Publication Type | J |
Authors | Borum, J; Pedersen, O; Kotula, L; Fraser, MW; Statton, J; Colmer, TD; Kendrick, GA |
Author Full Name | Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W.; Statton, John; Colmer, Timothy D.; Kendrick, Gary A. |
Title | Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species |
Source | PLANT CELL AND ENVIRONMENT |
Language | English |
Document Type | Article |
Author Keywords | bicarbonate utilization; increasing atmospheric CO2; internal aeration; net photosynthesis |
Keywords Plus | INORGANIC CARBON UTILIZATION; EELGRASS ZOSTERA-MARINA; CLIMATE-CHANGE; AQUATIC MACROPHYTES; SULFIDE INTRUSION; MACROALGAE; PLANTS; BUFFER; LIGHT; ACID |
Abstract | Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O-2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3-. Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3- users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3-. Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon. |
Author Address | [Borum, Jens; Pedersen, Ole] Univ Copenhagen, Freshwater Biol Lab, Dept Biol, Univ Pk 4,3rd Floor, DK-2100 Copenhagen, Denmark; [Pedersen, Ole] Univ Western Australia, Inst Adv Studies, Crawley, WA 6009, Australia; [Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W.; Statton, John; Colmer, Timothy D.; Kendrick, Gary A.] Univ Western Australia, Sch Plant Biol, Crawley, WA 6009, Australia; [Fraser, Matthew W.; Statton, John; Kendrick, Gary A.] Univ Western Australia, Oceans Inst, Crawley, WA 6009, Australia |
Reprint Address | Borum, J (reprint author), Univ Copenhagen, Freshwater Biol Lab, Dept Biol, Univ Pk 4,3rd Floor, DK-2100 Copenhagen, Denmark. |
E-mail Address | jborum@bio.ku.dk |
ResearcherID Number | Fraser, Matthew/K-5302-2012; Kotula, Lukasz/H-8124-2012 |
ORCID Number | Fraser, Matthew/0000-0003-2309-8074; Kotula, Lukasz/0000-0001-8760-7099; Borum, Jens/0000-0002-4861-6563; Pedersen, Ole/0000-0002-0827-946X |
Funding Agency and Grant Number | Australian Research Council [LP100200429, LP130100155]; Danish Council for Strategic Research (NOVAGRASS) [12-132701] |
Funding Text | We thank Andrea Zavala Perez and Bonnie Laverock for valuable field assistance. We thank the WA Department of Parks and Wildlife for permissions to collect plant material (SW016179). This work was funded by the Australian Research Council (GAK: LP100200429, LP130100155) and the Danish Council for Strategic Research (NOVAGRASS, grant no. 12-132701). We thank the UWA Institute of Advanced Studies for hosting Ole Pedersen during his visits to UWA. None of the authors have conflicts of interest. |
Cited References | AGUSTI S, 1994, FUNCT ECOL, V8, P273, DOI 10.2307/2389911; Beardall J, 1998, BOT MAR, V41, P113, DOI 10.1515/botm.1998.41.1-6.113; Beer S, 1996, MAR ECOL PROG SER, V141, P199, DOI 10.3354/meps141199; Beer S, 2002, FUNCT PLANT BIOL, V29, P349, DOI 10.1071/PP01185; Beer S, 1997, AQUAT BOT, V56, P277, DOI 10.1016/S0304-3770(96)01109-6; Borum J, 2005, J ECOL, V93, P148, DOI 10.1111/j.1365-2745.2004.00943.x; BORUM J, 1980, OPHELIA S, V1, P57; BOWES G, 1993, ANNU REV PLANT PHYS, V44, P309, DOI 10.1146/annurev.arplant.44.1.309; Caldeira K, 2003, NATURE, V425, P365, DOI 10.1038/425365a; Cambridge ML, 2012, MAR FRESHWATER RES, V63, P1027, DOI 10.1071/MF12022; Connell EL, 1999, AQUAT BOT, V63, P219, DOI 10.1016/S0304-3770(98)00126-0; Duarte CM, 2008, ESTUAR COAST, V31, P233, DOI 10.1007/s12237-008-9038-7; DUARTE CM, 1991, AQUAT BOT, V40, P363, DOI 10.1016/0304-3770(91)90081-F; Enriquez S, 2006, MAR ECOL PROG SER, V323, P119, DOI 10.3354/meps323119; Hellblom F, 2003, PHOTOSYNTH RES, V77, P173, DOI 10.1023/A:1025809415048; Hellblom F, 2001, AQUAT BOT, V69, P55, DOI 10.1016/S0304-3770(00)00132-7; Invers O, 2001, J EXP MAR BIOL ECOL, V265, P203, DOI 10.1016/S0022-0981(01)00332-X; Koch M, 2013, GLOBAL CHANGE BIOL, V19, P103, DOI 10.1111/j.1365-2486.2012.02791.x; Kuo J, 2006, SEAGRASSES: BIOLOGY, ECOLOGY AND CONSERVATION, P51; Larkum A., 1989, BIOL SEAGRASSES, P686; Larsson C, 1999, EUR J PHYCOL, V34, P79, DOI 10.1017/S0967026299001936; Lucas W.J, 1985, P INT WORKSH BIC US; MABERLY SC, 1983, J ECOL, V71, P705, DOI 10.2307/2259587; MABERLY SC, 1990, J PHYCOL, V26, P439, DOI 10.1111/j.0022-3646.1990.00439.x; MADSEN TV, 1991, AQUAT BOT, V41, P5, DOI 10.1016/0304-3770(91)90037-6; MADSEN TV, 1993, AQUAT BOT, V44, P373, DOI 10.1016/0304-3770(93)90078-B; Millero FJ, 2006, MAR CHEM, V100, P80, DOI 10.1016/j.marchem.2005.12.001; MILLHOUSE J, 1986, AQUAT BOT, V24, P199, DOI 10.1016/0304-3770(86)90096-3; Moulin P, 2011, AQUAT BOT, V95, P31, DOI 10.1016/j.aquabot.2011.03.007; Orth RJ, 2006, BIOSCIENCE, V56, P987, DOI 10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2; Palacios SL, 2007, MAR ECOL PROG SER, V344, P1, DOI 10.3354/meps07084; Parry M. L., 2007, CLIMATE CHANGE 2007; Pearson PN, 2000, NATURE, V406, P695, DOI 10.1038/35021000; Pedersen O, 2004, PLANT CELL ENVIRON, V27, P595, DOI 10.1111/j.1365-3040.2004.01173.x; Pedersen O, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00140; Pedersen O, 2011, NEW PHYTOL, V190, P332, DOI 10.1111/j.1469-8137.2010.03522.x; Pelletier G., 1997, CALCULATOR CO2 SYSTE; PORRA RJ, 1989, BIOCHIM BIOPHYS ACTA, V975, P384, DOI 10.1016/S0005-2728(89)80347-0; PRINS HBA, 1980, PLANT PHYSIOL, V66, P818, DOI 10.1104/pp.66.5.818; Raven JA, 2014, PHOTOSYNTH RES, V121, P111, DOI 10.1007/s11120-013-9962-7; Sand-Jensen K, 2007, OIKOS, V116, P280, DOI 10.1111/j.2006.0030-1299.15093.x; Sand-Jensen K, 1987, PLANT LIFE AQUATIC A, P99; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Short FT, 1999, AQUAT BOT, V63, P169, DOI 10.1016/S0304-3770(98)00117-X; Stumm W., 1996, AQUATIC CHEM; Uku J, 2005, MAR BIOL, V147, P1085, DOI 10.1007/s00227-005-0019-0; WALKER NA, 1980, J MEMBRANE BIOL, V57, P51, DOI 10.1007/BF01868985; Wang D, 2012, OECOLOGIA, V169, P1, DOI 10.1007/s00442-011-2172-0; WELLBURN AR, 1994, J PLANT PHYSIOL, V144, P307; Winkel A, 2013, NEW PHYTOL, V197, P1193, DOI 10.1111/nph.12048; Zeebe R. E., 2001, CO2 SEAWATER EQUILIB |
Cited Reference Count | 51 |
Times Cited | 4 |
Total Times Cited Count (WoS, BCI, and CSCD) | 4 |
Publisher | WILEY-BLACKWELL |
Publisher City | HOBOKEN |
Publisher Address | 111 RIVER ST, HOBOKEN 07030-5774, NJ USA |
ISSN | 0140-7791 |
29-Character Source Abbreviation | PLANT CELL ENVIRON |
ISO Source Abbreviation | Plant Cell Environ. |
Publication Date | JUN |
Year Published | 2016 |
Volume | 39 |
Issue | 6 |
Beginning Page | 1240 |
Ending Page | 1250 |
Digital Object Identifier (DOI) | 10.1111/pce.12658 |
Page Count | 11 |
Web of Science Category | Plant Sciences |
Subject Category | Plant Sciences |
Document Delivery Number | DT5BL |
Unique Article Identifier | WOS:000381495500008 |
Plants associated with this reference |