Loading content, please wait..
loading..
Logo
Version 3.24
or
Publication Type J
Authors Asrar, Hina; Hussain, Tabassum; Hadi, Syeda Midhat Sabahat; Gul, Bilquees; Nielsen, Brent L.; Khan, M. Ajmal
Author Full Name Asrar, Hina; Hussain, Tabassum; Hadi, Syeda Midhat Sabahat; Gul, Bilquees; Nielsen, Brent L.; Khan, M. Ajmal
Title Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.) Staph.
Source ENVIRONMENTAL AND EXPERIMENTAL BOTANY
Language English
Document Type Article
Author Keywords Salt resistance; Stomatal/non-stomatal limitations; Carbon fixation; Thylakoid membrane proteins
Keywords Plus PHOTOSYNTHETIC ELECTRON-TRANSPORT; THYLAKOID MEMBRANE-PROTEINS; CHLOROPHYLL FLUORESCENCE; C-4 PHOTOSYNTHESIS; SALT STRESS; METABOLIC LIMITATIONS; PHOTOSYSTEM-II; ECOPHYSIOLOGICAL ADAPTATIONS; AELUROPUS-LAGOPOIDES; ANTIOXIDANT FEEDBACK
Abstract The present study was carried out to determine stomatal, photochemical and biochemical limitations of photosynthesis in Desmostachya bipinnata under saline conditions. We hypothesized that processes determining plant growth and photosynthetic rates will be differentially regulated under various salinity treatments. Plants were grown with 0 mM, 100 mM (moderate) and 400 mM (high) NaCl concentrations in a semi-hydroponic quick check system. Production of biomass was not affected by moderate salinity but a significant reduction was observed at high salinity. High salinity decreased stomatal conductance without affecting C-i. Dark respiration increased at moderate salinity compared to control and high salinity. Salinity treatments had no effect on the WUE. Photosynthetic efficiency was improved at moderate salinity compared to the control but was inhibited at high salinity. Net photosynthesis was similar to the control at moderate salinity but was inhibited with a further increase in salinity. Photosynthetic pigments, electron transport rate, and photochemical quenching were not affected at moderate salinity but declined significantly at high salinity. MDA content significantly increased at high salinity suggesting ROS accumulation. A linear decrease in V-c,V-max, J(max), TPU and Rubisco content was observed with increasing salinity treatments. Relative expression of photosynthetic complex proteins was either enhanced (D1, PetD, AtpA) or unaffected (PsbO) with moderate salinity but decreased at high salinity with the exception of AtpA. Our data indicates that photosynthesis rates were maintained at moderate salinity. Damages to photochemical reactions and down-regulated expression of chloroplast proteins in combination with biochemical limitations, rather than stomatal limitations, restrained -photosynthetic performance of D. bipinnata under high salinity. (C) 2016 Elsevier B.V. All rights reserved.
Author Address [Asrar, Hina; Hussain, Tabassum; Hadi, Syeda Midhat Sabahat; Gul, Bilquees; Khan, M. Ajmal] Univ Karachi, Inst Sustainable Halophyte Utilizat, Karachi 75270, Pakistan; [Nielsen, Brent L.] Brigham Young Univ, Dept Microbiol & Mol Biol, Provo, UT 84602 USA
Reprint Address Khan, MA (reprint author), Univ Karachi, Inst Sustainable Halophyte Utilizat, Karachi 75270, Pakistan.
E-mail Address majmalk@uok.edu.pk
ResearcherID Number Hussain, Tabassum/Y-5253-2019; Hussain, Tabassum/F-6507-2015
ORCID Number Hussain, Tabassum/0000-0002-6328-7024
Funding Agency and Grant Number Pakistan-U.S. Science and Technology Cooperation Program of Higher Education Commission of Pakistan; U.S. Department of State
Funding Text This research was supported by a grant from the Pakistan-U.S. Science and Technology Cooperation Program of Higher Education Commission of Pakistan and U.S. Department of State.
Cited References Abideen Z, 2014, ENVIRON EXP BOT, V105, P70, DOI 10.1016/j.envexpbot.2014.04.009; Adnan MY, 2016, FLORA, V225, P1, DOI 10.1016/j.flora.2016.09.006; Ahmed MZ, 2013, FUNCT PLANT BIOL, V40, P860, DOI 10.1071/FP12346; Ashraf M, 2013, PHOTOSYNTHETICA, V51, P163, DOI 10.1007/s11099-013-0021-6; Askari H, 2006, PROTEOMICS, V6, P2542, DOI 10.1002/pmic.200500328; Athar HR, 2005, HDB PHOTOSYNTHESIS, P793; Baker NR, 2004, J EXP BOT, V55, P1607, DOI 10.1093/jxb/erh196; Bell HL, 2003, AM J BOT, V90, P1416, DOI 10.3732/ajb.90.10.1416; BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999; Bromham L, 2014, J EVOLUTION BIOL, V27, P653, DOI 10.1111/jeb.12320; Chaves MM, 2009, ANN BOT-LONDON, V103, P551, DOI 10.1093/aob/mcn125; Chen TW, 2015, PLANT CELL ENVIRON, V38, P1528, DOI 10.1111/pce.12504; Choquet Y, 2000, BIOCHIMIE, V82, P615, DOI 10.1016/S0300-9084(00)00609-X; Cope T.A., 1982, FLORA PAK, P461; das Neves JPC, 2008, ACTA PHYSIOL PLANT, V30, P91, DOI 10.1007/s11738-007-0094-6; Dekker JP, 2005, BBA-BIOENERGETICS, V1706, P12, DOI 10.1016/j.bbabio.2004.09.009; Dodd IC, 2003, J PLANT GROWTH REGUL, V22, P32, DOI 10.1007/s00344-003-0023-x; Duarte B, 2013, PLANT PHYSIOL BIOCH, V67, P178, DOI 10.1016/j.plaphy.2013.03.004; Eisa S., 2012, AUST J CROP SCI, P357; Epstein E., 1972, PHYSL GENETIC PLANT, P325; Flexas J, 1999, PLANT CELL ENVIRON, V22, P39, DOI 10.1046/j.1365-3040.1999.00371.x; Flexas J, 2004, PLANT BIOLOGY, V6, P269, DOI 10.1055/s-2004-820867; Flowers TJ, 2008, NEW PHYTOL, V179, P945, DOI 10.1111/j.1469-8137.2008.02531.x; Galal TM, 2013, FLORA, V208, P556, DOI 10.1016/j.flora.2013.08.006; Geissler N, 2009, J EXP BOT, V60, P137, DOI 10.1093/jxb/ern271; GENTY B, 1989, BIOCHIM BIOPHYS ACTA, V990, P87, DOI 10.1016/S0304-4165(89)80016-9 ; Glenn EP, 1999, CRIT REV PLANT SCI, V18, P227, DOI 10.1016/S0735-2689(99)00388-3; Gowik U, 2011, PLANT PHYSIOL, V155, P56, DOI 10.1104/pp.110.165308; Gulzar S, 2007, RANGELAND ECOL MANAG, V60, P401, DOI 10.2111/1551-5028(2007)60[401:SGSODB]2.0.CO;2 ; Han W, 2010, PHOTOSYNTHETICA, V48, P635, DOI 10.1007/s11099-010-0082-8; Harlow E, 1988, LAB MANUAL; Hu LX, 2010, PHYSIOL PLANTARUM, V139, P93, DOI 10.1111/j.1399-3054.2010.01350.x; Hu T, 2013, J AM SOC HORTIC SCI, V138, P350; Hussain T, 2015, FLORA, V212, P30, DOI 10.1016/j.flora.2015.02.006; Khan MA, 2009, AGR ECOSYST ENVIRON, V129, P542, DOI 10.1016/j.agee.2008.10.014; Khedr AHA, 2011, ACTA PHYSIOL PLANT, V33, P1769, DOI 10.1007/s11738-011-0714-z; Kirschbaum MUF, 2011, PLANT PHYSIOL, V155, P117, DOI 10.1104/pp.110.166819; KITAJIMA M, 1975, BIOCHIM BIOPHYS ACTA, V376, P105, DOI 10.1016/0005-2728(75)90209-1 ; Kocheva K, 2004, BIOELECTROCHEMISTRY, V63, P121, DOI 10.1016/j.bioelechem.2003.09.020; Kosova K, 2013, INT J MOL SCI, V14, P6757, DOI 10.3390/ijms14046757; Koyro HW, 2013, ENVIRON EXP BOT, V91, P22, DOI 10.1016/j.envexpbot.2013.02.007; Koyro HW, 2006, ENVIRON EXP BOT, V56, P136, DOI 10.1016/j.envexpbot.2005.02.001; KRALL JP, 1992, PHYSIOL PLANTARUM, V86, P180, DOI 10.1111/j.1399-3054.1992.tb01328.x; LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 ; Lambrev PH, 2012, BBA-BIOENERGETICS, V1817, P760, DOI 10.1016/j.bbabio.2012.02.002; Lee G, 2004, PLANT SCI, V166, P1417, DOI 10.1016/j.plantsci.2003.12.029; Leegood RC, 2013, J PLANT PHYSIOL, V170, P378, DOI 10.1016/j.jplph.2012.10.011; Li W, 2011, J PLANT PHYSIOL, V168, P1743, DOI 10.1016/j.jplph.2011.03.018; LICHTENTHALER HK, 1987, METHOD ENZYMOL, V148, P350; Lin ZH, 2009, BMC PLANT BIOL, V9, DOI 10.1186/1471-2229-9-43; Long SP, 2003, J EXP BOT, V54, P2393, DOI 10.1093/jxb/erg262; Marin-Guirao L, 2011, ESTUAR COAST SHELF S, V92, P286, DOI 10.1016/j.ecss.2011.01.003; Maxwell K, 2000, J EXP BOT, V51, P659, DOI 10.1093/jexbot/51.345.659; Megdiche W, 2008, PHOTOSYNTHETICA, V46, P410, DOI 10.1007/s11099-008-0073-1; Moinuddin M., 2016, PHOTOSYNTH RES, V129, P1; Muller P, 2001, PLANT PHYSIOL, V125, P1558, DOI 10.1104/pp.125.4.1558; Munns R, 2008, ANNU REV PLANT BIOL, V59, P651, DOI 10.1146/annurev.arplant.59.032607.092911; Naidoo G, 2012, AFR J AQUAT SCI, V37, P81, DOI 10.2989/16085914.2012.666377; Naidoo G, 2008, FLORA, V203, P437, DOI 10.1016/j.flora.2007.08.003; Niyogi KK, 1999, ANNU REV PLANT PHYS, V50, P333, DOI 10.1146/annurev.arplant.50.1.333 ; Pang QY, 2010, J PROTEOME RES, V9, P2584, DOI 10.1021/pr100034f; Perez-Lopez U, 2012, PHOTOSYNTH RES, V111, P269, DOI 10.1007/s11120-012-9721-1; Pinheiro C, 2011, J EXP BOT, V62, P869, DOI 10.1093/jxb/erq340; Qiu NW, 2003, NEW PHYTOL, V159, P479, DOI 10.1046/j.1469-8137.2003.00825.x; Rabhi M, 2012, S AFR J BOT, V79, P39, DOI 10.1016/j.sajb.2011.11.007; Sage RF, 2004, NEW PHYTOL, V161, P341, DOI 10.1111/j.1469-8137.2004.00974.x; Sage RF, 2012, ANNU REV PLANT BIOL, V63, P19, DOI 10.1146/annurev-arplant-042811-105511; Sairam RK, 2000, J AGRON CROP SCI, V184, P55, DOI 10.1046/j.1439-037x.2000.00358.x; SCHREIBER U, 1986, PHOTOSYNTH RES, V10, P51, DOI 10.1007/BF00024185; Schulte M, 2003, TREES-STRUCT FUNCT, V17, P153, DOI 10.1007/s00468-002-0219-x; Sengupta S, 2009, PLANTA, V229, P911, DOI 10.1007/s00425-008-0878-y; Shafer DJ, 2011, AQUAT BOT, V95, P214, DOI 10.1016/j.aquabot.2011.06.003; Sobhanian H, 2010, RUSS J PLANT PHYSL+, V57, P784, DOI 10.1134/S1021443710060063; Taylor NL, 2009, J PROTEOMICS, V72, P367, DOI 10.1016/j.jprot.2008.11.006; Touchette BW, 2007, J EXP MAR BIOL ECOL, V350, P194, DOI 10.1016/j.jembe.2007.05.037; Trotta A, 2012, J PLANT PHYSIOL, V169, P111, DOI 10.1016/j.jplph.2011.11.001; VANKOOTEN O, 1990, PHOTOSYNTH RES, V25, P147, DOI 10.1007/BF00033156; von Ballmoos C, 2009, ANNU REV BIOCHEM, V78, P649, DOI 10.1146/annurev.biochem.78.081307.104803; von Caemmerer S, 2000, BIOCH MODELS LEAF PH; Xu CP, 2010, PLANT CELL REP, V29, P595, DOI 10.1007/s00299-010-0847-3; Yu JJ, 2011, J PROTEOME RES, V10, P3852, DOI 10.1021/pr101102p; Zeng W, 2010, PHOTOSYNTHETICA, V48, P323, DOI 10.1007/s11099-010-0042-3
Cited Reference Count 82
Publisher PERGAMON-ELSEVIER SCIENCE LTD
Publisher City OXFORD
Publisher Address THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
ISSN 0098-8472
29-Character Source Abbreviation ENVIRON EXP BOT
ISO Source Abbreviation Environ. Exp. Bot.
Publication Date MAR
Year Published 2017
Volume 135
Beginning Page 86
Ending Page 95
Digital Object Identifier (DOI) 10.1016/j.envexpbot.2016.12.008
Page Count 10
Subject Category Plant Sciences; Environmental Sciences
Unique Article Identifier WOS:000394077600010
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed