Loading content, please wait..
Version 3.24
Publication Type J
Authors Ma, Q; Bao, AK; Chai, WW; Wang, WY; Zhang, JL; Li, YX; Wang, SM
Author Full Name Ma, Qing; Bao, Ai-Ke; Chai, Wei-Wei; Wang, Wen-Ying; Zhang, Jin-Lin; Li, Yi-Xiao; Wang, Suo-Min
Title Transcriptomic analysis of the succulent xerophyte Zygophyllum xanthoxylum in response to salt treatment and osmotic stress
Language English
Document Type Article
Author Keywords Zygophyllum xanthoxylum; Xerophyte; Transcriptome; Differentially expressed genes; Salt treatments; Osmotic stress
Abstract Accumulating a great quantity of Na+, maintaining the stability of the concentration of important nutrition elements, increasing the activities of enzymes related to ROS-scavenging are crucial strategies for the xerophyte Zygophyllum xanthoxylum surviving under adverse saline and drought environments; besides, actively regulating the photosynthesis is also a main reason for Z. xanthoxylum to adapt to mild salt conditions. However, the possible molecular basis of above physiological mechanisms is poorly understood. By performing Illumina sequencing combined with a digital gene expression profiling technique, differentially expressed genes in leaves and roots of Z. xanthoxylum under 50 mM NaCl and -0.5 MPa osmotic stress for 6 and 24 h were identified, respectively, mainly focused on genes related to ion transport, ROS-scavenging system and photosynthesis. Under 50 mM NaCl and -0.5 MPa osmotic stress, the transcripts of genes encoding transporters/channels for Na+, K+, Ca2+, Mg2+, nitrogen, phosphate and important micro-elements significantly increased, which is conducive to enhance the uptake and transport of nutrient elements in Z. xanthoxylum; and more importantly, besides Na+, genes related to vacuolar compartmentalization of K+, Ca2+, NO3 (-) in leaves plays vital roles in the adaptation to mild salt condition. Meanwhile, NaCl treatment and osmotic stress significantly increased the transcripts of a number of genes related to ROS-scavenging system, which is beneficial to accelerate the ROS-scavenging under 50 mM NaCl and mitigate the damage of ROS to cell biomembrane system under osmotic stress. In addition, in contrast to osmotic stress, 50 mM NaCl significantly induced the expression of genes encoding proteins participated in photosynthetic electron transport and carbon fixation, while inhibited the expression of genes related to chlorophyll catabolism. The present study identified potential genes underling the principal physiological mechanisms of salt and drought tolerance in Z. xanthoxylum. The results provided abundant genetic resources from desert xerophyte for genetic improvement of stress-resistance of important forage and crop species in arid area.
Author Address [Ma, Qing; Bao, Ai-Ke; Chai, Wei-Wei; Wang, Wen-Ying; Zhang, Jin-Lin; Li, Yi-Xiao; Wang, Suo-Min] Lanzhou Univ, State Key Lab Grassland Agroecosyst, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Peoples R China
Reprint Address Wang, SM (reprint author), Lanzhou Univ, State Key Lab Grassland Agroecosyst, Coll Pastoral Agr Sci & Technol, Lanzhou 730020, Peoples R China.
E-mail Address smwang@lzu.edu.cn
Funding Agency and Grant Number National Basic Research Program of China (973 Program) [2014CB138701]; National Natural Science Foundation of China [31501994, 31470503, 31222053]; Specialized Research Fund for the Doctoral Program of Higher Education of China [20130211130001]; Fundamental Research Funds for the Central Universities [lzujbky-2015-41]
Funding Text This work was supported by the National Basic Research Program of China (973 Program, grant No. 2014CB138701), the National Natural Science Foundation of China (grant Nos. 31501994, 31470503 and 31222053), Specialized Research Fund for the Doctoral Program of Higher Education of China (grant No. 20130211130001), and the Fundamental Research Funds for the Central Universities (lzujbky-2015-41).
Cited References Andres Z, 2014, P NATL ACAD SCI USA, V111, pE1806, DOI 10.1073/pnas.1320421111; Apse MP, 2007, FEBS LETT, V581, P2247, DOI 10.1016/j.febslet.2007.04.014; Audic S, 1997, GENOME RES, V7, P986; Bao AK, 2016, PLANT BIOTECHNOL J, V14, P964, DOI 10.1111/pbi.12451; Bao AK, 2014, FUNCT PLANT BIOL, V41, P203, DOI 10.1071/FP13106; Barragan V, 2012, PLANT CELL, V24, P1127, DOI 10.1105/tpc.111.095273; Bassil E, 2011, PLANT CELL, V23, P3482, DOI 10.1105/tpc.111.089581; Bose J, 2014, J EXP BOT, V65, P1241, DOI 10.1093/jxb/ert430; Brautigam A, 2010, PLANT BIOLOGY, V12, P831, DOI 10.1111/j.1438-8677.2010.00373.x; Cai JY, 2011, ACTA PRATACUL SIN, V20, P89; Cellier F, 2004, PLANT J, V39, P834, DOI 10.1111/j.1365-313X.2004.02177.x; Chaves MM, 2009, ANN BOT-LONDON, V103, P551, DOI 10.1093/aob/mcn125; Chen CZ, 2012, PLANT PHYSIOL, V159, P1582, DOI 10.1104/pp.112.199257; Conesa A, 2005, BIOINFORMATICS, V21, P3674, DOI 10.1093/bioinformatics/bti610; Dang ZH, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-29; De Angeli A, 2006, NATURE, V442, P939, DOI 10.1038/nature05013; Deinlein U, 2014, TRENDS PLANT SCI, V19, P371, DOI 10.1016/j.tplants.2014.02.001; Dixon DP, 2002, GENOME BIOL, V3; Flowers TJ, 2015, ANN BOT-LONDON, V115, P327, DOI 10.1093/aob/mcu267; Fu HH, 1998, PLANT CELL, V10, P63, DOI 10.1105/tpc.10.1.63; Gaxiola RA, 2007, FEBS LETT, V581, P2204, DOI 10.1016/j.febslet.2007.03.050; Gierth M, 2007, FEBS LETT, V581, P2348, DOI 10.1016/j.febslet.2007.03.035; Gill SS, 2010, PLANT PHYSIOL BIOCH, V48, P909, DOI 10.1016/j.plaphy.2010.08.016; Gobert A, 2006, J EXP BOT, V57, P791, DOI 10.1093/jxb/erj064; Guo Q, 2012, FUNCT PLANT BIOL, V39, P1047, DOI 10.1071/FP12174; Hauser F, 2010, PLANT CELL ENVIRON, V33, P552, DOI 10.1111/j.1365-3040.2009.02056.x; Hedrich R, 2011, MOL PLANT, V4, P428, DOI 10.1093/mp/ssr017; Horie T, 2009, TRENDS PLANT SCI, V14, P660, DOI 10.1016/j.tplants.2009.08.009; Islam MM, 2010, PLANT CELL PHYSIOL, V51, P302, DOI 10.1093/pcp/pcq001; Jarzyniak KM, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00687; Jin YK, 2015, J PLANT RES, V128, P211, DOI 10.1007/s10265-014-0679-2; Li XL, 2005, FUNCT PLANT BIOL, V32, P643, DOI 10.1071/FP04233; LI Y, 2014, EVID-BASED COMPL ALT, V2014, P1; Lin SH, 2008, PLANT CELL, V20, P2514, DOI 10.1105/tpc.108.060244; LIU J-Q, 1987, Acta Botanica Sinica, V29, P662; Ma Q, 2014, PLANT SOIL, V374, P661, DOI 10.1007/s11104-013-1891-x; Ma Q, 2012, TREE PHYSIOL, V32, P4, DOI 10.1093/treephys/tpr098; Ma Q, 2010, ACTA PRATACULTURAE S, V19, P198; Manohar M, 2011, PLANT BIOLOGY, V13, P561, DOI 10.1111/j.1438-8677.2011.00466.x; Mardis ER, 2008, TRENDS GENET, V24, P133, DOI 10.1016/j.tig.2007.12.007; Martinez JP, 2003, PLANT GROWTH REGUL, V41, P63, DOI 10.1023/A:1027359613325; Metzker ML, 2010, NAT REV GENET, DOI [10.1038/nrg2626, DOI 10.1038/NRG2626]; Miller G, 2008, PHYSIOL PLANTARUM, V133, P481, DOI 10.1111/j.1399-3054.2008.01090.x; Mittler R, 2002, TRENDS PLANT SCI, V7, P405, DOI 10.1016/S1360-1385(02)02312-9; Nevo R, 2012, PLANT J, V70, P157, DOI 10.1111/j.1365-313X.2011.04876.x; [裴世芳 Pei Shifang], 2004, [中国沙漠, Journal of Desert Research], V24, P763; Peiter E, 2005, NATURE, V434, P404, DOI 10.1038/nature03381; Pruzinska A, 2003, P NATL ACAD SCI USA, V100, P15259, DOI 10.1073/pnas.2036571100; Qiu Q, 2011, TREE PHYSIOL, V31, P452, DOI 10.1093/treephys/tpr015; Schuster SC, 2008, NAT METHODS, V5, P16, DOI [10.1038/nmeth1156, 10.1038/NMETH1156]; Sevilla F, 2015, J EXP BOT, V66, P2945, DOI 10.1093/jxb/erv146; Shabala S, 2013, ANN BOT-LONDON, V112, P1209, DOI 10.1093/aob/mct205; Sheng PK, 2014, PLANT CELL REP, V33, P1581, DOI 10.1007/s00299-014-1639-y; Shi Y, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063993; Song ZZ, 2014, BIOL PLANTARUM, V58, P649, DOI 10.1007/s10535-014-0454-1; Sunarpi, 2005, PLANT J, V44, P928, DOI 10.1111/j.1365-313X.2005.02595.x; Tang XL, 2015, CRIT REV BIOTECHNOL, V35, P425, DOI 10.3109/07388551.2014.889080; Tuberosa R, 2006, TRENDS PLANT SCI, V11, P405, DOI 10.1016/j.tplants.2006.06.003; Volkov V, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00873; Wang P, 2012, J BIOL CHEM, V287, P44062, DOI 10.1074/jbc.M112.351643; Wang SM, 2004, J ARID ENVIRON, V56, P525, DOI 10.1016/S0140-1963(03)00063-6; Wang YJ, 2005, J EXP BOT, V56, P3051, DOI 10.1093/jxb/eri302; Wu GQ, 2011, J PLANT PHYSIOL, V168, P758, DOI 10.1016/j.jplph.2010.10.015; Xue JA, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014233; Yan K, 2013, ACTA PHYSIOL PLANT, V35, P2867, DOI 10.1007/s11738-013-1325-7; Yuan HJ, 2015, ANN BOT-LONDON, V115, P495, DOI 10.1093/aob/mcu177; Yue LJ, 2012, J ARID ENVIRON, V87, P153, DOI 10.1016/j.jaridenv.2012.06.002; Zhang CJ, 2011, PLANT PHYSIOL, V157, P1884, DOI 10.1104/pp.111.182808; [周向睿 ZHOU Xiangrui], 2006, [草业科学, Pratacultural Science], V23, P38
Cited Reference Count 69
Times Cited 3
Total Times Cited Count (WoS, BCI, and CSCD) 3
Publisher SPRINGER
Publisher City DORDRECHT
ISSN 0032-079X
29-Character Source Abbreviation PLANT SOIL
ISO Source Abbreviation Plant Soil
Publication Date MAY
Year Published 2016
Volume 402
Issue 1-2
Beginning Page 343
Ending Page 361
Digital Object Identifier (DOI) 10.1007/s11104-016-2809-1
Page Count 19
Web of Science Category Agronomy; Plant Sciences; Soil Science
Subject Category Agriculture; Plant Sciences
Document Delivery Number DJ7PU
Unique Article Identifier WOS:000374404100024
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022. This database is based on an earlier work by James Aronson.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed