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mate utility maximisation, where an alternative is selected from a menu only if its
utility is not significantly lower than that of any other available option. We show
that this model characterises choices that violate transitivity of indifferences, but
preserve transitivity of the revealed strict preferences. More importantly, although
the individual may fail to maximise their utility exactly, it is possible to recover
their true preferences from the observable data, make out-of-sample predictions
and welfare comparisons. Our results require minimal assumptions on the empir-
ical framework and are applicable, amongst others, to the study of choices over
consumption bundles, state-contingent consumption, and lotteries.

Keywords: approximate utility maximisation, revealed preference analysis, non-
transitive indifferences, recoverability of preferences, satisficing, interval orders
JEL Classification: D11, D81, D91

1 Introduction

Stemming from Samuelson (1938), Richter (1966), and Afriat (1967), numerous develop-

ments in the revealed preference literature provided tools for a non-parametric analysis of

utility maximisation with limited choice data. An important feature of this approach is

the ability to dispense of any ancillary assumptions regarding the functional specification
∗ I am grateful to Victor Aguiar, Roy Allen, Georgios Gerasimou, Jiangtao Li, Hiroki Nishimura,

Tom Potoms, John Quah, Luca Rigotti, and Lanny Zrill for helpful comments and suggestions.
† Department of Economics, University of Sussex, Jubilee Building, Falmer, Brighton BN1 9SL,

United Kingdom. Email: P.K.Dziewulski@sussex.ac.uk.
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of preferences and fully embrace heterogeneity among individual subjects. Moreover, the

revealed preference theory establishes a general framework for testing models of consumer

choice, estimating preferences from observable data, as well as making out-of-sample pre-

dictions and data-driven welfare comparisons. These methods have found a broad appli-

cation to the empirical analysis of consumer demand, time preference, choices over risk

and uncertainty, and multiperson household models, among others.1

At the same time, a significant number of empirical studies suggest that choices of

individuals are not consistent enough to be congruent with utility maximisation.2 Natu-

rally, this poses the fundamental question whether the standard model of consumer choice

is an appropriate description of human behaviour. In addition, from the practical stand-

point, whenever the data are inconsistent with utility maximisation the standard revealed

preference tools are no longer applicable, as they critically depend on the observations

being accordant with the classic notion of rationality.

There are at least two ways of addressing this issue. One is to abandon the idea of

utility maximisation entirely and explore other models of decision-making, either deter-

ministic or stochastic. Such a radical departure from the standard approach has signifi-

cant drawbacks. First of all, it would require an overhaul of a large and (arguably) fruitful

part of the economic analysis built around deterministic utility maximisation. Moreover,

the richness of data required to study choices of individuals with stochastic choice mod-

els is prohibitive in many empirical settings in which the researcher observes at most

a few choices from a small number of menus.3 The other way is to accept that utility

maximisation (like other scientific models) serves merely as an approximation of indi-

vidual behaviour, and develop methods for studying decision-making within the classic

framework while accounting for some inconsistencies with the data.

In this paper we explore the second route and introduce a comprehensive method for
1 For a handbook treatment of this literature see Chambers and Echenique (2016). For more re-

cent results in the general revealed preference theory see Chambers et al. (2017), Halevy et al. (2017),
Nishimura et al. (2017), Hu et al. (2020); time preference are discussed in Dziewulski (2018), Echenique
et al. (2020), Blow et al. (2021); for applications to choice under risk and uncertainty see Echenique et al.
(2018), Polisson et al. (2020); for multiperson household models see Cherchye et al. (2017, 2020).

2 See Chapter 5 in Chambers and Echenique (2016) and more recently Halevy et al. (2018), Echenique
et al. (2019), Feldman and Rehbeck (2020), Zrill (2020), Dembo et al. (2021), and Cappelen et al. (2021).

3 Here we abstract from applying stochastic choice models to study choices in populations of het-
erogeneous agents. In fact, these models are very much in line with deterministic choice theory. They
assume that decisions of individuals are deterministic. However, since the researcher can observe choices
only in the aggregate, the data are evaluated as if they were stochastic.
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studying approximate utility maximisation. We consider a model in which the decision-

maker chooses an alternative from a set of available options only if its utility is not

significantly lower then that of any other element in the menu. We answer the following

question: Given a finite dataset of pairs (A, x), where x ∈ A is an option selected from

the menu A, under what conditions there is a utility u and a positive threshold function

δ such that, for any observation (A, x) and y ∈ A, we have

u(x) + δ(y) ≥ u(y).4

That is, the utility of the observed choice x is at most δ(y) utils lower than that of any

other available option. In our main result (Theorem 1) we show that approximate utility

maximisation characterises choices that violate transitivity of indifferences revealed in

the data, but obey transitivity of revealed strict preference relations. Therefore, this

natural extension of the standard model of consumer choice is derived from a meaningful,

intuitive, and testable restriction on the observed choices.5

Our characterisation of approximate utility maximisation is instrumental in develop-

ing non-parametric tools for eliciting the “true” preferences of the decision-maker, that

we identify with the utility function u, as well as making our-of-sample predictions and

evaluating welfare. We address the first question in Theorem 2, where we estimate the

unobserved preferences u that (together with some threshold function δ) approximately

rationalise the set of observations as above. Although the individual may fail to optimise

their utility, we show that it is possible to recover their preferences from the observations.

Moreover, our estimates are tight, in the sense that improving them would necessarily

exclude some preferences that could support the data.

Eliciting the true preferences allows us to develop a meaningful, data-driven welfare

analysis. In Theorem 3 we characterise a criterion that is appropriate for our framework

and allows us to compare the well-being of an individual who faces different menus or

budget sets (not necessarily observed in the data). We say that a menu A′ is robustly

preferable to A if, for any utility u and a threshold function δ that are consistent with
4 The reader may recognise that our model is analogous to the interval order representation of prefer-

ences proposed in Fishburn (1970). We address this in the Online supplement. Since our paper focuses
on the utility u, we find the term approximate utility maximisation more appropriate.

5 See also Allen and Rehbeck (2020a,b) who study approximate utility maximisation under the as-
sumption that the utility u is quasilinear and the threshold function δ is constant. Alternatively, Aguiar
et al. (2020) analyse datasets that violate transitivity of both the weak and strict preference. Beresteanu
and Rigotti (2021) discuss similar issues in the stochastic choice framework.
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the data in the approximate sense, any (possibly unobserved) choice from A′ induced

by such a model would be preferable to any choice from the set A, with respect to the

true preferences u. This captures the idea that, although the decision-maker may fail to

maximise their utility, the researcher evaluates their welfare using the true preferences,

thus, separating the positive and normative aspects of the choice.6

We do not claim that approximate utility maximisation is the ultimate explanation for

any deviation from the classic notion of rationality. Inevitably, some departures require

a qualitatively different approach to modelling consumer choice. Rather, the point of

this paper is to develop a comprehensive and meaningful framework for studying the

canonical model of utility maximisation when the empirical data exhibit inconsistencies

with the theory that could be attributed to non-transitive indifferences.

The idea of non-transitive indifferences was introduced to economics by Georgescu-

Roegen (1936), Armstrong (1939, 1950) and Luce (1956). Inspired by the research in

psychology and psychophysics, these papers acknowledge the inability of human beings

to discern between close quantities of goods and claim that any descriptive theory of choice

should allow for non-transitive indifferences that would result from “imperfect powers of

discrimination of the human mind whereby inequalities become recognizable only when of

sufficient magnitude” (Armstrong, 1950, page 122). Nevertheless, non-transitive indiffer-

ences go beyond limited perception and can be related to incommensurability, vagueness

of judgement, and imprecise preferences — empirical phenomena in choice under risk re-

ported in, e.g., Butler and Loomes (2007) and Cubitt et al. (2015). Finally, approximate

utility maximisation may follow from the satisficing behaviour proposed in Simon (1947),

where the subject fails to maximise their utility due to an unobserved mental or physical

cost of switching from an inferior to a dominant alternative. In fact, we show that in

many empirical settings the two models are observationally equivalent.

Throughout this paper we abstract away from specific economic environments and

impose a very limited set of assumptions on the space of alternatives and the data avail-

able to the researcher. Because of this, our general results are applicable to a variety

of empirical environments, including the classical consumer demand, state contingent

consumption under risk and uncertainty, and choices over lotteries.
6 A similar idea is discussed in Mandler (2005) and Nishimura (2018). See also Nishimura and Ok

(2020) for a discussion on a broad class of related models.
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Organisation of the paper In Section 2 we introduce our setup and the basic nota-

tion. Our first main result (Theorem 1) is presented in Section 3, where we characterise

approximate utility maximisation in terms of non-transitive indifferences. We devote

Section 4 to a discussion on imperfect discrimination and how this phenomenon can be

studied using the toolkit developed in this paper. Theorem 2 is stated in Section 5, where

we discuss the problem of eliciting the true preferences of approximate utility maximisers

from their observable choices. We present the welfare analysis in Section 6, where we

state our final main result (Theorem 3). Section 7 is devoted to some direct applications

of our method. Specifically, in Section 7.1, we determine the class of empirical settings

in which approximate utility maximisation is indistinguishable from the model of satis-

ficing à la Simon (1947). In Section 7.2 we extend the results in Polisson et al. (2020) to

study approximate utility maximisation within a broad class of models of choice under

risk, that includes expected utility, rank dependent expected utility, and disappointment

aversion. Finally, in Section 7.3 we extend the result in Dziewulski (2020) and show the

tight relation between approximate utility maximisation and one of the most widespread

measures of departures from rationality — the critical cost-efficiency index. Proofs of

the main results are postponed until the Appendix. A number of related results and

extensions are discussed in the Online supplement, including an alternative, constructive

take on Theorem 1 that pertains to linear programming methods.

2 Preliminaries

We begin our discussion by introducing the notation and terminology.

2.1 The setup

Let X be the universal consumption space, i.e., the grand set of mutually exclusive choice

alternatives. A menu is a non-empty subset A of X, and A = 2X \ {∅} denotes the

set of all menus. A dataset (or a set of observations) O is a finite collection of pairs

(A, x), where x ∈ A is interpreted as a choice from the menu A ∈ A. We often denote

O =
{
(At, xt) : t ∈ T

}
, for some finite set T . Unless stated otherwise, we impose no

additional assumptions on the space X or the dataset O. To fix ideas, we present two

commonly used empirical settings that fit our framework.
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The first natural application is the classic consumer demand problem as in Afriat

(1967), Diewert (1973), or Varian (1982), where an individual is choosing ℓ-commodity

bundles xt ∈ X ⊆ Rℓ
+ from linear budget sets At =

{
y ∈ X : pt · y ≤ mt

}
, given some

strictly positive prices pt ∈ Rℓ
++ and income mt ≥ 0, for all t ∈ T . Usually, it is assumed

that the purchase exhausts the available budget, i.e., mt = pt · xt, for all t ∈ T , but this

plays no role in our analysis. This framework can be extended to a general class of budget

sets as in Forges and Minelli (2009), where the menu satisfies At =
{
y ∈ X : f t(y) ≤ 0

}
,

for a well-defined, continuous, and strictly increasing function f t : X → R, for all t ∈ T .7

This embeds the setup of Afriat, where f t(y) = pt · y −mt, for all t ∈ T .

In numerous empirical studies, including the famous Allais experiment, researchers

investigate choices of subjects over lotteries. In such a case, the space of alternatives

X is the probability simplex
{
π ∈ Rℓ

+ :
∑ℓ

i=1 πi = 1
}

, where πi is a likelihood of the

state/prize i = 1, . . . , ℓ being realised. A menu can be given by an arbitrary (possibly

finite) subset of X. One could also consider “budget sets” of lotteries as in Sopher and

Narramore (2000) or Feldman and Rehbeck (2020).

In our main result, we characterise datasets that can be rationalised with a particular

model of choice. Generally, a choice correspondence (or a model) is a set-valued mapping

c : A ⇒ X that assigns a menu A ∈ A to the set c(A) ⊆ A of all possible choices from A.8

The correspondence c rationalises the set of observations O if

(A, x) ∈ O implies x ∈ c(A), (1)

i.e., the data are consistent with the model c. In the reminder of this paper we restrict

our attention to rationalisation within specific classes of choice correspondences.

Our definitions of a choice model and rationalisation highlight two important aspects

of the analysis. First of all, as the choice correspondence c is set-valued, we allow for the

consumers to exhibit indifferences (or incomparabilities). Since our analysis is performed

in general consumption spaces, this is inevitable, as shown in Nishimura and Ok (2014).

On the other hand, we assume that the dataset available to the researcher is incomplete.

That is, they monitor only some (usually, a single) elements of the set c(A), for some

menus A ∈ A. These are natural assumptions for most empirical studies.
7 Lemma 1 in Forges and Minelli (2009) specifies a large class of such menus.
8 In principle, the set c(A) may be empty, for some menu A ∈ A. However, within the class of choice

models discussed in this paper, one may assume that c(A) is non-empty for any finite set A, without loss
of generality. In Section 3 we discuss conditions under which c(A) is non-empty for any compact A.
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2.2 Choice monotonicity

Our notion of rationalisability is rather weak. In particular, any dataset is consistent

with the identity correspondence c(A) = A, for all A ∈ A. In order to make our main

research question non-vacuous, we refer to a notion of choice monotonicity.9 Given a

correspondence Γ : X ⇒ X, we say that a choice model c : A ⇒ X is Γ-monotone if for

any (possibly unobserved) alternative x ∈ X and menu A ∈ A, we have

Γ(x) ∩ A ̸= ∅ implies x ̸∈ c(A). (2)

We interpret Γ(x) as a set of alternatives that are objectively better than x; if any such

option is available, then x may never be selected. Therefore, Γ summarises the additional

restrictions imposed by the researcher on the choice model, that are separate from the

data. Importantly, Γ-monotonicity is independent of any particular specification of the

choice correspondence c and is itself testable. Moreover, as we show in the following

section, this property arises naturally in the most canonical models.10 In the remainder

of the paper we shall refer to the pair (O,Γ) as a choice environment.

We discuss Γ-monotonicity thoroughly in Section 4. However, to fix ideas, consider

two examples of the correspondence Γ. When analysing choices over consumption in

an ℓ-dimensional commodity space X ⊆ Rℓ
+, it may be sensible to require that bundles

containing more of each good are objectively better. In such a case, the set Γ(x) consists

of all vectors y ∈ X such that y > x (or y ≫ x), capturing the idea that “more is better.”11

Alternatively, when studying choices over lotteries, one may identify the set Γ(x) with

probability distributions that first order stochastically dominate x, thus, assuming affinity

for gambles in which greater rewards are more likely.12

Throughout the analysis we impose minimal assumptions on the correspondence Γ.

Specifically, it need not be well-defined, i.e., we allow for Γ(x) = ∅, for some x ∈ X. This

is equivalent to imposing no ancillary assumptions on the relation between x and other
9 In contrast, Balakrishnan et al. (2021) propose a method of estimating the entire set c(A) and

determining which comparisons represent indifferences (or indeterminacies) and which correspond to
strict preferences. However, their approach requires rich datasets and applies only to finite menus.

10 Alternatively, one could endow the consumption space X with a binary relation ▷ that would
determine an objective dominance ranking over X, as in Nishimura et al. (2017). Since it is always
possible to define Γ(x) := {y ∈ X : y ▷ x}, the two notations are equivalent.

11 We denote x ≥ y if xi ≥ yi, for all i = 1, . . . , ℓ. The relation is strict, and denoted by x > y, if x ≥ y

and x ̸= y. Finally, we have x ≫ y if xi > yi, for all i = 1, . . . , ℓ.
12 Lottery y first order stochastically dominates x, denoted by y ≥F x, if for any increasing function

g : S → R, we have
∑

s∈S g(s)y(s) ≥
∑

s∈S g(s)x(s). We denote y >F x if y ≥F x and y ̸= x.
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elements in the domain. Nevertheless, we require the following basic properties.

Assumption 1 (Partial order). The correspondence Γ : X ⇒ X satisfies:

(i) For any x ∈ X, we have x ̸∈ Γ(x).

(ii) For any x, y ∈ X, if y ∈ Γ(x) then Γ(y) ⊆ Γ(x).

The first condition guarantees that no alternative is objectively superior to itself. The

second restriction imposes a form of transitivity on Γ.13

3 Revealing non-transitive indifferences

The goal of this section is to provide a revealed preference characterisation of approximate

utility maximisation and discuss its relation to non-transitive indifferences. To give a

better context for our analysis, we begin by presenting the observable implications of the

classic model of the exact utility maximisation.

3.1 Classic revealed preference analysis

The principal question in the revealed preference analysis concerns the necessary and

sufficient conditions under which a set of observations is rationalisable with utility max-

imisation. That is, when there is a function u : X → R such that the correspondence

c(A) :=
{
x ∈ A : u(x) ≥ u(y), for all y ∈ A

}
(3)

rationalises the dataset O as in (1). As pointed out previously, without any further

assumptions this question is vacuous, since any set of observations can be trivially ratio-

nalised with maximisation of a constant function u. In such a case, we have x ∈ A = c(A),

for any observation (A, x) ∈ O. To make the problem interesting, it is common to impose

additional restrictions on the utility u, e.g., an appropriate notion of strict monotonicity.

Within the class of utility maximisation models, strict monotonicity of u is equivalent to

Γ-monotonicity of the correspondence c, thus, motivating our definition.

Proposition 1. For any correspondence Γ : X ⇒ X, the choice model in (3) is Γ-

monotone if, and only if, y ∈ Γ(x) implies u(y) > u(x).
13 Essentially, we require that the binary relation ▷ :=

{
(y, x) : y ∈ Γ(x)

}
is a strict partial order.
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The proof is straightforward.14 With the additional notation in place, we return to

our initial question. Given a correspondence Γ, under what conditions can we rationalise

the dataset O with a Γ-monotone utility maximisation; i.e., when there is a function u

for which the choice model in (3) rationalises the observations and is Γ-monotone?

It is convenient to address this problem by referring to the revealed preference rela-

tions. An alternative x is directly revealed preferred to y, denoted by xR∗y, if there is an

observation where both x and y were available and x was chosen. Formally,

xR∗y if (A, x) ∈ O and y ∈ A.

We think of this relation in terms of weak preference. Since x was selected when y was

available, the former can be no worst than the latter.

To construct the strict counterpart of R∗, we employ the correspondence Γ. An

alternative x is directly revealed strictly preferred to y, denoted by xP ∗y, if there is an

observation in which x was chosen over something objectively better than y, i.e.,

xP ∗y if (A, x) ∈ O and Γ(y) ∩ A ̸= ∅.

Within the classic consumer choice framework of Afriat, the relations R∗ and P ∗

coincide with the revealed preferences defined in Varian (1982). Suppose that Γ(x) con-

sists of all bundles y ∈ Rℓ
+ such that y > x (or y ≫ x), for all x ∈ X. Whenever

At =
{
y ∈ Rℓ

+ : pt · y ≤ pt · xt
}

, for some prices pt ∈ Rℓ
++ and all t ∈ T , then xtR∗y if

and only if pt · y ≤ pt · xt, and xtP ∗y is equivalent to pt · y < pt · xt.

One can easily show that, whenever the set O is rationalisable with a Γ-monotone

utility maximisation, the relations R∗, P ∗ are consistent with the corresponding utility u,

i.e., xR∗y implies u(x) ≥ u(y), and xP ∗y implies u(x) > u(y).15 One testable restriction

for utility maximisation immediately follows: For any sequence z1, z2, . . . , zn of alterna-

tives in X such that either ziR∗zi+1 or ziP ∗zi+1, for all i = 1, . . . , (n− 1), it may never be

that znP ∗z1. That is, there can be no revealed preference cycle in which any two subse-

quent alternatives are ordered with the strict relation P ∗. Otherwise, for any function u

that rationalises the data, we would have u(z1) ≥ u(z2) ≥ . . . ≥ u(zn) and u(zn) > u(z1),
14 Indeed, if y ∈ Γ(x) implies u(y) > u(x) then the model in (3) must be Γ-monotone. Conversely,

suppose that y ∈ Γ(x). Whenever c is Γ-monotone, then x ̸∈ c
(
{x, y}

)
, which requires u(y) > u(x).

15 The former follows directly from the definition of R∗ and c. Suppose that xP ∗y. By definition,
we have (A, x) ∈ O and Γ(y) ∩ A ̸= ∅, for some A ∈ A. Take any z ∈ Γ(y) ∩ A. Thus, z ∈ A implies
u(x) ≥ u(z). Moreover, by Proposition 1, we have u(z) > u(y), which suffices for u(x) > u(y).
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yielding a contradiction. Theorem 2 in Nishimura et al. (2017) states that, under As-

sumption 1 and some regularity conditions, this is also a sufficient condition for a dataset

to be rationalisable in this sense.16 Moreover, within the classic demand framework of

Afriat, the above restriction coincides with the well-known generalised axiom of revealed

preference (or GARP) introduced in Varian (1982).

Since transitive indifferences are critical for utility maximisation, the only revealed

preference cycles admissible by this model are those induced by the weak relation R∗

alone, i.e., where ziR∗zi+1, for all i = 1, . . . , n − 1, and znR∗z1. For any such sequence,

each alternative in the cycle must be indifferent to all others. In the following subsection

we investigate implications of non-transitive indifferences.

3.2 The main result

Once we relax transitivity of indifferences, it is possible to observe revealed preference

cycles along which some alternatives are ordered with P ∗. However, as we maintain

transitivity of the strict preference, the directly revealed strict preference relation P ∗

must be acyclic. That is, there is no sequence z1, z2, . . . , zn in X such that

z1P ∗z2, z2P ∗z3, . . . , zn−1P ∗zn, and znP ∗z1. (4)

This condition excludes any revealed preference cycles that are induced by the revealed

strict relation P ∗ alone. Although acyclicity of P ∗ remains necessary for the dataset to

be rationalisable with utility maximisation, it is no longer sufficient, as it allows for cycles

that are generated by the weak R∗ and the strict P ∗ relations jointly.

Before stating our main result, we impose one final assumption.

Assumption 2 (Weak separability). There is a countable set D ⊆ X such that x ∈ Γ(y)

implies Γ(x) ⊆ Γ(z) and z ∈ Γ(y), or x ∈ Γ(z) and Γ(z) ⊆ Γ(y), for some z ∈ D.

This condition holds trivially whenever X is countable, as one can always choose

D = X and set z = x or z = y, for any x, y ∈ X satisfying x ∈ Γ(y). However, weak

separability of Γ is indispensable when considering general spaces.

Theorem 1. For an arbitrary dataset O and a correspondence Γ : X ⇒ X satisfying

Assumptions 1 and 2, the following statements are equivalent.
16 Although our notation differs, this condition is equivalent to cyclical ⊵-consistency in Nishimura

et al. (2017) for the relation (preorder) ⊵ :=
{
(y, x) : y ∈ Γ(x)

}
∪
{
(x, x) : x ∈ X

}
.
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(i) The directly revealed strict preference relation P ∗ is acyclic.

(ii) There is a utility u : X → R and a positive threshold function δ : X → R+ such

that the choice correspondence c : A ⇒ X, given by

c(A) :=
{
x ∈ A : u(x) + δ(y) ≥ u(y), for all y ∈ A

}
, (5)

rationalises the set O as in (1) and is Γ-monotone as in (2). [Proof]

Approximate utility maximisation is a natural extension of the canonical model of

choice. It posits that an alternative x is selected from a menu A if its utility is at most

δ(y) utils lower than that of any other available option y. Therefore, it captures the

behaviour of an individual who fails to optimise their true preferences exactly.

Our specification of approximate utility maximisation is not ad hoc, but is derived

from acyclicity of the standard notion of the revealed strict preference relation P ∗. Specif-

ically, the model describes choices of individuals whose observable behaviour may violate

transitivity of indifferences, but obeys transitivity of the strict preference. Thus, apart

from an appealing utility-threshold representation, this model is fully characterised by

an intuitive condition that can be verified using observable data.17

Our main theorem and the remaining results follow from the observation that the

directly revealed strict preference relation P ∗ is consistent with any utility u that ratio-

nalises the data as in (5).18 Indeed, suppose that xP ∗y. By definition, we have (A, x) ∈ O

and Γ(y)∩A ̸= ∅, for some A ∈ A. Take any z ∈ Γ(y)∩A. Since z ∈ A, it must be that

u(x) ≥ u(z) − δ(z), by definition of the correspondence c. In addition, given z ∈ Γ(y)

and Γ-monotonicity of c, we have y ̸∈ c
(
{y, z}

)
, which requires that u(z)− δ(z) > u(y).

Combining the two inequalities yields u(x) > u(y).

Implication (ii) ⇒ (i) follows directly from this observation. Clearly, whenever there is

a sequence of alternatives z1, z2, . . . , zn in X such that ziP ∗zi+1, for all i = 1, . . . , (n−1),

then u(z1) > u(zn). Since znP ∗z1 implies u(zn) > u(z1), P ∗ must be acyclic.

Showing the converse is more demanding and postponed until the Appendix. Our

argument consists of two steps. First, we show that whenever the strict relation P ∗ is
17 Although we find non-transitive indifferences to be a more natural interpretation of our condition,

one could perceive the acyclicity of P ∗ as a particular relaxation of completeness. In our setup, the two
notions are indistinguishable. We are grateful to Luca Rigotti for pointing this out.

18 However, this is no longer true for the weak relation R∗. Similarly, it is not true that xP ∗y implies
u(x) > u(y) + δ(x). Specifically, it could be that xP ∗y and x, y ∈ c(A), for some menu A ∈ A.
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acyclic, there is a utility function u such that both x ∈ Γ(y) and xP ∗y imply u(x) > u(y).

This (and only this) part of the proof requires for Assumptions 1 and 2 to be satisfied.

The second step is summarised in the following proposition.

Proposition 2. For any correspondence Γ : X ⇒ X, any set of observations O, and any

utility u : X → R the following statements are equivalent.

(i) If x ∈ Γ(y) or xP ∗y then u(x) > u(y), for any x, y ∈ X.

(ii) There is a positive threshold function δ : X → R+ such that the correspondence

c : A ⇒ X in (5) rationalises the dataset O and is Γ-monotone. [Proof]

This proposition is of interest in itself. Theorem 1 specifies the necessary and sufficient

condition under which there exists a utility u that approximately rationalises the data

as in (5). However, in many applications the researcher is interested whether the choices

of the individual are consistent with a particular function u. For example, whenever X

is the space of ℓ-dimensional consumption bundles, it may be desirable to determine

if there is a concave function u that rationalises the data. Alternatively, if X is the

space of lotteries, one may be interested if u admits the expected utility specification.

Proposition 2 stipulates that any such test is equivalent to verifying if the particular

utility u is consistent with Γ and P ∗. In Section 7.2 we employ this result to study

preferences over state-contingent consumption under risk.

Determining acyclicity of the relation P ∗ can be done efficiently using, e.g., the well-

established Warshall’s algorithm (see Appendix II in Varian, 1982 for details). This is

particularly important for practical applications. In fact, in order to verify whether the

relation P ∗ is acyclic, it suffices to check if it generates no cycles over the observed choices

{xt}t∈T alone. This is analogous to the well-known result in Varian (1982).19

Due to the limited number of assumptions, it is difficult to determine any additional

properties of the utility u that rationalises the data in the approximate sense. In the

Online supplement we present an alternative, more constructive take on our main result

using a linear programming approach similar to Afriat (1967) and Forges and Minelli

(2009). By imposing additional structure on the consumption space X, we are able to

identify properties of the model that are not falsifiable in certain environments.

Finally, approximate utility maximisation is tightly related to the notion of interval

orders introduced in Wiener (1914) and Fishburn (1970). In the Online supplement we
19 See also Forges and Minelli (2009) and Section II.E in Nishimura et al. (2017).
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Figure 1: The dataset is not approximately rationalisable for a continuous utility u.

explore this connection further, and show that acyclicity of P ∗ is necessary and sufficient

for a dataset to be rationalisable with an interval order maximisation.

3.3 Continuous approximate utility maximisation

Given the generality of our setup, Theorem 1 does not specify any particular properties

of the function u that rationalises the data as in (5). Specifically, the utility need not be

continuous, even in very well-behaved choice environments.

Consider the dataset O =
{
(A1, x1), (A2, x2)

}
depicted in Figure 1, where X = R2

+.

Suppose that the correspondence Γ is given by Γ(x) :=
{
y ∈ X : y ≫ x

}
. One can easily

verify that it satisfies Assumptions 1 and 2.20 We claim that the dataset is rationalisable

with approximate utility maximisation. Since x2 ∈ A1 and Γ(x1) ∩A2 ̸= ∅ imply x1R∗x2

and x2P ∗x1, respectively, the relation P ∗ is acyclic. Therefore, by Theorem 1, there is a

utility u and a positive threshold δ that rationalise the data as in (5).21 However, any

such function u must be discontinuous at x2.

Indeed, since x2P ∗x1 and x1R∗x2 imply u(x2) > u(x1) and u(x1) ≥ u(x2) − δ(x2),

respectively, the two relations hold simultaneously only if δ(x2) > 0. Take any sequence

of alternatives {zn} converging to x2 such that x2 ∈ Γ(zn), i.e., x2 ≫ zn, for all n. Since

Γ-monotonicity requires that u(x2)−u(zn) > δ(x2), for all n, the utility function u would

be continuous only if δ(x2) = 0, yielding a contradiction.
20 Clearly, it obeys Assumption 1. By Lemma 4.1 in Peleg (1970), it satisfies Assumption 2.
21 Since x1R∗x2P ∗x1, this set is not rationalisable with an exact utility maximisation.
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Given the importance of continuity for establishing non-emptiness of the set c(A) or

eliciting preferences from limited data (see, e.g., Chambers et al., 2020), it is desirable to

determine conditions under which there is a continuous rationalisation.

Assumption 3 (Continuity). Suppose that X is a locally compact and separable metric

space, and the correspondence Γ : X ⇒ X satisfies the following conditions:22

(i) The set
{
(y, x) : y ∈ Γ(x)

}
∪
{
(x, x) : x ∈ X

}
is closed.

(ii) For any compact set Z ⊆ X, the lower inverse Γℓ(Z) :=
{
x ∈ X : Γ(x)∩Z ̸= ∅

}
of

the correspondence Γ is compact.

These continuity restrictions on X and Γ are sufficient to prove that acyclicity of P ∗

is equivalent to a continuous approximate rationalisation.

Proposition 3. Let X and Γ satisfy Assumptions 1 and 3, and the menu A be compact,

for all (A, x) ∈ O. The relation P ∗ is acyclic if, and only if, there is a continuous utility

u that rationalises O as in (5), for some positive threshold function δ. [Proof]

The necessity part is immediate, since it is independent of any ancillary assumptions.

To prove the converse, we apply Levin’s Theorem (see Levin, 1983 or the appendix

in Nishimura et al., 2017) to show that acyclicity of P ∗ is sufficient for existence of

a continuous utility u such that both x ∈ Γ(y) and xP ∗y imply u(x) > u(y), for any

x, y ∈ X. The rest follows from Proposition 2.

The example in Figure 1 can not be rationalised with approximate utility maximisa-

tion for a continuous function u precisely because the correspondence Γ violates Assump-

tion 3, specifically part (ii).23 In the next section we apply our results to study imperfect

discrimination and propose natural examples of Γ that obey this assumption.
22 Whenever the space X is compact, any closed-valued and upper hemi-continuous correspondence Γ

satisfies Assumption 3. In such a case, the set
{
(y, x) : y ∈ Γ(x)

}
is closed by the Closed Graph Theorem

(see Theorem 17.11 in Aliprantis and Border, 2006). Moreover, by Lemma 17.4 in Aliprantis and Border
(2006), the lower inverse Γℓ(Z) is closed, for any closed set Z. Since the space X is compact, this suffices
for the second part of the assumption to be satisfied.

23 Indeed, Assumption 3(ii) is critical. Suppose that the set Γ(x) consists of all y ∈ X such that y > x,
rather than y ≫ x. Although it obeys Assumption 3(i), it is not sufficient to rationalise the dataset in
Figure 1 with a continuous approximate utility maximisation that is Γ-monotone. This can be shown
by applying our previous argument. However, in the Online supplement we show that this dataset is
approximately rationalisable with an upper semi-continuous utility.
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4 Imperfect discrimination

Insofar our examples of Γ-monotonicity were focused on relatively strong forms of domi-

nance. Whether the set Γ(x) consisted of elements y that were strictly greater than x with

respect to > (or ≫) in an ℓ-dimensional commodity space, or first order stochastically

dominant in the space of lotteries, the ranking imposed by the researcher required that

the objectively better alternative was always chosen over the inferior one, even when the

difference between the options was infinitesimal. Although such a property may be desir-

able from the theoretical and normative standpoint, there is growing empirical evidence

suggesting that it may be too demanding.

Sippel (1997) conducted an experimental study of consumer choice within the stan-

dard Afriat-like framework, in which subjects were making purchases of different con-

sumption goods subject to various budget constraints. Even though the individuals were

incentivised to exhaust their budgets, a significant number of them failed to do so, thus,

directly violating that “more is better”.24 More recently, Nielsen and Rehbeck (2020)

reported direct violations of first order stochastic dominance in choices over lotteries. In

their experimental study, 90% of subjects expressed the desire to obey first order stochas-

tic dominance, yet 85% of those violated the condition at least once in the subsequent

choice experiment. This is in line with Dembo et al. (2021), who find that violations of

the expected utility theory are caused predominantly by inconsistencies of choice with

first order stochastic dominance, rather than the independence axiom.

We do not postulate that, based on this evidence, one should abandon the idea of

monotonicity entirely. Undoubtedly, strong forms of monotonicity have a great normative

appeal. However, when studying choices that involve small stakes, like in experimental

settings or day-to-day consumption decisions, it may be sensible to consider weaker forms

of monotonicity that admit some level of insensitivity to small differences among alter-

natives and describe the observed behaviour more accurately.

One reason for which individuals may violate strong forms of monotonicity is imper-
24 Unlike Sippel (1997), other experimental studies that employ an Afriat-like setup restrict choices

to the budget line only. Therefore, the design makes it impossible to observe direct violations of strict
monotonicity. See, e.g., Harbaugh et al. (2001), Andreoni and Miller (2002), Choi et al. (2007), Fisman
et al. (2007), Andreoni and Sprenger (2012a,b), Ahn et al. (2014), Choi et al. (2014), Halevy et al. (2018),
Echenique et al. (2019), Zrill (2020), Cappelen et al. (2021), and Dembo et al. (2021). Similarly, one
could not violate stochastic dominance directly in Feldman and Rehbeck (2020).
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fect discrimination studied extensively in the psychophysics literature.25 Following the

empirical evidence, individuals perceive differences between intensities of a physical stim-

ulus (e.g., light, touch, sound) only if they are significantly (noticeably) different. The

well-established Weber-Fechner law stipulates that people perceive the change whenever

the ratio of intensities exceeds a particular constant, the so-called just-noticeable dif-

ference, that is specific to the stimulus. The same law applies to human perception of

numerosities, which may be more relevant to Economics.26 In the remainder of this sec-

tion we employ this idea to consumer choice, by allowing the individual to imperfectly

discriminate among bundles unless they are sufficiently different.

Example 1. Let X ⊆ Rℓ
+ be the ℓ-dimensional commodity space. Following the idea of

Weber and Fechner, one may define the correspondence Γ by

Γ(x) :=
{
y ∈ X : y ≥ x and yi ≥ λixi + ai, for some i = 1, . . . , ℓ

}
,

for some numbers λi ≥ 1 and ai > 0, for all i = 1, . . . , ℓ. Given our interpretation of Γ,

this is to say that bundle y is objectively better than x is it contains more of each good,

and significantly more of some good i. Here, the number ai is the absolute change in

the amount of good i that is sufficient to perceive the difference, while λi captures the

relative change.27 See also Figure 2 (left) on page 20.

A simplification of this idea is discussed in Dziewulski (2020), where the correspon-

dence Γ is given by Γ(x) :=
{
λ′x : λ′ ≥ λ

}
, for some λ > 1. That is, if the relative amount

of all goods in x increases by at least λ then the enlarged bundle is always chosen over x.

We discuss the importance of this formulation in Section 7.3.

Example 2. Let X be a space of probability measures over S ⊆ R. In such a case, one

could model imperfect discrimination with the correspondence

Γ(x) :=
{
y ∈ X : y ≥F x and d(x, y) ≥ λ

}
,

for some λ > 0, where ≥F denotes the first order stochastic dominance and d is a metric

on X. Hence, a lottery x is dominated by any probability distribution that dominates it
25 See, e.g., Gescheider (1997) for a handbook treatment of this topic.
26 See Dehaene (2008) for a survey of this literature.
27 Setting ai > 0 allows subjects to experience insensitivity between none and an infinitesimal amount

of the good i. This follows the empirical evidence suggesting that the noticeable increase in the relative
intensity of a physical stimulus is hyperbolic with respect to the initial intensity. See Gescheider (1997).
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in the stochastic sense and is sufficiently distant from it. Alternatively, one could explore

an idea based on Rubinstein (1988) and impose conditions on ratios of probabilities and

prizes that are sufficient to distinguish between two lotteries.28

The examples presented above and the formulation in Dziewulski (2020) satisfy As-

sumptions 1 and 3.29 By Proposition 3, for each of these correspondences and any

dataset O, acyclicity of the direct revealed strict preference relation P ∗ is necessary and

sufficient for the data to be rationalisable with an approximate utility maximisation for a

continuous function u and some threshold δ. This allows for a general analysis of choices

that exhibit weaker forms of monotonicity and non-transitive indifferences resulting from

imperfect discrimination, as suggested in Armstrong (1950).

The examples above require some comment. It is critical to point out that Weber-

Fechner law is a statistical property attributed to distributions of choices. In contrast,

Examples 1 and 2 specify imperfect discrimination in deterministic terms. Since our setup

assumes limited choice data, it would be impossible to falsify any form of stochastic choice

and, therefore, the statistical definition of just-noticeable difference would be vacuous.

To obtain any testable implications, we have to interpret this law literally. As a result,

the above examples specify an upper bound for the insensitivity of the subject, rather

than the average just-noticeable difference studied in psychophysics.

It is imperative to remind the reader that the notion of Γ-monotonicity is imposed on

the choice model c, rather than the corresponding utility u that we identify with the true

preferences. Although the choices of the decision-maker may be subject to some degree of

insensitivity to differences among alternatives, this does not preclude the function u from

being increasing in a stronger sense, capturing the normative affinity for even the most

infinitesimal increases in consumption or improvement of odds in a gamble. This con-

trasts with the exact utility maximisation, where monotonicity of choice and preferences
28 Rubinstein (1988) discusses a model of choice over simple lotteries that assign a probability p to a

monetary prize and (1 − p) to receiving nothing. Roughly speaking, the lotteries are considered to be
distinguishable if the ratios of either prizes or probabilities exceed a particular constant.

29 Note that the correspondence in Example 1 can be represented as Γ(x) :=
{
y : F (x, y) ≥ 0

}
, where

F (x, y) := min
{
min{yi − xi : i = 1, . . . , ℓ},max{yi − λixi − ai : i = 1, . . . , ℓ}

}
is a continuous function.

Hence, its graph GrΓ = F−1
(
[0,∞)

)
is closed, which suffices for Assumption 3(i) to hold. Take any

sequence {xk} in Γℓ(Z) that converges to some x, and the corresponding sequence {yk} in Z such that
F (xk, yk) ≥ 0, for all k. Since Z is compact, we may assume that {yk} converges to some y, without
loss. Clearly, we have F (x, y) ≥ 0, and so x ∈ Γℓ(Z). Thus, the set Γℓ(Z) is closed. Given that Γℓ(Z) is
also bounded, it must be compact. Therefore, Assumption 3(ii) is satisfied. By an analogous argument
one can show that the other examples satisfy the condition as well.
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always coincide (recall Proposition 1). Although Γ-monotonicity of approximate utility

maximisation requires that x ∈ Γ(y) implies u(x) > u(y), the converse is no longer true.30

This separation of preferences and choice has a footing in empirical evidence. The afore-

mentioned experiment in Nielsen and Rehbeck (2020) shows a systematic inconsistency

between the decision-theoretic rules that individuals consider to be desirable (including

first order stochastic dominance) and their actual choices. The authors conclude that

“even though individuals may want to follow [stochastic dominance], this may not trans-

late to them making choices consistent with it even when given an explanation of how

the axiom applies to a decision problem.”31 The descriptive and normative aspects of

consumer choice are disjoint, which is consistent with our model. Nevertheless, despite

this separation, it is still possible to elicit the utility u from the observable data and make

welfare statements, as we show in the following sections.

We do not deny that, with sufficient care and attention, individuals are capable of

identifying which alternative is strictly greater in the particular sense, even when the

difference between them is infinitesimal. Rather, we hypothesise that when it comes

to every-day consumption or choices with small stakes in experimental settings, deci-

sions may follow intuitive judgements based on approximate quantities involved.32 Vio-

lations of strict monotonicity could also result from unobserved mental or physical costs

of switching from an inferior to a dominant alternative, as subjects may not find the

change worthwhile, unless it yields sufficiently more utility. This is in line with the idea

of satisficing by Simon (1947). In Section 7.1 we discuss the close relationship between

this model and approximate utility maximisation.

5 Recovering preferences from almost optimal choices

In Theorem 1 we established the necessary and sufficient conditions under which a dataset

O is rationalisable with approximate utility maximisation. Here, we turn to an alternative

question: Assuming that the observed choices are generated by such a model, how can
30 In the Online supplement we discuss the distinction between Γ-monotonicity of approximate utility

maximisation and strict monotonicity of the corresponding utility u.
31 Nielsen and Rehbeck (2020, p. 19). Similar distinction between choice and preferences of a decision-

maker are discussed in Mandler (2005), Nishimura (2018), and Nishimura and Ok (2020).
32 See Dehaene (2008).
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we estimate the true preferences u of the individual?33

Throughout this section we take a dataset O and a correspondence Γ as the premise.

Moreover, we assume that O is rationalisable with a Γ-monotone approximate utility

maximisation as in (5), for some unobserved utility u and threshold δ. By P ∗ we denote

the directly revealed strict preference relation, defined in Section 3.

It is convenient to refer to the notion of the revealed strict preference relation P , i.e.,

the transitive closure of P ∗. Formally, we have xPy whenever there is a sequence of

alternatives z1, z2, . . . , zn in X such that z1 = x, zn = y, and

z1P ∗z2, z2P ∗z3, . . . , zn−2P ∗zn−1, and zn−1P ∗zn.

Obviously, the directly revealed relation P ∗ is acyclic if and only if its transitive closure

P is irreflexive, i.e., we have not xPx, for all x ∈ X. Therefore, by Theorem 1, this is

equivalent to the data being rationalisable as in (5).

We proceed with our discussion on recoverability of preferences. Take an arbitrary

alternative x ∈ X, not necessarily observed in the dataset. First, we are interested in

evaluating the set of all alternatives that are strictly inferior to x with respect to the

latent utility u. Define the revealed worst set by

RW (x) :=
{
y ∈ X : xPy; or x ∈ Γ(y); or x ∈ Γ(z) and zPy, for some z ∈ X

}
.

Consider the dataset depicted in Figure 2 (right), where the consumption space is X = R2
+

and each observed menu is given by At =
{
y ∈ X : pt · y ≤ 1

}
, for some prices pt ∈ R2

++

and t = 1, 2, 3. In addition, let the correspondence Γ be given as in Example 1, for some

λ1, λ2 ≥ 1 and a1, a2 > 0. The lower gray area represents the set RW (x) for the bundle x.

Indeed, the set contains all elements y such that x ∈ Γ(y). In particular, this includes x1.

Thus, any alternative that is revealed strictly inferior to x1 must also belong to RW (x),

i.e., any y ∈ X such that x1P ∗y or x1P ∗x2P ∗y.

Analogously, one can define the revealed preferred set as

RP (x) :=
{
y ∈ X : yPx; or y ∈ Γ(x); or y ∈ Γ(z) and zPx, for some z ∈ X

}
.

Revisit Figure 2, where the revealed preferred set is represented by the top shaded

area. Clearly, the set includes every element y that belongs to Γ(x). Moreover, since
33 Our question is analogous to the one discussed in Varian (1982), Halevy et al. (2017), or Nishimura

et al. (2017) regarding the exact utility maximisation.
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Figure 2: The set of alternatives that are directly revealed strictly inferior to x1 (left), and the
revealed worst and revealed preferred sets for x (right).

Γ(x) ∩ A3 ̸= ∅, we have x3P ∗x. Hence, both x3 and any y ∈ Γ(x3) are also in the set.

The next result follows immediately from the definitions of the two sets.

Corollary 1. For any x, y ∈ X, we have y ∈ RW (x) if and only if x ∈ RP (y).

The two sets are essential in estimating the unobserved preferences from the data. In

particular, RP (x) provides a tight bound for the set of all alternatives that are strictly

preferable to x with respect to the unobserved utility u. We formalise this below. Before

stating the result, define Vu(x) :=
{
y ∈ X : u(y) > u(x)

}
, for any utility function

u : X → R. Moreover, let NRW (x) be the complement of RW (x).

Theorem 2. For any alternative x ∈ X and utility u that rationalises the dataset O

as in (5) for some threshold δ, we have RP (x) ⊆ Vu(x) ⊆ NRW (x). Moreover, under

Assumptions 1 and 2, we have y ̸∈ RP (x) and y ̸= x only if O is rationalisable as in (5)

for a utility u satisfying u(x) > u(y) and some threshold δ. [Proof]

Following Proposition 2, it is clear that y ∈ RP (x) implies u(y) > u(x), for any

utility that rationalises O as in (5). Analogously, since y ∈ RW (x) implies u(y) < u(x),

the set Vu(x) must be nested in NRW (x). Thus, the sets RW (x) and RP (x) are indeed

bounds for the true preferences, since any indifference curve intersecting x must belong

to the complement of RW (x)∪RP (x). In addition, the bounds are tight in the following

sense: If y is not in RP (x), one can always rationalise the data with an approximate

maximisation of some utility u that ranks x strictly above y. Thus, it is impossible to
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improve the estimate without excluding some preferences that could explain the data.

By Corollary 1, an analogous result holds for the set RW (x).

Remark 1. Theorem 2 can be extended to the class of continuous utility functions u.

Suppose that the menu A is compact, for all observations (A, x) ∈ O. Through a com-

bination of the arguments supporting Proposition 3 and Theorem 2, one can show that

under Assumptions 1 and 3, we have y ̸∈ RP (x) and y ̸= x only if the dataset is ratio-

nalisable as in (5) with a continuous utility u satisfying u(x) > u(y).

6 Robust welfare comparisons

Theorem 2 shows how to estimate the unobserved utility u that rationalises the data as

in (5). This allows us to partially rank alternatives in X with respect to the true yet

unobserved preferences of the individual. However, when performing welfare analysis, it

is much more natural to compare sets of alternatives rather than particular options. For

example, when evaluating different tax structures, one is interested in ranking budget

sets the consumer would face under each regime. Here, we introduce and characterise

an intuitive ordering over menus that allows us to make meaningful, data-driven welfare

statements under approximate utility maximisation.

The main difficulty in evaluating welfare within our framework follows from the sepa-

ration of choice — guided by the model in (5), from the agent’s well-being — summarised

by the utility u. Suppose that choices of the consumer are determined with the corre-

spondence c(A) :=
{
x ∈ A : u(x) + δ(y) ≥ u(y), for all y ∈ A

}
, for some utility u

and threshold δ. For the time being, we assume that the two functions are known. For

any two menus A,A′ ⊆ X, the set A′ is preferred to A if any choice from A′ is strictly

preferable to any choice from A with respect to the utility u. Formally, for any x ∈ c(A′)

and y ∈ c(A), we have u(x) > u(y).34 Although we accept that the agent may choose

options that are not maximising their utility u exactly, due to imperfect discrimination,

imprecision, or satisficing, we identify welfare with their true preferences.

Since the dataset O is finite and incomplete, it can be supported by multiple functions

u, δ. We address this issue by focusing on a robust comparison over menus. As in the
34 Unlike for the exact utility maximisation, for any menu A the elements of the choice set c(A) may

be assigned different values of the utility u under approximate utility maximisation.
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previous section, we take a dataset O and a correspondence Γ as the premise. Moreover,

we assume that the set O is rationalisable as in (5), for some unobserved utility u and

threshold δ. For any two menus A,A′ ∈ A (not necessarily observed in the data), we say

that A′ is robustly preferred to A, if for any functions u, δ that rationalise O as in (5),

the set A′ is preferred to A in the sense defined above. Therefore, for any model of

approximate utility maximisation that is consistent with the the data, any choice from

A′ has to be superior to any choice from A — with respect to the utility u.

In this section we characterise this robust ordering over menus and show how to deter-

mine these comparisons using the revealed preference relations P ∗ and P defined earlier.

First, we need to introduce some notation. For an arbitrary menu A (not necessarily

observed in the dataset), we identify the set of all possible choices from A that would be

consistent with the set of observations O. For any menu A ∈ A, let

S(A) :=
{
y ∈ A : Γ(y) ∩ A = ∅; and xPy implies Γ(x) ∩ A = ∅, for all x ∈ X

}
,

where P denotes the revealed strict preference relation induced by O, i.e., it is the tran-

sitive closure of the directly revealed strict preference relation P ∗.

Proposition 4. Under Assumptions 1 and 2, for any A ∈ A and y ∈ A, the hypothetical

dataset O ∪
{
(A, y)

}
is rationalisable as in (5) if, and only if, y ∈ S(A). [Proof]

The above result is of interest in itself. It states that the set S(A) contains all

(both within and out-of-sample) choices from the menu A that are consistent with the

dataset O. Hence, it contains all predictions consistent with the data. This is particularly

useful when performing a counterfactual analysis.

Given the generality of our setup, we can not guarantee that the set S(A) is non-

empty, for all A ∈ A. However, it is easy to show that this is always true when A

is finite. Similarly, whenever the dataset O is rationalisable as in (5) for a continuous

function u, then S(A) is non-empty for any compact A. See Remark 2 below.

Consider the main result of this section.

Theorem 3. Under Assumptions 1 and 2, for any menus A,A′ ∈ A, the set A′ is robustly

preferable to A if, and only if, for any y ∈ A, either (i) Γ(y)∩A′ ̸= ∅; or (ii) Γ(z)∩A′ ̸= ∅

and zPy, for some z ∈ X; or (iii) xPy, for all x ∈ S(A′). [Proof]
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The robust comparison over menus is partial and, in general, does not rank any two

sets of alternatives. In fact, unlike for the exact utility maximisation, it is possible that

two menus A,A′ are unordered, even when A is a subset of A′. Since choices are not

necessarily maximising the utility u, there may be alternatives in A that are strictly

preferable to some options selected from the set A′. However, once A′ dominates A in the

robust sense, any alternative that would be selected from A is inferior to any alternative

chosen from A′, even when the individual fails to maximise their utility.

Remark 2. Suppose that Assumptions 1 and 3 are satisfied, and the menu A is compact,

for each observation (A, x) ∈ O. Since, by assumption, the set O is rationalisable with a

Γ-monotone approximate utility maximisation, Proposition 3 guarantees that the corre-

sponding utility u is continuous, without loss. In particular, this suffices for the set S(A)

to be non-empty, for any compact menu A. By combining the arguments supporting

Proposition 3 and Theorem 3, one can also prove the following result: For any compact

menus A,A′ ∈ A, the set A′ is robustly preferable to A if, and only if, for any continuous

utility u and some threshold δ that rationalise O as in (5), the set A′ is preferred to A in

the sense defined at the beginning of this section.

7 Applications

We conclude this paper with a few applications of our main results.

7.1 Satisficing

As it was pointed out in Section 4, approximate utility maximisation can be interpreted

in terms of satisficing à la Simon (1947), where the individual selects alternatives that

are “good enough” with respect to some criterion. Formally, a choice correspondence

c : A ⇒ X represents the satisficing behaviour if there is a utility u : X → R such that

x ∈ c(A) and u(y) ≥ u(x) implies y ∈ c(A), for any y ∈ A and A ∈ A

One can easily verify that approximate utility maximisation is a special case of sat-

isficing. Indeed, suppose that c(A) =
{
x ∈ A : u(x) + δ(y) ≥ u(y), for all y ∈ A

}
, for

some utility u and threshold function δ. Since x ∈ c(A) implies u(x) ≥ u(z)−δ(z), for all

z ∈ A, then u(y) ≥ u(x) only if y ∈ c(A), for any y ∈ A. By Theorem 1, it immediately

follows that, for any correspondence Γ satisfying Assumptions 1, 2 and any dataset O,
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acyclicity of the revealed preference relation P ∗ is sufficient for the observations to be

rationalisable with a Γ-monotone satisficing behaviour.

The converse is not true. Suppose that X = {a, b, c, d} and the correspondence Γ is

given by Γ(a) = {b}, Γ(c) = {d}, and Γ(b) = Γ(d) = ∅, which satisfies Assumptions 1

and 2, since X is finite. Consider the dataset O consisting of observations
(
{a, d}, a

)
and

(
{b, c}, c

)
. Given that both Γ(c) ∩ {a, d} and Γ(a) ∩ {b, c} are non-empty, we have

aP ∗c and cP ∗a. Therefore, the set O is not rationalisable as in (5). Nevertheless, it is

consistent with a Γ-monotone satisficing behaviour.35

Although, in general, the testable implications of the two models differ, there is an

important class of choice environments in which they are indistinguishable.

Proposition 5. Take a dataset O and a correspondence Γ obeying Assumptions 1 and 2,

and suppose that Γ(y) ∩ A ̸= ∅ implies y ∈ A, for all (A, x) ∈ O and y ∈ X. Then, the

set O is rationalisable with a Γ-monotone approximate utility maximisation as in (5) if,

and only if, it is rationalisable with a Γ-monotone satisficing behaviour. [Proof]

The additional assumption in the proposition is satisfied in various choice environ-

ments. Suppose that X = Rℓ
+ and the menu A is downward comprehensive, for each

observation (A, x) ∈ O.36 Specifically, this holds within the classical consumer demand

setting à la Afriat and in the general framework of Forges and Minelli (2009). In addition,

if x ∈ Γ(y) implies y ≥ x, for all x, y ∈ X, then the assumption in Proposition 5 is always

satisfied. Importantly, this class of correspondences contains the examples discussed in

the previous sections, including Γ(x) that consists of elements y ∈ X such that y > x

(or y ≫ x); the correspondence Γ in Example 1; or the specification in Dziewulski (2020)

given by Γ(x) :=
{
λ′x : λ′ ≥ λ

}
, for some λ > 1. Therefore, in each of these cases, the

testable implications of approximate utility maximisation and satisficing are equivalent.

We explore this observation further in Section 7.3.

7.2 State-contingent consumption under risk

Proposition 2 implies that any utility u that is consistent with the correspondence Γ and

the directly revealed strict preference relation P ∗ can rationalise the set of observations
35 For example, take any utility u such that u(b) > u(a) > u(d) > u(c), and a Γ-monotone correspon-

dence c satisfying c
(
{a, d}

)
= {a} and c

(
{b, c}

)
= {b, c}.

36 A set A ⊆ X ⊆ Rℓ is downward comprehensive if x ∈ A and y ≤ x implies y ∈ A, for all y ∈ X,
where ≥ denotes the coordinate-wise ordering. Recall footnote 11.
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as in (5), for some threshold function δ. Since, in general, the correspondence Γ and

relation P ∗ induce an infinite number of binary comparisons, verifying whether a utility u

is consistent with both of them may be difficult. In this subsection we apply Proposition 2

to an important class of preferences over state-contingent consumption under risk. We

extend the method of generalised restriction of infinite domains (GRID) by Polisson et al.

(2020) to show that within a broad class of models checking for consistency with Γ and

P ∗ can be restricted to a finite number of comparisons.

Suppose there is a finite set of states S = {1, 2, . . . , ℓ} and the probability πs of

each state s ∈ S is known to the consumer and the observer. The contingent con-

sumption space is X = Rℓ
+, where the s’th entry xs of the vector x ∈ X denotes the

consumption level in the state s ∈ S. As previously, a set of observations is given by

O =
{
(At, xt) : t ∈ T

}
, where xt ∈ At denotes the state-contingent consumption bundle

selected from the menu At. Here we require that At is bounded, for all t ∈ T .

Choices over contingent consumption were studied in, e.g., Choi et al. (2007, 2014)

Ahn et al. (2014), Halevy et al. (2018), Zrill (2020), Cappelen et al. (2021), and Dembo

et al. (2021).37 In these particular experiments, the subjects were making multiple choices

from budget lines At =
{
y ∈ Rℓ

+ : pt ·y = 1
}

, given some state-contingent prices pt ∈ Rℓ
++,

for all t ∈ T , making it similar to the classic Afriat-like setup. Nevertheless, the following

approach is applicable to arbitrary bounded menus.

In this subsection we employ Theorem 1 and Proposition 2 to provide an easy-to-apply

test for approximate utility maximisation as in (5), where the corresponding function u

is given by a particular formulation of preference under risk. Many such utilities can

be represented as u(y) := F
(
v(y1), v(y2), . . . , v(yℓ)

)
, where v : R+ → R+ is a Bernoulli

function and F : Rℓ
+ → R is an aggregator. For example, given the state probabilities πs,

for all s ∈ S, the expected utility formulation is

u(y) = F
(
v(y1), v(y2), . . . , v(yℓ)

)
=

ℓ∑
s=1

πsv(ys), (6)

where the aggregator F takes the form F (z) =
∑ℓ

s=1 πszs, for any z ∈ Rℓ
+. Similarly, the

model of rank dependent expected utility in Quiggin (1982) and disappointment aversion

preferences in Gul (1991) admit such a representation for a particular aggregator F . See

Section I.D in Polisson et al. (2020) for details.
37 See also Gneezy and Potters (1997) and Hey and Pace (2014).
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For simplicity, we focus on the case where the aggregator F is the same across all

observations t ∈ T . Clearly, this is not without loss of generality. For example, when

studying the expected utility as in (6), this would require that state probabilities πs

remain constant across all observations. Nevertheless, our result can be easily generalised

to accommodate a variable aggregator F , as we show in the Online supplement. Below

we extend Theorem 1 in Polisson et al. (2020) to approximate utility maximisation over

state-contingent consumption. Let X := {0} ∪
{
xt
i : for some i = 1, . . . , ℓ and t ∈ T

}
be

the finite set of all consumption levels observed in the dataset and 0.

Proposition 6. For any dataset O =
{
(At, xt) : t ∈ T

}
with bounded menus At, for all

t ∈ T , a continuous and strictly increasing aggregator F ,38 and a correspondence Γ such

that y ∈ Γ(x) implies y > x, for any x, y ∈ X, the following statements are equivalent.

(i) There is a strictly increasing Bernoulli function v : R+ → R+ such that O is

rationalisable as in (5) for the utility u(y) := F
(
v(y1), v(y2), . . . , v(yℓ)

)
and some

threshold function δ. Moreover, v is upper-semicontinuous without loss.39

(ii) There is a strictly increasing function v̄ : X → R+ satisfying

F
(
v̄(x1), v̄(x2), . . . , v̄(xℓ)

)
> F

(
v̄(y1), v̄(y2), . . . , v̄(yℓ)

)
,

for any x, y ∈ X ℓ such that xP ∗z and z ≥ y, for some z ∈ X.

We postpone the proof until the Online supplement. In order to verify if the data is

rationalisable as in (5) for a utility u(y) := F
(
v(y1), v(y2), . . . , v(yℓ)

)
, for some Bernoulli

function v, it suffices to check if it is rationalisable over the finite grid X ℓ. This simplifies

the test significantly and, in the case of expected utility, rank dependent expected utility,

and disappointment aversion, reduces it to a linear programming problem.40

Proposition 6 crucially depends on the assumption that y ∈ Γ(x) implies y > x, for

all x, y ∈ X. Clearly, this is satisfied by the mappings in Example 1 as well as the

correspondence discussed in Dziewulski (2020). Otherwise, we impose no restrictions

on Γ. In particular, neither of the assumptions presented in Section 3 are required for

this result to hold. Whenever the condition is violated, Proposition 6 is not applicable,

and consistency of the function u with Γ and P ∗ has to be verified differently.
38 A function F : X → R defined over X ⊆ Rℓ is strictly increasing if x > y implies F (x) > F (y).
39 The function v is upper semi-continuous if the set

{
y ∈ R+ : v(y) ≥ a

}
is closed, for any number a.

40 This can be shown by re-purposing the approach in Sections I.B and I.D in Polisson et al. (2020).
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As it was pointed out in Section 3, it is not always possible to approximately rationalise

a set of observations with a continuous function u. Similarly, Proposition 6 does not

guarantee that the Bernoulli function v and, thus, y → F
(
v(y1), v(y2), . . . , v(yℓ)

)
are

continuous. In the Online supplement, we show that whenever the menu At is compact,

for each observation t ∈ T , and the correspondence Γ satisfies Assumption 3(ii), one can

assume that the function v is continuous, without loss of generality.

7.3 A universal measure of departures from rationality

It is a common observation in numerous empirical studies that choices of individuals

are not consistent enough to be congruent with the exact utility maximisation. As a

result, a significant part of the revealed preference literature is devoted to measures that

evaluate how severely the data departs from the classic notion of rationality. Arguably,

the most common of them all is the critical cost-efficiency index (CCEI, also known as

Afriat’s efficiency index), introduced in Afriat (1973) to evaluate violations of utility

maximisation within the standard consumer demand framework.41

Throughout this subsection, let X = Rℓ
+ and, for any observation t ∈ T , the corre-

sponding menu be given by At =
{
y ∈ Rℓ

+ : pt · y ≤ pt · xt
}

, for some prices pt ∈ Rℓ
++.

The dataset O =
{
(At, xt) : t ∈ T

}
is rationalisable for an efficiency parameter e ∈ [0, 1]

(a number) if there is a strictly increasing utility function u : Rℓ
+ → R such that

e(pt · xt) ≥ pt · y implies u(xt) ≥ u(y),

for all t ∈ T . That is, the observed bundle xt is preferable to all alternatives that are

cheaper than the fraction e of xt, given prices pt, for all t ∈ T . Clearly, for e = 1, this

coincides with the exact utility maximisation. CCEI is equal to the supremum over all

efficiency parameters e for which the above condition holds.

Dziewulski (2020) provides a behavioural foundation of this measure. Namely, CCEI is

the reciprocal of the infimum over all numbers λ > 1 for which the dataset is rationalisable

as in (5), for a strictly increasing utility u and threshold δ, when the correspondence Γ

is given by Γ(x) :=
{
λ′x : λ′ ≥ λ

}
. Therefore, CCEI attributes violations of the exact

utility maximisation to the particular form of imperfect discrimination. This equivalence
41 Among others, CCEI was employed in Sippel (1997), Harbaugh et al. (2001), Andreoni and Miller

(2002), Choi et al. (2007), Fisman et al. (2007), Ahn et al. (2014), Choi et al. (2014), Cherchye et al.
(2017), Echenique et al. (2019), Cherchye et al. (2020), Dembo et al. (2021), and Cappelen et al. (2021).
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result is established for the general specification of the utility function u. However, in

some applications CCEI is used to measure departures from a specific formulation of

the utility u. For example, Cherchye et al. (2017, 2020) apply an analogous measure

to a multiperson household model; Polisson et al. (2020) evaluate CCEI for departures

from expected utility, rank dependent utility, and disappointment aversion; Cappelen

et al. (2021) and Dembo et al. (2021) employ it to estimate deviations from the model of

probabilistic sophistication and expected utility maximisation. We apply Proposition 2

to extend the equivalence result to an arbitrary sub-class of utilities.

Proposition 7. For any dataset O, any strictly increasing utility u : Rℓ
+ → R, and any

number e∗ ∈ (0, 1], the following statements are equivalent.

(i) For any e < e∗, if e(pt · xt) ≥ pt · y then u(xt) ≥ u(y), for any y ∈ Rℓ
+ and t ∈ T .

(ii) For any λ > 1/e∗, the dataset O is rationalisable as in (5) for the correspondence

Γ(x) :=
{
λ′x : λ′ ≥ λ

}
, the utility u, and some threshold δ. [Proof]

It immediately follows that for any strictly increasing utility u, the CCEI under which

the function supports the data is equal to the reciprocal of the infimum over all λs for

which approximate maximisation of the same utility rationalises the data as in (5), for

the correspondence Γ. In addition, Proposition 5 implies the following corollary.

Corollary 2. For any dataset O the corresponding CCEI is equal to the the infimum

over all numbers λ > 1 for which the observations are rationalisable with a Γ-monotone

model of satisficing, where Γ(x) :=
{
λ′x : λ′ ≥ λ

}
.

Most measures in the existing literature focus on departures from rationality within

the classic consumer demand framework à la Afriat. This includes Afriat (1973), Varian

(1990), Echenique et al. (2011), Dean and Martin (2016), Echenique et al. (2018, 2020),

Allen and Rehbeck (2020b, 2021), and de Clippel and Rozen (2021). In addition, the

measure developed in Echenique et al. (2018, 2020) is applicable only to a particular

class of additively separable models of time preference and choice under risk and un-

certainty. Allen and Rehbeck (2021) focus solely on departures from quasilinear utility

maximisation. In contrast, Apesteguia and Ballester (2015) develop an index that is suit-

able for environments beyond Afriat’s, but their approach is applicable only to choices

over finite domains. Finally, a versatile take on this issue was proposed in Houtman and

Maks (1985), yet it lacks an appealing economic interpretation.
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Our observations allow for a natural extension of CCEI not only to arbitrary utilities u,

but also to empirical settings beyond the classic demand framework à la Afriat. Given

any dataset O with arbitrary menus A, one can establish the severity of departures from

rationality with the least λ > 1 for which the data can be rationalised as in (5) for the

correspondence Γ(x) :=
{
λ′x : λ′ ≥ λ

}
. Unlike the original interpretation, our take on

CCEI does not depend on the linear specification of the budget sets and allows for a

meaningful comparison across different choice environments. Moreover, given the results

in Section 5 and 6, it permits not only to measure departures from rationality, but also

to estimate the true preferences of the individual, make out-of sample predictions, and

evaluate welfare when the data is not consistent with utility maximisation.

A Appendix

Here we present proofs that were omitted in the main body of the paper. Before stating

the argument supporting Theorem 1, it is convenient to prove Proposition 2.

A.1 Proof of Proposition 2

To prove implication (ii) ⇒ (i), suppose that the function u rationalises the observations

as in (5), for some threshold δ. If x ∈ Γ(y) then u(x) > u(y) + δ(x) ≥ u(y), where the

first inequality follows from Γ-monotonicity of c, and the second is implied by δ(x) ≥ 0.

Whenever xP ∗y, there is some menu A such that (A, x) ∈ O and Γ(y) ∩ A ̸= ∅. In

particular, we have u(x) ≥ u(z)− δ(z) > u(y), for any z ∈ Γ(y) ∩ A.

To prove the converse, take any utility u specified as in the proposition and define the

function δ as follows: If y ∈ At, for some t ∈ T , then

δ(y) := max
{
max

{
u(y)− u(xt), 0

}
: t ∈ T and y ∈ At

}
.

Otherwise, let δ(y) = 0. Hence, the function is well-defined and positive.

First, we claim that the resulting choice correspondence c is Γ-monotone. Take any

menu A and x ∈ c(A). Towards contradiction, suppose there is some y ∈ Γ(x) ∩ A ̸= ∅.

By assumption, this implies that u(y) > u(x). If δ(y) = 0, then x ∈ c(A) implies

u(x) ≥ u(y)−δ(y) > u(x), yielding a contradiction. Alternatively, suppose that δ(y) > 0.

By construction, this holds only if y ∈ Γ(x) ∩At or, equivalently, xtP ∗x, for some t ∈ T .
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Thus, we have u(xt) > u(x), for any such t ∈ T . In particular, for some t ∈ T ,

u(x) + δ(y) = u(x) + u(y)− u(xt) < u(y),

which contradicts that x ∈ c(A), and so the correspondence c is Γ-monotone.

To prove that c rationalises O, take any observation (At, xt) and y ∈ At. By con-

struction of the threshold δ, we have δ(y) ≥ max
{
u(y)− u(xt), 0

}
≥ u(y)− u(xt). This

suffices for xt to be an element of c(At), which concludes the proof.

A.2 Proof of Theorem 1

We prove that statement (i) implies (ii). Given Proposition 2, it suffices to show that

there is a utility u : X → R such that if x ∈ Γ(y) or xP ∗y then u(x) > u(y). Before we

proceed with our argument, we introduce an auxiliary result.

Lemma A.1. Let ≻ be an irreflexive, transitive binary relation, and D ⊆ X be a countable

set D ⊆ X such that x ≻ y implies either z ̸≻ x and z ≻ y, or x ≻ z and y ̸≻ z, for some

z ∈ D. Then, there is a function u : X → R such that x ≻ y implies u(x) > u(y).

Proof. Take any countable set D specified as in the proposition and enumerate its ele-

ments so that D = {zk}∞k=1. For any x ∈ X define the set M(x) :=
{
k : x ≻ zk} and

N(x) :=
{
k : zk ≻ x}. One can easily show that x ≻ y implies M(y) ⊆ M(x) and

N(y) ⊇ N(x), for any x, y ∈ X. Moreover, at least one of the set inclusions must be

strict. Indeed, if x ≻ z and y ̸≻ z, for some z ∈ D, then M(y) ⊂ M(x), while z ̸≻ x and

z ≻ y implies N(y) ⊃ N(x). Define the function u : X → R by

u(x) :=
∑

k∈M(x)

2−k −
∑

k∈N(x)

2−k,

which is well-defined and, by our previous observation, consistent with ≻.

We continue with the main proof. We assume throughout that the relation P ∗ is

acyclic, thus, the revealed preference relation P is irreflexive.42 To simplify the nota-

tion, define the binary relation ▷ :=
{
(x, y) : x ∈ Γ(y)

}
, which is the graph of the

correspondence Γ. Under Assumption 1, it is irreflexive and transitive.

Lemma A.2. If xPy and Γ(y) ⊆ Γ(z) then xPz, for any x, y, z ∈ X.
42 Recall that P is the transitive closure of P .
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Proof. Suppose that xPy. By definition, there is some t ∈ T such that xtP ∗y or, equiva-

lently, Γ(y) ∩ At ̸= ∅. Since Γ(y) ⊆ Γ(z) implies Γ(z)∩At ̸= ∅, we have xtP ∗z. If x = xt,

we are done. Otherwise, we have xPxt and xtP ∗z, which implies xPz.

The next lemma is an immediate corollary to the previous result.

Lemma A.3. Under Assumption 1, if x P y ▷ z then xPz, for any x, y, z ∈ X.43

Indeed, by definition, we have y ▷ z if and only if y ∈ Γ(z). By Assumption 1(ii),

this implies Γ(y) ⊆ Γ(z) and, thus, xPz (by Lemma A.2). Let ≻ denote the transitive

closure of P ∪ ▷. The next lemma is critical to our arguments.

Lemma A.4. Under Assumption 1, the relation ≻ is equal to P ∪ ▷ ∪ (▷ ◦ P ).44

Proof. Clearly, P ∪ ▷ ∪ (▷ ◦ P ) is a subset of ≻. To prove the converse, suppose that

x ≻ y. Since P and ▷ are transitive, this holds in four instances: Either (i) xPy or

(ii) x ▷ y. Alternatively, (iii) there are elements z1, z2, . . . , zn in X such that

x = z1 P z2 ▷ z3 P z4 ▷ . . . ▷ zn−2 P zn−1 ▷ zn = y.

By Lemma A.3 and transitivity of P , this implies xPy. Finally, (iv) we have

x = z1 ▷ z2 P z3 ▷ z4 P . . . P zn−2 ▷ zn−1 P zn = y,

for some alternatives z1, z2, . . . , zn in X. Similarly, by Lemma A.3 and transitivity of P

this implies that x ▷ z2 P y. It is straightforward to show that any other case can be

reduced to one of the four above. This concludes our proof.

Lemma A.5. Under Assumption 1, the transitive closure ≻ of P ∪ ▷ is irreflexive.

Proof. Given Lemma A.4 and the fact that P and ▷ are irreflexive, it suffices to show that

▷ ◦P is irreflexive. Suppose that x ▷ z P x, for some x, z ∈ X. Since this is equivalent

to z P x ▷ z, and so zPz (by Lemma A.3), it contradicts that P is irreflexive.

Below we present a useful extension of Lemma A.2.

Lemma A.6. Under Assumption 1, if x ≻ y and Γ(y) ⊆ Γ(z) then x ≻ z, for any

x, y, z ∈ X.
43 Throughout, we denote x P y ▷ z in place of xPy and y ▷ z, for any x, y, z ∈ X.
44 We denote (▷ ◦ P ) :=

{
(x, y) : x ▷ z P y, for some z ∈ X

}
.
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Proof. Suppose that x ≻ y. By Lemma A.4, this holds is three instances. If xPy, then

Γ(y) ⊆ Γ(z) implies xPz, by Lemma A.2. Following the same argument, if x ▷ z′ P y,

for some z′ ∈ X, and Γ(y) ⊆ Γ(z) then x ▷ z′ P z. Finally, we have x ▷ y only if

x ∈ Γ(y) ⊆ Γ(z), which implies x ▷ z. Either way, we obtain x ≻ z.

Consider the final auxiliary result.

Lemma A.7. Under Assumptions 1 and 2, there is a countable set D ⊆ X such that

x ≻ y implies either z ̸≻ x and z ≻ y, or x ≻ z and y ̸≻ z, for some z ∈ D.

Proof. Take any set D ⊆ X specified as in Assumption 2 and define D′ := D ∪ {xt}t∈T ,

which is countable (since T is finite). Suppose that x ≻ y. By Lemma A.4, it suffices

to consider three instances. If xPy then z ̸≻ x and z ≻ y, for z = x ∈ D′. Whenever

x ▷ z P y, for some z ∈ X, then z ̸≻ x and z ≻ y, where z ∈ D′.

Finally, suppose that x ▷ y. By Assumption 2, there is some z ∈ D such that either

(i) Γ(x) ⊆ Γ(z) and z ∈ Γ(y), or (ii) x ∈ Γ(z) and Γ(z) ⊆ Γ(y). Suppose that (i) is true.

Clearly, we have z ≻ y. We show that z ̸≻ x by contradiction. By Lemma A.6, if z ≻ x

and Γ(x) ⊆ Γ(z) then z ≻ z, which contradicts that ≻ is irreflexive. Analogously, we

show that condition (ii) implies x ≻ z and y ̸≻ z.

By Lemmas A.5 and A.7, the relation ≻ is irreflexive, transitive, and satisfies the

separability condition. By Lemma A.1, there is a utility u : X → R such that x ≻

y implies u(x) > u(y). In particular, if x ∈ Γ(y) or xP ∗y then u(x) > u(y). By

Proposition 2, there is a threshold δ for which the dataset O is rationalisable as in (5).

A.3 Proof of Proposition 3

Implication (⇐) follows from Theorem 1, since it is true independently of ancillary as-

sumptions. To show the converse, suppose that X is a locally compact and separable

metric space. Moreover, for any (A, x) ∈ O, let the menu A be compact. Finally, the

directly revealed strict preference relation P ∗ is acyclic, thus, its transitive closure P is

irreflexive. Define ▷ :=
{
(x, y) : x ∈ Γ(y)

}
, which is irreflexive and transitive whenever

Assumption 1 holds. By ≻ we denote the transitive closure of P ∪ ▷.

To prove the result, we show that ⪰ := ≻ ∪
{
(x, x) : x ∈ X

}
is a closed-continuous

preorder, i.e., a closed, reflexive, and transitive binary relation. We then apply Levin’s
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Theorem to prove that there is a continuous function u : X → R that extends ≻, i.e.,

x ≻ y implies u(x) > u(y). See the original result in Levin (1983), or the appendix in

Nishimura et al. (2017). The rest follows from Proposition 2.

We proceed with the proof. It is straightforward to show that ⪰ is a preorder. We

show that it is closed-continuous via two lemmas.

Lemma A.8. Under Assumption 3, the revealed strict preference relation P is compact.

Proof. We begin the proof by showing that the directly revealed strict preference relation

P ∗ is compact. Indeed, we have P ∗ =
∪

t∈T
{
(xt, y) : Γ(y) ∩ At ̸= ∅

}
. Since the menu

At is compact, for each t ∈ T , Assumption 3 implies that so is
{
(xt, y) : Γ(y) ∩ At ̸= ∅

}
.

Given that T is finite, the relation P ∗ is compact as well.

We show that P is compact by induction. Let E0 = P ∗ and

En :=
∪
t∈T

{
(xt, y) : xtEn−1xs and xsP ∗y, for some s ∈ T

}
,

for any n ≥ 1. Since E0 and P ∗ are compact, the set En is a finite union of compact sets,

thus, itself compact, for any n ≥ 1. Hence, the set P =
∪|T |

n=0E
n is compact.

The above result implies the following observation.

Lemma A.9. Under Assumptions 1 and 3, the relation ⪰ is closed.

Proof. By Lemma A.3, it suffices to show that P ∪ ▷ ∪ (▷ ◦ P ) ∪
{
(x, x) : x ∈ X

}
is closed. By Assumption 3, the union ▷∗:=▷ ∪

{
(x, x) : x ∈ X

}
is closed. Moreover,

Lemma A.10 implies that P is compact. Following Lemma C in Nishimura et al. (2017),

the relation ▷∗ ◦P = (▷ ◦ P ) ∪ P is closed, thus, so is (▷ ◦ P ) ∪ P ∪ ▷∗= P ∪ ▷
∪ (▷ ◦ P ) ∪

{
(x, x) : x ∈ X

}
. This completes the proof.

Since ⪰ is a closed-continuous preorder, Levin’s Theorem guarantees that there is a

continuous function u : X → R such that x ≻ y implies u(x) > u(y). In particular, both

x ∈ Γ(y) and xP ∗y imply u(x) > u(y). The rest follows from Proposition 2.

A.4 Proof of Theorem 2

We prove only the second part. As previously, denote ▷ :=
{
(x, y) : x ∈ Γ(y)

}
, which

is transitive and irreflexive under Assumption 1, and let ≻ be the transitive closure of

P ∪ ▷. By Lemmas A.4 and A.5, ≻ is irreflexive and equal to P ∪ ▷ ∪ (▷ ◦P ).
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Let ≻̂ denote the transitive closure of ≻ ∪
{
(x, y)

}
.

Lemma A.10. Under Assumption 1, the binary relation ≻̂ is irreflexive.

Proof. Since y ̸∈ RW (x) and ≻= P ∪ ▷ ∪ (▷ ◦P ), we have y ̸≻ x, by definition of

RW (x). We consider two cases. If x ≻ y then ≻̂ = ≻, which is irreflexive. Otherwise,

the relation ≻̂ fails to be irreflexive only if z ≻ x and y ≻ z, for some z ∈ X. However,

this implies y ≻ x, which contradicts our initial claim.

The following lemma shows that ≻̂ satisfies the separability condition.

Lemma A.11. Under Assumptions 1 and 2, there is a countable set D ⊆ X such that

z′ ≻̂ z implies either z′ ≻̂ z′′ and z ̸≻̂ z′′, or z′′ ̸≻̂ z′ and z′′ ≻̂ z, for some z ∈ D

Proof. Take any set D specified in Assumption 2 and define D′ := D ∪ {xt}t∈T ∪ {x, y},

which is countable. Suppose that z′ ≻̂ z. If z′ ̸≻ z, then either z′ = x, z = y, or z′ ≻ x

and y ≻ z. Clearly, the required condition is satisfied for z′′ = x or z′′ = y.

Alternatively, suppose that z′ ≻ z. By Lemma A.4, this holds in three instances.

If z′Pz, let z′′ = z′ ∈ D′. Since ≻̂ is irreflexive, it must be that z′′ ̸≻̂ z′ and z′′ ≻̂ z′.

Similarly, if z′ ▷ z′′ P z, for some z′′ ∈ X, then z′′ ̸≻̂ z′ and z′′ ≻̂ z′, where z′′ ∈ D′.

Finally, suppose that z′ ▷ z. By Assumption 2, either (i) Γ(z′) ⊆ Γ(z′′) and z′′ ∈ Γ(z),

or (ii) z′ ∈ Γ(z′′) and Γ(z′′) ⊆ Γ(z), for some z′′ ∈ D. Whenever (i) is true, then z′′ ▷ z,

and so z′′ ≻̂z. Towards contradiction, suppose that z′′ ≻̂z′. If z′′ ≻ z′, then Γ(z′) ⊆ Γ(z′′)

implies z′′ ≻ z′′ (by Lemma A.6), yielding a contradiction. Similarly, if z′′ ≻ x and y ≻ z′,

then Γ(z′) ⊆ Γ(z′′) implies y ≻ z′′ ≻ x, contradicting that y ̸≻ x. Thus, we have z′′ ̸≻̂ z′

and z′′ ≻̂ z. Analogously, if (ii) holds, then z′ ≻̂ z′′ and z ̸≻̂ z′′, for some z′′ ∈ D.

By Lemmas A.10, A.11, and A.1, there is utility u : X → R such that z′ ≻̃ z implies

u(z′) > u(z). Therefore, both z′ ∈ Γ(z) and z′P ∗z imply u(z′) > u(z), as well as

u(x) > u(y). The rest follows from Proposition 2.

A.5 Proof of Proposition 4

Denote Õ = O ∪
{
(A, y)

}
and let P̃ ∗, P̃ be the revealed relations induced by Õ. In par-

ticular, we have P ⊆ P̃ . Clearly, the set Õ is rationalisable only if y ∈ S(A). Otherwise,

Γ(y) ∩ A ̸= ∅ would imply yP̃ ∗y, while xPy and Γ(x) ∩ A ̸= ∅ would imply xP̃x. Either

way, this would contradict that the relation P̃ is irreflexive.
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We prove the converse by contradiction. Suppose that y ∈ S(A), but the set Õ is not

rationalisable. Given that O is rationalisable by assumption and, thus, the relation P is

irreflexive, this holds only if yP̃ y, which can take place in two instances: If (i) yP̃ ∗y then

Γ(y)∩A ̸= ∅; if (ii) yP̃ ∗x and xPy, then Γ(x)∩A ̸= ∅ and xPy, for some x ∈ X. Either

way, this contradicts that y ∈ S(A) and completes our proof.

A.6 Proof of Theorem 3

Implication (⇐) is straightforward. Indeed, for any u, δ that rationalise O as in (5), and

any x ∈ c(A′), each of the conditions (i)–(iii) would imply u(x) > u(y), for all y ∈ A.

We prove the converse by contradiction. Suppose that A′ is robustly preferred to A,

but there is some y ∈ A that violates each of the conditions (i)–(iii). In particular, there

is some x ∈ S(A′) such that not xPy. Take any such x and denote Õ := O ∪
{
(A′, x)

}
.

By Proposition 4, the set Õ is rationalisable as in (5). Let P̃ denote the revealed strict

preference relation induced by Õ, and ˜RW (x) be the corresponding revealed worst set

for x. We claim that y ̸∈ ˜RW (x). Indeed, it can not be that x P̃y, since this would imply

one of the conditions (i)–(iii). Similarly, if x ∈ Γ(y) then Γ(y)∩A′ ̸= ∅. Finally, suppose

that x ∈ Γ(z) and zP̃ y, for some z ∈ X. Since x ∈ Γ(z) implies Γ(z) ∩ A′ ̸= ∅, we have

xP̃ ∗z. Moreover, if zP̃ y, then either zPy, or zPx and xP̃y. However, this implies that

either y satisfies condition (ii), or xP̃x, contradicting that x ∈ S(A′).

Since y ̸∈ ˜RW (x), Theorem 2 guarantees that there are functions u, δ that rationalise

Õ as in (5) and u(y) > u(x). This contradicts that A′ is robustly preferred to A.

A.7 Proof of Proposition 5

We only prove the “if” part. Suppose that the set O is rationalisable with a Γ-monotone

model c of satisficing behaviour. There is a function u : X → R such that x ∈ c(A) and

u(y) ≥ u(x) implies y ∈ c(A), for any A ∈ A and y ∈ A.

We claim that xP ∗y implies u(x) > u(y). By definition, we have Γ(y) ∩ A ̸= ∅,

for some (A, x) ∈ O. By assumption, this implies y ∈ A. Since c is Γ-monotone and

rationalises the data, it must be that u(x) > u(y). If not, then x ∈ c(A) and u(y) ≥ u(x)

would imply y ∈ c(A), contradicting that c is Γ-monotone.

By the above observation, the directly revealed strict preference relation P ∗ must be

acyclic. Therefore, Theorem 1 guarantees that the dataset O is rationalisable with a

35



Γ-monotone approximate utility maximisation as in (5).

A.8 Proof of Proposition 7

To show that (i) implies (ii), take any λ > 1/e∗. Following (i), there is some e such that

λ > 1/e > 1/e∗, and e(pt · xt) ≥ pt · y implies u(xt) ≥ u(y). By monotonicity of u, this

guarantees that e(pt · xt) > pt · y only if u(xt) > u(y). Note that, Γ(y) ∩ At ̸= ∅, and so

xtP ∗y, if and only if pt · xt ≥ pt · (λy). Since 1/λ < e, this suffices for xtP ∗y to imply

u(xt) > u(y). Moreover, monotonicity of u implies u(λy) > u(y), for any λ > 1. By

Proposition 2, the data is rationalisable as in (5) for the utility u.

To show the converse, take any e < e∗. By (ii), there is some number λ such that

e < 1/λ < e∗. By the argument above and Proposition 2, we know that pt · xt ≥ pt · (λy)

implies u(xt) > u(y). Since e < 1/λ, this suffices for (i) to hold.
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Abstract

This supplement contains additional results related to Dziewulski (2021). These
notes should be read in conjunction with the main paper.

Here we include results that complement the findings presented in the main paper.

In Section B.1 we discuss an alternative, more constructive take on Theorem 1 based on

liner programming methods. Specifically, this allows us to determine properties of the

utility function u that are not testable in certain choice environments. In Section B.2,

we explore the relation between approximate utility maximisation and interval orders.

Finally, in Section B.3 we state proofs of the results presented in Section 7.2 of the main

paper, regarding choice over state-contingent consumption under risk.

Throughout this supplement we employ the notation introduced in the main paper.

In order to keep our exposition compact, we say that a dataset O is approximately ratio-

nalisable, if there is a utility u and threshold function δ that rationalise the observations

in the sense specified in Theorem 1, given a correspondence Γ.
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B.1 The constructive approach

Theorem 1 and Proposition 3 in the main paper establish equivalence between acyclic

direct revealed strict preference P ∗ and approximate utility maximisation in a general

setting. However, the lack of a trackable constructive argument makes it difficult to

establish any properties of the functions u and δ that rationalise the data. Here, we impose

additional structure on our framework to present an alternative take on our results.

We assume throughout that the Euclidean consumption space X = Rℓ
+ is endowed

with the natural product order ≥.1 We focus on choices from generalised budget sets,

as in Forges and Minelli (2009). That is, for any observation (At, xt) ∈ O, there is a

well-defined and strictly increasing function f t : X → R such that

At =
{
y ∈ X : f t(y) ≤ 0

}
.2

As pointed out in Section 2 of the main paper, this includes the classic consumer choice

setup discussed in Afriat (1967), Diewert (1973), and Varian (1982). Finally, we impose

the following assumption on the correspondence Γ.

Assumption B.1. For all x ∈ X, the set Γ(x) is non-empty. Moreover, if y ∈ Γ(x) and

z is in the closure of Γ(y) then z′ < z, for some z′ ∈ Γ(x).

It is critical for our constructive argument that the correspondence Γ is well-defined.

The second part of the assumption imposes a specific form of monotonicity on the corre-

spondence. In particular, the condition implies x ̸∈ Γ(x), for all x ∈ X.3

Remark B.1. It will become clear from our exposition that all the results presented in

this section can be generalised to any space X that is endowed with some preorder ≥X ,

and where X is either finite or bounded from below with respect to the ordering ≥X ,

i.e., there is some y ∈ X such that x ∈ X implies x ≥X y. This includes the space of

probability distributions over S = R+, endowed with the first order stochastic dominance.
1 We denote x ≥ y if xi ≥ yi, for all i = 1, . . . , ℓ, then x ≥ y. The relation is strict, and denoted by

x > y, if x ≥ y and x ̸= y. Finally, we have x ≫ y if xi > yi, for all i = 1, . . . , ℓ.
2 If At can be represented as At =

{
y ∈ X : f t

i (y) ≤ 0, for all i = 1, . . . , n
}

for multiple well-defined
and strictly increasing functions f t

i : X → R, for all i = 1, . . . , n, then At =
{
y ∈ X : f t(y) ≤ 0

}
, where

the function f t(y) := max
{
f t
i (y) : i = 1, . . . , ℓ

}
is well-defined and strictly increasing.

3 Clearly, if x ∈ Γ(x) then, for any z′ in the closure of Γ(x), there would have to be some z ∈ Γ(x)

such that z′ > z, which yields a contradiction.
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B.1.1 Constructive rationalisation

Given our discussion in Section 3 of the main paper, it is clear that whenever the set of

observations O is rationalisable with approximate utility maximisation then the corre-

sponding directly revealed strict preference relation P ∗ is acyclic. This observation follows

directly from the definition of the relation and is independent of ancillary assumptions. In

this subsection we provide a constructive argument supporting the converse. We propose

a utility u and a threshold δ that rationalise the data in this sense.

We begin our construction by defining the function gt : X → R as

gt(x) :=

 f t(x) if f t(x) ≤ 0;

f t(x) + ϵ otherwise;
(B.1)

for some ϵ > 0, where f t is the well-defined and strictly increasing function that repre-

sents the menu At, for all t ∈ T . Thus, the function gt is also well-defined and strictly

increasing. Moreover, we have gt(y) ≤ 0 if and only if y ∈ At, for all t ∈ T . Define

function ht : X → R as ht(x) := inf
{
gt(y) : y ∈ Γ(x)

}
, for all t ∈ T .

Lemma B.1. For all t ∈ T , we have ht(x) ≤ 0 if, and only if, Γ(x) ∩ At ̸= ∅.

Proof. If y ∈ Γ(x) ∩ At ̸= ∅ then 0 ≥ f t(y) = gt(y) ≥ ht(x). To show the converse,

suppose that ht(x) ≤ 0 and Γ(x) ∩ At = ∅. In particular, for any y ∈ Γ(x), we have

gt(y) = f t(y) + ϵ > ϵ. This implies ht(x) ≥ ϵ > 0, yielding a contradiction.

It is easy to show that the revealed relation P ∗ is acyclic if and only if, for any cycle

C =
{
(a, b), (b, c), . . . , (z, a)

}
in T × T , we have Γ(xs) ∩ At = ∅, for some (t, s) ∈ C. By

the lemma above, this is equivalent to ht(xs) > 0, for some (t, s) ∈ C. In the following

result we show that this suffices to solve a particular linear system.

Lemma B.2. The relation P ∗ is acyclic only if there are numbers (ϕt)t∈T and strictly

positive numbers (µt)t∈T such that ϕs < ϕt + µtht(xs), for all t, s ∈ T .

The system of inequalities presented in this lemma is very similar to the so-called

Afriat inequalities. However, it requires for all the inequalities to be strict. The result

itself is analogous to Lemma A.2 in Dziewulski (2020) and can be proven using an argu-

ment based on the one in Section 2 of Fostel et al. (2004). Before stating the main result

of this section, we introduce one final lemma.
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Lemma B.3. Under Assumption B.1, if y ∈ Γ(x) then ht(y) > ht(x), for any t ∈ T .

Proof. By monotonicity of gt and definition of ht, there is some z in the closure of Γ(y)

such that ht(y) ≥ gt(z). Following Assumption B.1, there is z′ ∈ Γ(x) satisfying z′ < z.

Since gt is strictly increasing, we obtain ht(y) ≥ gt(z) > gt(z′) ≥ ht(x).

The main theorem of this section presents a particular utility u and a threshold

function δ that approximately rationalise the set of observations O.

Theorem B.1. Under Assumption B.1, the dataset O is approximately rationalisable

with the utility u : X → R, given by u(y) := min
{
ϕt+µtht(y) : t ∈ T

}
, and the threshold

δ : X → R+, given by δ(y) := max
{
0; max{u(y) − µtgt(y) − u(xt) : t ∈ T}

}
, for any

numbers (ϕt)t∈T and strictly positive numbers (µt)t∈T specified in Lemma B.2.

Proof. Clearly, both u and δ are well-defined. Let the function v : X → R be given by

v(y) := min
{
u(y); min{u(xt) + µtgt(y) : t ∈ T}

}
. Thus, u(y) ≥ v(y), for all y ∈ X.

We claim that y ∈ Γ(x) implies v(y) > u(x). Indeed, by Lemma B.3, we have

u(x) = min
{
ϕt + µtht(x) : t ∈ T

}
< min

{
ϕt + µtht(y) : t ∈ T

}
= u(y),

since µt is strictly positive, for all t ∈ T . On the other hand, by construction of the

numbers (ϕt)t∈T , (µt)t∈T , we have ϕt < u(xt), for all t ∈ T . This implies

u(x) = min
{
ϕt + µtht(x) : t ∈ T

}
< min

{
u(xt) + µtgt(y) : t ∈ T

}
,

since y ∈ Γ(x) implies ht(x) ≤ gt(y). The two observations guarantee u(x) < v(y).

Since gt(y) = f t(y) ≤ 0 implies v(y) ≤ u(xt)+µtf t(y) ≤ u(xt), we have u(xt) ≥ v(y),

for all y ∈ At and t ∈ T . Given that v(y) = u(y)− δ(y), the proof is complete.

The next corollary follows immediately from the above construction.

Corollary B.1. Suppose that the function f t representing the menu At is continuous,

for each observation t ∈ T . Moreover, let the correspondence Γ : X → X be given by

Γ(x) :=
{
y ∈ X : y > x

}
.4 Then, the dataset O is approximately rationalisable for an

upper semi-continuous utility u and some threshold δ, without loss of generality.5
4 Clearly, the same result holds for Γ(x) :=

{
y ∈ X : y ≫ x

}
.

5 The function u is upper semi-continuous if the set
{
x ∈ X : u(x) ≥ a

}
is closed, for any number a.
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Proof. Since Γ satisfies Assumption B.1, Theorem B.1 guarantees that the dataset O is

rationalisable with the utility function u(y) := min
{
ϕt + µtht(y) : t ∈ T

}
, and a thresh-

old δ. By strict monotonicity of f t, the function ht is equal to ht(y) = f t(y), if f t(y) < 0,

and ht(y) = f t(y) + ϵ otherwise, for some ϵ > 0. Clearly, it is upper semi-continuous. In

particular, the function y →
[
ϕt + µtht(y)

]
is upper semi-continuous, for any number ϕt

and strictly positive number µt, for all t ∈ T . Since the min operator preserves upper

semi-continuity, the function u is upper semi-continuous.

Recall the example in Figure 1 in the main paper. As we pointed out earlier, the

directly revealed strict preference relation induced by these choices is acyclic. Given that

linear budget sets can be represented with a strictly increasing and continuous function f t,

by the above corollary, this particular dataset can be approximately rationalised with an

upper semi-continuous utility function u, without loss of generality.

B.1.2 Limits to testability

Proposition 3 of the main paper specifies conditions, under which the utility u that

approximately rationalises the data is continuous, without loss of generality. Hence, in

such environments, continuity is not testable. The construction of the utility u and the

threshold δ in Theorem B.1 allow us to further investigate properties of these functions

and identify choice environments (O,Γ) for which they are not falsifiable.

Throughout this subsection, we take the dataset O and correspondence Γ as the

premise. In addition, we assume that the set of observations is approximately rational-

isable. We begin our discussion by presenting sufficient conditions under which the data

can be explained with continuous functions u and δ.

Assumption B.2. The lower bound correspondence ∂Γ↓ : X ⇒ X, given by

∂Γ↓(x) :=
{
y ∈ Γ(x) : z < y implies z ̸∈ Γ(x), for all z ∈ X

}
,

is well-defined, compact-valued, and continuous.6

Recall the correspondence Γ(x) :=
{
y ∈ X : y > x}. In this case, the lower bound

∂Γ↓(x) is empty, for all x ∈ X, which violates the above assumption.7

6 See Definition 17.4 in Aliprantis and Border (2006) for a definition of a continuous correspondence.
7 The same applies to the correspondence Γ(x) :=

{
y ∈ X : y ≫ x

}
.
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Proposition B.1. Under Assumptions B.1 and B.2, if the function f t representing the

menu At is continuous, for all t ∈ T , then the dataset O is approximately rationalisable,

for a continuous utility u and a continuous threshold δ, without loss of generality.

Proof. Define function gt : X → R as gt(x) := f t(x), which is well-defined, strictly

increasing, and continuous, for all t ∈ T . Moreover, let the function ht : X → R be

given as in Section B.1.1, for all t ∈ T . By continuity and strict monotonicity of gt, and

compactness of ∂Γ↓(x), we have ht(x) = min
{
gt(y) : y ∈ ∂Γ↓(x)

}
. Since the function gt

and the correspondence ∂Γ↓ are continuous, Berge Maximum Theorem guarantees that

ht is continuous (see, e.g., Theorem 17.31 in Aliprantis and Border, 2006).

We claim that ht(x) ≤ 0 if, and only if, Γ(x) ∩ At ̸= ∅. Clearly, if y ∈ Γ(x) ∩ At then

0 ≥ f t(y) = gt(y) ≥ ht(x). Conversely, if ht(x) ≤ 0 then gt(y) = f t(y) ≤ 0, for some

y ∈ ∂Γ↓(x) ⊆ Γ(x), which can be satisfied only if Γ(x) ∩ At ̸= ∅.

This observation guarantees that the dataset O is rationalisable if and only if, for

any cycle C =
{
(a, b), (b, c), . . . , (z, a)

}
in T × T , we have ht(xs) > 0, for some (t, s) ∈ C.

Following the argument in Section B.1.1, this suffices for the set of observations to be

rationalisable with the functions u and δ specified in Theorem B.1. Since gt and ht are

continuous, for all t ∈ T , so is the utility u and the threshold δ.

In relation to Proposition 3 in the main paper, this result introduces alternative

assumptions under which a dataset is rationalisable with a continuous utility. Moreover,

the same conditions guarantee a continuous threshold δ.

Next, we address the question of strong monotonicity of the utility u. As stated in

Proposition 2, any function u that rationalises the data with approximate utility maximi-

sation, must be consistent with the correspondence Γ, i.e., if y ∈ Γ(x) then u(y) > u(x).

However, unlike for the exact utility maximisation, the utility u can satisfy a stronger

notion of monotonicity and still rationalise the observed choices.

A correspondence Γ is increasing if, for any x′ ≥ x and y′ ∈ Γ(x′), there is some

y ∈ Γ(x) such that y′ ≥ y. The correspondence is strictly increasing if, for any x′ > x′

and y′ in the closure of Γ(x′), there is some y ∈ Γ(x) such that y′ > y.

Proposition B.2. Under Assumption B.1, if Γ is (strictly) increasing, then the dataset

O is approximately rationalisable with a (strictly) increasing utility u.8
8 The function u is (strictly) increasing if x (>) ≥ y implies u(x) (>) ≥ u(y).
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Proof. Define functions gt and ht as in Section B.1.1, for all t ∈ T . First, we show the re-

sult outside the brackets. Whenever Γ is increasing, for any x′ ≥ x and y′ ∈ Γ(x′), there is

some y ∈ Γ(x) such that y′ ≥ y. Since gt is increasing, this implies gt(y′) ≥ gt(y) ≥ ht(x),

and so ht(x′) ≥ ht(x). Hence, the function ht is increasing, for all t ∈ T . This suffices to

show that the utility u in Theorem B.1 is also increasing.

To prove the result within the brackets, take any x′ > x and y′ in the closure of Γ(x′)

satisfying ht(x′) ≥ gt(y′). By assumption, there is some y ∈ Γ(x) such that y′ > y, and so

strict monotonicity of gt implies ht(x′) ≥ gt(y′) > gt(y) ≥ ht(x). Therefore, the function

ht is strictly increasing, which suffices for the utility u to be strictly increasing.

This result highlights the distinction between monotonicity of choice and the utility u

under approximate utility maximisation, discussed on page 18 in Section 4. Preferences u

of the individual can be strictly monotone, yet this need not translate to the choice. For

example, since the correspondence Γ in Example 1 is strictly increasing, any dataset

that is approximately rationalisable can be supported with a strictly increasing utility u,

without loss, even though the choice itself admits a degree of insensitivity to differences

among alternatives. Although the agent may agree that more is better from the nor-

mative standpoint, they may fail to follow this rule due to imperfect discrimination or

imprecision, similarly to the observation in Nielsen and Rehbeck (2020).

We conclude this section by addressing convexity of preferences. It is well-known since

Afriat (1967), Diewert (1973), and Varian (1982) that, within the classic consumer choice

framework, any dataset O that is rationalisable with exact maximisation of a strictly

increasing utility, can be supported in this sense with a concave utility u, without loss.

We extend this result to approximate utility maximisation.

We say the correspondence Γ is quasiconcave whenever, for any x, x′ ∈ X, α ∈ [0, 1],

and y ∈ Γ
(
αx+ (1− α)x′) there is z ∈ Γ(x), z′ ∈ Γ(x′), and β ∈ [0, 1] such that

y ≥ βz + (1− β)z′. The correspondence is concave if this condition holds for β = α.

Note that, this definition does not require for the values of Γ to be convex.

Proposition B.3. Under Assumption B.1, if the function f t representing the menu At

is quasiconcave, for all t ∈ T , and the correspondence Γ is quasiconcave, then the dataset

O is approximately rationalisable for a quasiconcave utility u.9
9 A function f : X → R, defined over a convex domain X, is quasiconcave if, for any x, x′ ∈ X and

α ∈ [0, 1], we have f
(
αx+ (1− α)x′) ≥ min

{
f(x), f(x′)

}
.
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Proof. Define functions gt and ht as in Section B.1.1, for all t ∈ T . Since the function

f t is strictly increasing and quasiconcave, so is gt, for all t ∈ T . Take any x, x′ ∈ X,

α ∈ [0, 1], and z ∈ Γ
(
αx+ (1−α)x′). By assumption, there is some z ∈ Γ(x), z′ ∈ Γ(x′),

and β ∈ [0, 1] such that y ≥ βz + (1− β)z′. This implies that

gt(y) ≥ gt
(
βz + (1− β)z′

)
≥ min

{
gt(z), gt(z′)

}
≥ min

{
ht(x), ht(x′)

}
,

where the inequalities follow from monotonicity of gt, quasiconcavity of gt, and the def-

inition of ht, respectively. By taking the infimum over the left hand-side, we conclude

that ht
(
αx + (1 − α)x′) ≥ min

{
ht(x), ht(x′)

}
. Hence, the function ht is quasiconcave,

for all t ∈ T . Given that quasiconcavity is preserved by the min operator, this suffices

for the utility u specified in Theorem B.1 to be quasiconcave.

Under some additional assumptions, we can guarantee that the utility u that approx-

imately rationalises the observations is concave, without loss of generality.

Proposition B.4. Under Assumptions B.1 and B.2, if the function f t representing the

menu At is continuous and concave, for all t ∈ T , and the correspondence Γ is concave,

then the dataset O is approximately rationalisable for a concave utility u.10

Proof. Define function ht as in the proof of Proposition B.1, for all t ∈ T . Take any

x, x′ ∈ X, α ∈ [0, 1], and z ∈ Γ
(
αx+ (1− α)x′). By assumption, there is some z ∈ Γ(x),

z′ ∈ Γ(x′) such that y ≥ αz + (1− α)z′. By monotonicity and concavity of f t, we obtain

f t(y) ≥ f t
(
αz + (1− α)z′

)
≥ αf t(z) + (1− α)f t(z′) ≥ αht(x) + (1− α)ht(x′).

Once we take the infimum over the left hand-side of the inequality, we conclude that the

function ht is concave, for all t ∈ T . Since the min operator preserves concavity, this

suffices to show that the utility u specified in Theorem B.1 is concave.

The correspondence Γ(x) :=
{
y ∈ X : y > x

}
, the mapping introduced in Example 1,

and the one studied in Dziewulski (2020) are all concave.11 However, since the first one

violates Assumption B.2, rationalising the data with a concave utility may be impossible

in such a case. This is because concavity implies continuity, which is not guaranteed
10 A function f : X → R, defined over a convex domain X, is concave if, for any x, x′ ∈ X and

α ∈ [0, 1], we have f
(
αx+ (1− α)x′) ≥ αf(x) + (1− α)f(x′).

11 The correspondence Γ(x) :=
{
y ∈ X : y ≫ x

}
is also concave.
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for this correspondence, as shown in Section 3 of the main paper. Nevertheless, by

Proposition B.3, one can rationalise such datasets with a quasiconcave utility.

Propositions B.3 and B.4 can be applied directly to the setup of Afriat (1967), Diewert

(1973), and Varian (1982). Since the original framework assumes that the budget set At

can be represented with the function f t(y) := pt · y −mt, for some prices pt and income

mt, for all t ∈ T , the requirements of the two results are satisfied.

B.2 Relation to interval orders

Approximate utility maximisation is tightly related to the notion of interval orders intro-

duced in Wiener (1914) and Fishburn (1970). An interval order is a binary relation ≻I

over the consumption space X that is irreflexive, i.e., x ̸≻I x, for all x ∈ X, and satisfies

the interval order condition (or Ferrer’s property), i.e., if x ≻I y and x′ ≻I y
′ then either

x ≻I y′ or x′ ≻I y, for any x, x′, y, y′ ∈ X. Fishburn (1970) shows that any interval

order defined on a countable space X can be represented by a utility u and a positive

threshold δ as follows: x ≻I y if and only if u(x) + δ(y) > u(y).12

It is straightforward to show that whenever a set of observations is rationalisable

with a Γ-monotone approximate utility maximisation for some functions u, δ, there is an

interval order ≻I such that the correspondence c : A ⇒ X, given by

c(A) :=
{
x ∈ A : y ̸≻I x, for all y ∈ A

}
, (B.2)

rationalises the data and is Γ-monotone, as in (1) and (2) in the main paper. Therefore,

under the assumptions specified in either Theorem 1 or Proposition 3, acyclicity of P ∗

is sufficient for the data to be rationalisable with an interval order maximisation. In the

following proposition we state that this condition is also necessary.

Proposition 1. For any dataset O and correspondence Γ, there is an interval order ≻I

such that the correspondence c in (B.2) rationalises O and is Γ-monotone only if the

directly revealed strict preference relation P ∗ is acyclic.

Proof. Suppose that the correspondence c(A) :=
{
x ∈ A : y ̸≻I x, for all y ∈ A

}
rationalises the set of observations, where ≻I is an interval order. We show that the

directly revealed strict preference relation P ∗ is acyclic.
12 Fishburn (1973), Bridges (1985, 1986), and Chateauneuf (1987) specify conditions under which

interval orders admit such a representation over a general space X.
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First, define a binary relation PI as: xPIy if z ≻I y and z ̸≻I x, for some z ∈ X.

Following Lemma 3.1 in Aleskerov et al. (2007), PI is asymmetric and negatively transi-

tive.13 Given that the correspondence c is Γ-monotone, it must be that x ∈ Γ(y) implies

x ≻I y. Otherwise, we would have y ∈ c
(
{x, y}

)
, contradicting that c is Γ-monotone.

We claim that xP ∗y implies xPIy. Take any observation (A, x) ∈ O and z ∈ Γ(y) ∩ A.

Clearly, it must be that z ≻I y and z ̸≻I x, which implies xPIy.

To show that P ∗ is acyclic, take any sequence z1, z2, . . . , zn in X such that ziP ∗zi+1,

for all i = 1, . . . , (n − 1). Thus, given the observation above, we obtain ziPIz
i+1 or,

equivalently, not zi+1PIz
i, for all i = 1, . . . , (n − 1) (by asymmetry of PI). By negative

transitivity of PI , it must be that not znPIz
1, and so not znP ∗z1.

This result complements Fishburn (1975) that characterises choice correspondences

generated by an interval order maximisation under the assumption that the researcher

observes the entire set c(A) for all possible menus A ∈ A. In contrast, we assume that

the data are incomplete. Our result requires no assumptions on the space X, dataset O,

or the correspondence Γ. In particular, since we allow for the consumption space X to be

uncountable, the interval order ≻I may not have a representation as in Fishburn (1970).

Moreover, there is no direct relation between the revealed preference P ∗ and the interval

order ≻I supporting the data. Specifically, xP ∗y does not imply x ≻I y.

B.3 State-contingent consumption under risk

Here we revisit the results in Section 7.2 of the main paper regarding choice over state-

contingent consumption under risk. First, we state the proof of Proposition 6. Then we

discuss some additional properties of these models.

B.3.1 Proof of Proposition 6

We prove implication (i) ⇒ (ii). Take any strictly increasing Bernoulli function v such that

u(y) := F
(
v(y1), v(y2), . . . , v(yℓ)

)
approximately rationalises the data. By Proposition 2

in the main paper, if xP ∗z then u(x) > u(z), for any x, z ∈ X. Moreover, since u is
13 A relation R on X is asymmetric if xRy implies not yRx. The relation negatively transitive if

not xRy and not yRz implies not xRz.

10



strictly increasing, we have u(x) > u(y), for any x, y, z ∈ X such that xP ∗z and z ≥ y.

In particular, the latter must be true for any x, y ∈ X ℓ.

To show the converse, let X = {z1, z2, . . . , zK}, where 0 = z1 < z2 < . . . < zK . Take

any strictly increasing function v̄ : X → R+ specified in statement (ii) and any strictly

positive number a ≤ [v̄(zk+1) − v̄(zk)]/(zk+1 − zk), for all k = 1, . . . , (K − 1), define an

upper semi-continuous and strictly increasing extension va : R+ → R+ of v̄ by

va(z) :=
K∑
k=1

[
v̄(zk) + a(z − zk)

]
χBk

(y),

where Bk = [zk, zk+1), for all k = 1, . . . (K − 1), and BK = [zK ,∞).

For any set Z ⊆ Rℓ
+, let Z :=

{
y′ ∈ Rℓ

+ : y′ ≤ y, for some y ∈ Z
}

be its downward

comprehensive hull. Take any z̄ ∈ R+ such that z̄ := (z̄, z̄, . . . , z̄) ≥ y, for all y ∈
∪

t∈T At.

Since the menus At are bounded, for all t ∈ T , such a number exists and z̄ ≥ zK . Without

loss of generality, suppose that z̄ − zK ≥ zk+1 − zk, for all k = 1, . . . , (K − 1). By

construction of the function va, for any ϵ > 0 there is a sufficiently small a > 0 such that

ϵ ≥ va(z)− v̄(zk) ≥ 0, for any z ∈ [0, z̄], where zk = max
{
z′ ∈ X : z′ ≤ z}.14

Recall that xtP ∗y if and only if Γ(y) ∩ At ̸= ∅, for any t ∈ T . Equivalently, this is

to say that y belongs to the lower inverse Γℓ(At). Since Γ(x) ⊆
{
y ∈ Rℓ

+ : y ≥ x
}

, for

x ∈ X, we have Γℓ(At) ⊆
∪

t∈T At, and so z̄ ≥ y, for all y ∈ Γℓ(At). Moreover, for any

y ∈ Γℓ(At), there is some x ∈ X ℓ ∩ Γℓ(At) such that xi = max
{
z ∈ X : z ≤ yi}, for all

i = 1, . . . , ℓ. By by our previous observation, there are numbers ϵ, a > 0 such that

F
(
va(x

t)
)

= F
(
v̄(xt)

)
> F

(
v̄(y′) + ϵ1

)
≥ F

(
va(y)

)
,

for any y ∈ Γℓ(At) and some y′ ∈ X ℓ ∩Γℓ(At), where v(y) :=
(
v(y1), v(y2), . . . , v(yℓ)

)
, for

any function v, and 1 is the ℓ-dimensional unit vector.

For each t ∈ T , take any such a and denote it at. Define an upper semi-continuous and

strictly increasing function v : R+ → R+ by v(z) := min
{
vat(z) : t ∈ T

}
. Moreover, let

u(y) := F
(
v(y)

)
, which is strictly increasing and satisfies u(xt) > u(y), for all y ∈ Γℓ(At)

and t ∈ T . Since Γ(x) ⊆
{
y ∈ Rℓ

+ : y > x
}

, for all x ∈ X, this suffices to show that both

x ∈ Γ(y) and xP ∗y imply u(x) > u(y). By Proposition 2, there is a threshold function δ

such that u approximately rationalises the data.
14 It suffices to take any strictly positive a ≤ ϵ/(z̄ − zK)
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B.3.2 Related results

Continuity First, we address the question of continuity of the Bernoulli function v.

Suppose that the menu At is compact, for all t ∈ T , and the correspondence Γ satisfies

Assumption 3(ii). We claim that this suffices for the Bernoulli function v specified in

Proposition 6 to be continuous, without loss of generality.

Indeed, in such a case, the lower inverse Γℓ(At) is compact, for all t ∈ T , as is its

downward comprehensive hull Γℓ(At). Since X ℓ is finite, there is a closed neighbourhood

V of Γℓ(At) such that X ℓ ∩ Γℓ(At) = X ℓ ∩ V . Denote Bt := V ∪
{
y ∈ Rℓ

+ : y ≤ xt
}

,

which is compact and contains Γℓ(At) in its interior. Moreover, for any strictly increasing

function v̄ specified as in statement (ii) of Proposition 6, we have F
(
v̄(xt)

)
> F

(
v̄(y)

)
,

for all y ∈ (Bt ∩X ℓ) \ {xt}. By Theorem 1 in Polisson et al. (2020), there is a continuous

and strictly increasing extension v of v̄ such that F
(
v(xt)

)
> F

(
v(y)

)
, for all y ∈ Γℓ(At).

The rest of the result follows from Proposition 2 in the main paper.

Variable aggregator Proposition 6 can be extended to the case where the aggregator

function varies across observations. Formally, consider a collection of continuous and

strictly increasing functions Ft : Rℓ
+ → R, for all t ∈ T . We claim that there is a strictly

increasing Bernoulli function v : R+ → R+ and a threshold δt such that

y ∈ At implies Ft

(
v(xt)

)
+ δt(y) ≥ Ft

(
v(y)

)
,

for all t ∈ T , if and only if there is a function v̄ : X → R+ such that Ft

(
v̄(xt)

)
> Ft

(
v̄(y)

)
,

for any t ∈ T and y ∈ X satisfying xtP ∗z and z ≥ y, for some z ∈ X.

Indeed, partition the set T into disjoint subsets T1, T2, . . . , TK such that t, t′ ∈ Tk

implies Ft = Ft′ , for all k = 1, . . . , K. By Proposition 6, our claim is true for any sub-

dataset Ok =
{
(At, xt) : t ∈ Tk

}
, for all k. One can show that this holds for the entire

dataset O for the Bernoulli function v(z) := min
{
vk(z) : k = 1, . . . , K

}
.

Preference symmetry In some cases, the utility u of the agent may depend only on

the distribution of consumption in a portfolio x, rather than the precise allocation of

consumption to each state. Formally, we say that such a utility function is symmetric.

That is, for any bundle x ∈ X and permutation σ on {1, 2, . . . , ℓ}, we have u(x) = u(xσ),

where we denote xσ = (xσ(1), xσ(2), . . . , xσ(ℓ)). For example, this is true when u takes the
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expected utility formulation when all states s ∈ S are equally probable, i.e., we have

u(x) =
∑ℓ

s=1(1/ℓ)v(xs), for some Bernoulli function v.

Whenever a dataset O is approximately rationalisable with a symmetric utility u, one

would expect the corresponding threshold function δ to be symmetric as well. That is,

the agent should be equally imprecise regarding a bundle x as with its permutation xσ.

This is indeed true, without loss of generality.

Proposition 2. Suppose that Γ(xσ) =
{
yσ : y ∈ Γ(x)

}
, for any x ∈ X and any permu-

tation σ. If the dataset O is approximately rationalisable for a symmetric utility u and

some threshold δ, then the function δ is symmetric, without loss of generality.

Proof. Suppose that the dataset O is rationalisable with a symmetric utility u and some

threshold δ′, and define δ(y) := max
{
δ′(yσ) : for some σ

}
, which is well-defined and

symmetric. We claim that u, δ approximately rationalise O. First, we show that the

model is Γ-monotone. Take any y ∈ Γ(x). By assumption, we have yσ ∈ Γ(xσ). Since u, δ′

rationalise the data, there is some permutation σ such that u(y)−δ(y) = u(yσ)−δ′(yσ) >

u(xσ) = u(x). To show that the model rationalises the data, take any t ∈ T and y ∈ At.

Then, u(xt) ≥ u(y)− δ′(y) ≥ u(y)− δ(y).

The additional restriction on the correspondence Γ imposes a weak form of symmetry

on the monotonicity of choice. Clearly, the condition holds for Γ(x) :=
{
y ∈ X : y > x

}
.

Similarly, it applies to Example 1, as long as λs = λs′ and as = as′ , for all s, s′ = 1, . . . , ℓ.

Finally, the mapping Γ(x) =
{
λ′x : λ′ ≥ λ

}
, for some λ > 1, studied in Dziewulski

(2020), satisfies this form of symmetry as well.
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