Loading content, please wait..
loading..
Logo
Version 3.22
or
Publication Type J
Authors Hussein, Z; Dryanova, A; Maret, D; Gulick, PJ
Author Full Name Hussein, Zina; Dryanova, Ani; Maret, Deborah; Gulick, Patrick J.
Title Gene expression analysis in the roots of salt-stressed wheat and the cytogenetic derivatives of wheat combined with the salt-tolerant wheatgrass, Lophopyrum elongatum
Source PLANT CELL REPORTS
Language English
Document Type Article
Author Keywords Microarray analysis; Gene expression profile; Salt stress; Octaploid amphiploid; DS3E(3A) disomic substitution line; Induction; Repression
Keywords Plus X ELYTRIGIA-ELONGATA; ARABIDOPSIS-THALIANA; SALINITY TOLERANCE; MICROARRAY ANALYSIS; COLD-ACCLIMATION; RESPONSIVE GENES; CDNA MICROARRAY; SPRING WHEAT; DROUGHT; RICE
Abstract Key message Using microarray analysis, we identified regulatory and signaling-related genes with differential expression in three genotypes with varying degrees of salt tolerance, Triticum aestivum , the amphiploid, and the wheat substitution line DS3E(3A). Lophopyrum elongatum is among one of the most salt-tolerant members of the Triticeae; important genetic stocks developed from crosses between wheat and L. elongatum provide a unique opportunity to compare gene expression in response to salt stress between these highly related species. The octaploid amphiploid contains the entire genome of T. aestivum and L. elongatum, and the disomic substitution line DS3E(3A) has chromosome 3A of wheat replaced by chromosome 3E of L. elongatum. In this study, microarray analysis was used to characterize gene expression profiles in the roots of three genotypes, Triticum aestivum, the octaploid amphiploid, and the wheat DS3E(3A) substitution line, in response to salt stress. We first examined changes in gene expression in wheat over a time course of 3 days of salt stress, and then compared changes in gene expression in wheat, the T. aestivum x L. elongatum amphiploid, and in the DS3E(3A) substitution line after 3 days of salt stress. In the time course experiment, 237 genes had 1.5 fold or greater change at least one out of three time points assayed in the experiment. The comparison between the three genotypes revealed 304 genes with significant differences in changes of expression between the genotypes. Forty-two of these genes had at least a twofold change in expression in response to salt treatment; 18 of these genes have signaling or regulatory function. Genes with significant differences in induction or repression between genotypes included transcription factors, protein kinases, ubiquitin ligases and genes related to phospholipid signaling.
Author Address [Hussein, Zina; Dryanova, Ani; Maret, Deborah; Gulick, Patrick J.] Concordia Univ, Dept Biol, Ctr Struct & Funct Genom, Montreal, PQ H4B 1R6, Canada
Reprint Address Gulick, PJ (reprint author), Concordia Univ, Dept Biol, Ctr Struct & Funct Genom, 7141 Sherbrooke W, Montreal, PQ H4B 1R6, Canada.
E-mail Address patrick.gulick@concordia.ca
ORCID Number Gulick, Patrick/0000-0001-7587-4616
Funding Agency and Grant Number Natural Science and Engineering Research Council of Canada; Genome Canada; Genome Quebec
Funding Text This work is supported by grants from the Natural Science and Engineering Research Council of Canada, Genome Canada and Genome Quebec. We thank Jan Dvorak, University of California at Davis, for kindly providing the T. aestivum x L. elongatum amphiploid and the 3E(3A) chromosome substitution line.
Cited References Aghaei Keyvan, 2013, Front Plant Sci, V4, P8, DOI 10.3389/fpls.2013.00008; Ahn C, 2011, BIOCHEM BIOPH RES CO, V415, P669, DOI 10.1016/j.bbrc.2011.10.134; Altschul SF, 1997, NUCLEIC ACIDS RES, V25, P3389, DOI 10.1093/nar/25.17.3389; Balazadeh S, 2010, PLANT J, V62, P250, DOI 10.1111/j.1365-313X.2010.04151.x; Chao DY, 2005, CELL RES, V15, P796, DOI 10.1038/sj.cr.7290349; Colmer TD, 2006, J EXP BOT, V57, P1059, DOI 10.1093/jxb/erj124; Darwish E, 2009, PLANT CELL PHYSIOL, V50, P986, DOI 10.1093/pcp/pcp051; Davenport RJ, 2007, PLANT CELL ENVIRON, V30, P497, DOI 10.1111/j.1365-3040.2007.01637.x; de Lorenzo L, 2009, PLANT CELL, V21, P668, DOI 10.1105/tpc.108.059576; DVORAK J, 1988, P NATL ACAD SCI USA, V85, P3805, DOI 10.1073/pnas.85.11.3805; DVORAK J, 1986, CROP SCI, V26, P658; Farajalla MR, 2007, GENOME, V50, P502, DOI 10.1139/G07-027; GALVEZ AF, 1993, PLANT PHYSIOL, V103, P257, DOI 10.1104/pp.103.1.257; Gentleman RC, 2004, GENOME BIOL, V5, DOI 10.1186/gb-2004-5-10-r80; Giacomelli JI, 2010, PLANT SCI, V178, P398, DOI 10.1016/j.plantsci.2010.02.008; GULICK P, 1987, P NATL ACAD SCI USA, V84, P99, DOI 10.1073/pnas.84.1.99; Haffani ZY, 2004, CAN J BOT, V82, P1, DOI [10.1139/B03-126, DOI 10.1139/B03-126]; Hasanuzzaman M, 2013, ECOPHYSIOLOGY RESPON, P510; Hong SW, 1997, PLANT PHYSIOL, V113, P1203, DOI 10.1104/pp.113.4.1203; Houde M, 2006, BMC GENOMICS, V7, DOI 10.1186/1471-2164-7-149; Hsieh EJ, 2013, PLANT MOL BIOL, V82, P223, DOI 10.1007/s11103-013-0054-z; Huang GT, 2012, MOL BIOL REP, V39, P969, DOI 10.1007/s11033-011-0823-1; Jiang YQ, 2006, BMC PLANT BIOL, V6, DOI 10.1186/1471-2229-6-25; Kawasaki S, 2001, PLANT CELL, V13, P889, DOI 10.1105/tpc.13.4.889; Kreps JA, 2002, PLANT PHYSIOL, V130, P2129, DOI 10.1104/pp.008532; Lee JH, 2011, MOL CELLS, V31, P201, DOI 10.1007/s10059-011-0031-9; Ma SS, 2006, J EXP BOT, V57, P1097, DOI 10.1093/jxb/erj098; Moller IS, 2007, TRENDS PLANT SCI, V12, P534, DOI 10.1016/j.tplants.2007.09.009; Monroy AF, 2007, PLANT MOL BIOL, V64, P409, DOI 10.1007/s11103-007-9161-z; Munkvold JD, 2004, GENETICS, V168, P639, DOI 10.1534/genetics.104.034819; Munns R, 2005, NEW PHYTOL, V167, P645, DOI 10.1111/j.1469-8137.2005.01487.x; Munns R, 2008, ANNU REV PLANT BIOL, V59, P651, DOI 10.1146/annurev.arplant.59.032607.092911; Nakashima K, 2000, PLANT MOL BIOL, V42, P657, DOI 10.1023/A:1006321900483; Omeilian JA, 1991, GENOME, V34, P961, DOI [10.1139/g91-149, DOI 10.1139/G91-149]; Ouyang B, 2007, J EXP BOT, V58, P507, DOI 10.1093/jxb/erl258; Ouyang Q, 2010, PLANT J, V62, P316, DOI [10.1111/j.1365313X.2010.04146.x, DOI 10.1111/J.1365313X.2010.04146.X]; Pardo JM, 2006, J EXP BOT, V57, P1181, DOI 10.1093/jxb/erj114; Pastuglia M, 2002, GENE, V282, P215, DOI 10.1016/S0378-1119(01)00821-6; Qi LL, 2004, GENETICS, V168, P701, DOI 10.1534/genetics.104.034868; Rahaie M, 2010, PLANT CELL REP, V29, P835, DOI 10.1007/s00299-010-0868-y; Rajendran K, 2009, PLANT CELL ENVIRON, V32, P237, DOI 10.1111/j.1365-3040.2008.01916.x; Rodrigues SM, 2006, J EXP BOT, V57, P1909, DOI 10.1093/jxb/erj132; Rodriguez-Uribe L, 2011, PLANT SCI, V180, P461, DOI 10.1016/j.plantsci.2010.10.009; Saijo Y, 2000, PLANT J, V23, P319, DOI 10.1046/j.1365-313x.2000.00787.x; SCHACHTMAN DP, 1989, PLANT CELL ENVIRON, V12, P47, DOI 10.1111/j.1365-3040.1989.tb01915.x; Seki M, 2004, J EXP BOT, V55, P213, DOI 10.1093/jxb/erh007; Seki M, 2002, PLANT J, V31, P279, DOI 10.1046/j.1365-313X.2002.01359.x; Silva NF, 2002, PLANT MOL BIOL, V50, P667, DOI 10.1023/A:1019951120788; Taji T, 2004, PLANT PHYSIOL, V135, P1697, DOI 10.1104/pp.104.039909; Tavakkoli E, 2010, FUNCT PLANT BIOL, V37, P621, DOI 10.1071/FP09202; Wang H, 2003, PLANT MOL BIOL, V52, P873, DOI 10.1023/A:1025029026375; Wang X., 2007, ADV MOL BREEDING DRO, P183; Witzel K, 2009, J EXP BOT, V60, P3545, DOI 10.1093/jxb/erp198; Xiong LM, 2002, PLANT CELL, V14, pS165, DOI 10.1105/tpc.000596; Yao DX, 2011, GENOMICS, V98, P47, DOI 10.1016/j.ygeno.2011.04.007; Zahaf O, 2012, MOL PLANT, V5, P1068, DOI 10.1093/mp/sss009; Zhou S, 2007, AFR J ENV SCI TECHNO, V1, P14
Cited Reference Count 57
Times Cited 2
Total Times Cited Count (WoS, BCI, and CSCD) 3
Publisher SPRINGER
Publisher City NEW YORK
Publisher Address 233 SPRING ST, NEW YORK, NY 10013 USA
ISSN 0721-7714
29-Character Source Abbreviation PLANT CELL REP
ISO Source Abbreviation Plant Cell Reports
Publication Date JAN
Year Published 2014
Volume 33
Issue 1
Beginning Page 189
Ending Page 201
Digital Object Identifier (DOI) 10.1007/s00299-013-1522-2
Subject Category 13
Document Delivery Number Plant Sciences
Unique Article Identifier Plant Sciences
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed