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Abstract 

We study the biases of six different estimators in estimating four measures of inequality from 
grouped data derived from historical household expenditure surveys. All that remains of 
many historical household surveys are the tables of grouped data in the survey reports. In 
addition, historical surveys, especially those from before the 1930s, were mainly not designed 
in ways informed by the progress in statistical methods of that era.  Interest continues to build 
in the study of historical data sets.  Our results give timely support the idea that parametric 
methods, in particular Kakwani’s (1980) Beta-Lorenz, are the least biased. 
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1  Introduction 

This short paper reports experiments to find the best method of estimating inequality 

measures using only tables of grouped results from historical household survey reports. The 

research is part of the Global Income Inequality Project, see 

http://www.sussex.ac.uk/globalincomeinequality/index.  The project aims to improve the 

data base from which long-run trends in global income inequality can be estimated.  To do 

this the project collects household level data from household income or expenditure surveys 

and, if the original data are not available, tables of data grouped by income or expenditure 

using reports of surveys.  The aim is to perform this search all over the world, going as far 

back in time as possible. In many countries, the historical record starts in the early 20th 

century, but for some countries we have sources from deep into 19th century. The vast 

majority of the sources located by the project are tables of grouped averages. 

 

Estimating inequality from grouped data is not a new topic.  For instance, Gastwirth (1975) 

developed upper and lower bounds for some measures of inequality from grouped data and 

Cowell (1991) generalised these.  Minoiu and Reddy (2009, 2014) provided very useful 

evaluations of both parametric and kernel density approaches to estimation. This note is 

closest to Minoiu and Reddy (2014) as, like them, we use Monte Carlo methods to test biases 

in alternative ways of inferring inequality from grouped data, and like them we come down 

on the side of preferring parametric estimation.  However we differ from them in two 

important ways.   

 

Firstly, we compare a broader range of non-parametric and parametric approaches.  

Secondly, and more importantly, we compare the estimation methods against actual samples, 

rather than against samples generated from parametric distributions.   This is because our 

historical data sources present special issues for estimation. In particular, modern sampling 

techniques only came into generalised practise around the time of World War Two.  Before 

then, surveys were often more limited in scope, for instance searching out what were taken 

to be typical households, or only households whose head worked in certain industries, for 

instance.  These early surveys were also limited by their sampling techniques.  They used what 

today we might describe as ad-hoc or snowball sampling.   As a consequence our project can 

http://www.sussex.ac.uk/globalincomeinequality/index
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be thought of as having two estimation problems to solve: first, how to generate reliable 

estimates of inequality in a particular sample, from grouped data, and secondly, how to make 

inference about what, if anything, our samples tell us about inequality in the broader 

population of households.  The first problem is what concerns us here, and this is why we take 

a different approach to Minoiu and Reddy op. cit., and compare our estimates with actual 

estimates from original individual data, rather than generated samples.    

 

Figure 1 gives part of a typical table from a historical source. There are six income groups and 

the table lists the numbers of households in each group, and well as average weekly income 

and the numbers of children living in the household.  Note that the survey was of urban 

workmen’s families, so that it covers only a subset, albeit a large subset, of British households 

in the period.  Given the income distribution of this subset may have an idiosyncratic 

distribution, it seems best to us to test the estimation of distributional characteristic relative 

to actual distributions rather than hypothetical distributions.     

 

Figure 1: Grouped household survey data for 1904 from the UK Board of Trade. 

 

Source: British Parliamentary Papers, (1905) ‘Consumption and the Cost of Food in 
Workmen’s Families in Urban Districts of the United Kingdom’ Cd 2337. 

 

The tables we find vary, in terms of what is recorded, in many important respects, and we 

need estimation methods that are robust to variations of available information.   The primary 
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source of variation is in the number of income/expenditure groups.  There is a well-

established result (Gastwirth, ?) that the accuracy of estimating inequality is increasing in the 

number of groups.  In early experimentation we also found this to be so.  As a consequence 

we only report results for the case of eight groups, which is a typical number of groups in our 

historical sources.  It is also well-established (Gastwirth,?) that accuracy improves if there are 

multiple observations per group.  This comes about, for instance, when some tables, in 

addition to income groups, give mean incomes by, inter alia, industry, occupation, or region. 

This we investigate below.  A final extension is to judge the performance of the various 

methods of estimation when we are presented with data grouped by characteristics other 

than income/expenditure.  One would expect lower estimates of inequality in those cases, and 

we investigate the extent of that underestimation. 

  

Our main finding is that estimation via Kakwani’s (op. cit.) Beta-Lorenz curve usually gives 

the least biased results for cases where we given the mean income/expenditure.  For case 

where we do not have the mean, we find that Beta-Lorenz estimation on interpolated data 

and interval estimation of lognormal parameters are the best options.  
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2  Methods 

We will focus on the following measures of inequality: the Gini coefficient, and the 90/10, 

90/50 and 50/10 percentile ratios.  This a minimal set, but it allows us to study biases in the 

estimation of overall inequality as well as separately in upper and lower tail inequality.  

To assess our estimators, we carry out Monte Carlo-style experiments on two individual 

household-level datasets: the Ministry of Labour 1953–54 survey of 12,854 households in the 

United Kingdom (Gazeley et al., 2015) and the 1853 survey of 197 Belgian working class 

households (Ducpétiaux, 1855). 

In both cases the data were resampled using bootstrap sampling with replacement.  From 

each sample the measures of the Gini and decile ratios were obtained.  We then ‘binned’ the 

data into equal size income-based bins (groups) and the data were collapsed to resemble 

group data such as that presented in Figure 1.  We then employed the various estimators 

outlined in Section 2. This we repeated five hundred times.  In the tables that follow we report 

only the six best estimators, in terms of mean bias, that we have experimented with.  Our six 

best estimators are as follows. 

1. ‘Freq. Weighted’ simply assigns the mean to every household in a particular income 

group.  This is, therefore, akin to the ‘between group’ variance estimator.  Note that 

this estimator approaches the true variance, from below, as the number of groups 

increases.  We will see this as we progress through the results. 

2. ‘OLS logN’ estimates a log normal curve on the weighted mean data.  The inequality 

measures are derived from the estimated parameters. 

3. ‘Beta Lorenz’ similarly estimates the parameters of the Lorenz curve generated from 

the Beta distribution, derived by Kakwani (1980), again estimated using weighted  

group mean data. 

4. ‘Interval LogN’ uses the frequencies and group boundaries and an interval regression 

approach to estimation. 

5. ‘Hermite interpolation’ follows Gastwirth and Glaubman (1976) and interpolates 

between group boundaries using Hermite interpolation, see Burden and Faires (2011, 
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chapter 3.4 pp. 136-144) and a suggestion by Gastwirth (1972) on how to treat the 

unbounded highest group.1 

6. ‘Hermite Beta-Lorenz’ estimates the parameters of a Beta Lorenz curve using the data 

generated as in 5 above.  

 
In practise, techniques 4, 5 and 6 are useful when the within-group mean income/expenditure 

is not recorded, so only the group boundary incomes and the numbers in each group are 

given.  So our main question is which is overall least biased, but we are also interested in 

which is best in the case where group means are not recorded.  

  

                                                           
1 This interpolation technique chooses a cubic function that fits between two points in two-dimensional space, 

given (a) these points are known and (b) the slope of the relationships at the two point are also known.  In 

practice, we use the Cox (2012) implementation in Stata (StataCorp, 2015). 
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3  Results for income/expenditure groups. 

Table 1 gives our four inequality measures calculated with the individual data from the two 

surveys. As with all surveys of workers’ households, overall inequality is lower than might be 

expected from the population of all households.  The results are, however, very typical of the 

results we find from similar samples of working class households.  Figure 2 gives the Lorenz 

curve for the 1953/4 data set.  The curve for the 1855 data is very similar. 

Table 1 Household expenditure inequality statistics from the individual household data of 

two data sets. 

 

Figure 2: The Lorenz Curve for household income per equivalent adult in the Ministry of 

Labour 1953/4 survey.  
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Table 2: Mean bias of inequality measures using eight income groups, Ministry of Labour 
1953/4 Household expenditure survey. 

Estimator Gini P90/10 P90/50 P50/10  

 Mean bias 

(inverse rank) 

Mean bias 

(inverse rank) 

Mean bias 

(inverse rank) 

Mean bias 

(inverse rank) 

Sum of ranks 

(inverse rank) 

Freq. Weighted -0.015 
(4) 

-0.206 
(2) 

0.199 
(3) 

-0.324 
(3) 

12 
(3) 

OLS LogN -0.045 
(6) 

-3.528 
(6) 

-0.846 
(6) 

-1.344 
(6) 

24 
(6) 

Beta-Lorenz -0.007 
(3) 

-0.686 
(4) 

-0.046 
(1) 

-0.303 
(2) 

10 
(1) 

Interval LogN -0.042 
(5) 

0.193 
(1) 

0.283 
(4) 

-0.224 
(1) 

11 
(2) 

Hermite 
Interpolation 

-0.005 
(2) 

1.633 
(5) 

0.337 
(5) 

0.357 
(4) 

16 
(5) 

Hermite-Beta-
Lorenz 

-0.003 
(1) 

0.544 
(3) 

-0.054 
(2) 

0.359 
(5) 

11 
(2) 

Table 2 gives our key results.  Each cell reports the mean bias derived from the 500 

replications described above. We choose not to report results from different numbers of 

groups.  Early experimentation showed, as might be expected, a general tendency for all 

estimators to exhibit smaller biases as the number of groups increases.  This a well-known 

(Gastwirth, 197?) and intuitive result that we do not test here.   In order to render the results 

simpler to digest each cell also records, in brackets, the rank across estimators of the mean 

bias, from smallest to largest.  To be clear, OLS LogN designates estimation via a log normal 

regression that consistently generates the worst (highest ranked) mean biases across the 6 

methods on all 4 measures.   

One way to summarise the results is to sum the ranks for each estimator across the four 

inequality measures. This is reported in the final column, together with an inverse ranking of 

those sums.  On this criterion, the Beta-Lorenz curve tends to offer the lowest biases.  As Beta-

Lorenz requires the estimation of three parameters, it seems this extra flexibility compared 

to the more restrictive lognormal, for instance, reduces bias.  Note this superiority is driven 

by low biases to 90/50 and 50/10 estimation, so the method is good at capturing the shape 

of the Lorenz curve at each end of the distribution.  Of course there are distortions that 

rankings induce.  If we note, for instance that in rankings the Beta-Lorenz performs less well 
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on Gini bias, coming 3rd from six.  However, the size of the mean biases for the best three 

estimators are all less that one Gini point.  

Of the other estimators, the Beta Lorenz estimated from Hermite-interpolated data  and the 

interval lognormal also perform very well.  This suggests that we might recommend the use 

of Beta-Lorenz for the case were the group mean incomes are given and both Hermite- Beta 

Lorenz and interval lognormal for the cases where the group means are not given.  However, 

before we come to any conclusion, we turn to the results of performing the same set of tests 

on the Belgian 1855 data.  See Table 3. 

Table 3 Mean bias of inequality measures based upon eight income bins Belgium 1855 
Household expenditure survey. 

Estimator Gini P90/10 P90/50 P50/10  

 Mean bias 

(inverse rank) 

Mean bias 

(inverse rank) 

Mean bias 

(inverse rank) 

Mean bias 

(inverse rank) 

Sum of ranks 

(inverse rank) 

Freq. Weighted -0.002 
(2) 

-0.100 
(3) 

-0.028 
(2) 

-0.030 
(4) 

11 
(2) 

OLS LogN -0.011 
(4) 

-1.857 
(6) 

-0.618 
(6) 

-0.692 
(6) 

22 
(6) 

Beta-Lorenz 0.005 
(3) 

0.059 
(2) 

0.045 
(3) 

-0.013 
(2) 

10 
(1) 

Interval LogN -0.014 
(6) 

0.046 
(1) 

0.054 
(4) 

-0.029 
(3) 

14 
(4) 

Hermite 
Interpolation 

-0.002 
(1) 

0.562 
(5) 

0.303 
(5) 

0.010 
(1) 

12 
(3) 

Hermite-Beta-
Lorenz 

-0.012 
(5) 

0.225 
(4) 

0.007 
(1) 

0.123 
(5) 

15 
(5) 

 

We see from Table 3 that Beta-Lorenz is again, marginally, the estimator of lowest bias across 

the four inequality measures.  However, the rankings of the other estimators are different 

from the results for the 1953/4 data in Table 2.  In particular, the choice of estimator for the 

cases where the group mean is not reported is no longer clear.  To try to find a clearer result, 

we turn to experiments that reflect cases that are often reported, where results of a survey 

are grouped not only by income, but by additional characteristics, such as region or 

occupation. 
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4. Results by income/expenditure and other characteristics.  

For the 1953/4 Ministry of Labour data we now perform the Monte Carlo analysis by: income 

and household size (HH size); income and occupation; income and region; income and 

industry, and finally, income, region and industry.  For the Belgian 1855 data we report a small 

set of extended results, adding in, respectively, groups by household size, occupation and 

region.  The reporting is simplified for ease of digestion.  In Tables 4 (1953/4) and Table 5 

(1855) we report only the final rank, so the ranking by lowest sum of ranks, as in the final 

columns of Tables 2 and 3. 

Table 4 Rank by sum of ranks 53/4 

Groups: Income 

only 

+ HH Size  + Occupation  +Region + Industry + occupation and 

region 

No. groups 8 72 104 104 204 1352 

Freq. Weighted 4 1 2 2 2 2 

OLS LogN 6 6 6 6 6 6 

Beta-Lorenz 1 1 1 1 1 1 

Interval LogN 2 3 3 4 4 5 

Hermite 

Interpolation 

5 5 5 5 5 4 

Hermite-Beta-

Lorenz 

2 3 3 3 3 3 

Table 4 results show us something that we mentioned earlier.  It is that as the number of 

groups increases, the ‘Freq. Weighted’ estimator improves its ranking.  These extra 

observations are giving more information about the shape of the within-group distribution, 

and this reduces the relating bias of that estimator especially.  Overall, though, in these data, 

Beta-Lorenz remains the best-ranked estimator and Hermite-Beta-Lorenz is the best-ranked 

estimator for data tables where the group means are not given. 
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Table 5 Ranks by sum of ranks, 1855. 

Groups: Income only + HH Size  + Occupation  +Region 

No. groups 8 24 40 104 

Freq. Weighted 2 2 1 1 

OLS LogN 6 6 6 6 

Beta-Lorenz 1 1 3 2 

Interval LogN 4 4 4 3 

Hermite Interpolation 3 3 2 5 

Hermite-Beta-Lorenz 5 4 4 3 

Table 5 gives the results of a similar set of experiments on the Belgium 1855 data set.  For 

smaller numbers of groups, Beta-Lorenz is again the least-biased estimator. Here the 

predictable reduction in bias for the ‘freq. weighed’ estimator means that, for large 

numbers of groups, it becomes the best-ranked estimator. In the case of estimators where 

group means are unavailable, as in Table 3, Interval Lognormal and Hermite-interpolated 

Beta-Lorenz are the best ranked.  

 

 

5  Conclusions 

This methodological note has outlined various approaches at estimating measures of income 

inequality from grouped tables, in historical cases where the aims of the surveys and the 

sampling methods may make the sample quite idiosyncratic.   The biases of each of these 

approaches were assessed through a bootstrap sampling experiment.   We take two data sets, 

collected almost a century apart, names here 

 

Across both datasets it was found that the least biased estimator is the Beta-Lorenz first 

suggested by (Kakwani, 1980).  It characterises the decile ratios very well. It does not, 

however, provide the best estimate of the Gini coefficient.  Where the data only provides 

interval information, the best estimator is the combination of the Beta-Lorenz and the 



12 
 

Hermite interpolation suggested by Gastwirth and Glauberman (1976).  However, in some 

extreme cases this fails to numerically resolve the non-linear least squares.  If this is the case 

then the suggested second-best performer is the interval regression based lognormal 

estimator. 
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Appendix 

 

The Gini coefficient 

For a population of individuals i of size N with income y the unweighted Gini coefficient is 

given by:  

  (1) 

 

The analogous estimator for a weighted Gini coefficient (with weights wi) is given by the 

following expression: 

  (2) 

 

 

Percentile Ratios 

If incomes y are ordered from lowest to highest over n population such that the rank may 

then be calculated as R=(n+1)q/100, with the parts that are integer r and fractional portion f, 

thus the qth percentile is given by (Mood and Graybill, 1963):  

 

 (3) 

 

The percentile ratios of interest will be given by 𝑐𝑐90 𝑐𝑐10� ,  𝑐𝑐90 𝑐𝑐50�   and 𝑐𝑐50 𝑐𝑐10� .  In practice we 

implement this using the Jenkins (1999) implementation in Stata (StataCorp, 2015).  However, 

it is well known that direct application to grouped data creates a downward bias of the 

estimates of inequality because the procedure ignores intergroup (or within-bin) inequality 

(Lerman and Yitzhaki, 1989; Pyatt et al., 1980). There are numerous approaches which 

attempt to overcome this downwards bias.   

.2  Parametric Estimators 

Other approaches to the group data issue have been considered in the literature.  Often these 

methods rely on a parametric characterisation of the data.  Below we will explore two such 

approaches. 
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2.4.1 The lognormal approach  

It is well known that income often follows a lognormal distribution (Aitchison and Brown, 

1963). Thus, for the density: 

  (5) 

 

The parameters μ and σ may be estimated using the following log-likelihood function for the 

case of having a continuous variable for mean income: 

  (6) 

 

Where group data only have income bands then interval regression with the following 

likelihood function will yield the lognormal parameters (Wooldridge, 2010, pp.783): 

 

  

  (7) 

   

   

   

 

 

 

Here Φ(.) is the standard cumulative normal and wj is the weight for the observation.  the 

expression (6)  will yield the estimates of the parameters μ and σ.  With these two parameters 

it is straightforward to obtain the inequality measures of interest.  The Lorenz curve of the 

lognormal distribution is: 

  (8) 

 

From there it can be shown that the Gini coefficient under the assumption of lognormality 

can be estimated by (Aitchison and Brown, 1963): 
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  (9) 

 

Given that both parameters of the lognormal distribution are known, it is straightforward to 

estimate the percentiles using the expression: 

  (10) 

 

As both parameters are obtained through estimation on the data it is therefore straightforward to 

obtain analytical standard errors for these measures. 

 

2.4.2  Beta Lorenz Curve 

An alternate approach is to directly estimate the Lorenz curve given the group data.  There 

are various functional forms for this approach.  However, one which has been adopted in 

practice in the literature is the Beta-Lorenz curve (Kakwani, 1980).  One of the benefits of this 

particular functional form, is that in all instances this functional form will yield a valid Lorenz 

curve (Datt, 1998).  This curve can be fit using non-linear least squares on the following 

functional form:  

  (11) 

 

The parameters Θ, γ and δ are then utilised to estimate the Gini coefficient using the following 

expression due to Datt (1998): 

  (12) 

Here B(.) is the cummulative function of the incomplete beta distribution.  The selected 

percentiles are obtained by evaluating the first difference of the Lorenz curve at the desired 

percentile as follows: 

  (13) 

As with the 

lognormal distribution, it is therefore straightforward to compute the relevant standard 

errors of all of the parameters. 
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