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Prior Work on Physical Computation

Physical computation has been discussed in various places
before such as by:

I Robin Gandy in Church’s thesis and principles for
mechanisms (1978).

I Horsman et al. in When does a Physical System Compute?
(2013).

I Cameron Beebe in Model Based Computation (2016).

I Vergis et al. in The complexity of analog computation
(1986).

I Ed Blakey in Unconventional complexity measures for
unconventional computers (2011).
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What’s Wrong with Just Using the Turing Model?

I The Turing machine model appears to describe what is
computable by a mechanism, but its method of
computation does not seem to faithfully describe how
many physical computation devices actually compute.

I Quantum computers are an example of such a device, they
also appear to be able to efficiently decide problems that
are in (NP ∩ co-NP ) \ P . Thereby potentially violating
Cobham’s thesis.

I Hence the Turing machine model may not be sufficient for
judging, in general, whether a problem can be feasibly
decided by some arbitrary physical device.
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On Computation and Logical Consequence

T |= θ T ` θ

Truth of θ in
any model of T ⇐⇒ Seqential logical

proof of θ from T
↓ ↓

???
?⇐⇒ The Turing machine

model of computation
↓ ↓

A non-sequential basis
for complexity?

?⇐⇒ Sequential algorithmic
basis for complexity
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Theory Machines and Derivation
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How to Compute Semantically

I Suppose that, given a set of abstract conditions T and an
input condition φ, it logically follows that statement θ
must be true.

I Then if a physical system P satisfies the conditions in T
along with the input condition φ, the statement θ must
necessarily true in P.

I Our view is that in such a scenario; θ can be taken to be
the output computed by a physical system P under input φ
and satisfying the conditions of T .
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Theory Machines

Definition: Let L be a finite first-order language, a theory
machine over L is a triple M = (T , I,O) where:

I T is a finite set of sentences of L.
(this provides an abstract description for the machine)

I I is a set of distinct atomic sentences of L.
(this is the set of possible inputs to the machine)

I O is a set of distinct atomic sentences of L.
(this is the set of possible outputs from the machine)

(Atomic sentences are quantifier free sentences of the form∧N
i=1±Ri(τi1, . . . , τiri) for relations Ri and terms τik.)
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Examples of theory machines

We can describe a Turing machine M via a theory machine
MM = (TM , IM ,OM ) where:

I TM = PA+ PAZ + Rules of M ,

I IM = All possible input words encoded as sentences,

I OM = {R(h),¬R(h)}.

By modifying PA and PAZ in TM so that they include
end-points, we can describe a theory machine that has finite
models whose domain size grows as the input length increases.
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Examples of theory machines

We can describe a device N acting smoothly on S ⊆ Rn with time axis
[0,∞) via a theory machine MN = (TN , IN ,ON ) where:

I TN = Rn axioms + [0,∞) axioms + Evolution theory of N,

I IN = Finite descriptions of relations on S at time 0,

I ON = Finite descriptions of relations on S at some halting time.

If for each given input S is finite, then we can simulate N by finite
models by modifying TN so that it is satisfied by rational
approximations to Rn × [0,∞).
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Derivation

Definition: Let M = (T , I,O) be a theory machine, we say
that M derives θ ∈ O from φ ∈ I if:

T ∪ {φ} is satisfiable and T ∪ {φ} |= θ.

(That is, in all models of T in which φ is true, θ must also be
true, provided that such models exist).
We denote the set of such inputs by:

Mθ = {φ ∈ I | T ∪ {φ} is satisfiable and T ∪ {φ} |= θ},

which we call the derivation set of θ in M.
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Derivation of Word Problems

We can represent any word w ∈ {0, 1}∗ where w = a1 . . . am, as
an atomic sentence of the form:

ρw =

m∧
i=0

Rai(Bi(c)) ∧W (Bm(c)) ∧ ¬W (Bm+1(c)).

Where R and W are a unary relations, B is a unary function
and c is a constant symbol.

We call ρw the sentence representation of w and denote the set
of such representations by:

SR{0,1}∗ = {ρw | w ∈ {0, 1}∗}.
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Return to the Example

We can describe a Turing machine M via a theory machine
MM = (TM , IM ,OM ) where:

I TM = PA+ PAZ + Rules of M ,

I IM = All possible input words encoded as sentences,

I OM = {R(h),¬R(h)}.
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Derivation of Word Problems

Definition: Let M = (T ,SR{0,1}∗ ,O) be a theory machine
with {θ, ψ} ⊆ O. A decision problem A ⊆ {0, 1}∗ is totally
derived by M if:

Mθ = {ρw | w ∈ A} and Mψ = {ρw | w ∈ {0, 1}∗ \A}.

(So given any model A of T ∪ {ρw}, we can check A |= θ to
know w ∈ A and check A |= ψ to know w 6∈ A).
A decision problem B ⊆ {0, 1}∗ is partially derived by M if:

Mθ = {ρw | w ∈ B}.

(So given any model B of T ∪ {ρw}, if B |= θ then we know
w ∈ B, but we do not necessarily have a sentence whose truth
we can check to know that w 6∈ B).
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Theory Machines vs Turing Machines

Theorem
A decision problem is computable by a Turing machine if and
only if it is totally derivable.

Theorem
A decision problem can be computably enumerated by a Turing
machine if and only if it is partially derivable.

(This analogously holds for computation with type-2 machine
Turing machines an infinite-input theory machines.)
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Theory Machine Complexity
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Observations on Resource Usage

Observe how we can represent an entire Turing machine
computation that takes t time steps and utilises s tape squares,
by a t× s sized rectangle. This computation can thus be
described by a logical structure A with domain size
||A|| = O(ts).

Similarly, to simulate a computation on S ⊂ Rn with precision ε
and in time τ requires a structure B with domain size

||B|| = O
(
|S|τ
εn+1

)
.

18 / 30



Motivation Theory Machines and Derivation Theory Machine Complexity Conclusion

Observations on Resource Usage

Observe how we can represent an entire Turing machine
computation that takes t time steps and utilises s tape squares,
by a t× s sized rectangle. This computation can thus be
described by a logical structure A with domain size
||A|| = O(ts).

Similarly, to simulate a computation on S ⊂ Rn with precision ε
and in time τ requires a structure B with domain size

||B|| = O
(
|S|τ
εn+1

)
.

18 / 30



Motivation Theory Machines and Derivation Theory Machine Complexity Conclusion

Derivation with Finite Resources

Definition: Let M = (T , I,O) be a theory machine, θ ∈ O
and f : N→ N be an increasing function.

We say that M derives θ with f resources from φ ∈ I if

T ∪ {φ} |= θ and there exists a model A of T ∪ {φ} such that

||A|| 6 f(|φ|).
(So from φ we can derive θ with a model of size of order f(n)

where n is the number of symbols in φ).

We denote the set of such elements of I by:

Mf
θ = {φ ∈Mθ | ∃A : A |= T ∪ {φ} and ||A|| 6 f(|φ|)},

which we call the f derivation set of θ in M.
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Observations on Input Size

Observe how we can represent any word w ∈ {0, 1}∗ by an

atomic sentence

ρw =
∧m
i=0R

ai(Bi(c)) ∧W (Bm(c)) ∧ ¬W (Bm+1(c)), which is of

length O(|w|2).

Similarly note how we are able to represent a rational number r

with a binary expansion of r = b-l . . . b-1b0.b1 . . . bm with an

atomic sentence of the form:

R(f÷2(f
b-l
+1(· · · f÷2(f

bm
+1(f l+m×2 (1)))) · · · ))),

which is of length O(|r|).
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Efficient Derivation

Definition: Let M = (T ,SR{0,1}∗ ,O) be a theory machine with

{θ, ψ} ⊆ O. A decision problem A ⊆ {0, 1}∗ is totally derived byM
with polynomial resources if there is a polynomial function p : N→ N
such that:

Mp
θ = {ρw | w ∈ A}, and Mp

ψ = {ρw | w ∈ {0, 1}∗ \A}.

(So we can always find a polynomial sized model A of T ∪ {ρw}, and

then check whether A |= θ or A |= ψ to know that w ∈ A or w 6∈ A).

A decision problem B ⊆ {0, 1}∗ is partially derived byM with

polynomial resources if:

Mp
θ = {ρw | w ∈ B}.

(So if w ∈ B then we can find a polynomial sized model of T ∪ {ρw}
in which θ is true, but otherwise such a model may not exist).
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Motivation Theory Machines and Derivation Theory Machine Complexity Conclusion

Examples

I As any problem in P can be decided by a Turing machine in
polynomial time and space such problems are totally derivable
by a theory machine with polynomial resources.

I Similarly, since any accepting computation path of a
non-deterministic Turing machine utilises polynomial time and
space, any problem in NP must be partially derivable by a
theory machine with polynomial resources.

I If a Newtonian kinematic system can decide a problem whose
space, time and precision requirements grow polynomially with
the input length, then such a problem can be totally derived by a
theory machine with polynomial resources.
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Non-example

Ed Blakey’s double slit fac-
toriser (→) (which uses clas-
sical physics) is polynomially
bounded in space and time, but
the operational precision it re-
quires grows exponentially with
the size of the input.
Hence the machine’s models are
required to grow exponentially
in size with the length of the in-
put and the problem can only be
totally derived here with expo-
nential resources.

Source: Ed Blakey
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Motivation Theory Machines and Derivation Theory Machine Complexity Conclusion

The Limits of Feasible Derivation

Theorem
A decision problem is totally derivable by a theory machine with
polynomial resources if and only if it is in NP ∩ co-NP.

Theorem
A decision problem is partially derivable by a theory machine
with polynomial resources if and only if it is in NP.
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Motivation Theory Machines and Derivation Theory Machine Complexity Conclusion

The Limits of Feasible Derivation

Proof (outline): (⇒) Follows from the fact that in NP we can
non-deterministically generate a polynomially-sized model A of
T ∪ {ρw} and such a model is guaranteed to exist.

Given A we can then efficiently check whether A |= θ or A |= ψ.
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Motivation Theory Machines and Derivation Theory Machine Complexity Conclusion

The Limits of Feasible Derivation

Proof (outline): (⇐) If A ∈ NP ∩ co-NP then there exists two
Turing machines M1 and M2 that non-deterministic compute in
polynomial time A and {0, 1}∗ \A respectively.

We can then construct a theory machine which can carry out a
computation of either M1 or M2, but, by virtue of its theory, is
prevented from reaching a halt and reject configuration. Thus it
only ever produces an accepting computation on the
appropriate machine.
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Conclusion
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On Computation and Logical Consequence Again

T |= θ T ` θ

Truth of θ in
any model of T ⇐⇒ Seqential logical

proof of θ from T
↓ ↓

Total derivation with
a Theory machine

⇐⇒ The Turing machine
model of computation

↓ ↓
Total derivation with
polynomial resources

6⇐⇒ Sequential algorithmic
basis for complexity

(if P 6= NP ∩ co-NP )
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Motivation Theory Machines and Derivation Theory Machine Complexity Conclusion

What Might All This Mean?

The theory machine constructed to solve NP ∩ co-NP problems
with polynomial resources did so by essentially violating
causality. As possible futures were able to influence present
decisions, a computation path was pursued by only if such a
path was able to eventually lead to an accepting configuration.

Is it causality violation that enables quantum computers to
efficiently decide problems in (NP ∩ co-NP ) \ P?

If so, does this mean that there exists an alternative description
of quantum theory whose models grow polynomially with time
and the number of qubits?
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Motivation Theory Machines and Derivation Theory Machine Complexity Conclusion

Further Work

I Generalise the concept of theory machine derivation to
describe probabilistic derivation.

I Look into describing quantum computation with
probabilistic theory machines.

I Look into what happens when theory machines are given
higher-order theories.

I Are there new sorts of exotic computation devices that are
best described with theory machines?

30 / 30



Motivation Theory Machines and Derivation Theory Machine Complexity Conclusion

Further Work

I Generalise the concept of theory machine derivation to
describe probabilistic derivation.

I Look into describing quantum computation with
probabilistic theory machines.

I Look into what happens when theory machines are given
higher-order theories.

I Are there new sorts of exotic computation devices that are
best described with theory machines?

30 / 30



Motivation Theory Machines and Derivation Theory Machine Complexity Conclusion

Further Work

I Generalise the concept of theory machine derivation to
describe probabilistic derivation.

I Look into describing quantum computation with
probabilistic theory machines.

I Look into what happens when theory machines are given
higher-order theories.

I Are there new sorts of exotic computation devices that are
best described with theory machines?

30 / 30



Motivation Theory Machines and Derivation Theory Machine Complexity Conclusion

Further Work

I Generalise the concept of theory machine derivation to
describe probabilistic derivation.

I Look into describing quantum computation with
probabilistic theory machines.

I Look into what happens when theory machines are given
higher-order theories.

I Are there new sorts of exotic computation devices that are
best described with theory machines?

30 / 30


	Motivation
	Theory Machines and Derivation
	Theory Machine Complexity
	Conclusion

