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Abstract

Blackwell’s theorem relates the value of information to the “informative-
ness” of the information structure. His analysis applies to decision makers
who are expected utility maximizers and know the information structure of
the decision problem.

When decision makers do not know the information structure precisely,
the signal generating process and the posterior distributions are often only
partially known. This paper studies preferences of decision makers with
partial knowledge about signals and posterior probability distributions. The
partial information approach allows us to relate the value of information
to the decision maker’s attitude towards ambiguity. We introduce a new
concept of informativeness based on the centroid and prove a theorem in the
spirit of Blackwell. Furthermore, we characterize the value of information
in terms of the preference relation over information structures. Depending

on ambiguity attitude the value of information may be negative.

JEL classification: D81; D83.
Keywords: Value of information; Ambiguity; Informativeness; Belief func-

tions; Information structure.

1 Introduction

In a world where all information is described by well-specified probabilities, sig-

nals about states are naturally evaluated by the value of the improved predictions
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about state-contingent outcomes that will be possible in the light of these signals.
Since information that does not improve a decision’s outcome can be ignored, the
value of information for an expected-utility-maximizing decision maker (DM) can
never be negative. Moreover, Blackwell’s (1951) seminal theorem links the value
of information to the statistical notion of informativeness of the probability distri-
butions over states and signals, that is the “information structure” of the decision
problem. Blackwell’s analysis applies to DMs who maximize expected utility and
have precise knowledge of the information structure. When knowledge about the
signal-generating process or about the posterior distributions is incomplete, how-
ever, this analysis breaks down.

It is well known (e.g., Grant et al., 1998) that, for agents who do not maximize
expected utility, information may have a direct, possibly negative, impact on the
DM’s well-being. Agents may like or dislike information regardless of its instru-
mental value. Moreover, even for a probabilistically sophisticated DM with perfect
knowledge about the probability distribution over states and signals, Blackwell’s
theorem needs to be adjusted if the DM is not an expected-utility maximizer
(Karni and Safra, 2022). With partial information, a DM’s ambiguity regard-
ing updated beliefs over state-contingent outcomes may differ from the ambiguity
about signals. Hence, ambiguity attitude with respect to the precision (quality) of
the signals can also be different from ambiguity attitude towards updated beliefs
(Wang, 2024).!

This paper examines preferences over information structures when DMs pos-
sess only partial knowledge about signals and posterior probability distributions.
We model partial knowledge by belief functions and their associated mass distribu-
tions. This approach captures what is objectively known about event probabilities
and allows us to relate the value of information to the DM’s attitude toward am-
biguity. In particular, it combines objective knowledge about likelihoods with
subjective beliefs based on the “principle of insufficient reason” when certain prob-
abilities are unknown. Depending on the DM’s ambiguity attitude, the value of
information may become negative. We illustrate the framework through applica-
tions to portfolio choice, data collection, and experimental settings.

Building on this framework, we introduce a new notion of informativeness
under partial information, defined via the centroid of the mass distribution, and
establish a theorem in the spirit of Blackwell. Specifically, we show that, for a
broad class of preferences, one information structure is more informative than

another if and only if it yields a higher value in every decision problem. In the

I'We will discuss the recent literature below in more detail.



special case of complete knowledge about the relationship of states and signals,
our result collapses to the standard Blackwell theorem.

Finally, we characterize the value of information through axioms about the
DM'’s preference relation over information structures. We show that our assump-
tions are both necessary and sufficient for the existence of the value of information
proposed in the earlier sections. By relaxing or strengthening these assumptions,
we obtain natural generalizations and special cases of the representation.

The paper is organized as follows. Section 2 introduces the formal framework
for studying partial information over states, information structures, and the value
of information. Section 3 provides examples and applications of the suggested
framework. In Section 4, we define the a notion of informativeness for information
structures with partial information and establish a theorem in the spirit of Black-
well. Section 5 characterizes the value of information in terms of preferences over

information structures. Section 6 concludes.

1.1 Relation to the literature

There is a large literature on decision making under uncertainty. Mostly, however,
one finds studies of the extreme cases of (subjective or objective) expected util-
ity maximization either without any uncertainty or under complete uncertainty
regarding the probabilities of events. Moreover, if there is ambiguity, DMs are
mostly assumed to choose pessimistically the worst expected utility from an ex-
ogenously given set of probability distributions. A more balanced approach, that
includes these cases as extreme situations, was promoted in Jaffray (1989). It
is based on the study of belief functions and their mass distributions that may
include information about some but not necessarily all events, a situation we dub
partial information. Eichberger and Pasichnichenko (2021) provide a recent ax-
iomatic treatment for this situation.

In a series of papers (Blackwell, 1951, 1953; Blackwell and Girshick, 1954),
Blackwell introduced the leading framework for studying information gathering as
part of the decision-making-under-uncertainty problem. In the statistical context
of expected utility maximization, his famous theorem established that additional
information could never be harmful and would be only useless if the additional
information was pure noise.

Several papers have extended Blackwell’s approach to the non-expected utility
framework. Part of this literature (Grant et al., 1998; Karni and Safra, 2022)

remained in the probabilistic environment while others (Celen, 2012; Cheng et al.,



2025; Heyen and Wiesenfarth, 2015; Li, 2020) considered beliefs modeled by capac-
ities and sets of multiple priors. Various extensions of Blackwell’s theorem relating
measures of informativeness to notions of value for information systems have been
suggested in this literature. Of crucial importance for these extensions is how
the valuation of signals and the valuation of signal-dependent state-contingent ac-
tions is modeled. Wang (2024), for example, introduces an auxiliary state space
that indexes possible Blackwell experiments and defines two informativeness or-
ders: prior-by-prior dominance, which is robust across all monotone ambiguity
preferences, and Wald informativeness, which applies to maxmin DMs.

Of relevance is also the literature on updating belief functions, see Dubois
and Prade (1990), Eichberger et al. (2010), and Gilboa and Schmeidler (1993).
Lin and Payro6 (2024) proposed a normative framework for belief updating under
ambiguous information sources and characterized a broad family of generalized
Bayesian updating rules.

Few papers study experimentally the evaluation of information under ambi-
guity. Kops and Pasichnichenko (2023) and Shishkin and Ortoleva (2023) are
experimental studies investigating the possibility of a negative value of informa-
tion. For example, Kops and Pasichnichenko (2023) find that the majority of
ambiguity averse subjects exhibited a negative value of information. Abdellaoui
et al. (2025) and Gonzalez-Jimenez (2024) study how learning from experience in

an environment affects ambiguity attitudes and beliefs.

2 Framework

2.1 Decision making

Consider a finite set of states (2 and a set of outcomes X. Let A denote the
set of all (finitely-valued) functions a : Q — X, referred to as actions (acts). In
contrast to Savage (1954), we do not presume that probabilities over states are
purely subjective. Following Dempster (1967), Shafer (1976) and Jaffray (1989),
we assume that partial information from data or prior knowledge provides the
DM with a mass distribution m over events in the power set of states P(2),
where m(E) > 0 for all £ € P(Q), m(0) = 0, and Y pcpqm(E) = 1. A mass

distribution can be viewed as a probability distribution over subsets of 2.2

Remark 1. As is well known (see, e.g., Grabisch, 2016), a mass distribution m on

ZWhen only singleton sets {w} have strictly positive weights m({w}) > 0, the mass distribu-
tion m can be identified with a usual probability distribution on €.



P(Q) is the Mobius transform of a belief function p™ defined by

p(E) = 3 m(F) (1)
FCE

for all £ € P(2). A belief function resembles a probability distribution, although
it is not necessarily additive. In fact, it is a capacity that is monotone of all
orders (see Chateauneuf and Jaffray (1989) for details). Given a belief function,
the underlying mass distribution can be recovered uniquely. Hence, there is a one-
to-one correspondence between belief functions and mass distributions. A belief
function is a conver capacity and, hence, has a non-empty set of dominating

probability distributions, the core of the capacity p™:
core(u™) ={p € AQ) | p(E) > pu™(E) for all E C Q}.

Given a von Neumann-Morgenstern utility function v on outcomes in X, the
Choquet ezpected utility (CEU) of an action a € A with respect to the belief
function p™ can be expressed (Grabisch, 2016, Chapter 7, pp. 377-437) either (i)
as the average over the minimal outcome of the events in P(2) weighted by the
mass distribution m or (ii) as the minimal expected utility over the probabilities

in the core of p™:

CEU(a,u™) = Z m(E) [minu(a(w))]: min Zu(a(w))p(w).

wek Ecore(pu™
EeP(Q\0 peeore(u™) e

A disadvantage of the Choquet integral is its bias towards the worst case. In
this paper, we will use a more balanced representation of preferences among ac-
tions based on a quasi-average utility introduced in Eichberger and Pasichnichenko
(2021). First, notice that any pair of action a : 2 — X and mass distribution m
on P(2) induces a mass distribution (m * a) on P(X) defined by

(mxa)(C)= Y  m(E) (2)

ECQ:a(E)=C

for all C' C X. Second, given the mass distribution n = m*a on P(X), we obtain
n = Z n(Cec,

where ex is the elementary mass distribution that assigns 1 to the set C' and



0 to all other sets. Therefore, for any linear evaluation V, we get V(n) =
Y ccx n(C)V(ec). The partial information embodied in the mass distribution
n all_ows for an evaluation of the mass distribution as an average, where the values
V(ec) are weighted by the information n(C').

In the spirit of the principle of insufficient reason, one can evaluate an elemen-

tary mass distributions ec by the quasi-average

Viec)=¢"" (% qu(u(az))) :

zeC

Since there is no information about the likelihood of sub-events of (', the quasi-
average V' (ec) evaluates the elementary mass distribution e by a monotone trans-
formation ¢ of the expected utility of the outcomes x € C' with respect to the uni-
form distribution ‘—é| The uniform distribution reflects the DM’s ignorance about
the sub-events of C'. The monotone transformation ¢ represents the DM’s ambigu-
ity attitude. Notice that, for a singleton event {z}, V(eg,y) = ¢7* <H71H¢(u(x))) =

There are two extreme cases:

(i) If the mass distribution n on X is concentrated on singleton events (i.e.,
n(C) = 0 for all C' with |C| > 0; full information about the probabilities of the
outcomes in X), then Vi(n) =3 _n({z})V(ey) = > cx n({x})u(z) becomes
the expected utility with respect to the probability distribution n.

(ii) If the mass distribution n is concentrated on X (i.e., n(C) = 0 for all
C # X, no information about the probabilities of the outcomes in X)), then
Vin)=V(ex)=¢"! (ﬁ Y owex ng(u(x))) In other words, the expected utility of
the outcomes in X is evaluated by the uniform distribution, reflecting the complete
ignorance of the DM regarding the likelihoods of outcomes in X.

Most applications, however, concern intermediate cases with partial informa-
tion, where at least some information about events C' with 1 < |C| < |X] is
available. Eichberger and Pasichnichenko (2021) provide an axiomatization for
representing preferences by the quasi-average utility, relate the transformation ¢
to the DM’s attitude towards ambiguity, and present applications including the
Ellsberg paradox.



2.2 Information structures and the ex-ante value of infor-

mation

Valuation of the information from an information source proceeds in two stages.
In the first stage, a DM must decide whether to enter an information gathering
activity (experimentation phase). The information gathering activity, also called
experiment, will produce a signal s from a finite set of signals S according to some
partially known probability distribution. We will assume that information about
the ex-ante signal distribution is partial and ambiguous, hence represented by a
mass distribution M over signals in S. In the second stage, once a signal s has
been observed, the DM can update the ex-ante mass distribution over states in 2
in the light of the information transmitted by the signal s to a mass distribution
ms. Thus, the signal allows a choice of action given the information of the signal.
We dub the possibility to adjust the choice of action in the light of the signal as
the instrumental value of information.

Following Blackwell (1951), we refer to the environment in which the DM
seeks information before choosing an action a € A as information structure or
experiment. Formally, an information structure consists of (i) a finite set of signals
S, (ii) a mass distribution M over signals in S reflecting what is known about the
likelihood of the signals, plus (iii) a set of mass distributions m, over states in €

conditional on the signal s € S observed:

I = (S, M, {ms}ses)'

In the special case where the mass distribution M over signals in S is a prob-
ability distribution and all mass distributions m, are Bayesian updates of a prior
probability distribution, the “Bayesian” situation studied by Blackwell (1951) ob-
tains.

Learning that a signal s € S has occurred will allow the DM to revise the
initial mass distribution m to an updated mass distribution m,. The updated mass
distribution m, on states in §2 together with an action a : 2 — X induce a mass
distribution (ms * a) on X according to Equation (2). Denoting by Ugy(ec) =
¢! (ﬁ > e Qﬁ(u(x))) the quasi-average utility of the outcomes C' C X, one can

write the quasi-average utility of the action a given m, as®

V(a,mg) =Y (my*a)(C) Usulec). (3)

cCX

3Note that (ms * a) (C) > 0 only for a finite number of sets C C X.



Consider a finite feasible set of actions A C A. For a given signal s, denote by

as € argmaxqe4 V(a, ms) a maximizing action and by
V (my) = V(as, ms) (4)

the maximal quasi-average utility. The value W (I) of an information structure
I = (S, M, {ms}ses) is obtained by aggregating the values V(ms) of the signals

with the quasi-average of the prior mass distribution over signals M (s):

W) =3 M(E) v~ (ﬁ > (v <ms>)) , (5)

ECS

where 1) is a monotone transformation reflecting the ambiguity attitude of the DM
regarding the ambiguity of the signal distribution. It is important to note that
1 need not coincide with ¢. The former reflects ambiguity attitudes regarding
the precision of signals, while the latter reflects ambiguity attitudes toward the

resulting updated beliefs.

2.3 Signals and updating mass distributions over states

In this paper, we will not investigate in detail how signals in S and states in (2
are related. Two of the most common ways assume either a prior product space

S x Q) or a function o : {2 — S mapping states to signals.

2.3.1 Signals from a product space S x 2

Suppose there is a mass distribution v over the product space S x Q. If v is
concentrated on singleton events in S x {2, one can obtain the updated mass
distributions m, as the marginal distributions of v.

For a general mass distribution v on the product space S x 2 however, there
are numerous product measures and a product measure is not well defined (see
Hendon et al., 1996). A possible solution to this problem consists in picking a
particular product measure, e.g., the Mdbius product. The following example

illustrates this possibility.

Example 1. Consider an urn with objects of different shapes & and colors €.
Past observations provide a mass distribution over subsets of € x &. Imprecise
records may cause ambiguity (see, e.g., Walley, 1996). Objects are randomly
drawn from the urn. Agents are informed about the shapes of the objects but

not their color. Then agents can bet on the color of the object. Hence, the set of



Figure 1: Urn with objects of different shapes and colors

signals is the set of shapes, S =& = {B,C,T,....}, and the payoff-relevant states
are the colors, Q =€ = {r,b,g,v,...}.

state events signal events
{B} | {C} | {T} | {B,C} | {B,T} | {C,T} | {B,C,T} mp | mg | mrp

{r} Bl &0 0 0 0 % 142010

{b} 0 0 0 0 0 0 0 0 0 0

{9} 0 0 0 0 0 0 0 0 0 0
{r,b} 0 0 0 0 0 0 0 0 0 0
{r,g} 0 0 0 0 0 0 0 0 0 0
{b, g} 0 s 10 0 0 0 0 o] 210
{r,b,9} 505 0 0 0 0 10 |1

Table 1: Mass distributions conditional on signals

For each signal s € S, beliefs of the agent are assumed to be represented by a
mass distribution m, over the set of states (2. Information about the likelihood of
signals in S is given by a mass distribution M on S. Consider the case of three
states 0 = {r,b,g} and three signals S = {B,C,T}. Suppose there is a mass
distribution v on €2 x S that is a Mdbius product of two mass distributions over
S and Q. For all G € P(Q2 x S) such that G = E x F for some E C () and
F C S, v(G) is given in Table 1, while v(G) = 0 for all other G € P(2 x S).
This mass distribution reflects the partial knowledge the DM may have about the
relationship of signals and states. Notice that in this case, one can deduce from the
product mass distribution v both the mass distribution M over S and the updated
mass distributions {m,} s over €. If the mass distribution were concentrated on
the upper left-hand corner of the table, then the updated m, would correspond to

the Bayesian updates of the prior probability distribution over states.

2.3.2 Signals as a function of states

An alternative way to model the relationship between signals and states is by

a mapping o : 2 — S generating a partition of ). If there is no uncertainty



regarding the probability distribution governing the likelihood of states, then the
mass distributions updated on signals s € S could be obtained as the Bayesian
updates for any event F' C 2. Notice that in this case the ex-ante distribution
over signals is not derived from the model.

Consider an arbitrary ex-ante mass distribution mg on the state space 2 and its
associated belief function p = " defined by Equation (1). For an event E from a
signal induced partition {o7!(s)}, ¢ of the state space , one can study numerous
notions of updated belief functions and their mass distributions. Specifically,
denote by pg the belief function updated with respect to the rule R (see Eichberger

et al., 2010) assuming the updates are belief functions, e.g.:

e Bayesian: up(F|FE) = MLIZE;E)’
e Dempster—Shafer: upg(F|E) = Mﬂ—w’
w(FNE)

e Generalized Bayesian: ugp(F|E) = TFAD) 1 p(FUE)”

for all F' C Q. The corresponding mass distribution can be derived from the belief

function ug.

3 Examples and applications

In this section, we present three examples that show the potential of our approach

for modeling economic phenomena.

Example 2 (Portfolio Choice with a Consultant). Consider an investor who has
to choose between two consultants who offer to provide information about the
state-contingent returns of the investor’s portfolio. We model the consultants as
information structures Ig = (S, Mg, {ms}ses) and It = (T, Mr, {mt}teT). A
consultant is characterized by a finite set of potential recommendations (signals)
S (respectively, T') and signal-dependent mass distributions {my} s over states
(respectively, {m;},.,) reflecting the partial information regarding the assets’ re-
turns given the recommendation s € S (respectively, ¢t € T'). The consultants may
be also characterized by prior information regarding the precision of their recom-
mendations. This prior information can be captured by the mass distribution Mg
(respectively, Mr).

Assume a set of states 2 = {wy, ..., w, } and a finite set A of portfolios (a1, as) €

R? determined by the exogenous supply of stocks and bonds. Given asset prices

10



quantity | price | payout in w € 2

stock ay q T

bond a9 1 r

Table 2: Asset prices and returns
and returns as in Table 2, the set of portfolios A induces a set of wealth levels
X ={rya; +rag| (ar,a2) € A, w € Q},

which serves as the set of outcomes. Choice of a portfolio a € A by an investor
can be viewed as an action a : 2 — X that the investor is assumed to evaluate by
its quasi-average utility V'(a, m;) according to Equation (3).

Given a recommendation s € S, the investor will maximize V' (a, m;) by choos-
ing a portfolio a from her budget set B(q,w) = {a € A|qa; + as < w}, where w
denotes her initial wealth. Denote by a; a maximizing portfolio and by XA/(ms) the
maximal quasi-average utility from the recommendation s € S. Hence, the ex-
ante value W (Ig) of the information provided by consultant Ig to the investor is
given by Equation (5), with an analogous definition for consultant /7. Notice that
ambiguity about the quality (precision, reliability) of the consultants is captured
by the mass distributions Mg and M7 over signals and the attitude towards this
uncertainty by the function 1. Given the respective costs of these consultants the

investor can choose the one she wants to employ.

The next example illustrates how an information structure may be derived

from a data collection process, for instance, through peer recommendations.

Example 3 (Feedback Gathering). Consider a DM who must choose the best
option among n available alternatives. To make an informed choice, the DM
gathers recommendations from her peers.? Let the set of states be Q = {wy, ...,w, },
where w; denotes the state in which option 7 is the best. The set of outcomes is X =
{0, 1}, with x; preferred to xy. The feasible set of actions is A = {ay,...,a,},
where each action a; represents a bet on state w;: a;(w;) = 27 if ¢ = j, and
a;(wj) = xo otherwise, for all 4, j € {1,...,n}.

Recommendations from k peers can be represented as a sequence {o'}*_; of
observations over the states. Allowing for imprecise recommendations, each ob-

servation is modeled as a non-empty subset o' C €, where a non-singleton o

4For example, a hiring committee selecting among n job candidates may solicit feedback from
colleagues regarding each candidate’s abilities.

11



indicates that Peer ¢ is uncertain about which option is best. The DM aggregates

the recommendations into a mass distribution mg over states:

mo(E) = Z 1iot=p), (6)

| =

for all E C Q5

Suppose that collecting an additional observation o**!

entails a cost cf*!.
Should the DM obtain o**! or stop and make a choice based on the current mass
distribution mg? Ex ante, the additional observation defines an information struc-
ture I = (S, M, {ms},.g), where the set of signals S = {88} gepay\p corresponds
to the possible recommendations of Peer k£ + 1. For each signal sg, the associated
posterior ms,, is formed according to Equation (6), with k replaced by k+ 1. It is
natural to assume that M ({sg}) = £mg(E) and M(S) = =% where N denotes
the total number of potential observations (e.g., the total number of peers). In
particular, when both ¢ and ¢ have CARA forms, the DM should obtain the next

observation o™ if and only if W(I) — ¢! — V(mg) > 0.

The final example in this section shows how an information structure can be

applied to an experimental setup of a laboratory experiment.

Example 4 (Ellsberg Urns). Consider two urns filled with green and blue balls.
The exact compositions of the urns are only partially known. The DM’s task is to
identify which urn is the true urn.® The DM can obtain information that reveals
the color of a randomly drawn ball from the true urn. What is the value of this
information?

Formally, define the states 2 = {wy,ws}, outcomes X = {xg, 21} with u(zg) =
0 and u(zq) = 1, and actions A = {ay,as}, where each action a; represents a bet
on state w; as in the previous example. Define the set of signals as S = {g,b}. The
two states correspond to the urns, Urn I and Urn II, while the two signals represent
the possible colors of the randomly drawn ball. For concreteness, suppose Urn |
contains 6 green balls, 3 blue balls, and 1 ball of unknown color (blue or green),
while Urn II contains 2 green balls, 5 blue balls, and 3 balls of unknown color
(blue or green), as illustrated in Figure 2.

The prior mass distribution is given by mg ({w1}) = mo ({w2}) = 1 and

SEquation (6) assumes that all peers’ recommendations carry equal weight, though this as-
sumption could easily be relaxed.
SFor a more practical interpretation, urns can be thought of as competing hypotheses.

12
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Figure 2: Partially known urn compositions

mo ({wi,w2}) = 0.7 Note that mg ({wi,ws2}) > 0 would indicate the presence
of balls for which the DM does not know in which urn they are located. Similarly,
M ({g}) = M ({b}) = & and M ({g,b}) = 3, where M ({g,b}) > 0 represents
balls of unknown color. Accordingly, the prior mass distribution on P (€2 x S) is

summarized in Table 3.8

state events signal events
{g} | {0} | {9,b}

{wi} 2% 2_36 %
{wa} % % %
{w1, wa} 0 0 0

Table 3: Mass distribution on P (2 x 5)

To compute my and my, we must update the mass distribution on €2 x S with
respect to the events {(w1,g), (w2, 9)} and {(w1,b), (w2,b)}. Table 4 shows the
results of applying the three updating rules from Section 2.3.2 to our example.
Consider the left table in more detail. Under the Bayesian rule, only the balls
known with certainty to be green (8 balls) are taken into account, while all others
are ignored. The Dempster—Shafer rule, in contrast, treats all balls of unknown
color (4 balls) as if they were green. The Generalized Bayesian rule adopts a

more cautious stance: it assumes that unknown balls in the current urn are not

"For simplicity, we assume that the prior mass distribution is proportional to the number of
balls each urn contains.

8Note that P(Q x S) contains 15 non-empty subsets (events), while Table 3 displays only 9 of
them. The richness of P(£2 x S) allows for the modeling of more complex information structures.
For instance, assigning positive mass to the event {(w1, g), (w2, b)} corresponds to balls for which
it is only known that they are either in Urn I and green, or in Urn II and blue.

13



state events | updating rule state events | updating rule
B |DS|GB B |DS|GB
fwd 81 % | fwd 8% |
{wa} A 5 {wa} e 8
{w1,wa} 0] 0 | 2 {w1,wa} 0] 0 | 5
Signal g (green ball) Signal b (blue ball)

Table 4: Posterior mass distributions after observing a signal under the Bayesian,
Dempster—Shafer, and Generalized Bayesian rules

green, while those in the opposite urn are green. This procedure leaves a non-zero
residual uncertainty mass displayed in the bottom row of the table.

For the analysis that follows, we focus on the Generalized Bayesian rule. Ap-
plying Equations (3) and (4), we obtain V(mg) = z, Vi(mg) = L + 24, and
V(mb) = g + é—gﬂ, where 4 = ¢! (%gb(O) + %(b(l)) Using Equation (5), we then
have

W(I) = %V(mg) + %V(mb) + 1V,

with V = ¢! (%@/}(V(mg)) + %@D(V(mb))) For an ambiguity averse DM with
@ = 1, both V(my) and V (my) are approximately 2. Consequently, W(I) ~ 2 and
W (I)—V(mg) ~ . The value of information decreases as the DM becomes more

averse to outcome uncertainty and as the information becomes more incomplete.”

4 Informativeness with partial information

In the framework of expected utility theory, Blackwell (1951) provides a con-
cept for comparing information structures according to their informativeness. In
particular, Blackwell shows that informativeness of an experiment corresponds to
statistical sufficiency of the experiment, i.e., compared to the superior experiment,
the inferior experiment yields only additional noise.

For non-expected utility frameworks, the notion of informativeness of an infor-

9To see how additional uncertainty affects the results, suppose that, beyond the 20 original
balls in the urns of Figure 2, 10 more balls are introduced, whose colors and urn assignments
are completely unknown to the DM. These additional balls are represented by assigning a mass
of % to the universal event 2 x S, while the masses of all events in Table 3 are adjusted
proportionally. Reapplying Equations (3), (4) and (5), we find that, depending on the DM’s
attitude toward outcome uncertainty (captured by @), the information structure I may in fact
be rejected: W (I) — V(myg) < 0.
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mation structure needs to be reconsidered (see Grant et al., 1998; Karni and Safra,
2022; Li and Zhou, 2016; Schlee, 1990; Wakker, 1988). If beliefs are represented
by mass distributions, new information no longer concerns only updating proper-
ties but requires also a notion of precision for signals. Consider two information

structures:

Ig = (S’ Mg, {ms}ses) and I = (T, Mr, {mt}teT) :

Partial information and ambiguity enters the information structures Is and I at
two stages:

(i) Ex post, once beliefs over states have been updated in the light of the
signals from S, respectively T', leading to modified mass distributions {m,}, ¢
and {m¢}, -

(ii) Ex ante, regarding the relative precision of the mass distributions Mg and
M7 when the signal has not yet been realized.

In this section, we suggest a notion of informativeness for information struc-

tures under partial information and prove a Blackwell-like equivalence result. Since
we allow for partial information at both stages of the process, the suggested no-
tion of informativeness will comprise two conditions. Condition (i) relates to the
ex post stage when the signal is known. It expresses informativeness in terms of
posterior mass distributions. Condition (ii) concerns the ex ante stage and com-
pares information about the signal. For this comparison of the partial information
about the likelihood of the signal, we need a notion of precision for the signal. The
concept of the centroid of the core of the capacity p*, that corresponds to the
mass distribution (M6bius transform) M provides us with an appropriate notion.
4.1 Partial information and the centroid of core(u*)
Partial information about the mass distribution M over events is reflected in the
core of its associated belief function . The core of the belief function p* that
is associated with the mass distribution M contains all probability distributions
p yielding, for each event E C S, a probability p(E) = Y. pp(s) > pM(E) =
Y pcp M(F). If a mass distribution is concentrated on the singleton events, the
core_consists of a single probability distribution. Otherwise, the core is a polyhe-
dron with extreme points reflecting the partial information about the probability
distributions.

For a mass distribution M, the centroid is itself a probability distribution Py,

in the core of the capacity pu™:
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Puls) = 3 M (B)

E3>s
for all s € S.19 The centroid Py, of a mass distribution M associates with each
signal s the uniform average of the masses M (FE) of all events E that contain s.
By construction the centroid is a probability distribution that reflects the relative

weights of the information about non-singleton events.

4.2 Comparing information structures

The following definition of relative informativeness is inspired by the respective
definitions in Grant et al. (1998) and Karni and Safra (2022). These approaches
work within a framework of joint probability distributions over the product space
of states and signals. Hence, they assume as primitive concept a joint probability
distribution on S x €2 and derive both the prior distribution over signals and the
posterior probability distributions conditional on the realized signal from it.

In context of mass distributions reflecting partial information of the DM, we
characterize “informativeness” of an information structure by (i) a condition on
the signal-updated mass distributions {m,} ¢ and (ii) a condition on the dis-
persedness of the mass distribution M over signals. In order to formalize the
latter condition, we use the centroid of the belief function p™ as a measure of

diffuseness of the partial information over signals.

Definition 1. Take two information structures Is = (S, Ms, {m},.g) and Iy =
(T, MT>{mt}teT)- We say that Ig is more informative than I7 if there exist
numbers [ > 0 such that Y o8y =1forallt €T,

(i) D seg Bstms = my for all t € T', and

(i) > ser BstPray (t) = Pug(s) for all s € S.

For a better understanding of Definition 1, consider the special case with no
ambiguity, where all mass distributions are concentrated on singletons (i.e., the
corresponding belief functions are additive). Then, for any signal s € S, my is
the (posterior) probability distribution over states w € ) given signal s € S,
Y weaMs({w}) = 1. The centroid Py is the (prior) probability distribution over

signals s € S since, for additive belief functions, the centroid P, effectively

10The centroid is also known as the Steiner point of the core. In co-operative game theory,
the centroid is known as the Shapley value. For convex games, e.g., belief functions, the Shapley
value is an element of the core (Shapley, 1971). Miranda and Montes (2023) provide a careful
study of the centroid and compare it to other central distributions in the core of a capacity.
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coincides with Mg. The only difference is that Definition 1 is stated in terms of

posteriors rather than the likelihoods of signals given states.

Remark 2. Suppose there is a joint probability distribution ) over the product

1

space S x € of signals and states.!! Then the Bayesian updates of the signals

s € S on the state space 2, Q(wls) = 5 Qés&l 5= QCS?:))) are the signal-contingent
we ’

probability distributions over states, where )(s) denotes the marginal distribution

on S. Similarly, Q(s|lw) = QS(SQ“E?S, 5 = %(,S(f)) is the likelihood distribution over
sE ’

signals given state w € ), where Q)'(w) denotes the marginal distribution on

). Hence, given a joint probability distribution () over states and signals, we
can define an information structure I = (S, M, {mS}sES) by M(s) = Q(s) and
ms(w) = Q(wls).

In the context of probability distributions and Bayesian updating, Blackwell
(1951) and Cremer (1982) define one information structure as more informative
than (or “sufficient for”) another if it satisfies a condition analogous to Definition
1, formulated in terms of the likelihood distributions of signals conditional on
states. Their analysis assumes that DMs are expected-utility maximizers, which
allows them to establish that one information structure is more informative than
another if and only if it is more valuable for the DM. More recently, Karni and
Safra (2022) demonstrate that being more informative in the sense of Blackwell
(1951) is no longer necessary and sufficient when agents deviate from expected
utility maximization.'?

Below we will prove a Blackwell-type equivalence theorem within our frame-
work, which significantly generalizes the standard expected-utility setting. In this
context, we allow for ambiguity both at the stage of updated mass distributions
and at the stage of mass distributions over signals. We obtain an equivalence
theorem for the case in which DMs are ambiguity neutral with respect to the
mass distribution on the signal space, i.e., when ¢ is linear. Importantly, in this
case no restriction is required on the ambiguity attitude ¢ used for the evaluation
of the signal-contingent mass distributions {ms}, 4. In other words, the theo-
rem assumes ambiguity-neutrality with respect to signal-related ambiguity, while
imposing no restriction on the degree of ambiguity attitude regarding outcome

uncertainty. Moreover, we do not confine the evaluation of uncertainty to the

HEquivalently to a joint probability distribution, one can also assume as a priori given (i) a
set of conditional probability distributions {u(s|w}} plus (ii) a prior distribution 7(w) over
the states as in Karni and Safra (2022, p. 2).

2Introducing the notion of “hybrid valuable”, Karni and Safra (2022, p. 5) show that the
equivalence between informativeness and value can be restored for dynamic expected utility
preferences that fail to satisfy the compound lotteries axiom.

weN
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quasi-average utility Uy, (ec). Instead, we allow for an arbitrary evaluation rule
U(ec) under full ignorance with respect to an event C' C X. Such additional
generality of the DM’s utility function will allow us to show that a more valuable
signal is also necessarily more informative in the sense of Definition 1.

A decision problem is a pair (A,U), where A is a finite feasible set of actions
and U is a real function on the set of elementary mass distributions {ec | C' C X}.
Given a decision problem (A,U), the value W(I) of an information structure

I =(S,M,{ms}, ) is obtained by aggregating the values

V (m,) = max Y (my *a) (C) Ulec)
CCX

of the signals with the quasi-average of the prior mass distribution M over signals

S as in Equation (5).

Theorem 1. Under a linear v, an information structure Ig is more informative
than another information structure Iy if and only if W(lg) > W (ly) for any

decision problem.

The proof of Theorem 1 is contained in Appendix A.
In case that Mg, My and all {m,} s and {m;},., are all concentrated on sin-

gletons, Theorem 1 reduces to the standard Blackwell’s informativeness theorem.

Remark 3. One may consider stronger comparative notions of informativeness
than the one suggested in Definition 1. Such stronger notions may imply that the
more informative structure is also more valuable for arbitrary ambiguity attitude
1 regarding the signal. One such stronger definition and the associated result is
presented in Appendix B.

The following example illustrates the relationship between informativeness and

the value of partial information.

Example 5 (Informativeness). Take 2, X, and A as in Example 4. Let Ig =
(S, Mg, {ms},cq) With S = {s1,52}, Ms({s1}) = Ms({s2}) = 3, and Iy =
(T, My, {my},.7) with T = {t} and M(T) = 1. The posterior mass distribu-
tions are given in Table 5. Clearly, 1my, + smy, = my and 2Py, (t) = Pagy(s1) =
Py (s2), so that I is more informative than Ir. Comparing the values of the two
structures, we get W(Is) = 3+ 3U (€4, 0,}) and W(I7) = £ 43U €4z, 25}), s0 that
W(ls) > W(Ir) for any U € U.

Finally, one may also compare information structures by the ambiguity of their

associated mass distributions. For instance, Eichberger and Pasichnichenko (2021)
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m51 msz my
{w1} 2 0 3
{wd | 515 |3
{wi,wa} | 0O % %

Table 5: Posterior mass distributions in Example 5

propose a model-free approach to comparing mass distributions in terms of ambi-
guity, based on the notion of an elementary increase in ambiguity. We can then
establish the following. Suppose two information structures I = (S, M, {m},. s)
and I' = (S, M’ {m},q e
biguous than M. Then W (I) > W (!I’) if and only if ¢ is concave. Likewise, con-
sider two information structures I = (S, M, {m,},.¢) and I' = (S, M,{m/},.s)

that share the same M and all posteriors except one for s* € S, where m’. is more

) share the same posteriors {m} but M’ is more am-

ambiguous than mg-. In this case, one obtains W (I) > W (I’) if and only if ¢ is

concave.

5 Preferences over information structures and the

value of information

So far, we have derived a value for an information structure by using the two-stage
valuation in Equations (3)—(5). These formulas were obtained in analogy to the
standard way of evaluating information structures suggested in Blackwell (1951)
for the case of probability distributions and expected-utility-maximizing agents.
In this section, we will provided an axiomatic derivation of the valuation functional
in Equations (3)—(5) based on the DM’s preferences over information structures.

Consider a universal set of signals S, such that for any information structure
I=(8M {m},q

signal induces a unique posterior mass distribution over states, independent of the

), we have S C S. Without loss of generality, assume that each

information structure in which it appears. Formally, for any s,z € S, s =t if and
only if ms; = my. Consequently, an information structure is fully characterized by
its mass distribution M over signals in S. Moreover, we fix a finite feasible set
A C A of actions.

For an arbitrary set K, let Fx denote the collection of finite subsets of K. Let
Exk be an algebra of subsets of K that contains all finite subsets. Define M(K)

as the set of mass distributions on £ that are concentrated on a finite subset. In
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other words, for any m € M(K), there exist finitely many sets Fi, ..., E, € Fk
such that >, m(E;) = 1. A special case of such a mass distribution is a finitely
supported probability measure (a lottery) on k. For notational convenience,
we do not distinguish between an element k£ € K and the degenerate lottery
in M(K) concentrated on the singleton {k}. A preference relation on M(K)
is called a quasi-average preference, if it satisfies Axioms 1-7 of Eichberger and
Pasichnichenko (2021).13

In particular, M(X) denotes the set of mass distributions over outcomes, while
M(S) denotes the set of mass distributions over signals. By assumption, sets X
and S are sufficiently rich to allow for countably many distinct certainty equivalents
for any lottery in M(X) and M(S), respectively.

We assume that the DM has a preference relation > on M(X), representing
preferences over mass distributions over outcomes. Similarly, the DM has a pref-
erence relation =* on M(S), representing preferences over information structures.

Both relations are assumed to possess a quasi-average preference structure:

Assumption 1. The preference relation > on M(X) is a quasi-average prefer-

ence.

Assumption 2. The preference relation =* on M(S) is a quasi-average prefer-

ence.

Quasi-average preferences combine partially known likelihoods of outcomes
and signals with subjective beliefs according to the principle of insufficient rea-
son whenever the likelihood of an event is unknown. In the special case, when
likelihoods are known, these preferences coincide with expected utility maximiza-
tion. At the opposite extreme, under complete ignorance, evaluation is based on a
uniform probability distribution and a transformation function that captures the
DM’s attitude toward ambiguity.!4

The following assumptions establish a connection between the two preference
relations, = and »=*. To this end, we first extend >=* to mass distributions over {2 by

means of degenerate information structures. For any m,m’ € M(Q), let m =* m/

13 Axioms 1-3 have the same interpretation as in the standard von Neumann-Morgenstern
framework, applied to a preference relation on M(K). Axioms 4-7 characterize the DM’s or-
dering of the elementary mass distributions {eg | E € Fk}, which correspond to situations of
complete ignorance restricted to E. These axioms imply that each elementary mass distribution
ep is evaluated by the quasi-average V(eg) = ¢! (ﬁ dorer @ (u (k:))) in the spirit of the prin-
ciple of insufficient reason. Combined with Axioms 1-3, this leads to the quasi-average utility
representation V(m) = > o m(E)V (eg) for all m € M(K).

“Eichberger and Pasichnichenko (2021) provide a more detailed discussion.
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if there exist mass distributions M, M’ € M(S) such that M ({s}) = M’ ({t}) =1,
ms =m, my =m’, and M »=* M’. Intuitively, a degenerate information structure
M with M ({s}) = 1 corresponds to a situation with prior mass distribution m
and a completely uninformative signal.

Given a preference relation =* extended in this way, we can now link the
preference relation =* on M(Q) to the preference relation »> on M(X) through

the actions A and the induced mass distributions.

Assumption 3. For any m,m’ € M(2), we have m =* m/ if and only if there

exists @ € A such that m*a = m' xa for all a € A.

In other words, m is preferred to m’ if the DM can induce a more favorable
mass distribution m *x a € M(X) over outcomes through her choice of action a
under m than under m/.

Finally, we link the DM’s risk attitude with respect to signals and her risk
attitude with respect to outcomes. To begin with, observe that for any signal s
and action a, the DM is indifferent between the mass distribution mg*a € M(X)
and its certainty equivalent denoted by c¢(mg * a) € X. By Assumption 1, such a
certainty equivalent always exists.'> When the DM observes a signal s, she selects
an optimal action as, leading to the certainty equivalent c¢(myg * as). Thus, when
signals are distributed according to M € M(S), facing M is like facing a mass
distribution Ty € M(X) concentrated on the certainty equivalents c(ms * as) for

all s in the support of M:

Definition 2. For M € M(S), define Ty, € M(X) as the mass distribution over
certainty equivalents induced by M, given by

Ty (C)=M (7_1 (C))

for all C' € £x and some injective mapping 7 : S — X such that 7(s) = ¢(mg x ay)
for all s € S.

Richness of X guarantees that it is always possible to find distinct certainty
equivalents ¢(m, * as) and c(m; x a;).'% Consequently, such an injective mapping
7 exists. Although 7 is not unique, any two choices of 7 yield mass distributions

on X that are equivalent for the DM (Assumption 1).

15Since my * a is concentrated on a finite set, it follows from the representation of = that
20 = my*a = g for some 20, g € X. Hence, the DM is indifferent between m, *a and a lottery
over 2° and zy, which itself possesses a certainty equivalent by our structural assumption.
16Even if the DM is indifferent between my * a, and m; * a;.
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When the mass distributions M and M’ are concentrated on singletons (so
that they are effectively lotteries), it is natural to assume that the DM ranks the

corresponding induced outcome distributions in the same way.

Assumption 4. For all M, M' € M(S) concentrated on singletons, M »=* M’ if
and only if Ty = Ty

Hence, the DM exhibits the same risk attitudes for preferences over information
structures as for preferences over lotteries on outcomes. However, this assumption
does not impose a restriction on her ambiguity attitudes across the two domains.

The following theorem shows that Assumptions 1-4 characterize the preference

representation over information structures proposed in Equations (3)—(5).

Theorem 2. The DM’s preferences satisfy Assumptions 1—4 if and only if there
exists a representation W of the preference relation =* on the set of information

structures such that

WD) = M(E) v <|—]§| >ow(v <ms>)> ,

where
V (my) = max (ms*a) (C) Upy(ec),
ccx
u s a von Neumann—Morgenstern utility function on X, and 1 and ¢ are contin-
uous and strictly increasing functions on their respective domains. The represen-
tation W is unique up to a positive linear transformation. Given W, the functions
w and V are uniquely determined, while ¢ and ¢ are unique up to positive linear

transformations.

We prove Theorem 2 in Appendix C.

Notice that the ambiguity attitudes captured by ¢ and ¢ in Theorem 2 need
not be identical. In Appendix D, we present two alternative representations—one
more general than Theorem 2 and one more specific. The more general representa-
tion is obtained by dropping Assumption 4. In this case, 1% (ms) is not necessarily
equal to max,ea ey (ms*a) (C) Ugu(ec), but is related to it through a strictly
increasing transforma_btion. The more specific representation results from strength-
ening Assumption 4 by allowing mass distributions that are not necessarily concen-
trated on singletons. Under this stronger assumption, we obtain a representation
in which the DM exhibits identical ambiguity attitudes toward uncertainty about

signals and uncertainty about outcomes.
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6 Concluding remarks

We present a general model of decision making over information structures, in
which signals are evaluated based on the beliefs they induce over states of the
world. Partial uncertainty (both about signals and about states) is modeled by
belief functions and the value of information is assessed through a quasi-average
utility of the induced outcomes. When there is uncertainty about the signal gen-
erating process, the value of information may be negative.

We propose the centroid of the belief function as a measure of the informative-
ness of signals and prove a result similar to Blackwell’s theorem in this framework.
Finally, we show that the representation of the value of information by a two-stage
quasi-average utility is derived from the DM’s preference order over information

structures.
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Appendix

A. Proof of Theorem 1

Note that for a given information structure I = (S, M,{m,},.s) and a given

decision problem, we obtain

W(I)=> M(E)™ (ﬁ > v (Via, ms))>

ECS scE

= 3 M(E) g 3 Viawm)

ECS sek
= Pu(s)V(as,my), (7)
ses
where a; denotes a maximizer of V(a, ms) in the decision problem, the second
equality follows from the linearity of ¢/, and the third from the definition of the

centroid. Furthermore, for any action a, one can express V(a, my) as

= m.(0)U(€a(o)); (8)

where O denotes the finite power set of €).

()“="1fIg = (S, Mg, {ms}ses) is more informative than Ir = (T, M, {mt}teT),
then W (Ig) > W(Ir) for any decision problem:

For a decision problem (A, U) and for all a € A, we obtain
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seS
> Z Py (s)V (a,my)
ses
— Z Py (s) Z ms(0)U(€a(o))
seS o€
=3 [Z Bst Pty > my(0)U (o)
seS teT 0€0

~
:PMS (s) by Definition 1(ii)

=D Pun(t)) [Zﬁstms

teT 0eO ses

U(ea(o))

=my (o) by Deﬁmtlon 1( )

:ZPMT th eao)

teT oe®
= Pu, (t)V(a,my),
teT

where the first equality follows from Equation (7), the inequality from the fact
that as is an optimal action given signal s, and both the third and final lines from
Equation (8). Moreover, since W(Is) > > o Pu(t)V (a,my) for all a € A, it
follows in particular that W(Ig) > >, P, (£)V (a¢,m) = W(Ip). Thus, the
inequality holds for any decision problem.

(ii) “<=" If W(Ig) > W (I7) for any decision problem, then /g is more informa-
tive than I7:

We begin with the proof of the following lemma.

Lemma 1. If an information structure Is = (S, Mg, {ms}ses) s not more infor-
mative than another information structure Iy = (T, M, {mt}teT), then there is
d € RITXIO1 sych that

Z Py, (1) th )di (o Z Py (s max ms(0)di(0).

teT ocO ses o€
Proof. For all o € O, define 7(0) = > g Pug(s)ms(0). Forall s € S, t €T, and
o€ O, set m(slo) = W and 77 (t|o) = w.
Let G denote the set of vectors g € RIT1*I such that g,(0) = >, g A (s]0)

for some numbers Ay > 0 satisfying ZteT Aot = 1. We identify 77 with a vector
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in RITXIO1Tf Ig is not more informative than I, we will show that 77 ¢ G.
Assume, to the contrary, that there exist numbers {\y} as above. Then for all
t €T and o € O, we obtain

7(0)
PMT (t>
_ 7(0)
e Z )\St']TS(S|0)P

seSs Mz (t)

my(0) = 7* (t|o)

ms(0)

_ )\StPMS (5)
B Z PMT (t)
)

seS

= Z Bstms(o 9
seS
where By = %, which corresponds to Definition 1(i). Moreover, we have

Y et BstPrap(t) = Pag(8) > ,er At = Pag(s), which corresponds to Definition
1(ii). Finally, the equality > _¢ s = 1 follows from

Py (t) = Y " (t]o)m(o)

0eO

=50 S 75(slo)(o)

seS 0e0

= AaPugl(s).

seS

Thus, the constructed numbers {f,} satisfy Definition 1, leading to a contradic-
tion. Therefore, 77 ¢ G.

Since 77 ¢ G, the separating hyperplane theorem guarantees the existence of
some ¢ € RITI*I01 such that

Z Z ¢ (o) (t[o) > Z Z q:(0) Z At (5]0)

teT 0O teT 0O ses

holds for all families { Ay } of numbers with Ay, > 0 and >, Ay = 1. In particular,
changing the order of summation on the right-hand side and considering a special
choice of {\g} yields

2.2 () (tlo) > Y max} qi(o)r(slo).

teT ocO seS 0e0
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By setting d;(0) = q*(o) , we obtain

(0o

>N dio) Pary (t)mu(0) > max > " di(0) Pasg (s)mi (o),

teT ocO sesS ocO
which concludes the proof of the lemma. n

Let us now return to the proof of the theorem. We proceed by contradiction.
Suppose W (Ig) > W (Ir) for any decision problem, while Ig is not more informa-
tive than Ir. Define A = {a'} as a set of actions indexed by ¢ € T, such that all
sets {a'(0) |t € T, 0 € O} are distinct. For each t € T and o € O, let the utility
function be given by U(eqt()) = di(0). For the decision problem (A, U), we obtain

= g P (s I{leaTX g ms(0)U (€4t (o))

seSs 0eO

< Z PMT Z mt eat )
teT 0O

< Z Py ( max my(0)U (eqt(0))
teT ocO

- W(IT),

where the strict inequality follows from the lemma. This contradicts the assump-
tion that W(Ig) > W (Ir), thereby completing the proof of the theorem.

B. A stronger notion of informativeness

This section examines a stronger notion of informativeness that guarantees a higher
value for any DM, regardless of their ambiguity attitude as represented by .
This is obtained by replacing Definition 1(ii) with a strong dominance condition
on the cores of Mg and My. A drawback of this definition is that higher-valued

information structures are not always more informative in the strong sense.

Definition 3. Take two information structures Ig = (S, Mg, {ms}ses) and I =
(T, Mr,{m:},cp). We say that Ig is strongly more informative than Ir if there
exist numbers Sy > 0 such that ESGS Bg=1forallteT,

(i) D seg Bstms = my for all t € T', and

(il) D er Bsea(t) < p(s) for all s € S, g € core (uM7), p € core (pus).

We can now show that this notion of informativeness implies a higher value

for all decision problems and ambiguity attitudes.
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Theorem 3. If an information structure Ig is strongly more informative than
another information structure I, then W(ls) > W (Ir) for any decision problem

and any continuous and strictly increasing function 1.

Proof. Consider a decision problem (A, U). From Definition 3(i), we obtain

=m¢ (o) by Definition 3(i)

= Z Bst Z ms eat )

SES 0€Q

= Z Bstv(ata ms)
seS

S Z Bstv(asa ms)
sES

= Z ﬂstv (ms) )
ses

where the inequality follows from the fact that a, is an optimal action given signal

s. Moreover, since for any £ C S we have

rsré%lV(ms <y~ <|E|Z¢< )) SI?eaEXV(mS)7

sel

it follows that

for some probability distribution a” on E. Hence, we can represent W ([) as
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W(ls) = Z Ms(E)yp (’_;” ZQ/J (V (ms)>>

ECS sEE
=Y Ms(E) Y a"(s)V (my)
ECS sekE
=> ) My(E)a"(s)V (my)
seS E>s
p(s)
= _p(s)V (my),
seS

where p is a probability distribution in the core of p*s. Similarly,

W(lr) = a(t)V (m)

teT

for some probability distribution ¢ in the core of 7. Combining these results,

we obtain

= W(Ir),

where the second inequality follows from Definition 3(ii), since all V (m,) can,
without loss of generality, be taken to be non-negative. Therefore, the inequality

holds for any decision problem and any continuous strictly increasing function

0. 0

C. Proof of Theorem 2

Since the preference relation = on M(X) is a quasi-average preference (Assump-
tion 1), it follows from Theorem 9 in Eichberger and Pasichnichenko (2021) that

there exist a von Neumann—Morgenstern utility function v on X and a contin-
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uous and strictly increasing function ¢ on u(X) such that = is represented by
Yccx ™ (C) Usu(ec) for all n € M(X). Hence, for any a,b € A and m,m’ €
M(Q), we have m * a = m' % b if and only if

D (mxa)(C) Ugu(ec) = > (m' ) (C) Ugu(ec).

CCX CCX

Combining this with Assumption 3, it follows that m »=* m’ if and only if there
exists a € A such that

> (mxa) (C) Usulec) 2 Y (m'+a) (C) Usulec)

cCx ccx

for all a € A. Therefore, the functional

H(m) = max 3~ (m +a) (C) Upuec)
ccx
represents the preference relation =* on M(Q), or, equivalently, on the set of
degenerate information structures.
Because the preference relation =* on M(S) is a quasi-average preference (As-
sumption 2), Theorem 9 in Eichberger and Pasichnichenko (2021) implies that
there exist a von Neumann—Morgenstern utility function v on S and a continuous

and strictly increasing function ¢ on v(S) such that »=* is represented by

> M (E)Uy(ep)
ECS
for all M € M(S), where S denotes the finite subset on which M is concentrated.
For all m € M(Q), define V(m) = v(s) for the unique s € S such that m, = m.
Note that V(m) > V(m/) if and only if m =* m/. Hence, both V and H represent
the same preference relation »>* on M(€2) and are therefore related by a strictly
increasing transformation. Moreover, Assumption 4 implies that V and H capture
identical risk attitudes over lotteries on 2. Consequently, V must be a positive
linear transformation of H, i.e., V = aH + b for some a,b € R, a > 0. Applying
the same linear transformation to the functional representing > on M(X) and
redefining H accordingly gives V =H, establishing the desired representation.
The proof that the representation implies the assumptions is straightforward.

The uniqueness result follows directly from Theorem 9 in Eichberger and Pasich-
nichenko (2021).
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D. Alternative representations

If it is necessary to distinguish between the DM'’s risk attitudes toward signals
and outcomes, a more general representation than that of Theorem 2 is required.

Such a representation can be obtained simply by dropping Assumption 4.

Theorem 4. The DM’s preferences satisfy Assumptions 1-3 if and only if there
exists a representation Wy of the preference relation =* on the set of information

structures such that

Wa(h) = S0 M(E) ! <E1| So (v <ms>)) ,

ECS sek

where Vy : M(Q) — R is related to

V' (ms) = max (ms*a) (C) Upu(ec),

by a strictly increasing transformation, u is a von Neumann—Morgenstern utility
function on X, and Y and ¢ are continuous and strictly increasing functions on
their respective domains. The representation Wy and the function u are unique up
to positive linear transformations. Given Wi and u, the function Vi is uniquely

determined, while v and ¢ are unique up to positive linear transformations.

Proof. The first part of the proof follows the same reasoning as the proof of The-

orem 2. By analogous arguments, we obtain that the function

H(m) = max (m*a) (C) Upy(ec)

represents the preference relation »=* on M(€2). Equivalently, it represents prefer-
ences over the set of degenerate information structures.

Because the preference relation =* on M(S) is a quasi-average preference,
Theorem 9 in Eichberger and Pasichnichenko (2021) implies that there exist a
von Neumann—Morgenstern utility function v on S and a continuous and strictly

increasing function ¢ on v(S) such that =* is represented by

" M (E) Upi(er) (9)

ECS

for all M € M(S), where S denotes the subset on which M is concentrated. For
each m € M(Q), define Vi(m) = v(s) for the unique s € S such that m, = m.
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By construction, Vl(m) > Vl(m’) if and only if m »=* m/. Thus, both V, and
H represent the preference relation »=* on M(2), and therefore they are related
by a strictly increasing transformation. Finally, substituting v(s) with ‘A/l(ms) in
Equation (9) yields the desired representation Wi (7).

The proof that the representation implies the assumptions is straightforward.
The uniqueness properties follow from Theorem 9 in Eichberger and Pasichnichenko
(2021). 0

The representation Wj is more general than W, as Vl(ms) is merely a strictly
increasing transformation of the maximal value under the posterior m,. Conse-
quently, the equality Vl(ms) = V(ms) does not hold in general.

Alternatively, Assumption 4 can be strengthened by extending it to all mass
distributions in M(S), rather than restricting it to those concentrated on single-

tons:
Assumption 4’. For all M, M' € M(S), M »=* M’ if and only if Tys = T

This allows us to specialize Theorem 2 to the case ¢ = ¢. In other words,
the resulting representation W5 does not distinguish between the DM’s attitude
toward uncertainty in signals and uncertainty in outcomes. Assumptions 2 and 3
are no longer required, since Assumption 4’ links = and =* and makes >=* inherit

a quasi-average preference structure from 3=.

Theorem 5. The DM'’s preferences satisfy Assumptions 1 and 4’ if and only
if there exists a representation Wy of the preference relation =* on the set of

information structures such that

Wa(I) =Y M(E) ¢! <ﬁ > o (V <ms))> :

ECS scE

where

V' (ms) = max (ms*xa) (C) Upu(ec),

u is a von Neumann—Morgenstern utility function on X, and ¢ is a continuous
and strictly increasing function on its domain. The representation Wy is unique up
to a positive linear transformation. Given Wy, the functions v and V' are unique,

while ¢ is unique up to a positive linear transformation.

Proof. By Assumption 4’, M >=* M’ if and only if Ty, %= T)r. From Assumption 1
and Theorem 9 in Eichberger and Pasichnichenko (2021), it follows that Ty, = Ty
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if and only if
Z TM< qu 60 Z TM/ Ud)u 60)

cCX cCX

Since Ty (C) = M (E) for all M € M(S), C € Ex, and E = 71 (C), we obtain
M =* M’ if and only if

Y M(E) ¢ <|E’Z¢ >> > M(E) —<‘E/’

ECS selk E'CS!

> o) ).

s'er’

Define V by V (m,) = u(7(s)) for all s € S. Note that

u(7(s)) = u(c(mgxas)) = Z (ms*as) (C) Upy(ec) = max (msxa) (C) Ugu(ec).

Hence, we obtain the desired representation.

The proof that the representation implies the assumptions is straightforward.
The uniqueness result follows from Theorem 9 in Eichberger and Pasichnichenko
(2021). m
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