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Abstract

We provide a microfoundation for using aggregated data (e.g. mean purchases)

when evaluating consumer choice data. We present a model of statistical consumer

theory where the individual maximizes their utility with respect to a distribution

of bundles that is constrained by a statistic of the distribution (e.g. mean expen-

diture). We show that this behavior is observationally equivalent to an individual

whose preferences depend only on the statistic of the distribution. This means

that despite working with distributions, the empirical content of the model only

depends on a finite-dimensional statistic. Statistical consumer theory neither nests

nor is nested in the random utility approach. We show this approach generalizes

quasilinear utility with random preferences and income, mean-variance preferences,

and preferences that depend on arbitrary moments.
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1 Introduction

Outside of experimental settings, data typically do not match the classic consumer prob-

lem of utility maximization subject to a budget constraint. A leading example is scanner

data. Such data is highly disaggregated, typically at the transaction-level. This raises

several concerns when attempting to apply consumer theory. First, it is unclear whether

the budget of the consumer is at the transaction or for a longer period of time. A second

concern is the “zeros” problem: a typical transaction involves zero quantities of many

goods, though when examining many transactions an individual may purchase a wide

variety of goods. In practice, researchers typically aggregate (sum up) the disaggregated

data across time to address the zeros problem. In this case, budgetary constraints are in

terms of aggregated data. For example, Echenique et al. (2011) process transaction-level

data to form quantities for four-week periods and analyze this aggregated data without

referencing the original primitive data.1 Several questions arise from this procedure: Pre-

cisely, how does the budget enter? What information is lost when working directly with

the aggregated data rather than transaction-level quantities?2

This paper addresses these questions by providing a demand theory for distributions.

We hypothesize that given prices, an individual chooses a distribution of quantities. An

empirical analyst can interpret a transaction as a realization from this distribution. The

budgets we consider involve a statistic of the distribution, and we call the general frame-

work statistcal demand theory. In our main analysis, we assume the budget restricts the

mean expenditure. The key insight of this paper is that with this assumption on the bud-

get there is no loss in working with aggregated (mean) quantities relative to the entire

distribution. Specifically, the testable implications of the framework are exhausted by an

acyclicity condition imposed only on the mean quantities.

This equivalence has several important implications for applied work. First, this pro-

vides a plausible microfoundation for using mean consumption. A microfoundation for

1 Historically, aggregating over time has regularly been done when examining demand systems. For

example, Barten (1969) looks at yearly data of sixteen commodity groups, Pesaran and Deaton (1978)

looks at quarterly data of income and a single consumption index, and Deaton and Muellbauer (1980)

looks at yearly data of eight commodities.
2 A third concern is that prices may not be constant over the period of aggregation; this raises new

challenges that are orthogonal to the conceptual contribution of this paper. We are pursuing a flows

interpretation in ongoing work that complements the present paper. For a measurement error perspective,

see Aguiar and Kashaev (2020).
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using aggregate purchases is absent from the literature, even though this is standard prac-

tice. Second, when using the model for counterfactual analysis (in settings with similar

budgets), the data are informative only about the mean of the distribution of quanti-

ties in a new setting. Third, insights from the standard consumer problem apply when

one replaces “quantities” in the standard model with “mean quantities” when studying

distributional choice. Thus, an applied researcher need only open a standard textbook

to find a theory of welfare or counterfactuals in our setting. Fourth, when testing the

model of statistical demand theory with a budget on mean expenditure, there is no loss

in working with only mean quantities without keeping track of the entire distribution. In

particular, to conduct econometric analysis that takes into account sampling variability,

it is only necessary to treat sampling variability in the mean quantities rather than the

entire distribution of choices.3

In addition to providing a justification for what researchers are already doing, we show

that statistical demand theory generalizes several different approaches. For example, dis-

tributional choice with mean expenditure constraints generalizes behavior from a random

quasilinear utility model with random income. This is an important generalization since

the income for purchases is often unobserved when studying purchases of a specific group

of goods (e.g. groceries). While we focus on the mean expenditure budget, the approach

of statistical demand theory applies to other budgets. Building on Forges and Minelli

(2009), we characterize statistical demand theory for general statistics other than the

mean, and show how this approach covers mean variance preferences and preferences

that depend on higher order moments.

We also make a theoretical contribution to the growing literature on stochastic choice.

Rather than starting from random utility models as in Block and Marschak (1960) and

McFadden and Richter (1990), we start from a preference for randomization following

Machina (1985).4 Machina (1985) studies stochastic choice of a probability distribution

3 This paper does not directly address sampling variability. However, building on the theoretical

insights of this paper, we present a statistical test in Allen et al. (2021) when there are two goods and

two prices.
4 This is often called deliberate stochastic choice. For recent work following this framework see Swait

and Marley (2013), Fudenberg et al. (2015), Freer and Martinelli (2016), Cerreia-Vioglio et al. (2019),

Allen and Rehbeck (2019), and Banerjee et al. (2020). See Sopher and Narramore (2000), Agranov and

Ortoleva (2017), Agranov et al. (2020), Agranov and Ortoleva (2020), and Feldman and Rehbeck (2020)

for experimental evidence supporting this view.
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over finitely many alternatives. Following Machina (1985), we take a “demand approach,”

but study the classical consumer setting with distributions over consumption bundles. We

differ from Machina (1985) since distributions over bundles are an infinite dimensional

object and we leverage price variation from the standard consumer problem. The main

characterization with a mean expenditure constraint demonstrates an important dimen-

sion reduction aspect where an infinite dimensional model is observationally equivalent

to a finite dimensional one.

Our approach differs from random utility models (RUMs), which are the main pa-

radigm to model stochastic choice and have a rich intellectual history following Thur-

stone (1927), Luce (1959), Block and Marschak (1960), Falmagne (1978), McFadden

and Richter (1990), McFadden (2005), Kitamura and Stoye (2018), among many others.

RUMs suppose that each individual has a random distribution of preferences that generate

behavior. While RUMs have intuitive appeal, in practice, there are often computational

constraints to using these models on consumption data. For example the applications

in Kitamura and Stoye (2018) and Deb et al. (2019) consider only a few goods and use

data that is aggregated to a commodity index rather than using micro-level data on con-

sumer purchases. There have been some recent advances to compute tests of random

utility models with a larger number of goods in Smeulders et al. (2019). In contrast,

the approach in this paper could readily be applied to micro-data before aggregating to

a commodity index and testing follows by applying methods of Varian (1982) or Aguiar

and Kashaev (2020) to mean consumption bundles. Finally, we show through examples

that RUMs and statistical consumer theory do not nest each other. Thus, the difference

of RUMs and statistical consumer theory could be detected from data.

This paper also informs work on revealed preference, which is discussed in a textbook

setting in Chambers and Echenique (2016). In particular, we build on the standard

demand setting studied in Afriat (1967), Diewert (1973), and Varian (1982). We show how

structure from the budget sets reduces the dimensionality of preferences using techniques

developed in Forges and Minelli (2009). The approach is also related to Richter (1979),

Chambers et al. (2019), and Deb et al. (2019), which examine the relation between primal

and dual revealed preference relations.

The remainder of the paper is organized as follows. Section 2 characterizes the model
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with budget constraints on average expenditure and relates this behavior to choice with

random incomes. Section 3 contrasts behavior of statistical consumer theory with random

utility models. Section 4 describes more general conditions that show how systematic

statistical constraints are equivalent to models where the individual only chooses the

statistic. We show through examples how this leads to generalizations of mean variance

preferences. Section 5 provides a discussion of the results and final remarks.

2 Model and results

In this section, we present a model of consumer choice where an individual maximizes

their utility over a distribution of consumption bundles, but faces a restriction on average

expenditure. We discuss how this extends to general statistics in Section 4. All proofs

not found in the main text are located in Appendix A.

2.1 Preliminaries

We identify the consumption space with the positive orthant of the L-dimensional real

space RL
+. Hence, a consumption bundle is a vector x ∈ RL

+, where for ℓ = 1, . . . , L

each entry xℓ determines the amount of one of the L commodities. We endow RL
+ with a

norm ∥ · ∥ and the natural product order ≥.5 Let ∆ denote the space of Borel probability

measures over the consumption space RL
+. For technical reasons, we restrict our attention

to measures that satisfy
∫
∥x∥dµ(x) < ∞, which is without loss of generality in this

framework.6 Finally, we endow ∆ with the topology of weak convergence.7

We consider a model of consumer choice in which an individual maximizes a utility

function with respect to probability distributions over consumption bundles.8 We denote

the utility function over distributions by U : ∆ → R. Thus, stochastic choice is generated

by an agent who chooses a most-preferred distribution of bundles and randomizes the

5 That is, for any vectors x = (xℓ)
L
ℓ=1, y = (yℓ)

L
ℓ=1 in RL, we have x ≥ y if xℓ ≥ yℓ, for all ℓ = 1, . . . , L.

In addition, the relation is strict and denoted by x > y if x ≥ y and x ̸= y.
6 Equivalently, we require that the Bochner integral

∫
x dµ(x) in RL

+ is well-defined. This follows from

Theorem 11.44 in Aliprantis and Border (2006).
7 A sequence {νk} in ∆ weakly converges to ν if the Lebesgue integral

∫
f(x)dνk(x) converges to∫

f(x)dν(x), for any continuous and bounded function f : RL
+ → R. In particular, this space is metrizable.

8 One could alternatively start with a preference ordering over distributions of consumption bundles.

For simplicity of exposition, we start from a utility function.
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selection of a particular bundle in RL
+ according to this distribution.

The primitive dataset D :=
{

(pt,mt, µt) : t ∈ T
}

consists of a finite number of triplets

of prices pt ∈ RL
++, expenditure levels mt ∈ R++, and probability measures µt ∈ ∆.9

Here, we interpret the probability measure µt as being chosen by a single consumer. As

discussed earlier, a researcher with transaction-level data may treat each transaction as a

draw from the probability measure µt.10 We abuse notation and use T both to refer to the

number of observations and the set of their labels, where the meaning is clear from the

context. Later in the paper, we show that one may assume mt =
∫

(pt · x)dµt(x) without

loss of generality for statistical consumer theory with average expenditure constraints.

Thus, only information on (pt, µt) is needed to apply these methods in practice.

2.2 Statistical consumer with average expenditure constraints

Here, we study when the set of feasible distributions is constrained by average expenditure

for given observed prices. Specifically, given prices p ∈ RL
++ and expenditure level m > 0,

a feasible distribution ν must be contained in the average expenditure budget

A(p,m) =

{
ν ∈ ∆ :

∫
(p · x)dν(x) ≤ m

}
. (1)

The average expenditure budget allows an individual to choose consumption bundles

that cost more or less than the expenditure level. However, only the average expenditure

on purchases is constrained. One could interpret the average expenditure constraint as

a type of mental accounting (Thaler, 1980). An individual interacts with the average

expenditure budget by selecting a distribution µ to maximize their utility U over the

budget A(p,m).

Here, it is useful to consider the types of feasible distributions the average expenditure

constraint allows. Note the two examples in Figure 1. The points represent the support

of a feasible distribution over consumption bundles with the corresponding probabilities

next to each point. The line is the average expenditure constraint at given prices. In

9 Here we assume some time period has been chosen over which the researcher aggregates. We

abstracts from what is the“right”time period to estimate a distribution. This same problem is abstracted

from in standard consumer theory where the“right”time period to aggregate purchases is not well studied.

In practice, applications use a time period of several weeks.
10 For this paper, we assume there is no error in measuring the chosen distribution µt, and later discuss

how our results speak to empirical settings in which µt is measured with stochastic error.
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Figure 1a, all bundles chosen with positive probability have expenditure equal to the

average expenditure. In contrast, Figure 1b has bundles chosen with positive probability

that are below (blue) or above (red) the average expenditure constraint. One could

interpret purchases below average expenditure as “saving” behavior whereas a realization

of purchases above average expenditure could be interpreted as “splurging” behavior.

Moreover, this distribution has several realizations with zero purchases of different goods

that are common in data. The distinction between saving and splurging purchases could

be carried forward in a dynamic model and interact with future average expenditure

constraints, but we do not pursue this here.
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(a) Feasible budget A
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(b) Feasible budget B

Figure 1: Example feasible distributions for average expenditure constraint

Notes: The points represent the support of a feasible distribution over consumption bundles

with the corresponding probabilities next to each point. The line is the average expenditure

constraint at given prices p. Red and blue points denote a “splurge” and “savings,” respectively.

With this restriction, we consider average expenditure datasets DA :=
{

(At, µt) : t ∈ T
}

,

where At := A(pt,mt) and µt ∈ At. We are interested in when the dataset DA can be

described, or rationalized, by utility maximization. Equivalently, when there is a utility

function U : ∆ → R such that, for all t ∈ T , the chosen distribution µt satisfies

U(µt) ≥ U(ν), for all ν ∈ At. (2)
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Clearly, with no additional restriction on the utility function, any dataset can be ratio-

nalized with a constant function U . For this reason, we restrict our attention to the class

of locally nonsatiated utility functions. Local nonsatiation of U requires that, for any

probability measure ν ∈ ∆ and any neighborhood of ν, there is some distribution ν ′ in

its neighborhood (i.e, a nonempty open set containing ν ′) that satisfies U(ν ′) > U(ν).

The above framework allows for a natural definition of revealed preference relations.

We begin by specifying the directly revealed preference relation R defined over the set of

observed choices {µt}t∈T . For any t, s ∈ T , we say that measure µt is directly revealed

preferred to µs, and denote it by µtRµs, when
∫

(pt ·x)dµs(x) ≤ mt since the measure µs

was available from the budget At and µt was chosen. Next, we define the strictly directly

revealed preference relation P . For any t, s ∈ T , we say that measure µt is strictly directly

revealed preferred to µs, and denote it by µt P µs, when
∫

(pt · x)dµs(x) < mt.

It is straightforward to show that the relation R is consistent with any locally nonsa-

tiated utility function U that rationalizes the set of observations DA. Indeed, whenever

the consumer selects a measure µt at time t, they directly reveal that it is preferable to

any other option µs that satisfies the average expenditure constraint
∫

(pt ·x)dµs(x) ≤ mt.

Hence, µt R µs must imply U(µt) ≥ U(µs). One can also show that the strict directly

revealed preference P is consistent with a locally nonsatiated utility.11

Now we construct the revealed preference relation R∗ from the previous direct revealed

preference relations. Specifically, for any t, s ∈ T , we say that µt is revealed preferred to

µs, denoted by µt R∗ µs, when there is a sequence of indices a, b, c, . . . , z ∈ T such that

µt R µa, µa R µb, . . . , and µz R µs. (3)

Moreover, we say that µt is strictly revealed preferred to µs, denoted by µt P ∗ µs, when

there is a sequence as in (3) with at least one pair is ordered with respect to P . This

immediately implies the testable restriction of mean acyclicity.

Definition 1 (Mean acyclicity). For any cycle C =
{

(a, b), (b, c), . . . , (z, a)
}

in T × T

such that
∫

(pt · x)dµs(x) ≤ mt for (t, s) ∈ C, we have
∫

(pt · x)dµs(x) = mt, for (t, s) ∈ C.
11 First, recall that local nonsatiation of U requires that, for any element ν ∈ ∆ and its neighborhood,

there is some ν′ in the neighborhood such that U(ν′) > U(ν). By continuity of the function ν →∫
(pt · x)dν(x), the set

{
ν ∈ ∆ :

∫
(pt · x)dν(x) < mt

}
is open. Therefore, for any element µs contained

in the set, there must be some distribution ν′ such that U(ν′) > U(µs). Since ν′ is also available from

the At budget, the previous claim implies U(µt) ≥ U(ν′) > U(µs).
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Mean acyclicity requires further comment. In particular, the condition applies to one

element cycles C =
{

(t, t)
}

. It follows that maximization of a locally nonsatiated utility

function requires that
∫

(pt · x)dµt(x) = mt, for all t ∈ T . Thus, the budget constraint

must be binding for every observed choice. An important practical implication of this

fact is that it is not crucial for the analyst to observe the expenditure level mt. Thus, one

only needs a dataset
{

(pt, µt)
}
t∈T while setting the expenditure level mt =

∫
(pt ·x)dµt(x)

to check mean acyclicity.

The definition of mean acyclicity is equivalent to restrictions on the revealed preference

relations. In particular, mean acyclicity coincides with the generalized axiom of revealed

preference (GARP) on the revealed preference relation R∗ so that

µt R∗ µs implies not µs P µt. (4)

Mean acyclicity is a straightforward extension of GARP (as in Afriat, 1967; Diewert, 1973;

Varian, 1982) to choices over probability measures, rather than consumption bundles. In

fact, if the consumer chooses only degenerate lotteries, then GARP coincides with mean

acyclicity. To see this, for all t ∈ T a degenerate lottery satisfies µt = δxt , where the

latter denotes the Dirac measure concentrated at some xt ∈ RL
+. Therefore, we have∫

(pt · x)dµs(x) = pt · xs for all t, s ∈ T , which reduces mean acyclicity to GARP.

Finally, by Lemma 11.45 in Aliprantis and Border (2006), we have∫
(p · x)dν(x) = p ·

∫
x dν(x)

for all ν ∈ ∆ and t ∈ T . This implies that all relevant information for mean acyclicity

is summarized by the L-dimensional mean bundle
∫
x dν(x) for the distribution ν. In

practice, estimating mean bundles rather than the whole distribution µt is sufficient to

check the mean acyclicity condition.

Since we can represent mean acyclicity on mean bundles, it is natural to study utility

functions that depend only on mean bundles.

Definition 2 (Mean choice model). We say the dataset DA is rationalizable with a mean

choice model if there is a function f : RL
+ → R such that

U(ν) := f

(∫
x dν(x)

)
is locally nonsatiated and rationalizes DA as in condition (2).
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If the dataset can be rationalized with a mean choice model, then any utility function

that rationalizes the data only depends on the mean bundle (a vector), rather than all

information in the distribution. In the main theorem below, we show that locally nonsa-

tiated preferences are observationally equivalent to the mean choice model when the sets

of distributions are restricted by the average expenditure budget defined in equation (1).

Theorem 1. For any set of observations DA with mean expenditure budgets, the following

statements are equivalent:

(i) DA is rationalizable with a locally nonsatiated utility function U : ∆ → R.

(ii) DA satisfies mean acyclicity.

(iii) DA is rationalizable with a mean choice model with a continuous, strictly increasing,

and concave function f : RL
+ → R such that U(ν) := f

( ∫
x dν(x)

)
.

(iv) DA is rationalizable with a mean choice model.

This result has several implications. First, the revealed preference analysis of sta-

tistical consumer theory is simple and parallels classical revealed preference analysis.

The main theorem shows this connection when consumer choices are restricted by mean

expenditures. This connection means we can use the framework of Varian (1982) for

counterfactual and welfare analysis. In addition, like Afriat (1967), we see there is no loss

of generality restricting attention to a mean choice model with a well-behaved function

f , i.e., a continuous, strictly increasing, and concave. Thus, the utility function U itself

can be treated as continuous, strictly increasing, and concave, without loss of generality.

A more general statistical consumer theory is developed in Section 4.

Second, a model with a locally nonsatiated preference over distributions is obser-

vationally equivalent to a mean choice model. Roughly, this means that a researcher

cannot gain more flexibility by modelling a preference over distributions than modelling

a preference that only depends on mean consumption for the average expenditure budget.

Third, Theorem 1(ii) has important implications when applying the mean choice

model in certain empirical settings. For example, sampling variability may arise when

only finitely many realizations of µt can be observed. These realizations would be inter-

preted as “choices” in a standard deterministic or random utility model in applied work.

In contrast, for our approach, preferences are defined over distributions µt and the realiza-

tions are drawn from the chosen distributions. Theorem 1 shows that estimation error in
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µt only matters insofar as it leads to error in estimating the mean of consumption. This

is because checking mean acyclicity is possible by checking restrictions on means. We

leverage the dimension reduction aspect to incorporate variability in empirically relevant

datasets in Allen et al. (2021).

2.3 Relation to a random income model

The model of distributional preferences above may seem stylized, but we show it gen-

eralizes a class of random utility models where income is also random and unobserved.

In applied analysis, it is often assumed that the income of an individual is equal to ex-

penditure on goods. However, since income is often unobserved, it might make more

sense to treat it as a random variable. If preferences and income are random, then we

are essentially in the case of the Sonnenschein-Mantel-Debreu (Debreu, 1974) anything

goes result for mean demands.12 However, we show that a random quasilinear utility

maximizer with random income is rationalizable with a mean choice model.

To formalize this, let (η, ε) be random variables that govern random utility functions

and income. We assume these variables are independent of prices, but allow preferences

to be potentially correlated with income. We give a precise definition of this model below.

Definition 3. A random quasilinear utility and income model with random variables

(η, ε) has individuals make choices according to

max
(x,y)∈RL

+×R
u(x; η) + y

s.t. p · x + y ≤ m(ε).

Thus, the realization of the random variable η gives a random draw of preferences,

while the random variable ε governs the realization of income. To show the relation to

a mean choice model and distributional choice, we will make some assumptions. For

technical simplicity, we suppose that (η, ε) takes values in the finite set N × E and for

each realization of η the utility function u : RL
+×N → R yields a unique maximizer for all

prices {pt}t∈T . We let x∗,t(η, ε) denote the unique choice given price pt and unobservables

(η, ε). To map to our previous analysis, given a price pt, a distribution of choices arises

12 To see why this is the case, a realization of a random draw of preference and incomes is equivalent

to the existence of some household in the Sonnenschein-Mantel-Debreu theorem.
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because x∗,t(η, ε) is random due to (η, ε). The quasilinear model has recently been studied

in Brown and Calsamiglia (2007) and Allen and Rehbeck (2020a,b).

The paper by Allen and Rehbeck (2020b) shows that the solutions to the maximization

problem satisfy cyclic monotonicity (cf. Rockafellar, 1970) on the expectation of the

choices so that for any sequence {tm}Mm=1 with tm ∈ T the inequality

M∑
m=1

ptm ·
(
E[x∗,tm(η, ε)] − E[x∗,tm+1(η, ε)]

)
≤ 0

holds, where tM+1 = t1. It can be shown that this condition implies that mean acyclicity

is satisfied. From Theorem 1, this means that these choices are observationally equivalent

to a locally nonsatiated utility function that chooses the distribution of choices or a mean

choice model. We record this in the proposition below.

Proposition 1. Suppose that for prices {pt}t∈T that data is generated by a random quasi-

linear utility and income model with random variables (η, ε) that take values in the finite

set N × E and for every realization of η the utility u(x; η) yields a unique maximizer,

then the distribution of choices satisfies mean acyclicity.

3 Comparison to random utility models

We have just shown that when quasilinear preferences and income are random, the distri-

bution of choices is rationalizable with a mean choice model. In this section we compare

the mean choice model to random utility models that have random preferences (not nec-

essarily quasilinear), but a fixed budget. For the random utility model, an individual

maximizes utility for every random draw of preferences on a standard budget constraint.

We follow the definitions of random utility models in McFadden and Richter (1990),

McFadden (2005), and Kitamura and Stoye (2018). Here, random utility models are

generally defined over the budget set from the standard deterministic consumer problem.

Recall the standard budget set is given by

B(p,m) :=
{
x ∈ RL

+ : p · x ≤ m
}
, (5)

for prices p ∈ RL
++ and m > 0. For brevity, we let Bt := B(pt,mt).

We now formally describe random utility models. Let U be the space of strictly

quasiconcave locally nonsatiated utility functions ũ : RL
+ → R. A set of observations D
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is rationalized by a random utility model (RUM) if there is a probability measure ρ over

the space of functions U such that, for all t ∈ T :

µt(O) = ρ
({

ũ ∈ U : argmaxy∈Bt ũ(x) ∈ O
})

, (6)

for any measurable subset O ⊆ RL
+, where the argmax set is a singleton since U consists

of strictly quasiconcave functions. In other words, the probability of choosing a bundle

in the set O is equal to the probability of drawing a utility function that is maximized

over Bt at some point in the set O. For a linear programming characterization of RUM

see McFadden and Richter (1990), McFadden (2005), and Kitamura and Stoye (2018).13

Distributions of choices generated by a random utility model are in the set

C(p,m) :=
{
ν ∈ ∆ : ν

(
B(p,m)

)
= 1

}
.

A key difference between the mean choice model and random utility model is that budget

sets A(p,m) and C(p,m) are different. The mean choice model allows choice of consump-

tion bundles that exceed the expenditure level mt, which is not allowed in random utility

models. Recall that as emphasized above, for the mean choice model only the average

expenditure need be measured. The random utility model has a fixed budget, in which

case the average expenditure is the same as the expenditure for each realization of the

random utility. To further compare the models, we restrict attention to distributions

when the support of µt is a subset of Bt,14 for all t ∈ T . We show that mean choice

models neither nest nor are nested in random utility models for such distributions.

In Example 1, we discuss a dataset that can be rationalized only by a mean choice

model. Here, there is no RUM that can generate the observations. Despite this, the

mean behavior is consistent with mean acyclicity. In contrast, the dataset in Example 2

is only rationalizable by a RUM. Since the models describe different behavior, one can

discriminate between mean choice models and RUMs using field data or experiments.

Example 1. Let a primitive dataset be given by D =
{

(p1,m1, µ1), (p2,m2, µ2)
}

, where

p1 = (2, 1), p2 = (1, 2), and m1 = m2 = 1. In addition, suppose that measure µ1 assigns

probability 7/12 to bundle (1/2, 0) and 5/12 to (0, 1), while µ2 assigns probability 7/12

to (0, 1/2) and 5/12 to (1, 0).

13 Alternatively, random utility models are characterized by the axiom of revealed stochastic preferences

in McFadden and Richter (1990) and McFadden (2005) which is conceptually more similar to GARP.
14 The support of µt is the smallest closed set K such that µt(K) = 1.
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Both
∫

(p1 · x)dµ2(x) and
∫

(p2 · x)dµ1(x) are equal to 13/12 > 1 = m1 = m2, which

suffices for the set of observations to satisfy mean acyclicity and, thus, be rationalizable

by a mean choice model. Equivalently, the means of distributions µ1, µ2 are given by

x̄µ1 = (7/24, 5/12), x̄µ2 = (5/12, 7/24), respectively, where p1 · x̄µ2 = p2 · x̄µ1 = 13/12 > 1.

See Figure 2 for a graphical interpretation.
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b x̄µ2
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Figure 2: Graphical interpretation of the dataset in Example 1.

In contrast, the data are inconsistent with the random utility model. Indeed, since

p1 · (0, 1/2) = 1/2 < m1, there must be probability of at least 7/12 on utilities where

bundle (0, 1/2) is strictly inferior to (1/2, 0). Analogously, as p2 · (1/2, 0) = 1/2 < m2, at

least a probability of 7/12 on utilities must rank (0, 1/2) strictly over (1/2, 0). However,

this would imply that for a probability of at least 1/6 of all utilities we would have both

u(1/2, 0) > u(0, 1/2) and u(1/2, 0) < u(0, 1/2), which yields a contradiction.

Example 2. Let the primitive dataset be given by D =
{

(p1,m1, µ1), (p2,m2, µ2)
}

where

p1 = (2, 1), p2 = (1, 2), and m1 = m2 = 1; moreover, the measure µ1 assigns probability

1/2 to bundles (1/2, 0) and (1/4, 1/2), while µ2 assigns probability 1/2 to (0, 1/2) and

(1/2, 1/4). See Figure 3 for a graphical representation.

One can easily show that the dataset violates mean acyclicity. At the same time, it is

straightforward to show that the set of observations can be rationalized with a random

utility model. Clearly, one can always find a function u1 : R2
+ → R in U that is uniquely

maximized at (1/2, 0) over B1 :=
{
x ∈ R2

+ : p1 · x ≤ 1
}

and uniquely maximized at

14



(1/2, 1/4) over B2 :=
{
x ∈ R2

+ : p2 ·x ≤ 1
}

. Analogously, there is a function u2 : R2
+ → R

in U that is uniquely maximized at (0, 1/2) over B2 and uniquely maximized at (1/4, 1/2)

over B1. Therefore, a random utility model ρ that assigns probability 1/2 to each of these

utility functions rationalizes these data.
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Figure 3: Graphical interpretation of the dataset in Example 2

4 General statistical consumer theory

We have focused on the mean choice model due to the empirical relevance and intuitive

appeal of a budget on average expenditure. This section presents a more general statis-

tical choice model, where the distribution of choices is restricted through a more general

statistic than the mean. Here, we say a statistic is a finite-dimensional summary of a dis-

tribution. In particular, let S : ∆ → RK be a continuous function from the distribution

of bundles to the K-dimensional real vector space.15 In addition, we assume that the

function S is locally nonsatiated, i.e., for every neighborhood of ν ∈ ∆ there is a measure

ν ′ in the neighborhood such that S(ν ′) > S(ν).16

Following Forges and Minelli (2009), we assume that the budget constraint for obser-

vation t ∈ T is represented by a continuous function gt : RK → R. A distribution ν ∈ ∆

15 Note that the statistic does not need to map to the same dimension as the consumption bundle.
16 That is, we have Si(ν

′) ≥ Si(ν), for all dimensions i = 1, . . . ,K, and Si(ν
′) > Si(ν), for some i.
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is feasible if gt
(
S(ν)

)
≤ 0. Here a general dataset is given by DG =

{
(gt, µt) : t ∈ T

}
.

Here we make the high level assumption that gt
(
S(ν)

)
is continuous and, for any ν and

its neighborhood, there is some ν ′ in the neighborhood such that gt
(
S(ν ′)

)
> gt

(
S(ν)

)
,

for all t ∈ T .17 Any variables describing gt (such as prices) are absorbed into the function,

since it is indexed by t. For example, the average expenditure constraint is represented

by gt
(
S(ν)

)
= pt ·

∫
x dν(x) −mt, where S(ν) =

∫
x dν(x) and gt(y) = pt · y −mt.

Definition 4. The dataset DG with statistic S is rationalizable with a statistical choice

model if there is a function f : RK → R such that the function

U(ν) := f
(
S(ν)

)
is locally nonsatiated and rationalizes DG, i.e., if gt

(
S(ν)

)
≤ 0 then U(µt) ≥ U(ν).

Similar to the mean expenditure constraint, we can define a direct revealed preference

relation RS by setting µt RS µs when gt
(
S(µs)

)
≤ 0. Similarly, we can define a strictly

directly revealed preference relation PS so that µt PS µs when gt
(
S(µs)

)
< 0. The con-

tinuity and locally nonsatiation properties on the budget constraint and statistic allow

us to mirror arguments in Section 2.2 to show that these relations are consistent with a

rationalization of the choices by a locally nonsatiated function U : ∆ → R.

Similarly, for any t, s ∈ T , we say that µt is revealed preferred to µs, denoted by

µt R∗
S µs, when there is a sequence of indices a, b, c, . . . , z ∈ T such that

µt RS µa, µa RS µb, . . . , and µz RS µs. (7)

Moreover, we say that µt is strictly revealed preferred to µs, denoted by µt P ∗
S µs, when

there is a sequence as in condition (7) with at least one pair ordered with respect to PS.

This motivates the following acyclity condition.

Definition 5 (Statistical acyclicity). For any cycle C =
{

(a, b), (b, c), . . . , (z, a)
}
in T×T

such that gt
(
S(µs)

)
≤ 0 for (t, s) ∈ C, we have gt

(
S(µs)

)
= 0, for all (t, s) ∈ C.

The above definition has the same link to GARP as in Section 2.2 but with a general

budget constraint and statistic. We show that statistical acyclicity and a statistical choice

model are observationally equivalent for data generated from a locally nonsatiated utility

function U : ∆ → R with a general budgets and a statistic S.

17 One sufficient condition for this is when each gt is strictly increasing and S is locally nonsatiated.
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Theorem 2. For any set of observations DG, the following statements are equivalent:

(i) DG is rationalizable with a locally nonsatiated utility function U : ∆ → R.

(ii) DG satisfies statistical acyclicity.

(iii) DG is rationalizable with a statistical choice model with a continuous function

f : RL
+ → R such that U(ν) := f

(
S(ν)

)
.

(iv) DG is rationalizable with a statistical choice model.

Thus, the result for the mean choice model in Theorem 1 holds more generally. In

particular, a general model of preferences over distributions with systematic restrictions

via a statistic in the budget constraint is observationally equivalent to a model where the

statistic enters preferences. We note that this is not simply a mathematical curiosity, but

can be used to study some empirically relevant types of preferences. In particular, one

can study a generalization of mean-variance preferences or preferences that depend on

arbitrary moments of consumption.

Example 3. (Mean-variance preferences) Using the results for general consumer theory,

we can obtain restrictions that generalize mean-variance preferences. Suppose a consumer

maximises a utility U : ∆ → R subject to constraints on the mean consumption and

variance. For each observation t ∈ T and each good ℓ = 1, . . . , L, there are positive

numbers x̄t
ℓ and v̄tℓ such that a feasible distribution ν ∈ ∆ must satisfy

Eℓ(ν) :=

∫
xℓ dν(x) ≤ x̄t

ℓ and Varℓ(ν) :=

∫ (
xℓ − Eℓ(ν)

)2
dν(x) ≤ v̄tℓ.

One can represent the above set of constraints with a single function gt : R2L
+ → R,

gt
(
S(ν)

)
:= max

{
max

ℓ

{
Eℓ(ν) − x̄t

ℓ

}
,max

ℓ

{
Varℓ(ν) − v̄tℓ

}}
,

where S(ν) =
(
E1(ν), . . .EL(ν),Var1(ν), . . . ,VarL(ν)

)
. The composition of gt

(
S(ν)

)
is

continuous and satisfies the additional high level nonsatiation condition.18 Following

Theorem 2, choices made with this budget constraint can be rationalized with a utility

function

U(ν) := f
(
E(ν),Var(ν)

)
18 This is because, for any ν ∈ ∆ and its neighborhood, one can find a distribution ν′ in the neigh-

borhood that has a strictly greater mean and variance than ν, for each ℓ = 1, . . . , L. Therefore, we have

gt
(
S(ν′)

)
> gt

(
S(ν)

)
, for all t ∈ T .
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where E(ν) =
(
Eℓ(ν)

)L
ℓ=1

and Var(ν) =
(
Varℓ(ν)

)L
ℓ=1

.

This shows that it is observationally equivalent to behavior of preferences that depend

only on the mean and variance of the distribution of choices. We note that the preferences

on mean and variance are separable under this formulation. Thus, this rationalization

generalizes the standard mean-variance preferences that are additively separable. In

practice, one would set x̄t
ℓ = Eℓ(µ

t) and v̄tℓ = Varℓ(µ
t) to check statistical acyclicity.

We note that the above restrictions do not depend on prices. However, prices could

easily be incorporated into the above formulation. For example, one could add the average

expenditure constraint so that

gt
(
S(ν)

)
:= max

{
max

ℓ

{
Eℓ(ν) − x̄t

ℓ

}
,max

ℓ

{
Varℓ(ν) − v̄tℓ

}
,

∫
(pt · x) dν(x) −mt

}
and the resulting preferences are still separable in mean and variance expenditure. One

could also have considered constraints on average expenditure on specific goods or con-

straints on the variance of expenditure on goods.

Example 4 (Moment preferences). Let a consumer maximize a utility U : ∆ → R subject

to constraints imposed on moments of consumption. Let mℓ,j(ν) :=
∫
xj
ℓ dµ(x) denote the

j-th moment of the consumption for the ℓ-th good according to the distribution ν ∈ ∆.

Suppose that, for each observation t ∈ T , a constraint is imposed on the moments of

order j = 1, . . . , J for each good ℓ = 1, . . . , L. Therefore, for each ℓ = 1, . . . , L and

j = 1, . . . , J , we require that feasible distributions satisfy the inequality mℓ,j(ν) ≤ κ̄t
ℓ,j

for some positive number κ̄t
ℓ,j. Note that, in such a case, the budget constraint can be

described by the function gt : RLJ → R of

gt
(
S(ν)

)
:= max

ℓ,j

{
mℓ,j(ν) − κ̄ℓ,j

}
where S(ν) =

(
m1,1(ν), . . . ,m1,J(ν),m2,1(ν), . . . ,mL,1(ν), . . . ,mL,J(ν)

)
. It is straightfor-

ward to show that gt
(
S(ν)

)
is continuous and satisfies the additional high level nonsatia-

tion condition.19

Therefore, following Theorem 2 a utility function given by

U(ν) := f
((

mℓ,j(ν)
)
(ℓ,j)∈L×J

)
,

19 Given that each function mℓ,j(ν) is increasing with respect to first order stochastic dominance,

for any distribution ν ∈ ∆ and its neighborhood, one can find some ν′ in the neighborhood such that

mℓ,j(ν
′) > mℓ,j(ν), for all (ℓ, j) ∈ L× J . This suffices to show that gt

(
S(ν′)

)
> gt

(
S(ν)

)
, for all t ∈ T .
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rationalizes the data where L = {1, . . . , L} and J = {1, . . . , J}. Thus, one can rationalize

the choice of distributional choice that only depend on the moments of the distribution.

Straightforward extensions of this could place restrictions on moments across goods. As in

the previous example, one could also add the restriction of average expenditure constraints

to the function that described the budget constraint and still obtain a preference that

only depends on moments of the distribution.

We note that as additional moments of a distribution are modeled in the constraints,

there are fewer revealed preference comparisons. To see this, note that if one adds an

additional moment restriction to the constraints, then a distribution must satisfy an

additional inequality to be revealed preferred. Thus, introducing additional moments

to the constraints will necessarily describe more datasets. One potentially interesting

exercise would be to look for the least moment restrictions that rationalize a dataset.

5 Conclusion

This is the first paper to provide a microfoundation for using aggregated data to exam-

ine consumer preferences. Even though many papers empirically analyze models using

aggregate choices, until this paper there was no formal microfoundation that justified

this practice. We show that if individuals have a preference for randomization, then it is

without loss of generality to use data on aggregate choices.

More broadly, this paper relates to the growing literature on stochastic choice. For

example, we show how a random quasilinear utility model with random incomes is nested

in the approach. We also show that in practice statistical choice models can be differ-

entiated from random utility models that have a fixed budget. While the main results

study the average expenditure constraint, we show that the results also apply to general

constraints that depend on a statistic of the distribution. We show how this can be used

in practice to characterize a generalization of mean-variance preferences and preferences

that depend on arbitrary moments.

One implication of the results for the mean choice model is that welfare analysis is

possible by building on existing results from the standard consumer problem. Moreover,

since it is without loss of generality to study models that depend on mean consumption,
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an applied researcher can use their favorite functional forms from consumer theory. For

example, one can use a Cobb-Douglas model and replace the choice of consumption

bundles with means. Lastly, in ongoing work (Allen et al., 2021) we present a statistical

test of the deterministic stochastic choice model with mean expenditure constraint and

apply it to data from capuchin monkeys. That paper builds on the insight in this paper

that testability of the mean choice model depends on the mean quantities, and not the

entire distribution of quantities.

Appendix A Main proofs

Here we present proofs that were not included in the main body of the paper. Unless

stated otherwise, we follow the notation introduced in the paper. We start with the proof

of Theorem 2. Theorem 1 follows immediately after verifying certain properties when

gt
(
S(ν)

)
= pt ·

∫
x dν(x) −mt ≤ 0, where S(ν) =

∫
x dν(x).

We assume throughout that the function gt
(
S(ν)

)
is continuous, for all t ∈ T , and

for any ν ∈ ∆ and its neighborhood, there is some ν ′ in the neighborhood such that

gt
(
S(ν ′)

)
> gt

(
S(ν)

)
, for all t ∈ T .

Proof of Theorem 2. It is clear that (iii) ⇒ (iv) ⇒ (i). We show that (i) ⇒ (ii). Clearly,

if gt
(
S(ν)

)
≤ 0 then U(µt) ≥ U(ν), for any ν ∈ ∆ and t ∈ T . Moreover, given local

nonsatiation of U , it is also true that gt
(
S(ν)

)
< 0 implies U(µt) > U(ν). Indeed, since

gt
(
S(·)

)
is continuous, the set

{
ν ∈ ∆ : gt(S(ν)) < 0

}
is open and contains ν. In

particular, there must be some ν ′ such that gt
(
S(ν ′)

)
< 0 and U(ν ′) > U(ν). Thus, by

our previous observation, we obtain U(µt) ≥ U(ν ′) > U(ν).

Now, towards contradiction, suppose there is a dataset that is rationalizable with

the statistical choice model, but violates statistical acyclicity. Thus, there is a cycle

C =
{

(a, b), (b, c), . . . , (z, a)
}

in T × T such that gt
(
S(µs)

)
≤ 0, for all (t, s) ∈ C, and

ga
(
S(µb)

)
< 0, without loss. However, by our initial claim, this implies that

U(µa) > U(µb) ≥ . . . ≥ U(µz) ≥ U(µa),

which contradicts U being a well-defined function.

Next, we now show that (ii) ⇒ (iii). Statistical acyclicity holds if and only if, for any

cycle C =
{

(a, b), (b, c), . . . , (z, a)
}

in T ×T such that gt
(
S(µs)

)
≤ 0, for all (t, s) ∈ C, we
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have gt(µs) = 0, for all (t, s) ∈ C. By Lemma 2 in Forges and Minelli (2009), there are

numbers {ϕt}t∈T and strictly positive numbers {λt}t∈T such that ϕs ≤ ϕt+λtgt
(
S(µs)

)
, for

all t, s ∈ T . Take any such numbers {ϕt}t∈T , {λt}t∈T and define the function f : RK
+ → R,

f(y) := min
{
ϕs + λsgs(y) : s ∈ T

}
,

which is continuous since each function gt is continuous. We claim that the function

U : ∆ → R, given by U(ν) := f
(
S(ν)

)
, rationalizes the set of observations and is locally

nonsatiated. First, we show U rationalizes the dataset. Take any t ∈ T and ν ∈ ∆ such

that gt
(
S(ν)

)
≤ 0. Then,

U(ν) = f
(
S(ν)

)
= min

{
ϕs + λsgs

(
S(ν)

)
: s ∈ T

}
≤ ϕt + λtgt

(
S(ν)

)
≤ ϕt

≤ min
{
ϕs + λsgs

(
S(µt)

)
: s ∈ T

}
= f

(
S(µt)

)
= U(µt),

where the first inequality follows from the property of the minimum function, the second

inequality is implied by λt > 0 and gt
(
S(ν)

)
≤ 0, while the third follows from the con-

struction of the numbers {ϕt}t∈T and {λt}t∈T . Finally, given the high-level nonsatiation

assumption on gt
(
S(ν)

)
and the fact that λt > 0, for all t ∈ T , it is straightforward to

show that the function U is also locally nonsatiated.

Proof of Theorem 1. For the primitive dataset D, define gt(x) := pt · x − mt and let

S(ν) =
∫
x dν(x). Clearly, each gt is strictly increasing, since pt ∈ RL

++. Moreover,

S(ν) =
∫
x dν(x) is strictly increasing with respect to first order stochastic dominance by

Lemma B.3, i.e., if ν ′ strictly first order stochastically dominates ν, then S(ν ′) > S(ν).

Thus, by Lemma B.4, it is locally nonsatiated. In particular, the functions gt
(
S(ν)

)
, for

all t ∈ T , satisfy the high-level assumption (recall footnote 17). Following Theorem 2,

this suffices for existence of a continuous and strictly increasing function f such that the

function U(ν) := f
(
S(ν)

)
is locally nonsatiated and rationalizes the data. Finally, the

21



fact that f is concave and strictly increasing follows directly from the construction of

the function in the proof of Theorem 2 and the fact that for all t ∈ T the function gt is

concave (in fact, linear) and strictly increasing.

Proof of Proposition 1. Suppose that the data is generated by a random quasilinear util-

ity and income model as in the statement of the proposition. For each pt, let

(
x∗,t(η, ε), y∗,t(η, ε)

)
:= argmax

(x,y)∈RL
+×R

{
U(x, η) + y

∣∣ pt · x + y ≤ m(ε)
}

be the maximizer of choices when the values (η, ε) are realized by the random variables.

Here y∗,t(η, ε) = m(ε) − pt · x∗,t(η, ε).

Conditioning on the realization of the random variables, we can compare this to the

x∗,s(η, ε) when purchased at prices pt. It follows that

U
(
x∗,t(η, ε), η

)
− ptx∗,t(η, ε) ≥ U

(
x∗,s(η, ε), η

)
− ptx∗,s(η, ε)

where finiteness of the utility numbers is ensured by the existence of maximizers. Still

conditioning on (η, ε), we can look at any sequence {tm}Mm=1 with tm ∈ T and get that

M∑
m=1

ptm ·
(
x∗,tm(η, ε) − x∗,tm+1(η, ε)

)
≤ 0

where tM+1 = t1. Taking expectations over (η, ε), it follows that

M∑
m=1

ptm ·
(
E
[
x∗,tm(η, ε)

]
− E

[
x∗,tm+1(η, ε)

])
≤ 0

where tM+1 = t1 by linearity of expectations. This holds for any dataset generated by a

random quasilinear utility and income maximizer.

To see that mean acyclicity is satisfied, suppose by contradiction that there is a cycle.

It follows that there exists a sequence {t̃m}Mm=1 with t̃m ∈ T where

pt̃m · E
[
x∗,t̃m+1(η, ε)

]
≤ pt̃m · E

[
x∗,t̃m(η, ε)

]
with at least one inequality strict where t̃M+1 = t̃1. Summing these inequalities up yields

M∑
m=1

ptm ·
(
E
[
x∗,tm(η, ε)

]
− E

[
x∗,tm+1(η, ε)

])
> 0

which contradicts that the data is generated by a random quasilinear utility.
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Appendix B First order stochastic dominance

Here we discuss properties of the first order stochastic dominance. Let ∆X denote a

Borel space of probability distributions over some X ⊆ RL. We consider the usual

partial order over RL, i.e., for x, y ∈ X ⊆ RL, x ≥ y if and only if xi ≥ yi for each

ℓ = 1, . . . , L. The distribution µ first order stochastically dominates ν, or µ ⪰ ν, whenever∫
f(x)dµ(x) ≥

∫
f(x)dν(x), for any measurable, bounded, and nondecreasing function

f : X → R.

One can show that ⪰ is a partial order over ∆X . This follows from Theorem 2 in

Kamae and Krengel (1978) and the fact that RL is a Polish space.

Lemma B.1. Suppose that µ ⪰ ν, for some µ, ν ∈ ∆X . There is a probability space

(Ω,F , τ) and random variables Xµ, Xν : Ω → X such that

(i) Xµ and Xν are distributed according to µ and ν respectively, i.e., for any Borel

measurable set O ⊆ X we have

µ(O) = τ
({

ω ∈ Ω : Xµ(ω) ∈ O
})

and ν(O) = τ
({

ω ∈ Ω : Xν(ω) ∈ O
})

;

(ii) Xµ(ω) ≥ Xν(ω), for all ω ∈ Ω.

See Lemma 4 in Kamae and Krengel (1978) for the proof. We say that µ strictly

dominates ν, and denote it by µ ≻ ν, if µ ⪰ ν and µ ̸= ν. Using Lemma B.1, it is easy

to show that we have µ ≻ ν if and only if there are random variables Xµ, Xν : Ω → X

such that Xµ(ω) ≥ Xν(ω), for all ω ∈ Ω, where the inequality is strict for all ω in some

measurable set F such that τ(F ) > 0. We now prove a series of lemmas.

Lemma B.2. The distribution µ first order stochastically dominates ν, or µ ⪰ ν, if and

only if µ(D) ≥ ν(D), for any measurable and upward comprehensive set D.20

Proof. We prove the implication (⇒) by contradiction. Suppose that µ ⪰ ν, but there is

some measurable, upward comprehensive set D such that µ(D) < ν(D). Let χD be the

indicator function, taking values χD(x) = 0, for x /∈ D, and χD(x) = 1 otherwise. The

function is obviously bounded. Since D is upward comprehensive, the above function

20 Set D ⊂ RL is upward comprehensive if y ∈ D and x ≥ y implies x ∈ D.
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is increasing. Since the simple function is defined on a measurable set, it is measur-

able. However, it must be that
∫
χD(x)dµ(x) = µ(D) < ν(D) =

∫
χD(x)dν(x), which

contradicts that µ first order stochastic dominates ν.

The converse follows directly from the definition of Lebesgue integration. Suppose

that, for any upward comprehensive and measurable set D, we have µ(D) ≥ ν(D).

Clearly, D is upward comprehensive if and only if its complement RL \ D is downward

comprehensive. Thus, for any such set E, we have µ(E) ≤ ν(E).

Take any bounded, measurable, and increasing function f : RL → R. Clearly, for all

r ∈ R any sets of the form
{
y ∈ RL : f(y) > r

}
and

{
y ∈ RL : f(y) < r

}
are upward

and downward comprehensive, respectively. Moreover, they are both measurable, by

measurability of f . This implies that∫
f(x)dµ(x) =

∫ ∞

0

µ
({

x ∈ RL : f(x) > y
})

dy −
∫ ∞

0

µ
({

x ∈ RL : f(x) < y
})

dy

≥
∫ ∞

0

ν
({

x ∈ RL : f(x) > y
})

dy −
∫ ∞

0

ν
({

x ∈ RL : f(x) < y
})

dy

=

∫
f(x)dν(x).

Since this is true for any increasing function f , the proof is complete.

Before we state the next result, a function f : X → R is strictly increasing if x′
ℓ ≥ xℓ,

for all ℓ = 1, . . . , L, and x′
ℓ > xℓ, for some ℓ, implies f(x′) > f(x), for any x, x′ ∈ X.

Lemma B.3. Suppose that µ ≻ ν, for some µ, ν ∈ ∆X . For any strictly increasing

function f : X → R, we have
∫
f(x)dν(x) >

∫
f(x)dµ(x).

Proof. Given that µ ⪰ ν, Lemma B.1 implies that there is a probability space (Ω,F , τ)

and random variables Xµ, Xν : Ω → X that are distributed according to µ, ν respectively,

and Xµ(ω) ≥ Xν(ω), for all ω ∈ Ω. Since µ ≻ ν, let Ω′ ⊆ Ω be defined so that

Ω′ =
{
ω ∈ Ω : Xµ(ω) > Xν(ω)

}
.

where τ(Ω′) > 0 (recall Lemma B.1). For any strictly increasing f : X → R, we have∫
f(x)dν(x) −

∫
f(x)dµ(x) =

∫
Ω

[
f
(
Xν(ω)

)
− f

(
Xµ(ω)

)]
dτ(ω)

=

∫
Ω′

[
f
(
Xν(ω)

)
− f

(
Xµ(ω)

)]
dτ(ω) > 0.

This completes the proof.

24



Lemma B.4. Suppose that X+RL
+ ⊆ X. For any measure µ ∈ ∆X and its neighborhood,

we have ν ≻ µ, for some ν in the neighborhood.

Proof. We show that for any µ ∈ ∆ there is a sequence {µk} in ∆ that weakly converges

to µ and µk ≻ µ, for all k. Take any probability space (Ω,F , τ) and the random variable

Xµ : Ω → X that is distributed according to µ, i.e., for any measurable O ⊆ X we have

µ(O) = τ
({

ω ∈ Ω : Xµ(ω) ∈ O
})

.

Take any sequence {Xk} of random variables Xk : Ω → R that pointwise converge to Xµ

and satisfy Xk(ω) > Xµ(ω), for all ω ∈ Ω.

For each k, define a probability measure µk so that for any measurable O ⊆ X

µk(O) := τ
({

ω ∈ Ω : Xk(ω) ∈ O
})

.

Since X + RL
+ ⊆ X, we have µk ∈ ∆X . Moreover, for any measurable, upward compre-

hensive set D, it must be that

µk(D) = τ
({

ω ∈ Ω : Xk(ω) ∈ D
})

≥ τ
({

ω ∈ Ω : Xµ(ω) ∈ D
})

= µ(D),

since for all ω ∈ Ω if Xµ(ω) ∈ A then Xk(ω) ∈ D. Therefore, by Lemma B.2 and

since Xk(ω) > Xµ(ω), for all ω ∈ Ω, it follows for all k that µk ≻ µ. Finally, take any

continuous, bounded function f : X → R and notice that

lim
k→∞

∣∣∣∣∫ f(x)dµk(x) −
∫

f(x)dµ(x)

∣∣∣∣ = lim
k→∞

∣∣∣∣∫ [
f
(
Xk(ω)

)
− f

(
Xµ(ω)

)]
dτ(ω)

∣∣∣∣ = 0,

since Xk(ω) → Xµ(ω), for all ω ∈ Ω. Thus {µk} weakly converges to µ. This implies that,

for any neighborhood of µ, there is some µk in the neighborhood such that µk ≻ µ.
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