Loading content, please wait..
Version 3.24
Publication Type J
Authors Carter, JL; Veneklaas, EJ; Colmer, TD; Eastham, J; Hatton, TJ
Author Full Name Carter, Jennifer L.; Veneklaas, Erik J.; Colmer, Timothy D.; Eastham, Judy; Hatton, Thomas J.
Title Contrasting water relations of three coastal tree species with different exposure to salinity
Language English
Document Type Review
Abstract This field study examined the ecophysiological responses of three tree species to salinity in the Austin Bay Nature Reserve, adjacent to the Peel-Harvey Estuary in Western Australia (115 degrees 46' E 32 degrees 37' S). The area is at increased risk of flooding with saline water during storm surges due to the construction of a channel between the estuary and Indian Ocean in 1994. Banksia attenuata R.Br. occurs on small sandy ridges adjacent to a seasonal wetland, while Melaleuca cuticularis Labill. and Casuarina obesa Miq. occur in a seasonally flooded wetland. Landscape position determined exposure to salinity, with M. cuticularis and C. obesa experiencing high soil and groundwater salinity during summer (electrical conductivity, EC, up to 70 dS m(-1)) while B. attenuata was not exposed to soil or groundwater with EC greater than 20 dS m(-1). B. attenuata had relatively stable leaf water status throughout the year and did not osmotically adjust as root-zone salinity increased. By contrast, M. cuticularis and C. obesa had large variation in stem water potential and exhibited osmotic adjustment during summer. Whereas the sap flow rates of M. cuticularis and C. obesa remained high throughout the year, sap flow of B. attenuata decreased during summer which may have limited uptake of salt. The three species also exhibited differences in traits associated with tissue-level salt tolerance, as M. cuticularis and C. obesa produced compatible organic solutes (methyl proline in M. cuticularis and proline in C. obesa), whereas B. attenuata did not. The distributions of these species within the Austin Bay Nature Reserve are determined in part by their tolerance to salinity, which will influence their responses to hydrological disturbance.
Author Address Univ Western Australia, Fac Nat & Agr Sci, Sch Plant Biol, Crawley, WA 6009, Australia; CSIRO Land & Water, Wembley, WA 6913, Australia
Reprint Address Carter, JL (reprint author), CSIRO, Ensis Environm, POB 5, Wembley, WA 6913, Australia.
E-mail Address jennifer.carter@ensisjv.com
ResearcherID Number Veneklaas, Erik/C-8907-2009; Colmer, Timothy/A-9994-2011; Carter, Jenny/D-7205-2011
ORCID Number Veneklaas, Erik/0000-0002-7030-4056; Colmer, Timothy/0000-0002-3383-9596;
Cited References Baldwin AH, 1998, AQUAT BOT, V61, P255, DOI 10.1016/S0304-3770(98)00073-4; BALL MC, 1988, AUST J PLANT PHYSIOL, V15, P447; BANULS J, 1992, PHYSIOL PLANTARUM, V86, P115; BARNUN N, 1977, ANN BOT-LONDON, V41, P173; BATRA L, 1994, PLANT SOIL, V167, P197, DOI 10.1007/BF00007945; Bonal D, 2001, FUNCT ECOL, V15, P490, DOI 10.1046/j.0269-8463.2001.00537.x; CALLAWAY JC, 2001, HDB RESTORING TIDAL, P89; Carter JL, 2006, NEW PHYTOL, V169, P123, DOI 10.1111/j.1469-8137.2005.01552.x; CARTER JL, 2004, THESIS U W AUSTR; Clifford SC, 1998, J EXP BOT, V49, P967, DOI 10.1093/jexbot/49.323.967; Colmer TD, 1996, J EXP BOT, V47, P369, DOI 10.1093/jxb/47.3.369; Cronk JK, 2001, WETLAND PLANTS BIOL; DEENEY AC, 1989, 26 DEP MIN EN; DODD J, 1993, AUST J ECOL, V18, P281, DOI 10.1111/j.1442-9993.1993.tb00456.x; DRENNAN P, 1982, NEW PHYTOL, V91, P597, DOI 10.1111/j.1469-8137.1982.tb03338.x; EDWARDS WRN, 1984, NEW ZEAL J AGR RES, V27, P537; Eertman RHM, 2002, RESTOR ECOL, V10, P438, DOI 10.1046/j.1526-100X.2002.01034.x; [Anonymous], 1982, AUSTR FORESTRY RES; FARRINGTON P, 1989, J HYDROL, V105, P173, DOI 10.1016/0022-1694(89)90102-9; FLOWERS TJ, 1977, ANNU REV PLANT PHYS, V28, P89, DOI 10.1146/annurev.pp.28.060177.000513; GALLOWAY R, 1993, J EXP BOT, V44, P653, DOI 10.1093/jxb/44.3.653; Gates DM, 1993, CLIMATE CHANGE ITS B; Gibson N., 2001, Journal of the Royal Society of Western Australia, V84, P116; Gonzalez-Rodriguez AM, 2005, ENVIRON EXP BOT, V53, P195, DOI 10.1016/j.envexpbot.2004.03.013; GOWING DJG, 1993, PHILOS T ROY SOC B, V341, P41, DOI 10.1098/rstb.1993.0089; GREENWAY H, 1980, ANNU REV PLANT PHYS, V31, P149, DOI 10.1146/annurev.pp.31.060180.001053; HALL JL, 1978, PLANTA, V140, P59, DOI 10.1007/BF00389380; HATTON TJ, 1990, TREE PHYSIOL, V6, P201; HINCKLEY TM, 1980, PLANT CELL ENVIRON, V3, P131, DOI 10.1111/1365-3040.ep11580919; Jackson MB, 1996, ANN BOT-LONDON, V77, P17, DOI 10.1006/anbo.1996.0003; Johnson JD, 2002, PHYSIOL PLANTARUM, V115, P93, DOI 10.1034/j.1399-3054.2002.1150111.x; Jones H. G., 1992, PLANTS MICROCLIMATE; Khan MA, 1999, J PLANT NUTR, V22, P191, DOI 10.1080/01904169909365617; Levitt J, 1980, RESPONSES PLANTS ENV, VII; LORD DA, 1998, DAWESVILLE CHANNEL M; MCCUTCHAN H, 1992, J AM SOC HORTIC SCI, V117, P607; MEINZER FC, 1990, PLANT PHYSIOL, V94, P1781, DOI 10.1104/pp.94.4.1781; Moore BD, 1997, PLANT CELL ENVIRON, V20, P938, DOI 10.1046/j.1365-3040.1997.d01-130.x; Moya JL, 1999, PLANT CELL ENVIRON, V22, P1425, DOI 10.1046/j.1365-3040.1999.00495.x; Mulrennan ME, 1998, J ENVIRON MANAGE, V54, P169, DOI 10.1006/jema.1998.0229; MUNNS R, 1984, AUST J PLANT PHYSIOL, V11, P351; MUNNS R, 1984, AUST J PLANT PHYSIOL, V11, P497; NABIL M, 1995, PHYSIOL PLANTARUM, V93, P217, DOI 10.1034/j.1399-3054.1995.930202.x; Naidu BP, 2000, AUST J BOT, V48, P611, DOI 10.1071/BT99059; Naidu BP, 1998, AUST J PLANT PHYSIOL, V25, P793; Naidu BP, 2003, AUST J EXP AGR, V43, P1163, DOI 10.1071/EA02223; NAIDU BP, 1987, AUST J PLANT PHYSIOL, V14, P669; POLJAKOFFMAYBER A, 1987, AUST J PLANT PHYSIOL, V14, P341; PREBBLE RE, 1981, SOIL WATER ASSESSMEN, P83; RADA F, 1989, AUST J PLANT PHYSIOL, V16, P477; Rhoades J. D., 1996, Methods of soil analysis. Part 3 - chemical methods., P417; ROBERTS SW, 1977, OECOLOGIA, V28, P191, DOI 10.1007/BF00345254; STATSOFT Inc., 1995, STATISTICA WIND COMP; Suarez N, 1998, OECOLOGIA, V114, P299, DOI 10.1007/s004420050451; SWANSON RH, 1981, J EXP BOT, V32, P221, DOI 10.1093/jxb/32.1.221; Tardieu F, 1998, J EXP BOT, V49, P419, DOI 10.1093/jexbot/49.suppl_1.419; Tardieu F, 1996, PLANT GROWTH REGUL, V20, P93, DOI 10.1007/BF00024005; TARDIEU F, 1993, PHILOS T ROY SOC B, V341, P57, DOI 10.1098/rstb.1993.0091; TURNER NC, 1981, PLANT SOIL, V58, P339, DOI 10.1007/BF02180062; TURNER NC, 1988, IRRIGATION SCI, V9, P289, DOI 10.1007/BF00296704; TYREE MT, 1976, CAN J BOT, V54, P2738; VANDERMOEZEL PG, 1988, AUST J PLANT PHYSIOL, V15, P465; WALKER RR, 1990, MEMBRANE TRANSPORT P, P490; WELLS MR, 1983, LAND RESOURCES MANDU; White DA, 2000, TREE PHYSIOL, V20, P1157; YANOSKY TM, 1995, ECOL APPL, V5, P785, DOI 10.2307/1941986; Zar JH, 1984, BIOSTATISTICAL ANAL; ZEKRI M, 1989, PHYSIOL PLANTARUM, V77, P99, DOI 10.1111/j.1399-3054.1989.tb05984.x; Zencich SJ, 2002, OECOLOGIA, V131, P8, DOI 10.1007/s00442-001-0855-7; 1996, SAPFLOW SENSOR VERSI
Cited Reference Count 70
Times Cited 15
Total Times Cited Count (WoS, BCI, and CSCD) 15
Publisher City OXFORD
ISSN 0031-9317
29-Character Source Abbreviation PHYSIOL PLANTARUM
ISO Source Abbreviation Physiol. Plant.
Publication Date JUL
Year Published 2006
Volume 127
Issue 3
Beginning Page 360
Ending Page 373
Digital Object Identifier (DOI) 10.1111/j.1399-3054.2005.00633.x
Page Count 14
Web of Science Category Plant Sciences
Subject Category Plant Sciences
Document Delivery Number 069ES
Unique Article Identifier WOS:000239429800004
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022. This database is based on an earlier work by James Aronson.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed