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Large cardinals



Large cardinals

Usually, by a large cardinal axiom one means a set-theoretic
assertion that implies the existence of a cardinal having some
properties that make it very large, and whose existence cannot be
proved in ZFC (because it implies the consistency of ZFC).

Empirical fact

There is strong evidence that every statement of the language of
set theory (and therefore every mathematical statement) that is
independent of ZFC is equiconsistent with either ZFC or ZFC plus a
large cardinal axiom.



The consistency strength of a set-theoretic statement ϕ that is
consistent with ZFC but not equiconsistent with it can be measured
by large cardinal axioms. That is, there are large cardinal axioms
A1 and A2 such that

CON(ZFC +ϕ)⇒ CON(ZFC + A1)

and
CON(ZFC + A2)⇒ CON(ZFC +ϕ)

We refer to A1 as a lower bound for the consistency of ϕ and A2 as
an upper bound.

In the fortunate cases when the lower and upper bound coincide,
we obtain an exact measure of the consistency strength of ϕ.



Some examples of large cardinals (in chronological order)

I κ is weakly inaccessible if it is regular, uncountable, and a limit
cardinal. (Hausdorff 1908)

I κ is inaccessible if it is regular, uncountable, and a strong limit,
i.e., 2λ < κ for all λ < κ. (Sierpiński-Tarski, Zermelo 1930)

I κ is measurable if it is uncountable and there is a κ-additive
non-trivial two-valued measure on P(κ). (Ulam 1930)

I κ is weakly compact if κ→ (κ)22. (Erdös-Tarski 1961)

I Vopěnka’s Principle asserts that there is no rigid proper class
of graphs. (Vopěnka 1960’s)



Some equiconsistencies

The following are pairs of equiconsistent statements:

1. I Every co-analytic uncountable set of real numbers contains a
perfect set.

I There exists an inaccessible cardinal.

2. I There is a countably-additive measure that extends the
Lebesgue measure and measures all sets of reals.

I There exists a measurable cardinal.

3. I The GCH first fails at ℵω.
I There exists a measurable cardinal κ of Mitchell order κ++.

4. I A category is bounded iff it has a colimit-dense subcategory.
I Vopěnka’s principle.

(They are actually equivalent!)



Three questions

Question

Are large cardinal axioms true axioms of set theory?

Question

Why do large cardinals form a linear hierarchy measuring the
consistency strength of set-theoretic statements?

Question

Is there a uniform and complete hierarchy of large cardinals?



Reflection Phenomena



Reflection Phenomena I:
Reflecting the theory of V in some Vα

The Reflection Theorem (Levy 1960, Montague 1961)

Every formula of the first-order language of set theory is reflected in
some Vα. More precisely, for every formula ϕ(x1, . . . , xn), ZF
proves that for every a1, . . . , an there is an ordinal α such that

ϕ(a1, . . . , an) if and only if Vα |= ϕ(a1, . . . , an).

In fact, for every n, ZF proves that there exists a closed and
unbounded proper class C (n) of ordinals such that Vα �Σn V , for
every α ∈ C (n).



Levy observed that the Reflection Theorem is equivalent to the
axioms of Infinity and Replacement (modulo the other ZF axioms),
which shows that the reflection phenomenon is not only deeply
ingrained in the ZF axioms, but it captures the essence of set
theory.

Thus, it is not surprising that many people have suggested that any
intrinsic1 justification of new set-theoretic axioms, beyond ZFC ,
and in particular the axioms of large cardinals, should be based on
stronger forms of the Reflection Theorem, e.g., second-order, or
even higher-order, reflection.

However, Koellner2 has shown that any (Levy-Montague type)
Reflection principle for reasonable classes of higher order formulas
either follows from the existence of κ(ω) or is outright inconsistent.

1I.e., based on the iterative conception of the set-theoretic universe.
2On Reflection Principles, Annals of Pure and Applied Logic, Vol. 157, Nos.

2-3, 2009, pp. 206-219.



Reflection Phenomena II:
Reflecting the theory of a structure in a smaller one

The reflection phenomenon is ubiquitous. It occurs both globally
and locally.

The Downwards Löwenheim-Skolem-Tarski Theorem
For every sentence ϕ of a first-order language L, and every
M |= ϕ, there exists N ⊆ M such that N |= ϕ and |N | 6 |L|.

In fact, for every structure M in a first-order language L, there
exists N � M such that |N | 6 |L|.

Note: N need not be of the same kind as M. E.g., if M is
transitive, then N need not be so.



Large cardinals as second-order local reflection principles.
Early results

I κ is inaccessible iff for every A ⊆ Vκ there is λ < κ such that

〈Vλ,∈,A ∩ Vλ〉 � 〈Vκ,∈,A〉.

Equivalently, iff it is Σ1
1-indescribable. (Levy 1960)

I κ is weakly compact iff it is Π1
1-indescribable. (Hanf-Scott

1961, Keisler 1962)



Large cardinals as resemblance principles. Early results

I κ is measurable iff it is the critical point of an elementary
embedding j : V → M, with M transitive.
(Scott 1961, Keisler)

I 0] exists iff there is a non-trivial elementary embedding
j : L→ L. Equivalently, iff there is an elementary embedding
j : Lα → Lβ with critical point less than |α|. (Kunen 1971)

I Vopěnka’s Principle holds iff for every proper class of
structures C of the same type, there exist distinct M and N in
C and an elementary embedding j : N → M. (Vopěnka 1970s)



Elementary embeddings and larger cardinals

I κ is supercompact if, for every λ > κ there exists an
elementary embedding j : V → M, M transitive, with critical
point κ, and such that j(κ) > λ and M is closed under
λ-sequences. (Solovay-Reinhardt, late 1960’s)

I κ is Reinhardt if there exists an elementary embedding
j : V → V with crit(j) = κ. (Reinhardt 1965)



Kunen’s Theorem

Theorem (Kunen 1971)

Reinhardt cardinals don’t exist.
In fact, there is no non-trivial elementary embedding
j : Vλ+2 → Vλ+2, for any λ.

I κ is extendible if for every λ greater than κ there exists an
elementary embedding j : Vλ → Vµ, some µ, with crit(j) = κ,
and j(κ) > λ. (Reinhardt 1974)



Reflection Phenomena III:
Reflecting a structure in a smaller one of the same kind

A class of structures C (of the same kind) is given by some formula
ϕ(x), possibly with parameters, so that

C = {A = 〈X ,∈, 〈Ri 〉i∈I 〉 : ϕ(A)}.

The notion of reflecting the class C can be naturally construed in
the sense that some Vα reflects ϕ. One natural way to make this
precise is to say that for every structure A ∈ C there exists B ∈ C

which belongs to Vα and is like A. Since, in general, A may be
much larger than any B in Vα, the closest resemblance of B to A
will be attained in the case B is isomorphic to an elementary
substructure of A, i.e., B can be elementarily embedded into A.

We emphasize that what is reflected is not the formula ϕ, but the
structural property defined by ϕ. This is the crucial difference with
the Levy-Montague type of reflection.



Reflection Phenomena III:
Reflecting a structure in a smaller one of the same kind

Structural Reflection
SRκ(C): κ reflects C, i.e., for every A in C there exist B in C ∩ Vκ
and an elementary embedding from B into A.

Notation: If Γ is Σn or Πn, then SRκ(Γ) means that SRκ(C) holds
for every Γ -definable class C of structures.

SR(Γ) means that there exists κ such that SRκ(Γ) holds.

Theorem
SRκ(Σ1) holds for every κ ∈ C (1).



Large cardinals as principles of
Structural Reflection (SR)



Supercompact and extendible cardinals as SR principles
Recall:

A cardinal κ is supercompact if, for every λ > κ there exists an
elementary embedding j : V → M, M transitive, with critical point
κ, and such that j(κ) > λ and M is closed under λ-sequences.

Theorem
If κ is supercompact, then SRκ(Σ2) holds.

This, together with the following theorem of Magidor’s yields a
characterization of supercompactness in terms of SR.

Theorem (Magidor 19713)

If κ is the least cardinal that reflects the Π1-definable proper class
C of structures of the form 〈Vλ,∈〉, then κ is supercompact.

3Magidor, M. (1971) On the role of supercompact and extendible cardinals
in logic. Israel Journal of Mathematics 10, 147 – 157



Corollary

The following are equivalent for a cardinal κ:
1. κ is the first supercompact cardinal.
2. κ is the least cardinal such that SRκ(Π1) holds.
3. κ is the least cardinal such that SRκ(Σ2) holds.

Corollary

The following are equivalent:
1. SR(Π1)

2. SR(Σ2)

3. There exists a supercompact cardinal.



Beyond supercompactness
Recall: κ is extendible if for every λ > κ there exists an elementary
embedding j : Vλ → Vµ, some µ, with crit(j) = κ, and j(κ) > λ.

Theorem
The following are equivalent for a cardinal κ:
1. κ is the first extendible cardinal.
2. κ is the least cardinal such that SRκ(Π2) holds.
3. κ is the least cardinal such that SRκ(Σ3) holds.

Corollary

The following are equivalent:
1. SR(Π2)

2. SR(Σ3)

3. There exists an extendible cardinal.



For the higher levels (n > 3) we need the notion of C (n)-extendible
cardinal.

Definition
κ is C (n)-extendible if for every λ greater than κ there exists an
elementary embedding j : Vλ → Vµ, some µ, with crit(j) = κ,
j(κ) > λ, and j(κ) ∈ C (n), i.e., Vj(κ) �Σn V .

Note: κ is extendible if and only if it is C (1)-extendible.



Theorem
The following are equivalent for a cardinal κ, and n > 1:

1. κ is the first C (n)-extendible cardinal.
2. κ is the least cardinal such that SRκ(Πn+1) holds.
3. κ is the least cardinal such that SRκ(Σn+2) holds.

Corollary

The following are equivalent for n > 1:
1. SR(Πn+1)

2. SR(Σn+2)

3. There exists a C (n)-extendible cardinal.



Remark

Suppose n > 1. Given a Σn+1-definable class of structures C, say
via the Σn+1 formula ϕ(x), let C∗ be the class of structures of the
form

A∗ = 〈Vα,∈,α,A〉

where α is the least ordinal in C (n) such that Vα |= ϕ(A). If
A ∈ C, then such an α exists, because the set of ordinals α such
that Vα |= ϕ(A) is club. Conversely, if 〈Vα,∈,α,A〉 ∈ C∗, then
Vα |= ϕ(A) and since α ∈ C (n), A ∈ C. Thus, we have

A ∈ C if and only if A∗ ∈ C∗.

Now notice that C∗ is Πn definable. This explains why a cardinal
reflects Πn classes if and only if it reflects Σn+1 classes.



C (n)-extendible cardinals from Vopěnka’s Principle

Recall that Vopěnka’s Principle holds (schematically) if for every
definable proper class C of structures of the same type there exist
A 6= B in C and an elementary embedding j : A→ B .

Theorem
Suppose n > 1. If Vopěnka’s Principle holds for Πn+1-definable
classes, then there exists a C (n)-extendible cardinal.



Corollary

The following are equivalent:
1. SR(C) holds for every definable (with parameters) class C.
2. There exists a C (n)-extendible cardinal, for every n.
3. There exists a proper class of C (n)-extendible cardinals, for

every n.
4. Vopěnka’s Principle.



SR relative to inner models



SR for classes of structures in inner models

Example

Let C be the class of structures of the form 〈Lβ,∈,γ〉, where γ and
β are cardinals (in V ) and γ < β. Note that C is Π1 definable
(without parameters).

Theorem
The following are equivalent:
1. SR(C)

2. 0] exists.



The shadow of supercompactness on inner models

A similar equivalence holds relative to any set of ordinals X :

let CX be the class of structures of the form 〈Lβ[X ],∈,γ,X 〉,
where γ and β are cardinals and sup(X ) < γ < β.
Note that C is Π1 definable with X as a parameter.

Theorem
The following are equivalent:
1. SR(CX )

2. X ] exists.



Similar results hold for larger inner models, e.g., L[µ]. Letting C be
the class of structures of the form 〈Lβ[µ],∈,γ,µ〉, where γ and β
are cardinals (in V ) and γ < β, we have:

Theorem
The following are equivalent:
1. There exists κ such that SRκ(C) holds.
2. 0† exists.



SR below a supercompact



Between SR(Σ1) and SR(Π1)

For R a set of Π1 predicates, and κ an infinite cardinal, let’s define:

Definition
SRκ(R) iff κ reflects every Σ1(R) definable class of structures C of
the same type and closed under isomorphisms.

We write SR(R) = κ to indicate that κ is the least cardinal for
which SRκ(R) holds.

We have that SR(∅) = ℵ1. However, if R is the Π1 relation

“x is an ordinal and y = Vx ”

then SR(R) = κ if and only if κ is the first supercompact cardinal.
Moreover, if κ is supercompact, then SRκ(R) holds for every R.



The Löwenheim-Skolem-Tarski property for a logic L∗

By a logic L∗ we mean one of the following,
I First-order logic (Lωω).
I Infinitary logic (Lκλ).
I Higher-order logic (Ln, n > 2).

possibly extended with generalized quantifiers.

Definition
LST (L∗)(κ) : for every L∗-sentence ϕ and every M |= ϕ, there is
N ⊆ M such that N |= ϕ and |N | < κ.

Notice that if LST (L∗)(κ) holds, then it also holds for any larger
cardinal. We call the least cardinal κ for which LST (L∗)(κ) holds,
provided it exists, the LST (L∗)-number, and we write
LST (L∗) = κ to indicate this.



Examples

I LST (Lωω) = LST (Lω1ω) = ℵ1.
I LST (Lωω(MMℵ1)) = ℵ2, where MMℵ1 is the

Magidor-Malitz quantifier. Namely,

MMℵ1xϕ(x , ~y)

if and only if there exists X such that |X | > ℵ1 and ϕ(a, ~y)
holds for all a ∈ X .



The close relationship between SR(R) and LST (L∗)

If C is a class of structures with vocabulary L, and L ′ ⊆ L, then we
can take the projection of C to L ′, that is

C � L ′ := {M � L ′ : M ∈ C}.

A class C of structures in some fixed vocabulary is said to be
L∗-definable if there is a sentence ϕ ∈ L∗ such that
C = {M : M |= ϕ}.

Sometimes, a class C is a projection of an L∗-definable class, and
the complement is also a projection of an L∗-definable class. Then
we say that C is ∆(L∗)-definable.



Example (A paradigm example)

The class W of structures (M,<), where < well-orders M is
∆(L∗)-definable, where L∗ is Lωω(I ), i.e., first-order logic with
the additional quantifier I , known as the Härtig quantifier, given by

Ixyϕ(x)ψ(y)↔ |ϕ(·)| = |ψ(·)|.



Symbiosis



Symbiosis

Definition (Väänänen 1979)

A finite set R of predicates and a logic L∗ are symbiotic if the
following conditions are satisfied:
1. Every L∗-definable model class is ∆1(R)-definable.
2. Every ∆1(R)-definable model class closed under isomorphisms

is ∆(L∗)-definable.



Examples

The following pairs (R,L∗) are symbiotic.
1. R: Cd , where Cd is the predicate “x is a cardinal”.

L∗: Lωω(I ), where Ixyϕ(x)ψ(y)↔ |ϕ| = |ψ| is the Härtig
quantifier.

2. R: Rg , where Rg is the predicate “x is a regular cardinal”.
L∗: Lωω(I ,W

Rg ), where W Rgxyϕ(x , y)↔ ϕ(·, ·) has the
order-type of a regular cardinal.

3. R: Cd , WC , where WC (x ,α) is the relation “α is a limit ordinal
and x is a partial ordering with no chain of order-type α”.

L∗: Lωω(I ,QBr ), where QBrxyϕ(x , y)↔ ϕ(·, ·) is a tree order of
height some α and has no branch of length α.

4. R: PwSet, where PwSet be the relation {(x , y) : y = P(x)}.
L∗: L2.



Recall:

SRκ(R) : κ reflects every Σ1(R) definable class of structures C of
the same type and closed under isomorphisms.

LST (L∗)(κ) : for every L∗-sentence ϕ and every M |= ϕ, there is
N ⊆ M such that N |= ϕ and |N | < κ.

Theorem (B. and Väänänen 2014)

Suppose L∗ and R are symbiotic. Then the following are
equivalent, for every cardinal κ:
(i) SRκ(R)

(ii) LST (L∗)(κ).



It follows that for symbiotic L∗ and R,

LST (L∗) = κ if and only if SR(R) = κ.

Thus, writing ≡ to indicate that the corresponding cardinals are the
same, assuming they exist, we have the following:

Corollary

1. SR(Cd) ≡ LST (Lωω(I )).
2. SR(Rg) ≡ LST (I ,Lωω(W Rg )).
3. SR(Cd ,WC ) ≡ LST (Lωω(I ,QBr )).
4. SR(PwSet) ≡ LST (L2).



Theorem (Magidor and Väänänen 2011)

If LST (Lωω(I )) = κ, then PD holds, the SCH holds above κ, etc.
Moreover, it is consistent (modulo a supercompact cardinal) that
the LST (Lωω(I )) number is the first supercompact cardinal.
But it is also consistent (modulo a supercompact cardinal) that the
LST (Lωω(I )) number is the first inaccessible cardinal.

Theorem (Magidor 1971)

LST (L2) = κ if and only if κ is the first supercompact cardinal.

So, in order to characterize smaller large cardinals we need to
consider different SR principles.



SR for structures of limited size

Weak Structural Reflection
SR−
κ (R) : If C is a Σ1(R) class of structures closed under

isomorphisms and M ∈ C has cardinality κ, then there exists N ∈ C

of cardinality less than κ and an elementary embedding e : N → M.

Definition (The strict Löwenheim-Skolem-Tarski property)

SLST (L∗)(κ) : for every L∗-sentence ϕ and every M |= ϕ, if
|M | = κ, then there is N ⊆ M such that N |= ϕ and |N | < κ.



Theorem (B. and Väänänen 2014)

If R and L∗ are symbiotic, then the following are equivalent for
every cardinal κ:
(i) SR−

κ (R)

(ii) SLST (L∗)(κ).

Corollary

1. SR−(Cd) ≡ SLST (Lωω(I ))

2. SR−(Rg) ≡ SLST (I ,Lωω(W Rg ))

3. SR−(Cd ,WC ) ≡ SLST (Lωω(I ,QBr )).



Theorem (B. and Väänänen 2014)

1. SR−(Cd) = κ if and only if κ is the least weakly inaccessible
cardinal.

2. SR−(Rg) = κ if and only if κ is the first weakly Mahlo
cardinal.

3. SR−(Cd ,WC ) = κ if and only if κ is the first weakly compact
cardinal.



Generic SR



Generic Structural Reflection

Generic Structural Reflection
GSRκ(Γ): For every Γ -definable (in the first-order language of set
theory, possibly with parameters) class of structures C, κ generically
reflects C, i.e.,
for every A in C there exists B in C ∩ Vκ such that in some generic
extension of V there is an elementary embedding from B into A.

Thus, GSRκ(C) says: SRκ(C) holds, but the witnessing elementary
embeddings may only exist in some generic extension of V .



Proposition

The following are equivalent for structures B and A in the same
language.
1. In VColl(ω,B), there is an elementary embedding j : B → A.
2. There is a complete Boolean algebra B such that

V B |= “There exists an elementary embedding j : B → A.”



So, we may reformulate GSR as follows:

Generic Structural Reflection
GSRκ(Γ): For every Γ -definable (in the first-order language of set
theory, possibly with parameters) class of structures C, κ generically
reflects C, i.e.,
for every A in C there exists B in C ∩ Vκ such that in VColl(ω,B)

there is an elementary embedding from B into A.

It turns out that some large cardinals, e.g., remarkable cardinals,
can be characterized in terms of GSR :



Remarkable cardinals

A cardinal κ is remarkable (Schindler 2000) if and only if for all
regular cardinals θ > κ and for every a ∈ H(θ) there are M, N, π,
κ̄, σ, and θ̄ such that the following hold:
1. M and N are countable and transitive,
2. π : M → H(θ) is an elementary embedding,
3. a is in the range of π,
4. π(κ̄) = κ,
5. σ : M → N is an elementary embedding with crit(σ) = κ̄,
6. θ̄ = M ∩ OR is a regular cardinal in N,
7. σ(κ̄) > θ̄, and
8. M = H(θ̄)N , i.e., M ∈ N and N |= “M = {x : |TC (x)| < θ̄}”.



Equivalently (Schindler 2014): if for every regular cardinal λ > κ,
there is a regular cardinal λ̄ < κ such that in VColl(ω,<κ) there is
an elementary embedding j : HV

λ̄
→ HV

λ with j(crit(j)) = κ.

By a result of Magidor (1971), remarkable cardinals are virtually
supercompact.

However, remarkable cardinals are much weaker than supercompact
cardinals. They are downward absolute to L and their consistency
consistency strength is below an ω-Erdös cardinal.
Remarkable cardinals are in C (2). Moreover, they are totally
indescribable and limits of totally indescribable cardinals.



GSR and remarkable cardinals
All the following results are from B.-Gitman-Schindler 20164

Theorem

1. If κ is a remarkable cardinal, then GSRκ(Σ2) holds.
2. If GSRκ(Π1) holds, then either there is a remarkable cardinal,

or there is a transitive model of ZFC with a proper class of
remarkable cardinals.

Corollary

The following are equiconsistent:
1. GSR(Π1)

2. GSR(Σ2)

3. There exists a remarkable cardinal.
4Bagaria, J., Gitman, V., Schindler, R., Generic Vopěnka’s Principle,

Remarkable Cardinals, and the Weak Proper Forcing Axiom. Arch. Math.
Logic (2016).



Definition
A cardinal κ is virtually extendible if for every α > κ, in some
set-forcing extension (equivalently in VColl(ω,Vα)) there is
j : Vα → Vβ such that crit(j) = κ and j(κ) > α.
A cardinal κ is virtually C (n)-extendible if additionally j(κ) ∈ C (n).

Note that virtually extendible cardinals are virtually C (1)-extendible
because j(κ) must be inaccessible in V .

Theorem
If 0] exists, then in L every Silver indiscernible is virtually
C (n)-extendible, for all n.



Theorem
If κ is virtually C (n)-extendible, then GSR(Σn+2) holds.

Theorem
If GSR(Πn+1) holds, then either there is a virtually C (n)-extendible
cardinal or there is a transitive model of ZFC with a proper class of
virtually C (n)n-extendible cardinals.



Theorem
The following are equiconsistent for n > 1:
1. GSR(Πn+1)

2. GSR(Σn+2)

3. There is a virtually C (n)-extendible cardinal.

Question

Can we replace "equiconsistent" by "equivalent"?

If in the definition of GSR we require the embeddings to be
overspilling, i.e., j(crit(j)) > rank(B), then YES.

But without this requirement the answer is NO, by a recent result
of Gitman-Hamkins (2017).



Theorem
The following are equivalent for every n > 1:
1. GSR for Σn+2 classes of structures of the form 〈Vα,∈〉 (and

we require overspilling).
2. There is a virtually C (n)-extendible cardinal.

Theorem
The following are equivalent:
1. GSR for every definable class of structures of the form 〈Vα,∈〉

(and we require overspilling).
2. For every n there is a virtually C (n)-extendible cardinal.
3. The Generic Vopěnka Principle holds.



Conclusions



We have the following equivalences (modulo ZFC):
I SR(Σ1) ≡ True
I SR(Π1) ≡ SR(Σ2) ≡ There exists a supercompact cardinal
I SR(Π2) ≡ SR(Σ3) ≡ There exists an extendible cardinal
I SR(Πn) ≡ SR(Σn+1) ≡ There exists a C (n)-extendible card.
I SR ≡ Vopěnka’s Principle
I SR(Π1 ∩ L)⇒ 0] exists
I SR(Π1 ∩ L[X ])⇒ X ] exists
I SR(Π1 ∩ L[µ])⇒ 0† exists
I SR−(Cd) ≡ There exists a weakly inaccessible card.
I SR−(Rg) ≡ There exists a weakly Mahlo card.
I SR−(Cd ,WC ) ≡ There exists a weakly-compact card.
I GSR(Σ2) ≡ There exists a remarkable card.
I GSR(Σn+2) ≡ There exists a virtually C (n)-extendible card.
I GSR ≡ Generic Vopěnka’s principle



A Conjecture (aspiring to become a Definition)

Conjecture

Every large cardinal axiom is equivalent to some natural form of SR.
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