be easily shown by induction on the number of constants of the form

hx j Ei which do not occur within the scope of a pre�xing operation in P . (In fact the proof

only uses axioms (S1){(S4) and (Rec)).

� Step 2 : Following Milner [29, 31], one shows that if P
$

{{

RCCS

Q then P and Q T

RCCS

-

provably satisfy a common recursive speci�cation E = fx = P

x

j x 2 V

E

g in some variable

x

0

2 V

E

.

� Step 3 : Finally, using (RSP), it is possible to show that if P and Q T

RCCS

-provably satisfy

a common recursive speci�cation E in the variable x

0

2 V

E

, then T

RCCS

` P = Q.

2

In the reminder of this paper, I shall mimic the strategy used in the above proof to derive complete

inference systems for regular GSOS speci�cations that do not rely on an in�nitary conditional

equation like the AIP. The inference systems derived using the methods presented in the remainder

of this paper will be equational, apart from the conditional equation (RSP). The equational part of

the proof system will allow me to prove an analogue of the strong head normalization result stated

in step 1 of the proof of the previous proposition. This will require a variety of methods that will

be presented in the following section.

To conclude this section, I now present a result stating that, not surprisingly, one can safely

extend RCCS with regular operations while preserving the property that the semantics of every

closed term is given by a �nite process graph.

Proposition 4.4 Let G be an in�nitary GSOS system obtained by adding a disjoint copy of RCCS

to a regular GSOS system G

0

. Then, for every P 2 T(�

G

), graph(P ) is �nite.

Proof: Let G be an in�nitary GSOS system obtained by adding a disjoint copy of RCCS to a

regular GSOS system G

0

. By construction, it follows that G is uniformly bounded. Lemma 3.3

then gives that graph(P ) is �nitely branching for all P 2 T(�

G

).

To prove the claim, it is thus su�cient to show that der(P ) is �nite for all P 2 T(�

G

). This

can be shown by structural induction on P , and a case analysis on the form P takes. All the cases

are straightforward using Lemma 4.1 and induction, apart from the case when P � f(P

1

; : : : ; P

l

)

with f a regular operation in �

G

� �

RCCS

. To handle this case, following [1], I prove �rst that

der(f(P

1

; : : : ; P

l

)) � reach(f(P

1

; : : : ; P

l

)) (6)

11



where reach(f(P

1

; : : : ; P

l

)) denotes the set

�

S

l

i=1

der(P

i

)

�

[ fg(R

1

; : : : ; R

n

) j f �

G

0

g and 81 � j � n 91 � i � l : R

j

2 der(P

i

)g

The claim then follows by (6), as the P

i

s have �nite derivatives by the inductive hypothesis, and

fg 2 �

G

0

j f �

G

0

gg is �nite because f is regular. 2

5 Axiomatizing Regular GSOS Operations

As mentioned in the previous section, the core of the derivation of complete inference systems for

regular GSOS systems will be the generation of a set of equations which allow one to prove an

analogue of the strong head normalization result stated in the proof of Proposition 4.3, viz., that

each closed term is provably equal to the sum of its initial derivatives. Following [2], I shall �rst

show how to axiomatize a class of well-behaved regular GSOS operations, the smooth operations

of [2]. Secondly, I shall extend these results to arbitrary regular GSOS operations.

5.1 The Axiomatization of Regular Smooth Operations

The following de�nition is from [2], where motivation and examples of smooth operations can be

found.

De�nition 5.1 A GSOS rule is smooth if it takes the form

n

x

i

a

i

! y

i

ji 2 I

o

[

�

x

i

b

ij

9 ji 2 K; 1 � j � n

i

�

f(x

1

; : : : ; x

l

)

c

! C[~x; ~y]

(7)

where I;K are disjoint sets such that I [K = f1; : : : ; lg, and no x

i

with i 2 I appears in C[~x; ~y].

An operation from an in�nitary GSOS system G is smooth if all the rules for this operation are

smooth. G is smooth if it contains smooth rules only.

In order to obtain a strongly head normalizing equational theory for regular, smooth operations, I

shall �rst show how to obtain equations that describe the interplay between such operations and

the FINTREE combinators. Examples of the laws that can be derived using the results below may

be found in [2]. Lemmas 5.2{5.6 hold for arbitrary in�nitary GSOS systems, and will be stated

in full generality even though, in the remainder of the paper, I shall only apply them to obtain

equations for regular operations.

The following lemma describes how smooth operations interact with the summation operation

of FINTREE, and is a slightly sharpened version of [2, Lemma 4.3].

Lemma 5.2 (Distributivity Laws) Let f be an l-ary smooth operation of an in�nitary GSOS

system G that disjointly extends FINTREE, and suppose that i is an argument of f for which each

rule for f has a positive antecedent. Then:

1. for every G

0

that disjointly extends G and every �

G

0
-substitution �,

f(x

1

; : : : ; x

i

+ y

i

; : : : ; x

l

)�

a

!

G

0

Q , (f(x

1

; : : : ; x

i

; : : : ; x

l

) + f(x

1

; : : : ; y

i

; : : : ; x

l

))�

a

!

G

0

Q

(8)

for all a 2 Act and Q 2 T(�

G

0
);
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2. f distributes over + in its i-th argument, i.e.,

BISIM(G) j= f(x

1

; : : : ; x

i

+ y

i

; : : : ; x

l

) = f(x

1

; : : : ; x

i

; : : : ; x

l

) + f(x

1

; : : : ; y

i

; : : : ; x

l

) (9)

Proof: It is su�cient to prove (8), as (9) follows immediately from it. To this end, let G

0

be a

disjoint extension of G, and let P

1

; : : : ; P

l

and Q

i

, 1 � i � l, be closed terms over �

G

0
. Suppose

that f(P

1

; : : : ; P

i

+Q

i

; : : : ; P

l

)

a

!

G

0

Q. Then there exist a rule � for f of the form (7) and a closed

�

G

0
-substitution � such that

� �(x

h

) = P

h

, for all 1 � h � l such that h 6= i, and �(x

i

) = P

i

+Q

i

,

� Q � C[~x; ~y]�, and

� �(x

h

)

a

h

!

G

0

�(y

h

), for all h 2 I , and �(x

h

)

b

hk

9, for all h 2 K and 1 � k � n

h

.

As G

0

disjointly extends G, and f is an operation of G, it follows that � is a rule of G. By

the hypotheses of the lemma, I have that i 2 I . Therefore, P

i

+ Q

i

a

i

!

G

0

�(y

i

); that is either

P

i

a

i

!

G

0
�(y

i

) or Q

i

a

i

!

G

0
�(y

i

). Assume, without loss of generality, that the former holds. Consider

the substitution � which maps x

i

to P

i

, and agrees with � on all the other variables. Then, � and

� can be used to infer that

f(P

1

; : : : ; P

i

; : : : ; P

l

)

a

!

G

0

C[~x; ~y]�

Moreover, as f is smooth, x

i

does not occur in C[~x; ~y]. It follows that C[~x; ~y]� � Q, as � = � over

the set of variables occurring in C[~x; ~y]. Hence, I have that

f(P

1

; : : : ; P

i

; : : : ; P

l

) + f(P

1

; : : : ; Q

i

; : : : ; P

l

)

a

!

G

0

Q

The converse implication can be shown by a symmetric argument, using the fact that, as f is

smooth and its i-th argument is tested positively by every rule for it, argument i is not tested

negatively by any rule � for f . 2

The following lemma, that extends [2, Lemma 4.6] to in�nitary GSOS systems, gives inaction laws

to describe the interaction between arbitrary operations and the FINTREE constant 0; that is, laws

which say when a term f(

~

P ) is bisimilar to 0.

Lemma 5.3 (Inaction Laws) Suppose f is an l-ary smooth operation of an in�nitary GSOS

system G that disjointly extends FINTREE, and suppose that, for 1 � i � l, term P

i

is of the form

0, x

i

, ax

i

or ax

i

+ y

i

. Suppose further that for each rule for f of the form (7) there is an index i

such that either (1) i 2 I and P

i

� 0 or P

i

� ax

i

for some a 6= a

i

, or (2) i 2 K and P

i

� b

ij

x

i

+ y

i

for some 1 � j � n

i

. Then:

1. for every G

0

that disjointly extends G and every �

G

0
-substitution �,

f(

~

P )�

a

! Q for no a 2 Act and Q 2 T(�

G

0

) (10)

2. for every G

0

that disjointly extends G and every �

G

0
-substitution �, f(

~

P ) is bisimilar to 0,

i.e.,

BISIM(G) j= f(

~

P ) = 0 (11)

To complete the series of results giving equations dealing with the interplay between smooth oper-

ations and the FINTREE combinators, I shall now present results corresponding to the action laws

of [2]. In particular, I shall follow the \alternative" approach given in [2, Section 6] in which the

interplay between pre�xing and smooth operations is described by means of so called \peeling" and

\action laws".
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De�nition 5.4 ([2]) A smooth operation f from an in�nitary GSOS system G is distinctive if, for

each argument i, either all rules for f test i positively or none of them does, and moreover for each

pair of di�erent rules for f there is an argument for which both rules have a positive antecedent,

but with a di�erent action.

The following lemma gives the so-called peeling laws. These are laws that can be used to reduce

the arguments that are tested negatively by a smooth and distinctive operation to a form in which

either action laws or inaction laws can be applied.

Lemma 5.5 (Peeling Laws) Suppose f is a distinctive smooth operation of a disjoint extension

G of FINTREE, with a rule � of the form

n

x

i

a

i

! y

i

ji 2 I

o

[

�

x

i

b

ij

9 ji 2 K; 1 � j � n

i

�

f(~x)

c

! C[~x; ~y]

Let k 2 K be such that x

k

does not occur in C[~x; ~y], and b 62 fb

kj

j1 � j � n

k

g. Take

P

i

�

8

>

<

>

:

a

i

y

i

i 2 I

bx

0

k

+ x

00

k

i = k

x

i

i 2 K ^ i 6= k

and Q

i

�

8

>

<

>

:

a

i

y

i

i 2 I

x

00

k

i = k

x

i

i 2 K ^ i 6= k

Then:

1. for every G

0

that disjointly extends G and every �

G

0
-substitution �,

f(

~

P )�

a

! S , f(

~

Q)�

a

! S (12)

for all a 2 Act and S 2 T(�

G

0

);

2. the equality f(

~

P ) = f(

~

Q) is valid in every G

0

that disjointly extends G, i.e.,

BISIM(G) j= f(

~

P ) = f(

~

Q) (13)

Proof: It is su�cient to prove the �rst statement as the second is an immediate corollary of it.

Let G

0

be a disjoint extension of G. Now note that, for any closed �

G

0

-substitution �, rule � �res

from f(

~

P )� i� it �res from f(

~

Q)�. By the distinctiveness of f , � is the only rule that can possibly

�re from these terms. Moreover, as x

k

does not occur in C[~x; ~y], it is easy to check that if � �res,

then the targets of the matching transitions from f(

~

P )� and f(

~

Q)� are syntactically equal. 2

Lemma 5.6 (Action Laws) Suppose f is a distinctive smooth operation of a disjoint extension

G of FINTREE, with a rule � of the form

n

x

i

a

i

! y

i

ji 2 I

o

[

�

x

i

b

ij

9 ji 2 K; 1 � j � n

i

�

f(~x)

c

! C[~x; ~y]

Let

P

i

�

8

>

<

>

:

a

i

y

i

i 2 I

0 i 2 K ^ n

i

> 0

x

i

otherwise

Then:

14



1. for every G

0

that disjointly extends G and every �

G

0

-substitution �,

f(

~

P )�

a

!

G

0
Q , c:

�

C[

~

P ; ~y]�

�

a

!

G

0
Q (14)

for all a 2 Act and Q 2 T(�

G

0

);

2. the equality f(

~

P ) = c:C[

~

P; ~y] is valid in every G

0

that disjointly extends G, i.e.,

BISIM(G) j= f(

~

P ) = c:C[

~

P; ~y] (15)

Proof: I only prove statement (14). LetG

0

be a disjoint extension ofG, and � be a �

G

0
-substitution.

Assume that � is the rule for f given by the proviso of the lemma, and that f(

~

P )�

a

!

G

0

Q. Then

there exist a rule �

0

2 R

G

0
for f and a �

G

0
-substitution � such that:

� �(x

i

) = a

i

:�(y

i

) for all i 2 I , �(x

i

) = 0 for all i 2 K with n

i

> 0, and �(x

i

) = �(x

i

) for all

i 2 K with n

i

= 0;

� � satis�es the antecedents of �

0

; and

� Q can be obtained by applying the substitution � to the target of �

0

.

As G v G

0

and f is distinctive in G, it follows that � = �

0

. Thus I have that a = c. Moreover, as

� satis�es the antecedents of �, �(x

i

) = a

i

:�(y

i

)

a

i

!

G

0

�(y

i

) = �(y

i

) for all i 2 I . Note now that,

as f is smooth, each variable occurring in the context C[~x; ~y] is contained in the set fy

i

j i 2 Ig [

fx

i

j i 2 Kg. We have already seen that � and � agree over fy

i

j i 2 Ig[fx

i

j i 2 K and n

i

= 0g. We

also have that �(x

i

) = 0 = P

i

� for all i 2 K with n

i

> 0. It follows that Q � C[~x; ~y]� � C[

~

P ; ~y]�.

This implies that c:

�

C[

~

P ; ~y]�

�

a

!

G

0
Q.

The converse implication can be shown in similar fashion. 2

The combination of peeling laws (13), instantiated action laws (15), distributivity laws (9), and

inaction laws (11), gives a theory that is head normalizing for terms built from distinctive smooth

operations that are discarding [2, De�nition 6.2].

De�nition 5.7 (Discarding and Good Operations) A smooth GSOS rule of the form (7) is

discarding if for no argument i that is tested negatively, x

i

occurs in the target. A smooth operation

is discarding if all the rules for this operation are.

A smooth operation is good

3

if it is both discarding and distinctive.

Theorem 5.8 Suppose G is an in�nitary GSOS system with RCCS v G. Let � � �

G

��

RCCS

be a

collection of good operations of G. Let T be the equational theory that extends T

FINTREE

[f(Rec)g

with the following axioms, for each operation f from �:

1. for each argument i of f that is tested positively, a distributivity axiom (9),

2. for each rule for f of the form (7), for each argument i that is tested negatively, and for each

action b 62 fb

ij

j1 � j � n

i

g, a peeling law (13),

3. for each rule for f , an action law (15),

4. all the inaction laws (11) for f .

3

This terminology has been introduced by Bosscher in [15].
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Then BISIM(G) j= T , and for each P 2 T(�[ �

RCCS

)

T ` P =

X

n

a:Q j P

a

!

G

Q

o

Proof: The fact that BISIM(G) j= T follows immediately from the previous lemmas. I now show

that for each P 2 T(� [ �

RCCS

)

T ` P =

X

n

a:Q j P

a

!

G

Q

o

The proof will be by structural induction on P . I proceed by a case analysis on the possible forms

P can take. The cases P � 0 and P � a:Q are trivial, using the fact that G disjointly extends

RCCS.

Case P � hx j Ei. First of all, note that for every guarded FINTREE term P and recursive

speci�cation E the following holds:

(S1){(S4) ` hP j Ei =

X

fa:hQ j Ei j (a;Q) 2 init(P )g

The claim then follows by axiom (Rec) and the fact that G disjointly extends RCCS.

Case P � Q+R. Immediate by applying the inductive hypothesis to Q and R.

Case P � f(P

1

; : : : ; P

l

) for some f 2 �. By induction, T ` P

i

=

P

n

a:Q j P

i

a

!

G

Q

o

for each

1 � i � l. I shall now prove that T ` P =

P

n

a:Q j P

a

!

G

Q

o

by a further induction on the

combined sizes of the P

i

s. There are three main cases to examine.

Case 1. There is an argument i that is tested positively by f and for which P

i

is of the form

P

0

i

+ P

00

i

. As f is distinctive, all rules for f test i positively. In this case we can apply

one of the distributivity laws (9) to infer

T ` f(P

1

; : : : ; P

0

i

+ P

00

i

; : : : ; P

l

) = f(P

1

; : : : ; P

0

i

; : : : ; P

l

) + f(P

1

; : : : ; P

00

i

; : : : ; P

l

)

The sub-inductive hypothesis now gives that

T ` f(P

1

; : : : ; P

0

i

; : : : ; P

l

) =

X

n

a:Q j f(P

1

; : : : ; P

0

i

; : : : ; P

l

)

a

!

G

Q

o

T ` f(P

1

; : : : ; P

00

i

; : : : ; P

l

) =

X

n

a:Q j f(P

1

; : : : ; P

00

i

; : : : ; P

l

)

a

!

G

Q

o

Thus, by (8), it follows that

T ` f(P

1

; : : : ; P

0

i

+ P

00

i

; : : : ; P

l

) =

X

n

a:Q j f(P

1

; : : : ; P

0

i

+ P

00

i

; : : : ; P

l

)

a

!

G

Q

o

Case 2. There is an argument i that is tested positively by f and for which P

i

� 0.

Since f is distinctive, all rules for f test i positively. Thus T contains an inaction law

f(x

1

; : : : ; x

i�1

; 0; x

i+1

; : : : ; x

l

) = 0. Instantiation of this law gives T ` f(

~

P ) = 0, and

the induction step follows.

Case 3. For all arguments k that are tested positively by f , P

k

is of the form a

k

P

0

k

. There

are two subcases to consider.
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Case 3.1. For each rule for f with positive trigger he

1

; : : : ; e

l

i, there is an i that is

tested positively such that e

i

6= a

i

. Then T contains an inaction law f(

~

Q) = 0,

where Q

k

� a

k

x

k

if k is tested positively, and Q

k

� x

k

otherwise. Instantiation of

this law gives T ` f(

~

P ) = 0, and the induction step follows.

Case 3.2. There exists a rule � for f with positive trigger he

1

; : : : ; e

l

i such that e

k

= a

k

for all k that are tested positively. Since f is distinctive, � is in fact the unique rule

with this property. Again there are two subcases.

Case 3.2.1. There is an index j that is not tested positively, and there is an action

b such that x

j

b

9 is an antecedent of �, and T proves an equation of the form

P

j

= bP

0

j

+ P

00

j

. Now we note that T contains an inaction law f(

~

Q) = 0, where

Q

k

� a

k

x

k

if k is tested positively, Q

k

� bx

k

+ y

k

if k = j, and Q

k

� x

k

otherwise. Application of this law gives T ` f(P

1

; : : : ; bP

0

j

+ P

00

j

; : : : ; P

l

) = 0,

and the induction step follows.

Case 3.2.2. For each index n that is not tested positively, P

n

is of the form

P

a

nj

P

nj

and, for no j, x

n

a

nj

9 is an antecedent of �. Again, I distinguish two subcases

(the last ones).

Case 3.2.2.1. There exists an argument n that is tested negatively by � and

an action b for which T proves an equation of the form P

n

= b:P

0

n

+ P

00

n

.

Then, an instance of axiom (13) for �, n and b gives T ` f(P

1

; : : : ; b:P

0

n

+

P

00

n

; : : : ; P

l

) = f(P

1

; : : : ; P

00

n

; : : : ; P

l

), where, by (12), the two terms have the

same derivatives. The claim now follows by applying the inductive hypothesis

to the term f(P

1

; : : : ; P

00

n

; : : : ; P

l

).

Case 3.2.2.2. For every argument n that is tested negatively by �, P

n

� 0.

Then, an application of the action law (15) for � gives the required head

normal form.

This completes the subinductive argument and the proof for the case P � f(P

1

; : : : ; P

l

)

with f 2 �.

The proof of the theorem is then complete.

2

The next proposition shows how to handle general smooth and discarding operations by expressing

them as a �nite sum of good operations, in very much the same way as the merge operation of ACP

is expressed as a sum of the auxiliary operations of left-merge and communication merge (see, e.g.,

[6] for a textbook presentation). In particular, the following proposition allows for the \discovery"

of the auxiliary operations of ACP. See [2] for details and examples.

Proposition 5.9 Let G be an in�nitary GSOS system obtained by adding a disjoint copy of RCCS

to a regular GSOS system G

0

. Assume that f is an l-ary smooth and discarding operation of G

0

.

Then there exists a disjoint extension G

�

of G

0

with l-ary good, regular operations f

1

; : : : ; f

n

not

occurring in RCCS such that:

1. G

�

is a regular GSOS system;

2. for every disjoint extension G

00

of G

�

� RCCS, and every �

G

00

-substitution �,

f(~x)�

a

!

G

00
Q , (f

1

(~x) + � � �+ f

n

(~x))�

a

!

G

00
Q (16)

for all a 2 Act and Q 2 T(�

G

00
);
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3. for all ~x of length l,

BISIM(G

�

� RCCS) j= f(~x) = f

1

(~x) + � � �+ f

n

(~x) (17)

Proof: Assume that f is an l-ary smooth and discarding operation of G

0

. I shall show how to

partition the set R of rules for f in R

G

into sets R

1

; : : : ; R

n

in such a way that that, for all

1 � i � n, f is distinctive in the in�nitary GSOS system obtained from G by removing all the

rules in R � R

i

. First of all, partition the set of rules for f into sets R

1

; : : : ; R

m

, where, for each

1 � j � m and �; �

0

2 R, �; �

0

2 R

j

i� they test the same arguments positively. Note that, even if

R were denumerable, m � 2

l

. I now show how to further partition each R

j

for which f restricted

to R

j

is not distinctive.

As G

0

is regular, f is uniformly bounded. Thus there exists a maximum n

(f;j)

to the number

of distinct rules in R

j

which have the same positive trigger. It is then possible to further partition

R

j

into sets R

j1

; : : : ; R

jn

(f;j)

in such a way that no two distinct rules in R

j

with the same positive

trigger are in the same set. The restriction of f to the rules in each R

jk

trivially yields a good

operation.

De�ne �

G

�
to be the signature obtained by extending �

G

0
with fresh l-ary operation symbols

f

11

; : : : ; f

1n

(f;1)

; : : : ; f

m1

; : : : ; f

mn

(f;m)

. Next de�ne R

G

�

to be the set of rules obtained by extending

R

G

0
, for each (i; j), with rules derived from the rules of R

ij

by replacing the operation symbol in

the source by f

ij

. It is immediate to see that each operation f

ij

so de�ned is good. Moreover, the

resulting in�nitary GSOS system G

�

is regular as G

0

was. It is routine to check that for all disjoint

extensions G

00

of G

�

� RCCS, for all P

1

; : : : ; P

l

; Q 2 T(�

G

00
), and a 2 Act

f(P

1

; : : : ; P

l

)

a

!

G

00

Q ,

m

X

i=1

n

(f;i)

X

j=1

f

ij

(P

1

; : : : ; P

l

)

a

!

G

00

Q

from which BISIM(G

�

� RCCS) j= f(~x) =

P

m

i=1

P

n

(f;i)

j=1

f

ij

(~x) follows immediately. 2

It is interesting to note that the above proposition would not hold if regular operations were allowed

to be bounded, but not uniformly so. As an example, consider the operation f on page 7 given

by the rules (3). This operation is bounded, but not uniformly bounded. I shall now show that,

under mild assumptions, it is impossible to express f as a �nite sum of unary smooth, distinctive

operations.

Proposition 5.10 Let Act = fa

i

j i � 1g be a denumerable set of actions, and G be an in�nitary

GSOS system which disjointly extends FINTREE comprising a smooth, discarding unary operation

f , with rules (one such rule for each i 2 ! and j � i):

x

a

i

! y

f(x)

a

j

! 0

Then there does not exist a disjoint extension G

0

of G with a family of unary smooth and distinctive

operations f

1

; : : : ; f

n

such that

Bisim(G

0

) j= f(x) = f

1

(x) + � � �+ f

n

(x)

Proof: Assume, towards a contradiction, that there exists a disjoint extension G

0

of G with a

family of unary smooth and distinctive operations f

1

; : : : ; f

n

such that

Bisim(G

0

) j= f(x) = f

1

(x) + � � �+ f

n

(x)
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Take P � a

n+1

:0. Then f(P )

a

l

!

G

0

0 for each 1 � l � n+ 1. As f(P )

$

{{

G

0

f

1

(P ) + � � �+ f

n

(P ), it

must be the case that, for some 1 � i � n and 1 � j < h � n + 1, f

i

(P )

a

j

!

G

0
P

1

and f

i

(P )

a

h

! P

2

for some closed terms P

1

; P

2

such that P

1

$

{{

G

0

0

$

{{

G

0

P

2

. These two transitions must be provable

from two distinct rules

H

1

f

i

(x)

a

j

! Q

1

H

2

f

i

(x)

a

h

! Q

2

and two substitutions which map x to P . As f

i

is distinctive, these rules test the same arguments

positively. There are two cases to examine:

Case 1. Both the above rules have a positive antecedent for x. As both rules �re when x is

instantiated to P , these positive antecedents must be of the form x

a

n+1

! y for some variable y.

It follows that f

i

has two rules with the same positive trigger. This contradicts the assumption

that f

i

is distinctive.

Case 2. Both the rules do not test x positively. Again this contradicts the distinctiveness of f

i

because the two rules would then have the same positive trigger.

2

In fact, the argument used in the above proof can be used to show that, mutatis mutandis, there

does not exist a disjoint extension G

0

of G with a family of smooth and distinctive operations

f

1

; : : : ; f

n

with arities l

1

; : : : ; l

n

, respectively, such that

Bisim(G

0

) j= f(x) = f

1

(x; : : : ; x

| {z }

l

1

-times

) + � � �+ f

n

(x; : : : ; x

| {z }

l

n

-times

)

Here I have preferred to present in detail the notationally simpler case in which all the f

i

s are

themselves unary.

Proposition 5.9 is the only result in this paper which would not hold if I allowed regular oper-

ations to be bounded, rather than uniformly bounded.

5.2 General Regular Operations

In this subsection I show how to axiomatize GSOS operations that are not both smooth and

discarding. The technical development will parallel the results presented in [2, Section 4.2].

De�nition 5.11 For � a GSOS rule of the form (2), I write �� for the result of substituting �(x)

for each x occurring in �.

The following technical lemma is an extension to in�nitary GSOS systems of [2, Lemma 4.12],

whose proof can be adapted to this larger class of GSOS speci�cations.

Lemma 5.12 Suppose G is an in�nitary GSOS system and P = f(~z) and Q = f

0

(~v) are terms

over �

G

with variables that do not occur in R

G

. Suppose that there exists a 1-1 correspondence

between rules for f and rules for f

0

such that, whenever a rule � for f with source f(~x) is related to

a rule �

0

for f

0

with source f

0

(~y), we have that, with exception of their sources, �f~z=~xg and �

0

f~v=~yg

are identical. Then:

1. for every disjoint extension G

0

of G and closed �

G

0
-substitution �,

P�

a

!

G

0

S , Q�

a

!

G

0

S

for all a 2 Act and S 2 T(�

G

0
);
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2. BISIM(G) j= P = Q.

Proposition 5.13 Suppose G is a regular GSOS system containing an operation f with arity l

that is not both smooth and discarding. Then there exists a regular disjoint extension G

0

of G with

a smooth and discarding operation f

0

not occurring in RCCS with arity l

0

(possibly di�erent from

l), and there exist vectors ~z of l distinct variables, and ~v of l

0

variables in ~z (possibly repeated),

such that:

1. for every disjoint extension G

00

of G

0

and �

G

00

-substitution �,

f(~z)�

a

!

G

00
Q , f

0

(~v)�

a

!

G

00
Q (18)

for all a 2 Act and Q 2 T(�

G

00
);

2. the equation f(~z) = f

0

(~v) is valid in any disjoint extension of G

0

, i.e.,

BISIM(G

0

) j= f(~z) = f

0

(~v) (19)

Proof: (Following the proof of [2, Lemma 4.13]). In order to determine the arity of f

0

I �rst

quantify the degree in which f is non-smooth and non-discarding. For � a simple GSOS rule of the

form (2), and 1 � i � l, the nastiness factor of � and i is de�ned as

m

i

if n

i

= 0 and x

i

does not occur in the target

m

i

+ 1 if n

i

> 0 and x

i

does not occur in the target, or n

i

= 0 and x

i

occurs in the target

m

i

+ 2 if n

i

> 0 and x

i

occurs in the target

Note that, as f is a regular operation, the nastiness factor of � and i is less than or equal to m

(f;i)

+2

for all �, where m

(f;i)

is the maximum number of positive antecedents for i in the rules for f . The

nastiness factor of f and i, notation N(f; i), is then de�ned as the maximum over all rules � for

f of the nastiness factor of f and i. Let l

0

=

P

l

i=1

N(f; i) and let f

0

be a fresh operation symbol.

Then �

G

0

is de�ned as the signature that extends �

G

with an l

0

-ary operation symbol f

0

. Let

~w = w

11

; : : : ; w

1N(f;1)

; : : : ; w

l1

; : : : ; w

lN(f;l)

be a vector of l

0

di�erent variables. Suppose � is a rule

for f as in (2) and suppose � is the substitution that maps each variable w

ij

to x

i

and leaves all the

other variables unchanged. Let �

0

be the smooth and discarding GSOS rule with source f

0

(~w), and

such that, with exception of their sources �

0

� and � are identical. In fact, such a �

0

can be obtained

from � by replacing the source of � by f

0

(~w), and by replacing variables x

i

in the antecedents and

the target by variables w

ij

in such a way that the resulting rule is smooth and discarding. This

can be done as follows: starting with the positive antecedents, one replaces each occurrence of x

i

with a di�erent variable w

ij

; after that one more w

ij

is available for the occurrences of x

i

in the

negative antecedents, and another one for the occurrences of x

i

in the target | in case there are

such occurrences. De�ne R

G

0
to be a set of rules that extends R

G

with a rule �

0

, de�ned as above,

for each rule � for f . It is easy to see that, by construction, the resulting in�nitary GSOS system

is regular, as G was.

Let now ~z = z

1

; : : : ; z

l

be a vector of di�erent variables, all of them not occurring in R

G

, and let

~v = v

11

; : : : ; v

1N(f;1)

; : : : ; v

l1

; : : : ; v

lN(f;l)

be the vector of length l

0

given by v

ij

= z

i

. It is easy to see

that, for each pair �, �

0

of corresponding rules, �f~z=~xg and �

0

f~v=~wg are identical, with exception

of their sources. Thus we can apply Lemma 5.12 to obtain that the claims of the lemma hold. 2

It is interesting to note that the above proposition would not hold for very simple GSOS operations

that are not regular. As an example, consider the operation g on page 8 given by the rules (4).

This operation is very simple, but not regular. I shall now show that, under mild assumptions, it

is impossible to express g as a �nite sum of smooth operations.
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Proposition 5.14 Let Act = fa

i

j i � 1g be a denumerable set of actions, and G be an in�nitary

GSOS system which disjointly extends FINTREE comprising a very simple unary operation g, with

rules (one such rule for each i 2 !):

n

x

a

j

! y

j

j 1 � j � i

o

g(x)

a

i

! 0

Then there does not exist a disjoint extension G

0

of G with a family of smooth operations g

1

; : : : ; g

n

with arities l

1

; : : : ; l

n

, respectively, such that

Bisim(G

0

) j= g(x) = g

1

(x; : : :; x

| {z }

l

1

-times

) + � � �+ g

n

(x; : : :; x

| {z }

l

n

-times

)

Proof: Assume, towards a contradiction, that such a G

0

exists. Let l be the maximum of l

1

; : : : ; l

n

and take P �

P

l+1

i=1

a

i

:0. Then g(P )

a

l+1

!

G

0
0. As g(P )

$

{{

G

0
g

1

(P

l

1

) + � � �+ g

n

(P

l

n

), there exists

1 � j � n and Q 2 T(�

G

0

) such that g

j

(P

l

j

)

a

l+1

!

G

0

Q

$

{{

G

0

0. Let � be any rule for g

j

that can

be used to derive this transition. As g

j

is smooth and l

j

< l + 1, there exists an index k with

1 � k � l + 1 such that, for no argument i of g

j

, � has a positive antecedent of the form x

i

a

k

! y

i

.

Consider now the term R �

P

fa

i

:0 j i 2 f1; : : : ; l+ 1g � fkgg. Note that g(R)

a

l+1

9

G

0
as R

a

k

9

G

0
.

On the other hand, I claim that � can be used to show that g

j

(R

l

j

)

a

l+1

!

G

0
. In fact, all the positive

antecedents for � are met by setting all the arguments of g

j

to R, as they were met by P and

none of them refers to a

k

. Moreover, it is immediate to see that, for all b 2 Act, P

b

9

G

0

implies

that R

b

9

G

0
. Hence all the negative antecedents of � are also met by R as they were met by P .

Therefore, g

j

(R

l

j

)

a

l+1

!

G

0

. It follows that g(R) is not bisimilar to g

1

(R

l

1

) + � � � + g

n

(R

l

n

). This

contradicts the assumption that

Bisim(G

0

) j= g(x) = g

1

(x; : : :; x

| {z }

l

1

-times

) + � � �+ g

n

(x; : : : ; x

| {z }

l

n

-times

)

2

Proposition 5.13 is the only result in this paper that does not hold for very simple GSOS systems

which contain operations that do not have limited fan-in.

The theory that has been developed so far gives a strongly head normalizing equational theory

for all regular GSOS operations.

Theorem 5.15 Let G be a regular GSOS system. Then the in�nitary GSOS system G

0

of the

form G

�

�RCCS such that G

�

is a regular GSOS system that disjointly extends G, and RCCS v G

0

,

together with the equational theory T produced by the algorithm of Figure 2 have the property that

BISIM(G

0

) j= T and, for all P 2 T(�

G

0
), T ` P =

P

n

a:Q j P

a

!

G

0
Q

o

.

Proof: The fact that BISIM(G

0

) j= T follows immediately from the previous results of this section.

I shall now show that, for all P 2 T(�

G

0

),

T ` P =

X

n

a:Q j P

a

!

G

0
Q

o

First of all, it is easy to prove, by structural induction on P , that for all P 2 T(�

G

0

), there exists a

Q 2 T(�

G

0
) built only from good operations in �

G

�
and operations in RCCS such that T ` P = Q

using instances of laws (19) and (17). Moreover, by (18) and (16), I have that

n

a:R j P

a

!

G

0

R

o

=

n

a:R j Q

a

!

G

0

R

o

(20)
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Input A regular GSOS system G.

Output

An in�nitary GSOS system G

0

of the form G

�

� RCCS such that G

�

is a regular GSOS

system that disjointly extends G, and RCCS v G

0

, together with an equational theory

T , such that BISIM(G

0

) j= T and T is strongly head normalizing for all terms of G

0

.

Step 1. Add to G a disjoint copy of RCCS.

Step 2. For each regular operation f 2 �

G

that is not both smooth and discarding, apply the

construction of Proposition 5.13 to extend the system with a regular smooth and discarding

version f

0

, in such a way that law (19) holds. Add all the resulting instances of law (19) to

T

FINTREE

[ (Rec).

Step 3. For each smooth, discarding and non-distinctive operation f 62 �

RCCS

in the resulting system,

apply the construction of Proposition 5.9 to generate good, regular operations f

1

; : : : ; f

n

in such

a way that law (17) is valid. The system so-obtained is the in�nitary GSOS system G

0

we were

looking for. Add to the equational theory all the resulting instances of law (17).

Step 4. Add to the equational theory obtained in Step 3 the equations given by applying Theorem 5.8

to all the good operations in �

G

0

� �

RCCS

. The result is the theory T we were looking for.

Figure 2: The algorithm

Next, an application of Theorem 5.8 gives that

T ` Q =

X

n

a:R j Q

a

!

G

0

R

o

The claim now follows immediately by transitivity and (20). 2

6 Completeness

For any regular GSOS system G, the algorithm presented in Figure 2 allows for the generation

of a disjoint GSOS extension G

0

with a strongly head-normalizing equational theory. The reader

might recall that this was the �rst step in the proof of completeness of T

RCCS

for Bisim(RCCS).

I shall now show how to mimic the remaining two steps in the proof of Proposition 4.3 to obtain

completeness for arbitrary regular GSOS speci�cations.

The following proposition plays the role of step 2 of the proof of Proposition 4.3 in this setting.

Proposition 6.1 Suppose that G is a regular GSOS system. Let G

0

and T denote the disjoint

extension of G, and the strongly head normalizing equational theory constructed by the algorithm

in Figure 2, respectively. Then, for all P;Q 2 T(�

G

0
) such that Bisim(G

0

) j= P = Q, there exists a

recursive speci�cation E T -provably satis�ed in the same variable x

0

by both P and Q.

Proof: Let P;Q 2 T(�

G

0
) be such that Bisim(G

0

) j= P = Q. By Proposition 4.4, it follows that

graph(P ) and graph(Q) are �nite. (Recall that G

0

is obtained by adding a disjoint copy of RCCS

to a regular GSOS system G

�

). A recursive speci�cation E which is T -provably satis�ed in the

same variable x

0

by both P and Q can now be constructed as follows. Take a fresh set of variables

V

E

= fx

RS

j R 2 der(P ); S 2 der(Q) and R
$

{{

G

0
Sg with x

PQ

as leading variable. By the de�nition

of bisimulation, it follows that:
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1. for each R 2 der(P ), there exists S 2 der(Q) such that R

$

{{

G

0

S, and

2. for each S 2 der(Q), there exists R 2 der(P ) such that R
$

{{

G

0
S.

Next de�ne

P

x

RS

=

X

n

a:x

R

0

S

0

j R

a

!

G

0

R

0

; S

a

!

G

0

S

0

; and R

0

$

{{

G

0

S

0

o

Note that, for each R

0

such that R

a

!

G

0

R

0

, P

x

RS

contains a summand of the form a:x

R

0

S

0

for some

S

0

, and that the same also holds for each S

0

such that S

a

!

G

0

S

0

.

Take E = fx

RS

= P

x

RS

j x

RS

2 V

E

g. First I show that P T -provably satis�es E. To see that

this is indeed the case, consider the substitution fR=x

RS

j x

RS

2 V

E

g. Then

T ` P

x

RS

fR=x

RS

j x

RS

2 V

E

g =

X

n

a:R

0

j R

a

!

G

0

R

0

o

= R by Theorem 5.15

A symmetric argument gives that Q also T -provably satis�es E. 2

The promised completeness result now follows easily from the previous theory.

Theorem 6.2 (Completeness) Suppose that G is a regular GSOS system. Let G

0

and T denote

the disjoint extension of G, and the strongly head normalizing equational theory constructed by the

algorithm in Figure 2, respectively. Then, T [ f(RSP)g is complete for equality in Bisim(G

0

).

Proof: The fact that Bisim(G

0

) j= T [ f(RSP)g follows immediately from Theorem 5.15 and

Proposition 4.3. It remains to be shown that for all P;Q 2 T(�

G

0

), Bisim(G

0

) j= P = Q implies

T [f(RSP)g ` P = Q. By the previous proposition, if P and Q are such that Bisim(G

0

) j= P = Q,

then they both T -provably satisfy a common recursive speci�cation E in the same variable x

0

. Then

(RSP) can be used to show that P = hx

0

j Ei and Q = hx

0

j Ei. Therefore, T [f(RSP)g ` P = Q.

2

7 Concluding Remarks

In this paper I have presented a class of GSOS speci�cations, with possibly a denumerable set of

operations and rules, which generate regular processes. I have also shown how the techniques of

[2] can be adapted to give a procedure for converting any such language de�nition to a complete

equational axiom system for strong bisimulation of processes which, unlike the one presented in the

aforementioned reference, does not use in�nitary proof rules like AIP. A by-product of this study has

been a class of in�nitary GSOS systems which generate �nite labelled transition systems, and are

amenable to the development of a corresponding equational theory �a l�a [2]. This class of in�nitary

GSOS systems which a�ord a neat algebraic treatment is obtained by restricting consideration

to the simple operations from [1] that are uniformly bounded, in the sense of De�nition 3.2, and

regular (cf. De�nition 3.8).

7.1 An Alternative Axiomatization of Positive GSOS Operations

At least for GSOS operations de�ned by positive rules only, the algorithm presented in [2] for GSOS

systems, and adapted in this paper to a class of in�nitary GSOS speci�cations, can be modi�ed to

generate a reasonably aesthetic equational axiomatization for a class of bounded operations. Let

me recall that the need for the restriction to uniformly bounded operations in the application of
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the algorithm presented in [2] arises from the fact that operations like the one given by the rules (3)

on page 7 cannot be neatly axiomatized in �nitary fashion �a l�a [2]. This is because the operation f

given by the rules (3) is smooth, but not distinctive; moreover, as shown in Proposition 5.10, under

mild assumptions, f cannot be expressed as a �nite sum of unary distinctive operations.

However, it is not too di�cult to see that f can be axiomatized, without recourse to auxiliary

operations, by means of the following equations:

f(0) = 0 (21)

f(x+ y) = f(x) + f(y) (22)

f(a

i

:x) =

X

1�j�i

a

j

:0 (a

i

2 Act) (23)

The point here is that, although not distinctive, f treats its one argument in a uniform way, in

the sense that each rule for f has a positive antecedent for it. As a consequence of Lemma 5.2,

we have that equation (22) holds for f , and this allows for a rather pleasing axiomatization of this

operation.

This discussion leads to the following weakening of the notion of distinctiveness that will turn

out to be su�cient for a reasonable axiomatization of a class of positive GSOS operations.

De�nition 7.1 Let f be an l-ary operation in an in�nitary GSOS system G. I say that f is

positive i� in every rule for f of the form (2), n

i

= 0 for every argument i of f .

A positive smooth operation f from an in�nitary GSOS system G is consistent i� the rules for

f use the same target variables, i.e., if x

a

! y is an antecedent of a rule for f , then every rule for

f that tests x positively has an antecedent of the form x

b

! y for some b 2 Act.

A positive smooth operation f from an in�nitary GSOS system G is weakly distinctive i� it is

consistent, and every rule for f tests the same arguments positively.

For example, as previously remarked, the operation f given by the rules (3) is weakly distinctive.

An interesting example of an operation from the literature on process algebras which is weakly

distinctive, but not distinctive, is the internal choice operation � used in TCSP [16, 25] and the

variant of CCS considered by De Nicola and Hennessy in [22, 17, 23]. (The notation I use is from

[22, 17, 23]). The operation � is given by the rules:

x� y

�

! x x� y

�

! y

The internal choice operation is not distinctive because it has two distinct rules with positive trigger

h?;?i. However, all the rules for � are axioms, and this is su�cient to ensure that � is weakly

distinctive.

Note that, by Lemma 5.2, weakly distinctive smooth operations distribute over + in each of the

arguments they test positively. (For instance, equation (22) can be obtained by applying Lemma 5.2

to the operation f described by the rules (3)). Furthermore, Lemma 5.3 gives inaction laws for

these operations describing their interplay with the stopped process 0. (An example of such a law

is equation (21)). Hence it is not too di�cult to see that all that is needed to axiomatize weakly

distinctive smooth operations which, like the one given by the rules (3), are bounded is a set of

action laws describing the interplay between these operations and action pre�xing. Below I shall

give a way of generating such laws for positive weakly distinctive, bounded smooth operations.

De�nition 7.2 Let f be an l-ary operation in an in�nitary GSOS system G. Let he

1

; : : : ; e

l

i be a

positive trigger of f . Then R(f; he

1

; : : : ; e

l

i) denotes the set of rules for f which have he

1

; : : : ; e

l

i
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as positive trigger. For every rule � 2 R(f; he

1

; : : : ; e

l

i), c

�

will denote its action, and C

�

[~x; ~y] its

target.

Note that if f is a bounded operation, then R(f; he

1

; : : : ; e

l

i) is a �nite set of rules for each trigger

he

1

; : : : ; e

l

i (cf. De�nition 3.2).

Proposition 7.3 Suppose f is a weakly distinctive, bounded, positive smooth operation of a disjoint

extension G of FINTREE, and let he

1

; : : : ; e

l

i be a positive trigger of f . Let I be the set of arguments

which are tested positively by rules for f of the form (7), and, for every i 2 I, let y

i

denote the

target variable corresponding to x

i

in rules for f . Finally, let

~

P be the vector of terms given by:

P

i

�

(

e

i

:y

i

i 2 I

x

i

otherwise

Then:

BISIM(G) j= f(

~

P ) =

X

n

c

�

:C

�

[

~

P ; ~y] j � 2 R(f; he

1

; : : : ; e

l

i)

o

(24)

Proof: Let G

0

be a disjoint extension of G. Then, for every �

G

0
-substitution �, action a 2 Act and

Q 2 T(�

G

0

), it can be shown that:

f(

~

P )�

a

!

G

0
Q ,

X

n

c

�

:C

�

[

~

P ; ~y] j � 2 R(f; he

1

; : : : ; e

l

i)

o

�

a

!

G

0
Q

Essentially this holds because only the rules in R(f; he

1

; : : : ; e

l

i) apply to closed instantiations of

f(

~

P ), and the targets of the resulting transitions are suitable instantiations of the C

�

[

~

P ; ~y]'s.

The thesis follows immediately from this fact. 2

It is easy to see that the above proposition gives the equations (23) when applied to the operation

f given by the rules (3). For the internal choice operation �, Proposition 7.3 gives the natural

equation

x� y = � :x+ �:y

The reader will easily convince himself/herself that distributivity equations, inaction laws and

instances of (24) give a strongly head normalizing theory for terms built only from positive weakly

distinctive, bounded smooth operations. Using this observation, and following the approach of

Proposition 17, we can now axiomatize positive smooth operations that are consistent by expressing

them as a �nite sum of weakly distinctive ones.

Proposition 7.4 Let G be an in�nitary GSOS system that disjointly extends FINTREE. Assume

that f is an l-ary positive, consistent smooth operation of G. Then there exists a disjoint extension

G

0

of G with l-ary positive, weakly distinctive smooth operations f

1

; : : : ; f

n

such that:

BISIM(G

0

) j= f(~x) = f

1

(~x) + � � �+ f

n

(~x) (25)

Moreover, if f is bounded, so is each f

i

.

Proof: Assume that f is an l-ary positive, consistent smooth operation of G. I shall show how

to partition the set R of rules for f in R

G

into sets R

1

; : : : ; R

n

in such a way that that, for all

1 � i � n, f is weakly distinctive in the in�nitary GSOS system obtained from G by removing

all the rules in R � R

i

. This can be done by partitioning the set of rules for f according to the

following equivalence relation on the rules for f :

� �

f

�

0

, �; �

0

are rules for f that test the same arguments positively.

25



Note that the cardinality of R= �

f

is at most 2

l

. Let R

1

; : : : ; R

n

be the equivalence classes of rules

for f determined by �

f

.

De�ne �

G

0

to be the signature obtained by extending �

G

with fresh l-ary operation symbols

f

1

; : : : ; f

n

. Next de�ne R

G

0
to be the set of rules obtained by extending R

G

, for each i, with rules

derived from the rules of R

i

by replacing the operation symbol in the source by f

i

. It is immediate

to see that each operation f

i

so de�ned is weakly distinctive, and that (25) holds. Moreover, by

construction, each f

i

is bounded if f itself was bounded. 2

The results presented so far in this section give strong head normalization for the terms in an

in�nitary GSOS system built from positive, consistent, bounded smooth operations only. In par-

ticular, they can be used to obtain strong head normalization for the terms in the recursion-free

sublanguages of the bounded de Simone systems in the beautiful presentation given by Vaandrager

in [39, De�nition 3.10].

To conclude this section, I shall now show how to axiomatize bounded positive GSOS operations

with limited fan-in (cf. De�nition 3.8). This can done following the spirit of Proposition 5.13.

First, we need a technical lemma, which is a slightly sharpened version of Lemma 5.12 on

page 19.

Lemma 7.5 Suppose G is an in�nitary GSOS system and P = f(~z) and Q = f

0

(~v) are terms over

�

G

with variables that do not occur in R

G

. Suppose that there exists a 1-1 correspondence between

rules for f and rules for f

0

such that, whenever a rule � for f with source f(~x) is related to a rule

�

0

for f

0

with source f

0

(~y), we have that there exists a bijective map �

�;�

0

from the target variables

of �

0

to those of � such that:

1. ante(�)f~z=~xg = ante(�

0

)(f~v=~yg � �

�;�

0

), and

2. target(�)f~z=~xg = target(�

0

)(f~v=~yg � �

�;�

0

).

Then BISIM(G) j= P = Q.

Proof: (Following the proof of Lemma 4.12 in [2]). Suppose that G

0

is a disjoint extension of G

and � is a closed �

G

0

-substitution. We have to prove P�

$

{{

G

0

Q�. For this it su�ces to show that,

for all a 2 Act and S 2 T(�

G

0
),

P�

a

!

G

0

S , Q�

a

!

G

0

S:

In fact, it is su�cient to prove the implication `)', since the reverse implication is symmetric. So

suppose P�

a

!

G

0

S. I will prove Q�

a

!

G

0

S.

Since P�

a

!

G

0
S, it must be the case that R

G

0
contains a rule � of the form

H

f(~x)

a

! T

and there exists a �

G

0

-substitution � such that

�(x

i

)

a

ij

!

G

0

�(x

0

ij

) for every positive antecedent x

i

a

ij

! x

0

ij

2 H (26)

�(x

i

)

b

ik

9

G

0

for every negative antecedent x

i

b

ik

92 H (27)

f(~x)� � P� (28)

T� � S (29)
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Since G

0

disjointly extends G, we know that � is a rule of G. Thus there exists a rule �

0

in R

G

(and

hence in R

G

0
) of the form

H

0

f

0

(~y)

a

! T

0

such that, by the proviso of the lemma,

Hf~z=~xg = H

0

(f~v=~yg � �

�;�

0
) (30)

Tf~z=~xg � T

0

(f~v=~yg � �

�;�

0
) (31)

for some bijective map �

�;�

0
from the target variables of �

0

to those of �.

Let �

0

be the �

G

0

-substitution de�ned by

�

0

(w) �

(

�(w) if w occurs in ~z or ~v

�(w) otherwise

I claim that for all variables w that do not occur in ~z or ~v, �

0

� h~z=~xi(w) � �(w). In fact, either w

does not occur in ~x and we have �

0

� h~z=~xi(w) � �

0

(w) � �(w), or w does occur in ~x, in which case

the claim follows since

f(~x)� � f(~z)� (by (28))

� f(~z)�

0

(since � = �

0

on ~z)

� f(~x)f~z=~xg�

0

Now it is not too di�cult to show that Q�

a

!

G

0

S does indeed hold by applying the substitution

�

0

� f~v=~yg � �

�;�

0
to the rule �

0

. 2

Proposition 7.6 Suppose G is an in�nitary GSOS system containing a positive operation f with

arity l and limited fan-in that is not both smooth and consistent. Then there exists a disjoint

extension G

0

of G with a positive smooth and consistent operation f

0

with arity l

0

(possibly di�erent

from l) and limited fan-in, and there exist vectors ~z of l distinct variables, and ~v of l

0

variables in

~z (possibly repeated), such that:

BISIM(G

0

) j= f(~z) = f

0

(~v) (32)

Moreover, if f is bounded, then so is f

0

.

Proof: Let f be a positive operation with arity l and limited fan-in that is not both smooth and

consistent. First of all, we determine the arity of its smooth and consistent version f

0

. For � a

GSOS rule for f of the form

S

l

i=1

n

x

i

a

ij

! y

ij

j1 � j � m

i

o

f(x

1

; : : : ; x

l

)

c

! C[~x; ~y]

(33)

and 1 � i � l, let N(�; i) be given by:

m

i

if x

i

does not occur in the target of �

m

i

+ 1 otherwise

Note that, as f has limited fan-in, N(�; i) is less than or equal to m

(f;i)

+1 for all �, where m

(f;i)

is

the maximum number of positive antecedents for i in the rules for f . N(f; i) is then de�ned as the

maximum over all rules � for f of the N(�; i)s. Let l

0

=

P

l

i=1

N(f; i) and let f

0

be a fresh operation
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symbol. Then �

G

0

is de�ned as the signature that extends �

G

with an l

0

-ary operation symbol

f

0

. Let ~w = w

11

; : : : ; w

1N(f;1)

; : : : ; w

l1

; : : : ; w

lN(f;l)

and ~u = u

11

; : : : ; u

1N(f;1)

; : : : ; u

l1

; : : : ; u

lN(f;l)

be

disjoint vectors of l

0

di�erent variables. Suppose � is a rule for f as in (33) and consider the

substitution �

�

given by:

�

�

(w) =

8

>

<

>

:

x

i

if w = w

ij

for some 1 � i � l and 1 � j � N(f; i)

y

ij

if w = u

ij

for some 1 � i � l and 1 � j � m

i

w otherwise

I now wish to construct a rule �

0

for f

0

such that �

0

�

�

and � are identical with the exception of

their sources. This can be done as follows. Let �

0

be the positive smooth GSOS rule obtained from

� by replacing each antecedent x

i

a

ij

! y

ij

with w

ij

a

ij

! u

ij

, taking f

0

(~w) as the source of the rule, and

replacing each occurrence of a variable x

i

in the target with w

im

i

+1

. It is immediate to verify that

the rule �

0

does meet the desired requirement.

De�ne R

G

0
to be a set of rules that extends R

G

with a rule �

0

, de�ned as above, for each rule � for

f . It is easy to see that, by construction, f

0

is a positive, consistent smooth operation. Moreover,

again by construction, f

0

is bounded if so is f .

Let now ~z = z

1

; : : : ; z

l

be a vector of di�erent variables, all of them not occurring in R

G

, and

let ~v = v

11

; : : : ; v

1N(f;1)

; : : : ; v

l1

; : : : ; v

lN(f;l)

be the vector of length l

0

given by v

ij

= z

i

. It is easy to

see that, for each pair �, �

0

of corresponding rules:

1. ante(�)f~z=~xg = ante(�

0

)(f~v=~wg � �

�;�

0
), and

2. target(�)f~z=~xg = target(�

0

)(f~v=~wg � �

�;�

0
)

where �

�;�

0
denotes the restriction of �

�

to the target variables of �

0

. Thus we can apply Lemma 7.5

to obtain that BISIM(G

0

) j= f(~z) = f

0

(~v), as required. 2

As an example of application of the methods used in the proof of the above proposition, let us

consider the (useless) positive GSOS operation f given by the rules:

x

a

! x

1

; x

b

! x

2

f(x; y)

a

! x

x

a

! z

1

; x

c

! z

2

f(x; y)

c

! 0

This operation is not smooth as it has more than one positive hypothesis for its �rst argument.

The smooth and consistent version of f given by the above proposition is the ternary operation f

0

given by the rules:

x

a

! x

0

; y

b

! y

0

f

0

(x; y; z)

a

! z

x

a

! x

0

; y

c

! y

0

f

0

(x; y; z)

c

! 0

The corresponding instance of equation (32) relating f and its smooth and consistent version f

0

is

the following law:

f(x; y) = f

0

(x; x; x)

Note that the fact that f does not use its second argument is re
ected in the above equation. In

fact f

0

makes three copies of x, but no copy of y.

So far, I have been unable to �nd a strategy for axiomatizing general GSOS operations (with

negative premises) that uses the weaker notion of distinctiveness from De�nition 7.1, and does not

contain equation schemas.
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7.2 Further Work

The developments of this paper suggest several interesting topics for further research, some of which

are already being investigated by the author. Below I list some directions for further work that I

plan to explore.

The class of regular operations that has been axiomatized in this paper is quite large, and

includes most of the standard operations found in the literature on process algebras. A notable

exception is the desynchronizing operation � present in the early versions of Milner's SCCS [27, 21].

This operation is given by the rules (one such rule for each a 2 Act):

x

a

! x

0

�x

a

! ��x

0

which are not simple. It is a challenging open problem to extend the class of regular GSOS

operations considered in this paper to include operations like Milner's �.

In this paper, I have not considered issues related to the e�ectiveness of regular in�nitary GSOS

languages, and of the resulting axiomatizations. Standard GSOS languages �a l�a Bloom, Istrail and

Meyer enjoy pleasant recursion-theoretic properties, and any proper extension of their work to

in�nitary languages ought to possess at least some of them. In future work I shall investigate

a class of in�nitary, recursive GSOS languages | that is in�nitary GSOS languages that could

conceivably have interpreters | and study the resulting axiomatizations produced by the methods

of [2].

Finally, it would be interesting to �nd alternative ways of axiomatizing general GSOS operations

that, like the one presented in Section 7.1, do not use the full power of the technical notion of

distinctiveness used in [2] and in this study.

Acknowledgements: Many thanks to Bard Bloom and Frits Vaandrager for the joint work [2]

which formed the main inspiration for this paper. Y.S. Ramakrishna provided much needed termi-

nological assistance.
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