Loading content, please wait..
loading..
Logo
Version 3.20
or
Publication Type J
Authors Luo, M; Zeng, CS; Tong, C; Huang, JF; Chen, K; Liu, FQ
Author Full Name Luo, Min; Zeng, Cong-Sheng; Tong, Chuan; Huang, Jia-Fang; Chen, Kai; Liu, Feng-Qin
Title Iron Reduction Along an Inundation Gradient in a Tidal Sedge (Cyperus malaccensis) Marsh: the Rates, Pathways, and Contributions to Anaerobic Organic Matter Mineralization
Source ESTUARIES AND COASTS
Language English
Document Type Article
Author Keywords Iron reduction; Min River Estuary; Organic matter mineralization; Tidal inundation; Tidalmarsh
Keywords Plus CONTINENTAL-MARGIN SEDIMENTS; FE(III) OXIDE REDUCTION; ENGLAND SALT-MARSH; SULFATE-REDUCTION; ELECTRON-ACCEPTORS; HUMIC SUBSTANCES; CARBON OXIDATION; FIDDLER-CRABS; PLANT-ROOTS; SULFUR BIOGEOCHEMISTRY
Abstract Incubation experiments were adopted to characterize the rates and pathways of iron reduction and the contributions to anaerobic organic matter mineralization in the upper 0-5 cm of sediments along a landscape-scale inundation gradient in tidal marsh sediments in the Min River Estuary, Southeast China. Similar sediment characteristics, single-species vegetation, varied biomass and bioturbation, distinct porewater pH, redox potential, and electrical conductivity values have resulted in a unique ecogeochemical zonation along the inundation gradient. Decreases in solid-phase Fe(III) and increases in nonsulfidic Fe(II) and iron sulfide were observed in a seaward direction. Porewater Fe2+ was only detected in the upland area. High rates of iron reduction were observed in incubation jars, with significant accumulations of nonsulfidic Fe(II), moderate accumulations of iron sulfides, and negligible accumulations of porewater Fe2+. Most of the iron reduction was microbially mediated rather than coupled to reduced sulfides. Microbial iron reduction accounted for 20-89 % of the anaerobic organic matter mineralization along the inundation gradient. The rate and dominance of microbial iron reduction generally decreased in a seaward direction. The contributions of microbial iron reduction to anaerobic organic matter mineralization depended on the concentrations of bioavailable Fe(III), the spatial distribution of which was significantly related to tidal inundation. Our results clearly showed that microbial iron reduction in the upper sediments along the gradient is highly dependent on spatial scales controlled primarily by tidal inundation.
Author Address [Luo, Min; Chen, Kai; Liu, Feng-Qin] Fuzhou Univ, Sch Environm & Resource, Fuzhou 350116, Peoples R China; [Luo, Min; Zeng, Cong-Sheng; Tong, Chuan; Huang, Jia-Fang] Fujian Normal Univ, Sch Geog Sci, Shangsan St 8, Fuzhou 350007, Fujian Province, Peoples R China
Reprint Address Zeng, CS (reprint author), Fujian Normal Univ, Sch Geog Sci, Shangsan St 8, Fuzhou 350007, Fujian Province, Peoples R China.
E-mail Address cszeng@fjnu.edu.cn
Funding Agency and Grant Number National Science Foundation of China [41501252]; Scientific Research Foundation of Fuzhou University [XRC-1521]
Funding Text We sincerely thank Mrs Hong for the POC and PON analyses, Mr Zhang for the field and laboratory analyses, and three anonymous reviewers for their valuable comments and suggestions, which helped improve the manuscript. We thank LetPub and American Journal Experts for its linguistic assistance during the preparation of this manuscript. This work was financially supported by the National Science Foundation of China (Grant No. 41501252) and the Scientific Research Foundation of Fuzhou University (XRC-1521).
Cited References Alongi DM, 1996, J MAR RES, V54, P123, DOI 10.1357/0022240963213475; ALONGI DM, 1988, MICROBIAL ECOL, V15, P59, DOI 10.1007/BF02012952; Anastasiou CJ, 2003, WETLANDS, V23, P845, DOI 10.1672/0277-5212(2003)023[0845:EOSPRP]2.0.CO;2; APHA, 2005, STANDARD METHODS EXA, P3576; ARMSTRONG W, 1964, NATURE, V204, P801, DOI 10.1038/204801b0; BERNER RA, 1970, AM J SCI, V268, P1; Bonneville S, 2009, GEOCHIM COSMOCHIM AC, V73, P5273, DOI 10.1016/j.gca.2009.06.006; Burton ED, 2008, APPL GEOCHEM, V23, P2759, DOI 10.1016/j.apgeochem.2008.07.007; Burton ED, 2011, GEOCHIM COSMOCHIM AC, V75, P3434, DOI 10.1016/j.gca.2011.03.020; CAI HY, 2011, J FUJIAN AGR FORESTR, V40, P285; CANFIELD DE, 1989, GEOCHIM COSMOCHIM AC, V53, P619, DOI 10.1016/0016-7037(89)90005-7; CANFIELD DE, 1993, MAR GEOL, V113, P27, DOI 10.1016/0025-3227(93)90147-N; Castillo JM, 2000, J ECOL, V88, P801, DOI 10.1046/j.1365-2745.2000.00492.x; Chen S.-Y., 2011, RES ADAPTABILITY CYP, P34; Chmura GL, 2003, GLOBAL BIOGEOCHEM CY, V17, DOI 10.1029/2002GB001917; CLINE JD, 1969, LIMNOL OCEANOGR, V14, P454; Cook PLM, 2004, MAR ECOL PROG SER, V280, P55, DOI 10.3354/meps280055; Davy AJ, 2011, J ECOL, V99, P1350, DOI 10.1111/j.1365-2745.2011.01870.x; Ferreira TO, 2007, GEODERMA, V142, P36, DOI 10.1016/j.geoderma.2007.07.010; FROELICH PN, 1979, GEOCHIM COSMOCHIM AC, V43, P1075, DOI 10.1016/0016-7037(79)90095-4; GALLAGHE.JL, 1974, LIMNOL OCEANOGR, V19, P390; GENONI GP, 1991, J EXP MAR BIOL ECOL, V147, P267, DOI 10.1016/0022-0981(91)90186-Z; GIBLIN AE, 1984, LIMNOL OCEANOGR, V29, P47; Gribsholt B, 2003, LIMNOL OCEANOGR, V48, P2151; Gribsholt B, 2003, MAR ECOL PROG SER, V259, P237, DOI 10.3354/meps259237; Gribsholt B, 2002, MAR ECOL PROG SER, V241, P71, DOI 10.3354/meps241071; Hansel CM, 2015, ISME J, V9, P2400, DOI 10.1038/ismej.2015.50; HINES ME, 1989, LIMNOL OCEANOGR, V34, P578; Holmboe N., 2002, Wetlands Ecology and Management, V10, P453, DOI 10.1023/A:1021301918564; Howarth Robert W., 1993, P239; HOWARTH RW, 1979, LIMNOL OCEANOGR, V24, P999; HOWES BL, 1984, LIMNOL OCEANOGR, V29, P1037; Hyacinthe C, 2006, GEOCHIM COSMOCHIM AC, V70, P4166, DOI 10.1016/j.gca.2006.05.018; Hyun JH, 2007, APPL GEOCHEM, V22, P2637, DOI 10.1016/j.apgeochem.2007.06.005; Hyun JH, 2009, BIOGEOCHEMISTRY, V92, P231, DOI 10.1007/s10533-009-9287-y; Jensen MM, 2003, BIOGEOCHEMISTRY, V65, P295; Johnston SG, 2012, CHEM GEOL, V304, P106, DOI 10.1016/j.chemgeo.2012.02.008; Johnston SG, 2011, CHEM GEOL, V280, P257, DOI 10.1016/j.chemgeo.2010.11.014; Joye SB, 1996, ESTUAR COAST SHELF S, V43, P747, DOI 10.1006/ecss.1996.0101; Keller JK, 2009, SOIL BIOL BIOCHEM, V41, P1518, DOI 10.1016/j.soilbio.2009.04.008; KING GM, 1988, LIMNOL OCEANOGR, V33, P376; King GM, 1999, APPL ENVIRON MICROB, V65, P4393; Koretsky CM, 2005, ESTUAR COAST SHELF S, V62, P233, DOI 10.1016/j.ecss.2004.09.001; KOSTKA JE, 1994, GEOCHIM COSMOCHIM AC, V58, P1701, DOI 10.1016/0016-7037(94)90531-2; Kostka JE, 2002, BIOGEOCHEMISTRY, V60, P49, DOI 10.1023/A:1016525216426; Kostka JE, 2002, LIMNOL OCEANOGR, V47, P230; KOSTKA JE, 1995, BIOGEOCHEMISTRY, V29, P159; Kristensen E, 2000, AQUAT MICROB ECOL, V22, P199, DOI 10.3354/ame022199; KRISTENSEN E, 1995, J MAR RES, V53, P675, DOI 10.1357/0022240953213115; Kristensen E, 2001, GEOCHIM COSMOCHIM AC, V65, P419, DOI 10.1016/S0016-7037(00)00532-9; Kristensen E, 2008, AQUAT BOT, V89, P201, DOI 10.1016/j.aquabot.2007.12.005; Kristensen E, 2006, LIMNOL OCEANOGR, V51, P1557; Kristensen E, 2011, BIOGEOCHEMISTRY, V103, P143, DOI 10.1007/s10533-010-9453-2; LOVLEY DR, 1987, APPL ENVIRON MICROB, V53, P2636; Lovley DR, 1998, ACTA HYDROCH HYDROB, V26, P152, DOI 10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D; LOVLEY DR, 1986, APPL ENVIRON MICROB, V51, P683; Lovley DR, 1996, NATURE, V382, P445, DOI 10.1038/382445a0; Luo M, 2015, GEOMICROBIOL J, V32, P635, DOI 10.1080/01490451.2014.950362; Luo M, 2014, APPL GEOCHEM, V45, P1, DOI 10.1016/j.apgeochem.2014.02.014; Luther GW, 1996, GEOCHIM COSMOCHIM AC, V60, P951, DOI 10.1016/0016-7037(95)00444-0; LUTHER GW, 1992, MAR CHEM, V40, P81, DOI 10.1016/0304-4203(92)90049-G; MACKIN JE, 1984, LIMNOL OCEANOGR, V29, P250; MOESLUND L, 1994, BIOGEOCHEMISTRY, V27, P129; Neubauer SC, 2005, ECOLOGY, V86, P3334, DOI 10.1890/04-1951; Nevin KP, 2002, GEOMICROBIOL J, V19, P141, DOI 10.1080/01490450252864253; Ortega T, 2005, J MARINE SYST, V53, P125, DOI 10.1016/j.marsys.2004.06.006; Postma D, 1996, GEOCHIM COSMOCHIM AC, V60, P3169, DOI 10.1016/0016-7037(96)00156-1; Roden EE, 2002, LIMNOL OCEANOGR, V47, P198; Roden EE, 1996, ENVIRON SCI TECHNOL, V30, P1618, DOI 10.1021/es9506216; Roden EE, 2010, NAT GEOSCI, V3, P417, DOI 10.1038/NGEO870; Rooney-Varga JN, 1998, SYST APPL MICROBIOL, V21, P557; ROSENFELD JK, 1979, LIMNOL OCEANOGR, V24, P356; Santos-Echeandia J, 2010, MAR ENVIRON RES, V70, P358, DOI 10.1016/j.marenvres.2010.07.003; Sarazin G, 1999, WATER RES, V33, P290, DOI 10.1016/S0043-1354(98)00168-7; Seeberg-Elverfeldt J, 2005, LIMNOL OCEANOGR-METH, V3, P361; Spiteri C, 2006, J GEOCHEM EXPLOR, V88, P399, DOI 10.1016/j.gexplo.2005.08.084; Straub KL, 2001, FEMS MICROBIOL ECOL, V34, P181, DOI 10.1111/j.1574-6941.2001.tb00768.x; Stumm W., 1996, J ENVIRON QUAL, V25, P1162; Taillefert M, 2007, GEOCHEM T, V8, DOI 10.1186/1467-4866-8-6; THAMDRUP B, 1994, GEOCHIM COSMOCHIM AC, V58, P2563, DOI 10.1016/0016-7037(94)90032-9; THAMDRUP B, 1993, APPL ENVIRON MICROB, V59, P101; Thamdrup B, 1996, LIMNOL OCEANOGR, V41, P1629; Thamdrup B, 2000, METHODS IN ECOSYSTEM SCIENCE, P86; Tong C, 2012, BIOGEOCHEMISTRY, V111, P677, DOI 10.1007/s10533-012-9712-5; Wang FH, 2003, ESTUAR COAST SHELF S, V57, P515, DOI 10.1016/S0272-7714(02)00396-7; Weiss JV, 2005, SOIL SCI SOC AM J, V69, P1861, DOI 10.2136/sssaj2005.0002; Weiss JV, 2004, FEMS MICROBIOL ECOL, V48, P89, DOI 10.1016/j.femsec.2003.12.014; Zhang L.-H., 2011, YUNNAN GEOGRAPHIC EN, V23, P5
Cited Reference Count 88
Times Cited 2
Total Times Cited Count (WoS, BCI, and CSCD) 3
Publisher SPRINGER
Publisher City NEW YORK
Publisher Address 233 SPRING ST, NEW YORK, NY 10013 USA
ISSN 1559-2723
29-Character Source Abbreviation ESTUAR COAST
ISO Source Abbreviation Estuaries Coasts
Publication Date NOV
Year Published 2016
Volume 39
Issue 6
Beginning Page 1679
Ending Page 1693
Digital Object Identifier (DOI) 10.1007/s12237-016-0094-0
Page Count 15
Web of Science Category Environmental Sciences; Marine & Freshwater Biology
Subject Category Environmental Sciences & Ecology; Marine & Freshwater Biology
Document Delivery Number DY4AR
Unique Article Identifier WOS:000385041900009
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed