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Motivation

What is a general notion of statistical model?

How can we understand the fundamental
structure?

Aims of semantic models:

1. Fundamental;
2. Towards applications in Machine Learning.
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Bayes’ law

P(x1d) =




Bayes’ law
PdI1x) x P(x)
2yP(d1ly) x P(y)

P(x1d) =




Bayes’ law

P(x1d) ¢ P(d]x) x P(x)

Posterior oc Likelihood x Prior
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Idealized Anglican

P(x1d) ¢ P(d]x) x P(x)

Posterior oc Likelihood x Prior

Idealized Anglican = sequential programming +
normalize observe sample

http://www.robots.ox.ac.uk/"fwood/anglican/
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Idealized Anglican

P(x1d) ¢ P(d]x) x P(x)

Posterior oc Likelihood x Prior

Idealized Anglican = sequential programming +
normalize observe sample

http://www.robots.ox.ac.uk/"fwood/anglican/

other languages:
Church, Venture. ..
Hakaru ... Stan...
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Example

1. A call centre operator doesn’t know what day it is.

2. He knows: weekends: avg 3 calls per hour.
weekdays: avg 10 calls per hour.

He notices a 15 minute gap between calls.
Is it the weekend?

B W
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Example

1. A call centre operator doesn’t know what day it is.

2. He knows: weekends: avg 3 calls per hour.
weekdays: avg 10 calls per hour.

3. He notices a 15 minute gap between calls.
4. lIs it the weekend?
normalize(

let weekend = sample(bernoulli(2/7)) in
let rate = 1f weekend then 3 else 10 1in

observe 0.25 from exp-dist(rate);
return(weekend) )
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Example

1. A call centre operator doesn’t know what day it is.

2. He knows: weekends: avg 3 calls per hour.
weekdays: avg 10 calls per hour.

3. He notices a 15 minute gap between calls.
4. Is it the weekend? tT

3 exp(10)

1 r §a}p(3)
normalize( 0 15w

let weekend = sample(bernoulli(2/7)) in
let rate = if weekend then 3 else 10 in
observe 0.25 from exp-dist(rate);

return(weekend) )

60 mins
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Motivation

P(x1d) ¢ P(d]x) x P(x)

Posterior oc Likelihood X Prior

Idealized Anglican = sequential programming +
normalize observe sample

Aims of semantic models:

1. Justify program transformations;

2. Understand complex probabilistic models
through semantics.
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Main theorem: Commutativity

I________.__I r—— - - - - = = 1
letx =tin ety =wuin,
:Iety:uin: —  iletx =tin
I I I I
U I U I
L - - — - - - - - L — — — — — - — -

where x not free in u,

. . tf n t
Aims of semantics: ynotireen

1. Justify program transformations;

2. Understand complex probabilistic models
through semantics.
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Main theorem: Commutativity

I________.__I r—— - - - - = = 1
letx =tin ety =wuin,
:Iety:uin: —  iletx =tin
I I I I
U I U I
L - - — - - - - - L — — — — — - — -

where x not free in u,
y not free in t

P N D b

connections with multicategories, monoidal categories etc..







Overview
of the rest of part 1

Compositional probability theory;
a compositional theory of impropriety

e Summary of semantics
e Examples

¢ s-finite kernels and
proof of commutativity.







Summary of semantics
To begin: a first order typed language.

_ distributions over A
Types: |

/countable
A,B = R‘P()|1‘AXB‘ZZEI - sums
/ )
real numbers finite products

Terms: sequencing: Llet x = t 1n u
normalize observe sample
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Summary of semantics

For now: a first order typed language without
recursion.

Types interpreted as measurable spaces.

Closed terms of type A
interpreted as measures on [A] .
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Summary of semantics

Types interpreted as measurable spaces.

A measurable space (X, Xx) is

a set X together with set > x of

subsets closed under countable
unions and complements.

9/30



Summary of semantics

Types interpreted as measurable spaces.
e.g. [real] = (R,2Rr)

where 2r = Borel sets

generated by intervals e.g. (-2.2 , 4.1)
& countable unions & complements

A measurable space (X, Xx) is

a set X together with set > x of

subsets closed under countable
unions and complements.

9/30



Summary of semantics

Types interpreted as measurable spaces.
e.g. [real] = (R,2Rr)

where 2g = Borel sets
generated by mtervals e.g.(-2.2,4.1)

’L $. A measurable space (X, Xx) is
~ aset X together with set Xy of

subsets closed under countable
unions and complements.

9/30



Summary of semantics

Types interpreted as measurable spaces.
e.g. [real] = (R,2Rr)

Closed terms interpreted as measures

Openterms [' F ¢: A areinterpreted as kernels
It]: HF] X Z[[A]] —> [O, OO]

measurablé in [T'] countaéj/y a:i_d/tlve in A

9/30



Summary of semantics

Types interpreted as measurable spaces.
e.g. [real] = (R,2Rr)

Closed terms interpreted as measures
Open terms interpreted as kernels

Sequencing is integration

lletx =tinu](~v,U /[[u]] v, z, U) [t] (v, dx)
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Summary of semantics

Types interpreted as measurable spaces.

e.g. real type interpreted as
[R with Borel sets

Closed terms interpreted as measures

Open terms interpreted as kernels

SequenCing iS integration SB%?gZ?rf)?rr:,’gi?)?c]onetal.,ESOP2011

“Tletz = tinu] = /M dfe]”
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Summary of semantics

Closed terms interpreted as measures
Sequencing is integration

“Tletz = tinu] = /IuI d[e]”

Key Theorem: Commutativity.

letx =tin | lety =wuin, Proof summary:
: ety = uin  — etz —=tin | PrOb.aI-DIIIS’[IC programs
! ! ! ' = s-finite kernels.

I I I
I I I (% I

f(fI;I_éIuII afe] = _](_f[IIrIJd[ItI) d[u]
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Overview
of the rest of part 1

Compositional probability theory;
a compositional theory of impropriety

e Summary of semantics
e Examples

¢ s-finite kernels and
proof of commutativity.







Worked examples

1. A call centre operator doesn’t know what day it is.

2. He knows: weekends: avg 3 calls per hour.
weekdays: avg 10 calls per hour.

3. He notices 4 calls in a given hour.
4. lIs it the weekend?
poisson(3)
poisson(10)
normalize( 0 e

4 20

let weekend = sample(bernoulli(2>7)) in
let rate = 1f weekend then 3 else 10 1n
observe 4 from poisson(rate);
return(weekend) )
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Worked examples

Unnormalized posterior:
m(weekend=true) = 2/7 x 0.168

m(weekend=false) = 5/7 x 0.019

0.048
0.014

0.25

poisson(3)

poisson(10)

normalize( 0 ==
let weekend = sample(bernoulli(2/7)) in
let rate = 1f weekend then 3 else 10 1n
observe 4 from poisson(rate);
return(weekend) )

20
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Worked examples

Unnormalized posterior:
m(weekend=true) = 2/7 x 0.168

m(weekend=false) = 5/7 x 0.019

Normalized posterior:
p(weekend=true) = 0.048 / 0.062

= 0.78
normalize( 0

0.048
0.014

P

poisson(3)

poisson(10)

let weekend = sample(bernoulli(2?7)f in
let rate = 1f weekend then 3 else 10 1n

observe 4 from poisson(rate);
return(weekend) )

20
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Worked examples

countably additive in 2]

Y-+

1
Openterms ' | ¢: A are interpreted as kernels
[t]): [[F]] X Z[[A]] — [0, OO]
0.5 P
measurable in [I']

weekend=true

true false

[return(weekend)] 0.25

normalize( 0

let weekend = sample(bernoulli(2?7))

P

poisson(3)

poisson(10)

4

1n

let rate = 1f weekend then 3 else 10 1in

observe 4 from poisson(rate);
return(weekend) )

20
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Worked examples

0.

1
Openterms ' | ¢: A are interpreted as kernels
[¢]: [I] x Xga3 — [0, 00}
5
measurablé in [T countably additive in 2]
— . weekend=false Yo+
true false
[return(weekend)] 0.25
poisson(3)
poisson(10)
normalize( 0 b—at

let weekend = sample(bernoulli(2?7))

4

1n

let rate = 1f weekend then 3 else 10 1in

observe 4 from poisson(rate);
return(weekend) )

20

11/30



Worked examples

measurable in [I']

Openterms ' | ¢: A are interpreted as kernels
[t]): [[F]] X EHA]] — [0, OO]

countably additive in 2]

~weekend=false Ue+
true false ‘weekend true
[return(weekend)] 0.25
poisson(3)
poisson(10)
normalize( e

4

let weekend = sample(bernoulli(2?7)) in
let rate = 1f weekend then 3 else 10 1n

observe 4 from poisson(rate);
return(weekend) )

20
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Worked examples

||||||\ '
1 l weekend=false

true false unit weekend=true
[let rate = ..
observe 4 from ]

[return(weekend)]
poisson(3)

poisson(10)

normalize( 0 == -
let weekend = sample(bernoulli(2/7)) in

let rate = 1f weekend then 3 else 10 1n

observe 4 from poisson(rate);

return(weekend) )
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Worked examples

‘|||||\ '
1 l weekend=false

true false unit weekend=true

[let rate = ..
observe 4 from ]

[return(weekend)]
poisson(3)

lletx =tinu] = lu] d[t]
[A]
normalize( 0 == -
let weekend = sample(bernoulli(2/7)) in
let rate = 1f weekend then 3 else 10 1n
observe 4 from poisson(rate);

return(weekend) )

poisson(10)

11/30



Worked examples

0.2
0.15
0.1
0.05

@ - ecckend=false

true f—alse ~weekend=true

[let rate = .. 1n
observe 4 from ..;
return(weekend)]

normalize(
let weekend = sample(bernoulli(2/7)) in
let rate = 1f weekend then 3 else 10 1n
observe 4 from poisson(rate);
return(weekend) )
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Worked examples

0.2 1
0.8
0.15 -
0.1 0.4
0.2
-
@ - weekend=false 0
true false " weekend=true true false
[let rate = .. in [sample(bernoulli(2/7)]
observe 4 from ..;
return(weekend)]
normalize(

let weekend = sample(bernoulli(2/7)) in
let rate = 1f weekend then 3 else 10 1n
observe 4 from poisson(rate);
return(weekend) )
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Worked examples

0.2

0.8
0.15 0.6
0.1 0.4
0.2

-
@ - eeckend=false 0

- weekend=true true false

true false

[let rate = .. in [sample(bernoulli(2/7)1

observe 4 from ..;
return(weekend)]

lletx =tinu] = lu] d[t]
[A]
normalize(
let weekend = sample(bernoulli(2/7)) in
let rate = 1f weekend then 3 else 10 1n
observe 4 from poisson(rate);

return(weekend) )
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Worked examples

true false

[let weekend =

let rate = .. 1n
observe 4 from ..;
return(weekend)]

normalize(
let weekend = sample(bernoulli(2/7)) in
let rate = 1f weekend then 3 else 10 1n
observe 4 from poisson(rate);
return(weekend) )
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Worked examples

0.06 1
0.8
0.04 0.6
0.02 6.4
0 ]
true false true false
[let weekend = .. in [normalize(
let rate = .. 1n let weekend = .. 1n
observe 4 from ..; let rate = .. 1in
return(weekend)] observe 4 from ..;

return(weekend))]

normalize(
let weekend = sample(bernoulli(2/7)) in
let rate = if weekend then 3 else 10 in
observe 4 from poisson(rate);
return(weekend) )
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Worked examples

1. A call centre operator doesn’t know what day it is.

2. He knows: weekends: avg 3 calls per hour.
weekdays: avg 10 calls per hour.

3. He notices a 15 minute gap between calls.
4. Is it the weekend? ‘T

3 exp(10)

br S}?(?ﬂ
normalize( o o 30 mins

let weekend = sample(bernoulli(2/7)) in
let rate = 1f weekend then 3 else 10 1in
observe 0.25 from exp-dist(rate);
return(weekend) )
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Worked examples

Unnormalized posterior:

m(weekend=true) = 2/7 x 1.42 = 0.405
m(weekend=false) = 5/7 x 0.82 = 0.586

Normalized posterior: di
exp(10)

p(weekend=true) = 0.405 / 0.991

= 0.408 @p(g)

0

normalize( 0 15mine 60 mins
let weekend = sample(bernoulli(2/7)) in
let rate = 1f weekend then 3 else 10 1in
observe 0.25 from exp-dist(rate);
return(weekend) )
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Worked examples

1. A call centre operator doesn’t know what time it is.
2. He knows how the avg num of calls varies with time.
3. He notices a 15 minute gap between calls.

4. What time is it?

normalize(
let time = sample(uniform(0,24)) in
let rate = f(time) in

observe 0.25 from exp-dist(rate);
return(weekend) )

12/30






Improper posteriors

let x = sample(Normal(@,1)) in

let r = 1/f(x) 1in where f(z)= LQW@—%
observe d from exp—-dist(r);
return X

d =20

As d—0, the

normalizing constant
tends to .
“The posterior is

0 L-Jn-n--i '.:': : -': | “‘._“:,_:'1_._:‘% d =0.1 i ”
improper.
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Overview
of the rest of part 1

Compositional probability theory;
a compositional theory of impropriety

e Summary of semantics
e Examples

¢ s-finite kernels and
proof of commutativity.




Overview
of the rest of part 1

Compositional probability theory;
a compositional theory of impropriety

e Summary of semantics
e Examples

e s-finite kernels and
proof of commutativity.







A technical problem:

Defn. A kernel is a function [I'] x Xja7 — [0, 00]

such that for all U € Sy, [t](—,U) : [T] — |0, o]
is measurable and [t] (v, —) : Zja; — [0, oo]is additive.
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A technical problem:

Defn. A kernel is a function [I'] x Xja7 — [0, 00]

such that for all U € Sy, [t](—,U) : [T] — |0, o]
IS measurable and ...
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A technical problem:

Defn. A kernel is a function [I'] x Xja7 — [0, 00]

such that for all U € Sy, [t](—,U) : [T] — |0, o]
IS measurable and ...

Sequencing is integration:
et = tinu(3,U) £ [ [ul(y.,U) [#](7.do)
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A technical problem:
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A technical problem:

Defn. A kernel is a function [I'] x Xja7 — [0, 00]

such that for all U € Sy, [t](—,U) : [T] — |0, o]
IS measurable and ...

Sequencing is integration:
et = tinu(3,U) £ [ [ul(y.,U) [#](7.do)

Is this measurable in 7 ?

Answer: unknown (if ¢ and « are allowed to range
over arbitrary kernels.)

14/30



Commutat“"ty Terms are interpreted as kernels.

let x = t 1in let y = u 1n -
let y = u in — let x = t 1n
\ \Y
reordering

lines
« Useful for program transformations.
* Essence of probability theory.
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Commutat“"ty Terms are interpreted as kernels.

let x
let y
\'

Roughly amounts to

t 1n
u 1n

\Y

let y = u in |
let x = t in
reordering

lines

/</M fu]) dle] = /(/[[v]]d[[t]]) d[[u]

Fubini’s theorem
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Commutat“"ty Terms are interpreted as kernels.

let X = t 1n
let y = u 1in
Y

Roughly amounts to

\Y

let y = u 1n -
let x = t 1n
reordering

lines

/</M fu]) dle] = /(/[[v]]d[[t]]) d[[u]

Warning: Fubini’s
theorem does not hold
for arbitrary kernels.

Fubini’s theorem
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Commutat“"ty Terms are interpreted as kernels.

let X = t 1n
let y = u 1in
Y

Roughly amounts to

let y = u 1n -
let x = t 1n

\Y

reordering
lines

/</M fu]) dle] = /(/[[v]]d[[t]]) d[[u]

Fubini’s theorem

Warning: Fubini’s
theorem does not hold
for arbitrary kernels.

Fubini’'s theorem does
hold for s-finite
kernels.
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Terms are interpreted as s-finite

Commutativity e

' let x = t in let y = u 1n -
let y = u 1in — let x = t 1n
AV Vv
reordering
Roughly amounts to lines

/</M fu]) dle] = /(/[[v]]d[[t]]) d[[u]

Fubini’s theorem

Warning: Fubini’s Fubini’s theorem does
theorem does not hold hold for s-finite
for arbitrary kernels. kernels.
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s-finite kernels

Definition. A kernel k : [I'] x 45 — |0, oo| is bounded if

an. vy. vU. k(y,U)<n.

|see Borgstrom, Gordon et al., ESOP 2011

Definition. A kernel k : [T] x 241 — |0, 00]is s-finite if it is a
countable sum of bounded kernels.

/</M fu]) dle] = /(/[[v]]d[[t]]) d[[u]

Fubini’s theorem

Warning: Fubini’s
theorem does not hold
for arbitrary kernels.

Fubini’'s theorem does
hold for s-finite
kernels.
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s-finite kernels

Definition. A kernel k : [I'] x 45 — |0, oo| is bounded if

an. vy. vU. k(y,U)<n.

Definition. A kernel k : [T] x 241 — |0, 00]is s-finite if it is a
countable sum of bounded kernels.

Warning: Fubini’s
theorem does not hold
for arbitrary kernels.

Fubini’'s theorem does
hold for s-finite
kernels.
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s-finite kernels

Staton, ESOP 2017

Definition. A kernel k : [I'] x 45 — |0, oo| is bounded if

an. vy. vU. k(y,U)<n.

Definition. A kernel k : [T] x 241 — |0, 00]is s-finite if it is a
countable sum of bounded kernels.

Theorem. A kernel is s-finite if and only if it is definable.

Warning: Fubini’s
theorem does not hold
for arbitrary kernels.

Fubini’'s theorem does
hold for s-finite
kernels.
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Commutativity

Theorem.
let x = t in let y = u 1n -
let y = u in — let x = t 1n
\ \

/(/[[V]] d[[u]]) dﬂt-]] = /{/[[v]]d[[t]D d[u]]-

Fubini’s theorem does

@ B hold for s-finite
— kernels.
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Staton, ESOP 2017

A technical problem:

Defn. A kernel is a function [I'] x Xja7 — [0, 00]

such that for all U € Sy, [t](—,U) : [T] — |0, o]
IS measurable and ...

Sequencing is integration:
et = tinu(3,U) £ [ [ul(y.,U) [#](7.do)

Is this measurable in 7 ?
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Staton, ESOP 2017

A technical problem:

Defn. A kernel is a function [I'] x Xja7 — [0, 00]

such that for all U € Sy, [t](—,U) : [T] — |0, o]
IS measurable and ...

Sequencing is integration:
et = tinu(3,U) £ [ [ul(y.,U) [#](7.do)

Is this measurable in 7 ?

Answer: yes (if ¢ and u are probabilistic programs,
they are s-finite kernels.)

17/30






Summary

Theorem.
' let x = t in let y = u 1n -
let y = u 1n — let x = t 1n
\ \4

e Probabilistic programs —
have a measure-theoretic
semantics.

e Commutativity holds.

e Probabilistic programs are s-finite kernels.

18/30






Overview

e Part 1: Compositional probability theory;
a compositional theory of impropriety

e Part 2: Higher order functions;
random functions as measures on a
space of functions.




Overview

e Summary of semantics
e Examples

¢ s-finite kernels and
proof of commutativity.







Overview of part 2

Higher order functions;
random functions as measures on a
space of functions.

e Examples of regression and
higher order functions

e Quasi-Borel spaces







Regression

10

.1 ® Which function best
fits the data points?
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normalize(

let s = sample (normal 0 2)
o b = sample (normal @ 6)

f AX. S + b 1n

o4 observe 0. )
observe
observe
74 observe

0
1
3
observe 6.
8
8
S,

observe
51 observe
| return (

X
(
(
(
(
(
(
(

O PR NONNNO

|
N




normalize(

let s = sample (normal 0 2)
b = sample (normal 0 6)
10° f = AXx. s x + b in
o4 observe 0.6 from (normal (f Q)
.| observe 0.7 from (normal (f 1)
observe 1.2 from (normal (f 2)
74 observe 3.2 from (normal (f 3)
.| observe 6.8 from (normal (f 4)
observe 8.2 from (normal (f 5)
54 observe 8.4 from (normal (f 6)
| return (s,b) )




normalize(

let s = sample (normal 0 2)
b = sample (normal 0 6)
10° f = AXx. s x + b in
o4 observe 0.6 from (normal (f Q)
.| observe 0.7 from (normal (f 1)
observe 1.2 from (normal (f 2)
74 observe 3.2 from (normal (f 3)
.| observe 6.8 from (normal (f 4)
observe 8.2 from (normal (f 5)
54 observe 8.4 from (normal (f 6)
return f )




normalize(

let s = sample (normal 0 2)
b = sample (normal 0 6)
10° f = AXx. s x + b in
o4 observe 0.6 from (normal (f @) .5)
.| observe 0.7 from (normal (f 1) .5)
observe 1.2 from (normal (f 2) .5)
74 observe 3.2 from (normal (f 3) .5)
.| observe 6.8 from (normal (f 4) .5)°
observe 8.2 from (normal (f 5) .5)
54 observe 8.4 from (normal (f 6) .5)
. return f )
e Question: how to
understand f in
this example?

3.5 4.0 4.5 5.0 5.5 6.0




normalize(

let s = sample (normal 0 2)
b = sample (normal 0 6)
f AX. S X + b 1n

return f )

T T T T T | T T T T T |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Samples from the prior
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normalize(

10 —

sample (normal 0 2)
sample (normal 0 6)
s X + b in

let s =

h =

f = AX.
observe 0.6
observe 0.7
observe 1.2
observe 3.2
observe 6.8
observe 8.2
observe 8.4
return f )

from
from
from
from
from
from
from

(normal
(normal
(normal
(normal
(normal
(normal
(normal

AN N N N AN N N

— —h —h —h —h —h —h
OUpPWNEOS
N N N N N N e’
G, NE, WG, N, NE, WO, NE,
N N N N N e’

0.5 1.

amploeswf

2.0

rom

2.5

the

3.5

post

4.5

erior

5.5

|
6.0

22/30



_—y
o
|

-t (\V] w S &) ()] ~ o ©
| | | | ] ] | | |

T | | T T | |
2.0 2.5 3.5 4. O 4 5 5.0 5.5 6.0

Samples frbm the posterior
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normalize(

let f =
(let s = sample (normal @ 2)
b = sample (normal @ 6) in
return AX. s x + b) in
observe 0.6 from (normal (f @) .5)
observe 0.7 from (normal (f 1) .5)
observe 1.2 from (normal (f 2) .5)
observe 3.2 from (normal (f 3) .5)
observe 6.8 from (normal (f 4) .5)
observe 8.2 from (normal (f 5) .5)
observe 8.4 from (normal (f 6) .5)
return f )

More higher-order functions

22/30



normalize(
let f = add-change-points
(let s = sample (normal @ 2)
b = sample (normal @ 6) in

return AX. s x + b) in

observe 0.6 from (normal (f @) .5)
observe 0.7 from (normal (f 1) .5)
observe 1.2 from (normal (f 2) .5)
observe 3.2 from (normal (f 3) .5)
observe 6.8 from (normal (f 4) .5)
observe 8.2 from (normal (f 5) .5)
observe 8.4 from (normal (f 6) .5)
return f )

Posterior
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normalize(
let f = add-change-points
(let s = sample (normal 9 2)

o b = sample (normal J 6) in
9 return Ax. s x + b) in
,_observe 0.6 from (normal (- @)
observe 0.7 from (normal f e
"~ observe 1.2 from (norm~’; &=
- observe 3.2 from (norr|{iiif] .5)
. observe 6.8 from (nory|[/}ifI[|4) .5)
observe 8.2 from (= /| /eS) .5)
‘- observe 8.4 from '/ / '16) .5)

.- return f ) /5i g
=

Could also try
05 10 15 20 25 30 35 4~‘p0|yn0m|a| prlO!’S, or
programs as priors.

Posterior
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Technical problem

Measure theory doesn’t support HO fns well.
ev: (R—-uR) x R — R, ev(f,x) = flz).

[Aumann 61] ev is not measurable no matter which
o-algebra is used for R—R.

[Corollary] The category of measurable spaces is not
cartesian closed.
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Overview of part 2

Higher order functions;
random functions as measures on a
space of functions.

e Examples of regression and
higher order functions

e Quasi-Borel spaces




What about higher-order
functions?

R—R
™~

this Is not a
measurable space
[Aumann 1961]

Easy to deal with operationally. But denotationally?

Staton, Yang, Heunen, Kammar, Wood, LICS 2016
Bérgstrom, Dal Lago, Gordon, Szymczak, ICFP 2016 24/30




What about function types?

Measurable ) Bigger
spaces |embedding| class of spaces

Models Models

first order higher order
language with language with
sample, sample,
score score

Theorem. Adequacy.
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What about function types?

Standard ) Bigger
Borel spaces|embedding| class of spaces

Models Models

first order higher order

language with language with

sample, sample,

score score

Theorem. Adequacy.

24/30



What about function types?

Standard ) Bigger
Borel spaces|embedding| class of spaces

Models

first order Problem: R—R doesn’t exist

language with l.e. Hom(—xR , R) : Meas®— Set
sample,

score Isn’t representable

24/30



Staton, Yang, Heunen,
Kammar, Wood, LICS 2016
e also Power, TCS 2006

What about function types™

Standard Yoneda Sheaves on
Borel spaces|embedding measurable spaces

Models

first order
language with
sample,

score

24/30



e also Power, TCS 2006

What about function typesj?m’w°°d’“c”‘“

Standard Yoneda Sheaves on
Borel spaces|embedding measurable spaces

Models (Functors Meas°>—Set
first order that preserve countable
language with products)

sample,

SCOore

24/30



Staton, Yang, Heunen,
Kammar, Wood, LICS 2016
e also Power, TCS 2006

What about function types™

Standard Yoneda Sheaves on
Borel spaces|embedding measurable spaces
A
Models
first order
language with ‘Quasi-Borel
sample, spaces’

SCOore

24/30



,,,,,,,,

What about function type.&‘.JP aaaaa -

Standard Yoneda Sheaves on
Borel spaces|embedding measurable spaces

A
Models
first order

language with ‘Quasi-Borel
sample, ’
ceore Spaces

“Random elements first.”

24/30



Random elements a in X

a:0Q — X
e X - set of values.
e () - set of random seeds.

¢ Random seed generator.

22222



Random elements a in X
In classical measure theory

a:0Q — X
IS a random element
e X-setofvalues. jfqg1(a)es for all Aco
e () -setof random seeds.

¢ Random seed generator.

1. 2Cc20 @c2X

22222



Random elements a in X
In quasi-Borel spaces

a: 00— X
e X - set of values.

o (D=R - set of random seeds.

¢ Random seed generator.

22222



Random elements a in X
In quasi-Borel spaces

a:0)—- X

IS a random variable
e X - set of values. if aeM

o (D=R - set of random seeds.

¢ Random seed generator.

1. R as random source
2. Borel subsets 8c2"

3. M € [R>X]




eeeeeeeeeeeee

Defn. A quasi-Borel space is a pair (X,M) where

e XIS a set
e MC[R—X]s.t.

26/30



Heunen , Kammairr,
Staton, Yan ng, LICS 2017

A ccc of measurable functions

Defn. A quasi-Borel space is a pair (X,M) where
e Xis a set

e MC[R—X]
such that

o if f: R—R measurable and g € Mthen gf e M.

* piecewise combination: if R=w;cvR; with R; Borel
and ai,az, ... € M, then uic(ain(RixX))eM.
 all constant functions are in M

A morphism (X,M) — (Y,N)isafunction f: X— Y
such that g e Mimplies fge N

26/30



Heunen , Kammairr, Staton,

a | Yang, LICS 2017

A ccc of measurable functions

Defn. A quasi-Borel space is a pair (X,M) where
e Xis a set

e MC[R—X] s.t. ...

Example: X is a standard Borel measurable space,
M c [R— X] comprises the measurable functions.

Then ‘morphism’ = ‘measurable function’.

A morphism (X,M) — (Y,N)isafunction f: X— Y
such that g e Mimplies fge N

26/30



eeeee , Kammar, Stato

- Y ng, LICS 2017

n,

A ccc of measurable functions

Defn. A quasi-Borel space is a pair (X,M) where
e Xis a set

e MC[R—X] s.t. ...

Example: X is a standard Borel measurable space,
M c [R— X] comprises the measurable functions.

Proposition. The category of quasi-Borel spaces is
cartesian closed with countable sums.

Corollary. If a term t has first order type then
[t] is a measurable function.

26/30






Heunen , Kammairr, Staton,
Yang, LICS 2017

Standard ‘Quasi-Borel
Borel spaces spaces’

What is a measure

onX—2Y?
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Heunen , Kammairr, Staton,
Yang, LICS 2017

Standard ‘Quasi-Borel
Borel spaces spaces’

Defn. A quasi-Borel space is a pair (X,M) where
e XIs a set

e MC[R—X] s.t. ...

Defn. A measure on a quasi-Borel space is a pair

(M, f)
~  T~affRoXinM

a measure on R
(modulo inducing the same integration operator)
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Heunen , Kammairr, Staton,
Yang, LICS 2017

Standard ‘Quasi-Borel
Borel spaces spaces’

Proposition. A measure on [ X — Y] Is a pair

(K, 1)
e \ a measurable

a measure on R function
f:RXxX—=Y

— a ‘random function’.
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Heunen, Kammar, Staton,
Yang, LICS 2017

normalize(
let s = sample (normal 0 2)
b = sample (normal 0 6)
g =AX. S X+ b in

return g )
v Proposition. A measure on [X = Y] is a pair
9_
& (4, )
3 - a measurable
4 a measure on R A function
6- fIRXX->Y

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
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normalize(
let s

b
g

return g )

S
S
AX

Heunen, Kammar, Staton,
Yang, LICS 2017

ample (normal 0 2)
ample (normal @ 6)
s X + b in

Proposition. A measure on [X — Y] is a pair

(M, )
a measurable
a measure on R function

[RXX—>Y

In this example,
* 1 IS multivariate normal,
* f((s,0),X) = sx+b

NB R=R xR

| T T T T T |
3.0 3.5 4.0 4.5 5.0 5.5 6.0
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Quasi-Borel spaces work well:

e Simple theorems e.g. “randomization lemmas”
can be stated in the internal logic;

e A version of de Finetti’s theorem for
exchangeable sequences holds;

* One can justify higher order inference algorithms,

(Metropolis-Hastings, Sequential Monte Carlo)
jww Scibior, Vakar, Kai, Ostermann,Moss, Ghahramani
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Motivation

What is a general notion of statistical model?

How can we understand the fundamental
structure?

Aims of semantic models:

1. Fundamental;
2. Towards applications in Machine Learning.
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What’s next:

We’re now looking at
“exchangeable random structures”

towards a general theory of Aldous-Hoover
results and the connection with abstract types.

e Discussions with Ackerman, Freer, Roy, Bloom-Reddy.

Aims of semantic models:

1. Fundamental;
2. Towards applications in Machine Learning.

29/30



Overview

e Part 1: Compositional probability theory;
a compositional theory of impropriety

e Part 2: Higher order functions;
random functions as measures on a
space of functions.







