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Motivation

Game semantics is a way of modelling computation as a
two-player game between a program and its environment.

Crucially, games and strategies are compositional. But the
mathematical details are quite complicated.

Is there a more natural way to understand strategy
composition?
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Talk outline

Simple categories of games

From simple games to traces

More complex categories of games

Categorical tools - comonads and distributive laws

From games to traces
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Simple games

A game A consists of:

Two sets PA, OA of Player moves and Opponent moves

A tree TA of moves from PA and OA specifying the allowable
plays, e.g.

• o1

◦ p1 ◦ p2

• o2

◦ p1 ◦ p3 ◦ p4

• o1

◦ p2

Opponent starts and then play alternates.
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Simple games

A history-free strategy σ for Player in game A is a choice of move
at each point in the game, based on the previous move.

σ is a partial function
OA ⇀ PA

compatible with the game structure TA.

e.g. σ(o1) = p2, σ(o2) = p3, . . . • o1

◦ p1 ◦ p2

• o2

◦ p1 ◦ p3 ◦ p4

• o1

◦ p2
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Simple games - constructions on games

The cogame A⊥ is A with the roles of Player and Opponent
reversed.
Opponent moves = PA, Player moves = OA.

In the game A⊗ B, the games A and B are played in parallel.
Opponent chooses which game to start in.
Opponent moves = OA + OB , Player moves = PA + PB .

In the game A ( B, the games A⊥ and B are played in
parallel. Opponent starts in B, and then Player can choose to
switch.
Opponent moves = PA + OB , Player moves = OA + PB .
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Simple games - strategies

A strategy σ from game A to game B is a strategy in the game
A ( B, i.e. σ is a partial function

PA + OB ⇀ OA + PB .

For example:
‘copycat strategy’ A→ A is
id : PA + OA ⇀ OA + PA.

AA⊥

•o1◦o1

•p1 ◦p1
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Simple games - composition of strategies

Given σ : A ( B and τ : B ( C , the composite τ · σ : A ( C is
given by ‘parallel composition plus hiding’. e.g.:

A⊥ B B⊥ C

•c1◦b1•b1

◦b2
σ

•b2

◦b3
τ

•b3◦a1 σ

Games and history-free strategies form a symmetric monoidal
closed category GamesHF .
[Abramsky, Jagadeesan, Malacaria 1994].
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Simple games - composition of strategies

σ : A ( B is a map PA + OB ⇀ OA + PB ,
τ : B ( C is a map PB + OC ⇀ OB + PC .

PA

OA

σ

OC

PC

τ

OB PB

The composite τ · σ : A ( C is a map PA + OC ⇀ OA + PC .
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Traces

A trace on a monoidal category (C,⊗) is a natural family of
functions

TrXA,B : C(A⊗ X ,B ⊗ X )→ C(A,B)

satisfying some coherence axioms.

A X

B X

f

A

B

X

f

[Joyal, Street, Verity 1996]
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Traces

Coherence axiom examples:

Tr IA,B(f ) = f TrXA,B((1⊗ g)f ) = TrX
′

A,B(f (1⊗ g))

A

B

I

f =

A

B

f

A

B

X

f

g

=

A

B

X ′

f

g
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Traces

Examples:

In the category of real vector spaces, if f is a linear map
U ⊗W → V ⊗W , then the partial trace U → V is given by

(TrWU,V (f ))i ,j = Σk fi⊗k,j⊗k

In the category Pfn of sets and partial functions with + as
tensor, the trace of f : A + X ⇀ B + X is

Tr(f )(a) =


f n(a) if f i (a) ∈ X , i < n and f n(a) ∈ B

for some n

⊥ (undefined) otherwise.
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Traces - the Int construction

For any traced monoidal category (C,⊗), there is an associated
category Int(C) with composition given by the trace in C.

Int(C) is the free compact closed category on C:
A monoidal category is compact closed if every object A has a dual
A∗ with unit η : I → A∗ ⊗ A and counit ε : A⊗ A∗ → I , satisfying
some axioms.

Examples:

Finite dimensional vector spaces

Sets and relations with × as tensor, where A∗ = A

Pfn is not compact closed
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Traces - the Int construction

Int(C) is the free compact closed category on C.

A compact closed category is always monoidal closed and has a
canonical trace:

TrXA,B(f ) = A
1⊗η−−→ A⊗ X ⊗ X ∗

f⊗1−−→ B ⊗ X ⊗ X ∗
1⊗ε−−→ B

Compact closed categories form an abstract setting for modelling
possibly non-terminating computation.
e.g. Geometry of Interaction for linear logic, quantum operators

[Girard 1989], [Abramsky, Haghverdi, Scott 2002]
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Traces - the Int construction

In the category Int(C):

objects are pairs (A+,A−) of objects in C
morphisms A→ B are morphisms A+ ⊗ B− → A− ⊗ B+ in C
composition A

σ−→ B
τ−→ C is given by tracing out B− ⊗ B+.

A+

A−

σ

C−

C+

τ

B− B+
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From games to traces

Composition of strategies is given by a trace.

Category of games: Abstract category for computation:

GamesHF Int(Pfn)

A (PA,OA)

A
σ−→ B PA + OB

σ−→ OA + PB

This functor is faithful and preserves the monoidal closed structure.
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History-sensitive strategies
A history-free strategy determines Player’s moves from the
previous move.

A history-sensitive strategy σ determines Player’s moves from all
the moves so far.

σ is a partial function
L(OA) ⇀ PA

compatible with the game structure TA, where L(OA) is the set of
lists of Opponent moves.

e.g. σ([o1]) = p2, σ([o1, o2]) = p3, . . .
• o1

◦ p1 ◦ p2

• o2

◦ p1 ◦ p3 ◦ p4

• o1

◦ p2
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History-sensitive strategies

Composition of history-sensitive strategies σ : A ( B and
τ : B ( C is still parallel composition plus hiding. e.g.:

A⊥ B B⊥ C

•c1◦b1•b1

◦b2
σ

•b2

◦b3
τ

•b3◦a1 σ

where τ([c1]) = b1, σ([b1]) = b2, τ([c1, b1, b2]) = b3, etc
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From games to traces

Games and history-free strategies form a symmetric monoidal
category GamesHS .

Category of games: Category for computation:

GamesHF Int(Pfn)

GamesHS Int(?)
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Distributive laws - the list comonad

Let L(A) be the set of non-empty lists with elements in A.

L(A) = µX .(A + A× X ) (least fixed point)

L is a comonad on Set.
The counit ε gives the head of the list:

L(A)
εA−→ A

[a1, . . . , an] 7→ an

The comultiplication δ gives the list of prefixes:

L(A)
δA−→ LL(A)

[a1, . . . , an] 7→ [[a1], [a1, a2], . . . , [a1, . . . , an]]
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Distributive laws

History-sensitive strategies are partial functions L(A) ⇀ B.

We have:

Set

Monad (−+ 1)

Comonad L

The coKleisli category for the comonad L has as objects sets
and as morphisms total functions L(A)→ B.

The Kleisli category Pfn for the lifting monad X 7→ X + 1 has
as objects sets and as morphisms partial functions A⇀ B.
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Distributive laws

Let R be a comonad and T a monad on a category C.

R extends to a comonad on Kl(T ) iff there is a distributive law of
R over T ,
i.e. if there exists λ : RT ⇒ TR compatible with the monad and
comonad structure.

RTA TRA

TA

λA

εT Tε

TRA

λA

RTA TRA

RA

λA

ηRRη

RTA
λA

etc
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Distributive laws

There is no distributive law of the list comonad L over the monad
T = (−+ 1).

There is a natural transformation λ : LT ⇒ TL :

L(A + 1)
λA−→ L(A) + 1

[a1, . . . , an] 7→

{
[a1, . . . , an] if all ai ∈ A

⊥ otherwise.

But λ is not compatible with the counit ε:

L(A + 1) L(A) + 1

A + 1

λA

ε ε+ 1
6= e.g. λA([a1,⊥]) = ⊥ 6= a1.
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Distributive laws - near-comonads

A near-comonad is a endofunctor R on C with

a natural transformation δ : R → RR

a (not necessarily natural) family of morphisms
{εA : RA→ A}A∈C

satisfying the usual axioms of a comonad.

A near-comonad R has a near-coKleisli category coKl(R) with

objects the same as objects of C

morphisms from A to B those morphisms R(A)
f−→ B in C

satisfying f = εB ◦ Rf ◦ δA.

[Hyland, Nagayama, Power, Rosolini 2006]
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Distributive laws - near-comonads

A near-distributive law is a natural transformation satisfying all the
axioms of a distributive law except for compatibility with the
counit.

The near-distributive law

L(A + 1)
λA−→ L(A) + 1

gives an extension of L to a near-comonad L̃ on Kl(−+ 1).

The near-comonad L̃ has a near-coKleisli category coKl(L̃) with

objects sets

morphisms from A to B partial functions f : L(A) ⇀ B
such that if f is defined on a list then it is defined on all
prefixes.
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Distributive laws - monoidal structure

The comonad L is compatible with the tensor + on Set:
There is a natural transformation

L(A + B)→ L(A) + L(B)

[x1, . . . , xn] 7→

{
[xi , . . . , xn] ∈ L(A) if xn ∈ A

[xi , . . . , xn] ∈ L(B) if xn ∈ B

which commutes with the counit and comultiplication.

This gives coKl(L̃) the structure of a symmetric monoidal category
with + as tensor.

The trace on Pfn induces a trace on coKl(L̃).
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From games to traces

Category of games: Abstract category for computation:

GamesHS Int(coKl(L̃))

A (PA,OA)

A
σ−→ B L(PA + OB)

σ−→ OA + PB

This functor is faithful and preserves the monoidal closed structure.
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From games to traces - generalising

The above construction generalises.
Given:

a monad T corresponding to a class of partial maps,

a comonad R defined by a least fixed point which is
compatible with T and the monoidal structure,

then R extends to a near-comonad R̃ on Kl(T ).

The near-coKleisli category coKl(R̃) is a symmetric monoidal
category, and the trace on Kl(T ) induces a trace on coKl(R̃).

Finally, we get a compact closed category Int(coKl(R̃)).
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From games to traces - generalising

Example:

Instead of L(A) = µX .A× (1 + X ),

use R(A) = µX .A× Pf (X ).

Category of games: Category for computation:

GamesHF Int(Pfn)

GamesHS Int(coKl(L̃))

? Int(coKl(R̃))
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From games to traces - generalising

R(A) = µX .A× Pf (X )

An element of R(A) is a finite rooted tree of elements of A.

If a strategy is represented by some partial map R(A) ⇀ B then
the next move will depend on a partially ordered set of previous
plays, not a list. Moves might be played concurrently rather than
sequentially.

This has similarities to the category of concurrent games.
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From games to traces - generalising

A concurrent game E consists of

Two sets PE and OE of Player moves and Opponent moves

A partial order ≤ on moves PE + OE specifying the
prerequisites for a move to be played

A consistency predicate on finite sets of moves in PE + OE

specifying which moves may occur together

satisfying some axioms.

A strategy in a concurrent game E is given by another game S and
a map S → E which preserves downward-closed consistent sets
and is locally injective.

[Castellan, Clairambault, Rideau, Winskel 2016]
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From games to traces - generalising

Composition of strategies is given by a trace.

Category of games: Category for computation:

GamesHF Int(Pfn)

GamesHS Int(coKl(L̃))

Simple
concurrent games

Int(coKl(R̃))

...
...
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Questions and future work

The functor from games to a compact closed category appears
to lose some of the game structure. How much of it can be
recovered?

Near-monads and near-comonads arise in other situations, but
their general theory is not well-understood.

What other categories of games can be described this way?
What is the right abstract notion of a category of games?
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