
Semantic models of
higher order

probability theory

Sam Staton, Oxford
partly jointly with Hongseok Yang, Ohad Kammar, Chris Heunen,  

Frank Wood…

Motivation

2/30

What is a general notion of statistical model?

How can we understand the fundamental
structure?

Aims of semantic models:
1. Fundamental;
2. Towards applications in Machine Learning.

Bayes’ law
P(x | d) =

P(d | x) ⨉ P(x)

3/30

P(d)

Bayes’ law
P(x | d) =

P(d | x) ⨉ P(x)

3/30

Σy P(d | y) ⨉ P(y)

Bayes’ law

Posterior ∝ Likelihood ⨉ Prior
P(x | d) ∝ P(d | x) ⨉ P(x)

3/30

Idealized Anglican

Posterior ∝ Likelihood ⨉ Prior
P(x | d) ∝ P(d | x) ⨉ P(x)

3/30

Idealized Anglican = sequential programming +
normalize observe sample

http://www.robots.ox.ac.uk/~fwood/anglican/

http://www.robots.ox.ac.uk/~fwood/anglican/

Idealized Anglican

Posterior ∝ Likelihood ⨉ Prior
P(x | d) ∝ P(d | x) ⨉ P(x)

3/30

Idealized Anglican = sequential programming +
normalize observe sample

http://www.robots.ox.ac.uk/~fwood/anglican/

other languages:
Church,Venture…
Hakaru … Stan…

http://www.robots.ox.ac.uk/~fwood/anglican/

Example

4/30

1. A call centre operator doesn’t know what day it is.
2. He knows: weekends: avg 3 calls per hour. 

 weekdays: avg 10 calls per hour.
3. He notices a 15 minute gap between calls.
4. Is it the weekend?

Example

4/30

1. A call centre operator doesn’t know what day it is.
2. He knows: weekends: avg 3 calls per hour. 

 weekdays: avg 10 calls per hour.
3. He notices a 15 minute gap between calls.
4. Is it the weekend?

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 0.25 from exp-dist(rate);  
 return(weekend))

Example

4/30

1. A call centre operator doesn’t know what day it is.
2. He knows: weekends: avg 3 calls per hour. 

 weekdays: avg 10 calls per hour.
3. He notices a 15 minute gap between calls.
4. Is it the weekend?

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 0.25 from exp-dist(rate);  
 return(weekend))

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

Nonetheless, we can give a precise semantics to the language using measure
theory. In brief,

– programs of type A are interpreted as measures on A, and more generally
expressions of type A with free variables in � are measure kernels � A;

– sampling from a prior describes a probability measure;
– observations are interpreted by multiplying the measure of a path by the

likelihood of the data;

Motivation

Posterior ∝ Likelihood ⨉ Prior
P(x | d) ∝ P(d | x) ⨉ P(x)

5/30

Idealized Anglican = sequential programming +
normalize observe sample

Aims of semantic models:
1. Justify program transformations;
2. Understand complex probabilistic models 
 through semantics.

Main theorem: Commutativity

6/30

Aims of semantics:
1. Justify program transformations;
2. Understand complex probabilistic models 
 through semantics.

– sample, which draws from a prior distribution, which may be discrete (like
a Bernoulli distribution) or continuous (like a Gaussian distribution);

– score, or observe, which records the likelihood of a particular observed data
point, sometimes called ‘soft conditioning’;

– normalize, which finds the normalization constant and the posterior proba-
bility distribution.

The implementation of normalize typically involves simulation. One hope is that
we can use program transformations to improve the e�ciency of this simulation,
or even to symbolically calculate the normalizing constant. We turn to some
transformations of this kind in Section 4.1. But a very first program transfor-
mation is to reorder the lines of a program, as long as the data dependencies are
preserved, e.g.

letx = t in

let y = u in

v

=

let y = u in

letx = t in

v

(2)

where x not free in u, y not free in t. This is known as commutativity. For exam-
ple, in a traditional programming language with memory, this transformation
is valid provided t and u reference di↵erent locations. In probabilistic program-
ming, a fundamental intuition is that programs are stateless. From a practical
perspective, it is essential to be able to reorder lines and so access more sophis-
ticated program transformations (e.g. §4.1); reordering lines can also a↵ect the
e�ciency of simulation. The main contribution of this paper is the result:

Theorem 4 (§4.2). The commutativity equation (2) is always valid in proba-

bilistic programs.

1.1 A first introduction to probabilistic programming.

To illustrate the key ideas of probabilistic programming, consider the following
simple problem, which we explain in English and then specify as a probabilistic
program.

1. A telephone operator has forgotten what day it is.
2. He receives on average ten calls per hour in the week and three calls per

hour at the weekend.
3. He observes four calls in a given hour.
4. What is the probability that it is a week day?

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(5

7

)) in
3. let r = if x then 10 else 3 in
4. observe 4 from poisson(r);
5. return(x)) 0

0.25

0 4 20

poisson(10)

poisson(3)

where x not free in u,  
 y not free in t

 connections with multicategories, monoidal categories etc..

Main theorem: Commutativity

6/30

– sample, which draws from a prior distribution, which may be discrete (like
a Bernoulli distribution) or continuous (like a Gaussian distribution);

– score, or observe, which records the likelihood of a particular observed data
point, sometimes called ‘soft conditioning’;

– normalize, which finds the normalization constant and the posterior proba-
bility distribution.

The implementation of normalize typically involves simulation. One hope is that
we can use program transformations to improve the e�ciency of this simulation,
or even to symbolically calculate the normalizing constant. We turn to some
transformations of this kind in Section 4.1. But a very first program transfor-
mation is to reorder the lines of a program, as long as the data dependencies are
preserved, e.g.

letx = t in

let y = u in

v

=

let y = u in

letx = t in

v

(2)

where x not free in u, y not free in t. This is known as commutativity. For exam-
ple, in a traditional programming language with memory, this transformation
is valid provided t and u reference di↵erent locations. In probabilistic program-
ming, a fundamental intuition is that programs are stateless. From a practical
perspective, it is essential to be able to reorder lines and so access more sophis-
ticated program transformations (e.g. §4.1); reordering lines can also a↵ect the
e�ciency of simulation. The main contribution of this paper is the result:

Theorem 4 (§4.2). The commutativity equation (2) is always valid in proba-

bilistic programs.

1.1 A first introduction to probabilistic programming.

To illustrate the key ideas of probabilistic programming, consider the following
simple problem, which we explain in English and then specify as a probabilistic
program.

1. A telephone operator has forgotten what day it is.
2. He receives on average ten calls per hour in the week and three calls per

hour at the weekend.
3. He observes four calls in a given hour.
4. What is the probability that it is a week day?

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(5

7

)) in
3. let r = if x then 10 else 3 in
4. observe 4 from poisson(r);
5. return(x)) 0

0.25

0 4 20

poisson(10)

poisson(3)

where x not free in u,  
 y not free in t

a probabilistic program (via Thm. 6) and then using the denotational semantics
in [43]. From right to left: given a probability kernel k : JAK ([0,1) ⇥ JBK),
we build an s-finite kernel

Jx : A `p let (r, y) = sample(k(x)) in score(r); return(y) : BK : JAK JBK.

Valuations versus measures. Some authors advocate using valuations on topo-
logical spaces instead of measures on measurable spaces. This appears to rule
out the problematic examples, such as the counting measure on R. Indeed, Vick-
ers [45] has shown that a monad of valuations on locales is commutative. This
suggests a constructive or topological model of probabilistic programming (see
[8,15]) but a potential obstacle is that conditioning is not always computable [1].

6.2 Related work on commutativity more generally

Multicategories and data flow graphs. An early discussion of commutativ-
ity is in Lambek’s work on deductive systems and categories [22]. A judgement
x

1

: A
1

, . . . , x

n

: A
n

` t : B is interpreted as a multimorphism (A
1

. . . A

n

) ! B.
These could be drawn as triangles:

A1
A2

An

Bt...

(This hints at a link with the graphical ideas underlying several probabilis-
tic programming languages e.g. Stan [40].) Alongside requiring associativity of
composition, Lambek requires commutativity:

vu

t
vu

t
=

which matches with our commutativity condition (2). (See also [42].) In this
diagrammatic notation, commutativity says that the semantics is preserved un-
der topological transformations. Without commutativity, one would need extra
control flow wires to give a topological description of what rewritings are ac-
ceptable (e.g. [19,28]). Our main technical results (Lemma 3 and Prop. 5) can
be phrased as follows:

Measurable spaces and s-finite kernels X

1

⇥ · · · ⇥X

n

 Y form a mul-

ticategory.

Overview  
of the rest of part 1

Compositional probability theory; 
a compositional theory of impropriety

• Summary of semantics

• Examples

• s-finite kernels and  
proof of commutativity.

Summary of semantics

8/30

To begin: a first order typed language.

2. Preliminaries
We recall basic definitions and facts of measure theory.

Definition 2.1. A �-algebra on a set X is a family ⌃ of subsets
of X , called measurable (sub)sets, which contains X and is closed
under complements and countable unions. A measurable space is a
set with a �-algebra.

A probability measure or probability distribution on a measur-
able space (X,⌃) is a function p : ⌃ ! [0, 1] to the unit interval
satisfying p(X) = 1 and p(

S
i2N U

i

) =

P
i2N p(Ui

) for each se-
quence U

1

, U
2

, . . . of disjoint measurable sets.

A first example is to make a set X into a measurable space by
taking the full powerset of X as ⌃, yielding a discrete measurable
space. When X is countable, a probability distribution on (X,⌃)
is entirely determined by its values on singleton sets, that is, by
specifying a function p : X ! [0, 1] such that

P
x2X

p(x) = 1.
A second example is to combine a collection of measurable

spaces (X
i

,⌃
i

)

i2I

by sum or product. The underlying sets in this
case are the disjoint union

P
i2I

X
i

and product
Q

i2I

X
i

of sets.
The measurable sets in the sum are

P
i2I

U
i

for U
i

2 ⌃

i

. The �-
algebra of the product is the smallest one containing all the subsetsQ

i2I

U
i

where U
i

2 ⌃

i

equals X
i

but for a single index i.
For a third example, the real numbers form a measurable space

(R,⌃R) under the smallest �-algebra that contains the open inter-
vals; the measurable sets are called Borel sets. Restricting to any
measurable subset gives a new measurable space, such as the space
R�0

of nonnegative reals and the unit interval [0, 1].
A fourth example is to make the set P (X) of all probability

measures on a measurable space (X,⌃
X

) into a measurable space,
by letting ⌃

P (X)

be the smallest �-algebra containing the sets
{p 2 P (X) | p(U) 2 V } for all U 2 ⌃

X

and V 2 ⌃

[0,1]

.

Definition 2.2. Let (X,⌃
X

), (Y,⌃
Y

) be measurable spaces. A
function f : X ! Y is measurable if f -1

(U) 2 ⌃ for U 2 ⌃

Y

.

We can push forward a measure along a measurable function:
if p : ⌃

X

! [0, 1] is a probability measure on (X,⌃
X

) and
f : X ! Y is a measurable function, then q(U) = p(f -1

(U))

is a probability measure on (Y,⌃
Y

).

Definition 2.3. A stochastic relation between measurable spaces
(X,⌃

X

) and (Y,⌃
Y

) is a function r : X ⇥⌃

Y

! [0, 1] such that
r(x,�) : ⌃

Y

! [0, 1] is a probability distribution for all x 2 X ,
and r(�, V) : X ! [0, 1] is measurable for all V 2 ⌃

Y

.

Giving a stochastic relation from (X,⌃
X

) to (Y,⌃
Y

) is equiva-
lent to giving a measurable function (X,⌃

X

) ! (P (Y),⌃
P (Y)

).
Stochastic relations r : X ⇥⌃

Y

! [0, 1] and s : Y ⇥⌃

Z

! [0, 1]
compose associatively to (s�r) : X⇥⌃

Z

! [0, 1] via the formula

(s � r)(x,W) =

Z

Y

s(y,W) r(x, dy).

Finally, for a predicate ', we use the indicator expression ['] to
denote 1 if ' holds, and 0 otherwise.

3. A first-order language
This section presents a first-order language for expressing Bayesian
probabilistic models. The language forms a first-order core of a
higher-order extension in Section 6, and provides a simpler setting
to illustrate key ideas. For example, the language includes infini-
tary type and term constructors, constant terms for all measurable
functions between measurable spaces, and constructs for specify-
ing Bayesian probabilistic models, namely, operations for sampling
distributions, scoring samples, and normalizing distributions based
on scores. This highly permissive and slightly unusual syntax is not
meant to be a useful programming language itself. Rather, its pur-

pose is to serve as a semantic metalanguage to which a practical
programming language compiles, and to provide a common math-
ematical setting for studying high-level constructs for probabilistic
computation.

Types The language has types

A,B ::= R | P(A) | 1 | A⇥ B |

P
i2I

A
i

where I ranges over countable sets. A type A stands for a mea-
surable space JAK. For example, R denotes the measurable space
of reals, P(A) is the space of probability measures on A, and 1

is the (discrete) measurable space on the singleton set. The other
type constructors correspond to products and sums of measurable
spaces. Notice that countable sums are allowed, enabling us to ex-
press usual ground types in programming languages via standard
encoding. For instance, the type for booleans is 1 + 1, and that for
natural numbers

P
i2N 1.

Terms We distinguish typing judgements: � `d t : A for deter-
ministic terms, and � `p t : A for probabilistic terms (see also
e.g. [19, 25, 29]). In both, A is a type, and � is a list of variable/type
pairs. Variables stand for deterministic terms, making the following
substitution rule derivable:

�, x : A `z u : B � `d t : A
� `z u[t/x] : B

(z 2 {d, p})

Intuitively, probabilistic terms � `p t : A express computations
with effects from two different sources: during evaluation, t may
sample a value from a probability distribution, or it may update
a variable storing the current score, a nonnegative real number
expressing to what extent sampled values (from a prior distribution)
are compatible with observed data. Evaluating deterministic terms
� `d t : A, on the other hand, does not generate such effects.

Formally, a context � = (x
1

: A
1

, . . . , x
n

: A
n

) means a mea-
surable space J�K def

=

Q
n

i=1

JA
i

K. Both deterministic terms � `d

t : A and probabilistic terms � `p t0 : A denote measurable func-
tions from J�K, but they have different codomains. The former has
codomain JAK, whereas the latter has codomain P (R�0

⇥ JAK).
Elements of P (R�0

⇥ JAK) are probability distributions on pairs
(r, a) 2 R�0

⇥ JAK, where a is the value obtained through various
probabilistic choices, and r the corresponding score. -27.020 3.570
8.191 9.898 9.603 9.945 10.056

let µ = sample(gaussian(0, 50)) in

let � = 2 in

observe(gaussian(µ,�),�27.020);

observe(gaussian(µ,�), 3.570);

observe(gaussian(µ,�), 8.191);

observe(gaussian(µ,�), 9.898);

observe(gaussian(µ,�), 9.603);

return(µ)

2 2016/4/1

Types:

real numbers

distributions over A

finite products

countable
sums

Terms: sequencing: let x = t in u
normalize observe sample

Summary of semantics

8/30

Types interpreted as measurable spaces.

Closed terms of type A 
interpreted as measures on〚A〛.

For now: a first order typed language without
recursion.

Summary of semantics

9/30

Types interpreted as measurable spaces.

A measurable space (X, ΣX) is
a set X together with set ΣX of
subsets closed under countable
unions and complements.

Summary of semantics

9/30

Types interpreted as measurable spaces.
e.g. ⟦real⟧ = (ℝ,Σℝ)

where Σℝ = Borel sets
generated by intervals e.g. (-2.2 , 4.1)
& countable unions & complements

A measurable space (X, ΣX) is
a set X together with set ΣX of
subsets closed under countable
unions and complements.

Summary of semantics

9/30

Types interpreted as measurable spaces.
e.g. ⟦real⟧ = (ℝ,Σℝ)

where Σℝ = Borel sets
generated by intervals e.g. (-2.2 , 4.1)
& countable unions & complements

A measurable space (X, ΣX) is
a set X together with set ΣX of
subsets closed under countable
unions and complements.

Summary of semantics

9/30

Types interpreted as measurable spaces.

Closed terms interpreted as measures
Open terms are interpreted as kernels

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bern(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bern(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bern(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned de-
pending on the outcome of a fair coin toss. The model evidence
is 5.0 = (0.5 · 7.0) + (0.5 · 3.0), and the normalised distribu-
tion, taking the scores into account, is bern(

0.5·7.0
5.0

). The fourth
equation shows how infinite model evidence errors can arise when
working with infinite distributions. In the last equation, the parame-
ter x of score(x) represents the probability of true under bern(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

Jnorm(letx = t in (score(u); v))K
= Jnorm(case (norm(letx = t in score(u); return(x))) of 1

(0, (e, d))) score(e); letx = sample(d) in v 2

| (1, ⇤)) score(0); return(w) 3

| (2, ⇤)) letx = t in (score(u); v))K 4

Let us explain the right hand side. Line 1 renormalises the program
after the score, and in non-exceptional execution returns the model
evidence e and a new normalised distribution d. Line 2 immediately
records the evidence e as a score, and then resamples d, using the
resampled value in the continuation v. Line 3 propagates the error
of 0: w is a deterministic term of the right type whose choice does
not matter. Finally, line 4 detects an infinite evidence error, and
undoes the transformation. This error does not arise in the most
applications of sequential Monte Carlo simulation.

4 2016/4/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

.

e.g. ⟦real⟧ = (ℝ,Σℝ)

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

:

countably additive in

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

measurable in

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

2. Preliminaries
We recall basic definitions and facts of measure theory.

Definition 2.1. A �-algebra on a set X is a family ⌃ of subsets
of X , called measurable (sub)sets, which contains X and is closed
under complements and countable unions. A measurable space is a
set with a �-algebra.

A probability measure or probability distribution on a measur-
able space (X,⌃) is a function p : ⌃ ! [0, 1] to the unit interval
satisfying p(X) = 1 and p(

S
i2N U

i

) =

P
i2N p(Ui

) for each se-
quence U

1

, U
2

, . . . of disjoint measurable sets.

A first example is to make a set X into a measurable space by
taking the full powerset of X as ⌃, yielding a discrete measurable
space. When X is countable, a probability distribution on (X,⌃)
is entirely determined by its values on singleton sets, that is, by
specifying a function p : X ! [0, 1] such that

P
x2X

p(x) = 1.
A second example is to combine a collection of measurable

spaces (X
i

,⌃
i

)

i2I

by sum or product. The underlying sets in this
case are the disjoint union

P
i2I

X
i

and product
Q

i2I

X
i

of sets.
The measurable sets in the sum are

P
i2I

U
i

for U
i

2 ⌃

i

. The �-
algebra of the product is the smallest one containing all the subsetsQ

i2I

U
i

where U
i

2 ⌃

i

equals X
i

but for a single index i.
For a third example, the real numbers form a measurable space

(R,⌃R) under the smallest �-algebra that contains the open inter-
vals; the measurable sets are called Borel sets. Restricting to any
measurable subset gives a new measurable space, such as the space
R�0

of nonnegative reals and the unit interval [0, 1].
A fourth example is to make the set P (X) of all probability

measures on a measurable space (X,⌃
X

) into a measurable space,
by letting ⌃

P (X)

be the smallest �-algebra containing the sets
{p 2 P (X) | p(U) 2 V } for all U 2 ⌃

X

and V 2 ⌃

[0,1]

.

Definition 2.2. Let (X,⌃
X

), (Y,⌃
Y

) be measurable spaces. A
function f : X ! Y is measurable if f -1

(U) 2 ⌃ for U 2 ⌃

Y

.

We can push forward a measure along a measurable function:
if p : ⌃

X

! [0, 1] is a probability measure on (X,⌃
X

) and
f : X ! Y is a measurable function, then q(U) = p(f -1

(U))

is a probability measure on (Y,⌃
Y

).

Definition 2.3. A stochastic relation between measurable spaces
(X,⌃

X

) and (Y,⌃
Y

) is a function r : X ⇥⌃

Y

! [0, 1] such that
r(x,�) : ⌃

Y

! [0, 1] is a probability distribution for all x 2 X ,
and r(�, V) : X ! [0, 1] is measurable for all V 2 ⌃

Y

.

Giving a stochastic relation from (X,⌃
X

) to (Y,⌃
Y

) is equiva-
lent to giving a measurable function (X,⌃

X

) ! (P (Y),⌃
P (Y)

).
Stochastic relations r : X ⇥⌃

Y

! [0, 1] and s : Y ⇥⌃

Z

! [0, 1]
compose associatively to (s�r) : X⇥⌃

Z

! [0, 1] via the formula

(s � r)(x,W) =

Z

Y

s(y,W) r(x, dy).

Finally, for a predicate ', we use the indicator expression ['] to
denote 1 if ' holds, and 0 otherwise.

3. A first-order language
This section presents a first-order language for expressing Bayesian
probabilistic models. The language forms a first-order core of a
higher-order extension in Section 6, and provides a simpler setting
to illustrate key ideas. For example, the language includes infini-
tary type and term constructors, constant terms for all measurable
functions between measurable spaces, and constructs for specify-
ing Bayesian probabilistic models, namely, operations for sampling
distributions, scoring samples, and normalizing distributions based
on scores. This highly permissive and slightly unusual syntax is not
meant to be a useful programming language itself. Rather, its pur-

pose is to serve as a semantic metalanguage to which a practical
programming language compiles, and to provide a common math-
ematical setting for studying high-level constructs for probabilistic
computation.

Types The language has types

A,B ::= R | P(A) | 1 | A⇥ B |

P
i2I

A
i

where I ranges over countable sets. A type A stands for a mea-
surable space JAK. For example, R denotes the measurable space
of reals, P(A) is the space of probability measures on A, and 1

is the (discrete) measurable space on the singleton set. The other
type constructors correspond to products and sums of measurable
spaces. Notice that countable sums are allowed, enabling us to ex-
press usual ground types in programming languages via standard
encoding. For instance, the type for booleans is 1 + 1, and that for
natural numbers

P
i2N 1.

Terms We distinguish typing judgements: � `d t : A for deter-
ministic terms, and � `p t : A for probabilistic terms (see also
e.g. [19, 25, 29]). In both, A is a type, and � is a list of variable/type
pairs. Variables stand for deterministic terms, making the following
substitution rule derivable:

�, x : A `z u : B � `d t : A
� `z u[t/x] : B

(z 2 {d, p})

Intuitively, probabilistic terms � `p t : A express computations
with effects from two different sources: during evaluation, t may
sample a value from a probability distribution, or it may update
a variable storing the current score, a nonnegative real number
expressing to what extent sampled values (from a prior distribution)
are compatible with observed data. Evaluating deterministic terms
� `d t : A, on the other hand, does not generate such effects.

Formally, a context � = (x
1

: A
1

, . . . , x
n

: A
n

) means a mea-
surable space J�K def

=

Q
n

i=1

JA
i

K. Both deterministic terms � `d

t : A and probabilistic terms � `p t0 : A denote measurable func-
tions from J�K, but they have different codomains. The former has
codomain JAK, whereas the latter has codomain P (R�0

⇥ JAK).
Elements of P (R�0

⇥ JAK) are probability distributions on pairs
(r, a) 2 R�0

⇥ JAK, where a is the value obtained through various
probabilistic choices, and r the corresponding score. -27.020 3.570
8.191 9.898 9.603 9.945 10.056

let µ = sample(gaussian(0, 50)) in

let � = 2 in

observe(gaussian(µ,�),�27.020);

observe(gaussian(µ,�), 3.570);

observe(gaussian(µ,�), 8.191);

observe(gaussian(µ,�), 9.898);

observe(gaussian(µ,�), 9.603);

return(µ)

2 2016/4/1

+ ↦ +

Summary of semantics

9/30

Types interpreted as measurable spaces.

Closed terms interpreted as measures
Open terms interpreted as kernels

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

Sequencing is integration

e.g. ⟦real⟧ = (ℝ,Σℝ)

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

Summary of semantics

9/30

Types interpreted as measurable spaces.
e.g. real type interpreted as

2. Preliminaries
We recall basic definitions and facts of measure theory.

Definition 2.1. A �-algebra on a set X is a family ⌃ of subsets
of X , called measurable (sub)sets, which contains X and is closed
under complements and countable unions. A measurable space is a
set with a �-algebra.

A probability measure or probability distribution on a measur-
able space (X,⌃) is a function p : ⌃ ! [0, 1] to the unit interval
satisfying p(X) = 1 and p(

S
i2N U

i

) =

P
i2N p(Ui

) for each se-
quence U

1

, U
2

, . . . of disjoint measurable sets.

A first example is to make a set X into a measurable space by
taking the full powerset of X as ⌃, yielding a discrete measurable
space. When X is countable, a probability distribution on (X,⌃)
is entirely determined by its values on singleton sets, that is, by
specifying a function p : X ! [0, 1] such that

P
x2X

p(x) = 1.
A second example is to combine a collection of measurable

spaces (X
i

,⌃
i

)

i2I

by sum or product. The underlying sets in this
case are the disjoint union

P
i2I

X
i

and product
Q

i2I

X
i

of sets.
The measurable sets in the sum are

P
i2I

U
i

for U
i

2 ⌃

i

. The �-
algebra of the product is the smallest one containing all the subsetsQ

i2I

U
i

where U
i

2 ⌃

i

equals X
i

but for a single index i.
For a third example, the real numbers form a measurable space

(R,⌃R) under the smallest �-algebra that contains the open inter-
vals; the measurable sets are called Borel sets. Restricting to any
measurable subset gives a new measurable space, such as the space
R�0

of nonnegative reals and the unit interval [0, 1].
A fourth example is to make the set P (X) of all probability

measures on a measurable space (X,⌃
X

) into a measurable space,
by letting ⌃

P (X)

be the smallest �-algebra containing the sets
{p 2 P (X) | p(U) 2 V } for all U 2 ⌃

X

and V 2 ⌃

[0,1]

.

Definition 2.2. Let (X,⌃
X

), (Y,⌃
Y

) be measurable spaces. A
function f : X ! Y is measurable if f -1

(U) 2 ⌃ for U 2 ⌃

Y

.

We can push forward a measure along a measurable function:
if p : ⌃

X

! [0, 1] is a probability measure on (X,⌃
X

) and
f : X ! Y is a measurable function, then q(U) = p(f -1

(U))

is a probability measure on (Y,⌃
Y

).

Definition 2.3. A stochastic relation between measurable spaces
(X,⌃

X

) and (Y,⌃
Y

) is a function r : X ⇥⌃

Y

! [0, 1] such that
r(x,�) : ⌃

Y

! [0, 1] is a probability distribution for all x 2 X ,
and r(�, V) : X ! [0, 1] is measurable for all V 2 ⌃

Y

.

Giving a stochastic relation from (X,⌃
X

) to (Y,⌃
Y

) is equiva-
lent to giving a measurable function (X,⌃

X

) ! (P (Y),⌃
P (Y)

).
Stochastic relations r : X ⇥⌃

Y

! [0, 1] and s : Y ⇥⌃

Z

! [0, 1]
compose associatively to (s�r) : X⇥⌃

Z

! [0, 1] via the formula

(s � r)(x,W) =

Z

Y

s(y,W) r(x, dy).

Finally, for a predicate ', we use the indicator expression ['] to
denote 1 if ' holds, and 0 otherwise.

3. A first-order language
This section presents a first-order language for expressing Bayesian
probabilistic models. The language forms a first-order core of a
higher-order extension in Section 6, and provides a simpler setting
to illustrate key ideas. For example, the language includes infini-
tary type and term constructors, constant terms for all measurable
functions between measurable spaces, and constructs for specify-
ing Bayesian probabilistic models, namely, operations for sampling
distributions, scoring samples, and normalizing distributions based
on scores. This highly permissive and slightly unusual syntax is not
meant to be a useful programming language itself. Rather, its pur-

pose is to serve as a semantic metalanguage to which a practical
programming language compiles, and to provide a common math-
ematical setting for studying high-level constructs for probabilistic
computation.

Types The language has types

A,B ::= R | P(A) | 1 | A⇥ B |

P
i2I

A
i

where I ranges over countable sets. A type A stands for a mea-
surable space JAK. For example, R denotes the measurable space
of reals, P(A) is the space of probability measures on A, and 1

is the (discrete) measurable space on the singleton set. The other
type constructors correspond to products and sums of measurable
spaces. Notice that countable sums are allowed, enabling us to ex-
press usual ground types in programming languages via standard
encoding. For instance, the type for booleans is 1 + 1, and that for
natural numbers

P
i2N 1.

Terms We distinguish typing judgements: � `d t : A for deter-
ministic terms, and � `p t : A for probabilistic terms (see also
e.g. [19, 25, 29]). In both, A is a type, and � is a list of variable/type
pairs. Variables stand for deterministic terms, making the following
substitution rule derivable:

�, x : A `z u : B � `d t : A
� `z u[t/x] : B

(z 2 {d, p})

Intuitively, probabilistic terms � `p t : A express computations
with effects from two different sources: during evaluation, t may
sample a value from a probability distribution, or it may update
a variable storing the current score, a nonnegative real number
expressing to what extent sampled values (from a prior distribution)
are compatible with observed data. Evaluating deterministic terms
� `d t : A, on the other hand, does not generate such effects.

Formally, a context � = (x
1

: A
1

, . . . , x
n

: A
n

) means a mea-
surable space J�K def

=

Q
n

i=1

JA
i

K. Both deterministic terms � `d

t : A and probabilistic terms � `p t0 : A denote measurable func-
tions from J�K, but they have different codomains. The former has
codomain JAK, whereas the latter has codomain P (R�0

⇥ JAK).
Elements of P (R�0

⇥ JAK) are probability distributions on pairs
(r, a) 2 R�0

⇥ JAK, where a is the value obtained through various
probabilistic choices, and r the corresponding score. -27.020 3.570
8.191 9.898 9.603 9.945 10.056

let µ = sample(gaussian(0, 50)) in

let � = 2 in

observe(gaussian(µ,�),�27.020);

observe(gaussian(µ,�), 3.570);

observe(gaussian(µ,�), 8.191);

observe(gaussian(µ,�), 9.898);

observe(gaussian(µ,�), 9.603);

return(µ)

2 2016/4/1

with Borel sets

Closed terms interpreted as measures
Open terms interpreted as kernels
Sequencing is integration

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

“ ”

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

see Kozen, 1981  
Börgstrom, Gordon et al., ESOP 2011
Shan, Ramsey, POPL 2017

Summary of semantics

9/30

Closed terms interpreted as measures

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

“ ”

Sequencing is integration

Key Theorem: Commutativity.

– sample, which draws from a prior distribution, which may be discrete (like
a Bernoulli distribution) or continuous (like a Gaussian distribution);

– score, or observe, which records the likelihood of a particular observed data
point, sometimes called ‘soft conditioning’;

– normalize, which finds the normalization constant and the posterior proba-
bility distribution.

The implementation of normalize typically involves simulation. One hope is that
we can use program transformations to improve the e�ciency of this simulation,
or even to symbolically calculate the normalizing constant. We turn to some
transformations of this kind in Section 4.1. But a very first program transfor-
mation is to reorder the lines of a program, as long as the data dependencies are
preserved, e.g.

letx = t in

let y = u in

v

=

let y = u in

letx = t in

v

(2)

where x not free in u, y not free in t. This is known as commutativity. For exam-
ple, in a traditional programming language with memory, this transformation
is valid provided t and u reference di↵erent locations. In probabilistic program-
ming, a fundamental intuition is that programs are stateless. From a practical
perspective, it is essential to be able to reorder lines and so access more sophis-
ticated program transformations (e.g. §4.1); reordering lines can also a↵ect the
e�ciency of simulation. The main contribution of this paper is the result:

Theorem 4 (§4.2). The commutativity equation (2) is always valid in proba-

bilistic programs.

1.1 A first introduction to probabilistic programming.

To illustrate the key ideas of probabilistic programming, consider the following
simple problem, which we explain in English and then specify as a probabilistic
program.

1. A telephone operator has forgotten what day it is.
2. He receives on average ten calls per hour in the week and three calls per

hour at the weekend.
3. He observes four calls in a given hour.
4. What is the probability that it is a week day?

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(5

7

)) in
3. let r = if x then 10 else 3 in
4. observe 4 from poisson(r);
5. return(x)) 0

0.25

0 4 20

poisson(10)

poisson(3)

Proof summary: 
Probabilistic programs
≈ s-finite kernels.

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

Overview  
of the rest of part 1

Compositional probability theory; 
a compositional theory of impropriety

• Summary of semantics

• Examples

• s-finite kernels and  
proof of commutativity.

Worked examples

11/30

1. A call centre operator doesn’t know what day it is.
2. He knows: weekends: avg 3 calls per hour. 

 weekdays: avg 10 calls per hour.
3. He notices 4 calls in a given hour.
4. Is it the weekend?

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

0

0.25

0 4 20

poisson(10)

poisson(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

Worked examples

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

m(weekend=true) = 2/7 × 0.168 = 0.048

m(weekend=false) = 5/7 × 0.019 = 0.014

Unnormalized posterior:

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

0

0.25

0 4 20

poisson(10)

poisson(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

Worked examples

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

m(weekend=true) = 2/7 × 0.168 = 0.048

m(weekend=false) = 5/7 × 0.019 = 0.014

Unnormalized posterior:

Normalized posterior:
p(weekend=true) = 0.048 / 0.062

 = 0.78

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

0

0.25

0 4 20

poisson(10)

poisson(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

Worked examples

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

true false0

0.5

1

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

0

0.25

0 4 20

poisson(10)

poisson(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

weekend=truetrue false

⟦return(weekend)⟧

0

0.5

1

Worked examples

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

0

0.25

0 4 20

poisson(10)

poisson(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

true false

⟦return(weekend)⟧

weekend=false

0

0.5

1

Worked examples

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

0

0.25

0 4 20

poisson(10)

poisson(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

true false

⟦return(weekend)⟧

weekend=false
weekend=true

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

0

0.25

0 4 20

poisson(10)

poisson(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

0

0.5

1

true false

⟦return(weekend)⟧

0

0.1

0.2

weekend=false
weekend=trueunit

⟦let rate = … in 
 observe 4 from …⟧

Worked examples

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

0

0.25

0 4 20

poisson(10)

poisson(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

0

0.5

1

true false

⟦return(weekend)⟧

0

0.1

0.2

weekend=false
weekend=trueunit

⟦let rate = … in 
 observe 4 from …⟧

Worked examples

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

0

0.05

0.1

0.15

0.2

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

true false

⟦let rate = … in 
 observe 4 from …; 
 return(weekend)⟧

weekend=false
weekend=true

Worked examples

0

0.05

0.1

0.15

0.2

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

true false

⟦let rate = … in 
 observe 4 from …; 
 return(weekend)⟧

weekend=false
weekend=true

Worked examples

0

0.2

0.4

0.6

0.8

1

true false
⟦sample(bernoulli(2/7)⟧

0

0.05

0.1

0.15

0.2

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

true false

⟦let rate = … in 
 observe 4 from …; 
 return(weekend)⟧

weekend=false
weekend=true

Worked examples

0

0.2

0.4

0.6

0.8

1

true false
⟦sample(bernoulli(2/7)⟧

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

0

0.02

0.04

0.06

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

true false
⟦let weekend = … in 
 let rate = … in 
 observe 4 from …; 
 return(weekend)⟧

Worked examples

0

0.02

0.04

0.06

11/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 4 from poisson(rate);  
 return(weekend))

true false
⟦let weekend = … in 
 let rate = … in 
 observe 4 from …; 
 return(weekend)⟧

Worked examples

0

0.2

0.4

0.6

0.8

1

true false
⟦normalize( 
 let weekend = … in 
 let rate = … in 
 observe 4 from …; 
 return(weekend))⟧

Worked examples

12/30

1. A call centre operator doesn’t know what day it is.
2. He knows: weekends: avg 3 calls per hour. 

 weekdays: avg 10 calls per hour.
3. He notices a 15 minute gap between calls.
4. Is it the weekend?

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 0.25 from exp-dist(rate);  
 return(weekend))

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

Nonetheless, we can give a precise semantics to the language using measure
theory. In brief,

– programs of type A are interpreted as measures on A, and more generally
expressions of type A with free variables in � are measure kernels � A;

– sampling from a prior describes a probability measure;
– observations are interpreted by multiplying the measure of a path by the

likelihood of the data;

Worked examples

12/30

normalize( 
 let weekend = sample(bernoulli(2/7)) in  
 let rate = if weekend then 3 else 10 in  
 observe 0.25 from exp-dist(rate);  
 return(weekend))

We describe this as a probabilistic program as follows:

1. normalize(
2. letx = sample(bern(0.5)) in
3. let r = if x then 4 else 2 in
4. observe 0.1 from exp(r);
5. return(x)) 0

1

2

3

4

0 15mins 60mins

exp(10)

exp(3)

Lines 2–5 describe the combination of the likelihood and the prior. First, on line
2, we sample from the prior: a fair coin, that is, a Bernoulli distribution with
parameter 0.5. On line 4 we record the observation that the exponential decay
happened at time 0.1. In Bayesian statistics, the likelihood is defined to be the
value of the probability density function at the observation point. The density
function of the exponential distribution exp(r) with rate r is (x 7! re

�rx). So if
the decay rate is 4, the likelihood of time 0.1 is 4e�0.4

⇡ 2.68 and if the decay
rate is 2, the likelihood is 2e�0.2

⇡ 1.64. We thus find a semantics for lines 2–5,
an unnormalized posterior measure on {true, false}, by considering the only two
paths through the program, depending on the outcome of the coin toss.

– The Bernoulli trial (line 2) produces true with prior probability 0.5, and
then the rate is 4 (line 3) and so the likelihood of the data is 2.68 (line 4);
in this case, the unnormalized posterior measure of true is 0.5⇥ 2.68 ⇡ 1.34
(prior⇥likelihood).

– The Bernoulli trial produces false with prior probability 0.5, and then the
likelihood of the observed data is 1.64; so the unnormalized posterior measure
of false is 0.5⇥ 1.64 ⇡ 0.82.

The measure (true 7! 1.34, false 7! 0.82) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 1.34 + 0.82 =
2.16, to get a posterior probability measure (true 7! 0.62, false 7! 0.38). The
normalizing constant, 2.16, is sometimes called model evidence; it is an indication
of how well the data fits the model.

In this simple example, there were only two paths through the program. In
general the prior may be a continuous distribution over an uncountable set, such
as the exponential distribution on R, in which case a simulation can only find
an approximate normalizing constant:

normalize

�
let r = sample(exp(1)) in observe 0.1 from exp(r); return(r)

�
. (3)

Nonetheless, we can give a precise semantics to the language using measure
theory. In brief,

– programs of type A are interpreted as measures on A, and more generally
expressions of type A with free variables in � are measure kernels � A;

– sampling from a prior describes a probability measure;
– observations are interpreted by multiplying the measure of a path by the

likelihood of the data;

m(weekend=true) = 2/7 × 1.42 = 0.405

m(weekend=false) = 5/7 × 0.82 = 0.586

Unnormalized posterior:

Normalized posterior:
p(weekend=true) = 0.405 / 0.991

 = 0.408

Worked examples

12/30

1. A call centre operator doesn’t know what time it is.
2. He knows how the avg num of calls varies with time.
3. He notices a 15 minute gap between calls.
4. What time is it?

normalize( 
 let time = sample(uniform(0,24)) in  
 let rate = f(time) in  
 observe 0.25 from exp-dist(rate);  
 return(weekend))

Improper posteriors
let x = sample(Normal(0,1)) in
let r = 1/f(x) in
observe d from exp-dist(r);
return x

– sequencing is Lebesgue integration: letx = t inu ⇡

R
t(dx)u;

– normalization finds the measure of the whole space, the normalizing con-
stant.

To put it another way, the programming language is a language for building
measures. For full details, see Section 3.2.

1.2 Commutativity and infinite measures.

If, informally, sequencing is integration, then commutativity laws such as (2)
amount to changing the order of integration, e.g.

Z
t(dx)

Z
u(dy) v =

Z
u(dy)

Z
t(dx) v (4)

A first non-trivial fact of measure theory is Fubini’s theorem: for finite measures,
equation (4) holds. However, commutativity theorems like this do not hold for
arbitrary infinite measures. In fact, if we deal with arbitrary infinite measures,
we do not even know whether sequencing

R
t(dx) v is a genuine measure kernel.

As we will show, for the measures that are definable in our language, sequencing
is well defined, and commutativity does hold. But let us first emphasise that
infinite measures appear to be unavoidable because

– there is no known useful syntactic restriction that enforces finite measures;
– a program with finite measure may have a subexpression with infinite mea-

sure, and this can be useful.

To illustrate these points, consider the following program, a variation on (3).

let x = sample(gauss(0, 1)) in observe d from exp(1/f(x)); return(x) : R (5)

Here gauss(0, 1) is the standard Gaussian distribution with mean 0 and standard

derivation 1; recall that its density f is f(x) = 1p
2⇡

e

� x

2

2 . The illustration on the

0

1

�4 0 4

d = 0

d = 0.1
right shows the unnormalized posterior for (5) as
the observed data goes from d = 0.1 (blue) to d = 0
(red). Notice that at d = 0, the resulting unnor-
malized posterior measure on R is the flat Lebesgue
measure on R, which assigns to each interval (m,n)
its size, (n�m). The Lebesgue measure of the entire
real line, the would-be normalizing constant, is 1,
so we cannot find a posterior probability measure. A statistician would prob-
ably not be very bothered about this, because a tiny change in the observed
data yields a finite normalizing constant. But that is not good enough for a
semanticist, who must give a meaning to every program.

It is di�cult to see how a simple syntactic restriction could eliminate pro-
gram (5) while keeping other useful programs such as (3). Another similar pro-
gram is

letx = sample(gauss(0, 1)) in score(g(x)/f(x)); return(x) : R (6)

f(x)=where

As d→0, the
normalizing constant
tends to ∞.
“The posterior is
improper.”0

1

�4 0 4

d = 0

d = 0.1right shows the unnormalized posterior for (5) as
the observed data goes from d = 0.1 (blue dotted
line) to d = 0 (red straight line). Notice that at
d = 0, the resulting unnormalized posterior mea-
sure on R is the flat Lebesgue measure on R, which
assigns to each interval (m,n) its size, (n�m). The
Lebesgue measure of the entire real line, the would-
be normalizing constant, is 1, so we cannot find a posterior probability measure.
A statistician would probably not be very bothered about this, because a tiny
change in the observed data yields a finite normalizing constant. But that is not
good enough for a semanticist, who must give a meaning to every program.

It is di�cult to see how a simple syntactic restriction could eliminate pro-
gram (5) while keeping other useful programs such as (3). Another similar pro-
gram is

letx = sample(gauss(0, 1)) in score(g(x)/f(x)); return(x) : R (6)

0

0.1

0.2

0.3

0.4

�2.5 0 2.5

g

a

u

s

s

c

a

u

c

h

y

where g(x) = 1

⇡(1+x

2
)

is the density function of the

standard Cauchy distribution and score(r) is short-
hand for (observe 0 from exp(r)) — recall that the den-
sity of the exponential distribution exp(r) at 0 is
r = re

�r⇥0. Program (6) is the importance sampling
algorithm for simulating a Cauchy distribution from
a Gaussian. To see why this algorithm is correct,
i.e. (6)=sample(cauchy(0, 1)), it is helpful to rewrite it:

let x = sample(gauss(0, 1)) in score(1/f(x)) ; score(g(x)) ; return(x) : R.

Notice that the underlined subexpression is the Lebesgue measure, as in (5),
and recall that sequencing is integration. So program (6) is correct because it is
integrating the density g over the Lebesgue measure; this is equal to the Cauchy
probability measure, by definition of density.

1.3 Commutativity through s-finite kernels.

It is known that commutativity holds not just for finite measures but also for s-
finite measures, which are formed from a countable sum of finite measures. The
key contribution of this paper is that all closed probabilistic programs define
s-finite measures. To show this compositionally, we must also give a semantics
to open programs, which we interpret using a notion of s-finite kernel (Def. 2),
which is a countable sum of finite, bounded kernels; these support sequential
composition (Lemma 3). Iterated integrals and interchange (4) are no problem
for s-finite measures (Prop. 5). We conclude (Theorem 4) that the commutativity
equation (2) is always valid in probabilistic programs.

Moreover, s-finite kernels are exactly what is needed, because:

Theorem 6 (§5.1). The following are equivalent:

0

1

�4 0 4

d = 0

d = 0.1right shows the unnormalized posterior for (5) as
the observed data goes from d = 0.1 (blue dotted
line) to d = 0 (red straight line). Notice that at
d = 0, the resulting unnormalized posterior mea-
sure on R is the flat Lebesgue measure on R, which
assigns to each interval (m,n) its size, (n�m). The
Lebesgue measure of the entire real line, the would-
be normalizing constant, is 1, so we cannot find a posterior probability measure.
A statistician would probably not be very bothered about this, because a tiny
change in the observed data yields a finite normalizing constant. But that is not
good enough for a semanticist, who must give a meaning to every program.

It is di�cult to see how a simple syntactic restriction could eliminate pro-
gram (5) while keeping other useful programs such as (3). Another similar pro-
gram is

letx = sample(gauss(0, 1)) in score(g(x)/f(x)); return(x) : R (6)

0

0.1

0.2

0.3

0.4

�2.5 0 2.5

g

a

u

s

s

c

a

u

c

h

y

where g(x) = 1

⇡(1+x

2
)

is the density function of the

standard Cauchy distribution and score(r) is short-
hand for (observe 0 from exp(r)) — recall that the den-
sity of the exponential distribution exp(r) at 0 is
r = re

�r⇥0. Program (6) is the importance sampling
algorithm for simulating a Cauchy distribution from
a Gaussian. To see why this algorithm is correct,
i.e. (6)=sample(cauchy(0, 1)), it is helpful to rewrite it:

let x = sample(gauss(0, 1)) in score(1/f(x)) ; score(g(x)) ; return(x) : R.

Notice that the underlined subexpression is the Lebesgue measure, as in (5),
and recall that sequencing is integration. So program (6) is correct because it is
integrating the density g over the Lebesgue measure; this is equal to the Cauchy
probability measure, by definition of density.

1.3 Commutativity through s-finite kernels.

It is known that commutativity holds not just for finite measures but also for s-
finite measures, which are formed from a countable sum of finite measures. The
key contribution of this paper is that all closed probabilistic programs define
s-finite measures. To show this compositionally, we must also give a semantics
to open programs, which we interpret using a notion of s-finite kernel (Def. 2),
which is a countable sum of finite, bounded kernels; these support sequential
composition (Lemma 3). Iterated integrals and interchange (4) are no problem
for s-finite measures (Prop. 5). We conclude (Theorem 4) that the commutativity
equation (2) is always valid in probabilistic programs.

Moreover, s-finite kernels are exactly what is needed, because:

Theorem 6 (§5.1). The following are equivalent:

0

1

�4 0 4

d = 0

d = 0.1right shows the unnormalized posterior for (5) as
the observed data goes from d = 0.1 (blue dotted
line) to d = 0 (red straight line). Notice that at
d = 0, the resulting unnormalized posterior mea-
sure on R is the flat Lebesgue measure on R, which
assigns to each interval (m,n) its size, (n�m). The
Lebesgue measure of the entire real line, the would-
be normalizing constant, is 1, so we cannot find a posterior probability measure.
A statistician would probably not be very bothered about this, because a tiny
change in the observed data yields a finite normalizing constant. But that is not
good enough for a semanticist, who must give a meaning to every program.

It is di�cult to see how a simple syntactic restriction could eliminate pro-
gram (5) while keeping other useful programs such as (3). Another similar pro-
gram is

letx = sample(gauss(0, 1)) in score(g(x)/f(x)); return(x) : R (6)

0

0.1

0.2

0.3

0.4

�2.5 0 2.5

g

a

u

s

s

c

a

u

c

h

y

where g(x) = 1

⇡(1+x

2
)

is the density function of the

standard Cauchy distribution and score(r) is short-
hand for (observe 0 from exp(r)) — recall that the den-
sity of the exponential distribution exp(r) at 0 is
r = re

�r⇥0. Program (6) is the importance sampling
algorithm for simulating a Cauchy distribution from
a Gaussian. To see why this algorithm is correct,
i.e. (6)=sample(cauchy(0, 1)), it is helpful to rewrite it:

let x = sample(gauss(0, 1)) in score(1/f(x)) ; score(g(x)) ; return(x) : R.

Notice that the underlined subexpression is the Lebesgue measure, as in (5),
and recall that sequencing is integration. So program (6) is correct because it is
integrating the density g over the Lebesgue measure; this is equal to the Cauchy
probability measure, by definition of density.

1.3 Commutativity through s-finite kernels.

It is known that commutativity holds not just for finite measures but also for s-
finite measures, which are formed from a countable sum of finite measures. The
key contribution of this paper is that all closed probabilistic programs define
s-finite measures. To show this compositionally, we must also give a semantics
to open programs, which we interpret using a notion of s-finite kernel (Def. 2),
which is a countable sum of finite, bounded kernels; these support sequential
composition (Lemma 3). Iterated integrals and interchange (4) are no problem
for s-finite measures (Prop. 5). We conclude (Theorem 4) that the commutativity
equation (2) is always valid in probabilistic programs.

Moreover, s-finite kernels are exactly what is needed, because:

Theorem 6 (§5.1). The following are equivalent:

0

1

�404

d=0

d=0.1 rightshowstheunnormalizedposteriorfor(5)as
theobserveddatagoesfromd=0.1(bluedotted
line)tod=0(redstraightline).Noticethatat
d=0,theresultingunnormalizedposteriormea-
sureonRistheflatLebesguemeasureonR,which
assignstoeachinterval(m,n)itssize,(n�m).The
Lebesguemeasureoftheentirerealline,thewould-
benormalizingconstant,is1,sowecannotfindaposteriorprobabilitymeasure.
Astatisticianwouldprobablynotbeverybotheredaboutthis,becauseatiny
changeintheobserveddatayieldsafinitenormalizingconstant.Butthatisnot
goodenoughforasemanticist,whomustgiveameaningtoeveryprogram.

Itisdi�culttoseehowasimplesyntacticrestrictioncouldeliminatepro-
gram(5)whilekeepingotherusefulprogramssuchas(3).Anothersimilarpro-
gramis

letx=sample(gauss(0,1))inscore(g(x)/f(x));return(x):R(6)

0

0.1

0.2

0.3

0.4

�2.502.5

g

a

u

s

s

c

a

u

c

h

y

whereg(x)=
1

⇡(1+x2)isthedensityfunctionofthe

standardCauchydistributionandscore(r)isshort-
handfor(observe0fromexp(r))—recallthattheden-
sityoftheexponentialdistributionexp(r)at0is
r=re�r⇥0

.Program(6)istheimportancesampling
algorithmforsimulatingaCauchydistributionfrom
aGaussian.Toseewhythisalgorithmiscorrect,
i.e.(6)=sample(cauchy(0,1)),itishelpfultorewriteit:

letx=sample(gauss(0,1))inscore(1/f(x));score(g(x));return(x):R.

NoticethattheunderlinedsubexpressionistheLebesguemeasure,asin(5),
andrecallthatsequencingisintegration.Soprogram(6)iscorrectbecauseitis
integratingthedensitygovertheLebesguemeasure;thisisequaltotheCauchy
probabilitymeasure,bydefinitionofdensity.

1.3Commutativitythroughs-finitekernels.

Itisknownthatcommutativityholdsnotjustforfinitemeasuresbutalsofors-
finitemeasures,whichareformedfromacountablesumoffinitemeasures.The
keycontributionofthispaperisthatallclosedprobabilisticprogramsdefine
s-finitemeasures.Toshowthiscompositionally,wemustalsogiveasemantics
toopenprograms,whichweinterpretusinganotionofs-finitekernel(Def.2),
whichisacountablesumoffinite,boundedkernels;thesesupportsequential
composition(Lemma3).Iteratedintegralsandinterchange(4)arenoproblem
fors-finitemeasures(Prop.5).Weconclude(Theorem4)thatthecommutativity
equation(2)isalwaysvalidinprobabilisticprograms.

Moreover,s-finitekernelsareexactlywhatisneeded,because:

Theorem6(§5.1).Thefollowingareequivalent:

0

1

�4 0 4

d = 0

d = 0.1right shows the unnormalized posterior for (5) as
the observed data goes from d = 0.1 (blue dotted
line) to d = 0 (red straight line). Notice that at
d = 0, the resulting unnormalized posterior mea-
sure on R is the flat Lebesgue measure on R, which
assigns to each interval (m,n) its size, (n�m). The
Lebesgue measure of the entire real line, the would-
be normalizing constant, is 1, so we cannot find a posterior probability measure.
A statistician would probably not be very bothered about this, because a tiny
change in the observed data yields a finite normalizing constant. But that is not
good enough for a semanticist, who must give a meaning to every program.

It is di�cult to see how a simple syntactic restriction could eliminate pro-
gram (5) while keeping other useful programs such as (3). Another similar pro-
gram is

letx = sample(gauss(0, 1)) in score(g(x)/f(x)); return(x) : R (6)

0

0.1

0.2

0.3

0.4

�2.5 0 2.5

g

a

u

s

s

c

a

u

c

h

y

where g(x) = 1

⇡(1+x

2
)

is the density function of the

standard Cauchy distribution and score(r) is short-
hand for (observe 0 from exp(r)) — recall that the den-
sity of the exponential distribution exp(r) at 0 is
r = re

�r⇥0. Program (6) is the importance sampling
algorithm for simulating a Cauchy distribution from
a Gaussian. To see why this algorithm is correct,
i.e. (6)=sample(cauchy(0, 1)), it is helpful to rewrite it:

let x = sample(gauss(0, 1)) in score(1/f(x)) ; score(g(x)) ; return(x) : R.

Notice that the underlined subexpression is the Lebesgue measure, as in (5),
and recall that sequencing is integration. So program (6) is correct because it is
integrating the density g over the Lebesgue measure; this is equal to the Cauchy
probability measure, by definition of density.

1.3 Commutativity through s-finite kernels.

It is known that commutativity holds not just for finite measures but also for s-
finite measures, which are formed from a countable sum of finite measures. The
key contribution of this paper is that all closed probabilistic programs define
s-finite measures. To show this compositionally, we must also give a semantics
to open programs, which we interpret using a notion of s-finite kernel (Def. 2),
which is a countable sum of finite, bounded kernels; these support sequential
composition (Lemma 3). Iterated integrals and interchange (4) are no problem
for s-finite measures (Prop. 5). We conclude (Theorem 4) that the commutativity
equation (2) is always valid in probabilistic programs.

Moreover, s-finite kernels are exactly what is needed, because:

Theorem 6 (§5.1). The following are equivalent:

… …

13/30

-4 -3 -2 -1 0 1 2 3 4

0.08

0.16

0.24

0.32

0.4

Overview  
of the rest of part 1

Compositional probability theory; 
a compositional theory of impropriety

• Summary of semantics

• Examples

• s-finite kernels and  
proof of commutativity.

Overview  
of the rest of part 1

Compositional probability theory; 
a compositional theory of impropriety

• Summary of semantics

• Examples

• s-finite kernels and  
proof of commutativity.

Defn. A kernel is a function  
such that

14/30

A technical problem:

 for all ,

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

is measurable and is additive.

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

Defn. A kernel is a function  
such that

14/30

A technical problem:

 for all ,

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

is measurable and …

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

14/30

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

Sequencing is integration:

A technical problem:
Defn. A kernel is a function  
such that for all ,

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

is measurable and …

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

14/30

Sequencing is integration:

A technical problem:

Is this measurable in ?

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

Defn. A kernel is a function  
such that for all ,

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

is measurable and …

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

14/30

Sequencing is integration:

A technical problem:

Is this measurable in ?

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

Answer: unknown (if t and u are allowed to range
over arbitrary kernels.)

Defn. A kernel is a function  
such that for all ,

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

is measurable and …

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

Commutativity
let x = t in
let y = u in
v

reordering
lines

=

Terms are interpreted as kernels. .

15/30

let y = u in
let x = t in
v⟦ ⟧ ⟦ ⟧

• Useful for program transformations.
• Essence of probability theory.

Commutativity
let x = t in
let y = u in
v

reordering
lines

=

Terms are interpreted as kernels. .

15/30

⟦ ⟧ ⟦ ⟧

Fubini’s theorem

Roughly amounts to

let y = u in
let x = t in
v

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

Commutativity
let x = t in
let y = u in
v

reordering
lines

=

Terms are interpreted as kernels. .

15/30

⟦ ⟧ ⟦ ⟧

Fubini’s theorem

Warning: Fubini’s
theorem does not hold
for arbitrary kernels.

Roughly amounts to

let y = u in
let x = t in
v

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

Commutativity
let x = t in
let y = u in
v

reordering
lines

=

Terms are interpreted as kernels. .

15/30

⟦ ⟧ ⟦ ⟧

Fubini’s theorem

Warning: Fubini’s
theorem does not hold
for arbitrary kernels.

Roughly amounts to

Fubini’s theorem does
hold for s-finite
kernels.

let y = u in
let x = t in
v

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

Commutativity
let x = t in
let y = u in
v

reordering
lines

=

Terms are interpreted as s-finite  
kernels.

16/30

⟦ ⟧ ⟦ ⟧

Fubini’s theorem

Warning: Fubini’s
theorem does not hold
for arbitrary kernels.

Roughly amounts to

Fubini’s theorem does
hold for s-finite
kernels.

let y = u in
let x = t in
v

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

s-finite kernels

16/30

Fubini’s theorem

Warning: Fubini’s
theorem does not hold
for arbitrary kernels.

Fubini’s theorem does
hold for s-finite
kernels.

see Börgstrom, Gordon et al., ESOP 2011

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

Definition. A kernel k : is bounded if  
∃n. ∀γ. ∀U. k(γ,U)<n.
Definition. A kernel k : i is s-finite if it is a
countable sum of bounded kernels.

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

s-finite kernels
Definition. A kernel k : is bounded if  
∃n. ∀γ. ∀U. k(γ,U)<n.
Definition. A kernel k : i is s-finite if it is a
countable sum of bounded kernels.

16/30

Warning: Fubini’s
theorem does not hold
for arbitrary kernels.

Fubini’s theorem does
hold for s-finite
kernels.

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

s-finite kernels

16/30

Warning: Fubini’s
theorem does not hold
for arbitrary kernels.

Fubini’s theorem does
hold for s-finite
kernels.

Theorem. A kernel is s-finite if and only if it is definable.

Definition. A kernel k : is bounded if  
∃n. ∀γ. ∀U. k(γ,U)<n.
Definition. A kernel k : i is s-finite if it is a
countable sum of bounded kernels.

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

Staton, ESOP 2017

Commutativity

let x = t in
let y = u in
v

=

16/30

⟦ ⟧ ⟦ ⟧
Theorem.

let y = u in
let x = t in
v

Fubini’s theorem does
hold for s-finite
kernels.

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

() ()

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

a probabilistic program (via Thm. 6) and then using the denotational semantics
in [43]. From right to left: given a probability kernel k : JAK ([0,1) ⇥ JBK),
we build an s-finite kernel

Jx : A `p let (r, y) = sample(k(x)) in score(r); return(y) : BK : JAK JBK.

Valuations versus measures. Some authors advocate using valuations on topo-
logical spaces instead of measures on measurable spaces. This appears to rule
out the problematic examples, such as the counting measure on R. Indeed, Vick-
ers [45] has shown that a monad of valuations on locales is commutative. This
suggests a constructive or topological model of probabilistic programming (see
[8,15]) but a potential obstacle is that conditioning is not always computable [1].

6.2 Related work on commutativity more generally

Multicategories and data flow graphs. An early discussion of commutativ-
ity is in Lambek’s work on deductive systems and categories [22]. A judgement
x

1

: A
1

, . . . , x

n

: A
n

` t : B is interpreted as a multimorphism (A
1

. . . A

n

) ! B.
These could be drawn as triangles:

A1
A2

An

Bt...

(This hints at a link with the graphical ideas underlying several probabilis-
tic programming languages e.g. Stan [40].) Alongside requiring associativity of
composition, Lambek requires commutativity:

vu

t
vu

t
=

which matches with our commutativity condition (2). (See also [42].) In this
diagrammatic notation, commutativity says that the semantics is preserved un-
der topological transformations. Without commutativity, one would need extra
control flow wires to give a topological description of what rewritings are ac-
ceptable (e.g. [19,28]). Our main technical results (Lemma 3 and Prop. 5) can
be phrased as follows:

Measurable spaces and s-finite kernels X

1

⇥ · · · ⇥X

n

 Y form a mul-

ticategory.

Staton, ESOP 2017

Defn. A kernel is a function  
such that

17/30

Sequencing is integration:

A technical problem:

Is this measurable in ?

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

 for all ,

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

is measurable and …

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

Staton, ESOP 2017

Defn. A kernel is a function  
such that

17/30

Sequencing is integration:

A technical problem:

Is this measurable in ?

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

Answer: yes (if t and u are probabilistic programs,
they are s-finite kernels.)

 for all ,

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential
Monte Carlo simulation [7]. A key idea of its application to prob-
abilistic programs is: ‘Whenever there is a score, it is good to
renormalise and resample’. This increases efficiency by avoiding
too many program executions with low scores [24, Algorithm 1].

The denotational semantics justifies the soundness of this trans-
formation. For a term with top-level score, i.e. a term of the form
(letx = t in (score(u); v)) where u and v may have x free:

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

is measurable and …

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:

• Deterministic terms � `d t : A are interpreted as measurable
functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

As we will explain shortly, these interpretations come from
treating P (R�0

⇥(�)) as a commutative monad, which essentially
means the following program equations hold.
Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK

Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK
Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:
Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using
this structure we interpret return and let following Moggi [22]:

J� `p return(t) : AK(�) def
= ⌘JAK

�
JtK(�)

�

J� `p letx = t inu : BK(�) def
=µJBK

�
T (JuK)

�
�J�K,JAK(�, JtK(�))

��

Concretely, we make P (R�0

⇥ (�)) into a monad by combining
the standard commutative monad structure [11] on P and the com-
mutative monoid (R�0

, ·, 1) with the monoid monad transformer.

4.1 Sequential Monte Carlo simulation
The program equations above justify some simple program trans-
formations. For a more sophisticated one, consider sequential

4 2016/9/1

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

might fail because the model evidence can be zero or infinite, which
is notified by norm(t) by returning an appropriate error.

� `p t : A
� `d norm(t) : R⇥ P(A) + 1 + 1

This construct is being trialled in probabilistic programming lan-
guages (such as Anglican). Our first-order language and semantics
give a clear formal meaning, enabling mathematical investigation.

J�K ! R⇥ P JAK + 1 + 1

4. Denotational semantics
This section discusses the natural denotational semantics of the
first-order language. As described, types A and contexts � are
interpreted as measurable spaces JAK and J�K, whereas for terms:
• Deterministic terms � `d t : A are interpreted as measurable

functions JtK : J�K ! JAK, providing a result for each valuation
of the context.

• Probabilistic terms � `p t : A are interpreted as measurable
functions JtK : J�K ! P (R�0

⇥ JAK), providing a probability
measure on (score,result) pairs for each valuation of the context.

The basic idea can be traced back a long way (e.g. [17]) but our
treatment of score and norm appear to be novel.

Sums and products The interpretation of deterministic terms fol-
lows the usual pattern of the internal language of a distributive cat-
egory (e.g. [27]). For instance, J�, x : A,�0

`d x : AK(�, a, �0
)

def
= a,

and J� `d f(t) : AK(�) def
= f(JtK(�)) for measurable f : JAK ! JBK.

This interpretation is actually the same as the usual set-theoretic
semantics of the calculus, as one can show by induction that the
induced functions J�K ! JAK are measurable.

Sequencing For probabilistic terms, we proceed as follows.

Jreturn(t)K(�)(U)

def
= [(1, JtK(�)) 2 U],

and Jletx = t inuK(�)(V) is
Z

R�0⇥JAK

⇣
JuK(�, x)

��
(s, b)

��
(rs, b) 2 V

 �⌘
JtK(�)(d(r, x)).

Jsample(t)K(�, U)

def
= (JtK(�))(U)

Jscore(t)K(�, {⇤}) def
= (JtK(�))

Jletx = t inuK(�, U)

def
=

Z

JAK
JuK(�, x, U) JtK(�, dx).

Jletx = t inuK =
Z

JAK
JuK dJtK

Z

JAK

Z

JBK
JvK dJuK dJtK =

Z

JBK

Z

JAK
JvK dJtK dJuK

JtK(�, JAK)
[0,1]

As we will explain shortly, these interpretations come from treating
P (R�0

⇥ (�)) as a commutative monad, which essentially means
the following program equations hold.

Jletx = return(x) inuK = JuK Jletx = t in return(x)K = JtK
Jlet y = (letx = t inu) in vK = Jletx = t in let y = u in vK

Jletx = t in let y = u in (x, y)K = Jlet y = u in letx = t in (x, y)K
The last equation justifies a useful program optimisation tech-
nique [34, §5.5].

Language-specific constructs

J�K ⇥ ⌃JAK ! R�0

� 2 J�K JtK(�,�) : ⌃JAK ! R�0

U 2 ⌃JAK JtK(�, U) : J�K ! R�0

We use the monad:

Jsample(t)K(�)(U)

def
= JtK(�)({a | (1, a) 2 U})

Jscore(t)K(�)(U)

def
= [(max(JtK(�), 0), ⇤) 2 U]

Here are some program equations to illustrate the semantics so far.

Jscore(7.0); score(6.1)K = Jscore(42.7)K
s
letx = sample(gaussian(0.0, 1.0))
in return(x > 0.0)

{
= Jsample(bernoulli(0.5))K

s
letx = sample(gaussian(0.0, 1.0))
in return(x > x)

{
= Jreturn(false)K

Normalisation Interpret norm(t) by the natural transformation

◆
X

: P (R�0

⇥X) ! (R⇥ P (X)) + 1 + 1 (2)

that computes posterior distribution and model evidence by nor-
malisation and summation. More precisely, ◆

X

(p) is
8
><

>:

(1, ⇤) if e = 0

(2, ⇤) if e = 1⇣
0,
�
e, �U. 1

e

R
R�0⇥X

r · [x2U] p(d(r, x))
�⌘

otherwise

where e
def
=

R
R�0⇥X

r p(d(r, x)), and Jnorm(t)K(�) def
= ◆(JtK(�)).

Here are some examples:

Jnorm(score(0.0))K = (1, ⇤)

Jnorm(score(42.0); return(7.0))K =
�
0, (42.0, dirac(7.0))

�
u
wwv

norm

�
letx = sample(bernoulli(0.5))
in

�
if x then score(7.0)

else score(3.0));
return(x)

�

}
��~=

�
0, (5.0, bernoulli(0.7))

�

s
norm

�
letx = sample(exp(1.0))
in score(ex)

�
{
= (2, ⇤)

s
norm

�
letx = sample(beta(1, 3))
in score(x); return(x)

�
{
=

u
v
norm

�

score(1/(1 + 3));

sample(beta(2, 3))
�

}
~

In the third equation, a score of either 7.0 or 3.0 is assigned
depending on the outcome of a fair coin toss. The model evidence is
5.0 = (0.5·7.0)+(0.5·3.0), and the normalised distribution, taking
the scores into account, is bernoulli(0.5·7.0

5.0

). The fourth equation
shows how infinite model evidence errors can arise when working
with infinite distributions. In the last equation, the parameter x of
score(x) represents the probability of true under bernoulli(x).
The equation expresses the so called conjugate-prior relationship
between Beta and Bernoulli distributions, which has been used to
optimise probabilistic programs [35].

Monads The interpretation of let and return given above arises
from the fact that P

�
R�0

⇥ (�)

�
is a commutative monad on

the category of measurable spaces and measurable functions (see
also [6, §2.3.1]). Recall that a commutative monad (T, ⌘, µ,�)
in general comprises an endofunctor T together with natural
transformations ⌘

X

: X ! T (X), µ
X

: T (T (X)) ! T (X),
�
X,Y

: T (X)⇥Y ! T (X⇥Y) satisfying some laws [16]. Using

4 2016/9/2

Staton, ESOP 2017

Summary

let x = t in
let y = u in
v

=

18/30

⟦ ⟧ ⟦ ⟧
Theorem.

let y = u in
let x = t in
v

a probabilistic program (via Thm. 6) and then using the denotational semantics
in [43]. From right to left: given a probability kernel k : JAK ([0,1) ⇥ JBK),
we build an s-finite kernel

Jx : A `p let (r, y) = sample(k(x)) in score(r); return(y) : BK : JAK JBK.

Valuations versus measures. Some authors advocate using valuations on topo-
logical spaces instead of measures on measurable spaces. This appears to rule
out the problematic examples, such as the counting measure on R. Indeed, Vick-
ers [45] has shown that a monad of valuations on locales is commutative. This
suggests a constructive or topological model of probabilistic programming (see
[8,15]) but a potential obstacle is that conditioning is not always computable [1].

6.2 Related work on commutativity more generally

Multicategories and data flow graphs. An early discussion of commutativ-
ity is in Lambek’s work on deductive systems and categories [22]. A judgement
x

1

: A
1

, . . . , x

n

: A
n

` t : B is interpreted as a multimorphism (A
1

. . . A

n

) ! B.
These could be drawn as triangles:

A1
A2

An

Bt...
(This hints at a link with the graphical ideas underlying several probabilis-
tic programming languages e.g. Stan [40].) Alongside requiring associativity of
composition, Lambek requires commutativity:

vu

t
vu

t
=

which matches with our commutativity condition (2). (See also [42].) In this
diagrammatic notation, commutativity says that the semantics is preserved un-
der topological transformations. Without commutativity, one would need extra
control flow wires to give a topological description of what rewritings are ac-
ceptable (e.g. [19,28]). Our main technical results (Lemma 3 and Prop. 5) can
be phrased as follows:

Measurable spaces and s-finite kernels X

1

⇥ · · · ⇥X

n

 Y form a mul-

ticategory.

• Probabilistic programs  
have a measure-theoretic 
semantics.

• Commutativity holds.
• Probabilistic programs are s-finite kernels.

Overview

• Part 1: Compositional probability theory; 
a compositional theory of impropriety

• Part 2: Higher order functions;  
random functions as measures on a  
space of functions.

Overview

• Summary of semantics

• Examples

• s-finite kernels and  
proof of commutativity.

Overview of part 2

Higher order functions;  
random functions as measures on a  
space of functions.

• Examples of regression and  
higher order functions

• Quasi-Borel spaces

Regression

21/30

• Which function best
fits the data points?

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 f = λx. s x + b in
 observe 0.6 = (f 0)
 observe 0.7 = (f 1)
 observe 1.2 = (f 2)
 observe 3.2 = (f 3)
 observe 6.8 = (f 4)
 observe 8.2 = (f 5)
 observe 8.4 = (f 6)
 return (s,b))

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 f = λx. s x + b in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return (s,b))

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 f = λx. s x + b in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return f)

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 f = λx. s x + b in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return f)

• Question: how to
understand f in
this example?

Samples from the prior
22/30

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 f = λx. s x + b in
 return f)

Samples from the posterior
22/30

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 f = λx. s x + b in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return f)

Samples from the posterior
22/30

More higher-order functions
22/30

normalize(
 let f =
 (let s = sample (normal 0 2)
 b = sample (normal 0 6) in
 return λx. s x + b) in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return f)

Posterior
22/30

normalize(
 let f = add-change-points
 (let s = sample (normal 0 2)
 b = sample (normal 0 6) in
 return λx. s x + b) in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return f)

Posterior
22/30

normalize(
 let f = add-change-points
 (let s = sample (normal 0 2)
 b = sample (normal 0 6) in
 return λx. s x + b) in
 observe 0.6 from (normal (f 0) .5)
 observe 0.7 from (normal (f 1) .5)
 observe 1.2 from (normal (f 2) .5)
 observe 3.2 from (normal (f 3) .5)
 observe 6.8 from (normal (f 4) .5)
 observe 8.2 from (normal (f 5) .5)
 observe 8.4 from (normal (f 6) .5)
 return f)

Could also try
polynomial priors, or
programs as priors.

Technical problem

22/30

Measure theory doesn’t support HO fns well.

ev : (ℝ→mℝ) × ℝ → ℝ, ev(f,x) = f(x).

[Aumann 61] ev is not measurable no matter which  
σ-algebra is used for ℝ→mℝ.

[Corollary] The category of measurable spaces is not
cartesian closed.

Overview of part 2

Higher order functions;  
random functions as measures on a  
space of functions.

• Examples of regression and  
higher order functions

• Quasi-Borel spaces

What about higher-order
functions?

ℝ→ℝ
this is not a
measurable space
[Aumann 1961]

Easy to deal with operationally. But denotationally?
24/30

Staton, Yang, Heunen, Kammar, Wood, LICS 2016
Börgstrom, Dal Lago, Gordon, Szymczak, ICFP 2016

Yoneda
embedding

What about function types?

Measurable
spaces

Bigger  
class of spaces

Models  
first order
language with
sample, 
score,
norm

Models  
higher order
language with
sample, 
score,
norm
Theorem. Adequacy.

24/30

Yoneda
embedding

What about function types?

Standard
Borel spaces

Bigger  
class of spaces

Models  
first order
language with
sample, 
score,
norm

Models  
higher order
language with
sample, 
score,
norm
Theorem. Adequacy.

24/30

Yoneda
embedding

What about function types?

Bigger  
class of spaces

Models  
first order
language with
sample, 
score,
norm

Problem: ℝ→ℝ doesn’t exist
i.e. Hom(–⨉ℝ , ℝ) : Measop→Set
 isn’t representable

24/30

Standard
Borel spaces

Yoneda
embedding

Sheaves on
measurable spaces

Models  
first order
language with
sample, 
score,
norm

Staton, Yang, Heunen,
Kammar, Wood, LICS 2016
see also Power, TCS 2006

24/30

Standard
Borel spaces

What about function types?

Staton, Yang, Heunen,
Kammar, Wood, LICS 2016
see also Power, TCS 2006

Yoneda
embedding

What about function types?

Sheaves on
measurable spaces

Models  
first order
language with
sample, 
score,
norm

(Functors Measop→Set
that preserve countable
products)

24/30

Standard
Borel spaces

Staton, Yang, Heunen,
Kammar, Wood, LICS 2016
see also Power, TCS 2006

Yoneda
embedding

What about function types?

Sheaves on
measurable spaces

Models  
first order
language with
sample, 
score,
norm

24/30

Standard
Borel spaces

‘Quasi-Borel
spaces’

Staton, Yang, Heunen,
Kammar, Wood, LICS 2016
see also Power, TCS 2006

Yoneda
embedding

What about function types?

Sheaves on
measurable spaces

Models  
first order
language with
sample, 
score,
norm

24/30

Standard
Borel spaces

‘Quasi-Borel
spaces’

“Random elements first.”

Random elements α in X  

25/30

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.

Random elements α in X 
in classical measure theory

25/30

α : Ω → X

• X - set of values.

• Ω - set of random seeds.

• Random seed generator.
1. Σ⊆2Ω, Θ⊆2Χ
2. μ : Σ→[0,1]

is a random element
if α-1(A)∈Σ for all A∈Θ

Random elements α in X 
in quasi-Borel spaces

25/30

α : Ω → X

• X - set of values.

• Ω= ℝ - set of random seeds.

• Random seed generator.

Random elements α in X 
in quasi-Borel spaces

α : Ω → X

• X - set of values.

• Ω= ℝ - set of random seeds.

• Random seed generator.
1. ℝ as random source
2. Borel subsets 𝕭⊆2
3. M ⊆ [ℝ→X]

is a random variable
if α∈M

ℝ

A ccc of measurable functions

26/30

Defn. A quasi-Borel space is a pair (X,M) where
• X is a set
• M ⊆ [ℝ→X] s.t.

Heunen, Kammar,
Staton, Yang, LICS 2017

A ccc of measurable functions

26/30

Defn. A quasi-Borel space is a pair (X,M) where
• X is a set
• M ⊆ [ℝ→X]

• if f : ℝ→ℝ measurable and g ∈ M then gf ∈ M.
• piecewise combination: if ℝ=⨄i∈ℕRi with Ri Borel

and α1,α2, … ∈ M, then ⨄i∈ℕ(αi∩(Ri×X))∈M.
• all constant functions are in M

A morphism (X,M) → (Y,N) is a function f : X → Y 
such that g ∈ M implies fg ∈ N

such that

Heunen, Kammar,
Staton, Yang, LICS 2017

A ccc of measurable functions

26/30

Example: X is a standard Borel measurable space,
 M ⊆ [ℝ→X] comprises the measurable functions.
Then ‘morphism’ = ‘measurable function’.

Defn. A quasi-Borel space is a pair (X,M) where
• X is a set
• M ⊆ [ℝ→X] s.t. ...

A morphism (X,M) → (Y,N) is a function f : X → Y 
such that g ∈ M implies fg ∈ N

Heunen, Kammar, Staton,
Yang, LICS 2017

A ccc of measurable functions

26/30

Example: X is a standard Borel measurable space,
 M ⊆ [ℝ→X] comprises the measurable functions.

Proposition. The category of quasi-Borel spaces is
cartesian closed with countable sums.

Corollary. If a term t has first order type then
⟦t⟧ is a measurable function.

Defn. A quasi-Borel space is a pair (X,M) where
• X is a set
• M ⊆ [ℝ→X] s.t. ...

Heunen, Kammar, Staton,
Yang, LICS 2017

27/30

‘Quasi-Borel
spaces’

Standard
Borel spaces

What is a measure
on X →Y ?

Heunen, Kammar, Staton,
Yang, LICS 2017

27/30

‘Quasi-Borel
spaces’

Standard
Borel spaces

Defn. A quasi-Borel space is a pair (X,M) where
• X is a set
• M ⊆ [ℝ→X] s.t. ...

Defn. A measure on a quasi-Borel space is a pair 
 (μ , f)

a measure on ℝ a fn f : ℝ→X in M
(modulo inducing the same integration operator)

Heunen, Kammar, Staton,
Yang, LICS 2017

27/30

‘Quasi-Borel
spaces’

Standard
Borel spaces

Proposition. A measure on [X →Y] is a pair

(μ , f)
a measure on ℝ

a measurable  
function
f : ℝ ⨉ X →Y

– a ‘random function’.

Heunen, Kammar, Staton,
Yang, LICS 2017

28/30

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 g = λx. s x + b in
 return g)

Heunen, Kammar, Staton,
Yang, LICS 2017

28/30

normalize(
 let s = sample (normal 0 2)
 b = sample (normal 0 6)
 g = λx. s x + b in
 return g)

NB ℝ≅ℝ×ℝ

In this example,
• μ is multivariate normal,
• f ((s,b),x) = sx+b

Heunen, Kammar, Staton,
Yang, LICS 2017

Quasi-Borel spaces work well:

• Simple theorems e.g. “randomization lemmas”
can be stated in the internal logic;

• A version of de Finetti’s theorem for
exchangeable sequences holds;

• One can justify higher order inference algorithms,
(Metropolis-Hastings, Sequential Monte Carlo) 
jww Scibior, Vakar, Kai, Ostermann, Moss, Ghahramani

29/30

Motivation
What is a general notion of statistical model?

How can we understand the fundamental
structure?

Aims of semantic models:
1. Fundamental;
2. Towards applications in Machine Learning.

29/30

What’s next:
We’re now looking at
“exchangeable random structures”
towards a general theory of Aldous-Hoover
results and the connection with abstract types.

Aims of semantic models:
1. Fundamental;
2. Towards applications in Machine Learning.

29/30

• Discussions with Ackerman, Freer, Roy, Bloom-Reddy.

Overview

• Part 1: Compositional probability theory; 
a compositional theory of impropriety

• Part 2: Higher order functions;  
random functions as measures on a  
space of functions.

