# Games, traces and distributive laws



Tamara von Glehn

j.w.w. Martin Hyland University of Cambridge

BLC, 9 September 2017

## Motivation

- Game semantics is a way of modelling computation as a two-player game between a program and its environment.
- Crucially, games and strategies are compositional. But the mathematical details are quite complicated.
- Is there a more natural way to understand strategy composition?

## Talk outline

- Simple categories of games
- From simple games to traces
- More complex categories of games
- Categorical tools comonads and distributive laws
- From games to traces

## Simple games

A game A consists of:

- Two sets  $P_A$ ,  $O_A$  of Player moves and Opponent moves
- A tree *T<sub>A</sub>* of moves from *P<sub>A</sub>* and *O<sub>A</sub>* specifying the allowable plays, e.g.



Opponent starts and then play alternates.

#### Simple games

A history-free strategy  $\sigma$  for Player in game A is a choice of move at each point in the game, based on the previous move.

 $\sigma$  is a partial function

$$O_A 
ightarrow P_A$$

compatible with the game structure  $T_A$ .



#### Simple games - constructions on games

The cogame A<sup>⊥</sup> is A with the roles of Player and Opponent reversed.

Opponent moves =  $P_A$ , Player moves =  $O_A$ .

- In the game A ⊗ B, the games A and B are played in parallel. Opponent chooses which game to start in.
   Opponent moves = O<sub>A</sub> + O<sub>B</sub>, Player moves = P<sub>A</sub> + P<sub>B</sub>.
- In the game A → B, the games A<sup>⊥</sup> and B are played in parallel. Opponent starts in B, and then Player can choose to switch.

Opponent moves =  $P_A + O_B$ , Player moves =  $O_A + P_B$ .

A strategy  $\sigma$  from game A to game B is a strategy in the game  $A \multimap B$ , i.e.  $\sigma$  is a partial function

$$P_A + O_B 
ightarrow O_A + P_B.$$

•O1

For example:

'copycat strategy'  $A \rightarrow A$  is  $\mathbf{A}^{\perp}$  **A** id :  $P_A + O_A \rightarrow O_A + P_A$ .

A strategy  $\sigma$  from game A to game B is a strategy in the game  $A \multimap B$ , i.e.  $\sigma$  is a partial function

$$P_A + O_B 
ightarrow O_A + P_B.$$

*00*1 ↔

●*O*1

For example:

'copycat strategy'  $A \rightarrow A$  is  $\mathbf{A}^{\perp}$  **A** id :  $P_A + O_A \rightharpoonup O_A + P_A$ .

A strategy  $\sigma$  from game A to game B is a strategy in the game  $A \multimap B$ , i.e.  $\sigma$  is a partial function

$$P_A + O_B 
ightarrow O_A + P_B.$$

For example:

'copycat strategy'  $A \rightarrow A$  is  $\mathbf{A}^{\perp}$ id :  $P_A + O_A \rightharpoonup O_A + P_A$ .



A strategy  $\sigma$  from game A to game B is a strategy in the game  $A \multimap B$ , i.e.  $\sigma$  is a partial function

$$P_A + O_B 
ightarrow O_A + P_B.$$

For example:

'copycat strategy'  $A \rightarrow A$  is id :  $P_A + O_A \rightharpoonup O_A + P_A$ .



Given  $\sigma : A \multimap B$  and  $\tau : B \multimap C$ , the composite  $\tau \cdot \sigma : A \multimap C$  is given by 'parallel composition plus hiding'. e.g.:



Given  $\sigma : A \multimap B$  and  $\tau : B \multimap C$ , the composite  $\tau \cdot \sigma : A \multimap C$  is given by 'parallel composition plus hiding'. e.g.:



Given  $\sigma : A \multimap B$  and  $\tau : B \multimap C$ , the composite  $\tau \cdot \sigma : A \multimap C$  is given by 'parallel composition plus hiding'. e.g.:



Given  $\sigma : A \multimap B$  and  $\tau : B \multimap C$ , the composite  $\tau \cdot \sigma : A \multimap C$  is given by 'parallel composition plus hiding'. e.g.:



Given  $\sigma : A \multimap B$  and  $\tau : B \multimap C$ , the composite  $\tau \cdot \sigma : A \multimap C$  is given by 'parallel composition plus hiding'. e.g.:



Given  $\sigma : A \multimap B$  and  $\tau : B \multimap C$ , the composite  $\tau \cdot \sigma : A \multimap C$  is given by 'parallel composition plus hiding'. e.g.:



Given  $\sigma : A \multimap B$  and  $\tau : B \multimap C$ , the composite  $\tau \cdot \sigma : A \multimap C$  is given by 'parallel composition plus hiding'. e.g.:



Given  $\sigma : A \multimap B$  and  $\tau : B \multimap C$ , the composite  $\tau \cdot \sigma : A \multimap C$  is given by 'parallel composition plus hiding'. e.g.:



Given  $\sigma : A \multimap B$  and  $\tau : B \multimap C$ , the composite  $\tau \cdot \sigma : A \multimap C$  is given by 'parallel composition plus hiding'. e.g.:



 $\sigma : A \multimap B \text{ is a map } P_A + O_B \rightharpoonup O_A + P_B,$  $\tau : B \multimap C \text{ is a map } P_B + O_C \rightharpoonup O_B + P_C.$ 



The composite  $\tau \cdot \sigma : A \multimap C$  is a map  $P_A + O_C \rightharpoonup O_A + P_C$ .

#### Traces

A trace on a monoidal category  $(\mathcal{C},\otimes)$  is a natural family of functions

$$Tr_{A,B}^X: \mathcal{C}(A \otimes X, B \otimes X) \to \mathcal{C}(A, B)$$

satisfying some coherence axioms.



[Joyal, Street, Verity 1996]

#### Traces

Coherence axiom examples:



#### Traces

Examples:

In the category of real vector spaces, if *f* is a linear map
 *U* ⊗ *W* → *V* ⊗ *W*, then the partial trace *U* → *V* is given by

$$(Tr_{U,V}^{W}(f))_{i,j} = \Sigma_k f_{i\otimes k,j\otimes k}$$

In the category Pfn of sets and partial functions with + as tensor, the trace of f : A + X → B + X is

$$Tr(f)(a) = \begin{cases} f^n(a) & \text{if } f^i(a) \in X, i < n \text{ and } f^n(a) \in B \\ & \text{for some } n \\ \bot \text{ (undefined)} & \text{otherwise.} \end{cases}$$

## Traces - the Int construction

For any traced monoidal category  $(\mathcal{C}, \otimes)$ , there is an associated category  $Int(\mathcal{C})$  with composition given by the trace in  $\mathcal{C}$ .

 $Int(\mathcal{C})$  is the free compact closed category on  $\mathcal{C}$ : A monoidal category is compact closed if every object A has a dual  $A^*$  with unit  $\eta: I \to A^* \otimes A$  and counit  $\epsilon: A \otimes A^* \to I$ , satisfying some axioms.

Examples:

- Finite dimensional vector spaces
- Sets and relations with  $\times$  as tensor, where  $A^* = A$
- Pfn is not compact closed

#### Traces - the Int construction

 $Int(\mathcal{C})$  is the free compact closed category on  $\mathcal{C}$ .

A compact closed category is always monoidal closed and has a canonical trace:

$$Tr_{A,B}^{X}(f) = A \xrightarrow{1 \otimes \eta} A \otimes X \otimes X^{*} \xrightarrow{f \otimes 1} B \otimes X \otimes X^{*} \xrightarrow{1 \otimes \epsilon} B$$

Compact closed categories form an abstract setting for modelling possibly non-terminating computation.

e.g. Geometry of Interaction for linear logic, quantum operators

[Girard 1989], [Abramsky, Haghverdi, Scott 2002]

#### Traces - the Int construction

In the category  $Int(\mathcal{C})$ :

- objects are pairs  $(A^+,A^-)$  of objects in  ${\mathcal C}$
- morphisms  $A \to B$  are morphisms  $A^+ \otimes B^- \to A^- \otimes B^+$  in  $\mathcal{C}$
- composition  $A \xrightarrow{\sigma} B \xrightarrow{\tau} C$  is given by tracing out  $B^- \otimes B^+$ .



#### From games to traces

Composition of strategies is given by a trace.

Category of games: Abstract category for computation:



This functor is faithful and preserves the monoidal closed structure.

A history-free strategy determines Player's moves from the previous move.

A history-sensitive strategy  $\sigma$  determines Player's moves from all the moves so far.

 $\sigma$  is a partial function

$$L(O_A) 
ightarrow P_A$$

compatible with the game structure  $T_A$ , where  $L(O_A)$  is the set of lists of Opponent moves.



Composition of history-sensitive strategies  $\sigma : A \multimap B$  and  $\tau : B \multimap C$  is still parallel composition plus hiding. e.g.:



Composition of history-sensitive strategies  $\sigma : A \multimap B$  and  $\tau : B \multimap C$  is still parallel composition plus hiding. e.g.:



Composition of history-sensitive strategies  $\sigma : A \multimap B$  and  $\tau : B \multimap C$  is still parallel composition plus hiding. e.g.:



Composition of history-sensitive strategies  $\sigma : A \multimap B$  and  $\tau : B \multimap C$  is still parallel composition plus hiding. e.g.:



Composition of history-sensitive strategies  $\sigma : A \multimap B$  and  $\tau : B \multimap C$  is still parallel composition plus hiding. e.g.:



Composition of history-sensitive strategies  $\sigma : A \multimap B$  and  $\tau : B \multimap C$  is still parallel composition plus hiding. e.g.:



Composition of history-sensitive strategies  $\sigma : A \multimap B$  and  $\tau : B \multimap C$  is still parallel composition plus hiding. e.g.:



Composition of history-sensitive strategies  $\sigma : A \multimap B$  and  $\tau : B \multimap C$  is still parallel composition plus hiding. e.g.:



Composition of history-sensitive strategies  $\sigma : A \multimap B$  and  $\tau : B \multimap C$  is still parallel composition plus hiding. e.g.:



Games and history-free strategies form a symmetric monoidal category  $\mathbf{Games}_{HS}$ .

| Category of games:         |  | Category for computation: |                   |
|----------------------------|--|---------------------------|-------------------|
| Games <sub>HF</sub>        |  | $\rightarrow$             | Int( <b>Pfn</b> ) |
| <b>Games</b> <sub>HS</sub> |  | $\rightarrow$             | Int(?)            |

#### Distributive laws - the list comonad

Let L(A) be the set of non-empty lists with elements in A.

 $L(A) = \mu X.(A + A \times X)$  (least fixed point)

L is a comonad on **Set**.

The counit  $\varepsilon$  gives the head of the list:

$$L(A) \xrightarrow{\varepsilon_A} A$$
  
 $[a_1, \ldots, a_n] \mapsto a_n$ 

The comultiplication  $\delta$  gives the list of prefixes:

$$L(A) \xrightarrow{\delta_A} LL(A)$$
$$[a_1, \ldots, a_n] \mapsto [[a_1], [a_1, a_2], \ldots, [a_1, \ldots, a_n]]$$

## Distributive laws

History-sensitive strategies are partial functions  $L(A) \rightarrow B$ .

We have:



- The coKleisli category for the comonad L has as objects sets and as morphisms total functions  $L(A) \rightarrow B$ .
- The Kleisli category Pfn for the lifting monad X → X + 1 has as objects sets and as morphisms partial functions A → B.

#### Distributive laws

Let R be a comonad and T a monad on a category C.

R extends to a comonad on KI(T) iff there is a distributive law of R over T,

i.e. if there exists  $\lambda : RT \Rightarrow TR$  compatible with the monad and comonad structure.



#### Distributive laws

There is no distributive law of the list comonad L over the monad T = (-+1).

There is a natural transformation  $\lambda : LT \Rightarrow TL$  :

$$L(A+1) \xrightarrow{\lambda_A} L(A) + 1$$
  
 $[a_1, \dots, a_n] \mapsto \begin{cases} [a_1, \dots, a_n] & \text{if all } a_i \in A \\ ot & \text{otherwise.} \end{cases}$ 

But  $\lambda$  is not compatible with the counit  $\varepsilon$ :

$$L(A+1) \xrightarrow{\lambda_A} L(A) + 1$$
  
 $\varepsilon \downarrow \not = \varepsilon + 1$  e.g.  $\lambda_A([a_1, \bot]) = \bot \neq a_1$   
 $A+1$ 

.

## Distributive laws - near-comonads

A near-comonad is a endofunctor R on C with

- a natural transformation  $\delta: R \to RR$
- a (not necessarily natural) family of morphisms  $\{\varepsilon_A : RA \to A\}_{A \in C}$

satisfying the usual axioms of a comonad.

A near-comonad R has a near-coKleisli category coKl(R) with

- $\bullet\,$  objects the same as objects of  ${\cal C}\,$
- morphisms from A to B those morphisms  $R(A) \xrightarrow{f} B$  in C satisfying  $f = \varepsilon_B \circ Rf \circ \delta_A$ .

[Hyland, Nagayama, Power, Rosolini 2006]

## Distributive laws - near-comonads

A near-distributive law is a natural transformation satisfying all the axioms of a distributive law except for compatibility with the counit.

The near-distributive law

$$L(A+1) \xrightarrow{\lambda_A} L(A) + 1$$

gives an extension of L to a near-comonad  $\tilde{L}$  on Kl(-+1).

The near-comonad  $\tilde{L}$  has a near-coKleisli category  $coKl(\tilde{L})$  with

- objects sets
- morphisms from A to B partial functions f : L(A) → B such that if f is defined on a list then it is defined on all prefixes.

## Distributive laws - monoidal structure

The comonad L is compatible with the tensor + on **Set**: There is a natural transformation

$$L(A+B) \to L(A) + L(B)$$
  
[x<sub>1</sub>,...,x<sub>n</sub>]  $\mapsto \begin{cases} [x_i,...,x_n] \in L(A) \text{ if } x_n \in A \\ [x_i,...,x_n] \in L(B) \text{ if } x_n \in B \end{cases}$ 

which commutes with the counit and comultiplication.

This gives  $coKI(\tilde{L})$  the structure of a symmetric monoidal category with + as tensor.

The trace on **Pfn** induces a trace on  $coKI(\tilde{L})$ .

#### From games to traces

Category of games: Abstract category for computation: **Games**<sub>HS</sub>  $\longrightarrow$   $Int(coKl(\tilde{L}))$   $A \longrightarrow (P_A, O_A)$  $A \xrightarrow{\sigma} B \longrightarrow L(P_A + O_B) \xrightarrow{\sigma} O_A + P_B$ 

This functor is faithful and preserves the monoidal closed structure.

The above construction generalises. Given:

- a monad T corresponding to a class of partial maps,
- a comonad *R* defined by a least fixed point which is compatible with *T* and the monoidal structure,

then R extends to a near-comonad  $\tilde{R}$  on KI(T).

The near-coKleisli category  $coKI(\tilde{R})$  is a symmetric monoidal category, and the trace on KI(T) induces a trace on  $coKI(\tilde{R})$ .

Finally, we get a compact closed category  $Int(coKI(\tilde{R}))$ .

Example:

Instead of 
$$L(A) = \mu X.A \times (1 + X)$$
,  
use  $R(A) = \mu X.A \times \mathcal{P}_f(X)$ .

| for computation: |
|------------------|
|                  |

| Games <sub>HF</sub> | $\longrightarrow$ | $Int(\mathbf{Pfn})$      |
|---------------------|-------------------|--------------------------|
| Comosure            | ,                 | $lnt(nok(l(\tilde{l})))$ |

| Games <sub>HS</sub> |                   | $Int(coKl(\hat{L}))$  |
|---------------------|-------------------|-----------------------|
| ?                   | $\longrightarrow$ | $Int(coKl(	ilde{R}))$ |

#### $R(A) = \mu X.A \times \mathcal{P}_f(X)$

An element of R(A) is a finite rooted tree of elements of A.

If a strategy is represented by some partial map  $R(A) \rightarrow B$  then the next move will depend on a partially ordered set of previous plays, not a list. Moves might be played concurrently rather than sequentially.

This has similarities to the category of concurrent games.

#### A concurrent game E consists of

- Two sets  $P_E$  and  $O_E$  of Player moves and Opponent moves
- A partial order ≤ on moves P<sub>E</sub> + O<sub>E</sub> specifying the prerequisites for a move to be played
- A consistency predicate on finite sets of moves in  $P_E + O_E$  specifying which moves may occur together

satisfying some axioms.

A strategy in a concurrent game *E* is given by another game *S* and a map  $S \rightarrow E$  which preserves downward-closed consistent sets and is locally injective.

[Castellan, Clairambault, Rideau, Winskel 2016]

Composition of strategies is given by a trace.



## Questions and future work

- The functor from games to a compact closed category appears to lose some of the game structure. How much of it can be recovered?
- Near-monads and near-comonads arise in other situations, but their general theory is not well-understood.
- What other categories of games can be described this way? What is the right abstract notion of a category of games?