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SAT for hard problems

Harnessing SAT

The power of solving propositional logic, most importantly
determining a propositional formula to be satisfiable or
unsatisfiable
resp. to be falsifiable or tautological,

has increased dramatically over the last two decades.

Especially industrial applications
(safety, correctness)

are impressive.

Also apparently every modern ATP-solver nowadays uses SAT.
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SAT for hard problems

Standard use of SAT in ATP

The typical use of SAT in ATP

is based on abstraction:
abstract away the parts of the problem

beyond propositional logic.

This leads to two main characteristic features:
1 heavy interaction between the non-propositional parts of the

solver and the SAT part;
2 the SAT problems are relatively small.

A similar approach one finds in SMT (“SAT modulo theory”).
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SAT for hard problems

Heavier use of SAT

In the direction of Herbrand’s Theorem, it is also possible to have

SAT solving as the main part
of the solving process.

Basically
1 “all instantiations” of quantifiers are considered (reducing the

problem to infinite propositional logic),
2 and compactness is applied (creating infinitely many finite

problems).
This results naturally in a much heavier use of SAT.

Now very big SAT problems are to be solved.

Our endeavours are going in this direction.
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SAT for hard problems

SAT solving different for easy and hard

Not only are the SAT problems arising in this heavy use of SAT very
big,

but they are typically also very hard.

The success of SAT solving over the last two decades however

concentrates on problems which are
(very) big, but indeed (relatively) easy —

these methods go aggressively for the “easy success”,
not for the worst case.

So new SAT tools are needed:

integrating aggressive solving and worst-case planning.
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SAT for hard problems

This talk

In this talk I

focus on the heaviest use of SAT:
the problem is directly expresses as a SAT problem

(for efficiency of encoding).

For this I present

improved SAT solving (Cube-and-Conquer).
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SAT for hard problems

Outline
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Applications in Ramsey theory

Ramsey theory

Many problems of Ramsey theory can be understood easily,
and they yield great problems for SAT.

The fundamental theme is:

For infinite sets X and certain simple “structures” on X :
how resilient is this structure against finite partitioning?

Remarks:
inherent difficulty completely open
see Heule and Kullmann [7] (“The science of brute force”, CACM)
for an accessible introduction.
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Applications in Ramsey theory

The science of Demolition

https://cacm.acm.org/magazines/2017/8
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Applications in Ramsey theory

A fundamental problem I

Consider
a finite set P of polynomials P(x1, . . . , xk ) over k variables,
with integer coefficients.

Let

N(P) :=
{
{x1, . . . , xk} ⊂ N : ∀P ∈ P : P(x1, . . . , xk ) = 0

}
be the set of (common) zeros (Nullstellen) of P over the natural
numbers, where for convenience we don’t take the tuple, but just the
set of components of the zero-vector.

X = N = {1,2, . . .}

For example

N({x2 + y2 − z2}) = {{3,4,5}, {6,8,10}, {5,12,13}, . . .}.
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Applications in Ramsey theory

A fundamental problem II

Definition
P is called m-regular for some m ∈ N, if the hypergraph N(P) is not
m-colourable, that is:

For every partition N = X1 ∪ · · · ∪ Xm of N into m subsets
there is i and ~x ∈ N(P) with ~x ⊆ Xi .

P is called regular if it is m-regular for all m ≥ 1.

A central problem of Ramsey theory is:

Determine the (m-)regular systems P.

The linear case was completely solved by Rado [16], generalising work
by Schur [17] and van der Waerden [18]; a recent overview was given
in Baglini [2].
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Applications in Ramsey theory

A fundamental problem III

The general case is wide open.

By Hilbert’s Tenth Problem the case “1-regularity” is undecidable.

But for all m ≥ 2 the complexity of “m-regularity” is completely
open (from linear-time to undecidable).

And so is “regularity”.

We considered the single equation x2 + y2 = z2.
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Applications in Ramsey theory

Finitisation

Partitioning into two sets, i.e., m = 2, can be directly encoded using
boolean variables:

For n ∈ N let vn be a boolean variable.
vn true means the first part,

vn false means the second part.

Now P is 2-regular iff the (possibly) infinite disjunction∨
~x∈N(P)

(
∧
x∈~x

vx) ∨ (
∧
x∈~x

¬vx)

is a tautology, which by compactness is true iff for some n ∈ N the
finite disjunction

considering only the ~x ∈ N(P) with ~x ⊆ {1, . . . ,n}

is a tautology.
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Applications in Ramsey theory

The Boolean Pythagorean Triples Problem I

The question about the regularity of

x2 + y2 − z2

is a long-standing open problem.

Only 1-regularity was known (since there exist Pythagorean
triples, e.g., 32 + 42 = 52).

Ron Graham asked in the 80s specifically whether 2-regularity
holds (we call this the Boolean Pythagorean Triples Problem).

There were some opinions (conjectures) that it is not 2-regular.
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Applications in Ramsey theory

The Boolean Pythagorean Triples Problem II

We (together with Marijn Heule and Victor Marek)
showed via SAT

the 2-regularity (Heule, Kullmann, and Marek [9], [11, 12]),
and got $100 for it.

Such a solution needs a proof, which can be automatically checked.

We provided a proof of 200 TB and checked it.
Meanwhile it has also been checked independently (Cruz-Filipe,

Marques-Silva, and Schneider-Kamp [5]).
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More details on The Theorem

Concrete (practical) re-formulation I

Call three natural numbers a,b, c ∈ N a Pythagorean triple if
a2 + b2 = c2.

Is it possible
to partition N into two sets A ∪ B = N,

such that neither A nor B contains a Pythagorean triple?

Let’s start with partitioning N into even and odd numbers. Remember:
even * even = even, odd * odd = odd
even + even = even, odd + odd = even.

Thus there can be no Pythagorean triple consisting only of odd
numbers.
So we are fine on the odd part, but the even part contains e.g.

2 · (3,4,5) = (6,8,10), 62 + 82 = 102.
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More details on The Theorem

Concrete (practical) re-formulation II
So we need to partition the even numbers further,

to destroy all Pythagorean triples.

For a more experimental approach, it would be easier

instead of partitioning N,
to partition {1, . . . ,n} for n = 5,6,7 . . .

So we can first destroy all Pythagorean triples with hypotenuse z ≤ 5,
then z ≤ 6, and so on. At the beginning it’s pretty simple, since there
are only few Pythagorean triples:

(3,4,5), (6,8,10), (5,12,13), (9,12,15), (8,15,17), . . .

But slowly it gets harder ... will it ever end?!?

Asymptotically, the number of clauses is 1
πn · ln(n).
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More details on The Theorem

Concrete (practical) re-formulation III

The SAT problem is thus for e.g. n = 15:

(v3 ∧ v4 ∧ v5) ∨ (¬v3 ∧ ¬v4 ∧ ¬v5) ∨
(v6 ∧ v8 ∧ v10) ∨ (¬v6 ∧ ¬v8 ∧ ¬v10) ∨
(v5 ∧ v12 ∧ v13) ∨ (¬v5 ∧ ¬v12 ∧ ¬v13) ∨

(v9 ∧ v12 ∧ v15) ∨ (¬v9 ∧ ¬v12 ∧ ¬v15).

It is easy to see that this DNF is falsifiable.
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More details on The Theorem

The theorem I

https://en.wikipedia.org/wiki/Boolean_Pythagorean_triples_problem

We showed in our SAT 2016 paper ([9, 10]), that one can go up up to
n = 7824, and then it stops.

Theorem
For all sets A1,A2 with A1 ∪ A2 = N there is i ∈ {1,2} and a,b, c ∈ Ai
with a2 + b2 = c2. More precisely:

For n = 7825, in every partition of {1, . . . ,n},
at least one part contains a Pythagorean triple.

For n = 7824 there exist a partition with
no part containing a Pythagorean triple.
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More details on The Theorem

The theorem II

This solved a problem open for 30 years, with the longest proof yet.

Different from all previous contributions
to Ramsey theory via SAT solving,

here also the existence problem for n was open.
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More details on The Theorem

A solution (white means unassigned)
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More details on The Theorem

Actually proving it

Just claiming to have solved it — that’s not much.

The total run-time for solving the problem was two days on a
supercomputer, where we used only 800 cores.
Without our novel techniques, just using standard SAT techniques,
it would have needed say 1000 times more time.
Still doable in principle (the supercomputer has 106 cores).
But an important point is the extracted proof (which we got down
to “just” 200 TB).
The total run-time must be small, AND the proof format must allow
for good compression.
Without the novel proof format, a blow-up of space of at least a
factor of 1000 would have occurred.

Remark: without SAT, the age of the universe would be nothing to
solve it.
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More details on The Theorem

Independent verification

At least one first (published) independent verification took place
(Cruz-Filipe et al. [5], Cruz-Filipe and Schneider-Kamp [4]):

They used the 106 main cases (still highly complex), as computed
by our SAT-solving system (altogether 68 GB).
These 106 SAT problems were solved by some SAT solver.
For each case extracting a proof using our tools for preprocessing.
Finally on each of the 106 extracted proofs, a verified proof
checker was run.
This checker was extracted by the Coq interactive theorem prover
(with some work-arounds for speed and memory).
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SAT

SAT solving

The previous DNF is negated, yielding a CNF, and the task is to show

unsatisfiability (i.e., inconsistency).

SAT solvers solve CNFs.
The hybrid SAT-solving method Cube-and-Conquer, whose idea
we developed in the context of applications to Ramsey theory, was
adopted to the task (various heuristics optimised).
Due to the nature of “C&C”, whether performed on a single
computer or on a cluster doesn’t matter.
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SAT

C&C: old and new

SAT is “solving CNFs by brute-force, guided by brute reason”.
Two main paradigms for “brute reason” have been developed.
The first and older one, LOOK-AHEAD,

is about logical inference and systematic case distinctions
(“systematic and slow”).

The second and newer one, CDCL, is mainly responsible for the
SAT revolution in industrial applications.

CDCL is about making mistakes quickly and learning from them
(“quick and dirty, but with magic local cleverness”).

C&C combines the two:

First we build a systematic (and clever) big(!) case distinction.
Then we solve the cases by the quick method (independently!).
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SAT

Look-ahead solvers

For background see the two Handbook-chapters Heule and van
Maaren [6], Kullmann [14]:

Split recursively, applying (strong) reductions,
guided by (strong) heuristics.

That is, for input F ∈ CLS, choose variable v ∈ var(F ) and split

F

ww ''
F0 := 〈v → 0〉 ∗ F

��

F1 := 〈v → 1〉 ∗ F

��
r̃2(F0) r̃2(F1)

for some reduction r̃2 : CLS → CLS (e.g., elimination of failed literals).
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Cube-and-Conquer

A hybrid scheme

The C&C paradigm ([8, 12]) has two phases:
1 First a look-ahead solver is employed to split the problem — the

splitting tree is cut off appropriately.
2 At the leaves of the tree, CDCL solvers are employed.

F

�� ��

splitting

©

��

· · ·

��

©

��
CDCL CDCL CDCL

O Kullmann (Swansea) Big proofs and SAT 8.9.2017 27 / 39



Cube-and-Conquer

First goal: parallelisation

The number N of leaves for the cube-phase is roughly
in the thousands for relatively easy problems (say one day total
run-time);
in the millions for hard problems (say a month total run-time);
in the billions for very hard problems.

The sub-problems should be at most one minute.

C&C achieves a good equal splitting
(that’s what look-ahead is good at!).

The sub-problems (for CDCL) are scheduled independently.

So a great linear speed-up for a large number of processors.
The cube-phase has also controlled run-time.
And the sub-problems can be easily uniformly sampled.
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Cube-and-Conquer

That’s it?

So well, that’s something:
Hard problems need distributed solving.
C&C delivers this, scaling very well.
That’s also quite natural:

The tree-structure is optimal for this.
Look-ahead heuristics prefer equal splittings.

But that’s NOT the end of the story ...
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Cube-and-Conquer

Cube and Conquer: The discovery

For experiments with (hard) instances from Ramsey theory
(van-der-Waerden; Ahmed, Kullmann, and Snevily [1]), I made the
following observation:

1 I just wanted to be able to easily monitor progress, and possibly
do parallelisation.

2 So I took my own look-ahead solver, the OKsolver ([13, 15]),
using it to split the instances into a large number N of
sub-instances, cutting off the splitting tree, and at the leaves I ran
a CDCL-solver.

3 When the splitting was done reasonably, so that the leaf-instances
are roughly of the same hardness, then the total run time, even
with a very simple implementation,

was MUCH LOWER than
what any single solver could achieve.
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Cube-and-Conquer

Something’s going on I

Consider again N (the number of leaves in the cube-phase):
1 N = 1 means pure CDCL.
2 Very large N means pure look-ahead.

Now consider the total run-time in dependency on N:
1 Typically, first it increases,
2 then it decreases (only for a large number of sub-problems!),
3 then it stays for some time at a plateau,
4 and finally it typically increases again (often dramatically, but not

for the Pythagorean triples problem).

In the area of optimal N,
the total run-time can be several orders of magnitudes faster

than any single method!!
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Cube-and-Conquer

Something’s going on II

Experimental data:

Example with Schur triples a + b = c
and 5 colours: a clause-set with

708 variables and 22608 clauses.

O Kullmann (Swansea) Big proofs and SAT 8.9.2017 32 / 39



Attempts at explanations

Why are CDCL solvers often better than look-ahead?

Three approaches to explain the advantage of CDCL:
Look-ahead is basically tree-like (recursive splitting), while CDCL
is dag-like (can reuse “lemmas”).
CDCL is more “optimistic”, looks out for a “weakness”, while
look-ahead assume the worst-case.
CDCL is “less intelligent”, but “much faster”.

It seems the instances where look-ahead is better are

“consistently hard”,

(like random formulas), while for CDCL there must be “soft spots”.

None of these approaches seems to be able
to explain the C&C phenomenon.
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Attempts at explanations

Open Problems I

Explain (theoretically and practically) where look-ahead is best.
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Attempts at explanations

Two directions

Two basic opposite hypothesis’ about the C&C phenomenon:
I It’s a weakness of CDCL (resp. current implementation): these

solvers have a “point of competence” — you can’t run CDCL
solvers for a long time.

II It’s a strength of look-ahead: look-ahead “understands” better the
“global structure”.
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Attempts at explanations

Cube and Conquer: Global versus Local

Our current approach for explaining the success is as follows:
1 In some sense, the heuristic of look-ahead is “global”, the heuristic

for CDCL is “local”.
2 The worst-case approach of look-ahead is good for splitting

(globally), but not for solving (exploiting local structures).
3 The dag-like structures, exploited by CDCL, are somewhat of a

“local” phenomenon.
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Attempts at explanations

Open Problems II

Explain (theoretically and practically) why and where
C&C is best.

It seems some form of “hybrid” proof theory is needed.
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Conclusion

Outlook

I ATP hopefully has still much more to gain via SAT.
II For hard problems the interplay between “old” and “new” in C&C

seems crucial.
III The interplay between these paradigms needs to be investigated.
IV “Old” (look-ahead) seems more appropriate for “planning”, “new”

(CDCL) more for “solving”.
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Conclusion

End

(references on the remaining slides).

For my papers see
http://cs.swan.ac.uk/~csoliver/papers.html.
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