Loading content, please wait..
Version 3.21
Publication Type J
Authors Palacio-Rodriguez, R; Coria-Arellano, JL; Lopez-Bucio, J; Sanchez-Salas, J; Muro-Perez, G; Castaneda-Gaytan, G; Saenz-Mata, J
Author Full Name Palacio-Rodriguez, Ruben; Lizbeth Coria-Arellano, Jessica; Lopez-Bucio, Jose; Sanchez-Salas, Jaime; Muro-Perez, Gisela; Castaneda-Gaytan, Gamaliel; Saenz-Mata, Jorge
Title Halophilic rhizobacteria from Distichlis spicata promote growth and improve salt tolerance in heterologous plant hosts
Language English
Document Type Article
Author Keywords Salt stress; Halophilic rhizobacteria; Distichlis spicata; Bacillus; Pseudomonas; Phytostimulation
Abstract Rhizobacteria are central components of the plant microbiome and influence root development and function. Desciphering how rhizobacteria contribute to plant performance under adverse environments is a major research challenge. The aims of the present study were to isolate and characterize rhizobacteria from the halophilic grass Distichlis spicata and to test their possible growth promoting and salt protective properties in Arabidopsis thaliana, Cucumis sativus, and Citrullus lanatus. To determine their possible plant growth promoting properties, 38 rhizobacterial isolates were co-cultivated with Arabidopsis seedlings in vitro. Out of these, two halophilic bacteria, LBEndo1 and KBEcto4, were selected following their strong shoot and root biostimulation. 16S rRNA sequencing identified LBEndo1 as Bacillus sp. and KBEcto4 as Pseudomonas lini. Both strains improved growth under standard and saline conditions, which correlated with IAA and siderophore production, as well as phosphate solubilization. Additionally, the KBEcto4 strain expresses the ACC deaminase enzyme (acdS gene), and slightly increases auxin redistribution within Arabidopsis roots expressing an auxin-inducible gene construct. These data reveal the potential of saltgrass (Distichlis spicata) rhizobacteria to promote growth and confer salt tolerance to Arabidopsis and crop plants.
Author Address [Palacio-Rodriguez, Ruben; Lizbeth Coria-Arellano, Jessica; Sanchez-Salas, Jaime; Muro-Perez, Gisela; Castaneda-Gaytan, Gamaliel; Saenz-Mata, Jorge] Univ Juarez Estado Durango, Fac Ciencias Biol, Av Univ S-N, Gomez Palacio 35010, Durango, Mexico; [Lopez-Bucio, Jose] Univ Michoacana, Inst Invest Quim Biol, Edificio B3,Ciudad Univ, Morelia 58030, Michoacan, Mexico
Reprint Address Saenz-Mata, J (reprint author), Univ Juarez Estado Durango, Fac Ciencias Biol, Av Univ S-N, Gomez Palacio 35010, Durango, Mexico.
E-mail Address jsaenz_mata@ujed.mx
ORCID Number Castaneda, Gamaliel/0000-0002-1896-0937
Funding Agency and Grant Number PRODEP-SEP [DSA/103.5/15/3004]
Funding Text We thank Alexander Czaja and Jose Luis Estrada Rodriguez for his kind invitation to sample the
Cited References Ahmad M, 2013, PLANT PHYSIOL BIOCH, V63, P170, DOI 10.1016/j.plaphy.2012.11.024; Ali S, 2014, PLANT PHYSIOL BIOCH, V80, P160, DOI 10.1016/j.plaphy.2014.04.003; ALLEN EB, 1983, NEW PHYTOL, V93, P227; Altschul SF, 1997, NUCLEIC ACIDS RES, V25, P3389, DOI 10.1093/nar/25.17.3389; Contreras-Cornejo HA, 2014, MOL PLANT MICROBE IN, V27, P503, DOI 10.1094/MPMI-09-13-0265-R; Asari S, 2017, PLANTA, V245, P15, DOI 10.1007/s00425-016-2580-9; Barassi CA, 2006, SCI HORTIC-AMSTERDAM, V109, P8, DOI 10.1016/j.scienta.2006.02.025; Bashan Y, 2010, ADV AGRON, V108, P77, DOI 10.1016/S0065-2113(10)08002-8; Berendsen RL, 2012, TRENDS PLANT SCI, V17, P478, DOI 10.1016/j.tplants.2012.04.001; BERTANI G, 1951, J BACTERIOL, V62, P293; Bhattacharyya PN, 2012, WORLD J MICROB BIOT, V28, P1327, DOI 10.1007/s11274-011-0979-9; Blaha D, 2006, FEMS MICROBIOL ECOL, V56, P455, DOI 10.1111/j.1574-6941.2006.00082.x; Bot A. J., 2000, WORLD SOIL RESOURCES, V90; BRIC JM, 1991, APPL ENVIRON MICROB, V57, P535; Contesto C, 2010, PLANTA, V232, P1455, DOI 10.1007/s00425-010-1264-0; Czaja A, 2014, CASH CROP HALOPHYTE, V4, P81; Dimkpa C, 2009, PLANT CELL ENVIRON, V32, P1682, DOI 10.1111/j.1365-3040.2009.02028.x; Dobereiner J, 1975, P 1 INT S NITR FIX, P518; Doyle J.J., 1990, FOCUS, V12, P13, DOI DOI 10.1313/1-92559-287-7:141; Eppley SM, 2009, AM J BOT, V96, P1967, DOI 10.3732/ajb.0900076; FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x; Figueiredo MVB, 2008, APPL SOIL ECOL, V40, P182, DOI 10.1016/j.apsoil.2008.04.005; Forni C, 2017, PLANT SOIL, V410, P335, DOI 10.1007/s11104-016-3007-x; GLICK BR, 1995, CAN J MICROBIOL, V41, P109, DOI 10.1139/m95-015; Glick BR, 1998, J THEOR BIOL, V190, P63, DOI 10.1006/jtbi.1997.0532; Goldstein A., 1986, American Journal of Alternative Agriculture, V1, P51; Gul A, 2013, SCI HORTIC-AMSTERDAM, V153, P22, DOI 10.1016/j.scienta.2013.01.004; Gururani MA, 2013, J PLANT GROWTH REGUL, V32, P245, DOI 10.1007/s00344-012-9292-6; Hall BG, 2013, MOL BIOL EVOL, V30, P1229, DOI 10.1093/molbev/mst012; Hamdia ABE, 2004, PLANT GROWTH REGUL, V44, P165; HANSEN DJ, 1976, AM J BOT, V63, P635, DOI 10.2307/2441826; Hayat R, 2010, ANN MICROBIOL, V60, P579, DOI 10.1007/s13213-010-0117-1; Hitchcock AS, 1971, MANUAL GRASSES US; Jamil A, 2011, CRIT REV PLANT SCI, V30, P435, DOI 10.1080/07352689.2011.605739; JEFFERSON RA, 1987, EMBO J, V6, P3901; Jha B, 2012, PLANT SOIL, V356, P265, DOI 10.1007/s11104-011-0877-9; Khan MH, 2008, ACTA PHYSIOL PLANT, V30, P81, DOI 10.1007/s11738-007-0093-7; Kim K, 2014, MOL CELLS, V37, P109, DOI 10.14348/molcells.2014.2239; KING EO, 1954, J LAB CLIN MED, V44, P301; Kloepper JW, 1978, P 4 INT C PLANT PATH, V2, P879; Kumar S, 2008, BRIEF BIOINFORM, V9, P299, DOI 10.1093/bib/bbn017; Lopez-Bucio J, 2007, MOL PLANT MICROBE IN, V20, P207, DOI 10.1094/MPMI-20-2-0207; Madhaiyan M, 2006, PLANTA, V224, P268, DOI 10.1007/s00425-005-0211-y; Malamy JE, 1997, TRENDS PLANT SCI, V2, P390, DOI 10.1016/S1360-1385(97)90054-6; Mapelli F, 2013, BIOMED RES INT, DOI 10.1155/2013/248078; Mayak S, 2004, PLANT PHYSIOL BIOCH, V42, P565, DOI 10.1016/j.plaphy.2004.05.009; Munns R, 2005, NEW PHYTOL, V167, P645, DOI 10.1111/j.1469-8137.2005.01487.x; Nadeem SM, 2007, CAN J MICROBIOL, V53, P1141, DOI 10.1139/W07-081; Newton AC, 2010, TRENDS MICROBIOL, V18, P365, DOI 10.1016/j.tim.2010.06.002; Penrose DM, 2003, PHYSIOL PLANTARUM, V118, P10, DOI 10.1034/j.1399-3054.2003.00086.x; Poly F, 2001, RES MICROBIOL, V152, P95, DOI 10.1016/S0923-2508(00)01172-4; Qin S, 2014, PLANT SOIL, V374, P753, DOI 10.1007/s11104-013-1918-3; Ram A, 2004, GENET RESOUR CROP EV, V51, P687, DOI 10.1023/B:GRES.0000034574.59860.2b; Rudrappa T, 2008, PLANT PHYSIOL, V148, P1547, DOI 10.1104/pp.108.127613; SAITOU N, 1987, MOL BIOL EVOL, V4, P406; Salas-Munoz S, 2012, INT J MOL SCI, V13, P10154, DOI 10.3390/ijms130810154; Saravanakumar D, 2007, J APPL MICROBIOL, V102, P1283, DOI 10.1111/j.1365-2672.2006.03179.x; SCHWYN B, 1987, ANAL BIOCHEM, V160, P47, DOI 10.1016/0003-2697(87)90612-9; Shi CL, 2010, MOL CELLS, V29, P251, DOI 10.1007/s10059-010-0032-0; Siddikee MA, 2010, J MICROBIOL BIOTECHN, V20, P1577, DOI 10.4014/jmb.1007.07011; Swain MR, 2008, CURR MICROBIOL, V57, P407, DOI 10.1007/s00284-008-9213-x; Tian YQ, 2014, MICROB ECOL, V68, P794, DOI 10.1007/s00248-014-0461-y; FAO (Food and Agriculture Organization of the United Nations), 2002, CROPS DROPS MAK BEST; The Food and Agriculture Organization of the United Nations (FAO), 2008, FAO LAND PLANT NUTR; Ungar IA, 1974, ECOLOGY HALOPHYTES, P235; Vincent J.M., 1970, IBP HDB, V15; Wang J, 2016, BIOL PLANTARUM, V60, P299, DOI 10.1007/s10535-016-0585-7; WEISBURG WG, 1991, J BACTERIOL, V173, P697, DOI 10.1128/jb.173.2.697-703.1991; Zamioudis C, 2013, PLANT PHYSIOL, V162, P304, DOI 10.1104/pp.112.212597
Cited Reference Count 69
Publisher SPRINGER
Publisher City DORDRECHT
ISSN 0334-5114
29-Character Source Abbreviation SYMBIOSIS
ISO Source Abbreviation Symbiosis
Publication Date NOV
Year Published 2017
Volume 73
Issue 3
Beginning Page 179
Ending Page 189
Digital Object Identifier (DOI) 10.1007/s13199-017-0481-8
Subject Category 11
Document Delivery Number Microbiology
Unique Article Identifier Microbiology
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. This database is based on an earlier work by James Aronson.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed