Loading content, please wait..
loading..
Logo
Version 3.20
or
Publication Type J
Authors Scotti-Campos, P; Duro, N; da Costa, M; Pais, IP; Rodrigues, AP; Batista-Santos, P; Semedo, JN; Leitao, AE; Lidon, FC; Pawlowski, K; Ramalho, JC; Ribeiro-Barros, AI
Author Full Name Scotti-Campos, Paula; Duro, Nuno; da Costa, Mario; Pais, Isabel P.; Rodrigues, Ana P.; Batista-Santos, Paula; Semedo, Jose N.; Leitao, A. Eduardo; Lidon, Fernando C.; Pawlowski, Katharina; Ramalho, Jose C.; Ribeiro-Barros, Ana I.
Title Antioxidative ability and membrane integrity in salt-induced responses of Casuarina glauca Sieber ex Spreng. in symbiosis with N-2-fixing Frankia Thr or supplemented with mineral nitrogen
Source JOURNAL OF PLANT PHYSIOLOGY
Language English
Document Type Article
Author Keywords Actinorhizal plants; Antioxidative system; Lipoperoxidation; Membrane integrity; Salinity; Symbiosis
Keywords Plus FATTY-ACID-COMPOSITION; ARABICA L. PLANTS; ELECTRON-TRANSPORT; SALINITY TOLERANCE; CHLOROPLAST MEMBRANES; STRESS TOLERANCE; HIGH IRRADIANCE; DROUGHT; COFFEA; LEAVES
Abstract The actinorhizal tree Casuarina glauca tolerates extreme environmental conditions, such as high salinity. This species is also able to establish a root-nodule symbiosis with N-2-fixing bacteria of the genus Frankia. Recent studies have shown that C. glauca tolerance to high salt concentrations is innate and linked to photosynthetic adjustments. In this study we have examined the impact of increasing NaCl concentrations (200, 400 and 600 mM) on membrane integrity as well as on the control of oxidative stress in branchlets of symbiotic (NOD+) and non-symbiotic (KNO3+) C. glauca. Membrane selectivity was maintained in both plant groups at 200 mM NaCl, accompanied by an increase in the activity of antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase). Regarding cellular membrane lipid composition, linolenic acid (C18:3) showed a significant decline at 200 mM NaCl in both NOD+ and KNO3+ plants. In addition, total fatty acids (TFA) and C18:2 also decreased in NOD+ plants at this salt concentration, resulting in malondialdehyde (MDA) production. Such initial impact at 200 mM NaCl is probably due to the fact that NOD+ plants are subjected to a double stress, i.e., salinity and low nitrogen availability. At 400 mM NaCl a strong reduction of TFA and C18:3 levels was observed in both plant groups. This was accompanied by a decrease in the unsaturation degree of membrane lipids in NOD+. However, in both NOD+ and KNO3+ lipid modifications were not reflected by membrane leakage at 200 or 400 mM, suggesting acclimation mechanisms at the membrane level. The fact that membrane selectivity was impaired only at 600 mM NaCl in both groups of plants points to a high tolerance of C. glauca to salt stress independently of the symbiotic relation with Frankia. (C) 2016 Elsevier GmbH. All rights reserved.
Author Address [Scotti-Campos, Paula; Pais, Isabel P.; Semedo, Jose N.] Inst Nacl Invest Agr & Vet IP INIAV, Unidade Biotecnol & Recursos Genet, Av Republ, P-2784505 Oeiras, Portugal; [Scotti-Campos, Paula; Leitao, A. Eduardo; Lidon, Fernando C.; Ramalho, Jose C.; Ribeiro-Barros, Ana I.] Univ Nova Lisboa, Fac Ciencias & Tecnol, GeoBioTec, P-2829516 Quinta Da Torre, Caparica, Portugal; [Duro, Nuno; da Costa, Mario; Rodrigues, Ana P.; Batista-Santos, Paula; Leitao, A. Eduardo; Ramalho, Jose C.; Ribeiro-Barros, Ana I.] Univ Lisbon, Sch Agr, LEAF Linking Landscape Environm Agr & Food, Plant Stress & Biodivers Grp, Av Republ, P-2784505 Oeiras, Portugal; [Duro, Nuno; da Costa, Mario; Ribeiro-Barros, Ana I.] Univ Nova Lisboa, Inst Tecnol Quim & Biol, Av Republ, P-2780157 Oeiras, Portugal; [Pawlowski, Katharina] Stockholm Univ, Dept Ecol Environm & Plant Sci, S-10691 Stockholm, Sweden
Reprint Address Ribeiro-Barros, AI (reprint author), Univ Lisbon, Sch Agr, LEAF Linking Landscape Environm Agr & Food, Plant Stress & Biodivers Grp, Av Republ, P-2784505 Oeiras, Portugal.
E-mail Address aribeiro@isa.ulisboa.pt
ORCID Number Lidon, Fernando/0000-0002-9694-9602
Funding Agency and Grant Number Portuguese national funds through Fundacao para a Ciencia e a Tecnologia under the scope of the project [PTDC/AGR-FOR/4218/2012, SFRH/BPD/78619/2011]
Funding Text This work was supported by Portuguese national funds through Fundacao para a Ciencia e a Tecnologia under the scope of the project PTDC/AGR-FOR/4218/2012 grant SFRH/BPD/78619/2011 (P. Batista-Santos).
Cited References Asada K., 1994, PHOTOINHIBITION PHOT, P129; Bartels D, 2005, CRIT REV PLANT SCI, V24, P23, DOI 10.1080/07352680590910410; Batista-Santos P, 2015, PLANT PHYSIOL BIOCH, V96, P97, DOI 10.1016/j.plaphy.2015.07.021; Beauchamp C, 1971, Anal Biochem, V44, P276; Campos PS, 2003, J PLANT PHYSIOL, V160, P283, DOI 10.1078/0176-1617-00833; Chaves MM, 2009, ANN BOT-LONDON, V103, P551, DOI 10.1093/aob/mcn125; Chen TW, 2015, PLANT CELL ENVIRON, V38, P1528, DOI 10.1111/pce.12504; da Costa M, 2015, SYMBIOSIS, V66, P21, DOI 10.1007/s13199-015-0330-6; Dias AS, 2010, J AGRON CROP SCI, V196, P100, DOI 10.1111/j.1439-037X.2009.00398.x; Diem H. G., 1990, BIOL FRANKIA ACTINOR, P317, DOI 10.1016/B978-0-12-633210-0.50021-6; Duro N., 2016, BIOL NITROG IN PRESS; Duro N, 2016, PLANT SOIL, V398, P327, DOI 10.1007/s11104-015-2666-3; ESTERBAUER H, 1978, PLANT PHYSIOL, V61, P119, DOI 10.1104/pp.61.1.119; EVANS JR, 1989, PLANT BIOLOGY, V8, P183; Fortunato AS, 2010, J PLANT PHYSIOL, V167, P333, DOI 10.1016/j.jplph.2009.10.013; Foyer C. H., 2002, OXIDATIVE STRESS PLA, P33; Giri B, 2007, MICROB ECOL, V54, P753, DOI 10.1007/s00248-007-9239-9; GIROTTI AW, 1990, PHOTOCHEM PHOTOBIOL, V51, P497, DOI 10.1111/j.1751-1097.1990.tb01744.x; GREENWAY H, 1980, ANNU REV PLANT PHYS, V31, P149, DOI 10.1146/annurev.pp.31.060180.001053; Harris BN, 2010, PLANT SOIL, V336, P377, DOI 10.1007/s11104-010-0489-9; Hasegawa PM, 2000, ANNU REV PLANT PHYS, V51, P463, DOI 10.1146/annurev.arplant.51.1.463; Huang Bingru, 2006, P1, DOI 10.1201/9781420019346.ch1; Jaffel-Hamza K, 2013, J PLANT GROWTH REGUL, V32, P200, DOI 10.1007/s00344-012-9290-8; KATO M, 1987, CAN J BOT, V65, P729; Khan M.H., 2008, ACTA PHYSIOL PLANT, V30, P89; Kuiper P. J. C., 1984, SALINITY TOLERANCE P, P67; LESHEM YY, 1987, PHYSIOL PLANTARUM, V69, P551, DOI 10.1111/j.1399-3054.1987.tb09239.x; Logan BA, 2005, BIOL SCI SER, P250, DOI 10.1002/9780470988565.ch10; Lu N, 2012, PROCESS BIOCHEM, V47, P1163, DOI 10.1016/j.procbio.2012.04.011; Mansour MMF, 2013, BIOL PLANTARUM, V57, P1, DOI 10.1007/s10535-012-0144-9; Mansour MMF, 2004, ENVIRON EXP BOT, V52, P113, DOI 10.1016/j.envexpbot.2004.01.009; Mansour MMF, 2015, BOT REV, V81, P416, DOI 10.1007/s12229-015-9156-4; Matos MC, 2010, PHOTOSYNTHETICA, V48, P303, DOI 10.1007/s11099-010-0038-z; Morais MC, 2012, PLANT PHYSIOL BIOCH, V55, P60, DOI 10.1016/j.plaphy.2012.03.013; Munns R, 2008, ANNU REV PLANT BIOL, V59, P651, DOI 10.1146/annurev.arplant.59.032607.092911; Neffati M, 2008, IND CROP PROD, V28, P137, DOI 10.1016/j.indcrop.2008.02.005; Noctor G, 1998, ANNU REV PLANT PHYS, V49, P249, DOI 10.1146/annurev.arplant.49.1.249; NUNES MA, 1993, J EXP BOT, V44, P893, DOI 10.1093/jxb/44.5.893; OQUIST G, 1982, PLANT PHYSIOL, V69, P869, DOI 10.1104/pp.69.4.869; Partelli FL, 2011, ENVIRON EXP BOT, V74, P194, DOI 10.1016/j.envexpbot.2011.06.001; Pessarakli M., 2010, HDB PLANT CROP STRES, P3; Pitman MG, 2002, SALINITY: ENVIRONMENT - PLANTS - MOLECULES, P3; Ramalho JC, 2014, PLANT BIOLOGY, V16, P133, DOI 10.1111/plb.12018; Ramalho J. D. C., 1992, European Journal of Agronomy, V1, P271; Ramalho JC, 1999, J PLANT PHYSIOL, V154, P319; Ramalho JC, 1998, PLANT SCI, V135, P115, DOI 10.1016/S0168-9452(98)00073-9; Ribeiro A, 2011, FUNCT PLANT BIOL, V38, P639, DOI 10.1071/FP11012; Ribeiro-Barros A. I., 2016, SYMBIOSIS IN PRESS, DOI [10.1007/s13199-016-0386-y, DOI 10.1007/S13199-016-0386-Y)(IN]; Rozen S, 2000, Methods Mol Biol, V132, P365; Sahsah Y, 1998, PHYSIOL PLANTARUM, V104, P577, DOI 10.1034/j.1399-3054.1998.1040409.x; Sayed WF, 2011, FOLIA MICROBIOL, V56, P1, DOI 10.1007/s12223-011-0002-8; Scotti-Campos P, 2014, J PLANT PHYSIOL, V171, P243, DOI [10.1016/j.jplph.2013.07.007, 10.1016/jblph.2013.07.007]; Scotti-Campos P, 2013, EMIR J FOOD AGR, V25, P1002, DOI 10.9755/ejfa.v25i12.16733; Smirnoff N, 2005, BIOL SCI SER, P53, DOI 10.1002/9780470988565.ch3; SUKENIK A, 1987, BIOCHIM BIOPHYS ACTA, V891, P205, DOI 10.1016/0005-2728(87)90216-7; Surjus A, 1996, J EXP BOT, V47, P17, DOI 10.1093/jxb/47.1.17; Turkan I, 2009, ENVIRON EXP BOT, V67, P2, DOI 10.1016/j.envexpbot.2009.05.008; Wang WX, 2003, PLANTA, V218, P1, DOI 10.1007/s00425-003-1105-5; Zhu JK, 2001, TRENDS PLANT SCI, V6, P66, DOI 10.1016/S1360-1385(00)01838-0
Cited Reference Count 59
Publisher ELSEVIER GMBH, URBAN & FISCHER VERLAG
Publisher City JENA
Publisher Address OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY
ISSN 0176-1617
29-Character Source Abbreviation J PLANT PHYSIOL
ISO Source Abbreviation J. Plant Physiol.
Publication Date JUN 1
Year Published 2016
Volume 196-197
Beginning Page 60
Ending Page 69
Digital Object Identifier (DOI) 10.1016/j.jplph.2016.03.012
Page Count 10
Web of Science Category Plant Sciences
Subject Category Plant Sciences
Document Delivery Number DM2FM
Unique Article Identifier WOS:000376162400007
Plants associated with this reference

LEGAL NOTICES — This website is protected by Copyright © The University of Sussex, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019. The eHALOPH database is protected by Database Right and Copyright © The University of Sussex and other contributors, 2006, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019. This database is based on an earlier work by James Aronson.
THIS WEBSITE AND THIS DATABASE ARE PROVIDED ON AN "AS IS" BASIS, AND YOU USE THEM AND RELY ON THEM AT YOUR OWN RISK.

Contact email: halophytes@sussex.ac.uk
Credits – Tim Flowers, Joaquim Santos, Moritz Jahns, Brian Warburton, Peter Reed