
Symbolic Bisimulations

�

M. Hennessy, H. Lin

Computer Science

University of Sussex

Abstract

We re-examine bisimulation equivalence for value-passing process languages in

which actions have associated with them values from a possibly in�nite value set.

Using symbolic actions we generalise the standard notion of labelled transition

graph to that of symbolic transition graph. The advantage of the latter is that the

operational semantics of many value-passing processes may be expressed in terms

of �nite symbolic transition graphs although the underlying (standard) labelled

transitions graph is in�nite.

A collection of symbolic bisimulations parameterised on boolean expressions,

'

b

, are then de�ned over symbolic transition graphs. These are related to standard

bisimulations by proving that t '

b

u if and only if in every interpretation which

satis�es b t is bisimulation equivalent to u in the standard sense. We then give an

algorithm for checking the relation t '

b

u which can be applied to a class of �nite

symbolic transition graphs which we call standard.

The results apply to both early and late bisimulation equivalence, which are

the two natural generalisations of the standard bisimulation equivalence to value-

passing languages.

1 Introduction

Bisimulation equivalence, [Mil89], provides a useful semantic theory for process descrip-

tion languages. However it has the disadvantage that for value-passing processes, where

the values are from an in�nite data-space, in order to check for equivalence in�nite tran-

sition graphs must be compared. The object of this paper is to rede�ne this equivalence

at a more abstract level so that in many cases the checking may be carried out by com-

paring �nite transition graphs. In order to explain our approach we �rst de�ne some

simple concurrent processes..

Consider the two descriptions

S (= a:�:b:�:S

�

The authors would like to acknowledge the �nancial support of the SERC grants GR/H16537 and

GR/H13932.

1

??

�

�

�

�

�

�

�*

�

�

�

�

�

�

�*

6

�

�

�

�

�

�

��

H

H

H

H

H

H

Hj

6

H

H

H

H

H

H

HY

�

�

�

�

�

�

��

6

S P

b

� �

�

a

b b

�

a

��

Figure 1: Transition Graphs for S and P

and

P (= (Q j R j R)nf�; �g

Q (= a:�:�:Q

R (= �:b:�:R

written in the language CCS. The �rst is a simple cyclic process which performs the

action a followed by a � action, a b action and �nally another � action to arrive back

at its original start state. Here a and b are some formal uninterpreted actions while �

is a special action which denotes internal unobservable activity. One such activity is an

internal communication or synchronisation between two subprocesses which is modelled

in CCS by the simultaneous occurrence of complementary actions such as a and a .

So in CCS synchronisation is a binary operation between exactly two processes. The

second process above, P , consists of three subprocesses running in parallel, Q and two

copies of R. Q �rst performs the external action a and then synchronises with one of the

copies of R using the action �. That copy now performs the external action b and then

synchronises with Q using the other internal action � while the other copy of R is forced

to idle. The operator nf�; �g indicates that the two actions � and � can only be used

for internal purposes and are not visible to external users. So in this process their only

manifestation is their participation in the � actions. Although these two descriptions

are quite di�erent in nature, semantically they are deemed to be equivalent; according

to the de�nition of bisimulation equivalence S � P . As another example consider

S

0

(= c?x:�:d!bx=2c:�:S

0

and

P

0

(= (Q

0

j R

0

j R

0

j T

0

j T

0

)nfin

1

; in

2

; �g

Q

0

(= c?x:(even(x)! in

1

!x:�:Q

0

; in

2

!x:�:Q

0

)

R

0

(= in

1

?x:d!dx=2e:�:R

0

T

0

(= in

2

?x:d!d(x� 1)=2e:�:T

0

Here we use a value-passing version of CCS where the actions are interpreted in terms of

communication channels. Input of a value for a variable x along a channel c is denoted by

2

�

�

�

�:

�

�

�

�

�

�3

�

�

�

�

�

�3

�

�

�

��)

B

B

B

B

BM

Q

Q

Qk

B

B

B

B

B

BM

Q

Q

Qs

�

�

�

�

��

�

�

�

�

�

�

�/

S

S

S

So

?

S

S

S

Sw

6

-

�

�

�

�

�

�

�/

�

�

�

�

�

�+

C

C

C

C

C

CW

�

�

�

�

�

�

�

c?0

d!0

d!1

c?1

�

S

0

P

0

c?0d!0

c?1

d!1

�

�

d!1

d!0

�

�

Figure 2: Transition Graphs for S

0

and P

0

c?x while c!e denotes the output of the value of the expression e along c. Communication

is modelled as before with � representing the simultaneous occurrence of complementary

actions; with these interpreted actions input and output along the same channel are

considered to be complementary. So S describes a process which inputs a value on the

channel c, does some internal activity before outputing bx=2c on the channel d, then

engages in internal activity again. The description P

0

is more detailed. This process

consists of �ve process running in parallel. The �rst, Q

0

inputs a value on c and outputs

it immediately on one of the internal channels in

1

or in

2

depending on whether or not it

is even. It then synchronises with the process receiving the output value, which is one of

the copies of either R

0

or T

0

depending on which internal channel is used. The copy of

R

0

outputs the value dx=2e on the channel d and then synchronises with Q

0

while that

of T

0

outputs the value d(x� 1)e=2.

Once more, although these descriptions are quite di�erent, it turns out that S

0

� P

0

because they o�er essentially the same behaviour to their respective environments.

There are a large number of veri�cation tools which have at their core algorithms for

checking bisimulation equivalence between processes, [CPS89, SV89, GLZ89]. By and

large these tools do not work directly on syntactic descriptions such as those above but

rather on more abstract representations of the behaviour of processes. So for example the

operational behaviour of P and S can be represented by the transition graphs in Figure 1

while those for P

0

and S

0

are in Figure 2. These graphs are convenient representations

of the possible transitions which the processes can perform. The two graphs in Figure 1

are �nite and when the standard algorithm is applied to them it returns true. However

the graphs in Figure 2 are in�nite, assuming that the value-space is the set of natural

numbers, and therefore when the algorithm is applied to them it will never terminate,

although they are bisimulation equivalent.

This is a fundamental limitation of the existing algorithms for bisimulation equiva-

lence; because they only apply to �nite transition graphs they are of very limited use

for value-passing languages. The aim of this paper is to develop new more powerful

algorithms which can be applied to a large class of processes which are de�ned in these

value-passing description languages. The idea is to transfer attention from the standard

form of transition graphs to what we call symbolic transition graphs. These are more

abstract descriptions of processes in terms of symbolic actions. For example the symbolic

graphs associated with S

0

and P

0

are given in Figure 3. These are both �nite graphs

where the symbolic actions are of the form c?x; d!x=2; d!(x� 1)=2 and d!bx=2c and � ,

3

?

�

�

�

�=

6

�

�

�

�>

H

H

H

H

H

H

H

H

H
Hj

�

�

�

�

�

�

�

�

�
��

?

�

�

�

�

�

�)

6

�

�

�

�

�

�1

6

�

�

�

�

�

�

�

�

��:

X

X

X

X

X

X

X

X

XXy

6

P

P

P

P

P

Pi

6

P

P

P

P

P

Pq

?

�

�

d!bx=2c

:even(x); �

P

0

d!dx� 1=2e

d!dx� 1=2e

:even(x); �

�

��

�

d!dx=2e

c?x

even(x); �

even(x); �

d!dx=2e

c?x

S

Figure 3: Symbolic Transition Graphs for S

0

and P

0

some of which are guarded by boolean expressions. Our algorithms apply at this level of

abstraction and will always return an answer when applied to �nite symbolic transition

graphs.

Before proceeding further with an outline of the results of the paper we should point

out that there are two reasonable variations of bisimulation equivalence which apply to

value-passing languages which are often referred to as early bisimulation equivalence and

late bisimulation equivalence, [MPW92]. The variation occurs because of the composite

nature of the actions and is best explained using a simple example. Consider the two

processes, where again we assume that the value space consists of all the natural numbers:

P

1

(= (c?x:even(x)! R

1

; R

2

) + c?x:R

3

P

2

(= (c?x:even(x)! R

1

; R

3

) + (c?x:odd(x)! R

2

; R

3

)

If we say that the behaviour of these processes is completely determined by their ability

to perform actions of the form c?k and c!k where c is a channel and k is a value then

it is reasonable to say that P

1

and P

2

are semantically equivalent because each action

performed by one can be obviously matched by the other. This is the view taken by early

bisimulation equivalence. However there is another view of their behaviour where the set

of input actions of the form c?k are replaced by one general action of the form c? which

indicates the ability to perform an input action on the channel c without committing to

the actual value. Here they are not equivalent since the input move of the form c? from P

1

to even(x)! R

1

; R

2

can not be matched by a corresponding move from P

2

. This is the

view taken by late bisimulation equivalence where for P

2

to be equivalent to P

1

it must

be able to make a c? move to a term which, when interpreted as a family of processes

indexed by values for x, should be component-wise equivalent to even(x) ! R

1

; R

2

.

For the two possible choices of c? moves, to even(x) ! R

1

; R

3

and odd(x) ! R

2

; R

3

respectively, there are instantiations for x which violate this requirement, assuming that

R

1

; R

2

and R

3

are semantically di�erent processes.

Our theory of symbolic bisimulations will be developed for both variations.

Central to our approach is the development of a symbolic operational semantics where

symbolic actions such as c?x; c!e and their associated residuals are associated with terms.

So generalising the standard notation for operational semantics [Mil89], we will have for

4

example that

c?x:t

c?x

�! t and c!e:t

c!e

�! t

for arbitrary terms. More generally symbolic actions will have boolean guards associated

with them indicating conditions under which they can be performed. Note however that

this form of operational semantics must neccessarily be given for open terms, i.e. terms

which may contain free variables; for example even if c?x:t is a closed term its residual

after the symbolic action c?x, namely t, will in general contain free occurrences of x.

This will complicate to some extent the actual de�nition of the symbolic operational

semantics. Nevertheless we use these formal actions to de�ne two symbolic variants of

bisimulation equivalence, a late and early version. It will be convenient to parametrise

these on boolean expressions. In this case we will have relations of the form '

b

E

and '

b

L

between open terms. For example t '

b

E

u indicates that with respect to the early version

of the symbolic operational semantics t and u are bisimulation equivalent relative to the

boolean expression b. Intuitively this is meant to indicate that in every interpretation

which satis�es the boolean expression b the processes t and u are bisimulation equivalent.

The boolean expressions used to parameterise the equivalences are assumed to be from

from some language for describing boolean propositions. Although we do not give any

syntax for such language it should be noted that these expressions may contain free

variables so that in some interpretations, i.e. assigments of values to variables, a boolean

expression may evaluate to true and in others to false.

If we interpret these terms, by assigning values to the free variables, then we can

also give concrete operational semantics in terms of the concrete actions c?v and c!v and

this in turns leads to a concrete bisimulation equivalence between terms. This level of

semantics corresponds to the standard approach as found for example in [Mil89]. Once

more there is a late and early version and, if we use � to range over assigments of values

to free variables, we obtain relations of the form

� j= t �

E

u and � j= t �

L

u:

Intuitively these mean that with respect to the assigment � t is early/late bisimulation

equivalent to u.

Our �rst major result relates the abstract and concrete versions of these equivalences.

We show that

t '

b

i

u if and only if for every assignment � which satis�es the boolean b

� j= t �

i

u, where i is either E or L.

This result underlies the signi�cance of symbolic bisimulations. For example it shows that

the standard form of bisimulation equivalence between closed terms, �

i

, coincides with

'

true

i

. The crucial di�erence between these two relations is that the former is de�ned on

concrete transition graphs, which for value-passing languages are nearly always in�nite,

while the latter is de�ned on symbolic transition graphs which are frequently �nite.

The second part of the paper is devoted to developing algorithms to decide symbolic

bisimulation equivalences for �nite symbolic transition graphs. For two terms t and u

there may be many booleans b for which t '

b

i

u; for example it turns out that t '

false

u

for all terms t; u. We are interested in calculating the weakest boolean for which t '

b

i

u.

We call thismgb

i

(t; u) which has the property that t '

mgb

i

(t;u)

i

u and whenever t '

b

i

u then

b implies mgb

i

(t; u) . We also wish to generate a symbolic bisimulation which provides a

5

witness to the fact that t '

mgb

i

(t;u)

i

u. Of course even on �nite symbolic transition graphs

these bisimulations are in general in�nite because we must exhibit a suitable relation,

R

b

, for each boolean expression. However we can easily �nd a �nite representation by

using the fact that if b implies b

0

then t '

b

0

i

u implies t '

b

i

u. For both the early

and late case we present algorithms which given a pair t; u returns a boolean expression

logically equivalent to mgb

i

(t; u) and the �nite representation of a witnessing symbolic

bisimulation. The algorithms apply to what we called standard graphs, �nite symbolic

graphs which satisfy some condition on the use of bound variables.

Our algorithms are similar to the bisimulation checking algorithm from [Lar86] in

that both follow closely the de�nition of bisimulations. When given two terms t; u

the algorithm will return a boolean expression equivalent to mgb

i

(t; u). In this sense

we reduce bisimulation equivalence to the logical equivalence of boolean expressions.

Of course if the language for expressions is at all complicated bisimulation equivalence

will be undecidable as indeed will the equivalence between the corresponding boolean

expressions. There is no way of avoiding this problem and our approach at least provides

a systematic way of checking bisimulation equivalence which is parameterised on the

language for boolean and data expressions.

The algorithms we propose are independent of the language used to de�ne expressions

but to be useful we need to be able to simplify the returned expressions into some form

of minimal form or at least a readable form. We have implemented the algorithms and

a fairly naive set of simpli�cation rules works reasonably well. We hope to develop

future versions which will be guided by the user, principally by seeking the user's help

in simplifying expressions as they are being generated rather than at present when the

only simpli�cation is carried out at the end. We also hope to extend the algorithms to

handle other semantic equivalences such as weak bisimulation and testing equivalence.

We now outline the contents of the subsequent sections. In the next section we

formally de�ne symbolic transition graphs. By working directly with symbolic transi-

tion graphs our results are independent of any particular process description language.

However as an example of how to generate such graphs we give a symbolic operational

semantics to a value-passing version of CCS which associates with each open term of

the language such a graph. The next section, Section 3, is devoted to late bisimulation

equivalence for symbolic transition graphs and this is followed by a section on late sym-

bolic bisimulation equivalence which includes a proof of the relationship between these

two equivalences, as explained above. The algorithm for generating symbolic bisimula-

tions is described in Section 5. Section 6 outlines the changes necessary to handle early

bisimulation equivalence and �nally some conclusions are drawn in Section 7.

2 Symbolic Transition Graphs

Symbolic transition graphs are parameterised on a number of syntactic categories. The

�rst two is a set of variables, Var, which we assume to be totally well-ordered, and a

set of values V . Eval, ranged over by � , represents the set of evaluations, i. e. the set

of total functions from Var to V . We use the standard notation �[v=x] to denote the

evaluation which di�ers from � only in that it maps x to v. A substitution is a partial

injective mapping from Var to Var whose domain is �nite. We use Sub to represent the

set of substitutions and this set is ranged over by �. We use the notation �[x 7! y] to

6

indicate the obvious modi�cation to the substitution �.

We also presume a set of expressions, Exp, ranged over by e, which includes Var and V .

Each e has associated with it a set of free variables, fv(e), and it is assumed that both

evaluations and substitutions behave in a reasonable manner when applied to expressions;

the application of � to e, denoted �(e), yields a value while the application of a substi-

tution, denoted e�, yields another expression with the property that fv(e�) = �(fv(e))

where the latter is de�ned in the obvious manner. It is also assumed that if � and �

0

agree on fv(e) then �(e) = �

0

(e). We also presume a set of boolean expressions, BExp,

ranged over by b, with similar properties but we will use the more suggestive notation

� j= b to indicate that �(b) = true. By and large we do not wish to worry about the

expressive power of these expressions but we will assume that boolean expressions are

closed under the usual connectives and contains e = e

0

for every pair of expressions e

and e

0

. In some sections, those concerned with our theoretical results, we will have to

assume that the language for boolean expressions is extremely powerful; more or less

capable of describing any collection of environments.

After these preliminaries we may now de�ne the class of graphs in which we are

interested. Essentially they are arbitrary directed graphs in which the nodes are labelled

by a set of variables, intuitively the set of free variables of that node, and the branches

are labelled by guarded actions, pairs of boolean expressions and actions. An action may

be an input action, of the form c?x where c is from a set of channels, Chan, an output

action, of the form c!e, or a neutral action such as � . So let SyAct, ranged over by �,

represent the set of symbolic actions; it has the form

SyAct = f c?x; c!e j c 2 Chan g [NAct

where NAct is some set of neutral actions. The set of free and bound variables of these

actions are de�ned in the obvious manner: fv(c!e) = fv(e); bv(c?x) = fxg and otherwise

both fv(�) and bv(�) are empty. Then the set of guarded actions

GuAct = f (b; �) j b 2 BExp; � 2 SyAct g:

We use � to range over GuAct.

De�nition 2.1 (Symbolic Transition Graphs)

A symbolic transition graph is a directed graph in which every node n is labelled by

a set of variables fv(n) and every branch is labelled by a guarded action such that if

a branch labelled by (b; �) goes from node m to n, which we write as m

b;�

7�! n, then

fv(b) [fv(�) � fv(m), and fv(n) � fv(m) [bv(�). 2

We will frequently write m

�

7�! n for m

true;�

7�! n.

A symbolic transition graph may be looked upon as a particularly austere represen-

tation of the abstract syntax of a value-passing process algebra. By working at this level

of abstraction our results are independent of any particular language. But as an example

we show how a symbolic transition graph can be obtained from an example language,

based on CCS, using the standard approach of structural operational semantics. The

abstract syntax of the language is given by

t ::= nil j �:t j be! t; t

t+ t j t j t j tnc j P (e)

7

a:t

true;�

7�! t � 2 NAct [f c!e j c 2 Chan; e 2 Exp g

c?x:t

true;c?y

7�! t[y=x] where y = new(fv(c?x:t))

t

b

0

;�

7�! t

0

implies (b! t; u)

b^b

0

;�

7�! t

0

u

b

0

;�

7�! u

0

implies (b! t; u)

:b^b

0

;�

7�! u

0

t

b;�

7�! t

0

implies t+ u

b;�

7�! t

0

t

b;�

7�! t

0

implies t j u

b;�

7�! t

0

j u

� 2 NAct [f c!e j c 2 Chan; e 2 Exp g

t

b;c?x

7�! t

0

implies t j u

b;c?y

7�! t

0

[y=x] j u

y =

(

x if x 62 fv(u)

new(fv(t

0

ju)) otherwise

t

b;c?x

7�! t

0

; u

b

0

;c!e

7�! u

0

implies t j u

b^b

0

;�

7�! t

0

[e=x] j u

0

t

b;�

7�! t

0

implies tnc

b;�

7�! t

0

nc

if � does not use the channel c

t[e=x]

b;�

7�! t

0

implies P (e)

b;�

7�! t

0

if P (x)(= t is a declaration

Figure 4: Symbolic Operational Semantics of CCS

This contains the usual combinators from CCS together with a boolean choice mechanism

and it assumes a set of process names, ranged over by P . To give a semantics to the

terms we assume the existence of a set of declarations of the form

P (x)(= t;

one for each process name which occurs in the terms, where it is assumed that the free

variables of t are contained in the list x.

In this language c?x binds occurrences of the variable x in the sub-term t of c?x:t

and we get as usual the set of free variables, fv(u) of a term u. For each � 2 GuAct let

�

7�! be the least relation which satis�es the rules in Figure 4 (the symmetric rules for

+ and j have been omitted). This next-state relation uses a function new, which when

given a set of variables returns a new variable not in that set. Let us assume that the

set of variables, V ar, is totally ordered and that new(V) returns the least variable not

in V . The symbolic transition graph for the language may now be de�ned by letting

the nodes consist of terms t with associated set of free variables fv(t) and t

�

7�! t

0

if

we can derive this statement from the rules in Figure 4. One can easily check that the

requirements of De�nition 2.1 are satis�ed. An example of a symbolic transition graph

generated from the language in this way has already been seen in Figure 3, although the

sets of free variables were not shown. In Figure 5 we give another example of a symbolic

graph assuming the declaration

P (y)(= c?x:x = y ! d!y:P (y); c!(x+ y):P (y);

it is the graph associated with the term P (y), assuming that new(y) = x.

8

-
'

& %

$
�

??

x = y; d!y x 6= y; c!(x+ y)

fx; yg

c?x

fyg

Figure 5: A symbolic transition graph

3 Late Bisimulation Equivalence

The standard de�nitions of bisimulation equivalence are usually based on an operational

semantics which is de�ned on closed terms of a language. Here the nodes of a symbolic

transition system play the role of open terms and therefore we need to de�ne the op-

erational semantics relative to an evaluation. But there is a further complication; the

standard de�nitions of operational semantics rely quite heavily on syntactic substitu-

tions. For example the rules for CCS with value-passing would include

c?x:p

c?v

�! p[v=x]

where p[v=x] denotes the closed term obtained by substituting v for all free occurrence

of x in p. Working at the more abstract level of symbolic transition systems we have

no actual terms into which to make these kind of substitutions. So we have to carry

them along in the operational semantics; in other words the proper analogue to an open

term in an actual language is a node in a symbolic transition graph together with a

substitution, m

�

. Assuming some �xed symbolic transition graph let the set of terms

T = fm

�

j m is a node; � 2 Sub; domain(�) � fv(m) g:

We will usually identify the node n with the term n

;

where ; is the empty substitution

and use t; u; : : : to range over T . We will frequently apply notation originally developed

for nodes directly to terms and the e�ect should be obvious. For example the set of free

variables of a term m

�

is de�ned in the obvious way by fv(m

�

) = f�(fv(m))g and m

�

is

said to be closed if its set of free variables is empty. We will be somewhat relaxed about

the condition that for m

�

to be a term the domain of � must be contained in the set

of free variables of m; but whenever we construct a new term m

�

we assume that it is

well-formed in that if necessary the substitution � is restricted to fv(m). Also if t is a

term of the form m

�

, we use t[x 7! z] to denote the term m

�[x7!z]

.

A judgement of the late operational semantics then takes the form

� j= t

a

�! u

where a is some action from the the set of late actions, LAct. As explained in the

introduction the late operational semantics uses the neutral actions such as � , the output

actions of the form c!v and the more symbolic form of input actions, c?x. So LAct is

de�ned to be

NAct [f c!v j c 2 Chan; v 2 V g [f c?x j c 2 Chan; x 2 Var g:

9

m

b;a

7�! n; a 2 NAct implies � j= m

�

a

�! n

�

provided � j= b�

m

b;c!e

7�! n implies � j= m

�

c!�(e�)

�! n

�

provided � j= b�

m

b;c?x

7�! n implies � j= m

�

c?x

�! n

�

provided � j= b�

Figure 6: Late Operational Semantics

The judgements � j= t

a

�! u are de�ned to be the least ones which satisfy the rules in

Figure 6. These should be more or less self-explanatory; much of the work has already

been factored out by the symbolic transition graph and the rules merely interpret the

symbolic actions using the evaluation �.

The standard de�nition of a bisimulation is a relation over closed terms and in our

setting a closed term is mimiced by a term together with an evaluation. So here a

bisimulation will be a collection of relations, parameterised on evaluations. We �rst

de�ne a functional, LB, over such collections of relations. Let R = fR

�

j � 2 Eval g

be such that each R

�

� hT ;T i. Then LB(R) is the Eval -indexed family of symmetric

relations de�ned by:

(t; u) 2 LB(R)

�

if

1. � j= t = m

�

c?x

�! m

0

�

implies � j= u = n

�

c?y

�! n

0

�

for some n

0

�

such that

(m

0

�[x7!z]

; n

0

�[y 7!z]

) 2 R

�[v=z]

for all v 2 V where z is a fresh variable

2. for any other late action a � j= t

a

�! t

0

implies � j= u

a

�! u

0

for some u

0

such that

(t

0

; u

0

) 2 R

�

De�nition 3.1 (Late Bisimulations)

R is a late bisimulation if R � LB(R), i.e. R

�

� LB(R)

�

, for each �. 2

We write � j= t �

L

u if there is a late bisimulationR such that (t; u) 2 R

�

. It will some-

times be more convenient to denote this by t �

�

L

u. The standard theory of bisimulations

apply here; the functional LB is (pointwise) monotonic and therefore has a maximal �x-

point and the �-th component of this maximal �xpoint coincides with �

�

L

. Moreover it

is easy to check that each of these relations is an equivalence relation.

We take this semantic equivalence to be the \concrete" behavioural equivalence be-

tween processes. It is of course somewhat more abstract than, say, bisimulation equiv-

alence between CCS processes as de�ned in [Mil89] but this is because our de�nition

applies to syntactic transition systems in general. However if we apply the de�nition to

the particular syntactic transition system generated from CCS we obtain a \late" version

of the standard bisimulation equivalence de�ned directly on CCS terms. This is proved

in Appendix A.

We can also show that the equivalence is well-behaved with respect to changes to

the free variables; if two terms are equivalent and we apply a substitution then the

10

resulting terms are also equivalent so long as we update the evaluation so as to take the

substitution into account:

Proposition 3.2 If � j= t �

L

u then � � �

�1

j= t� �

L

u�

A more interesting result is that the equivalence only depends on the free variables of

the terms being compared.

Proposition 3.3 If �(x) = �

0

(x) for every x 2 fv(t; u) then � j= t �

L

u if and only if

�

0

j= t �

L

u.

Proof: For any X � V let � =

X

�

0

if for every v 2 X �(x) = �

0

(x). Let R be de�ned

by

R

�

= f (t; u) j 9�

0

: � =

fv(t;u)

�

0

and �

0

j= t �

L

u g

One can prove that if � =

fv(t)

�

0

then � j= t

a

�! t

0

if and only if �

0

j= t

a

�! t

0

and from

this it follows that R is a late bisimulation. 2

With this late operational semantics in�nite branching does not necessarily occur

because of input moves. But, assuming V is in�nite we do in general have to perform an

in�nite number of comparisons because, intuitively, when matching the move � j= t

c?x

�! t

0

with � j= u

c?x

�! u

0

we have to ensure that for each v 2 V �[v=x] j= t

0

�

L

u

0

. In the next

section we de�ne a symbolic version of the operational semantics where this source of

in�nite comparisons is eliminated.

4 Symbolic Late Bisimulations

In this section we use the symbolic actions of a symbolic transition system to de�ne a

version of bisimulations which captures exactly the collection of concrete relations �

�

L

.

Consider the graph in Figure 7, where a; f; g; h are di�erent neutral actions. We have

omitted the free variables associated with the nodes and replaced them by tags for ease

of reference; the free variables can all be deduced from the fact that fv(p

0

) = fv(q

0

) = ;.

It is easy to check that � j= p

0

�

L

q

0

for all evaluations �.

Let us see how this might be deduced from the symbolic transition graph. The symbolic

move p

0

c?x

7�! p

1

can be matched by the corresponding move q

0

c?x

7�! q

1

if we can show

that p

1

and q

1

are symbolically equivalent. Here we come to a problem; we can not

always expect, for example, the move p

1

a

7�! p

11

to be always matched by q

1

a

7�! q

11

because under some evaluations p

11

may be behaviourally quite di�erent than q

11

. To be

precise whenever the value associated with x is di�erent than 0 they behave di�erently.

For similar reasons the move can not be matched by q

1

a

7�! q

12

. In general in some

interpretations p

11

can be properly matched by q

11

and in others by q

12

.

This leads us to consider a symbolic equivalence parameterised by boolean expres-

sions, '

b

L

. In the present example we will have p

11

'

b

L

q

11

whenever b implies x = 0

and p

11

'

b

L

q

12

whenever it implies x 6= 0. Let us now reexamine in what way the nodes

p

1

and q

1

can be properly matched, i.e. why can we claim p

1

'

b

L

q

1

for a particular b.

The most we can hope for in matching the typical move p

a

7�! p

11

is that the present

11

H

H

H

H

Hj

�

�

�

�

��

�

�

�

�

�

A

A

A

A

AU

?

�

�

�

�

��

A

A

A

A

AU

A

A

A

A

AU

�

�

�

�

�� ?

?

�

�

�

�

��

H

H

H

H

Hj

a

a

x 6= 0; g

q

122

q

121

x = 0; h

q

12

q

0

q

1

c?x

q

11

q

111

x = 0; f

x 6= 0; h

q

112

x 6= 0; g

p

112

p

111

x = 0; f

p

121

true; h

p

12

p

11

p

0

p

1

c?x

a a

Figure 7: Example graph

circumstance, represented by b, can be divided up into di�erent cases, i.e. there is a set

of booleans B such that b =

W

B, and for each of these individual cases the move can

be properly matched. For example if we are trying to check p

1

'

true

L

q

1

then we can let

B = fx = 0; x 6= 0g and in the �rst case the move is matched by q

1

a

7�! q

11

while in the

second it is matched by q

1

a

7�! q

12

.

We have now explained the ideas behind symbolic bisimulation equivalence. The

guards on actions can easily be taken into consideration by demanding some obvious

implications between the booleans involved. But unfortunately we can not use the arrows

in the transition graphs directly for the same reason as in the previous section; we must

work with terms. So the symbolic late operational semantics is given as a collection of

relations over terms,

�

�!

L

, where � is a guarded action. These are de�ned in Figure 8

and the rules are quite straightforward; essentially they apply the substitution associated

with a term when an expression is output or a boolean guard is passed.

With these symbolic actions we now de�ne the symbolic version of bisimulations.

This will be a collection of relations over terms, fS

b

g, parameterised by booleans.

Let S = fS

b

j b 2 BExp g be a parameterised family of relations over terms. Then

SLB(S) is the BExp-indexed family of symmetric relations de�ned by:

(t; u) 2 SLB(S)

b

if whenever t

b

1

;�

�!

L

t

0

there is a collection of booleans B

such that b^ b

1

! _B and for each b

0

2 B there exists a u

b

2

;�

0

�!

L

u

0

such that

b

0

! b

2

and

1. if � is of the form a where a 2 NAct then �

0

= a and (t

0

; u

0

) 2 S

b

0

2. if � is of the form c!e then �

0

= c!e

0

, b

0

! e = e

0

and (t

0

; u

0

) 2 S

b

0

3. if � is of the form c?x then �

0

= c?y, and (t

0

[x 7! z]; u

0

[y 7! z]) 2 S

b

0

where z is a

fresh variable

De�nition 4.1 (Late Symbolic Bisimulations)

S is a late symbolic bisimulation if S � SLB(S). 2

12

m

b;a

7�! n; a 2 NAct implies m

�

b�;a

�!

L

n

�

m

b;c!e

7�! n implies m

�

b�;c!e�

�!

L

n

�

m

b;c?x

7�! n implies m

�

b�;c?x

�!

L

n

�

Figure 8: Late symbolic operational semantics

We write t '

b

L

u if there is a symbolic late bisimulation S such that (t; u) 2 S

b

. As usual

the standard theory applies because SLB is pointwise monotonic. So f'

b

L

j b 2 BExp g is

the maximal symbolic late bisimulation. We can also show that each '

b

L

is an equivalence

relation, using the same approach as with �

�

L

.

As an example consider the graph in Figure 7 and let A;B;C be the following pairs

of sets:

A = f(p

0

; q

0

); (p

1

; q

1

)g

B = f(p

11

; q

11

); (p

12

; q

12

); (p

111

; q

111

); (p

121

; q

121

)g

C = f(p

11

; q

12

); (p

12

; q

11

); (p

111

; q

122

); (p

121

; q

112

)g

Then the following is a symbolic bisimulation:

S

true

= A [A

�1

S

x=0

= B [B

�1

S

x6=0

= C [C

�1

The remainder of this section is devoted to determining the relationship between

symbolic late bisimulations and concrete late bisimulations. We �rst show the connection

between the symbolic actions and the concrete actions.

Proposition 4.2

1. � j= t

c?x

�! t

0

if and only if t

b;c?x

�!

L

t

0

for some b such that � j= b

2. � j= t

c!v

�! t

0

if and only if t

b;c!e

�!

L

t

0

for some b and e such that � j= b and �(e) = v

3. � j= t

a

�! t

0

if and only if t

b;a

�!

L

t

0

for some b such that � j= b

Proof: Follows in straightforward manner from the de�nitions of the two arrows. 2

Now let S be an arbitrary late symbolic bisimulation. De�ne an Eval-indexed collection

of relations over terms, R

S

, by

R

�

S

= f (t; u) j 9b : � j= b and (t; u) 2 S

b

g

Proposition 4.3 If S is a late symbolic bisimulation then R

S

is a late bisimulation.

Proof: Let (t; u) 2 R

�

S

, i.e. (t; u) 2 S

b

for some b such that � j= b. We must show that

the possible moves from t and u are properly matched.

13

1. Suppose � j= t

a

�! t

0

where a 2 NAct. Then by Proposition 4.2 it follows that

t

b

1

;a

�!

L

t

0

for some b

1

such that � j= b

1

. Therefore there exists a set of booleans B

such that b ^ b

1

! _B and for each b

0

2 B there is a u

b

2

;a

�!

L

u

0

such that b

0

! b

2

and (t

0

; u

0

) 2 S

b

0

. Since � j= b ^ b

1

and b ^ b

1

! _B, there must be b

0

2 B such

that � j= b

0

, and hence � j= b

2

. Now apply Proposition 4.2, we have � j= u

a

�! u

0

for the u

0

associated with this b

0

. Since � j= b

0

, (t

0

; u

0

) 2 R

�

S

as required.

2. Suppose � j= t

c!v

�! t

0

. Arguing as in the previous case we get t

b

1

;c!e

1

�!

L

t

0

for

some b

1

and e such that � j= b

1

and �(e

1

) = v, and there exists a b

0

, � j= b

0

and

u

b

2

;c!e

0

�!

L

u

0

such that (t

0

; u

0

) 2 S

b

0

, b

0

! b

2

^ e = e

0

, and �(e

2

) = v. This means that

� j= u

c!v

�! u

0

and (t

0

; u

0

) 2 R

�

S

.

3. Suppose � j= t

c?x

�! t

0

. Again arguing as in the previous case this means that at the

symbolic level t

b

1

;c?x

�!

L

t

0

for some b

1

such that � j= b

1

. Furthermore there exists a

boolean b

0

such that � j= b

0

and u

b

2

;c?y

�!

L

u

0

such that � j= b

2

and (m

0

�[x7!z]

; n

0

�[y 7!z]

) 2

S

b

0

with z a fresh variable, where t

0

; u

0

have the formsm

0

�

; n

0

�

respectively. Applying

Proposition 4.2, we obtain � j= u

c?y

�! u

0

. Moreover z 62 fv(b

0

) because z is fresh.

Hence �[v=z] j= b

0

for every v. Therefore (t

0

�[x7!z]

; u

0

�[y 7!z]

) 2 R

�[v=z]

S

for all v, as

required.

2

Conversely starting with a late bisimulationR we can construct a symbolic bisimulation.

Here we need to assume that the language for booleans is very expressive; more or less

expressive enough to characterise equivalence with particular terms. This is quite a

strong requirement but as we will see in the next section at least for �nite graphs these

booleans can be automatically generated. Let S

R

be de�ned by

S

b

R

= f (t; u) j � j= b implies (t; u) 2 R

�

g:

Proposition 4.4 If R is a late bisimulation then S

R

is a symbolic late bisimulation.

Proof: Let (t; u) 2 S

b

R

. We show that their symbolic actions can be matched in the

appropriate manner.

1. Suppose t

b

1

;c!e

�!

L

t

0

. We must �nd a set of booleans B such that b ^ b

1

! _B and

for each b

0

2 B there must exist a move u

b

2

;c!e

0

�!

L

u

0

such that b

0

! b

2

^ e = e

0

and

(t

0

; u

0

) 2 S

b

0

R

. For convenience let us assume that for each u

0

there is at most one �

such that u

�

�!

L

u

0

; the same argument hold even without this assumption but we

would have to introduce even clumsier notation. Let U be the set fu

0

j u

b(u

0

);c!e(u

0

)

�!

L

u

0

g and for each u

0

2 U let b

0

u

0

be a boolean expression which satis�es

� j= b

0

u

0

if and only if (t

0

; u

0

) 2 R

�

and let b

u

0

be b

0

u

0

^ b(u

0

) ^ e = e(u

0

). Finally let B = f b

u

0

j u

0

2 U g:

14

We �rst check that b ^ b

1

! _B, i.e. � j= b ^ b

1

implies � j= b

u

0

for some u

0

2 U .

Assuming � j= b ^ b

1

, it follows that (t; u) 2 R

�

and � j= t

c!v

�! t

0

where �(e

1

) = v

(by Proposition 4.2). So this move can be matched by some � j= u

c!v

�! u

0

such

that (t

0

; u

0

) 2 R

�

. This means � j= b

0

u

0

. Applying the same Proposition we obtain

u

b(u

0

);c!e(u

0

)

�!

L

u

0

with � j= b(u

0

) and �(e(u

0

)) = v; the latter implies � j= e = e(u

0

) and

therefore � j= b

u

0

.

Now for any b

u

0

2 B there exists u

b(u

0

);c!e(u

0

)

�!

L

u

0

. It is obvious that b

u

0

! b(u

0

)^ e =

e(u

0

) and (t

0

; u

0

) 2 S

b

u

0

R

follows from the de�nition of b

u

0

.

2. The case t

a

�!

L

t

0

is similar.

3. Suppose t = m

�

b

1

;c?x

�!

L

m

0

�

. Again we must �nd a set of booleans B such that

b ! _B and for every b

0

in B there exists a matching move u = n

�

b

2

;c?y

�!

L

n

0

�

such

that b

0

! b

2

and (m

0

�[x7!z]

; n

0

�[y 7!z]

) 2 S

b

0

R

with z a fresh variable. We proceed as in

the previous case by letting U = fn

0

�

j n

�

b(n

0

);c?y

�!

L

n

0

�

g and de�ning B to be the set

f b

n

0

j n

0

2 U g where b

n

0

= b

0

n

0

^ b(n

0

) with b

0

n

0

a boolean expression satisfying

� j= b

0

n

0

if and only if for every value v (m

0

�[x7!z]

; n

0

�[y 7!z]

) 2 R

�[v=z]

with

z a fresh variable.

Again we check that b ^ b

1

! _B, i.e. � j= b ^ b

1

implies � j= b

n

0

for some n

0

2 U .

Assuming � j= b^b

1

we have (m

�

; n

�

) 2 R

�

and � j= m

�

c?x

�! m

0

�

by Proposition 4.2.

So there exists � j= u

�

c?y

�! n

0

�

such that (m

0

�[x7!z]

; n

0

�[y 7!z]

) 2 R

�[v=z]

for all v where

z is a fresh variable, i.e. � j= b

0

n

0

. Applying Proposition 4.2, there exists b

n

0

such

that n

�

b

n

0

;c?y

�!

L

n

0

�

and � j= b(n

0

); the latter implies � j= b

n

0

:

Now for any b

n

0

2 B, there is a n

�

b(u

0

);c?y

�!

L

n

0

�

, and by construction both b

n

0

! b(n

0

)

and (m

0

�[x7!z]

; n

0

�[y 7!z]

) 2 S

b

n

0

R

are immediate.

2

As an immediate corollary to these two propositions we get the main result of this

section.

Theorem 4.5 t '

b

L

u if and only if � j= t �

L

u for every � such that � j= b.

In particular it follows that for closed terms � j= t �

L

u if and only t '

b

L

u for some

b = true. This means that we have reduced the checking of late bisimulation equivalence

to the checking of symbolic late bisimulations which are de�ned on the more abstract

symbolic transition graphs. Of course these bisimulations are more di�cult to check

because of the requirement to �nd decompositions of the booleans each time a move is

to be matched. However one can easily check that if the underlying symbolic transition

system is �nite branching then the sets of booleans B can always be taken to be �nite.

Moreover one could envisage an interactive system for checking or generating symbolic

bisimulations where the user suggests the required decompositions.

In the next section we take a di�erent approach by de�ning an algorithm which auto-

matically generates these decompositions and for a given pair of terms t; u calculates the

booleans b such t '

b

L

u.

15

5 The Algorithm

In this section we con�ne our attention to �nite symbolic transition graphs, i.e. graphs

with a �nite number of nodes; they may of course contain in�nite paths representing

in�nite computation sequences. However they are �nite branching and, as remarked

previously, for such graphs it is su�cient to restrict attention to �nite sets of booleans

B in the de�nition of '

L

. The graphs that the algorithm applies takes the form of two

disjoint �nite rooted symbolic transition graphs which satisfy an additional constraint

that we called standard. The roots of these graphs, which we denote by r and r

0

respec-

tively, represent �nite state terms from a language such as CCS. A direct path in such

a graph is a path from a root which contains at most one occurrence of each node, i.e.

no loops are allowed, and a node m is a direct ancestor of n if m occurs on a direct path

from the root to n. A graph is standard if whenever m

c?x

7�! n then x is not in the set of

free variables of any direct ancestor of m.

Here we describe an algorithm which given two terms t; u, calculates a boolean b

such that t '

b

L

u. This is trivial in general since t '

false

L

u for all terms t; u but we are

interested in calculating the most general boolean b such that t '

b

L

u. A boolean is the

most general boolean for a pair of terms t; u, written as mgb

L

(t; u), if t '

mgb

L

(t;u)

L

u and

whenever t '

b

L

u then b! mgb

L

(t; u).

The algorithm for computing late symbolic bisimulation is shown in Figure 9, where

NAct(t; u); Chan(t; u) are the sets of neutral actions and channel names, respectively,

that appear in the next transitions from t; u. It calculates mgb

L

(t; u) and in addition

exhibits a �nite representation, in terms of a table, of a symbolic late bisimulation equiv-

alence which witnesses the fact that t '

mgb(t;u)

L

u. The principle procedure bisim(t; u)

calls close(t; u; true; ;) and this returns two values,M a boolean which will turn out to be

mgb(t; u) and a table T used to construct the witnessing bisimulation. In general a table is

a function T : hT ;T i 7�! 2

BExp

{ it is convenient to use (�nite) sets of boolean expressions

rather than simply boolean expressions. We also need some notation for tables: T v T

0

i� T (t; u) � T

0

(t; u) for all (t; u), T tT

0

is de�ned by (T tT

0

)(t; u) = T (t; u)[T

0

(t; u) for

all (t; u) and we write b�T (t; u) to mean b! b

0

for some b

0

2 T (t; u). The procedure close

has four parameters, t and u, the current terms being compared, b a boolean expression

which represents the constraints accumulated by previous calls to close and inherited

by the current call, and �nally W a set of pairs of nodes which have already been vis-

ited; each pair of nodes will be visited at most once by the algorithm and therefore is

guaranteed to halt. A call to close(t; u; b;W) uses the procedure match to compare each

possible matching move from t and u. Each such comparison returns a boolean and a

table and these are used to construct M and T , the values returned from the call to

close. It is important to note that W is a set of pairs of nodes rather than terms but for

convenience we will use notation such as (t; u) 2 W etc. to mean that (m;n) 2 W where

t; u are the terms m

�

; n

�

respectively. It should also be noted that in the procedure

match with the parameter c? boolean expressions of the form 8z:M

ij

are used, where z

is a fresh variable. Since the z does not occur elsewhere the eventual boolean expression

returned by bisim can be considered to be of the form 8z:M where M is quanti�er free,

and an evaluation � satis�es this expression if for all v 2 V �[v=z] j=M [v=z].

The correctness of the algorithm is stated in the following two theorems:

Theorem 5.1 (Soundness of Late Algorithm)

16

bisim(t; u) = close(t; u; true; ;)

close(t, u, b, W) =

if (t, u) 2 W then (true, ;)

else let (M

, T

) = match(, t, u, b, W)

for 2 f a; c!; c? j a 2 NAct(t; u); c 2 Chan(t; u) g

in (^

M

, t

T

tf(t; u) 7! fb ^ ^

M

gg)

match(a, t, u, b, W) =

let (M

ij

, T

ij

) = close(t

i

, u

j

, b ^ b

i

^ b

0

j

; f(t; u)g [W)

for t

b

i

;a

�!

L

t

i

; u

b

0

j

;a

�!

L

u

j

in (^

i

(b

i

! _

j

(b

0

j

^M

ij

)) ^ (^

j

(b

0

j

! _

i

(b

i

^M

ij

));t

ij

T

ij

))

match(c!, t, u, b, W) =

let (M

ij

, T

ij

) = close(t

i

, u

j

, b ^ b

i

^ b

0

j

^ e

i

= e

0

j

; f(t; u)g [W)

for t

b

i

;c!e

i

�!

L

t

i

; u

b

0

j

;c!e

0

j

�!

L

u

j

in (^

i

(b

i

! _

j

(b

0

j

^ e

i

= e

0

j

^M

ij

)) ^ (^

j

(b

0

j

! _

i

(b

i

^ e

i

= e

0

j

^M

ij

));t

ij

T

ij

))

match(c?, t, u, b, W) =

let (M

ij

, T

ij

) = let z = newV ar()

(M

0

ij

, T

0

ij

) = close(t

i

[x 7! z], u

j

[y 7! z], b ^ b

i

^ b

0

j

; f(t; u)g [W)

for t

b

i

;c?x

�!

L

t

i

; u

b

0

j

;c?y

�!

L

u

j

in (8z:M

0

ij

, T

0

ij

)

in (^

i

(b

i

! _

j

(b

0

j

^M

ij

)) ^ (^

j

(b

0

j

! _

i

(b

i

^M

ij

));t

ij

T

ij

))

Figure 9: The Algorithm for Computing Late Symbolic Bisimulation

For standard graphs if bisim(r; r

0

) = (M;T) then T (r; r

0

) = fMg and r '

M

L

r

0

.

Theorem 5.2 (Completeness of Late Algorithm)

For standard graphs if r '

b

L

r

0

and bisim(r; r

0

) = (M;T), then b!M .

The proofs of these two theorems use some auxiliary notions and are quite lengthy, so

we have put them in Appendix B.

We have implemented the algorithm and run it on some example problems. The

boolean expressions returned by the algorithm are usually complex and hard to read.

But with a small set of reduction rules on boolean expressions, they can be reduced to

simple and readable forms. We give two examples here.

The example shown in Figure 7 can be written in CCS syntax as

P = c?x.((a.(IF x=0 THEN f.NIL ELSE g.NIL)) + a.h.NIL)

Q = c?x.(a.(IF x=0 THEN f.NIL ELSE h.NIL) +

a.(IF x=0 THEN h.NIL ELSE g.NIL))

17

Running the algorithm on it produces:

The reduced LATE characteristic formula is

true

with the bisimulation table:

L_1 R_1: true

L_2 R_2: true

L_3 R_3: v_1=0

L_3 R_4: not(v_1=0)

L_4 R_3: not(v_1=0)

L_4 R_4: v_1=0

where

L_1 = c?x.(a.IF x=0 THEN f.NIL ELSE g.NIL + a.h.NIL)

L_2 = a.IF x=0 THEN f.NIL ELSE g.NIL + a.h.NIL

L_3 = IF x=0 THEN f.NIL ELSE g.NIL

L_4 = h.NIL

R_1 = c?x.(a.IF x=0 THEN f.NIL ELSE h.NIL + a.IF x=0 THEN h.NIL ELSE g.NIL)

R_2 = a.IF x=0 THEN f.NIL ELSE h.NIL + a.IF x=0 THEN h.NIL ELSE g.NIL

R_3 = IF x=0 THEN f.NIL ELSE h.NIL

R_4 = IF x=0 THEN h.NIL ELSE g.NIL

Note that v_1 is a fresh variable generated by the algorithm, and all terms, except L_1

and R_1, have the substitution x 7! v_1 associated with them.

For the second example

P1 = c?x.(c!ABS(x).P1 + c!(-ABS(x)).P1)

Q1 = c?x.(c!x.Q1 + c!ABS(x).Q1 + c!(-ABS(x)).Q1)

where ABS(x) is the absolute value of x, the algorithm generates non-trivial bisimulation

condition for P1 and Q1:

The reduced LATE characteristic formula is

forall v_1.ABS(v_1)=v_1 or -ABS(v_1)=v_1

with the bisimulation table:

L_1 R_1: forall v_1.ABS(v_1)=v_1 or -ABS(v_1)=v_1

L_2 R_2: ABS(v_1)=v_1 or -ABS(v_1)=v_1

where

L_1 = c?x.(c!ABS(x).P1 + c!-ABS(x).P1)

18

L_2 = c!ABS(x).P1 + c!-ABS(x).P1

R_1 = c?x.(c!x.Q1 + c!ABS(x).Q1 + c!-ABS(x).Q1)

R_2 = c!x.Q1 + c!ABS(x).Q1 + c!-ABS(x).Q1

A conventional transition graph can be viewed as a degenerated symbolic graph where

all actions are neutral actions and all booleans guards are simply true. For such a graph

the algorithm will return a boolean which is either true or false, and in case it is true

the pairs of terms with entries true in the returned table constitute a bisimulation.

6 The Early Case

In this section we turn to early symbolic bisimulation. As before we will give an early

concrete as well as an early symbolic semantics to symbolic transition graphs. Two

de�nitions of bisimulation, one for early concrete and the other for early symbolic, will be

presented, and a result relating themwill be established. Finally an algorithm computing

early symbolic bisimulation will be given. It turns out that we only need some minor

(and systematic) modi�cations to the late case, and all results in the previous sections

carry over to the new setting.

For the early concrete operational semantics we use the same form of judgements

as used for late operational semantics, and we only need to change the rule concerning

guarded input in Figure 6 to:

m

b;c?x

7�! n implies � j= m

�

c?y

�! n

�[x7!y]

provided � j= b�; y 62 fv(m

�

)

This rule allows changing bound variables in input actions while infering transitions.

Now the de�nition of early concrete bisimulation can be given by slightly modifying

De�nition 3.1. As before we �rst de�ne a functional over collections of relations pa-

rameterised on evaluations. Let R = fR

�

� hT ;T i j � 2 Eval g. Then EB(R) is the

Eval -indexed family of symmetric relations de�ned by:

(t; u) 2 EB(R)

�

if

1. � j= t

c?z

�! t

0

, where z is a fresh variable, implies that for each v 2 V � j= u

c?z

�! u

0

for some u

0

and (t

0

; u

0

) 2 R

�[v=z]

2. for any other action a � j= t

a

�! t

0

implies � j= u

a

�! u

0

for some u

0

such that

(t

0

; u

0

) 2 R

�

De�nition 6.1 (Early Bisimulations)

R is an early bisimulation if R

�

� EB(R)

�

for each �. 2

We can now adapt the notation developed for the late case to this new setting. We write

� j= t �

E

u if there is an early bisimulation R such that (t; u) 2 R

�

and as before the

standard theory applies; �

�

E

, de�ned as t �

�

E

u if � j= t �

E

u is the �-th component of

the maximal �xpoint of the functional EB.

In Appendix A we show that when this de�nition is applied to the symbolic transition

19

graph for CCS we obtain the standard notion of (early) bisimulation equivalence as

de�ned in [Mil89].

Similarly the early symbolic semantics may be obtained by changing the input rule

in Figure 8 to

m

b;c?x

7�! n implies m

�

b�;c?y

�!

E

n

�[x7!y]

provided y 62 fv(m

�

)

(The �!

L

arrows in the other rules are changed to �!

E

as well.)

To de�ne early symbolic bisimulation let S = fS

b

j b 2 BExp g be a parameterised

family of relations over terms. Then SEB(S) is the BExp-indexed family of symmetric

relations de�ned by:

(t; u) 2 SEB(S)

b

if t

b

1

;�

�!

E

t

0

where bv(�) is a fresh variable, then there is a

collection of booleans B such that b ^ b

1

! _B and for each b

0

2 B there

exists a u

b

2

;�

0

�!

E

u

0

such that b

0

! b

2

and

1. if � = c!e then �

0

= c!e

0

, b

0

! e = e

0

and (t

0

; u

0

) 2 S

b

0

2. otherwise � = �

0

and (t

0

; u

0

) 2 S

b

0

It is important to note that the set of booleans B may contain occurrences of the new

variable bv(�).

De�nition 6.2 (Early Symbolic Bisimulations)

S is an early symbolic bisimulation if S � SEB(S) 2

Again adapting the notation already developed we write t '

b

E

u if there is a symbolic

early bisimulation S such that (t; u) 2 S

b

and as usual the standard theory implies that

f'

b

E

j b 2 BExp g is the maximal symbolic early bisimulation and that each '

b

E

is an

equivalence relation.

We now outline the relationship between these two semantic equivalences. First, as

in the late case, early symbolic actions and early concrete actions can be related in a

natural way.

Proposition 6.3

1. � j= t

c?x

�! t

0

if and only if t

b;c?x

�!

E

t

0

for some b such that � j= b

2. � j= t

c!v

�! t

0

if and only if t

b;c!e

�!

E

t

0

for some b and e such that � j= b and �(e) = v

3. � j= t

a

�! t

0

if and only if t

b;a

�!

E

t

0

for some b and � j= b

In analogy with Propositions 4.3 and 4.4, we have the following constructions:

Let S be an arbitrary early symbolic bisimulation. De�ne an Eval-indexed collection of

relations over terms, R

S

, by letting

R

�

S

= f (t; u) j 9b : � j= b and (t; u) 2 S

b

g

Conversely given an early bisimulation R we can construct a symbolic bisimulation S

R

by letting

S

b

R

= f (t; u) j � j= b implies (t; u) 2 R

�

g:

Now we have

20

Proposition 6.4

1. If S is an early symbolic bisimulation then R

S

is an early bisimulation.

2. If R is an early bisimulation then S

R

is an early symbolic bisimulation.

Proof:

1. Let (t; u) 2 R

�

S

, i.e. (t; u) 2 S

b

for some b such that � j= b. We must show that all

derivations from t and u are properly matched. The proofs for neutral and output

actions are the same as for Proposition 4.3, and we only consider input actions

here.

Suppose � j= t

c?z

�! t

0

, where z is a fresh variable. By Proposition 6.3 it follows that

t

b

1

;c?z

�!

E

t

0

for some b

1

such that � j= b

1

. Therefore there exists a set of booleans

B such that b ^ b

1

! _B and for each b

0

2 B there is a u

b

2

;c?z

�!

E

u

0

such that

b

0

! b

2

and (t

0

; u

0

) 2 S

b

0

. Let v 2 V . Since z is a fresh variable �[v=z] j= b ^ b

1

.

Thus there must be b

0

2 B such that �[v=z] j= b

0

, and hence �[v=z] j= b

2

for the

u

b

2

;c?z

�!

E

u

0

associated with this b

0

. As z 62 fv(b

2

); � j= b

2

. Now applying the same

Proposition we have � j= u

c?z

�! u

0

. Since (t

0

; u

0

) 2 S

b

0

and �[v=z] j= b

0

it follows

that (t

0

; u

0

) 2 R

�[v=x]

S

, as required.

2. Suppose (t; u) 2 S

b

R

. We show that their symbolic actions can be matched in

the appropriate manner. Again we only consider input action here as the cases of

neutral and output actions are the same as Proposition 4.4.

Let t

b

1

;c?z

�!

E

t

0

, where z is a fresh variable. We must �nd a set of booleans B such

that b^b

1

! _B and for each b

0

2 B there must exists a move u

b

2

;c?z

�!

E

u

0

such that

b

0

! b

2

and (t

0

; u

0

) 2 S

b

0

. As in Proposition 4.4 we simplify the notation somewhat

by assuming that for each u

0

there is at most one � such that u

�

�!

E

u

0

. Let U

be the set fu

0

j u

b(u

0

);c?z

�!

E

u

0

g and for each u

0

2 U let b

0

u

0

be a boolean expression

which satis�es

� j= b

0

u

0

if and only if (t

0

; u

0

) 2 R

�

and let b

u

0

be b

0

u

0

^ b(u

0

). Finally let B = f b

u

0

j u

0

2 U g:

We �rst check that b^b

1

! _B, i.e. � j= b^b

1

implies � j= b

u

0

for some u

0

2 U . Since

� j= b it follows that (t; u) 2 R

�

and since � j= b

1

it follows from Proposition 6.3

that � j= t

c?z

�! t

0

. So for every v 2 V there exists some u

v

such that � j= u

c?z

�! u

v

and (t

0

; u

0

) 2 R

�[v=z]

. So the required u

0

is u

�(z)

since in this case (t

0

; u

0

) 2 R

�

and

again by Proposition 6.3 u

b(u

0

);c?z

�! u

0

with � j= b(u

0

); therefore � j= b

u

0

.

Also by the construction for any b

u

0

2 B there exists u

b(u

0

);c?z

�!

E

u

0

where b ! b(u

0

)

and (t

0

; u

0

) 2 S

b

0

R

.

2

As a direct corollary we have

Theorem 6.5 � j= t �

E

u if and only if t '

b

E

u for every boolean b such that � j= b.

21

The algorithm for computing late symbolic bisimulation presented in Figure 9 can

also be modi�ed to calculate early symbolic bisimulation. As may be expected, we only

need to change the case dealing with input within function match:

match(c?, t, u, b, W) =

let x = newV ar()

(M

ij

, T

ij

) = close(t

i

, u

j

, b ^ b

i

^ b

0

j

; f(t; u)g [W)

for t

b

i

;c?x

�!

E

t

i

; u

b

0

j

;c?x

�!

E

u

j

in (8x:^

i

(b

i

! _

j

(b

0

j

^M

ij

)) ^ ^

j

(b

0

j

! _

i

(b

i

^M

ij

));t

ij

T

ij

)

This algorithm is sound and complete with respect to early symbolic bisimulation:

Theorem 6.6

1. For standard graphs if bisim(r; r

0

) = (M;T) then T (r; r

0

) = fMg and r '

M

E

r

0

.

2. For standard graphs if r '

M

E

r

0

and bisim(r; r

0

) = (M;T) then b!M .

The proof is similar to the proofs for the soundness and completeness of the late algo-

rithm, and we leave it to the reader.

The early algorithm has also been implemented. Running it on the example presented

in the Introduction

P1 = c?x.(IF EVEN(x) THEN R1 ELSE R2) + c?x.R3

P2 = c?x.(IF EVEN(x) THEN R1 ELSE R3) + c?x.IF EVEN(x) THEN R3 ELSE R2

R1 = NIL

R2 = tau.NIL

R3 = tau.tau.NIL

shows the di�erence between late and early bisimulations. The early algorithm returns:

The reduced EARLY characteristic formula is

true

with the bisimulation table:

L_1 R_1: true

L_2 R_2: EVEN(v_1)

L_2 R_3: not(EVEN(v_1))

L_3 R_4: false

L_4 R_2: not(EVEN(v_1))

L_4 R_3: EVEN(v_1)

L_5 R_4: true

L_3 R_5: true

L_5 R_5: false

where

22

L_1 = c?x.IF EVEN(x) THEN R1 ELSE R2+c?x.R3

L_2 = IF EVEN(x) THEN R1 ELSE R2

L_3 = NIL

L_4 = tau.tau.NIL

L_5 = tau.NIL

R_1 = c?x. IF EVEN(x) THEN R1 ELSE R3+c?x.IF EVEN(x) THEN R3 ELSE R2

R_2 = IF EVEN(x) THEN R1 ELSE R3

R_3 = IF EVEN(x) THEN R3 ELSE R2

R_4 = tau.NIL

R_5 = NIL

But the boolean M returned by the late algorithm is

forall v_1,v_2,v_3,v_4.

(EVEN(v_1) or (not(EVEN(v_2)))) and ((not(EVEN(v_3))) or EVEN(v_4)) and

((EVEN(v_1) or (not(EVEN(v_3)))) and ((not(EVEN(v_2))) or EVEN(v_4)))

which is equivalent to false.

7 Conclusion

We have presented a new approach to bisimulation equivalence which works at the sym-

bolic level rather than the more usual level of concrete operational semantics. At this

level of abstraction many value-passing processes have a �nite representation although

semantically they are in some sense in�nite. We have developed algorithms to compute

symbolic bisimulations for a class of �nite symbolic transition graphs called standard.

The algorithms are independent of the language used to de�ne expressions but to be

useful, even for the restricted class of graphs to which they apply, we need to be able to

simplify the returned expressions into some form of minimal form or at least a readable

form. We have implemented the algorithms and a fairly naive set of simpli�cation rules

works reasonably well. They are adequate for simple examples but there is considerable

room for improvement. For example the users help could be requested to simplify ex-

pressions as they are being generated rather than at present when the only simpli�cation

is carried out at the end. We believe that the algorithms may also be easily adapted to

handle other semantic equivalences such as weak bisimulation and testing equivalence.

However one disadvantage of the present situation is that the class of processes to

which the algorithms apply appears to be too restrictive. There are many simple pro-

cesses which when expressed in a language such as CCS appear to be symbolically �nite

but generate symbolic graphs which are not standard. One example is an updatable

memory such as

M(x)(= r!x:M(x) + w?y:M(y):

The symbolic graph associated with M(x) is not standard and therefore it can not be

used as input to our algorithm. However it is possible to adapt the technique developed

in [JP92] in order to handle such processes. This will be discussed below.

23

The standard approach to value-passing in process algebras is to interpret the process

c?x:p as the nondeterministic sum

P

v2V

c?v:p[v=t]. This is the approach suggested in

[Mil89] and pursued, for example, in [Wal89, Bur91]. This results in a calculus with an

in�nite sum operator which may be satisfactory from a theoretical point of view but is

outside the scope of existing veri�cation tools. The only work of which we are aware

which attempts to generalise bisimulation checking to value-passing languages is reported

in [JP92]. There they consider a language similar to our extension of CCS which allows

input and output guards of the form c?x; c!e where e is either a data value or a single

variable. However the processes are not allowed to test or modify the data received; the

processes they consider are data independent. By using \schematic variables" they are

able to show that (early) bisimulation equivalence between such processes can be reduced

to bisimulation equivalence between �nite state processes. The idea is to translate data-

independent processes into processes which use schematic variables; these variables are

treated di�erently from ordinary variables in that the operational semantics considers

them to be data-values. The translation preserves bisimulation equivalence and data-

independent processes are mapped into processes with �nite transition graphs. A typical

example of such a process is the updatable memory M(x) above and this is translated

into the new process

M(x) (= r!x:M(x) + w?v:M(v)

M(v) (= r!v:M(v) + w?v:M(v)

This process is now �nite state because in the action w?v the symbol v is not treated as

a variable but as a constant.

In a straightforward manner we can extend our symbolic semantics to include these

schematic variables v and the associated special actions of the form w?v. Thus by

using their translation we can also apply our algorithms to arbitrary data-independent

processes. However it remains to be seen if our algorithm can be modi�ed so as to apply

to arbitrary �nite symbolic graphs. It would also be interesting to see if this symbolic

approach can be applied to \weak" bisimulation equivalence.

For a di�erent approach to checking properties of in�nite state processes the reader is

referred to [Wol86, BS90] where techniques are developed for checking that such processes

have properties expressed in temporal and modal logics.

24

Appendices

A Concrete Bisimulations and CCS-Bisimulations

In this appendix we argue that, for the CCS-like language given in Section 2, the concrete

bisimulations de�ned in Section 3 and Section 6 using symbolic transition graphs coincide

with appropriate versions of these equivalences de�ned directly on the syntax of the

language.

We �rst consider the late case.

A late version of the operational semantics for this example language is given in

Figure 10. The relations

a

�! are de�ned over closed terms and the obvious symmetric

rules for + and j have been omitted.

A CCS-late bisimulation is a symmetric relation between closed terms that satis�es:

(p; q) 2 R implies

1. p

c?x

�! �x:p

0

=) there exists q

c?y

�! �y:q

0

such that for all v 2 V; (p

0

[v=x]; q

0

[v=y]) 2

R

2. for any other actions a; p

a

�! p

0

=) there exists q

a

�! q

0

such that (p

0

; q

0

) 2 R

Let � be the maximal CCS-late bisimulation. We will show that it coincides with the

late bisimulation obtained by viewing CCS as a symbolic transition system generated

by rules in Figure 4. For convenience we will denote the term t

;

of the CCS symbolic

transition system simply by t.

The situation is a little complicated by the fact that the symbolic transition system

is de�ned between nodes which are pairs of the form (t; U) with t a CCS term and U a

set of variables. But we can identify a term t with the pair (t; fv(t)). We then have the

theorem

Theorem A.1 p � q i� � j= p �

L

q (i.e. � j= p

;

�

L

q

;

) for every evaluation �.

This follows from two more general results.

Proposition A.2 Let S

�

= f (t

�

; u

�

) j t�� � u�� g. Then fS

�

g is a late bisimulation.

As an immediate corollary we have

Corollary A.3 p � q implies � j= p �

L

q for all �

Proof: The pair p

;

; q

;

are in any S

�

because fv(p) = ; and p�� = p for closed terms

p. 2

Proposition A.4 Let R be the set of all pairs (t��; u��) such that � j= t

�

�

L

u

�

. Then

R is a CCS-late bisimulation.

Corollary A.5 � j= p �

L

q for all � implies p � q

25

a:p

a

�! p a 2 NAct [f c!v j c 2 Chan g

c?x:p

c?x

�! �x:p c 2 Chan

p

�

�! p

0

implies p+ q

�

�! p

0

p

�

�! p

0

; � 2 f�g [fc!vg implies p j q

�

�! p

0

j q

p

c?x

�! �x:p

0

implies p j q

c?x

�! �x:(p

0

j q)

p

c?x

�! �x:p

0

; q

c!v

�! q

0

implies p j q

�

�! p

0

[v=x] j q

0

p

�

�! p

0

; � 2 f�g [fc!vg implies pnc

�

�! p

0

nc

if � does not use the channel c

p

c?x

�! �x:p

0

implies pnd

�

�! �x:(p

0

nd)

if c 6= d

t[v=x]

�

�! p

0

implies P (v)

�

�! p

0

if P (x)(= t is a declaration

p

�

�! p

0

; b � true implies (b! p; q)

�

�! p

0

p

�

�! p

0

; b � false implies (b! q; p)

�

�! p

0

Figure 10: Late Operational Semantics of CCS - closed terms

Proof: Since � j= p

;

�

L

q

;

, it follows that (p; q) 2 R. 2

The proofs of the two propositions depend on relating the arrows which underly the

two di�erent de�nitions of equivalence. The relationship is captured in three lemmas,

namely A.6, A.7 and A.8.

Lemma A.6

1. If � j= b then t

b;c?x

7�! t

0

implies t�

c?y

�! �y:r for some r such that for all v

r[v=y] � t

0

[v=x]�.

2. If t�

c?y

�! �y:r then there exist b and t

0

such that � j= b and t

b;c?x

7�! t

0

for some x

with r[v=y] � t

0

[v=x]� for all v.

Proof:

1. By induction on why t

b;c?x

7�! t

0

.

� c?y:t

true;c?x

7�! t[x=y] where x 62 fv(c?y:t). Then (c?y:t)�

c?y

�! (�y:t)� and the

requirement is satis�ed.

� t j u

b;c?x

7�! t

0

[x=z] j u because t

b;c?z

7�! t

0

. By induction t�

c?y

�! �y:r for some r

such that for all v r[v=y] � t

0

[v=z]�. Now (t j u)�

c?y

�! �y:(r j u�) and (r j

u�)[v=y] = r[v=y] j u� � t

0

[v=z]� j u�. By the de�nition of the operational

semantics x is either z or else it is not in fv(t

0

). In either case we have

t

0

[v=z] � t

0

[x=z][v=x]. Therefore r[v=y] j u� � t

0

[x=z][v=x]� j u�

� (t

0

[x=z] j u)[v=x]� because x 62 fv(u).

� (b

0

! t; u)

b^b

0

;c?x

7�! t

0

because t

b;c?x

7�! t

0

. By induction t�

c?y

�! �y:r such that

r[v=y] � t

0

[v=x]� for all v. Since � j= b

0

we also have (b

0

! t; u)�

c?y

�! �y:r.

26

� P (e)

b;c?x

7�! t

0

because t[e=x]

b;c?x

7�! t

0

where P (x)(= t. By induction t[e=x]�

c?y

�!

�y:r s.t. r[v=y] � t

0

[v=x]� for all v. Furthermore t[e=x]� = t[e�=x] because

fv(t) � fxg. Therefore P (e�)

c?y

�! �y:r, i.e. P (e)�

c?y

�! �y:r.

� Remaining cases are similar.

2. By induction on why t�

c?y

�! �y:r.

� (c?y:t)�

c?y

�! (�y:t)�. In this case r[v=y] is t[v=y] and obviously c?y:t

true;c?x

7�!

t[x=y] where x = new(fv(c?y:t)). Since x 2 fv(t) � fyg it follows that

t[v=y]� � t[x=y][v=x]� for all v.

� (t j u)�

c?y

�! �y:(r j u�) because t�

c?y

�! �y:r. By induction there exist b and

t

0

, � j= b and t

b;c?z

7�! t

0

s.t. r[v=y] � t

0

[v=z]� for all v. So t j u

b;c?x

7�! t

0

[x=z] j u

and (r j u�)[v=y] � r[v=y] j u� � t

0

[v=z]� j u� � t

0

[x=z][v=x]� j u� � (t

0

[x=z] j

u)[v=x]� because x 62 fv(u) [(fv(t

0

)� fzg).

� (b

0

! t; u)�

c?y

�! �y:r because � j= b

0

and t�

c?y

�! �y:r. By induction

there exist b and t

0

, � j= b and t

b;c?x

7�! t

0

s.t. r[v=y] � t

0

[v=x]� for all v. So

(b

0

! t; u)

b^b

0

;c?x

7�! t

0

and � j= b ^ b

0

.

� P (e)�

c?y

�! �y:r because t[e�=x]

c?y

�! �y:r where P (x)(= t and fv(t) � fxg.

In this case t[e=x]� = t[e�=x]. By induction there exist b and t

0

, � j= b and

t[e=x]

b;c?x

7�! t

0

s.t. r[v=y] � t

0

[v=x]� for all v. Therefore P (e)

b:c?x

7�! t

0

.

� remaining cases are similar.

2

Lemma A.7

1. If �(b) = true and �(e) = v then t

b;c!e

7�! t

0

implies there exists r; t�

c!v

�! r � t

0

�.

2. If t�

c!v

�! r then there exist b; t

0

and e s.t. �(b) = true; �(e) = v; and t

b;c!e

7�! t

0

with r � t

0

�.

Proof: By induction on the derivation of t

b;c!e

7�! t

0

and t�

c!v

�! r, respectively. 2

Lemma A.8 1. If �(b) = true then t

b;�

7�! t

0

implies there exists r; t�

�

�! r � t

0

�.

2. If t�

�

�! r then there exist b; t

0

s.t. �(b) = true and t

b;�

7�! t

0

with r � t

0

�.

Proof: By induction on the derivation of t

b;�

7�! t

0

and t�

�

�! r, respectively. 2

Proof of Proposition A.2. We have to prove that fS

�

g is a late bisimulation.

Suppose (t

�

; u

�

) 2 S

�

1. Let � j= t

�

c?x

�! t

0

�

. By the de�nition of the late operational semantics (Figure 6)

27

t

b;c?x

7�! t

0

for some b with � j= b�.

Now from Lemma A.6

t��

c?y

�! �y:r for some r s.t. for all v; r[v=y] � t

0

[v=x]��

Since t�� � u��, we have

u��

c?z

�! �z:s for some s s.t. for all v; r[v=y] � s[v=z]

Again applying Lemma A.6 we get

u

b

0

;c?w

7�! u

0

for some w s.t �� j= b

0

, i.e. � j= b

0

�, and for all v, s[v=z] � u

0

[v=w]��. This means

u

�

c?w

�! u

0

�

. We need to show that for all v,

(t

0

�[x7!z]

; u

0

�[w 7!z]

) 2 S

�[v=z]

where z is a fresh variable. The only non-trivial condition is that

t

0

�[v=z]�[x 7! z] � u

0

�[v=w]�[w 7! z]

This follows because t

0

�[v=z]�[x 7! z] � t

0

[v=x]�� and u

0

�[v=z]�[w 7! z] �

u

0

[v=w]��:

2. Let � j= t

�

c!e

�! t

0

�

. This must be because t

b;c!e

7�! t

0

for some b; e s.t. ��(b) =

true and ��(e) = v. By Lemma A.7,

t��

c!v

�! r � t

0

��

Since t�� � u��, we have

u��

c!v

�! r

0

� r

Again by Lemma A.7

u

b

0

;c!e

0

7�! u

0

s.t. �� j= b

0

; ��(e

0

) = v; and r

0

� u

0

��. So � j= u

�

c!v

�! u

0

and

u

0

�� � r

0

� r � t

0

��, i.e. (t

0

; u

0

) 2 S

�

.

3. The �nal case, � j= t

�

�

�! t

0

�

, is similar. 2.

The proof of Proposition A.4 is similar: to show R is a CCS-late bisimulation suppose

(t��; u��) 2 R. Again there are three di�erent kinds of moves to consider. As an example

suppose t��

c?x

�! �x:r. We must show that u��

c?y

�! �y:r

0

s.t. for all v, (r[v=x]; r

0

[v=y]) 2

R. By Lemma A.6,

t

b;c?x

0

7�! t

0

28

a:p

a

�! p a 2 f�g [f c!v j c 2 Chan g

c?x:p

c?v

�! p[v=x] c 2 Chan; v 2 V

p

�

�! p

0

implies p + q

�

�! p

0

p

�

�! p

0

implies p j q

�

�! p

0

j q

p

c?v

�! p

0

; q

c!v

�! q

0

implies p j q

�

�! p

0

[v=x] j q

p

�

�! p

0

implies pnc

�

�! p

0

nc

if � does not use the channel c

t[v=x]

�

�! p

0

implies P (v)

�

�! p

0

if P (x)(= t is a declaration

p

�

�! p

0

; b � true implies (b! p; q)

�

�! p

0

p

�

�! p

0

; b � false implies (b! q; p)

�

�! p

0

Figure 11: Early Operational Semantics of CCS - closed terms

s.t. � j= b� and for all v, r[v=x] � t

0

[v=x

0

]��. This in turn means

� j= t

�

c?x

0

�! t

0

�

:

Since � j= t

�

�

L

u

�

we must have

u

�

c?w

�! u

0

�

s.t. for all v, �[v=z] j= t

0

�[x

0

7!z]

�

L

u

0

�[w 7!z]

with z fresh. First note that u

b

0

;c?w

7�! u

0

for some

b

0

with � j= b

0

�. So by Lemma A.6

u��

c?y

�! �y:r

0

s.t. for all v r

0

[v=y] � u

0

[v=w]��. Now

r[v=x] � t

0

[v=x

0

]�� � t

0

�[v=z]�[x

0

7! z] and r

0

[v=y] � u

0

[v=w]�� � u

0

�[v=z]�[w 7! z]

Hence (r[v=x]; r

0

[v=y]) 2 R (up to �).

We now turn our attention to the early case. This is very similar to the late case and

so we only outline the corresponding results.

The standard operational semantics for the example language is given in Figure 11

where again the symmetric rules for + and j have been omitted. This corresponds to

an early interpretation of the language. So we call any symmetric relation R between

closed terms a CCS-early bisimulation if it satis�es: (p; q) 2 R implies

p

a

�! p

0

=) there exists q

a

�! q

0

and (p

0

; q

0

) 2 R

where a ranges over f�; c?v; c!vg Now let us use � to denote the maximal CCS-early

bisimulation.

Again viewing CCS as a symbolic transition system generated by rules in Figure 4,

we show that early concrete bisimulation (as de�ned in Section 6) coincides with �:

p � q i� � j= p �

E

q (i.e. � j= p

;

�

E

q

;

) for every evaluation �.

29

The proof follows the same pattern as before. De�ne

S

�

= f (t

�

; u

�

) j t�� � u�� g

and

R = f (t��; u��) j � j= t

�

�

E

u

�

g:

Then one can show that fS

�

g is an early bisimulation and R is a CCS-early bisimulation,

from which the result follows immediately.

The proof of these two results depends on relating the two di�erent arrow relations:

1. t�

c?v

�! r if and only if there exist b and t

0

such that � j= b and t

b;c?x

7�! t

0

for some

x with r � t

0

�[v=x].

2. t�

c!v

�! r if and only if there exist b; t

0

and e s.t. �(b) = true; �(e) = v and t

b;c!e

7�!

t

0

with r � t

0

�.

3. t�

�

�! r if and only if there exist b; t

0

s.t. �(b) = true and t

b;�

7�! t

0

with r � t

0

�.

B Proving Correctness of The Late Algorithm

This appendix is devoted to the proof of correctness of the late bisimulation algorithm.

We show that if r; r

0

are the roots of two �nite standard graphs then bisim(r; r

0

) always

halts and if it returns the pair (M;T) thenM = mgb(r; r

0

) and T can be used to construct

a symbolic bisimulation S such that (r; r

0

) 2 S

M

. So for the remainder of this section

let us �x such a pair of graphs, G; H.

Let T

G

and T

H

be the sets of terms associated with G and H, respectively. We

use t; t

0

; t

00

; ::: to range over T

G

and u; u

0

; u

00

; ::: to range over T

H

. The main problem is

to come up with a veri�cation condition for the procedure close which will of course

involve veri�cation conditions for the auxiliary procedure match. This involves, among

other things, characterising the domain of the table T which is returned by a call to

close(t; u; b;W). This will have an entry for each pair t

0

; u

0

such that there are \matching"

derivations from t; u to t

0

; u

0

respectively, provided these derivations do not involve the

pairs of nodes in W that have already been visited. The �rst series of de�nitions will

formalise this idea.

We say a pair of guarded symbolic transitions �; �

0

are of the same type 2 f a; c!; c? j

a 2 NAct; c 2 Chan g, and associate a boolean C(�; �

0

) with them, if

1. � = (b; a) and �

0

= (b

0

; a) with a 2 NAct, and C(�; �

0

) = b ^ b

0

2. � = (b; c?x) and �

0

= (b

0

; c?y) with c 2 Chan, and C(�; �

0

) = b ^ b

0

3. � = (b; c!e) and �

0

= (b

0

; c!e

0

) with c 2 Chan, and C(�; �

0

) = b ^ b

0

^ e = e

0

A matching derivation from (m

�

; n

�

) to (m

0

�

0

; n

0

�

0

) is a pair of derivations

m

�

�

�!

L

m

0

�

0

; n

�

�

0

�!

L

n

0

�

0

30

such that � and �

0

are of the same type, and

(�

0

; �

0

) =

(

(�[x 7! z]; �[y 7! z]) if � = (b; c?x) and �

0

= (b

0

; c?y)

(�; �) otherwise

where z is a fresh variable. We will sometimes write this as d : (m

�

; n

�

)

�;�

0

�!

L

(m

0

�

0

; n

0

�

0

).

This is generalised to sequences in the obvious way: a matching path, written p :

(t; u) �!

�

(t

0

; u

0

), is de�ned inductively by

1. " : (t; u) �!

�

(t; u) is a matching path from (t; u) to (t; u) with "

C

=

true and "

S

= ;

2. If p : (t; u) �!

�

(t

00

; u

00

) is a matching path and d : (t

00

; u

00

)

�;�

0

�!

L

(t

0

; u

0

) is a

matching derivation then p

_

d : (t; u) �!

�

(t

0

; u

0

) is a matching path with (p

_

d)

C

=

p

C

^ C(�; �

0

) and (p

_

d)

S

= p

S

[f(t

00

; u

00

)g

For a matching path p : (t

0

; u

0

) �! � � � �! (t

k

; u

k

) and a table T , let p

T

= f ^

0�i�k

b

i

j

b

i

2 T (t

i

; u

i

) g.

We write p : (t; u) �!

�

W

(t

0

; u

0

) if p : (t; u) �!

�

(t

0

; u

0

) and the pairs of nodes used in

this derivation, other than the last pair of terms (t

0

; u

0

), are not contained in domain(W).

We also write (t; u) �!

�

W

(t

0

; u

0

) to mean there exists such a matching derivation.

We use B

(t; u; b;W; T) to mean the following condition is satis�ed:

Whenever t

b

1

;�

�!

L

t

0

is a derivation of type there is a set of booleans B such that

b ^ b

1

! _B and for each b

0

2 B there exists a u

b

2

;�

0

�!

L

u

0

such that b

0

! b

2

and

� if = a 2 NAct then � = �

0

= a and (t

0

; u

0

) 62 W) b

0

� T (t

0

; u

0

)

� if = c! then � has the form c!e and �

0

has the form c!e

0

, b

0

! e = e

0

and

(t

0

; u

0

) 62 W) b

0

� T (t

0

; u

0

)

� if = c? then � has the form c?x and �

0

has the form c?y, and (t

0

; u

0

) 62 W)

b

0

� T (t

0

[x 7! z]; u

0

[y 7! z]) where z is a fresh variable

and similarly for u.

Finally,

B(t; u; b;W; T) =

def

^

2fa;c!;c?ja2NAct(t;u);c2Chan(t;u)g

B

(t; u; b;W; T)

It is easy to see that B

(t; u; b;W; T), and hence B(t; u; b;W; T), is anti-monotonic in

its third argument and monotonic in its �fth, that is if b

0

! b and T v T

0

then

B

(t; u; b;W; T) implies B

(t; u; b

0

;W; T

0

).

We are now ready to de�ne the major components of the veri�cation conditions of

the procedures close and match.

De�nition B.1 Let H(t; u; b;W; T) be true if the following conditions are satis�ed:

(H1) (r; r

0

) �!

�

W

(t; u)

(H2) W \ (domain(T)� f(t; u)g = ;

31

(H3) p : (t; u) �!

�

W

(t

0

; u

0

) and (t

0

; u

0

) 62 W implies p

S

[f(t

0

; u

0

)g � domain(T) and for

every d 2 p

T

B(t

0

; u

0

; b ^ d;W; T)

CLOSE(t; u; b;W;M;T) =

def

H(t; u; b;W; T) and (t; u) 62 W =) T (t; u) = fb ^Mg. 2

De�nition B.2 For each let H

(t; u; b;W;M;T) be true if

(H

1) (r; r

0

) �!

�

W

(t; u)

(H

2) (f(t; u)g [W) \ domain(T) = ;

(H

3) if (t; u)

�;�

0

�! (t

00

; u

00

) is a matching derivation of type , p : (t

00

; u

00

) �!

�

W

(t

0

; u

0

)

and (t

0

; u

0

) 62 W [f(t; u)g then p

S

[f(t

0

; u

0

)g � domain(T) and for every d 2 p

T

B(t

0

; u

0

; b ^M ^ d;W; T)

(H

4) B

(t; u; b ^M; f(t; u)g [W;T)

MATCH

(t; u; b;W;M;T) =

def

H

(t; u; b;W;M;T). 2

There now follow two propositions which show that these veri�cation conditions imply

each other when instantiated to the parameters which correspond to the way in which the

two procedures close and match call each other. The �rst one shows that the veri�cation

condition of match, namely H

, implies that of close.

Proposition B.3 If H

(t; u; b;W;M

; T

) for each type then H(t; u; b;W; T), where

T = t

T

tf(t; u) 7! fb ^ ^

M

gg.

Proof: The only non-trivial condition is H3. Let p : (t; u) �!

�

W

(t

0

; u

0

) and (t

0

; u

0

) 62 W .

It is obvious that (t

0

; u

0

) is in the domain of T . So suppose d 2 p

T

, we must prove

B(t

0

; u

0

; b ^ d;W; T). There are two cases to consider.

1. (t

0

; u

0

) = (t; u). Then since B is anti-monotonic in its third argument we may

assume d has the form b^^

M

. So we must show B(t; u; d;W; T). As an example

we show B

c?

(t; u; d;W; T). Let t

b

1

;c?x

�!

L

t

00

. We know H

c?

(t; u; b;W;M

c?

; T

c?

) and so

there is a set of booleans B

0

such that b^b

1

! _B

0

with the properties guaranteed

by H

4, i.e. B

c?

(t; u; b ^M

c?

; f(t; u)g [W;T

c?

). Let B = f b

0

^ d j b

0

2 B

0

g. Then

d ^ b

1

! _B. Now consider an arbitrary element of B; b

0

^ d. Since b

0

2 B

0

there

must exist a move u

b

2

;c?y

�!

L

u

00

such that b

0

! b

2

and therefore b

0

^ d ! b

2

and if

(t

00

; u

00

) 62 W [f(t; u)g then b

0

� T

c?

(t

00

[x 7! z]; u

00

[y 7! z]).

We must show (t

00

; u

00

) 62 W implies b

0

^ d � T (t

00

[x 7! z]; u

00

[y 7! z]). This

follows immediately unless (t

00

; u

00

) 2 f(t; u)g or more accurately n(t) = n(t

00

)

and n(u) = n(u

00

). In this case, since the graphs are assumed to be standard

x 62 fv(n(t)) and y 62 fv(n(u)) and so t = t

00

; u = u

00

. It follows that T (t

00

; u

00

) = fdg

and therefore b

0

^ d � T (t

00

; u

00

).

2. (t

0

; u

0

) 6= (t; u). Then for some type (t

0

; u

0

) is in the domain of T

and

H

(t; u; b;W;M

; T

): Also d must have the form b^^

M

^d

0

for some d

0

such that

H

3, i.e. B(t

0

; u

0

; b^M

^ d

0

;W; T

), holds. Since b^M

^ d

0

= b^ d and T

v T ,

we obtain B(t

0

; u

0

; b ^ d;W; T) by the monotonicity of B in its �fth argument.

32

2

We now show that appropriate instances of the veri�cation condition of close imply those

of match.

Proposition B.4 Suppose (t; u) 62 W . If for all type derivations (t

b

i

;�

�!

L

t

i

; u

b

0

j

;�

0

�!

L

u

j

); H(t

i

; u

j

; b ^ b

i

^ b

0

j

; f(t; u)g [W;T

ij

) and

(t

i

; u

j

) 62 f(t; u)g [W =) b ^ b

i

^ b

0

j

^ 8z:M

ij

2 T

ij

(t

0

i

; u

0

j

)

where

(t

0

i

; u

0

j

) =

(

(t

i

[x 7! z]; u

j

[y 7! z]) if � = c?x; �

0

= c?y

(t

i

; u

j

) otherwise

with z a fresh variable, then H

(t; u; b;W;M;T) where M = ^

i

(b

i

! _

j

(b

0

j

^ 8z:M

ij

)) ^

^

j

(b

0

j

! _

i

(b

i

^ 8z:M

ij

)) and T = t

ij

T

ij

Proof: Again the �rst two conditions of H

are straightforward.

To show H

3, let d : (t

b

i

;�

�!

L

t

i

; u

b

0

j

;�

0

�!

L

u

j

) is a type matching derivation and p :

(t

i

; u

j

) �!

�

W

(t

0

; u

0

) where (t

0

; u

0

) 62 W . It follows fromH(t

i

; u

j

; b^b

i

^b

j

; f(t; u)g[W;T

ij

)

that (t

0

; u

0

) 2 domain(T

ij

) � domain(T). Suppose d 2 p

T

. We must show

B(t

0

; u

0

; b ^ b

i

^ b

j

^M ^ d;W; T):

But we know that B(t

0

; u

0

; b ^ d;W; T

ij

) and so it follows immediately since B is anti-

monotonic in its third argument and monotonic in its �fth.

The �nal condition we must establish is H

4, i.e. B

(t; u; b^M; f(t; u)g [W;T). As

an example consider the move t

b

i

;a

�!

L

t

i

. Set B

0

= f b^b

i

^b

0

j

^8z:M

ij

j u

b

0

j

;a

�!

L

u

j

g. Then

b

i

^b^b

0

j

^M ! _B

0

and each b^b

i

^b

0

j

^8z:M

ij

in B

0

has the move u

b

0

j

;a

�!

L

u

j

associated

with it which satis�es (t

i

; u

j

) 62 f(t; u)g [W =) b

0

! b ^ b

i

^ b

0

j

^ 8z:M

ij

� T

ij

(t

i

; u

j

) �

T (t

i

; u

j

). 2

Putting these two results together we have

Proposition B.5 If (r; r

0

) �!

�

W

(t; u) then

1. close(t; u; b;W) = (M;T) implies CLOSE(t; u; b;W;M;T)

2. match(; t; u; b;W) = (M;T) implies MATCH

(t; u; b;W;M;T)

Proof: Both statements are proved simultaneously and the proof proceeds by induction

on the number of recursive calls to the procedures. Proposition B.3 and induction are

used to establish the �rst while Proposition B.4 and induction establishes the second. 2

33

Proof of Theorem 5.1:

To show r '

M

L

r

0

, we construct a boolean indexed family of relations S by letting

S

b

= f (t; u) j there exists p : (r; r

0

) �!

�

(t; u); b! d for some d 2 p

T

g

Note that (r; r

0

) 2 S

M

as " : (r; r

0

) �!

�

(r; r

0

) and "

T

= fMg because T (r; r

0

) =

fMg follows from CLOSE(r; r

0

; true; ;;M; T). So if we can prove S is a late symbolic

bisimulation then we are done.

Suppose (t; u) 2 S

b

and t

b

1

;�

�!

L

t

0

. We have to �nd matching derivations from u. We

only consider � = a 2 NAct here. The other cases are similar.

By the de�nition of S there exists p : (r; r

0

) �!

�

(t; u) and b ! d for some d 2 p

T

.

Moreover since H(r; r

0

; true; ;; T) it follows that B(t; u; d; ;; T). Let B

00

be the set of

booleans guaranteed by B(t; u; d; ;; T) and de�ne B

0

to be f d ^ b

00

j b

00

2 B

00

g. Then

b^ b

1

! _B

0

since d^ b

1

! _B

00

. Also for each d^ b

00

2 B

0

there exists a u

b

2

;a

�!

L

u

0

such

that b

00

! b

2

and therefore d ^ b

00

! b

2

. It remains to show that (t

0

; u

0

) 2 S

d^b

00

which is

straightforward. Let p

0

be the obvious prolongation of the path p. Then p

0

: (r; r

0

) �!

�

(t

0

; u

0

); d 2 p

0T

and d ^ b

00

! d. 2

Now we turn to the completeness of the algorithm. Again we emphasise that W

consists of pairs of nodes rather than terms and therefore for �nite graphs close(t; u; b;W)

will eventually terminate. This is because each call of close either terminates immediately

or leads to another call of the form close(t

0

; u

0

; b

0

; f(t; u)g [W) with (t; u) 62 W and this

can not go on forever. So in particular bisim(r; r

0

) will always terminate. We show that

the boolean it returns is mgb(r; r

0

). Here it is convenient to consider a modi�cation to the

de�nition of late symbolic bisimulations where the condition \b ^ b

1

! _B" is replaced

with the stronger condition \b ^ b

1

= _B". We leave it to the reader to show, using

Theorem 4.5 that this determines exactly the same equivalence.

Proposition B.6 Suppose t '

b

L

u and p : (r; r

0

) �!

�

(t

0

; u

0

), b ! p

C

and

close(t; u; p

C

; p

S

) = (M;T). Then b!M .

Proof: By induction on the length of the computation of close. From the de�nition of

CLOSE we know that T (t; u) = fp

C

^Mg and M has the form p

C

^ ^

M

where each

M

is returned from a call to the procedure match(; t; u; p

C

; p

S

). So it is su�cient to

show that for each 2 fa; c?; c!g that b ! M

. As an example we consider the case

when is a; the other cases are similar.

We have to show b ! M

a

where M

a

= ^

i

(b

i

! _

j

(b

0

j

^M

ij

)) ^ ^

j

(b

0

j

! _

i

(b

i

^M

ij

))

and close(t

i

; u

j

; p

C

^ b

i

^ b

0

j

; f(t; u)g [p

S

) = (M

ij

; T

ij

) for t

b

i

;a

�!

L

t

i

; u

b

0

j

;a

�!

L

u

j

.

Let t

b

i

;a

�!

L

t

i

. Since t '

b

L

u there exists a set of booleans B such that b^b

i

= _B and

for every b

0

2 B there exists u

b

0

j

;a

�!

L

u

j

, b

0

! b

0

j

and t

i

'

b

L

u

j

. If (t

i

; u

j

) 2 f(t; u)g [p

S

then M

ij

= true, hence b

0

! M

ij

; Otherwise let p

0

be the matching path to (t

i

; u

j

)

formed by appending (t

b

i

;a

�!

L

t

i

; u

b

0

j

;a

�!

L

u

j

) at the end of p. Then p

C

0

= p

C

^ b

i

^ b

0

j

and

p

S

0

= f(t; u)g[p

S

. If we can show b

0

! p

C

0

then by induction b

0

!M

ij

. But this is trivial

because from b

0

2 B; b ^ b

i

= _B, we know b

0

! b ^ b

i

. Since b ! p

C

and b

0

! b

0

j

, it

follows that b

0

! p

C

^ b

i

^ b

0

j

= p

C

0

.

34

Now in either case we have b

0

! b

0

j

^ M

ij

. This is true for each b

0

2 B and so

_B ! _

j

(b

0

j

^M

ij

). Since b ^ b

i

= _B it follows that b ! (b

i

! _

j

(b

0

j

^M

ij

)). This

argument holds for every move t

b

i

;a

�!

L

t

0

and therefore b! ^

i

(b

i

! _

j

(b

0

j

^M

ij

)) and by

symmetry we can conclude that b!M

a

. 2

Proof of Thereom 5.2:

An immediate corollary to the above proposition. 2

Acknowledgements: The authors would like to thank Alan Je�rey and Xinxin Liu for

carefully reading a draft of this paper and suggesting many improvements. We would

also like to thank U�e Engberg for his detailed and constructive criticism.

References

[BS90] J. Brad�eld and C. Stirling. Local model checking for in�nite state spaces.

Technical Report ECS-LFCS-90-115, University of Edinburgh, June 1990.

[Bur91] G. Burns. A language for value-passing ccs. Technical Report ECS-LFCS-91-

175, University of Edinburgh, August 1991.

[CPS89] R. Cleaveland, J. Parrow, and B. Ste�en. A semantics based veri�cation tool

for �nite state systems. In Proceedings of the 9

th

International Symposium on

Protocol Speci�cation, Testing and Veri�cation, North Holland, 1989.

[GLZ89] J. Godskesen, K. Larsen, and M. Zeeberg. Tav user manual. Report R89-19,

Aalborg University, 1989.

[JP92] B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of

non-�nite-state programs. Information and Computation, 1992. to appear.

Also available as SICS research Report R-89/8908.

[Lar86] K. G. Larsen. Context-Dependent Bisimulation Between Processes. Ph.D.

thesis, Edinburgh University, 1986.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MPW92] R. Milner, J. Parrow, and D. Walker. Mobile logics for mobile processes.

Theoretical Computer Science, 1992. to appear.

[SV89] R. De Simon and D. Vergamimi. Aboard auto. Report RT111, INRIA, 1989.

[Wal89] D. Walker. Automated analysis of mutual exclusion algorithms using CCS.

Formal Aspects of Computing, 1:273{292, 1989.

[Wol86] P. Wolper. Expressing interesting properties of programs in propositional

temporal logic (extended abstract). In Proc. 13th ACM POPL, pages 184{

193, January 1986.

35

