How do we Describe the Computational
Capabilities of an Arbitrary Physical System?

Richard Whyman

The University of Leeds

9th September 2017

1/30



Prior Work on Physical Computation

Physical computation has been discussed in various places
before such as by:

» Robin Gandy in Church’s thesis and principles for
mechanisms (1978).

» Horsman et al. in When does a Physical System Compute?
(2013).

» Cameron Beebe in Model Based Computation (2016).

» Vergis et al. in The complexity of analog computation
(1986).

» Ed Blakey in Unconventional complexity measures for
unconventional computers (2011).
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What’s Wrong with Just Using the Turing Model?

» The Turing machine model appears to describe what is
computable by a mechanism, but its method of
computation does not seem to faithfully describe how
many physical computation devices actually compute.

» Quantum computers are an example of such a device, they
also appear to be able to efficiently decide problems that
are in (NP Nco-NP)\ P. Thereby potentially violating
Cobham’s thesis.

» Hence the Turing machine model may not be sufficient for
judging, in general, whether a problem can be feasibly
decided by some arbitrary physical device.
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How to Compute Semantically

» Suppose that, given a set of abstract conditions 7 and an
input condition ¢, it logically follows that statement 6
must be true.

» Then if a physical system 3 satisfies the conditions in 7~
along with the input condition ¢, the statement § must
necessarily true in 3.

» Our view is that in such a scenario; # can be taken to be

the output computed by a physical system P8 under input ¢
and satisfying the conditions of T
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Definition: Let £ be a finite first-order language, a theory
machine over L is a triple M = (7,Z, O) where:

» T is a finite set of sentences of L.
(this provides an abstract description for the machine)

» T is a set of distinct atomic sentences of L.
(this is the set of possible inputs to the machine)
» O is a set of distinct atomic sentences of L.
(this is the set of possible outputs from the machine)

(Atomic sentences are quantifier free sentences of the form
/\f\il +R;i(Ti1,- .., Tir,) for relations R; and terms 7;.)
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Examples of theory machines

We can describe a Turing machine M via a theory machine
My = (Tar, s, Opr) where:

» Tar = PA+ PAy + Rules of M,
» Ty = All possible input words encoded as sentences,
> On = {R(h),~R(h)}.

By modifying PA and PAz in Ty so that they include
end-points, we can describe a theory machine that has finite
models whose domain size grows as the input length increases.
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Examples of theory machines

We can describe a device NV acting smoothly on § C R” with time axis
[0,00) via a theory machine My = (Tn,Zn, On) where:

» Tn = R™ axioms + [0,00) axioms + Evolution theory of N,
» 7n = Finite descriptions of relations on S at time 0,

» Op = Finite descriptions of relations on .S at some halting time.

If for each given input S is finite, then we can simulate N by finite
models by modifying Ty so that it is satisfied by rational
approximations to R™ x [0, c0).
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Derivation

Definition: Let M = (7,Z,O) be a theory machine, we say
that M derives 0 € O from ¢ € 7 if:

T U{¢} is satisfiable and 7 U {¢} = 6.

(That is, in all models of 7 in which ¢ is true, # must also be
true, provided that such models exist).
We denote the set of such inputs by:

My ={¢p €T |TU{¢} is satisfiable and T U {4} |= 6},

which we call the derivation set of 6 in M.
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Derivation of Word Problems

We can represent any word w € {0,1}* where w = aj...ay,, as
an atomic sentence of the form:

pw =\ R (> () AW (" (c)) A=W (" (0)).
1=0

Where R and W are a unary relations, > is a unary function
and c is a constant symbol.

We call p,, the sentence representation of w and denote the set
of such representations by:

SR{O,I}* = {pw | w e {0, 1}*}



Theory Machines and Derivation

Return to the Example

We can describe a Turing machine M via a theory machine
My = (Tar, s, Opr) where:

> Tay = PA+ PAy + Rules of M,
» Ty = All possible input words encoded as sentences,
> On = {R(h),~R(h)}.
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Derivation of Word Problems
Definition: Let M = (T,8R 13-, O) be a theory machine
with {#,9} C O. A decision problem A C {0,1}* is totally
derived by M if:
My ={pw | we A} and My, = {p, | w e {0,1}*\ A}.

(So given any model 2 of 7 U {p, }, we can check 2 = 6 to
know w € A and check 2 = v to know w ¢ A).
A decision problem B C {0,1}* is partially derived by M if:

My ={pw | w € B}.
(So given any model B of T U {p,}, if B = 6 then we know
w € B, but we do not necessarily have a sentence whose truth

we can check to know that w ¢ B).
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Theory Machines vs Turing Machines

Theorem

A decision problem is computable by a Turing machine if and
only if it is totally derivable.

Theorem

A decision problem can be computably enumerated by a Turing
machine if and only if it is partially derivable.

(This analogously holds for computation with type-2 machine
Turing machines an infinite-input theory machines.)
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Observe how we can represent an entire Turing machine
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by a t X s sized rectangle. This computation can thus be
described by a logical structure 2 with domain size

12| = O(ts).

18 / 30



Theory Machine Complexity

Observations on Resource Usage

Observe how we can represent an entire Turing machine
computation that takes ¢ time steps and utilises s tape squares,
by a t X s sized rectangle. This computation can thus be
described by a logical structure 2 with domain size

12| = O(ts).

Similarly, to simulate a computation on S C R™ with precision €
and in time 7 requires a structure B8 with domain size

18] = 0 (£%).
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T U{¢} = 0 and there exists a model 2 of T U {¢} such that

[[2a]] < f(lo])-

(So from ¢ we can derive 6 with a model of size of order f(n)
where n is the number of symbols in ¢).

We denote the set of such elements of Z by:

M) ={peMy|IA:AETU{¢} and ||A]| < f(|9])},

which we call the f derivation set of 6 in M.
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Theory Machine Complexity

Observations on Input Size

Observe how we can represent any word w € {0,1}* by an

atomic sentence
pw = Nty R (>(c)) AW (>™(c)) A=W (>"+1(c)), which is of
length O(|w|?).

Similarly note how we are able to represent a rational number r
with a binary expansion of r = b ...b.1bg.b1 . ..b,, with an
atomic sentence of the form:

R(fa(f5(C -+ FealF25 (FE™0))) ),
which is of length O(|r|).
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Efficient Derivation

Definition: Let M = (7,S8R¢¢ 13-, O) be a theory machine with
{6,v} C O. A decision problem A C {0,1}* is totally derived by M
with polynomial resources if there is a polynomial function p: N — N
such that:

MY ={py | we A}, and M = {p, | we {0,1}"\ A}.

(So we can always find a polynomial sized model 2 of T U {p,}, and
then check whether 2 =6 or 2 = ¢ to know that w € A or w & A).
A decision problem B C {0,1}* is partially derived by M with
polynomial resources if:

MY = {p, | we B}.

(So if w € B then we can find a polynomial sized model of 7 U {p,,}

in which 6 is true, but otherwise such a model may not exist).
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Examples

» As any problem in P can be decided by a Turing machine in
polynomial time and space such problems are totally derivable
by a theory machine with polynomial resources.

» Similarly, since any accepting computation path of a
non-deterministic Turing machine utilises polynomial time and
space, any problem in NP must be partially derivable by a
theory machine with polynomial resources.

» If a Newtonian kinematic system can decide a problem whose
space, time and precision requirements grow polynomially with
the input length, then such a problem can be totally derived by a
theory machine with polynomial resources.
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Non-example

Ed Blakey’s double slit fac-
toriser (—) (which uses clas-
sical physics) is polynomially
bounded in space and time, but
the operational precision it re-
quires grows exponentially with
the size of the input.

Hence the machine’s models are

required to grow exponentially _ il
in size with the length of the in- % S ¥
put and the problem can only be ~
totally derived here with expo- P
nential resources. Sl vuc s+ o

Source: Ed Blakey
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Theory Machine Complexity

The Limits of Feasible Derivation

Theorem
A decision problem is totally derivable by a theory machine with
polynomial resources if and only if it is in NP N co-N P.

Theorem
A decision problem is partially derivable by a theory machine
with polynomial resources if and only if it is in N P.
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Theory Machine Complexity

The Limits of Feasible Derivation

Proof (outline): (=) Follows from the fact that in NP we can
non-deterministically generate a polynomially-sized model 2 of
T U{pw} and such a model is guaranteed to exist.

Given 2 we can then efficiently check whether 2 =60 or 2 |= .
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Proof (outline): (<) If A € NP Nco-NP then there exists two
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polynomial time A and {0,1}* \ A respectively.
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The Limits of Feasible Derivation

Proof (outline): (<) If A € NP Nco-NP then there exists two
Turing machines M7 and Ms that non-deterministic compute in
polynomial time A and {0,1}* \ A respectively.

We can then construct a theory machine which can carry out a
computation of either M or My, but, by virtue of its theory, is
prevented from reaching a halt and reject configuration. Thus it
only ever produces an accepting computation on the

appropriate machine. ]
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On Computation and Logical Consequence Again
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a Theory machine model of computation
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What Might All This Mean?

The theory machine constructed to solve NP M co-N P problems
with polynomial resources did so by essentially violating
causality. As possible futures were able to influence present
decisions, a computation path was pursued by only if such a
path was able to eventually lead to an accepting configuration.
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Conclusion

What Might All This Mean?

The theory machine constructed to solve NP M co-N P problems
with polynomial resources did so by essentially violating
causality. As possible futures were able to influence present
decisions, a computation path was pursued by only if such a
path was able to eventually lead to an accepting configuration.

Is it causality violation that enables quantum computers to
efficiently decide problems in (NP Nco-NP)\ P?

If so, does this mean that there exists an alternative description
of quantum theory whose models grow polynomially with time
and the number of qubits?
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Further Work

» Generalise the concept of theory machine derivation to
describe probabilistic derivation.

» Look into describing quantum computation with
probabilistic theory machines.

» Look into what happens when theory machines are given
higher-order theories.

» Are there new sorts of exotic computation devices that are
best described with theory machines?
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