Loading content, please wait..
loading..
Logo
Version 3.20
or
Publication Type J
Authors Shi, HT; Jiang, C; Ye, TT; Tan, DX; Reiter, RJ; Zhang, H; Liu, RY; Chan, ZL
Author Full Name Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-Xian; Reiter, Russel J.; Zhang, Heng; Liu, Renyi; Chan, Zhulong
Title Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin
Source JOURNAL OF EXPERIMENTAL BOTANY
Language English
Document Type Article
Author Keywords Abiotic stress; antioxidant; bermudagrass; melatonin; metabolites; reactive oxygen species; transcriptomic
Keywords Plus SEROTONIN N-ACETYLTRANSFERASE; CHROMATOGRAPHY-MASS SPECTROMETRY; LATERAL ROOT-FORMATION; GENE-EXPRESSION DATA; CUCUMIS-SATIVUS L.; MICRO-TOM TOMATO; ARABIDOPSIS-THALIANA; OXIDATIVE STRESS; MALUS-HUPEHENSIS; SEEDLING GROWTH
Abstract Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism.
Author Address [Shi, Haitao; Ye, Tiantian; Chan, Zhulong] Chinese Acad Sci, Key Lab Plant Germplasm Enhancement & Specialty A, Wuhan Bot Garden, Wuhan 430074, Peoples R China; [Jiang, Chuan; Zhang, Heng; Liu, Renyi] Chinese Acad Sci, Shanghai Ctr Plant Stress Biol, Shanghai Inst Biol Sci, Shanghai 201602, Peoples R China; [Jiang, Chuan; Ye, Tiantian] Univ Chinese Acad Sci, Beijing 100039, Peoples R China; [Tan, Dun-Xian; Reiter, Russel J.] Univ Texas Hlth Sci Ctr San Antonio, Dept Cellular & Struct Biol, San Antonio, TX 78229 USA
Reprint Address Zhang, H (reprint author), Chinese Acad Sci, Shanghai Ctr Plant Stress Biol, Shanghai Inst Biol Sci, Shanghai 201602, Peoples R China.
E-mail Address hengzhang@gmail.com; ryliu@sibs.ac.cn; zhulongch@wbgcas.cn
ORCID Number Zhang, Heng/0000-0002-1541-3890; Chan, Zhulong/0000-0002-1933-6837
Funding Agency and Grant Number Knowledge Innovative Key Program of the Chinese Academy of Sciences [55Y455446O0544]; Youth Innovation Promotion Association of the Chinese Academy of Sciences [29Y429371O0437]; Chinese Academy of Sciences; 'Hundred Talents Program' of the Chinese Academy of Sciences [54Y154761O01076, 29Y329631O0263]
Funding Text We thank Professor Pingfang Yang, Dr Yanqiong Jiang, and Dr Longxin Hu for their help with this study. This research was supported by the Knowledge Innovative Key Program of the Chinese Academy of Sciences (No. 55Y455446O0544), Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 29Y429371O0437) to HS, by funding from the Chinese Academy of Sciences to RL, and by 'the Hundred Talents Program' of the Chinese Academy of Sciences (Nos 54Y154761O01076 and 29Y329631O0263) to ZC. HS designed and performed the experiments, analysed the data, and wrote and revised the manuscript; CJ analysed the transcriptomic data; TY performed the metabolic experiment; HZ performed the transcriptomic experiment; RL analysed the transcriptomic data and revised the manuscript; DT and RR revised the manuscript; ZC designed the experiments and revised the manuscript; and all authors approved the manuscript.
Cited References Alexa A, 2006, BIOINFORMATICS, V22, P1600, DOI 10.1093/bioinformatics/btl140; Arnao MB, 2009, J PINEAL RES, V46, P58, DOI 10.1111/j.1600-079X.2008.00625.x; Arnao MB, 2007, PLANT SIGNAL BEHAV, V2, P381; Arnao MB, 2006, PLANT SIGNAL BEHAV, V1, P89, DOI 10.4161/psb.1.3.2640; Arnao MB, 2013, J PINEAL RES, V55, P149, DOI 10.1111/jpi.12055; Arnao MB, 2009, J PINEAL RES, V46, P295, DOI 10.1111/j.1600-079X.2008.00660.x; Arnao MB, 1996, BIOCHEM MOL BIOL INT, V39, P1125; Arnao MB, 2001, PHYTOCHEM ANALYSIS, V12, P138, DOI 10.1002/pca.571; Bajwa VS, 2014, J PINEAL RES, V56, P238, DOI 10.1111/jpi.12115; Arnao MB, 2013, FOOD CHEM, V138, P1212, DOI 10.1016/j.foodchem.2012.10.077; Byeon Y, 2014, J PINEAL RES, V56, P408, DOI 10.1111/jpi.12129; Byeon Y, 2014, J PINEAL RES, V56, P275, DOI 10.1111/jpi.12120; Byeon Y, 2014, J PINEAL RES, V56, P189, DOI 10.1111/jpi.12111; Byeon Y, 2013, J PINEAL RES, V55, P357, DOI 10.1111/jpi.12077; Byeon Y, 2012, J PINEAL RES, V53, P107, DOI 10.1111/j.1600-079X.2012.00976.x; Calvo JR, 2013, J PINEAL RES, V55, P103, DOI 10.1111/jpi.12075; Cano A, 2003, ANAL BIOANAL CHEM, V376, P33, DOI 10.1007/s00216-003-1848-7; Cano A, 2006, J PLANT RES, V119, P321, DOI 10.1007/s10265-006-0275-1; Chan ZL, 2011, J EXP BOT, V62, P4787, DOI 10.1093/jxb/err130; DUBBELS R, 1995, J PINEAL RES, V18, P28, DOI 10.1111/j.1600-079X.1995.tb00136.x; Foito A, 2009, PLANT BIOTECHNOL J, V7, P719, DOI 10.1111/j.1467-7652.2009.00437.x; Galano A, 2011, J PINEAL RES, V51, P1, DOI 10.1111/j.1600-079X.2011.00916.x; Gotz S, 2008, NUCLEIC ACIDS RES, V36, P3420, DOI 10.1093/nar/gkn176; Haas BJ, 2013, NAT PROTOC, V8, P1494, DOI 10.1038/nprot.2013.084; HATTORI A, 1995, BIOCHEM MOL BIOL INT, V35, P627; Hernandez-Ruiz J, 2008, J AGR FOOD CHEM, V56, P10567, DOI 10.1021/jf8022063; Hernandez-Ruiz J, 2005, J PINEAL RES, V39, P137, DOI 10.1111/j.1600-079X.2005.00226.x; Hu LX, 2012, J AM SOC HORTIC SCI, V137, P134; Jia MH, 2001, J AGR FOOD CHEM, V49, P276, DOI 10.1021/jf990344c; Kang K, 2010, J PINEAL RES, V49, P176, DOI 10.1111/j.1600-079X.2010.00783.x; Kolar J, 2005, J PINEAL RES, V39, P333, DOI 10.1111/j.1600-079X.2005.00276.x; Krasensky J, 2012, J EXP BOT, V63, P1593, DOI 10.1093/jxb/err460; Lam HM, 1998, PLANT J, V16, P345, DOI 10.1046/j.1365-313x.1998.00302.x; Lea US, 2007, PLANTA, V225, P1245, DOI 10.1007/s00425-006-0414-x; Li B, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-323; Li C, 2012, J PINEAL RES, V53, P298, DOI 10.1111/j.1600-079X.2012.00999.x; Lisec J, 2006, NAT PROTOC, V1, P387, DOI 10.1038/nprot.2006.59; Maaroufi-Dguimi H, 2011, PLANT PHYSIOL BIOCH, V49, P623, DOI 10.1016/j.plaphy.2011.03.010; Manchester LC, 2000, LIFE SCI, V67, P3023, DOI 10.1016/S0024-3205(00)00896-1; Martin M., 2011, EMBNET J, V17, P10, DOI DOI 10.14806/EJ.17.1.200; Mukherjee S, 2014, PHYSIOL PLANTARUM, V152, P714, DOI 10.1111/ppl.12218; Murch SJ, 2009, J PINEAL RES, V47, P277, DOI 10.1111/j.1600-079X.2009.00711.x; Nagy Z, 2013, PLANT PHYSIOL BIOCH, V67, P48, DOI 10.1016/j.plaphy.2013.03.001; Okazaki M, 2009, J PINEAL RES, V43, P338; Okazaki M, 2010, J PINEAL RES, V49, P239, DOI 10.1111/j.1600-079X.2010.00788.x; Okazaki M, 2009, J PINEAL RES, V46, P373, DOI 10.1111/j.1600-079X.2009.00673.x; Pape C, 2006, J PINEAL RES, V41, P157, DOI 10.1111/j.1600-079X.2006.00348.x; Park S, 2013, J PINEAL RES, V54, P258, DOI 10.1111/j.1600-079X.2012.01029.x; Pelagio-Flores R, 2012, J PINEAL RES, V53, P279, DOI 10.1111/j.1600-079X.2012.00996.x; Plaxton WC, 1996, ANNU REV PLANT PHYS, V47, P185, DOI 10.1146/annurev.arplant.47.1.185; Posmyk MM, 2008, J PINEAL RES, V45, P24, DOI [10.1111/j.1600-079X.2007.00552.x, 10.1111/j.1600-079X.2008.00552.x]; Posmyk MM, 2009, BIOMETALS, V22, P479, DOI 10.1007/s10534-009-9205-8; Posmyk MM, 2009, J PINEAL RES, V46, P214, DOI 10.1111/j.1600-079X.2008.00652.x; Provart N, 2003, CURRENT COMPUTER MOL, V2003, P271; Ramakrishna A, 2012, J PINEAL RES, V52, P470, DOI 10.1111/j.1600-079X.2011.00964.x; Ranjan A, 2014, PLANT PHYSIOL, V166, P1186, DOI 10.1104/pp.113.234864; Reiter RJ, 2000, J BIOMED SCI, V7, P444, DOI 10.1159/000025480; Reiter RJ, 2001, NUTR REV, V59, P286; Robinson MD, 2010, BIOINFORMATICS, V26, P139, DOI 10.1093/bioinformatics/btp616; Selwood T., 2011, ARCH BIOCHEM BIOPHYS, V519, P131, DOI DOI 10.1016/J.ABB.2011.11.020; Shi H, 2014, PLANT PHYSIOL BIOCH, V71, P226; Shi H, 2014, J INTEGR PLANT BIOL, DOI 10.1111/jipb.12167; Shi HT, 2014, J PINEAL RES, V57, P185, DOI 10.1111/jpi.12155; Shi HT, 2014, PLANT PHYSIOL BIOCH, V82, P218, DOI 10.1016/j.plaphy.2014.06.006; Shi HT, 2014, PLANT PHYSIOL, V165, P1367, DOI 10.1104/pp.114.242404; Shi HT, 2014, NEW PHYTOL, V203, P554, DOI 10.1111/nph.12812; Shi HT, 2013, J PROTEOME RES, V12, P4951, DOI 10.1021/pr400479k; Shi HT, 2013, PLANT PHYSIOL BIOCH, V71, P226, DOI 10.1016/j.plaphy.2013.07.021; Shi HT, 2013, J EXP BOT, V64, P1367, DOI 10.1093/jxb/ers400; Shi HT, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0053422; Tal O, 2011, J EXP BOT, V62, P1903, DOI 10.1093/jxb/erq378; Tan DX, 2007, J PINEAL RES, V42, P28, DOI 10.1111/j.1600-079X.2006.00407.x; Tan DX, 2012, J EXP BOT, V63, P577, DOI 10.1093/jxb/err256; Tan DX, 2007, PLANT SIGNAL BEHAV, V2, P514, DOI 10.4161/psb.2.6.4639; Tan DX, 2003, J PINEAL RES, V34, P249; Tan DX, 1999, BIOL SIGNAL RECEPT, V8, P70; Tan D-X, 1993, ENDOCR J, V1, P57; Thimm O, 2004, PLANT J, V37, P914, DOI 10.1111/j.1365-313X.2004.02016.x; Venegas C, 2012, J PINEAL RES, V52, P217, DOI 10.1111/j.1600-079X.2011.00931.x; Wang L, 2014, J PINEAL RES, V56, P134, DOI 10.1111/jpi.12105; Wang P, 2013, J PINEAL RES, V55, P424, DOI 10.1111/jpi.12091; Wang P, 2013, J PINEAL RES, V54, P292, DOI 10.1111/jpi.12017; Wang P, 2012, J PINEAL RES, V53, P11, DOI 10.1111/j.1600-079X.2011.00966.x; Weeda S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093462; Yang ZY, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-87; Yin LH, 2013, J PINEAL RES, V54, P426, DOI 10.1111/jpi.12038; Zhang N, 2014, J PINEAL RES, V56, P39, DOI 10.1111/jpi.12095; Zhang N, 2013, J PINEAL RES, V54, P15, DOI 10.1111/j.1600-079X.2012.01015.x; Zhao Y, 2011, J PINEAL RES, V50, P83, DOI 10.1111/j.1600-079X.2010.00817.x; Zhao Y, 2013, J PINEAL RES, V55, P79, DOI 10.1111/jpi.12044
Cited Reference Count 90
Times Cited 67
Total Times Cited Count (WoS, BCI, and CSCD) 67
Publisher OXFORD UNIV PRESS
Publisher City OXFORD
Publisher Address GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
ISSN 0022-0957
29-Character Source Abbreviation J EXP BOT
ISO Source Abbreviation J. Exp. Bot.
Publication Date FEB
Year Published 2015
Volume 66
Issue 3
Beginning Page 681
Ending Page 694
Digital Object Identifier (DOI) 10.1093/jxb/eru373
Page Count 14
Web of Science Category Plant Sciences
Subject Category Plant Sciences
Document Delivery Number CE2RD
Unique Article Identifier WOS:000351662300006
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed